WO2011148526A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2011148526A1
WO2011148526A1 PCT/JP2010/068902 JP2010068902W WO2011148526A1 WO 2011148526 A1 WO2011148526 A1 WO 2011148526A1 JP 2010068902 W JP2010068902 W JP 2010068902W WO 2011148526 A1 WO2011148526 A1 WO 2011148526A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
power
control
inverter circuit
Prior art date
Application number
PCT/JP2010/068902
Other languages
English (en)
French (fr)
Inventor
村上 哲
山田 正樹
隆志 金山
和俊 粟根
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201080067083.6A priority Critical patent/CN102918758B/zh
Priority to US13/699,815 priority patent/US9276496B2/en
Priority to DE112010005608.0T priority patent/DE112010005608B4/de
Priority to JP2012517088A priority patent/JP5400961B2/ja
Publication of WO2011148526A1 publication Critical patent/WO2011148526A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the present invention relates to a power converter that obtains a desired DC voltage by superimposing an AC output of a single-phase inverter on a power supply output.
  • the output from the first terminal of the AC power supply is connected to the reactor, and the AC side of the inverter circuit composed of a single-phase inverter is connected in series at the subsequent stage.
  • the single-phase inverter in the inverter circuit includes a semiconductor switch element and a DC voltage source.
  • the first and second series circuits constituting the inverter by connecting the shorting switch and the rectifier diode in series are connected in parallel and connected between both terminals of the smoothing capacitor of the output stage.
  • the midpoint of the first series circuit is connected to the AC output line at the subsequent stage of the inverter circuit, and the midpoint of the second series circuit is connected to the second terminal of the AC power supply.
  • the current is controlled by PWM control so that the DC voltage of the smoothing capacitor can be maintained at a constant target voltage, and the input power factor from the AC power source is approximately 1, and the generated voltage on the AC side is Superimposed on the input voltage from the AC power supply.
  • the short-circuit switch is turned on to bypass the smoothing capacitor (see, for example, Patent Document 1).
  • the charging and discharging of the DC voltage source of the inverter circuit is switched by switching on and off the short-circuit switch to maintain the voltage of the DC voltage source, and the inverter circuit is output-controlled so as to control the current.
  • the voltage of the DC voltage source of the inverter circuit fluctuates greatly, the current control by the inverter circuit cannot be performed, and the voltage of the DC voltage source cannot be recovered, and the control operation of the power converter that outputs the desired voltage to the smoothing capacitor is continued. There was a problem that it was not possible.
  • the present invention has been made to solve the above problems, and even if the voltage of the DC voltage source of the inverter circuit fluctuates greatly, the voltage of the DC voltage source is quickly restored.
  • it is an object to stably continue current control by an inverter circuit and voltage control for outputting a desired voltage to a smoothing capacitor.
  • a first power conversion device is configured by connecting in series one or more AC sides of a single-phase inverter composed of a plurality of semiconductor switch elements and a DC voltage source, and the AC side is a first terminal of a power source. And an inverter circuit that superimposes the sum of the outputs of the single-phase inverters on the output of the power source, and a plurality of switches between the DC buses, one AC terminal of which is the AC output of the subsequent stage of the inverter circuit And the other AC terminal is connected to the second terminal of the power source, and is connected between the DC bus and a converter circuit that outputs DC power between the DC buses, and smoothes the output of the converter circuit.
  • the control circuit charges the DC voltage source of the inverter circuit during the short circuit period during powering to output power to the smoothing capacitor, and extends the short circuit period when the voltage of the DC voltage source decreases.
  • the converter circuit When the voltage of the DC voltage source increases, the converter circuit is controlled so as to shorten the short-circuit period, and when the voltage of the DC voltage source of the inverter circuit exceeds a predetermined upper limit value, the control of the inverter circuit is performed in a steady state. To increase the discharge amount of the DC voltage source.
  • a second power conversion device is configured by connecting one or more AC sides of a single-phase inverter composed of a plurality of semiconductor switch elements and a DC voltage source in series, and the AC side is a first AC power source. And an inverter circuit that superimposes the sum of the outputs of the single-phase inverters on the output of the AC power supply, and a plurality of switches between the DC buses, and one AC terminal is a subsequent stage of the inverter circuit.
  • the other AC terminal is connected to the second terminal of the AC power source, the converter circuit outputs DC power between the DC buses, and is connected between the DC buses, the converter circuit A smoothing capacitor for smoothing the output of the converter circuit, and a short circuit period for bypassing the smoothing capacitor by short-circuiting the AC terminals of the converter circuit.
  • a control circuit that controls the output of the converter circuit so that the voltage of the voltage source follows the command value, and controls the output of the inverter circuit using a current command so that the voltage of the smoothing capacitor follows the target voltage. Prepare.
  • the control circuit charges the DC voltage source of the inverter circuit during the short circuit period during powering to output power to the smoothing capacitor, and the short circuit period when the voltage of the DC voltage source of the inverter circuit decreases.
  • the converter circuit When the voltage of the DC voltage source increases, the converter circuit is controlled to shorten the short-circuit period, and control is possible using the current command of the inverter circuit due to the voltage drop of the DC voltage source during the power running. If the predetermined voltage condition is not satisfied, the short circuit between the AC terminals of the converter circuit is limited, and further, when the voltage of the DC voltage source is reduced to a predetermined lower limit or less, the short circuit limitation between the AC terminals is performed. It releases and charges the said DC voltage source.
  • the control circuit changes the control of the inverter circuit to a normal time to increase the discharge amount of the DC voltage source. Therefore, the voltage of the DC voltage source of the inverter circuit can be quickly restored. For this reason, it is possible to quickly return to the current control in the steady state by the inverter circuit and stably continue the voltage control for outputting a desired voltage to the smoothing capacitor.
  • the control circuit when the control circuit deviates from a predetermined controllable voltage condition using the current command of the inverter circuit due to a voltage drop of the DC voltage source during power running, the control circuit short-circuits between the AC terminals of the converter circuit.
  • the voltage of the DC voltage source is further lowered to a predetermined lower limit value or less, the short-circuit limitation between the AC terminals is canceled and the DC voltage source is charged. For this reason, the voltage of the DC voltage source of the inverter circuit can be quickly restored, and the voltage control for outputting a desired voltage to the smoothing capacitor is stably continued by quickly returning to the current control at the steady state by the inverter circuit. be able to.
  • Embodiment 8 of this invention It is a block diagram of the power converter device by Embodiment 8 of this invention. It is a block diagram of the power converter device by Embodiment 9 of this invention. It is a figure which shows the voltage range of the DC voltage source of the inverter circuit by Embodiment 9 of this invention. It is a control block diagram which shows control of the power converter device by Embodiment 9 of this invention. It is a control block diagram which shows control of the power converter device by Embodiment 10 of this invention.
  • FIG. 1 is a schematic configuration diagram of a power conversion device according to Embodiment 1 of the present invention.
  • the power conversion device includes a main circuit and a control circuit 10 for converting the AC power of the AC power source 1 into DC power and outputting it.
  • the main circuit includes a reactor 2 as a current limiting circuit, an inverter circuit 100, a converter circuit 300, and a smoothing capacitor 3.
  • the output from the first terminal of the AC power supply 1 is connected to the reactor 2, and the AC side of the inverter circuit 100 configured by a single-phase inverter is connected in series at the subsequent stage.
  • one AC terminal is connected to the AC output line at the rear stage of the inverter circuit 100, the other AC terminal is connected to the second terminal of the AC power source 1, and the DC bus 3a, 3b of the converter circuit 300 is connected. DC power is output to the smoothing capacitor 3 connected to.
  • a single-phase inverter in the inverter circuit 100 is connected to a DC voltage source 105 including a plurality of semiconductor switch elements 101a to 104a such as IGBTs (Insulated Gate Bipolar Transistors) having diodes 101b to 104b connected in antiparallel, and a DC capacitor. It is an inverter having a full bridge configuration.
  • the converter circuit 300 includes a plurality of semiconductor switch elements 301a to 304a between the DC buses, and in this case, a plurality of semiconductor switch elements 301a to 304a such as IGBTs each having two diodes 301b to 304b connected in antiparallel. Two bridge circuits connected in series are connected in parallel between the DC buses.
  • a connection point between the emitter of the semiconductor switch element 301a of the converter circuit 300 and the collector of the semiconductor switch element 302a is connected to the AC output line at the subsequent stage of the inverter circuit 100.
  • a connection point between the emitter of the semiconductor switch element 303 a and the collector of the semiconductor switch element 304 a is connected to the second terminal of the AC power supply 1.
  • the semiconductor switch elements 101a to 104a and 301a to 304a may be MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) in which a diode is built in between the source and the drain in addition to the IGBT. Further, the reactor 2 may be connected in series between the inverter circuit 100 and the converter circuit 300. Further, mechanical switches may be used in place of the semiconductor switch elements 301a to 304a of the converter circuit 300.
  • the control circuit 10 determines that the voltage Vdc of the smoothing capacitor 3 is constant based on the voltage Vsub of the DC voltage source 105 of the inverter circuit 100, the voltage Vdc of the smoothing capacitor 3, and the voltage Vin and current Iin from the AC power supply 1.
  • the gate signals 11 and 12 to the semiconductor switch elements 101a to 104a and 301a to 304a in the inverter circuit 100 and the converter circuit 300 are generated so that the target voltage Vdc * is obtained, and the inverter circuit 100 and the converter circuit 300 are output-controlled. To do.
  • the smoothing capacitor 3 is connected to a load (not shown).
  • the control circuit 10 converts the AC power from the AC power source 1 and supplies the DC power to the smoothing capacitor 3.
  • the inverter circuit 100 and the converter circuit 300 are output controlled so as to be supplied.
  • FIG. 6 is a diagram showing the waveforms of the respective parts and the charging / discharging of the DC voltage source 105 of the inverter circuit 100 for explaining the power running operation during boosting of the power converter.
  • FIG. 7 is a diagram showing the waveforms of the respective parts and the charging / discharging of the DC voltage source 105 of the inverter circuit 100 for explaining the power running operation at the time of step-down of the power converter.
  • the voltage Vdc of the smoothing capacitor 3 at the output stage is higher than the peak voltage Vp of the voltage Vin of the AC power supply 1, and the voltage Vdc of the smoothing capacitor 3 at the output stage is the peak of the voltage Vin of the AC power supply 1.
  • the case where it is lower than the voltage Vp is called step-down. 6 and 7 show a state where the voltage Vdc of the smoothing capacitor 3 is controlled to a constant target voltage Vdc * .
  • the voltage Vin from the AC power supply 1 has a waveform as shown in FIGS.
  • the inverter circuit 100 controls and outputs the current Iin by PWM control so that the input power factor from the AC power supply 1 is approximately 1, and superimposes the generated voltage on the AC side on the voltage Vin that is the output of the AC power supply 1. .
  • the voltage phase of the AC power supply 1 is assumed to be ⁇ , and first, a case where the voltage Vin is positive and 0 ⁇ ⁇ ⁇ will be described.
  • the inverter circuit 100 when the semiconductor switch elements 101a and 104a are on and the semiconductor switch elements 102a and 103a are off, a current flows so as to charge the DC voltage source 105, and the semiconductor switch elements 102a and 103a are on.
  • a current flows so as to discharge the DC voltage source 105.
  • the semiconductor switch elements 101a and 103a are on, the semiconductor switch elements 102a and 104a are off, and when the semiconductor switch elements 102a and 104a are on and the semiconductor switch elements 101a and 103a are off, the DC voltage source 105 is passed through. Current flows.
  • the control circuit 10 controls the semiconductor switch elements 101a to 104a by such a combination of four types of control to perform the PWM operation of the inverter circuit 100, thereby charging / discharging the DC voltage source 105 and performing current control.
  • the semiconductor switch element may be turned off and the current may flow through the diodes 101b to 104b connected in reverse parallel.
  • the current from the AC power source 1 is limited by the reactor 2 and input to the inverter circuit 100, and the output passes through the diode 301b in the converter circuit 300 to charge the smoothing capacitor 3 and the diode 304b. After that, the AC power source 1 is returned.
  • the control circuit 10 performs current control by discharging or charging / discharging the DC voltage source 105 by causing the inverter circuit 100 to perform PWM operation by a combination of the above four types of control.
  • the control circuit 10 is a short circuit switch in the control of the converter circuit 300 as shown in FIG.
  • the semiconductor switch element 302a is turned on to bypass the smoothing capacitor 3.
  • the other semiconductor switch elements 301a, 303a, and 304a in the converter circuit 300 are turned off.
  • the current from the AC power source 1 is limited in the reactor 2 and is input to the inverter circuit 100 to charge the DC voltage source 105, and returns to the AC power source 1 through the semiconductor switch element 302 a and the diode 304 b in the converter circuit 300.
  • the control circuit 10 performs the current control by charging the DC voltage source 105 by performing the PWM operation of the inverter circuit 100 by a combination of the control for charging the DC voltage source 105 and the control for causing the control to pass through.
  • the inverter circuit 100 when the semiconductor switch elements 102a and 103a are on and the semiconductor switch elements 101a and 104a are off, a current flows so as to charge the DC voltage source 105, and the semiconductor switch elements 101a and 104a are on. When 102a and 103a are off, a current flows so as to discharge the DC voltage source 105. Further, when the semiconductor switch elements 101a and 103a are on, the semiconductor switch elements 102a and 104a are off, and when the semiconductor switch elements 102a and 104a are on and the semiconductor switch elements 101a and 103a are off, the DC voltage source 105 is passed through. Current flows.
  • the control circuit 10 controls the semiconductor switch elements 101a to 104a by such a combination of four types of control to perform the PWM operation of the inverter circuit 100, thereby charging / discharging the DC voltage source 105 and performing current control.
  • the current from the AC power source 1 passes through the diode 303b in the converter circuit 300, charges the smoothing capacitor 3, and is input to the inverter circuit 100 through the diode 302b.
  • the output of the inverter circuit 100 is the reactor. 2 to return to the AC power source 1.
  • the control circuit 10 performs current control by discharging or charging / discharging the DC voltage source 105 by causing the inverter circuit 100 to perform PWM operation by a combination of the above four types of control.
  • the control circuit 10 bypasses the smoothing capacitor 3 by turning on the semiconductor switch element 304 a that is a short circuit switch in the control of the converter circuit 300.
  • the other semiconductor switch elements 301a, 302a, and 303a in the converter circuit 300 are turned off.
  • the current from the AC power source 1 is input to the inverter circuit 100 through the semiconductor switch element 304a and the diode 302b of the converter circuit 300, charges the DC voltage source 105, and returns to the AC power source 1 through the reactor 2.
  • the control circuit 10 performs the current control by charging the DC voltage source 105 by performing the PWM operation of the inverter circuit 100 by a combination of the control for charging the DC voltage source 105 and the control for causing the control to pass through.
  • the control circuit 10 is turned on only when the semiconductor switch elements 302a and 304a are operated as short-circuit switches. However, when a current is passed through each of the diodes 301b to 304b, the diode is The semiconductor switch elements 301a to 304a that are connected in reverse parallel may be turned on so that a current flows through the semiconductor switch elements 301a to 304a. That is, in any polarity of the voltage Vin, the two semiconductor switch elements 302a and 304a may be turned on as a short-circuit switch in the short-circuit period T, and the other two semiconductor switch elements 301a and 303a may be switched on the short-circuit switch. May be turned on.
  • the inverter circuit 100 outputs a voltage ( ⁇ Vin) in the short-circuit period T to charge the DC voltage source 105 with the AC power source 1 and then charge the DC voltage source 105 as shown in FIG. , ⁇ 1 ⁇ ⁇ ⁇ 1, when the DC voltage source 105 is discharged, the AC power supply is obtained by adding the output voltage (Vdc * ⁇ Vin) of the inverter circuit 100 to the voltage Vin of the AC power supply 1.
  • the voltage Vdc of the smoothing capacitor 3 is controlled to a target voltage Vdc * higher than the peak voltage of 1. Further, at the time of step-down of the power converter, as shown in FIG.
  • the inverter circuit 100 outputs a voltage ( ⁇ Vin) in the short-circuit period T and charges the DC voltage source 105 with the AC power source 1, and then the AC power source.
  • the voltage Vdc of the smoothing capacitor 3 is controlled to the target voltage Vdc * lower than the peak voltage of the AC power supply 1.
  • the inverter circuit 100 When ⁇ ⁇ ⁇ 1 , the inverter circuit 100 outputs a voltage (Vdc * ⁇ Vin) to discharge the DC voltage source 105, and when ⁇ 2 ⁇ ⁇ ⁇ 2 , the inverter circuit 100 Outputs a voltage (Vin ⁇ Vdc * ) to charge the DC voltage source 105.
  • the control circuit 10 controls the output of the inverter circuit 100 by controlling the current Iin so that the input power factor is approximately 1, while generating a voltage substantially equal to the reverse polarity of the voltage Vin from the inverter circuit 100.
  • the DC voltage source 105 is charged.
  • the control circuit 10 maintains the DC voltage Vdc of the smoothing capacitor 3 at the target voltage Vdc * , and controls the current Iin so that the input power factor is approximately 1, thereby controlling the inverter circuit 100. Output control.
  • the DC voltage source 105 is discharged.
  • the absolute value of the voltage Vin is equal to or higher than the target voltage Vdc * , the DC voltage source 105 is charged. Is done.
  • the short-circuit period T may be deviated to any one of the phase ranges including the zero-cross phase.
  • phase range of the short-circuit period T can be determined so that the charging and discharging energies of the DC voltage source 105 of the inverter circuit 100 are equal. Assuming that the charging / discharging energy of the DC voltage source 105 of the inverter circuit 100 is equal, the following equation holds when Vdc * ⁇ Vp is stepped down. However, Vp is the peak voltage of the voltage Vin, and Ip is the peak current of the current Iin.
  • Vdc * Vp ⁇ ⁇ / (4cos ⁇ 1 )
  • the lower limit value of Vdc * is when ⁇ 1 is 0, and the value is ( ⁇ / 4) Vp.
  • the target voltage Vdc * of the smoothing capacitor 3 is determined by ⁇ 1 that determines the phase range of the short-circuit period T, that is, can be controlled by changing ⁇ 1 .
  • the DC voltage Vdc of the smoothing capacitor 3 is controlled so as to follow the target voltage Vdc * .
  • the inverter circuit 100 can perform the above-described desired control with high reliability by setting it to be equal to or larger than a desired generated voltage of the inverter circuit 100 in each phase range of 2 ⁇ ⁇ ⁇ / 2.
  • Vsub ⁇ Vp ⁇ sin ⁇ 1 B: Vsub ⁇ (Vdc * ⁇ Vp ⁇ sin ⁇ 1 )
  • the settable range of the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 is as shown in FIG.
  • the DC voltage Vdc of the smoothing capacitor 3 can be maintained at the target voltage Vdc * , and the inverter circuit that controls the current Iin so that the input power factor becomes approximately 1.
  • 100 control can be performed with reliability in all phases of the AC power supply 1.
  • the loss increases as the voltage Vsub of the DC voltage source 105 increases. Therefore, it is desirable to set the voltage Vsub small under a voltage condition that satisfies the settable range.
  • the input power factor in the other periods of The current Iin is controlled so as to be approximately 1, and DC power having a desired voltage can be output to the smoothing capacitor 3.
  • FIG. 9 is a control block diagram of the control circuit 10 and shows the output control of the converter circuit 300 and the output control of the inverter circuit 100.
  • the control circuit 10 causes the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 to follow the command value Vsub * in the output control of the converter circuit 300.
  • the control circuit 10 uses the difference 32 between the set command value Vsub * and the detected voltage Vsub as a feedback amount and uses the PI-controlled output 33 as a voltage command by the PWM control unit 34 to each semiconductor switch element 301a of the converter circuit 300. Generate gate signal 12 to... 304a.
  • the PWM control unit 34 performs a comparison operation using a triangular wave (AC power supply synchronization triangular wave) 35 synchronized with a cycle twice the frequency of the AC power supply 1 as a carrier wave, and compares the calculated signal with the polarity of the AC power supply 1.
  • a gate signal 12 is generated that operates in a substantially central position where the voltage Vin of the AC power supply 1 crosses zero. That is, the short-circuit period T in which the AC terminals of the converter circuit 300 are short-circuited by the gate signal 12 is also controlled, and the short-circuit period T is long when the voltage Vsub is lowered, and the short-circuit period T is short when the voltage Vsub is increased. Is done.
  • the PWM control unit 34 restricts the short-circuit switch from being turned on when the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 decreases and the voltage condition is not satisfied. Then, after the phase of the voltage Vin approaches the zero cross phase and becomes
  • the difference 32 between the command value Vsub * and the detected voltage Vsub is also input to the voltage determiner 28.
  • the voltage determiner 28 outputs control signals 28a and 28b.
  • the control signal 28a is a signal for changing the control of the converter circuit 300, and is output to the PWM control unit 34 when the voltage Vsub deviates from the voltage condition for current control and further decreases to a predetermined lower limit value V L or less.
  • the PWM control unit 34 releases the restriction on the ON operation of the short-circuit switch, and turns on the short-circuit switch to short-circuit between the AC terminals of the converter circuit 300, whereby the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 is requested.
  • the DC voltage source 105 is charged until the voltage reaches the predetermined voltage.
  • the control signal 28b is a signal for changing the control of the inverter circuit 100, when the voltage Vsub equal to or greater than a predetermined upper limit value V H increases, but output from the voltage determiner 28 based on the difference 32, The output control of the inverter circuit 100 will be described below.
  • the control circuit 10 maintains the DC voltage Vdc of the smoothing capacitor 3 at the target voltage Vdc * in the output control of the inverter circuit 100, and the power factor of the AC power supply 1 becomes approximately 1.
  • the control circuit 10 uses the difference 21a between the DC voltage Vdc of the smoothing capacitor 3 and the target voltage Vdc * as a feedback amount, and uses the PI-controlled output as the amplitude target value 22a.
  • Sine wave current command Iin * synchronized with the voltage Vin is generated from the AC power supply synchronizing frequency 23 having the amplitude of 1.
  • a difference 24 between the current command Iin * and the detected current Iin is used as a feedback amount, and the PI-controlled output is set as a voltage command 25 that becomes a target value of the voltage generated by the inverter circuit 100.
  • the voltage command 25 is corrected by adding the feedforward correction voltage ⁇ V.
  • the PWM control unit 27 uses the corrected voltage command 26, the PWM control unit 27 generates the gate signal 11 to each of the semiconductor switch elements 101a to 104a of the inverter circuit 100, and operates the inverter circuit 100.
  • the control signal 28b from the voltage determiner 28 based on the difference 32 between the instruction value Vsub * and the detected voltage Vsub to the addition voltage calculator 29a is It is output and changed from the above-described steady state control. That is, addition voltage calculator 29a outputs the command value Vsub * and a positive voltage [Delta] V A corresponding to the difference 32 between the voltage Vsub, is added to the target voltage of the smoothing capacitor 3 Vdc *. As a result, the target voltage Vdc * of the smoothing capacitor 3 is increased to increase the current command Iin *, and the discharge amount of the DC voltage source 105 of the inverter circuit 100 is increased. In this way, the control circuit 10 controls the DC voltage source 105 so that the discharge amount is increased from that in the steady state when the DC voltage source 105 is discharged until the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 becomes a required voltage.
  • the control circuit 10 controls the inverter circuit 100 using the current command Iin * , thereby causing the voltage Vdc of the smoothing capacitor 3 to follow the target voltage Vdc * and improving the power factor of the AC power supply 1. Control to do. Since the converter circuit 300 does not require high frequency switching, there is almost no switching loss. Further, the inverter circuit 100 that operates so as to control the power factor and control the DC voltage Vdc of the smoothing capacitor 3 can significantly reduce the voltage Vsub handled by switching from the peak voltage of the AC power supply 1. For this reason, switching loss and noise can be reduced without requiring a large reactor 2, and the reliability of the elements of the inverter circuit 100 is improved.
  • control circuit 10 has a short circuit period T that bypasses the smoothing capacitor 3 to control the converter circuit 300, and the DC voltage source 105 is charged in the short circuit period T in the inverter circuit 100. Therefore, the inverter circuit 100 can avoid the current 0 without generating a high voltage, and the energy charged in the DC voltage source 105 can be used for discharging to the smoothing capacitor 3. For this reason, in the inverter circuit 100, the voltage handled by switching can be further reduced, and higher efficiency and lower noise can be further promoted.
  • the control circuit 10 the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 is increased equal to or larger than a predetermined upper limit value V H, and change the control of the inverter circuit 100 from the control in the steady state, the command value Vsub * a positive voltage [Delta] V a corresponding to the difference 32 between the voltage Vsub, and added to the target voltage of the smoothing capacitor 3 Vdc * increases the target voltage Vdc * and to increase the current command Iin *.
  • the discharge amount of the DC voltage source 105 of the inverter circuit 100 can be increased, and the voltage Vsub of the DC voltage source 105 can be quickly restored.
  • control circuit 10 can quickly return to the current control in the steady state by the inverter circuit 100, that is, the voltage control to output the original target voltage Vdc * to the smoothing capacitor 3, and the desired voltage is applied to the smoothing capacitor 3.
  • the output voltage control can be continued stably.
  • control circuit 10 restricts the short-circuit switch of the converter circuit 300 from being turned on when the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 decreases and deviates from a predetermined voltage condition for current control. Give priority to control. If the short-circuit switch is turned on, current control is prioritized. However, if the short-circuit switch is not turned on, the voltage Vsub of the DC voltage source 105 is not recovered, and the power conversion operation of outputting a desired voltage to the smoothing capacitor 3 is impossible. There are concerns about falling into However, when the voltage Vsub further decreases to a predetermined lower limit value V L or less, the control circuit 10 releases the limitation of the ON operation of the short-circuit switch and charges the DC voltage source 105.
  • the converter circuit 300 uses only the diode as the semiconductor switch elements 301a and 303a of the upper arms of the two bridge circuits connected in parallel between the DC buses. Also good.
  • FIG. 10 is a control block diagram of control circuit 10 in the power conversion device according to Embodiment 2 of the present invention, and shows output control of converter circuit 300 and output control of inverter circuit 100.
  • the main circuit configuration is the same as that of the first embodiment, and the output control of the converter circuit 300 is the same as that shown in FIG. 9 of the first embodiment. As shown in FIG.
  • the control circuit 10 maintains the DC voltage Vdc of the smoothing capacitor 3 at the target voltage Vdc * in the output control of the inverter circuit 100, and the power factor of the AC power supply 1 becomes approximately 1. Controls the current Iin.
  • the control circuit 10 uses the difference 21a between the DC voltage Vdc of the smoothing capacitor 3 and the target voltage Vdc * as a feedback amount, and uses the PI-controlled output as the amplitude target value 22a.
  • Sine wave current command Iin * synchronized with the voltage Vin is generated from the AC power supply synchronizing frequency 23 having the amplitude of 1.
  • a control signal 28b is output from the voltage determiner 28 to the amplitude multiplier 29b based on the difference 32 between the command value Vsub * and the detected voltage Vsub,
  • the control is changed from the above-described steady state control.
  • a sinusoidal current command Iin * synchronized with the voltage Vin is generated from the amplitude target value 22a and the AC power supply synchronization frequency 23a having the amplitude K.
  • the other output control of the inverter circuit 100 is the same as that described in FIG. 9 of the first embodiment.
  • the control circuit 10 increases the current command Iin * by increasing the amplitude of the AC power supply synchronization frequency 23 until the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 becomes a required voltage. For this reason, as in the first embodiment, the discharge amount of the DC voltage source 105 can be increased, and the voltage Vsub of the DC voltage source 105 can be quickly restored, and the same effect can be obtained.
  • FIG. 11 is a control block diagram of control circuit 10 in the power conversion device according to Embodiment 3 of the present invention, and shows output control of converter circuit 300 and output control of inverter circuit 100.
  • the main circuit configuration is the same as that of the first embodiment, and the output control of the converter circuit 300 is the same as that shown in FIG. 9 of the first embodiment.
  • the control circuit 10 in the output control of the inverter circuit 100, the control circuit 10 maintains the DC voltage Vdc of the smoothing capacitor 3 at the target voltage Vdc * , and the AC power source 1 has a power factor of approximately 1. Controls the current Iin.
  • the control circuit 10 uses the difference 21a between the DC voltage Vdc of the smoothing capacitor 3 and the target voltage Vdc * as a feedback amount, and uses the PI-controlled output as the amplitude target value 22a.
  • Sine wave current command Iin * synchronized with the voltage Vin is generated from the AC power supply synchronizing frequency 23 having the amplitude of 1.
  • a control signal 28b is output from the voltage determiner 28 to the phase shifter 29c based on the difference 32 between the command value Vsub * and the detected voltage Vsub,
  • the control is changed from the above-described steady state control. That is, the phase shifter 29c generates the frequency 23b obtained by shifting the phase of the AC power supply synchronization frequency 23 having the amplitude 1 by the phase angle ⁇ corresponding to the difference 32 between the command value Vsub * and the voltage Vsub.
  • a sinusoidal current command Iin * whose phase is shifted from the voltage Vin by a predetermined phase angle ⁇ is generated.
  • the other output control of the inverter circuit 100 is the same as that described in FIG. 9 of the first embodiment.
  • the control circuit 10 shifts the phase of the current command Iin * by a predetermined phase angle ⁇ until the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 becomes a required voltage.
  • the reactive current increases and the inverter circuit 100 is output-controlled so as to increase the discharge amount of the DC voltage source 105. For this reason, the voltage Vsub of the DC voltage source 105 can be quickly restored, and the same effect can be obtained.
  • the control for increasing the current command Iin * shown in the first and second embodiments and the control for shifting the phase of the current command Iin * shown in the third embodiment may be independent controls,
  • the discharge amount of the DC voltage source 105 may be increased by control combining a plurality of types.
  • FIG. 12 is a control block diagram of control circuit 10 in the power conversion device according to Embodiment 4 of the present invention, and shows output control of converter circuit 300 and output control of inverter circuit 100.
  • the main circuit configuration is the same as that of the first embodiment.
  • the output control of the converter circuit 300 is the same as that shown in FIG. 9 of the first embodiment.
  • the voltage determiner 28 to which the difference 32 between the command value Vsub * and the detected voltage Vsub is input.
  • a control signal 28a similar to that of the first embodiment for changing the control of the converter circuit 300 and a control signal 29d shown below for changing the control of the inverter circuit 100 are provided. Output. As shown in FIG. 12, in the output control of the inverter circuit 100, the control circuit 10 maintains the DC voltage Vdc of the smoothing capacitor 3 at the target voltage Vdc * , and the AC power source 1 has a power factor of approximately 1. Controls the current Iin. The regular control is the same as in the first embodiment.
  • the control signal 29d is output from the voltage determiner 28 based on the difference 32 between the instruction value Vsub * and the detected voltage Vsub to the PWM control unit 27
  • the control is changed from the above-described steady state control. That is, the PWM control unit 27 continues the predetermined switching state of each of the semiconductor switch elements 101a to 104a until the voltage Vsub of the DC voltage source 105 reaches the required voltage, and the DC voltage source 105 is turned on in the inverter circuit 100. Control so that current flows in the direction of discharge. As a result, the discharge amount of the DC voltage source 105 of the inverter circuit 100 can be increased, and the voltage Vsub of the DC voltage source 105 can be quickly restored, and the same effect can be obtained.
  • Embodiment 5 In the first to fourth embodiments, only the power running operation of the power converter is shown. However, in this fifth embodiment, the power converter has a regenerative function and normally performs the power running operation, but the voltage of the smoothing capacitor 3 is If it rises, electric power will be regenerated to AC power supply 1 by regenerative operation.
  • the circuit configuration is the same as in FIG. 1, and the power running operation is the same as in the first embodiment. 13 to 16 show current path diagrams in the regenerative operation.
  • the control circuit 10 switches the control of the power converter from the power running operation to the regenerative operation.
  • the inverter circuit 100 when the semiconductor switch elements 101a and 104a are on and the semiconductor switch elements 102a and 103a are off, a current flows so as to discharge the DC voltage source 105, and the semiconductor switch elements 102a and 103a are on. When 101a and 104a are off, a current flows so as to charge the DC voltage source 105. Further, when the semiconductor switch elements 101a and 103a are on, the semiconductor switch elements 102a and 104a are off, and when the semiconductor switch elements 102a and 104a are on and the semiconductor switch elements 101a and 103a are off, the DC voltage source 105 is passed through.
  • the control circuit 10 controls the semiconductor switch elements 101a to 104a by such a combination of four types of control to control the current Iin so that the power factor of the AC power supply 1 is approximately (-1), and the inverter 10
  • the DC voltage source 105 is charged and discharged, and the generated voltage on the AC side is superimposed on the voltage Vin that is the output of the AC power supply 1.
  • the semiconductor switch element may be turned off and the current may flow through the diodes 101b to 104b connected in reverse parallel.
  • the semiconductor switch elements 301a and 304a are turned on.
  • the current from the positive electrode of the smoothing capacitor 3 is input to the inverter circuit 100 through the semiconductor switch element 301a of the converter circuit 300.
  • the current from the inverter circuit 100 is regenerated to the AC power source 1 through the reactor 2, and the AC power source 1
  • the other terminal returns to the negative electrode of the smoothing capacitor 3 through the semiconductor switch element 304a of the converter circuit 300.
  • the control circuit 10 performs current control by charging or charging / discharging the DC voltage source 105 by causing the inverter circuit 100 to perform PWM operation by a combination of the above four types of control.
  • the DC voltage source 105 is charged and discharged with energy from the smoothing capacitor 3 (when boosting), the energy from the DC voltage source 105 is regenerated to the AC power source 1 together with the energy from the smoothing capacitor 3.
  • the control circuit 10 includes a semiconductor switch element 304 a that is a short-circuit switch of the converter circuit 300.
  • the smoothing capacitor 3 is bypassed in the on state.
  • the current from the positive electrode in the inverter circuit 100 is regenerated to the AC power source 1 through the reactor 2, and is further input from the other terminal of the AC power source 1 to the inverter circuit 100 through the semiconductor switch element 304a and the diode 302b of the converter circuit 300. Return to the negative electrode of the voltage source 105.
  • control circuit 10 performs the current control by discharging the DC voltage source 105 by performing the PWM operation of the inverter circuit 100 by a combination of the control for discharging the DC voltage source 105 and the control for causing the DC voltage source 105 to pass through.
  • the inverter circuit 100 when the semiconductor switch elements 102a and 103a are on and the semiconductor switch elements 101a and 104a are off, a current flows so as to discharge the DC voltage source 105, and the semiconductor switch elements 101a and 104a are on. When 102a and 103a are off, a current flows so as to charge the DC voltage source 105. Further, when the semiconductor switch elements 101a and 103a are on, the semiconductor switch elements 102a and 104a are off, and when the semiconductor switch elements 102a and 104a are on and the semiconductor switch elements 101a and 103a are off, the DC voltage source 105 is passed through. Current flows.
  • the control circuit 10 controls the semiconductor switch elements 101a to 104a with such a combination of four types of control to control the current Iin so that the power factor of the AC power supply 1 is approximately (-1), and thereby the inverter circuit
  • the DC voltage source 105 is charged and discharged by performing output control of 100 by PWM control, and the generated voltage on the AC side is superimposed on the voltage Vin that is the output of the AC power supply 1.
  • the semiconductor switch elements 302a and 303a are turned on.
  • the current from the positive electrode of the smoothing capacitor 3 is regenerated to the AC power source 1 via the semiconductor switch element 303a of the converter circuit 300, and further input to the inverter circuit 100 via the reactor 2 from the other terminal of the AC power source 1.
  • From the current returns to the negative electrode of the smoothing capacitor 3 through the semiconductor switch element 302a of the converter circuit 300.
  • the control circuit 10 performs current control by charging or charging / discharging the DC voltage source 105 by causing the inverter circuit 100 to perform PWM operation by a combination of the above four types of control.
  • the DC voltage source 105 is charged and discharged with energy from the smoothing capacitor 3 (when boosting), the energy from the DC voltage source 105 is regenerated to the AC power source 1 together with the energy from the smoothing capacitor 3.
  • control circuit 10 performs the current control by discharging the DC voltage source 105 by performing the PWM operation of the inverter circuit 100 by a combination of the control for discharging the DC voltage source 105 and the control for causing the DC voltage source 105 to pass through.
  • control circuit 10 may turn on the two semiconductor switch elements 302a and 304a as a short-circuit switch during the short-circuit period T regardless of whether the voltage Vin is positive or negative. These two semiconductor switch elements 301a and 303a may be turned on as short-circuit switches.
  • the control circuit 10 generates a voltage substantially equal to the reverse polarity of the voltage Vin from the inverter circuit 100 and outputs the inverter circuit 100 by controlling the current Iin so that the input power factor becomes approximately ( ⁇ 1).
  • the DC voltage source 105 is discharged.
  • FIG. 17 is a control block diagram of the control circuit 10 and shows the output control of the converter circuit 300 and the output control of the inverter circuit 100.
  • the control circuit 10 causes the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 to follow the command value Vsub * in the output control of the converter circuit 300.
  • the control circuit 10 supplies the power running / regeneration selection device 40 with the output 33 obtained by PI control using the difference 32 between the set command value Vsub * and the detected voltage Vsub as a feedback amount. input.
  • the power running / regenerative selection device 40 also receives a signal 33a obtained by inverting the polarity of the PI-controlled output 33. Based on the power running / regenerative signal 37, the output 33 is selected during the power running operation, and the signal 33a is selected and output during the regenerative operation.
  • the gate signal 12 to each of the semiconductor switch elements 301a to 304a of the converter circuit 300 is generated by the PWM control unit 34 using the output of the power running / regeneration selection device 40 as a voltage command.
  • This PWM control unit 34 performs a comparison operation using a triangular wave (AC power supply synchronization triangular wave) 35 synchronized with a cycle twice the frequency of the AC power supply 1 as a carrier wave, and the comparison calculation signal is used for the polarity and powering of the AC power supply 1.
  • the gate signal 12 is generated that operates in the middle of the phase at which the voltage Vin of the AC power supply 1 crosses zero.
  • the short-circuit period T in which the AC terminals of the converter circuit 300 are short-circuited by the gate signal 12 is also controlled.
  • the short-circuit period T is long when the voltage Vsub is reduced, and the short-circuit period T is short when the voltage Vsub is increased. It is controlled to become.
  • the short circuit period T is controlled to be short when the voltage Vsub is lowered, and the short circuit period T is controlled to be long when the voltage Vsub is increased.
  • the PWM control unit 34 restricts the short-circuit switch from being turned on when the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 decreases and the voltage condition is not satisfied. Then, after the phase of the voltage Vin approaches the zero cross phase and becomes
  • the difference 32 between the command value Vsub * and the detected voltage Vsub is also input to the voltage determiner 28.
  • the voltage determiner 28 outputs a control signal 28b that changes the control of the inverter circuit 100 during both the power running operation and the regenerative operation, and the voltage Vsub decreases. If the difference 32 is out of the set range, the control signal 28a for changing the control of the converter circuit 300 is output only during the power running operation.
  • the control circuit 10 restricts the short circuit switch of the converter circuit 300 from being turned on. And prioritize current control.
  • the voltage control to be performed can be continued stably.
  • the control circuit 10 restricts the short-circuit switch from being turned on and gives priority to current control.
  • the DC voltage source 105 is not disconnected from the smoothing capacitor 3 and is not discharged, and there is no problem because it is charged reversely by the regenerative power from the smoothing capacitor 3.
  • the control circuit 10 maintains the DC voltage Vdc of the smoothing capacitor 3 at the target voltage Vdc * in the steady output control of the inverter circuit 100, and the power factor of the AC power supply 1 is a power running operation.
  • the current Iin is controlled to be approximately 1 at times and approximately ( ⁇ 1) at the time of regenerative operation.
  • the control circuit 10 since the polarity of the difference 21a between the DC voltage Vdc and the target voltage Vdc * of the smoothing capacitor 3 is reversed by power running / regeneration, the control circuit 10 is the first embodiment in any operation of power running / regeneration.
  • the current can be controlled by controlling the inverter circuit 100 in the same manner as in FIG.
  • the control signal 28b from the voltage determiner 28 based on the difference 32 between the instruction value Vsub * and the detected voltage Vsub to the addition voltage calculator 29a is It is output and changed from the above-described steady state control.
  • Addition voltage calculator 29a outputs a positive voltage [Delta] V A corresponding to the difference 32 between the instruction value Vsub * and the voltage Vsub, power running operation is added to the target voltage of the smoothing capacitor 3 Vdc *, the regenerative operation Is subtracted from the target voltage Vdc * of the smoothing capacitor 3.
  • the control circuit 10 increases the target voltage Vdc * of the smoothing capacitor 3 during the power running operation to increase the current command Iin *, and increases the discharge amount of the DC voltage source 105 of the inverter circuit 100. Further, during the regenerative operation, the target voltage Vdc * of the smoothing capacitor 3 is decreased to increase the current command Iin *, and the discharge amount of the DC voltage source 105 of the inverter circuit 100 is increased.
  • the control circuit 10 in any of the operations of the power running / regeneration, the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 is required
  • the inverter circuit 100 is controlled by increasing the current command Iin * until the voltage is reached, thereby increasing the amount of discharge of the DC voltage source 105 as compared with the steady state.
  • the power conversion apparatus outputs DC power so that the smoothing capacitor 3 has a desired voltage in the power running operation, and the regenerative operation is performed when the voltage of the smoothing capacitor 3 increases by a predetermined voltage. Regenerates power to the AC power source 1 at.
  • an inverter for controlling an electric motor is connected to the smoothing capacitor 3
  • the electric power returns to the smoothing capacitor 3 when the electric motor decelerates, and the voltage of the smoothing capacitor 3 increases.
  • the smoothing capacitor 3 can be stably controlled to a desired voltage by regenerating the electric power of the smoothing capacitor 3 to the AC power source 1 in the regenerative operation.
  • the control circuit 10 changes the control of the inverter circuit 100 from the steady state, any of the power running / regeneration In the above operation, the target voltage Vdc * of the smoothing capacitor 3 is added or subtracted so as to increase the current command Iin * . Thereby, the discharge amount of the DC voltage source 105 of the inverter circuit 100 can be increased, and the voltage Vsub of the DC voltage source 105 can be quickly restored.
  • the inverter circuit 100 that is, the voltage control to output the original target voltage Vdc * to the smoothing capacitor 3, and the voltage control to output a desired voltage to the smoothing capacitor 3. It can continue stably.
  • the control circuit 10 restricts the short-circuit switch of the converter circuit 300 from being turned on and current Give priority to control.
  • the voltage Vsub of the DC voltage source 105 can be restored by restricting the short-circuit switch from being turned on.
  • the limitation of the ON operation of the short-circuit switch is released and the DC voltage source 105 is charged.
  • the voltage Vsub of the DC voltage source 105 can be promptly restored, and the voltage control for outputting the desired voltage to the smoothing capacitor can be stably continued by promptly returning to the steady-state current control by the inverter circuit. .
  • FIG. 18 is a control block diagram of control circuit 10 in the power conversion device according to Embodiment 6 of the present invention, and shows output control of converter circuit 300 and output control of inverter circuit 100.
  • the main circuit configuration is the same as in the first and fifth embodiments, and the output control of converter circuit 300 is the same as that shown in FIG. 17 of the fifth embodiment.
  • a control signal 28b is output from the voltage determiner 28 to the amplitude multiplier 29b based on the difference 32 between the command value Vsub * and the detected voltage Vsub.
  • the control circuit 10 changes the output control of the inverter circuit 100 from the steady-state control described above.
  • An AC power supply synchronization frequency 23a having an amplitude K is generated.
  • a sinusoidal current command Iin * synchronized with the voltage Vin is generated from the amplitude target value 22a and the AC power supply synchronization frequency 23a having the amplitude K.
  • the other output control of the inverter circuit 100 is the same as that described in FIG. 17 of the fifth embodiment.
  • the control circuit 10 changes the control of the inverter circuit 100 from the steady state, power / regeneration In any of these operations, the amplitude of the AC power supply synchronization frequency 23 is increased to increase the current command Iin * until the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 becomes a required voltage.
  • the amount of discharge of DC voltage source 105 of inverter circuit 100 can be increased, and voltage Vsub of DC voltage source 105 can be quickly restored, and the same effect as in the fifth embodiment can be obtained.
  • the control for increasing the current command Iin * shown in the fifth and sixth embodiments may be independent control, or the discharge amount of the DC voltage source 105 may be increased by combining these controls.
  • FIG. 19 is a control block diagram of control circuit 10 in the power conversion device according to Embodiment 7 of the present invention, and shows output control of converter circuit 300 and output control of inverter circuit 100.
  • the main circuit configuration is the same as in the first and fifth embodiments.
  • the output control of converter circuit 300 is the same as that shown in FIG. 17 of the fifth embodiment.
  • voltage determiner 28 to which difference 32 between command value Vsub * and detected voltage Vsub is input.
  • a control signal 28a similar to that of the fifth embodiment for changing the control of the converter circuit 300 and a control signal 29d for changing the control of the inverter circuit 100 are output.
  • a control signal 29d is output from the voltage determiner 28 to the PWM control unit 27 based on the difference 32 between the command value Vsub * and the detected voltage Vsub.
  • the control circuit 10 changes the output control of the inverter circuit 100 from the steady-state control described above.
  • the PWM control unit 27 continues the predetermined switching state of each of the semiconductor switch elements 101a to 104a until the voltage Vsub of the DC voltage source 105 reaches the required voltage.
  • the circuit 100 is controlled such that a current flows in a direction in which the DC voltage source 105 is discharged.
  • the other output control of the inverter circuit 100 is the same as that described in FIG. 17 of the fifth embodiment. As a result, the discharge amount of the DC voltage source 105 of the inverter circuit 100 can be increased, and the voltage Vsub of the DC voltage source 105 can be quickly restored, and the same effect can be obtained.
  • the short-circuit switch may be turned on to disconnect the DC voltage source 105 from the smoothing capacitor 3 and be discharged in the control of the converter circuit 300, and the AC power source 1 may regenerate power.
  • each single-phase inverter 100, 200 includes a plurality of self-extinguishing semiconductor switch elements 101a-104a, 201a such as a plurality of IGBTs in which diodes 101b-104b, 201b-204b are connected in antiparallel.
  • ⁇ 204a and DC voltage sources 105 and 205 are full-bridge inverters. In this case, the sum total of the outputs of the single-phase inverters 100 and 200 becomes the output of the inverter circuit 110.
  • the voltage Vdc of the smoothing capacitor 3 is made to follow the target voltage, and the inverter circuit so that the power factor from the AC power supply 1 is close to 1 during the power running operation and approaches (-1) during the regenerative operation. 100 is controlled using the current command Iin * .
  • the output of the converter circuit 300 is controlled so that the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 follows the command value Vsub * with a short-circuit period T that bypasses the smoothing capacitor 3. Then, the voltage generated on the AC side of the inverter circuit 110 is superimposed on the voltage Vin of the AC power supply 1.
  • the control circuit 10a controls the inverter circuit 110 as in the above embodiments. Is changed from the steady state to increase the discharge amount of the DC voltage sources 105 and 205.
  • the control circuit 10a restricts the short-circuit switch of the converter circuit 300 from being turned on and gives priority to current control.
  • the inverter circuit 110 may be output by gradation control that generates a stepped voltage waveform with the sum of the outputs of a plurality of single-phase inverters, or only a specific single-phase inverter among the plurality of single-phase inverters. PWM control may be performed.
  • FIG. 21 is a schematic configuration diagram of a power conversion device according to Embodiment 9 of the present invention.
  • a main circuit similar to that of the first embodiment is connected to a DC power supply 5 to obtain a desired DC voltage.
  • the control circuit 10b Based on the voltage Vsub of the DC voltage source 105 of the inverter circuit 100, the voltage Vdc of the smoothing capacitor 3, the DC voltage Va of the DC power supply 5, and the current i, the control circuit 10b has a constant voltage Vdc of the smoothing capacitor 3.
  • the gate signals 13 and 14 to the respective semiconductor switch elements 101a to 104a and 301a to 304a in the inverter circuit 100 and the converter circuit 300 are generated so that the target voltage Vdc * is obtained, and the inverter circuit 100 and the converter circuit 300 are output-controlled. To do.
  • the control circuit 10b has a short-circuit period in which the AC terminals of the converter circuit 300 are short-circuited to bypass the smoothing capacitor 3 at a predetermined period, charges the DC voltage source 105 of the inverter circuit 100, and other than the short-circuit period. Then, the output of the inverter circuit 100 is superimposed on the voltage Va of the DC power supply 5 and output to the smoothing capacitor 3, and the voltage Vdc of the smoothing capacitor 3 is controlled to become the target voltage Vdc * . In this case, an output voltage Vdc obtained by boosting the voltage Va of the DC power supply 5 is obtained.
  • the power conversion device has a regeneration function, and the control circuit 10b switches from the power running operation to the regeneration operation when the voltage Vdc of the smoothing capacitor 3 rises by a predetermined voltage from the target voltage Vdc *. Then, power is regenerated to the DC power source 5.
  • the current paths during power running and regeneration are the same as those shown in the first and fifth embodiments.
  • the voltage Vsub of the DC voltage source 105 charged from the DC power supply 5 needs to be set lower than the DC voltage Va of the DC power supply 5 and more than a desired generated voltage of the inverter circuit 100. That is, the DC voltage Vdc of the smoothing capacitor 3 can be maintained at the target voltage Vdc * by setting the voltage Vsub so as to satisfy the two conditions of Vsub ⁇ Va and Vsub ⁇ Vdc * ⁇ Va.
  • the settable range of the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 is as shown in FIG. In this case as well, in inverter circuit 100 that is PWM-controlled, loss increases as voltage Vsub of DC voltage source 105 increases. Therefore, it is desirable to set voltage Vsub to a small value under the condition that satisfies the above two conditions.
  • FIG. 23 is a control block diagram of the control circuit 10b and shows output control of the converter circuit 300 and output control of the inverter circuit 100.
  • control circuit 10 b causes voltage Vsub of DC voltage source 105 of inverter circuit 100 to follow command value Vsub * in the output control of converter circuit 300.
  • the control circuit 10b inputs the PI-controlled output 33 to the power running / regenerative selection device 40 using the difference 32 between the set command value Vsub * and the detected voltage Vsub as a feedback amount.
  • the power running / regenerative selection device 40 also receives a signal 33a obtained by inverting the polarity of the PI-controlled output 33. Based on the power running / regenerative signal 37, the output 33 is selected during the power running operation, and the signal 33a is selected and output during the regenerative operation. The Then, using the output of the power running / regeneration selection device 40 as a voltage command, the PWM control unit 34 generates the gate signal 14 to each of the semiconductor switch elements 301a to 304a of the converter circuit 300.
  • the PWM control unit 34 performs a comparison operation using a triangular wave 35 a generated at an arbitrary cycle that is a cycle of a short circuit period as a carrier wave, and generates a gate signal 14 based on the powering / regenerative signal 37 based on the comparison operation signal. . That is, the short-circuit period in which the AC signals of the converter circuit 300 are short-circuited by the gate signal 14 is also controlled. During powering operation, the short-circuit period is long when the voltage Vsub is reduced, and the short-circuit period is short when the voltage Vsub is increased. Be controlled. Further, during the regenerative operation, the short circuit period is controlled to be short when the voltage Vsub is decreased, and the short circuit period is controlled to be long when the voltage Vsub is increased.
  • the difference 32 between the command value Vsub * and the detected voltage Vsub is also input to the voltage determiner 28.
  • the voltage determiner 28 outputs a control signal 28b that changes the control of the inverter circuit 100 both during the power running operation and during the regenerative operation.
  • the control circuit 10b maintains the DC voltage Vdc of the smoothing capacitor 3 at the target voltage Vdc * in the output control of the inverter circuit 100.
  • the control circuit 10b uses the difference 21a between the DC voltage Vdc of the smoothing capacitor 3 and the target voltage Vdc * as a feedback amount, and uses the PI-controlled output as the current command i * .
  • the difference 24a between the current command i * and the detected current i is used as a feedback amount, and the PI-controlled output is set as a voltage command 25a that becomes a target value of the generated voltage of the inverter circuit 100.
  • the control was synchronized at the time of switching between the control of the short-circuit period in which the AC terminals of the converter circuit 300 are short-circuited and the control to conduct between the AC terminals of the converter circuit 300 and the smoothing capacitor 3, that is, the control outside the short-circuit period.
  • the feedforward correction voltage ⁇ V is added to correct the voltage command 25a.
  • the PWM control unit 27 uses the corrected voltage command 26a, the PWM control unit 27 generates the gate signal 13 to each of the semiconductor switch elements 101a to 104a of the inverter circuit 100, and operates the inverter circuit 100.
  • Addition voltage calculator 29a outputs a positive voltage [Delta] V A corresponding to the difference 32 between the instruction value Vsub * and the voltage Vsub, power running operation is added to the target voltage of the smoothing capacitor 3 Vdc *, the regenerative operation Is subtracted from the target voltage Vdc * of the smoothing capacitor 3.
  • control circuit 10b increases the target voltage Vdc * of the smoothing capacitor 3 to increase the current command i * during the power running operation, and increases the discharge amount of the DC voltage source 105 of the inverter circuit 100. Further, during the regenerative operation, the target voltage Vdc * of the smoothing capacitor 3 is decreased to increase the current command i *, and the discharge amount of the DC voltage source 105 of the inverter circuit 100 is increased.
  • the control circuit 10b in any of the operations of the power running / regeneration, the voltage Vsub of the DC voltage source 105 of the inverter circuit 100 is required Until the voltage is reached, the current command i * is increased, and the amount of discharge of the DC voltage source 105 is increased from that in the steady state. For this reason, the voltage Vsub of the DC voltage source 105 can be quickly returned, and the inverter circuit 100 can quickly return to the current control in the steady state, that is, the voltage control for outputting the original target voltage Vdc * to the smoothing capacitor 3. Thus, voltage control for outputting a desired voltage to the smoothing capacitor 3 can be stably continued.
  • FIG. 24 is a control block diagram of control circuit 10b in the power conversion device according to the tenth embodiment of the present invention, and shows output control of converter circuit 300 and output control of inverter circuit 100.
  • the configuration of the power converter is the same as that shown in FIG.
  • the output control of the converter circuit 300 is the same as that shown in FIG. 23 of the ninth embodiment.
  • the voltage determiner 28 to which the difference 32 between the command value Vsub * and the detected voltage Vsub is input. Outputs a control signal 29d for changing the control of the inverter circuit 100 when the voltage Vsub increases and the difference 32 is out of the set range.
  • a control signal 29d is output from the voltage determiner 28 to the PWM control unit 27 based on the difference 32 between the command value Vsub * and the detected voltage Vsub.
  • the control circuit 10b changes the output control of the inverter circuit 100 from the steady-state control described above.
  • the PWM control unit 27 continues the predetermined switching state of each of the semiconductor switch elements 101a to 104a until the voltage Vsub of the DC voltage source 105 reaches the required voltage.
  • the circuit 100 is controlled such that a current flows in a direction in which the DC voltage source 105 is discharged.
  • the other output control of the inverter circuit 100 is the same as that described in FIG. 23 of the ninth embodiment. As a result, the discharge amount of the DC voltage source 105 of the inverter circuit 100 can be increased, and the voltage Vsub of the DC voltage source 105 can be quickly restored, and the same effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

 インバータ回路(100)を交流電源(1)に直列接続し、その後段に半導体スイッチ素子(101a~104a)によるコンバータ回路(300)を介して平滑コンデンサ(3)を接続する。制御回路(10)は、1周期内に平滑コンデンサ(3)をバイパスさせる短絡期間(T)を設けてコンバータ回路(300)を制御し、平滑コンデンサ(3)の電圧が目標電圧となるように電流指令を用いて交流電源(1)の力率を改善するようにインバータ回路(100)を制御する。制御回路(10)は、インバータ回路(100)の直流電圧源(105)の電圧が所定の上限値を超えると、電流指令を増加させてインバータ回路(100)を制御し直流電圧源(105)の放電量を増大させる。これにより、インバータ回路(100)の直流電圧源(105)の電圧変動が大きくなっても安定して制御が継続できる。

Description

電力変換装置
 この発明は、単相インバータの交流側の出力を電源出力に重畳し、所望の直流電圧を得る電力変換装置に関するものである。
 従来の電力変換装置は、交流電源の第1の端子からの出力は、リアクトルに接続され、その後段に単相インバータにて構成されたインバータ回路の交流側が直列接続される。インバータ回路内の単相インバータは、半導体スイッチ素子および直流電圧源から構成される。また、それぞれ短絡用スイッチと整流ダイオードとを直列接続してインバータを構成する第1、第2の直列回路は並列接続され、出力段の平滑コンデンサの両端子間に接続される。第1の直列回路の中点が、インバータ回路の後段の交流出力線に接続され、第2の直列回路の中点が交流電源の第2の端子に接続される。そして、平滑コンデンサの直流電圧が一定の目標電圧に維持できるように、また交流電源からの入力力率が概1になるようにPWM制御により電流を制御して出力し、交流側の発生電圧を交流電源からの入力電圧に重畳する。そして、交流電源からの入力電圧の位相のゼロクロス位相を中央とする短絡位相範囲でのみ、短絡用スイッチをオン状態として平滑コンデンサをバイパスさせる(例えば、特許文献1参照)。
特開2009-095160号公報
 このような電力変換装置では、短絡用スイッチのオンオフ切り替えによりインバータ回路の直流電圧源の充放電を切り替えて直流電圧源の電圧を保ち、インバータ回路は、電流を制御するように出力制御される。しかしながら、インバータ回路の直流電圧源の電圧が大きく変動すると、インバータ回路による電流制御ができず、直流電圧源の電圧も復帰できなくなり平滑コンデンサに所望の電圧を出力する電力変換装置の制御運転を継続できないという問題点があった。
 この発明は、上記のような問題点を解消するために成されたものであって、インバータ回路の直流電圧源の電圧が過渡的に大きく変動しても、直流電圧源の電圧を速やかに復帰させて、インバータ回路による電流制御および平滑コンデンサに所望の電圧を出力する電圧制御を安定して継続することを目的とする。
 この発明に係る第1の電力変換装置は、複数の半導体スイッチ素子と直流電圧源とから成る単相インバータの交流側を1以上直列接続して構成され、該交流側を電源の第1の端子に直列接続して上記各単相インバータの出力の総和を上記電源の出力に重畳するインバータ回路と、直流母線間に複数のスイッチを有し、一方の交流端子が上記インバータ回路の後段の交流出力線に接続され、他方の交流端子が上記電源の第2の端子に接続され、上記直流母線間に直流電力を出力するコンバータ回路と、上記直流母線間に接続され、上記コンバータ回路の出力を平滑する平滑コンデンサと、上記コンバータ回路の上記交流端子間を短絡させて上記平滑コンデンサをバイパスさせる短絡期間を有して上記インバータ回路の上記直流電圧源の電圧を指令値に追従させるように上記コンバータ回路を出力制御すると共に、上記平滑コンデンサの電圧を目標電圧に追従させるように上記インバータ回路を電流指令を用いて出力制御する制御回路とを備える。そして、上記制御回路は、上記平滑コンデンサへ電力を出力する力行時に、上記インバータ回路の上記直流電圧源を上記短絡期間において充電し、該直流電圧源の電圧が低下すると上記短絡期間を長く、該直流電圧源の電圧が増加すると上記短絡期間を短くするように上記コンバータ回路を制御し、上記インバータ回路の上記直流電圧源の電圧が所定の上限値を超えると、上記インバータ回路の制御を定常時と変更して該直流電圧源の放電量を増大させるものである。
 またこの発明に係る第2の電力変換装置は、複数の半導体スイッチ素子と直流電圧源とから成る単相インバータの交流側を1以上直列接続して構成され、該交流側を交流電源の第1の端子に直列接続して上記各単相インバータの出力の総和を上記交流電源の出力に重畳するインバータ回路と、直流母線間に複数のスイッチを有し、一方の交流端子が上記インバータ回路の後段の交流出力線に接続され、他方の交流端子が上記交流電源の第2の端子に接続され、上記直流母線間に直流電力を出力するコンバータ回路と、上記直流母線間に接続され、上記コンバータ回路の出力を平滑する平滑コンデンサと、上記コンバータ回路の上記交流端子間を短絡させて上記平滑コンデンサをバイパスさせる短絡期間を有して上記インバータ回路の上記直流電圧源の電圧を指令値に追従させるように上記コンバータ回路を出力制御すると共に、上記平滑コンデンサの電圧を目標電圧に追従させるように上記インバータ回路を電流指令を用いて出力制御する制御回路とを備える。そして、上記制御回路は、上記平滑コンデンサへ電力を出力する力行時に、上記インバータ回路の上記直流電圧源を上記短絡期間において充電し、上記インバータ回路の上記直流電圧源の電圧が低下すると上記短絡期間を長く、該直流電圧源の電圧が増加すると上記短絡期間を短くするように上記コンバータ回路を制御し、上記力行時に上記直流電圧源の電圧低下により上記インバータ回路の上記電流指令を用いた制御可能な所定の電圧条件を外れると、上記コンバータ回路の上記交流端子間の短絡を制限し、さらに上記直流電圧源の電圧が低下して所定の下限値以下になると、上記交流端子間の短絡制限を解除して上記直流電圧源を充電させるものである。
 上記第1の電力変換装置によると、制御回路は、インバータ回路の直流電圧源の電圧が所定の上限値を超えると、インバータ回路の制御を定常時と変更して直流電圧源の放電量を増大させるため、インバータ回路の直流電圧源の電圧を速やかに復帰させることができる。このためインバータ回路による定常時の電流制御に速やかに復帰させ平滑コンデンサに所望の電圧を出力する電圧制御を安定して継続することができる。
 上記第2の電力変換装置によると、制御回路は、力行時に直流電圧源の電圧低下によりインバータ回路の電流指令を用いた制御可能な所定の電圧条件を外れると、コンバータ回路の交流端子間の短絡を制限し、さらに直流電圧源の電圧が低下して所定の下限値以下になると、交流端子間の短絡制限を解除して直流電圧源を充電させる。このため、インバータ回路の直流電圧源の電圧を速やかに復帰させることができ、インバータ回路による定常時の電流制御に速やかに復帰させ平滑コンデンサに所望の電圧を出力する電圧制御を安定して継続することができる。
この発明の実施の形態1による電力変換装置の構成図である。 この発明の実施の形態1による電力変換装置の力行動作を説明する電流経路図である。 この発明の実施の形態1による電力変換装置の力行動作を説明する電流経路図である。 この発明の実施の形態1による電力変換装置の力行動作を説明する電流経路図である。 この発明の実施の形態1による電力変換装置の力行動作を説明する電流経路図である。 この発明の実施の形態1による電力変換装置の昇圧時の動作を説明する各部の波形とインバータ回路の直流電圧源充放電を示す図である。 この発明の実施の形態1による電力変換装置の降圧時の動作を説明する各部の波形とインバータ回路の直流電圧源充放電を示す図である。 この発明の実施の形態1によるインバータ回路の直流電圧源の電圧範囲を示す図である。 この発明の実施の形態1による電力変換装置の制御を示す制御ブロック図である。 この発明の実施の形態2による電力変換装置の制御を示す制御ブロック図である。 この発明の実施の形態3による電力変換装置の制御を示す制御ブロック図である。 この発明の実施の形態4による電力変換装置の制御を示す制御ブロック図である。 この発明の実施の形態5による電力変換装置の回生動作を説明する電流経路図である。 この発明の実施の形態5による電力変換装置の回生動作を説明する電流経路図である。 この発明の実施の形態5による電力変換装置の回生動作を説明する電流経路図である。 この発明の実施の形態5による電力変換装置の回生動作を説明する電流経路図である。 この発明の実施の形態5による電力変換装置の制御を示す制御ブロック図である。 この発明の実施の形態6による電力変換装置の制御を示す制御ブロック図である。 この発明の実施の形態7による電力変換装置の制御を示す制御ブロック図である。 この発明の実施の形態8による電力変換装置の構成図である。 この発明の実施の形態9による電力変換装置の構成図である。 この発明の実施の形態9によるインバータ回路の直流電圧源の電圧範囲を示す図である。 この発明の実施の形態9による電力変換装置の制御を示す制御ブロック図である。 この発明の実施の形態10による電力変換装置の制御を示す制御ブロック図である。
実施の形態1.
 以下、この発明の実施の形態1による電力変換装置について説明する。図1はこの発明
の実施の形態1による電力変換装置の概略構成図である。
 図1に示すように、電力変換装置は、交流電源1の交流電力を直流電力に変換して出力するための主回路と制御回路10とを備える。
 主回路は、限流回路としてのリアクトル2とインバータ回路100とコンバータ回路300と平滑コンデンサ3とを備える。交流電源1の第1の端子からの出力は、リアクトル2に接続され、その後段に単相インバータにて構成されたインバータ回路100の交流側が直列接続される。コンバータ回路300は、一方の交流端子がインバータ回路100の後段の交流出力線に接続され、他方の交流端子が交流電源1の第2の端子に接続され、コンバータ回路300の直流母線3a、3b間に接続された平滑コンデンサ3に直流電力を出力する。
 インバータ回路100内の単相インバータは、ダイオード101b~104bを逆並列に接続した複数個のIGBT(Insulated Gate Bipolar Transistor)等の半導体スイッチ素子101a~104a、および直流コンデンサ等から成る直流電圧源105にて構成されるフルブリッジ構成のインバータである。
 コンバータ回路300は、直流母線間に複数の半導体スイッチ素子301a~304aを有し、この場合、ダイオード301b~304bを逆並列に接続した複数個のIGBT等の半導体スイッチ素子301a~304aをそれぞれ2個直列接続した2つのブリッジ回路を直流母線間に並列接続して構成する。
 インバータ回路100の後段の交流出力線にはコンバータ回路300の半導体スイッチ素子301aのエミッタと半導体スイッチ素子302aのコレクタとの接続点が接続される。また半導体スイッチ素子303aのエミッタと半導体スイッチ素子304aのコレクタとの接続点が交流電源1の上記第2の端子に接続される。
 なお、半導体スイッチ素子101a~104a、301a~304aはIGBT以外にも、ソース・ドレイン間にダイオードが内蔵されたMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等でもよい。
 また、リアクトル2はインバータ回路100とコンバータ回路300との間に直列接続しても良い。また、コンバータ回路300の半導体スイッチ素子301a~304aの代わりに機械式スイッチを用いても良い。
 制御回路10は、インバータ回路100の直流電圧源105の電圧Vsubと、平滑コンデンサ3の電圧Vdcと、交流電源1からの電圧Vin、電流Iinとに基づいて、平滑コンデンサ3の電圧Vdcが一定の目標電圧Vdcになるように、インバータ回路100およびコンバータ回路300内の各半導体スイッチ素子101a~104a、301a~304aへのゲート信号11、12を生成してインバータ回路100およびコンバータ回路300を出力制御する。
 平滑コンデンサ3には図示しない負荷が接続され、通常時は電圧Vdcは目標電圧Vdcに比べて低く、制御回路10は、交流電源1からの交流電力を変換して平滑コンデンサ3に直流電力を供給するようにインバータ回路100およびコンバータ回路300を出力制御する。
 このように構成される電力変換装置の力行動作、即ち平滑コンデンサ3に直流電力を出力する動作について、図に基づいて説明する。図2~図5は、力行動作における電流経路図を示す。また、図6は、電力変換装置の昇圧時の力行動作を説明する各部の波形とインバータ回路100の直流電圧源105の充放電を示す図である。図7は、電力変換装置の降圧時の力行動作を説明する各部の波形とインバータ回路100の直流電圧源105の充放電を示す図である。なお、出力段の平滑コンデンサ3の電圧Vdcが、交流電源1の電圧Vinのピーク電圧Vpより高い場合を昇圧と称し、出力段の平滑コンデンサ3の電圧Vdcが、交流電源1の電圧Vinのピーク電圧Vpより低い場合を降圧と称す。また、図6、図7では、平滑コンデンサ3の電圧Vdcが一定の目標電圧Vdcに制御されている状態を示す。
 交流電源1からの電圧Vinは、図6、図7に示すような波形となる。インバータ回路100は、交流電源1からの入力力率が概1になるようにPWM制御により電流Iinを制御して出力し、交流側の発生電圧を交流電源1の出力である電圧Vinに重畳する。
 交流電源1の電圧位相をθとし、まず、電圧Vinが正極性である0≦θ<πの場合について示す。
 インバータ回路100では、半導体スイッチ素子101a、104aがオン、半導体スイッチ素子102a、103aがオフの時には、直流電圧源105を充電するように電流が流れ、半導体スイッチ素子102a、103aがオン、半導体スイッチ素子101a、104aがオフの時には、直流電圧源105を放電するように電流が流れる。また、半導体スイッチ素子101a、103aがオン、半導体スイッチ素子102a、104aがオフの時、および半導体スイッチ素子102a、104aがオン、半導体スイッチ素子101a、103aがオフの時には、直流電圧源105をスルーして電流が流れる。制御回路10は、このような4種の制御の組み合わせにて半導体スイッチ素子101a~104aを制御してインバータ回路100をPWM動作させることで直流電圧源105を充放電させ、電流制御を行う。なお、各半導体スイッチ素子101a~104aに流れる電流が、エミッタからコレクタへ流れる時は、その半導体スイッチ素子をオフして逆並列接続されたダイオード101b~104bに電流を流しても良い。
 図2に示すように、交流電源1からの電流はリアクトル2にて限流され、インバータ回路100に入力され、その出力はコンバータ回路300内のダイオード301bを通り平滑用コンデンサ3を充電しダイオード304bを経て交流電源1に戻る。このとき、制御回路10は、上記の4種の制御の組み合わせによりインバータ回路100をPWM動作させることで直流電圧源105を放電、あるいは充放電させ、電流制御を行う。
 交流電源1の電圧Vinのゼロクロス位相を中央として±θの位相範囲(以下、短絡期間Tと称す)では、図3に示すように、制御回路10は、コンバータ回路300の制御において短絡スイッチとなる半導体スイッチ素子302aをオン状態として平滑コンデンサ3をバイパスさせる。このとき、コンバータ回路300内の他の半導体スイッチ素子301a、303a、304aをオフさせる。交流電源1からの電流はリアクトル2にて限流され、インバータ回路100に入力されて直流電圧源105を充電し、コンバータ回路300内の半導体スイッチ素子302a、ダイオード304bを経て交流電源1に戻る。このとき、制御回路10は、直流電圧源105を充電する制御とスルーさせる制御の組み合わせによりインバータ回路100をPWM動作させることで直流電圧源105を充電させ、電流制御を行う。
 次に、電圧Vinが負極性であるπ≦θ<2πの場合について示す。
 インバータ回路100では、半導体スイッチ素子102a、103aがオン、半導体スイッチ素子101a、104aがオフの時には、直流電圧源105を充電するように電流が流れ、半導体スイッチ素子101a、104aがオン、半導体スイッチ素子102a、103aがオフの時には、直流電圧源105を放電するように電流が流れる。また、半導体スイッチ素子101a、103aがオン、半導体スイッチ素子102a、104aがオフの時、および半導体スイッチ素子102a、104aがオン、半導体スイッチ素子101a、103aがオフの時には、直流電圧源105をスルーして電流が流れる。制御回路10は、このような4種の制御の組み合わせにて半導体スイッチ素子101a~104aを制御してインバータ回路100をPWM動作させることで直流電圧源105を充放電させ、電流制御を行う。
 図4に示すように、交流電源1からの電流は、コンバータ回路300内のダイオード303bを通り、平滑用コンデンサ3を充電しダイオード302bを経てインバータ回路100に入力され、インバータ回路100の出力はリアクトル2を経て交流電源1に戻る。このとき、制御回路10は、上記の4種の制御の組み合わせによりインバータ回路100をPWM動作させることで直流電圧源105を放電、あるいは充放電させ、電流制御を行う。
 短絡期間Tでは、図5に示すように、制御回路10は、コンバータ回路300の制御において短絡スイッチとなる半導体スイッチ素子304aをオン状態として平滑コンデンサ3をバイパスさせる。このとき、コンバータ回路300内の他の半導体スイッチ素子301a、302a、303aをオフさせる。交流電源1からの電流は、コンバータ回路300の半導体スイッチ素子304a、ダイオード302bを経てインバータ回路100に入力され、直流電圧源105を充電してリアクトル2を経て交流電源1に戻る。このとき、制御回路10は、直流電圧源105を充電する制御とスルーさせる制御の組み合わせによりインバータ回路100をPWM動作させることで直流電圧源105を充電させ、電流制御を行う。
 なお、コンバータ回路300の制御において、制御回路10が半導体スイッチ素子302a、304aを短絡スイッチとして動作させるときのみオンさせる場合を示したが、各ダイオード301b~304bに電流を流す場合は、該ダイオードが逆並列接続されている半導体スイッチ素子301a~304aをオンさせて半導体スイッチ素子301a~304a側に電流を流しても良い。即ち、電圧Vinが正負、いずれの極性においても、短絡期間Tにおいて2つの半導体スイッチ素子302a、304aを短絡スイッチとしてオンさせても良く、また、他の2つの半導体スイッチ素子301a、303aを短絡スイッチとしてオンさせても良い。
 このような動作により電力変換装置の昇圧時には、図6に示すように、インバータ回路100は、短絡期間Tにおいて電圧(-Vin)を出力して交流電源1により直流電圧源105を充電し、その後、θ≦θ<π-θにて直流電圧源105を放電する際、交流電源1の電圧Vinにインバータ回路100の出力電圧である(Vdc-Vin)を加算することで、交流電源1のピーク電圧より高い目標電圧Vdcに平滑コンデンサ3の電圧Vdcが制御される。
 また、電力変換装置の降圧時には、図7に示すように、インバータ回路100は、短絡期間Tにおいて電圧(-Vin)を出力して交流電源1により直流電圧源105を充電し、その後、交流電源1の電圧Vinにインバータ回路100の出力電圧を加算することで、交流電源1のピーク電圧より低い目標電圧Vdcに平滑コンデンサ3の電圧Vdcが制御される。交流電源1の電圧Vinが平滑コンデンサ3の目標電圧Vdcと等しくなる時の位相θ=θ(0<θ<π/2)とすると、θ≦θ<θ、π-θ≦θ<π-θである時、インバータ回路100は電圧(Vdc-Vin)を出力して直流電圧源105を放電し、θ≦θ<π-θである時、インバータ回路100は電圧(Vin-Vdc)を出力して直流電圧源105を充電する。
 以上のように力行動作では、制御回路10は、交流電源1の電圧位相θのゼロクロス位相(θ=0、π)±θにて、コンバータ回路300の制御を切り替え、該ゼロクロス位相を中央として±θの位相範囲である短絡期間Tでのみ、短絡スイッチとなる半導体スイッチ素子302a、304aをオン状態として平滑コンデンサ3をバイパスさせる。このとき、制御回路10は、インバータ回路100から電圧Vinの逆極性にほぼ等しい電圧を発生させつつ、入力力率が概1になるように電流Iinを制御してインバータ回路100を出力制御し、直流電圧源105は充電される。そして、短絡期間以外の位相では、制御回路10は、平滑コンデンサ3の直流電圧Vdcを目標電圧Vdcに維持し、また入力力率が概1になるように電流Iinを制御してインバータ回路100を出力制御する。このとき、電圧Vinの絶対値が平滑コンデンサ3の目標電圧Vdc以下の時、直流電圧源105は放電され、電圧Vinの絶対値が目標電圧Vdc以上の時は、直流電圧源105は充電される。
 なお、短絡期間Tは、ゼロクロス位相(θ=0、π)が短絡期間Tの中央としたが、ゼロクロス位相を含む位相範囲で、いずれかに偏るものであっても良い。
 また、短絡期間Tの位相範囲は、インバータ回路100の直流電圧源105の充電と放電のエネルギが等しくなるように決定できる。インバータ回路100の直流電圧源105の充放電エネルギが等しいとすると、Vdc<Vpの降圧時の場合、以下の数式が成り立つ。但し、Vpは電圧Vinのピーク電圧、Ipは電流Iinのピーク電流である。
Figure JPOXMLDOC01-appb-M000001
 ここで、Vin=Vp・sinθ、Iin=Ip・sinθとすると、
 Vdc=Vp・π/(4cosθ
となり、Vdcの下限値はθが0となる時であり、値は(π/4)Vpとなる。
 このように、平滑コンデンサ3の目標電圧Vdcは短絡期間Tの位相範囲を決定するθにより決まり、即ちθを変化させて制御できる。そして、平滑コンデンサ3の直流電圧Vdcは該目標電圧Vdcに追従するように制御される。
 次に、インバータ回路100の直流電圧源105の電圧条件について説明する。
 直流電圧源105の電圧Vsubを、昇圧時では、0≦θ<θ、θ≦θ<π/2、また降圧時では、0≦θ<θ、θ≦θ<θ、θ≦θ<π/2、の各位相範囲におけるインバータ回路100の所望の発生電圧の大きさ以上に設定することで、インバータ回路100は上述した所望の制御が信頼性よく行える。即ち、
A:Vsub≧Vp・sinθ
B:Vsub≧(Vdc-Vp・sinθ
C:Vsub≧(Vp-Vdc
の3条件を満たす必要がある。
 但し、Vpは電圧Vinのピーク電圧であり、電圧Vsubはピーク電圧Vp以下に設定する。
 これらのことより、インバータ回路100の直流電圧源105の電圧Vsubの設定可能範囲は、図8に示すようになる。このように直流電圧源105の電圧Vsubを設定することで、平滑コンデンサ3の直流電圧Vdcが目標電圧Vdcに維持でき、また入力力率が概1になるように電流Iinを制御するインバータ回路100の制御が、交流電源1の全位相において信頼性よく行える。
 PWM制御されるインバータ回路100では、直流電圧源105の電圧Vsubが大きくなると損失が増大するため、電圧Vsubは上記設定可能範囲を満たす電圧条件で小さく設定するのが望ましい。
 そして、ゼロクロス位相を中央として±θの位相範囲のみを平滑コンデンサ3をバイパスする短絡期間Tとすることで、インバータ回路100の動作により、短絡期間Tでも、それ以外の期間でも入力力率が概1になるように電流Iinが制御され、かつ平滑コンデンサ3に所望の電圧の直流電力を出力できる。
 次に、インバータ回路100およびコンバータ回路300の制御の詳細について図9に基づいて以下に説明する。図9は、制御回路10による制御ブロック図であり、コンバータ回路300の出力制御とインバータ回路100の出力制御とを示す。
 図9に示すように、制御回路10は、コンバータ回路300の出力制御において、インバータ回路100の直流電圧源105の電圧Vsubを指令値Vsubに追従させる。
 制御回路10は、設定された指令値Vsubと検出された電圧Vsubとの差32をフィードバック量として、PI制御した出力33を電圧指令としてPWM制御部34によりコンバータ回路300の各半導体スイッチ素子301a~304aへのゲート信号12を生成する。このPWM制御部34では、交流電源1の周波数の2倍の周期に同期した三角波(交流電源同期三角波)35をキャリア波に用いて比較演算し、比較演算した信号を交流電源1の極性により、交流電源1の電圧Vinがゼロクロスする位相をほぼ中央に動作するゲート信号12を生成する。即ち、このゲート信号12にてコンバータ回路300の交流端子間を短絡する短絡期間Tも制御され、電圧Vsubが低下すると短絡期間Tは長く、電圧Vsubが増加すると短絡期間Tは短くなるように制御される。
 交流電源1の電圧Vinのゼロクロス位相-θにおいて、制御回路10がゲート信号12によりコンバータ回路300の短絡スイッチをオフからオンさせる際、電流を制御するためには、Vp・│sinθ│<Vsub、の電圧条件を満たす必要がある。PWM制御部34は、電流制御の観点から、インバータ回路100の直流電圧源105の電圧Vsubが低下して上記電圧条件を外れると、短絡スイッチがオンすることを制限する。そして、電圧Vinの位相がゼロクロス位相に近づいて、│Vin│<Vsubとなってから短絡スイッチをオフからオンさせる。
 また、指令値Vsubと検出された電圧Vsubとの差32は、電圧判定器28にも入力され、電圧判定器28は差32が設定範囲を外れると、制御信号28a、28bを出力する。制御信号28aはコンバータ回路300の制御を変更する信号であり、電圧Vsubが電流制御のための上記電圧条件を外れ、さらに低下して所定の下限値V以下となるとPWM制御部34へ出力される。PWM制御部34は、短絡スイッチのオン動作の制限を解除し、短絡スイッチをオンさせてコンバータ回路300の交流端子間を短絡させ、これにより、インバータ回路100の直流電圧源105の電圧Vsubが要求される電圧になるまで直流電圧源105は充電される。
 なお、制御信号28bはインバータ回路100の制御を変更する信号であり、電圧Vsubが増加して所定の上限値V以上になると、上記差32に基づいて電圧判定器28から出力されるが、インバータ回路100の出力制御については、以下に示す。
 また図9に示すように、制御回路10は、インバータ回路100の出力制御において、平滑コンデンサ3の直流電圧Vdcを目標電圧Vdcに維持し、また交流電源1の力率が概1になるように電流Iinを制御する。まず、定常時の制御では、制御回路10は、平滑コンデンサ3の直流電圧Vdcと目標電圧Vdcとの差21aをフィードバック量として、PI制御した出力を振幅目標値22aとして、この振幅目標値22aに基づいて、振幅1の交流電源同期周波数23から、電圧Vinに同期した正弦波の電流指令Iinを生成する。次に、電流指令Iinと検出された電流Iinとの差24をフィードバック量として、PI制御した出力をインバータ回路100の発生電圧の目標値となる電圧指令25とする。この時、コンバータ回路300の交流端子間を短絡させる短絡期間Tの制御と、コンバータ回路300の各交流端子と平滑コンデンサ3との間を導通させる制御、即ち短絡期間外の制御との切り替え時に同期したフィードフォワード補正電圧ΔVを加算して電圧指令25を補正する。そして、補正後の電圧指令26を用いて、PWM制御部27によりインバータ回路100の各半導体スイッチ素子101a~104aへのゲート信号11を生成し、インバータ回路100を動作させる。
 また、電圧Vsubが増加して所定の上限値V以上になると、指令値Vsubと検出された電圧Vsubとの差32に基づいて電圧判定器28から加算電圧演算器29aへ制御信号28bが出力され、上述した定常時の制御から変更される。即ち、加算電圧演算器29aは、指令値Vsubと電圧Vsubとの差32に応じた正の電圧ΔVを出力して、平滑コンデンサ3の目標電圧Vdcに加算する。これにより、平滑コンデンサ3の目標電圧Vdcを増大させて電流指令Iinを増加させ、インバータ回路100の直流電圧源105の放電量を増大させる。このように、制御回路10は、インバータ回路100の直流電圧源105の電圧Vsubが要求される電圧になるまで、直流電圧源105の放電時に放電量を定常時よりも増大させて制御する。
 この実施の形態では、制御回路10は、電流指令Iinを用いてインバータ回路100を制御することにより、平滑コンデンサ3の電圧Vdcを目標電圧Vdcに追従させ、交流電源1の力率を改善するように制御する。コンバータ回路300は高周波スイッチングが不要であるためスイッチング損失が殆ど無い。また、力率を制御し平滑コンデンサ3の直流電圧Vdcを制御するように動作するインバータ回路100は、スイッチングで扱う電圧Vsubを交流電源1のピーク電圧よりも大幅に低くできる。このため、大きなリアクトル2を要することなくスイッチング損失およびノイズを低減でき、インバータ回路100の素子の信頼性が向上する。
 また、制御回路10は、平滑コンデンサ3をバイパスする短絡期間Tを有してコンバータ回路300を制御し、インバータ回路100では、短絡期間Tにて直流電圧源105が充電される。このため、インバータ回路100が高い電圧を発生させることなく電流0となるのが回避できると共に、直流電圧源105に充電されたエネルギを平滑コンデンサ3への放電に使える。このため、インバータ回路100では、スイッチングで扱う電圧をさらに低減でき、高効率化、低ノイズ化がさらに促進できる。
 また、制御回路10は、インバータ回路100の直流電圧源105の電圧Vsubが増加して所定の上限値V以上になると、インバータ回路100の制御を定常時の制御から変更して、指令値Vsubと電圧Vsubとの差32に応じた正の電圧ΔVを、平滑コンデンサ3の目標電圧Vdcに加算して目標電圧Vdcを増大させて電流指令Iinを増加させる。これにより、インバータ回路100の直流電圧源105の放電量を増大させ直流電圧源105の電圧Vsubを速やかに復帰させることができる。このため制御回路10は、インバータ回路100による定常時の電流制御、即ち平滑コンデンサ3に元の目標電圧Vdcを出力する電圧制御に速やかに復帰させることができ、平滑コンデンサ3に所望の電圧を出力する電圧制御を安定して継続することができる。
 また、制御回路10は、インバータ回路100の直流電圧源105の電圧Vsubが低下して電流制御のための所定の電圧条件を外れると、コンバータ回路300の短絡スイッチがオンすることを制限して電流制御を優先させる。短絡スイッチがオンすることを制限すると電流制御が優先されるが、短絡スイッチがオンしないと直流電圧源105の電圧Vsubが回復せず、平滑コンデンサ3に所望の電圧を出力する電力変換動作が不能に陥る懸念がある。しかしながら、電圧Vsubがさらに低下して所定の下限値V以下になると、制御回路10は、短絡スイッチのオン動作の制限を解除して直流電圧源105を充電する。これにより一時的に電流制御は乱れるが、直流電圧源105の電圧Vsubを速やかに復帰させることができ、インバータ回路による定常時の電流制御に速やかに復帰させ平滑コンデンサに所望の電圧を出力する電圧制御を安定して継続することができる。
 なお、この実施の形態では、電力変換装置は力行動作のみ行うため、コンバータ回路300は、直流母線間に並列接続される2つのブリッジ回路の上アームの半導体スイッチ素子301a、303aを、ダイオードのみとしても良い。
実施の形態2.
 上記実施の形態1では、制御回路10は、インバータ回路100の直流電圧源105の電圧Vsubが増加して所定の上限値V以上になると、平滑コンデンサ3の目標電圧Vdcを増大させて電流指令Iinを増加させたが、この実施の形態では他の制御により電流指令Iinを増加させる。
 図10は、この発明の実施の形態2による電力変換装置における制御回路10による制御ブロック図であり、コンバータ回路300の出力制御とインバータ回路100の出力制御とを示す。なお、主回路構成は上記実施の形態1と同様であり、コンバータ回路300の出力制御は上記実施の形態1の図9で示したものと同様である。
 図10に示すように、制御回路10は、インバータ回路100の出力制御において、平滑コンデンサ3の直流電圧Vdcを目標電圧Vdcに維持し、また交流電源1の力率が概1になるように電流Iinを制御する。まず、定常時の制御では、制御回路10は、平滑コンデンサ3の直流電圧Vdcと目標電圧Vdcとの差21aをフィードバック量として、PI制御した出力を振幅目標値22aとして、この振幅目標値22aに基づいて、振幅1の交流電源同期周波数23から、電圧Vinに同期した正弦波の電流指令Iinを生成する。
 電圧Vsubが増加して所定の上限値V以上になると、指令値Vsubと検出された電圧Vsubとの差32に基づいて電圧判定器28から振幅かけ算器29bへ制御信号28bが出力され、上述した定常時の制御から変更される。即ち、振幅かけ算器29bは、指令値Vsubと電圧Vsubとの差32に応じた係数Kを、交流電源同期周波数23の振幅(=1)に乗じて振幅Kの交流電源同期周波数23aを生成する。そして振幅目標値22aと、振幅Kの交流電源同期周波数23aとから、電圧Vinに同期した正弦波の電流指令Iinが生成される。
 その他のインバータ回路100の出力制御は、上記実施の形態1の図9で説明したものと同様である。
 この場合、制御回路10は、インバータ回路100の直流電圧源105の電圧Vsubが要求される電圧になるまで、交流電源同期周波数23の振幅を増大させて電流指令Iinを増加させる。このため、上記実施の形態1と同様に、直流電圧源105の放電量を増大させ、直流電圧源105の電圧Vsubを速やかに復帰させることができ、同様の効果が得られる。
実施の形態3.
 上記実施の形態1、2では、制御回路10は、インバータ回路100の直流電圧源105の電圧Vsubが増加して所定の上限値V以上になると、電流指令Iinを増加させて直流電圧源105の放電量を増大させたが、この実施の形態では他の制御により直流電圧源105の放電量を増大させる。
 図11は、この発明の実施の形態3による電力変換装置における制御回路10による制御ブロック図であり、コンバータ回路300の出力制御とインバータ回路100の出力制御とを示す。なお、この場合も主回路構成は上記実施の形態1と同様であり、コンバータ回路300の出力制御は上記実施の形態1の図9で示したものと同様である。
 図11に示すように、制御回路10は、インバータ回路100の出力制御において、平滑コンデンサ3の直流電圧Vdcを目標電圧Vdcに維持し、また交流電源1の力率が概1になるように電流Iinを制御する。まず、定常時の制御では、制御回路10は、平滑コンデンサ3の直流電圧Vdcと目標電圧Vdcとの差21aをフィードバック量として、PI制御した出力を振幅目標値22aとして、この振幅目標値22aに基づいて、振幅1の交流電源同期周波数23から、電圧Vinに同期した正弦波の電流指令Iinを生成する。
 電圧Vsubが増加して所定の上限値V以上になると、指令値Vsubと検出された電圧Vsubとの差32に基づいて電圧判定器28から位相シフト器29cへ制御信号28bが出力され、上述した定常時の制御から変更される。即ち、位相シフト器29cは、振幅1の交流電源同期周波数23の位相を、指令値Vsubと電圧Vsubとの差32に応じた位相角Δθでずらした周波数23bを生成する。そして振幅目標値22aと周波数23bとから、電圧Vinと所定の位相角Δθで位相がずれた正弦波の電流指令Iinが生成される。
 その他のインバータ回路100の出力制御は、上記実施の形態1の図9で説明したものと同様である。
 この場合、制御回路10は、インバータ回路100の直流電圧源105の電圧Vsubが要求される電圧になるまで、電流指令Iinの位相を所定の位相角Δθでずらす。これにより、無効電流が増大してインバータ回路100は直流電圧源105の放電量を増大させるように出力制御される。このため、直流電圧源105の電圧Vsubを速やかに復帰させることができ、同様の効果が得られる。
 なお、上記実施の形態1、2で示した電流指令Iinを増加させる制御と、上記実施の形態3で示した電流指令Iinの位相をずらす制御とは、それぞれ単独の制御でも良いし、複数種を組み合わせた制御により直流電圧源105の放電量を増大させても良い。
実施の形態4.
 この実施の形態では、インバータ回路100の直流電圧源105の電圧Vsubが増加して所定の上限値V以上になると、さらに別の制御により直流電圧源105の放電量を増大させるものを示す。
 図12は、この発明の実施の形態4による電力変換装置における制御回路10による制御ブロック図であり、コンバータ回路300の出力制御とインバータ回路100の出力制御とを示す。なお、この場合も主回路構成は上記実施の形態1と同様である。
 コンバータ回路300の出力制御は上記実施の形態1の図9で示したものと同様であるが、この場合、指令値Vsubと検出された電圧Vsubとの差32が入力される電圧判定器28は、差32が設定範囲を外れると、コンバータ回路300の制御を変更する上記実施の形態1と同様の制御信号28aと、インバータ回路100の制御を変更するための以下に示す制御信号29dとを出力する。
 図12に示すように、制御回路10は、インバータ回路100の出力制御において、平滑コンデンサ3の直流電圧Vdcを目標電圧Vdcに維持し、また交流電源1の力率が概1になるように電流Iinを制御する。定常時の制御は、上記実施の形態1と同様である。
 また、電圧Vsubが増加して所定の上限値V以上になると、指令値Vsubと検出された電圧Vsubとの差32に基づいて電圧判定器28からPWM制御部27へ制御信号29dが出力され、上述した定常時の制御から変更される。即ち、PWM制御部27では、直流電圧源105の電圧Vsubが要求される電圧になるまで各半導体スイッチ素子101a~104aの所定のスイッチング状態を継続させ、インバータ回路100内を、直流電圧源105を放電させる向きに電流が流れるように制御する。
 これにより、インバータ回路100の直流電圧源105の放電量を増大させ直流電圧源105の電圧Vsubを速やかに復帰させることができ、同様の効果が得られる。
実施の形態5.
 上記実施の形態1~4では、電力変換装置の力行動作のみ示したが、この実施の形態5では、電力変換装置は回生機能を備え、通常は力行動作を行うが、平滑コンデンサ3の電圧が上昇すると回生動作により交流電源1に電力を回生する。なお、回路構成は図1と同様であり、また力行動作については上記実施の形態1と同様である。
 図13~図16は、回生動作における電流経路図を示す。制御回路10は、平滑コンデンサ3の電圧Vdcが目標電圧をVdcより所定の電圧分、増大すると、電力変換装置の制御を力行動作から回生動作に切り替える。
 まず交流電源1の電圧Vinが正極性である0≦θ<πの場合について示す。
 インバータ回路100では、半導体スイッチ素子101a、104aがオン、半導体スイッチ素子102a、103aがオフの時には、直流電圧源105を放電するように電流が流れ、半導体スイッチ素子102a、103aがオン、半導体スイッチ素子101a、104aがオフの時には、直流電圧源105を充電するように電流が流れる。また、半導体スイッチ素子101a、103aがオン、半導体スイッチ素子102a、104aがオフの時、および半導体スイッチ素子102a、104aがオン、半導体スイッチ素子101a、103aがオフの時には、直流電圧源105をスルーして電流が流れる。制御回路10は、このような4種の制御の組み合わせにて半導体スイッチ素子101a~104aを制御して交流電源1の力率が概(-1)になるように電流Iinを制御して、インバータ回路100をPWM制御により出力制御することで、直流電圧源105を充放電させ、交流側の発生電圧を交流電源1の出力である電圧Vinに重畳する。なお、各半導体スイッチ素子101a~104aに流れる電流が、エミッタからコレクタへ流れる時は、その半導体スイッチ素子をオフして逆並列接続されたダイオード101b~104bに電流を流しても良い。
 図13に示すように、コンバータ回路300では、半導体スイッチ素子301a、304aをオン状態とする。平滑コンデンサ3の正極からの電流は、コンバータ回路300の半導体スイッチ素子301aを通りインバータ回路100に入力され、インバータ回路100からの電流はリアクトル2を経て交流電源1に回生され、さらに交流電源1の他方の端子からコンバータ回路300の半導体スイッチ素子304aを経て平滑コンデンサ3の負極に戻る。このとき、制御回路10は、上記の4種の制御の組み合わせによりインバータ回路100をPWM動作させることで直流電圧源105を充電、あるいは充放電させ、電流制御を行う。直流電圧源105は平滑コンデンサ3からのエネルギで充電され、放電される場合(昇圧時)には、直流電圧源105からのエネルギは平滑コンデンサ3からのエネルギと共に交流電源1へ回生される。
 交流電源1の電圧Vinのゼロクロス位相を中央として±θの位相範囲である短絡期間Tでは、図14に示すように、制御回路10は、コンバータ回路300の短絡スイッチとなる半導体スイッチ素子304aをオン状態として平滑コンデンサ3をバイパスさせる。インバータ回路100内の正極からの電流はリアクトル2を経て交流電源1に回生され、さらに交流電源1の他方の端子からコンバータ回路300の半導体スイッチ素子304a、ダイオード302bを経てインバータ回路100に入力され直流電圧源105の負極に戻る。このとき、制御回路10は、直流電圧源105を放電する制御とスルーさせる制御の組み合わせによりインバータ回路100をPWM動作させることで直流電圧源105を放電させ、電流制御を行う。
 次に、電圧Vinが負極性であるπ≦θ<2πの場合について示す。
 インバータ回路100では、半導体スイッチ素子102a、103aがオン、半導体スイッチ素子101a、104aがオフの時には、直流電圧源105を放電するように電流が流れ、半導体スイッチ素子101a、104aがオン、半導体スイッチ素子102a、103aがオフの時には、直流電圧源105を充電するように電流が流れる。また、半導体スイッチ素子101a、103aがオン、半導体スイッチ素子102a、104aがオフの時、および半導体スイッチ素子102a、104aがオン、半導体スイッチ素子101a、103aがオフの時には、直流電圧源105をスルーして電流が流れる。制御回路10は、このような4種の制御の組み合わせにて半導体スイッチ素子101a~104aを制御して交流電源1の力率が概(-1)になるように電流Iinを制御してインバータ回路100をPWM制御により出力制御することで直流電圧源105を充放電させ、交流側の発生電圧を交流電源1の出力である電圧Vinに重畳する。
 図15に示すように、コンバータ回路300では、半導体スイッチ素子302a、303aをオン状態とする。平滑コンデンサ3の正極からの電流は、コンバータ回路300の半導体スイッチ素子303aを経て交流電源1に回生され、さらに交流電源1の他方の端子からリアクトル2を経てインバータ回路100に入力され、インバータ回路100からの電流はコンバータ回路300の半導体スイッチ素子302aを経て平滑コンデンサ3の負極に戻る。このとき、制御回路10は、上記の4種の制御の組み合わせによりインバータ回路100をPWM動作させることで直流電圧源105を充電、あるいは充放電させ、電流制御を行う。直流電圧源105は平滑コンデンサ3からのエネルギで充電され、放電される場合(昇圧時)には、直流電圧源105からのエネルギは平滑コンデンサ3からのエネルギと共に交流電源1へ回生される。
 交流電源1の電圧Vinのゼロクロス位相を中央として±θの位相範囲である短絡期間Tでは、図16に示すように、制御回路10は、コンバータ回路300の短絡スイッチとなる半導体スイッチ素子302aをオン状態として平滑コンデンサ3をバイパスさせる。インバータ回路100内の正極からの電流はコンバータ回路300の半導体スイッチ素子302a、ダイオード304bを経て交流電源1に回生され、さらに交流電源1の他方の端子からリアクトル2を経てインバータ回路100に入力され直流電圧源105の負極に戻る。このとき、制御回路10は、直流電圧源105を放電する制御とスルーさせる制御の組み合わせによりインバータ回路100をPWM動作させることで直流電圧源105を放電させ、電流制御を行う。
 なお、制御回路10は、コンバータ回路300の制御において、電圧Vinが正負、いずれの極性においても、短絡期間Tにおいて2つの半導体スイッチ素子302a、304aを短絡スイッチとしてオンさせても良く、また、他の2つの半導体スイッチ素子301a、303aを短絡スイッチとしてオンさせても良い。
 以上のように回生動作においても、力行動作時と同様に、制御回路10は、交流電源1の電圧位相θのゼロクロス位相(θ=0、π)±θにて、コンバータ回路300の制御を切り替えて、該ゼロクロス位相を中央として±θの短絡期間Tでのみ平滑コンデンサ3をバイパスさせる。このとき、制御回路10は、インバータ回路100から電圧Vinの逆極性にほぼ等しい電圧を発生させつつ、入力力率が概(-1)になるように電流Iinを制御してインバータ回路100を出力制御し、直流電圧源105は放電される。そして、短絡期間以外の位相では、制御回路10は、平滑コンデンサ3の直流電圧Vdcを目標電圧Vdcに維持し、また入力力率が概(-1)になるように電流Iinを制御してインバータ回路100を出力制御する。このとき、電圧Vinの絶対値が平滑コンデンサ3の目標電圧Vdc以下の時、直流電圧源105は充電され、電圧Vinの絶対値が目標電圧Vdc以上の時は、直流電圧源105は放電される。
 なお、短絡期間Tは、ゼロクロス位相(θ=0、π)が短絡期間Tの中央としたが、ゼロクロス位相を含む位相範囲で、いずれかに偏るものであっても良い。
 次に、インバータ回路100およびコンバータ回路300の制御の詳細について図17に基づいて以下に説明する。図17は、制御回路10による制御ブロック図であり、コンバータ回路300の出力制御とインバータ回路100の出力制御とを示す。
 図17に示すように、制御回路10は、コンバータ回路300の出力制御において、インバータ回路100の直流電圧源105の電圧Vsubを指令値Vsubに追従させる。
 まず上記実施の形態1と同様に、制御回路10は、設定された指令値Vsubと検出された電圧Vsubとの差32をフィードバック量としてPI制御した出力33を、力行・回生選択装置40に入力する。力行・回生選択装置40には、PI制御した出力33を極性反転した信号33aも入力され、力行・回生信号37に基づいて力行動作時には出力33を、回生動作時には信号33aが選択されて出力される。
 そして、力行・回生選択装置40の出力を電圧指令としてPWM制御部34によりコンバータ回路300の各半導体スイッチ素子301a~304aへのゲート信号12が生成される。このPWM制御部34では、交流電源1の周波数の2倍の周期に同期した三角波(交流電源同期三角波)35をキャリア波に用いて比較演算し、比較演算した信号を交流電源1の極性と力行・回生信号37に基づいて、交流電源1の電圧Vinがゼロクロスする位相をほぼ中央に動作するゲート信号12を生成する。即ち、このゲート信号12にてコンバータ回路300の交流端子間を短絡する短絡期間Tも制御され、力行動作時には、電圧Vsubが低下すると短絡期間Tは長く、電圧Vsubが増加すると短絡期間Tは短くなるように制御される。また、回生動作時には、電圧Vsubが低下すると短絡期間Tは短く、電圧Vsubが増加すると短絡期間Tは長くなるように制御される。
 また、交流電源1の電圧Vinのゼロクロス位相-θにおいて、制御回路10がゲート信号12によりコンバータ回路300の短絡スイッチをオフからオンさせる際、電流を制御するためには、Vp・│sinθ│<Vsub、の電圧条件を満たす必要がある。PWM制御部34は、電流制御の観点から、インバータ回路100の直流電圧源105の電圧Vsubが低下して上記電圧条件を外れると、短絡スイッチがオンすることを制限する。そして、電圧Vinの位相がゼロクロス位相に近づいて、│Vin│<Vsubとなってから短絡スイッチをオフからオンさせる。
 また、指令値Vsubと検出された電圧Vsubとの差32は、電圧判定器28にも入力される。電圧判定器28は、電圧Vsubが増加して差32が設定範囲を外れると、力行動作時および回生動作時の双方においてインバータ回路100の制御を変更する制御信号28bを出力し、電圧Vsubが低下して差32が設定範囲を外れると、力行動作時のみコンバータ回路300の制御を変更する制御信号28aを出力する。
 インバータ回路100の直流電圧源105の電圧Vsubが低下して、上述したような電流制御のための所定の電圧条件を外れると、制御回路10は、コンバータ回路300の短絡スイッチがオンすることを制限して電流制御を優先させる。短絡スイッチのオン動作が制限されると電流制御が優先されるが、力行動作時には短絡スイッチがオンしないと直流電圧源105の電圧Vsubが回復しない。力行動作時には、上記実施の形態1と同様に、電圧Vsubがさらに低下して所定の下限値V以下になると、制御信号28aにより短絡スイッチのオン動作の制限を解除して直流電圧源105を充電する。これにより一時的に電流制御は乱れるが、直流電圧源105の電圧Vsubを速やかに復帰させることができ、インバータ回路100による定常時の電流制御に速やかに復帰させ平滑コンデンサ3に所望の電圧を出力する電圧制御を安定して継続することができる。
 回生動作時においては、直流電圧源105の電圧Vsubが低下して電流制御のための所定の電圧条件を外れ、制御回路10が短絡スイッチがオンすることを制限して電流制御を優先させると、直流電圧源105は、平滑コンデンサ3から切り離されて放電されることがなく、平滑コンデンサ3からの回生電力により逆に充電されるので問題がない。
 図17に示すように、制御回路10は、インバータ回路100の定常時の出力制御において、平滑コンデンサ3の直流電圧Vdcを目標電圧Vdcに維持し、また交流電源1の力率が、力行動作時には概1に、回生動作時には概(-1)になるように電流Iinを制御する。この場合、平滑コンデンサ3の直流電圧Vdcと目標電圧Vdcとの差21aの極性が力行/回生で極性反転するため、制御回路10は、力行/回生のいずれの動作においても上記実施の形態1と同様にインバータ回路100を制御することで電流制御できる。
 また、電圧Vsubが増加して所定の上限値V以上になると、指令値Vsubと検出された電圧Vsubとの差32に基づいて電圧判定器28から加算電圧演算器29aへ制御信号28bが出力され、上述した定常時の制御から変更される。加算電圧演算器29aは、指令値Vsubと電圧Vsubとの差32に応じた正の電圧ΔVを出力して、力行動作時は平滑コンデンサ3の目標電圧Vdcに加算し、回生動作時は平滑コンデンサ3の目標電圧Vdcから減算する。
 これにより、制御回路10は、力行動作時には平滑コンデンサ3の目標電圧Vdcを増大させて電流指令Iinを増加させ、インバータ回路100の直流電圧源105の放電量を増大させる。また、回生動作時には平滑コンデンサ3の目標電圧Vdcを減少させて電流指令Iinを増加させ、インバータ回路100の直流電圧源105の放電量を増大させる。
 このように、電圧Vsubが増加して所定の上限値V以上になると、制御回路10は、力行/回生のいずれの動作においても、インバータ回路100の直流電圧源105の電圧Vsubが要求される電圧になるまで、電流指令Iinを増加させて直流電圧源105の放電量を定常時よりも増大させてインバータ回路100を制御する。
 以上のように、この実施の形態では、電力変換装置は、力行動作では平滑コンデンサ3が所望の電圧になるように直流電力を出力し、平滑コンデンサ3の電圧が所定の電圧分上昇すると回生動作にて交流電源1に電力を回生する。平滑コンデンサ3に例えば電動機制御用のインバータ等を接続すると、電動機が減速する際に電力が平滑コンデンサ3に戻り、平滑コンデンサ3の電圧が上昇する。このように平滑コンデンサ3の電圧が上昇しても、回生動作にて平滑コンデンサ3の電力を交流電源1に回生することで平滑コンデンサ3は所望の電圧に安定的に制御することができる。
 また、インバータ回路100の直流電圧源105の電圧Vsubが増加して所定の上限値V以上になると、制御回路10は、インバータ回路100の制御を定常時から変更して、力行/回生のいずれの動作においても電流指令Iinを増加させるように平滑コンデンサ3の目標電圧Vdcを加減算する。これにより、インバータ回路100の直流電圧源105の放電量を増大させ直流電圧源105の電圧Vsubを速やかに復帰させることができる。このためインバータ回路100による定常時の電流制御、即ち平滑コンデンサ3に元の目標電圧Vdcを出力する電圧制御に速やかに復帰させることができ、平滑コンデンサ3に所望の電圧を出力する電圧制御を安定して継続することができる。
 また、インバータ回路100の直流電圧源105の電圧Vsubが低下して電流制御のための所定の電圧条件を外れると、制御回路10は、コンバータ回路300の短絡スイッチがオンすることを制限して電流制御を優先させる。回生動作では、短絡スイッチがオンすることを制限すると直流電圧源105の電圧Vsubを復帰させることができる。力行動作では、上記実施の形態1と同様に、電圧Vsubがさらに低下して所定の下限値V以下になると、短絡スイッチのオン動作の制限を解除して直流電圧源105を充電することで、直流電圧源105の電圧Vsubを速やかに復帰させることができ、インバータ回路による定常時の電流制御に速やかに復帰させ平滑コンデンサに所望の電圧を出力する電圧制御を安定して継続することができる。
実施の形態6.
 上記実施の形態5で示した回生機能を有する電力変換装置においても、上記実施の形態2と同様に、制御回路10は、交流電源同期周波数23の振幅を増大させて電流指令Iinを増加させても良い。
 図18は、この発明の実施の形態6による電力変換装置における制御回路10による制御ブロック図であり、コンバータ回路300の出力制御とインバータ回路100の出力制御とを示す。なお、主回路構成は上記実施の形態1、5と同様であり、コンバータ回路300の出力制御は上記実施の形態5の図17で示したものと同様である。
 電圧Vsubが増加して所定の上限値V以上になると、指令値Vsubと検出された電圧Vsubとの差32に基づいて電圧判定器28から振幅かけ算器29bへ制御信号28bが出力され、制御回路10は、インバータ回路100の出力制御を、上述した定常時の制御から変更する。そして、力行/回生のいずれの動作においても、振幅かけ算器29bは、指令値Vsubと電圧Vsubとの差32に応じた係数Kを、交流電源同期周波数23の振幅(=1)に乗じて振幅Kの交流電源同期周波数23aを生成する。そして振幅目標値22aと、振幅Kの交流電源同期周波数23aとから、電圧Vinに同期した正弦波の電流指令Iinが生成される。
 その他のインバータ回路100の出力制御は、上記実施の形態5の図17で説明したものと同様である。
 このように、インバータ回路100の直流電圧源105の電圧Vsubが増加して所定の上限値V以上になると、制御回路10は、インバータ回路100の制御を定常時から変更して、力行/回生のいずれの動作においても、インバータ回路100の直流電圧源105の電圧Vsubが要求される電圧になるまで、交流電源同期周波数23の振幅を増大させて電流指令Iinを増加させる。これにより、インバータ回路100の直流電圧源105の放電量を増大させ直流電圧源105の電圧Vsubを速やかに復帰させることができ、実施の形態5と同様の効果が得られる。
 なお、上記実施の形態5、6で示した電流指令Iinを増加させる制御は、それぞれ単独の制御でも良いし、これらを組み合わせた制御により直流電圧源105の放電量を増大させても良い。
実施の形態7.
 この実施の形態では、回生機能を有する電力変換装置において、インバータ回路100の直流電圧源105の電圧Vsubが増加して所定の上限値V以上になると、上記実施の形態4と同様の制御により直流電圧源105の放電量を増大させるものを示す。
 図19は、この発明の実施の形態7による電力変換装置における制御回路10による制御ブロック図であり、コンバータ回路300の出力制御とインバータ回路100の出力制御とを示す。なお、この場合も主回路構成は上記実施の形態1、5と同様である。
 コンバータ回路300の出力制御は上記実施の形態5の図17で示したものと同様であるが、この場合、指令値Vsubと検出された電圧Vsubとの差32が入力される電圧判定器28は、差32が設定範囲を外れると、コンバータ回路300の制御を変更する上記実施の形態5と同様の制御信号28aと、インバータ回路100の制御を変更するための制御信号29dとを出力する。
 電圧Vsubが増加して所定の上限値V以上になると、指令値Vsubと検出された電圧Vsubとの差32に基づいて電圧判定器28からPWM制御部27へ制御信号29dが出力され、制御回路10は、インバータ回路100の出力制御を、上述した定常時の制御から変更する。そして、力行/回生のいずれの動作においても、PWM制御部27では、直流電圧源105の電圧Vsubが要求される電圧になるまで各半導体スイッチ素子101a~104aの所定のスイッチング状態を継続させ、インバータ回路100内を、直流電圧源105を放電させる向きに電流が流れるように制御する。
 その他のインバータ回路100の出力制御は、上記実施の形態5の図17で説明したものと同様である。
 これにより、インバータ回路100の直流電圧源105の放電量を増大させ直流電圧源105の電圧Vsubを速やかに復帰させることができ、同様の効果が得られる。
 なお、上記実施の形態5~7において、回生動作時に、直流電圧源105の放電量を増大させるようにインバータ回路100の出力制御を変更しても、電圧Vsubが上限値Vよりさらに増加して所定の電圧を超える場合、コンバータ回路300の制御において、短絡スイッチをオンさせて直流電圧源105を平滑コンデンサ3から切り離して放電させ、交流電源1に電力回生させても良い。
実施の形態8.
 上記各実施の形態では、インバータ回路100は、1つの単相インバータで構成されたものを示したが、図20に示すように、複数個の単相インバータ100、200の交流側を直列接続してインバータ回路110を構成しても良い。各単相インバータ100、200は、上記実施の形態1と同様に、ダイオード101b~104b、201b~204bを逆並列に接続した複数個のIGBT等の自己消弧型半導体スイッチ素子101a~104a、201a~204aおよび直流電圧源105、205から構成されるフルブリッジ構成のインバータである。この場合、各単相インバータ100、200の出力の総和が、インバータ回路110の出力となる。
 制御回路10aは、各単相インバータ100、200の直流電圧源105、205の電圧Vsub、Vsubaと、平滑コンデンサ3の電圧Vdcと、交流電源1からの電圧Vin、電流Iinとに基づいて、上記各実施の形態と同様に、平滑コンデンサ3の電圧Vdcを目標電圧に追従させ、交流電源1からの力率を力行動作時は1に、回生動作時は(-1)に近づくようにインバータ回路100を電流指令Iinを用いて出力制御する。また、平滑コンデンサ3をバイパスさせる短絡期間Tを有してインバータ回路100の直流電圧源105の電圧Vsubを指令値Vsubに追従させるようにコンバータ回路300を出力制御する。そして、インバータ回路110の交流側の発生電圧を交流電源1の電圧Vinに重畳する。
 この実施の形態においても、インバータ回路110の直流電圧源105、205の電圧が増加して所定の上限値以上になると、上記各実施の形態と同様に、制御回路10aは、インバータ回路110の制御を定常時から変更して直流電圧源105、205の放電量を増大させる。また、直流電圧源105、205の電圧が低下して電流制御のための所定の電圧条件を外れると、制御回路10aは、コンバータ回路300の短絡スイッチがオンすることを制限して電流制御を優先させる。そして、力行動作では、直流電圧源105、205の電圧がさらに低下して所定の下限値以下になると、短絡スイッチのオン動作の制限を解除して直流電圧源105、205を充電する。
 このため、上記各実施の形態と同様に、インバータ回路110の直流電圧源105、205の電圧が大きく変動しても、直流電圧源105、205の電圧を速やかに復帰させることができ、インバータ回路110による定常時の電流制御に速やかに復帰させ平滑コンデンサに所望の電圧を出力する電圧制御を安定して継続することができる。
 なお、インバータ回路110は、複数の単相インバータの出力の総和で階段状の電圧波形を発生する階調制御により出力してもよく、また複数の単相インバータの中の特定の単相インバータのみPWM制御しても良い。
実施の形態9.
 次に、この発明の実施の形態9による電力変換装置について説明する。図21はこの発明の実施の形態9による電力変換装置の概略構成図である。
 図21に示すように、上記実施の形態1と同様の主回路が直流電源5に接続されて所望の直流電圧を得る。制御回路10bは、インバータ回路100の直流電圧源105の電圧Vsubと、平滑コンデンサ3の電圧Vdcと、直流電源5の直流電圧Va、電流iとに基づいて、平滑コンデンサ3の電圧Vdcが一定の目標電圧Vdcになるように、インバータ回路100およびコンバータ回路300内の各半導体スイッチ素子101a~104a、301a~304aへのゲート信号13、14を生成してインバータ回路100およびコンバータ回路300を出力制御する。
 制御回路10bは、コンバータ回路300の交流端子間を短絡させて平滑コンデンサ3をバイパスする短絡期間を所定の周期で有して、インバータ回路100の直流電圧源105を充電し、上記短絡期間以外では、直流電源5の電圧Vaにインバータ回路100の出力を重畳して平滑コンデンサ3に出力し、平滑コンデンサ3の電圧Vdcを目標電圧Vdcになるように制御する。この場合、直流電源5の電圧Vaを昇圧した出力電圧Vdcを得る。
 また、上記実施の形態5と同様に電力変換装置は回生機能を備え、制御回路10bは、平滑コンデンサ3の電圧Vdcが目標電圧Vdcより所定の電圧分、上昇すると力行動作から回生動作に切り替えて直流電源5に電力を回生する。
 なお、力行、回生時の各電流経路は上記実施の形態1、5で示したものと同様である。
 また、直流電源5から充電される直流電圧源105の電圧Vsubは、直流電源5の直流電圧Vaより低く、また、インバータ回路100の所望の発生電圧の大きさ以上に設定する必要がある。即ち、Vsub<Va、Vsub≧Vdc-Va、の2つの条件を満たすように電圧Vsubを設定することで、平滑コンデンサ3の直流電圧Vdcが目標電圧Vdcに維持できる。
 これにより、インバータ回路100の直流電圧源105の電圧Vsubの設定可能範囲は、図22に示すようになる。なお、この場合もPWM制御されるインバータ回路100では、直流電圧源105の電圧Vsubが大きくなると損失が増大するため、電圧Vsubは上記2条件を満たす条件で小さく設定するのが望ましい。
 次に、インバータ回路100およびコンバータ回路300の制御の詳細について図23に基づいて以下に説明する。図23は、制御回路10bによる制御ブロック図であり、コンバータ回路300の出力制御とインバータ回路100の出力制御とを示す。
 図23に示すように、制御回路10bは、コンバータ回路300の出力制御において、インバータ回路100の直流電圧源105の電圧Vsubを指令値Vsubに追従させる。
 まず、制御回路10bは、設定された指令値Vsubと検出された電圧Vsubとの差32をフィードバック量として、PI制御した出力33を力行・回生選択装置40に入力する。力行・回生選択装置40には、PI制御した出力33を極性反転した信号33aも入力され、力行・回生信号37に基づいて力行動作時には出力33を、回生動作時には信号33aが選択されて出力される。そして、力行・回生選択装置40の出力を電圧指令としてPWM制御部34によりコンバータ回路300の各半導体スイッチ素子301a~304aへのゲート信号14を生成する。このPWM制御部34では、短絡期間の周期となる任意の周期で生成した三角波35aをキャリア波に用いて比較演算し、比較演算した信号を力行・回生信号37に基づいてゲート信号14を生成する。
 即ち、このゲート信号14にてコンバータ回路300の交流端子間を短絡する短絡期間も制御され、力行動作時には、電圧Vsubが低下すると短絡期間は長く、電圧Vsubが増加すると短絡期間は短くなるように制御される。また、回生動作時には、電圧Vsubが低下すると短絡期間は短く、電圧Vsubが増加すると短絡期間は長くなるように制御される。
 また、指令値Vsubと検出された電圧Vsubとの差32は、電圧判定器28にも入力される。電圧判定器28は、電圧Vsubが増加して差32が設定範囲を外れると、力行動作時および回生動作時の双方においてインバータ回路100の制御を変更する制御信号28bを出力する。
 図23に示すように、制御回路10bは、インバータ回路100の出力制御において、平滑コンデンサ3の直流電圧Vdcを目標電圧Vdcに維持する。定常時の制御では、制御回路10bは、平滑コンデンサ3の直流電圧Vdcと目標電圧Vdcとの差21aをフィードバック量として、PI制御した出力を電流指令iとする。そして、電流指令iと検出された電流iとの差24aをフィードバック量として、PI制御した出力をインバータ回路100の発生電圧の目標値となる電圧指令25aとする。この時、コンバータ回路300の交流端子間を短絡させる短絡期間の制御と、コンバータ回路300の各交流端子と平滑コンデンサ3との間を導通させる制御、即ち短絡期間外の制御との切り替え時に同期したフィードフォワード補正電圧ΔVを加算して電圧指令25aを補正する。そして、補正後の電圧指令26aを用いて、PWM制御部27によりインバータ回路100の各半導体スイッチ素子101a~104aへのゲート信号13を生成し、インバータ回路100を動作させる。
 また、インバータ回路100の直流電圧源105の電圧Vsubが増加して所定の上限値V以上になると、指令値Vsubと検出された電圧Vsubとの差32に基づいて電圧判定器28から加算電圧演算器29aへ制御信号28bが出力され、上述した定常時の制御から変更される。加算電圧演算器29aは、指令値Vsubと電圧Vsubとの差32に応じた正の電圧ΔVを出力して、力行動作時は平滑コンデンサ3の目標電圧Vdcに加算し、回生動作時は平滑コンデンサ3の目標電圧Vdcから減算する。
 これにより、制御回路10bは、力行動作時には平滑コンデンサ3の目標電圧Vdcを増大させて電流指令iを増加させ、インバータ回路100の直流電圧源105の放電量を増大させる。また、回生動作時には平滑コンデンサ3の目標電圧Vdcを減少させて電流指令iを増加させ、インバータ回路100の直流電圧源105の放電量を増大させる。
 このように、電圧Vsubが増加して所定の上限値V以上になると、制御回路10bは、力行/回生のいずれの動作においても、インバータ回路100の直流電圧源105の電圧Vsubが要求される電圧になるまで、電流指令iを増加させて直流電圧源105の放電量を定常時よりも増大させて制御する。このため直流電圧源105の電圧Vsubを速やかに復帰させることができ、インバータ回路100による定常時の電流制御、即ち平滑コンデンサ3に元の目標電圧Vdcを出力する電圧制御に速やかに復帰させることができ、平滑コンデンサ3に所望の電圧を出力する電圧制御を安定して継続することができる。
 なお、直流電源5から直流電力を入力しているため、交流電源1を用いた場合のような力率制御の必要が無く、力行動作時にインバータ回路100の直流電圧源105の電圧Vsubが低下すると短絡期間を長くして充電することで電圧Vsubを復帰できる。
実施の形態10.
 上記実施の形態9で示した電力変換装置において、インバータ回路100の直流電圧源105の電圧Vsubが増加して所定の上限値V以上になると、上記実施の形態4、7と同様の制御により直流電圧源105の放電量を増大させるものを示す。
 図24は、この発明の実施の形態10による電力変換装置における制御回路10bによる制御ブロック図であり、コンバータ回路300の出力制御とインバータ回路100の出力制御とを示す。電力変換装置の構成は、図21で示したものと同様である。
 コンバータ回路300の出力制御は上記実施の形態9の図23で示したものと同様であるが、この場合、指令値Vsubと検出された電圧Vsubとの差32が入力される電圧判定器28は、電圧Vsubが増加して差32が設定範囲を外れると、インバータ回路100の制御を変更するための制御信号29dを出力する。
 電圧Vsubが増加して所定の上限値V以上になると、指令値Vsubと検出された電圧Vsubとの差32に基づいて電圧判定器28からPWM制御部27へ制御信号29dが出力され、制御回路10bは、インバータ回路100の出力制御を上述した定常時の制御から変更する。そして、力行/回生のいずれの動作においても、PWM制御部27では、直流電圧源105の電圧Vsubが要求される電圧になるまで各半導体スイッチ素子101a~104aの所定のスイッチング状態を継続させ、インバータ回路100内を、直流電圧源105を放電させる向きに電流が流れるように制御する。
 その他のインバータ回路100の出力制御は、上記実施の形態9の図23で説明したものと同様である。
 これにより、インバータ回路100の直流電圧源105の放電量を増大させ直流電圧源105の電圧Vsubを速やかに復帰させることができ、同様の効果が得られる。

Claims (15)

  1.  複数の半導体スイッチ素子と直流電圧源とから成る単相インバータの交流側を1以上直列接続して構成され、該交流側を電源の第1の端子に直列接続して上記各単相インバータの出力の総和を上記電源の出力に重畳するインバータ回路と、
     直流母線間に複数のスイッチを有し、一方の交流端子が上記インバータ回路の後段の交流出力線に接続され、他方の交流端子が上記電源の第2の端子に接続され、上記直流母線間に直流電力を出力するコンバータ回路と、
     上記直流母線間に接続され、上記コンバータ回路の出力を平滑する平滑コンデンサと、
     上記コンバータ回路の上記交流端子間を短絡させて上記平滑コンデンサをバイパスさせる短絡期間を有して上記インバータ回路の上記直流電圧源の電圧を指令値に追従させるように上記コンバータ回路を出力制御すると共に、上記平滑コンデンサの電圧を目標電圧に追従させるように上記インバータ回路を電流指令を用いて出力制御する制御回路とを備え、
     上記制御回路は、
      上記平滑コンデンサへ電力を出力する力行時に、上記インバータ回路の上記直流電圧源を上記短絡期間において充電し、該直流電圧源の電圧が低下すると上記短絡期間を長く、該直流電圧源の電圧が増加すると上記短絡期間を短くするように上記コンバータ回路を制御し、
      上記インバータ回路の上記直流電圧源の電圧が所定の上限値を超えると、上記インバータ回路の制御を変更して該直流電圧源の放電量を増大させる電力変換装置。
  2.  上記制御回路は、上記インバータ回路の上記直流電圧源の電圧が上記上限値を超えると、上記インバータ回路を制御する上記電流指令を増加させて上記直流電圧源の放電量を増大させる請求項1に記載の電力変換装置。
  3.  上記制御回路は、上記力行時に上記インバータ回路の上記直流電圧源の電圧が上記上限値を超えると、上記平滑コンデンサの目標電圧を所定の電圧分増大させて上記電流指令を増加させる請求項2に記載の電力変換装置。
  4.  上記制御回路は、上記インバータ回路の上記直流電圧源の電圧が上記上限値を超えると、上記直流電圧源を放電させて上記インバータ回路に電流が流れるように上記複数の半導体スイッチ素子の所定のスイッチング状態を継続させる請求項1に記載の電力変換装置。
  5.  上記電源は交流電源であり、
     上記制御回路は、
      上記交流電源の同期周波数に基づいて上記電流指令を生成して上記交流電源の力率を改善するように上記インバータ回路を出力制御し、
      上記インバータ回路の上記直流電圧源の電圧が上記上限値を超えると、上記同期周波数の振幅を増大させて上記電流指令を増加させる請求項2に記載の電力変換装置。
  6.  上記電源は交流電源であり、
     上記制御回路は、
      上記交流電源の同期周波数に基づいて上記電流指令を生成して上記交流電源の力率を改善するように上記インバータ回路を出力制御し、
      上記力行時に上記インバータ回路の上記直流電圧源の電圧が上記上限値を超えると、上記同期周波数の位相を所定の角度でずらせて上記直流電圧源の放電量を増大させる請求項1に記載の電力変換装置。
  7.  上記電源は交流電源であり、上記制御回路は、上記交流電源の力率を改善するように上記電流指令を生成して上記インバータ回路を出力制御する請求項1~4のいずれか1項に記載の電力変換装置。
  8.  上記制御回路は、
      上記力行時に上記直流電圧源の電圧低下により上記インバータ回路の上記電流指令を用いた制御可能な所定の電圧条件を外れると、上記コンバータ回路の上記交流端子間の短絡を制限し、上記直流電圧源の電圧がさらに低下して所定の下限値以下になると、上記交流端子間の短絡制限を解除して上記直流電圧源を充電させる請求項7に記載の電力変換装置。
  9.  上記電源は直流電源であり、上記平滑コンデンサの目標電圧は上記直流電源の電圧より高く設定し、上記インバータ回路の上記直流電圧源の上記電圧指令値は上記直流電源の電圧より低く設定する請求項1~4のいずれか1項に記載の電力変換装置。
  10.  上記制御回路は、
      上記平滑コンデンサからの電力を上記電源に回生する回生機能を備え、
      上記平滑コンデンサからの電力回生時に、上記インバータ回路の上記直流電圧源を上記短絡期間において放電し、該直流電圧源の電圧が低下すると上記短絡期間を短く、該直流電圧源の電圧が増加すると上記短絡期間を長くするように上記コンバータ回路を制御する請求項1~6のいずれか1項に記載の電力変換装置。
  11.  上記制御回路は、
      上記平滑コンデンサからの電力を上記電源に回生する回生機能を備え、
      上記平滑コンデンサからの電力回生時に、上記インバータ回路の上記直流電圧源を上記短絡期間において放電し、該直流電圧源の電圧が低下すると上記短絡期間を短く、該直流電圧源の電圧が増加すると上記短絡期間を長くするように上記コンバータ回路を制御し、
      上記電力回生時に上記インバータ回路の上記直流電圧源の電圧が上記上限値を超えると、上記平滑コンデンサの目標電圧を所定の電圧分減少させて上記電流指令を増加させる請求項2または3に記載の電力変換装置。
  12.  上記コンバータ回路は、それぞれ2直列の上記スイッチとしての半導体スイッチ素子から成る2個のブリッジ回路を上記直流母線間に並列接続して構成され、上記各半導体スイッチ素子には逆並列にダイオードが接続される請求項1~6のいずれか1項に記載の電力変換装置。
  13.  複数の半導体スイッチ素子と直流電圧源とから成る単相インバータの交流側を1以上直列接続して構成され、該交流側を交流電源の第1の端子に直列接続して上記各単相インバータの出力の総和を上記交流電源の出力に重畳するインバータ回路と、
     直流母線間に複数のスイッチを有し、一方の交流端子が上記インバータ回路の後段の交流出力線に接続され、他方の交流端子が上記交流電源の第2の端子に接続され、上記直流母線間に直流電力を出力するコンバータ回路と、
     上記直流母線間に接続され、上記コンバータ回路の出力を平滑する平滑コンデンサと、
     上記コンバータ回路の上記交流端子間を短絡させて上記平滑コンデンサをバイパスさせる短絡期間を有して上記インバータ回路の上記直流電圧源の電圧を指令値に追従させるように上記コンバータ回路を出力制御すると共に、上記平滑コンデンサの電圧を目標電圧に追従させるように上記インバータ回路を電流指令を用いて出力制御する制御回路とを備え、
     上記制御回路は、
      上記平滑コンデンサへ電力を出力する力行時に、上記インバータ回路の上記直流電圧源を上記短絡期間において充電し、上記インバータ回路の上記直流電圧源の電圧が低下すると上記短絡期間を長く、該直流電圧源の電圧が増加すると上記短絡期間を短くするように上記コンバータ回路を制御し、
      上記力行時に上記直流電圧源の電圧低下により上記インバータ回路の上記電流指令を用いた制御可能な所定の電圧条件を外れると、上記コンバータ回路の上記交流端子間の短絡を制限し、さらに上記直流電圧源の電圧が低下して所定の下限値以下になると、上記交流端子間の短絡制限を解除して上記直流電圧源を充電させる電力変換装置。
  14.  上記制御回路は、
      上記平滑コンデンサからの電力を上記電源に回生する回生機能を備え、
      上記平滑コンデンサからの電力回生時に、上記インバータ回路の上記直流電圧源を上記短絡期間において放電し、該直流電圧源の電圧が低下すると上記短絡期間を短く、該直流電圧源の電圧が増加すると上記短絡期間を長くするように上記コンバータ回路を制御する請求項13に記載の電力変換装置。
  15.  上記コンバータ回路は、それぞれ2直列の上記スイッチとしての半導体スイッチ素子から成る2個のブリッジ回路を上記直流母線間に並列接続して構成され、上記各半導体スイッチ素子には逆並列にダイオードが接続される請求項13または14に記載の電力変換装置。
PCT/JP2010/068902 2010-05-28 2010-10-26 電力変換装置 WO2011148526A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080067083.6A CN102918758B (zh) 2010-05-28 2010-10-26 电力变换装置
US13/699,815 US9276496B2 (en) 2010-05-28 2010-10-26 Power conversion apparatus including an inverter-converter combination
DE112010005608.0T DE112010005608B4 (de) 2010-05-28 2010-10-26 Leistungsumwandlungseinrichtung
JP2012517088A JP5400961B2 (ja) 2010-05-28 2010-10-26 電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-122239 2010-05-28
JP2010122239 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011148526A1 true WO2011148526A1 (ja) 2011-12-01

Family

ID=45003530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068902 WO2011148526A1 (ja) 2010-05-28 2010-10-26 電力変換装置

Country Status (5)

Country Link
US (1) US9276496B2 (ja)
JP (1) JP5400961B2 (ja)
CN (1) CN102918758B (ja)
DE (1) DE112010005608B4 (ja)
WO (1) WO2011148526A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087080A (ja) * 2012-10-19 2014-05-12 Mitsubishi Electric Corp 電力変換装置
JP2016046952A (ja) * 2014-08-25 2016-04-04 株式会社東芝 電力変換装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012143037A2 (en) * 2011-04-18 2012-10-26 Abb Technology Ag Method in a voltage source chain-link converter, computer programs and computer program products
JP5631499B2 (ja) * 2011-09-08 2014-11-26 三菱電機株式会社 電力変換装置
JP5678860B2 (ja) * 2011-10-07 2015-03-04 株式会社安川電機 交流直流変換器
US9246411B2 (en) * 2012-10-16 2016-01-26 Rockwell Automation Technologies, Inc. Regenerative voltage doubler rectifier, voltage sag/swell correction apparatus and operating methods
JP6232341B2 (ja) * 2014-05-09 2017-11-15 東芝テック株式会社 電力変換装置
US10135293B2 (en) 2015-04-01 2018-11-20 Isolated Parallel Inc Direct current isolated-parallel uninterruptible power supply system
CN104993755A (zh) * 2015-08-03 2015-10-21 广东威灵电机制造有限公司 一种用于无刷直流电机的直流电压控制方法和系统
EP3416276B1 (en) * 2016-02-08 2020-01-08 Mitsubishi Electric Corporation Power conversion device
CN110679051B (zh) * 2017-05-25 2023-06-09 松下电器制冷装置新加坡 压缩机驱动装置、使用该压缩机驱动装置的控制单元、压缩机单元和冷却器
EP3981065B1 (en) * 2019-06-25 2024-08-07 Huawei Technologies Co., Ltd. A dc-to-dc power converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014108A (ja) * 1996-06-25 1998-01-16 Railway Technical Res Inst 並列形アクティブフィルタ
JP2007202251A (ja) * 2006-01-25 2007-08-09 Mitsubishi Electric Corp 電力変換装置
WO2007129456A1 (ja) * 2006-04-25 2007-11-15 Mitsubishi Electric Corporation 電力変換装置
JP2009095160A (ja) * 2007-10-10 2009-04-30 Mitsubishi Electric Corp 電力変換装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070159279A1 (en) * 2004-05-12 2007-07-12 Ryuichi Shimada Alternating-current power supply device recovering magnetic energy
JP2006238626A (ja) * 2005-02-25 2006-09-07 Toshiba Corp 電気車用電力変換装置
JP2007282442A (ja) * 2006-04-11 2007-10-25 Fuji Electric Systems Co Ltd 交直変換回路
JP5049964B2 (ja) * 2006-05-08 2012-10-17 三菱電機株式会社 電力変換装置
JP4406733B2 (ja) * 2006-10-05 2010-02-03 国立大学法人東京工業大学 インバータ電源装置
JP5323426B2 (ja) * 2008-09-08 2013-10-23 三菱電機株式会社 電力変換装置
WO2010058536A1 (ja) * 2008-11-18 2010-05-27 三菱電機株式会社 電力変換装置
EP2357720B1 (en) * 2008-12-12 2017-12-06 Mitsubishi Electric Corporation Power conversion device
DE112009004627T5 (de) * 2009-04-01 2012-06-21 Mitsubishi Electric Corporation Leistungsumwandlungsvorrichtung
JP4850279B2 (ja) * 2009-11-27 2012-01-11 三菱電機株式会社 電力変換装置
JP5400956B2 (ja) 2010-04-15 2014-01-29 三菱電機株式会社 電力変換装置
WO2011128941A1 (ja) 2010-04-15 2011-10-20 三菱電機株式会社 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014108A (ja) * 1996-06-25 1998-01-16 Railway Technical Res Inst 並列形アクティブフィルタ
JP2007202251A (ja) * 2006-01-25 2007-08-09 Mitsubishi Electric Corp 電力変換装置
WO2007129456A1 (ja) * 2006-04-25 2007-11-15 Mitsubishi Electric Corporation 電力変換装置
JP2009095160A (ja) * 2007-10-10 2009-04-30 Mitsubishi Electric Corp 電力変換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087080A (ja) * 2012-10-19 2014-05-12 Mitsubishi Electric Corp 電力変換装置
JP2016046952A (ja) * 2014-08-25 2016-04-04 株式会社東芝 電力変換装置

Also Published As

Publication number Publication date
US9276496B2 (en) 2016-03-01
JP5400961B2 (ja) 2014-01-29
JPWO2011148526A1 (ja) 2013-07-25
DE112010005608B4 (de) 2018-02-01
DE112010005608T5 (de) 2013-03-21
CN102918758B (zh) 2015-03-18
US20130121045A1 (en) 2013-05-16
CN102918758A (zh) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5400961B2 (ja) 電力変換装置
JP5631499B2 (ja) 電力変換装置
US9325252B2 (en) Multilevel converter systems and sinusoidal pulse width modulation methods
JP5254357B2 (ja) 電力変換装置
JP4958715B2 (ja) 電力変換装置
US8649196B2 (en) Power converting apparatus with an output voltage that is the sum of voltages generated by individual inverters
JP5788017B2 (ja) 電力変換装置
JP5415387B2 (ja) 電力変換装置
WO2010113218A1 (ja) 電力変換装置
JP6223609B2 (ja) Dc/dcコンバータ
JP5523508B2 (ja) 電力変換装置
JP5362657B2 (ja) 電力変換装置
JP5043585B2 (ja) 電力変換装置
JP5400956B2 (ja) 電力変換装置
JP5950970B2 (ja) 電力変換装置
JP2011229347A (ja) 電力変換装置
JP5546605B2 (ja) 電力変換装置
JP5748804B2 (ja) 電力変換装置
JP5400955B2 (ja) 電力変換装置
JP5523499B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067083.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10852192

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517088

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13699815

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010005608

Country of ref document: DE

Ref document number: 1120100056080

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10852192

Country of ref document: EP

Kind code of ref document: A1