WO2011145608A1 - 双極型二次電池 - Google Patents

双極型二次電池 Download PDF

Info

Publication number
WO2011145608A1
WO2011145608A1 PCT/JP2011/061300 JP2011061300W WO2011145608A1 WO 2011145608 A1 WO2011145608 A1 WO 2011145608A1 JP 2011061300 W JP2011061300 W JP 2011061300W WO 2011145608 A1 WO2011145608 A1 WO 2011145608A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
case
electrode current
collector plate
positive electrode
Prior art date
Application number
PCT/JP2011/061300
Other languages
English (en)
French (fr)
Inventor
賢司 保坂
志保 井上
鈴木 正明
一希 宮竹
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to KR1020127030460A priority Critical patent/KR101389207B1/ko
Priority to JP2012515889A priority patent/JP5459398B2/ja
Priority to CN201180022309.5A priority patent/CN102884668B/zh
Priority to EP11783542.1A priority patent/EP2573856B1/en
Priority to US13/698,173 priority patent/US9450266B2/en
Publication of WO2011145608A1 publication Critical patent/WO2011145608A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to protection of a bipolar secondary battery from a short-circuit current.
  • JP2009-252548A issued by the Japan Patent Office in 2009, has proposed a fluid sealant for use in bipolar secondary batteries such as lithium-ion batteries composed of stacked cells.
  • the positive electrode active material is disposed at one end of the cell stacking direction, and the negative electrode active material is disposed at the other end.
  • the fluid sealant is disposed around the electrolyte so that the electrolyte of the cell is not deteriorated by moisture in the air, and has a role of blocking the cell from the air.
  • a fluid sealant such as paraffin causes electrolysis under high voltage.
  • the electrolyzed fluid sealant cannot maintain the required insulation.
  • the prior art divides the fluid sealant into a plurality of sealed layers, thereby preventing a high voltage from being applied to the fluid sealant and realizing a structure in which electrolysis hardly occurs.
  • the bipolar secondary battery according to the prior art provides an effect of preventing a high voltage load on the fluid sealant even in such a situation, but does not have an action of interrupting a short circuit current or preventing heat generation of the battery itself.
  • an object of the present invention is to protect a bipolar secondary battery from a short-circuit current.
  • a bipolar secondary battery comprises a battery body, a case for housing the battery body inside, one surface joined to the inner peripheral surface of the case, and the other surface to the battery body.
  • a positive current collector plate joined to one end of the battery and extending to the outside of the case; and a negative current collector extending to the outside of the case while joining one surface to the inner peripheral surface of the case and the other surface to the other end of the battery body And a board.
  • the battery body consists of a single or a plurality of serially connected laminates.
  • the laminate is a bipolar electrode composed of a plate-shaped current collector, a positive electrode active material layer disposed on one surface of the current collector, and a negative electrode active material layer disposed on the other surface of the current collector. It is configured by stacking a plurality of layers through layers.
  • the bipolar secondary battery further includes a cutting mechanism that disconnects the electrical connection between the positive electrode current collector plate and the negative electrode current collector plate via the battery body in accordance with the expansion and deformation of the case.
  • FIG. 1 is a perspective view of a bipolar secondary battery according to the present invention.
  • FIG. 2 is FIG. 1 is a longitudinal sectional view of a bipolar secondary battery taken along line AA in FIG.
  • FIG. 3 is a schematic longitudinal sectional view of a bipolar secondary battery according to a second embodiment of the present invention.
  • FIG. 4 is FIG. 3 shows a variation on the folded part.
  • FIG. 5 is FIG. 3 shows another variation on the folded part.
  • FIG. 6 is FIG. 3 shows a third embodiment of the invention, similar to FIG.
  • FIG. 7 is a longitudinal sectional view of a current collector plate according to a third embodiment of the present invention.
  • FIG. 8 is FIG. 6 is similar to FIG.
  • FIG. 9 is FIG. 6 shows another variation on the folded part.
  • FIG. 8 is FIG. 6 is similar to FIG.
  • FIG. 9 is FIG. 6 shows another variation on the folded part.
  • FIG. 8 is FIG. 6 is similar to FIG.
  • FIG. 9 is FIG. 6
  • FIG. 10 is a schematic configuration diagram including a schematic longitudinal section of a bipolar secondary battery according to a fourth embodiment of the present invention.
  • FIG. 11A-11C are a front view, a rear view, and a longitudinal sectional view of a bipolar electrode according to the present invention.
  • FIG. 12A and 12B are a front view and a cross-sectional view of a bipolar electrode with a seal precursor attached thereto.
  • FIG. 13A and 13B are a front view and a cross-sectional view of a bipolar electrode with a separator attached thereto.
  • FIG. 14 is a schematic side view of a press machine for explaining the final formation process of the bipolar secondary battery.
  • FIG. 15 is a vertical cross-sectional view of a bipolar secondary battery in which no folded portion is formed.
  • FIG. 16 is a schematic longitudinal sectional view of a bipolar secondary battery according to a fifth embodiment of the present invention.
  • FIG. 17 is a plan view of the inside of a bipolar secondary battery
  • a bipolar secondary battery 100 includes a case 103 having a substantially rectangular cross section, and a positive current collector 101 and a negative current collector that are taken out from the inside of the case 103 through two opposite sides of the case 103. And an electric plate 102.
  • the bipolar secondary battery 100 includes a battery body 300 inside the case 103.
  • the battery body 300 is configured by connecting two stacked bodies 30 in which a plurality of cells 26 are stacked in series.
  • the positive electrode current collector plate 101 and the negative electrode current collector plate 102 are joined to the inner peripheral surface of the case 103 so as to sandwich the battery body 300. More specifically, the positive electrode current collector plate 101 and the negative electrode current collector plate 102 are fixed to the inner peripheral surface of the case 103 by adhesion.
  • the case 103 has a role of blocking the battery body 300 from outside air and protecting the battery body 300.
  • the case 103 includes a pair of case members 103a and 103b. Case members 103a and 103b each have a recess for housing battery main body 300 and a flange portion surrounding the recess.
  • the case 103 is integrally formed by welding the flange portions of the pair of case members 103a and 103b with the positive electrode current collecting plate 101 and the negative electrode current collecting plate 102 sandwiched between the inside and the outside of the case 103.
  • a sheet-like material having strength that does not damage the laminated body 30 against a pressure difference generated inside and outside, and deformable flexibility is used. It is desirable that the sheet-like material does not allow permeation of the electrolytic solution or gas, has electrical insulation, and is chemically stable with respect to the material such as the electrolytic solution.
  • a laminate film polyethylene, polypropylene, polycarbonate or the like is preferably used.
  • the laminate film is obtained by coating a metal metal foil containing an alloy such as aluminum, stainless steel, nickel, or copper with an insulating synthetic resin film such as a polypropylene film.
  • the cell 26 constituting the laminate 30 includes an electrolyte layer 25, a positive electrode active material layer 23 and a negative electrode active material layer 24 laminated on both sides of the electrolyte layer 25, and a positive electrode active material layer 23 and a negative electrode active material with respect to the lamination direction.
  • the plate-like current collector 22 is laminated outside the layer 24. However, when a plurality of cells 26 are stacked as shown in the figure, only one current collector 22 is sandwiched between adjacent cells 26.
  • a known material is used for the current collector 22.
  • aluminum or stainless steel (SUS) can be used.
  • a polymer material may be included in the material of the current collector 22. That is, polyolefin (polypropylene, polyethylene), polyester (PET, PEN), polyimide, polyamide, and polyvinylidene fluoride (PVdF) can be used.
  • PVdF polyvinylidene fluoride
  • carbon such as ketjen black, acetylene black, carbon black, aluminum (Al), copper (Cu), stainless steel (SUS), Disperse particles of a metal such as titanium (Ti).
  • the positive electrode active material layer 23 includes a positive electrode active material, and may further include a conductive additive or a binder.
  • a composite oxide of a transition metal and lithium used in a solution-type lithium ion battery can be used.
  • the negative electrode active material layer 24 includes a negative electrode active material, and may further include a conductive additive or a binder.
  • a negative electrode active material used in a solution-type lithium ion battery can be used.
  • the electrolyte layer 25 is a layer containing a polymer having ion conductivity or a liquid electrolyte.
  • a polymer gel electrolyte obtained by chemical crosslinking or physical crosslinking after impregnating a pregel solution into a separator as a base material is used as an electrolyte.
  • the electrolytic solution contained in the electrolyte contains an organic solvent such as polypropylene carbonate, ethylene carbonate, and diethyl carbonate, and boils and gasifies as the temperature rises.
  • the melting point of the separator is about 120 degrees Celsius (° C.).
  • the boiling point of the electrolyte solvent is about 140 ° C.
  • the outer periphery of the cell 26 is covered with the seal portion 40.
  • the seal portion 40 is filled between the outer peripheral portions of the adjacent current collectors 22 and blocks contact between the positive electrode active material layer 23, the electrolyte layer 25, and the outside air of the negative electrode active material layer 24.
  • the seal part 40 seals the cell 26 to prevent a decrease in the ionic conductivity of the electrolyte.
  • liquid or semi-solid gel electrolyte when a liquid or semi-solid gel electrolyte is used, liquid junction due to liquid leakage is prevented.
  • the seal precursor can be heat-sealed, for example, a rubber-based resin that is in close contact with the current collector 22 by pressure deformation, or an olefin-based resin that is in close contact with the current collector 22 by heat-pressing and heat-sealing. Resin can be used.
  • the rubber resin is not particularly limited, but is preferably selected from the group consisting of silicon rubber, fluorine rubber, olefin rubber, and nitrile rubber. These rubber-based resins have excellent sealing properties, alkali resistance, chemical resistance, durability, weather resistance, heat resistance, etc., and maintain these excellent performance and quality for a long time even in the usage environment of secondary batteries. Can do.
  • the resin that can be heat-sealed is preferably a resin that can exhibit an excellent sealing effect under any usage environment of the laminate 30.
  • the heat-sealable resin is selected from the group consisting of silicon, epoxy, urethane, polybutadiene, olefin resin (polypropylene, polyethylene, etc.), and paraffin wax, for example. These heat-sealable resins are excellent in sealing properties, alkali resistance, chemical resistance, durability / weather resistance, heat resistance, etc., and these excellent performance and quality are maintained for a long time even in the usage environment of secondary batteries. Can be maintained.
  • a positive electrode current collector 22a and a negative electrode current collector 22b are stacked on both ends of the stacked body 30 in the stacking direction. Unlike the current collector 22, the positive electrode current collector 22a forms the positive electrode active material layer 23 on one surface and does not form anything on the other surface.
  • the negative electrode active material layer 24 is formed on one surface, and nothing is formed on the other surface.
  • the positive electrode current collector 22 a is laminated with the positive electrode active material layer 23 in contact with the electrolyte layer 25.
  • the negative electrode current collector 22 b is laminated with the negative electrode active material layer 24 in contact with the electrolyte layer 25.
  • a predetermined number of cells 26 laminated as described above are hot-pressed using a hot press so that the seal portion 40 has a predetermined thickness, and the uncured seal portion 40 is further cured to form a bipolar type.
  • the laminated body 30 is completed.
  • the battery body 300 is constituted by two stacked bodies 30 arranged in series such that the positive electrode current collector 22a of one stacked body 30 is in contact with the negative electrode current collector 22b of the other stacked body 30.
  • the positive electrode current collector plate 101 and the negative electrode current collector plate 102 have a role of taking out current from the battery body 300 to the outside of the case 103 or supplying current to the battery body 300 from the outside of the case 103.
  • a well-known material can be used.
  • aluminum, stainless steel (SUS), a polymer material, or the like is used.
  • the adjacent positive electrode current collectors 22a and 22b of the two laminated bodies 30 constituting the battery main body 300 are bonded with a conductive adhesive. Further, the positive electrode current collector 22a and the positive electrode current collector plate 101 located at one end of the battery main body 300, and the negative electrode current collector 22b and the negative electrode current collector plate 102 located at the other end of the battery main body 300 are also made of conductive adhesive. Glued. As the adhesive, either a butyl rubber conductive double-sided tape having a peel strength of 120%, an acrylic conductive double-sided tape having a peel strength of 100%, or a conductive epoxy adhesive having a peel strength of 90% is used.
  • the bonding of the positive electrode current collector plate 101 to the inner peripheral surface of the case member 103a and the bonding of the negative electrode current collector plate 102 to the inner peripheral surface of the case member 103b are also performed by bonding using an adhesive.
  • an adhesive for adhesion, a butyl rubber double-sided tape with a peel strength of 120% or an acrylic double-sided tape with a peel strength of 100% is used.
  • Each peel strength represents the peel strength of each adhesive as a percentage when the peel strength of the acrylic double-sided tape is 100%.
  • Adhesion of the positive electrode current collector 22a and the negative electrode current collector 22b of the two laminated bodies 30 is not an essential requirement, and these may be simply brought into contact without adhering.
  • the above bonding is performed so as to satisfy the following conditions.
  • the peel strength between the positive electrode current collector 22a and the negative electrode current collector 22b of the two laminated bodies 30 is K4
  • the peel strength between the positive electrode current collector 22a and the positive electrode current collector plate 101 is K3
  • the negative electrode current collector 22b and the negative electrode When the peel strength of the current collector plate 102 is K5, the peel strength of the positive electrode current collector plate 101 and the case 103 is K1, and the peel strength of the negative electrode current collector plate 102 and the case 103 is K2, the following conditions are satisfied:
  • both the peel strength between the inner peripheral surface of the case 103 and the positive electrode current collector plate 101 and the peel strength between the inner peripheral surface of the case 103 and the negative electrode current collector plate 102 are the same as those of the positive electrode current collector plate 101 and the positive electrode current collector 22a. It is set to be larger than at least one of the peel strength, the peel strength between the negative electrode current collector plate 102 and the negative electrode current collector 22b, and the peel strength between the positive electrode current collector 22a and the negative electrode current collector 22b.
  • the bipolar secondary battery 100 is completed by fusing the flange-shaped outer peripheral portions of the pair of case members 103a and 103b constituting the case 103 in a vacuum state.
  • the inside of the case 103 may be in a vacuum state by fusing the outer peripheral portions of the case members 103a and 103b, leaving a part, and attracting the air in the case 103 from the unfused portion.
  • HEV hybrid electric vehicle
  • EV electric vehicle
  • various electric circuits that operate by supplying power from the vehicle battery may fail. If power is continuously supplied from the battery to the failed electrical circuit, an excessive current flows through the failed electrical circuit, the circuit may generate heat, and the high power line may be short-circuited. It is also conceivable that the high-power lines in the on-vehicle battery are short-circuited.
  • an excessive short-circuit current flows in the bipolar secondary battery 100, and the temperature of the bipolar secondary battery 100 increases due to heat generated by the internal resistance of the bipolar secondary battery 100.
  • an organic solvent such as polypropylene carbonate, ethylene carbonate, diethyl carbonate or the like contained in the electrolyte solution of the electrolyte layer 25 of the laminate 30 boils and gasifies, so that the internal pressure of the case 103 increases and the case 103 swells. .
  • the expansion of the case 103 exerts a tensile load on the two stacked bodies 30 via the positive electrode current collector plate 101 and the negative electrode current collector plate 102 bonded to the inner peripheral surface of the case 103.
  • This tensile load is not only between the inner peripheral surface of the case 103 and the positive electrode current collector plate 101 and between the inner peripheral surface of the case 103 and the negative electrode current collector plate 102 but also between the positive electrode current collectors of the two stacked bodies 30.
  • both the peel strength between the inner peripheral surface of the case 103 and the positive electrode current collector plate 101 and the peel strength between the inner peripheral surface of the case 103 and the negative electrode current collector plate 102 are the same as those of the battery body 300.
  • the bipolar secondary battery 100 can be protected from a short circuit current of an external circuit connected to the bipolar secondary battery 100.
  • each stacked body 30 is composed of six cells, and the battery body 300 is configured by connecting two stacked bodies 30 in series.
  • the number of cells 26 constituting the stacked body 30 and the number of stacked bodies 30 connected in series can be arbitrarily set according to the voltage and capacity required for the bipolar secondary battery 100.
  • the battery main body 300 may be constituted by a single laminated body 30 in which no connection portion between the laminated bodies 30 exists, for example.
  • both the peel strength between the inner peripheral surface of the case 103 and the positive electrode current collector plate 101 and the peel strength between the inner peripheral surface of the case 103 and the negative electrode current collector plate 102 are both the positive electrode current collector plate 101 and the battery body 300.
  • the peel strength of the positive electrode current collector 22 a at one end and the peel strength of the negative electrode current collector 102 b at the other end of the battery main body 300 may be set to be larger than at least one.
  • FIG. 1 A second embodiment of the present invention will be described with reference to 3-5. These drawings are drawn with the main parts deformed in order to show the features in an easy-to-understand manner.
  • the peeling force generated in the bipolar secondary battery 100 has a structure generated solely by the temperature expansion of the case 103.
  • one case member 103a that constitutes the case 103 has a folded portion as an extension margin of the case 103 so that the case 103 extends in the stacking direction of the cells 26 in response to an increase in gas pressure in the case 103. 11 is provided.
  • the folded portion 11 protrudes in a cylindrical shape in a direction away from the battery body 300 from the end surface of the case member 103a in the stacking direction of the cells 26.
  • the protruding end is folded back at approximately 180 degrees to form a crest portion.
  • the folded portion 11 facilitates the expansion and deformation of the case 103 by displacing the end surface of the case member 103 a inside the folded portion 11 in a direction away from the battery body 300 in accordance with the increase in the internal pressure of the case 103.
  • the configuration of the bipolar secondary battery 100 other than the case 103 is the same as that of the first embodiment including the setting of the peel strength.
  • the case 103 can be easily extended with respect to an increase in internal pressure.
  • the positive electrode current collector plate 101 and the positive electrode current collector 22a at one end of the battery main body 300, the negative electrode current collector plate 102 and the negative electrode current collector 22b at the other end of the battery main body 300, and the battery Separation of either the positive electrode current collector 22a or the negative electrode current collector 22b between the two stacked bodies 30 constituting the main body 300 is promoted. Therefore, the bipolar secondary battery 100 can be protected more quickly and reliably against the short circuit current of the external circuit.
  • the folded portion 11 having a crest portion is provided over 360 degrees on the outer peripheral surface in the stacking direction of the cells 26 of one case member 103 a constituting the case 103.
  • FIG. 5 the folded portion 11 having a crest portion on the outer peripheral surface in the stacking direction of the cells 26 of one case member 103 a constituting the case 103 is provided twice over 360 degrees.
  • the case 103 configured to be extendable and contractible, a short-circuit current flows through the bipolar secondary battery 100 and the battery temperature rises, and the internal pressure of the case 103 increases. Rises, the case 103 easily expands and deforms in the stacking direction of the cells 26. Preferably, the case 103 can be easily deformed without breaking at an internal pressure of 0.1-10 kilogram (kg) / square centimeter (cm 2 ) ( ⁇ kilopascal (kPa)). When the case 103 is easily deformed by such an internal pressure, the positive electrode current collector plate 101 or the negative electrode current collector plate 102 and the battery body 300 or between the two stacked bodies 30 constituting the battery body 300 can be easily obtained. Can be separated.
  • the battery temperature of the bipolar secondary battery 100 rises, and the electrolyte contained in the electrolyte layer 25 of each cell 26 boils.
  • the internal pressure of the case 103 is increased by the vaporized gas of the organic medium generated with the boiling of the electrolytic solution, and the case 103 extends in the stacking direction of the cells 26, that is, in the direction in which the folded portion 11 extends.
  • the positive electrode current collector plate 101 and the negative electrode current collector plate 102 bonded to the case 103 with an adhesive having a high peel strength are displaced together with the case 139 in the separation direction.
  • This peel-off force is between the positive electrode current collector plate 101 and the positive electrode current collector plate 22 a at one end of the battery body 300, and between the negative electrode current collector plate 102 and the other end of the battery body 300. It acts between the positive electrode current collector 22a and the negative electrode current collector 22b of the two laminated bodies 30 constituting the battery body 300, and any one of them is disconnected. As a result, the short circuit current inside the bipolar secondary battery 100 is cut off.
  • the folded portion 11 is formed on the case member 103a, but the folded portion 11 may be formed on the case member 103b.
  • the folded portion 11 may be formed on both the case member 103a and the case member 103b.
  • FIG. 1 A third embodiment of the present invention will be described with reference to 6-9. These figures are also drawn with the main parts deformed to show the features in an easy-to-understand manner.
  • FIG. 7 specifically, it is a section from the adhesion part of the positive electrode current collector plate 101 to the case member 103 a and the battery main body 300 to the take-out portion to the outside of the case 103, and the even part of the battery main body 300.
  • the folded portion 12 is formed at a position corresponding to.
  • the dimension of the folded portion 12 is set so that the range in which the positive electrode current collector plate 101 can be displaced by the folded portion 12 is equal to the amount by which the case 103 can be extended by the folded portion 11.
  • the folded part 12 is preferably provided inside the folded part 11.
  • the folded portion 11 when the folded portion 11 is provided on the outer peripheral surface of the case member 103 a, the folded portion 12 is preferably provided inside the folded portion 11.
  • FIG. 9 when the plurality of folded portions 11 are provided on the outer peripheral surface of the case member 103a, the folded portions 12 are preferably provided inside the plurality of folded portions 11, respectively.
  • the other structure of the bipolar secondary battery 100 is the same as that of the second embodiment.
  • the positive electrode current collector plate 101 trying to follow the extension deformation of the case 103 is constrained due to the size of the positive electrode current collector plate 101 in the stacking direction of the cells 26. .
  • the positive current collector 101 can be easily displaced following the expansion deformation of the case 103. Therefore, the positive electrode current collector plate 101 and the positive electrode current collector 22a at one end of the battery main body 300, or the negative electrode current collector plate 102 and the negative electrode current collector 22b at the other end of the battery main body 300, or the battery accompanying the expansion deformation of the case 103.
  • the positive electrode current collector 22a and the negative electrode current collector 22b of the two stacked bodies 30 constituting the main body 300 can be more reliably separated.
  • the folded portion 11 is formed on the case member 103 a and the folded portion 12 is formed on the positive current collector plate 101.
  • the folded portion 11 is formed on the case member 103 b and folded on the negative current collector plate 102. It is also possible to form the part 12. Further, the folded portion 11 can be formed on both the case member 103 a and the case member 103 b, and the folded portion 12 can be formed on both the positive current collector plate 101 and the negative current collector plate 102.
  • FIG. A fourth embodiment of the present invention will be described with reference to FIG.
  • the bipolar secondary battery 100 includes an inflator 14 that generates gas inside the case 103.
  • the inflator 14 generates gas by a chemical reaction.
  • the inflator 14 incorporates an igniter, an ignition agent, a gas generating agent, and the like.
  • a controller 15 disposed outside the case 103 is connected to the inflator 14. The controller 15 operates the igniter of the inflator 14 to ignite the igniting agent and burn the gas generating agent.
  • a high-pressure vessel filled with high-pressure gas and an actuator for opening the high-pressure vessel are built in, and the controller 15 disposed outside the case 103 operates the actuator to release the gas from the high-pressure vessel. It is also possible to make it. You may use the hybrid type which combined both.
  • the controller 15 is connected to a temperature sensor 16 that detects the temperature of the laminated body 30.
  • the controller 15 is constituted by a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the controller 15 is programmed in advance to activate the inflator 14 when the temperature of the laminated body 30 reaches, for example, 100 ° C. or more.
  • a current sensor for detecting the current of the positive current collector 101 or the negative current collector 102 is provided, and the controller 15 activates the inflator 14 when the detected current of the current sensor exceeds the short circuit current equivalent value. It is also possible to program to
  • a voltage sensor for detecting a potential difference between the positive electrode current collector plate 101 and the negative electrode current collector plate 102 is provided.
  • the controller It is also possible to program 15 to activate the inflator 14.
  • the voltage value corresponding to the normal operation is, for example, 4.2V-2.5V.
  • a pressure sensor that detects the internal pressure of the case 103 may be provided, and the controller 15 may be programmed to activate the inflator 14 when the internal pressure of the case 103 exceeds a predetermined pressure. It is.
  • Each of the above sensors is a sensor that detects a parameter related to the short circuit current in the bipolar secondary battery 100.
  • the inflator 14 when a short-circuit current flows through the bipolar secondary battery 100, the inflator 14 is activated to generate gas, and the case 103 is expanded by gas pressure.
  • the case 103 quickly expands, and the positive electrode current collector plate 101 and the positive electrode current collector 22a at one end of the battery body 300, or the negative electrode current collector plate 102 and the negative electrode current collector 22b at the other end of the battery body 300, or the battery.
  • the positive electrode current collector 22a and the negative electrode current collector 22b of the two stacked bodies 30 constituting the main body 300 can be separated early.
  • FIGS. 1-10 A fifth embodiment of the present invention will be described with reference to FIGS.
  • the separator SP which is the base material of the electrolyte layer 25 of any one of the cells 26 constituting the battery body 300 is formed larger than the outer dimension of the cell 26, and the outer periphery of the separator SP is placed inside the case 103. It fuses to the end surface of the member 103a.
  • a cutout for allowing the positive electrode current collector plate 101 to pass through is formed in a part of the outer peripheral portion of the separator SP.
  • the specification of the case 103 is the same as that of the first embodiment.
  • the laminate 30 including the separator SP whose outer peripheral portion is fused to the case member 103a is displaced integrally with the case member 103a.
  • the tensile load acting on the battery body 300 as the case 103 expands and deforms acts intensively between the laminate 30 and the negative electrode current collector plate 102 fixed to the case member 103b.
  • the separation of the positive electrode current collector 22 a and the negative electrode current collector 22 b between 30 or the negative electrode current collector plate 102 and the negative electrode current collector 22 b at the other end of the battery body 300 is promoted.
  • the separator SP may be fixed to the end surface of the case member 103b. Further, the separator SP fixed to the case member 103a or 103b may be of any cell 26 of any laminate 30.
  • FIG. 11A-11C, FIG. 12A and 12B, FIG. 13A and 13B, FIG. 14, and FIG. Referring to FIG. 15, an experiment conducted by the inventors regarding the manufacture of the bipolar secondary battery 100 and the current interruption capability of the obtained product will be described.
  • a positive electrode layer was prepared as follows. That is, a positive electrode base material containing 85 wt% LiMn 2 O 4 as a positive electrode active material, 5 wt% acetylene black as a conductive additive, and 10 wt% polyvinylidene fluoride (PVdF) as a binder was prepared. A positive electrode slurry was prepared by adding N-methylpyrodoline (NMP) as a slurry viscosity adjusting solvent to the base until the viscosity became optimum for the coating operation.
  • NMP N-methylpyrodoline
  • FIG. 11A the positive electrode slurry was apply
  • the negative electrode layer was prepared as follows. That is, a negative electrode base containing 90 wt% hard carbon as a negative electrode active material and 10 wt% PVDF as a binder was prepared. A negative electrode slurry was prepared by adding NMP as a slurry viscosity adjusting solvent to the negative electrode base until the viscosity became optimum for the coating operation. FIG. As shown to 11B, the negative electrode slurry was apply
  • FIG. The base material of the bipolar electrode 21 was obtained by forming the positive electrode active material layer 23 and the negative electrode active material layer 24 on both surfaces of the SUS foil as the current collector 22 as shown in 11C.
  • the base material was cut to 160 ⁇ 130 millimeters (mm), and the outer surface of both the positive electrode and the negative electrode was peeled off by 10 mm width to expose the surface of SUS.
  • a bipolar electrode 21 structure having a 140 ⁇ 110 mm electrode surface and a current collector 22 formed of SUS having a width of 10 mm exposed on the outer periphery thereof was produced.
  • an electrolytic solution containing 1 mol of lithium hexafluoroborate (LiPF6) in a mixed solvent of propylene carbonate-ethylene carbonate (PC-EC), and hexafluoropropene (HFP) copolymer as a host polymer were used.
  • An electrolyte base containing 10 wt% of PVdF-HFP containing 10% was prepared.
  • dimethyl carbonate (DMC) was added as a viscosity adjusting solvent until the viscosity became optimum for the coating operation to prepare a pregel electrolyte.
  • the pregel electrolyte was applied to both surfaces of the positive and negative electrode portions of the structure, and the DMC was dried to complete the bipolar electrode 21 infiltrated with the gel electrolyte.
  • a seal precursor 40A made of a one-component uncured epoxy resin was applied to the exposed portion of the positive electrode outer peripheral portion of the bipolar electrode 21 using a dispenser.
  • FIG. 13A and 13B a 170 ⁇ 140 (mm) separator SP made of a 12 ⁇ m thick polyethylene film was then placed on the positive electrode side so as to cover the entire surface of the current collector 22 containing SUS. Thereafter, a seal precursor 40A made of a one-part uncured epoxy resin was applied using a dispenser at a position overlapping the seal precursor 40A of the separator SP.
  • FIG. 14 the structure of the laminate 30 configured as described above is hot-pressed at 80 ° C. for 1 hour at a surface pressure of 1 kg / cm 2 ( ⁇ kPa) with a hot press machine, thereby producing a seal precursor 40A.
  • a seal precursor 40A was cured to obtain a seal portion 40.
  • the seal portion 40 can be pressed to a predetermined thickness and can be further cured.
  • the laminated body 30 in which 12 layers of the cells 26 were laminated by the above process was completed.
  • the three laminated bodies 30 produced by the above process were bonded to each other with a conductive double-sided tape to obtain a battery main body 300 composed of three laminated bodies 30 connected in series, in other words, 36 layers of cells 26.
  • the positive electrode current collector plate 101 was bonded to the positive electrode current collector 22a at one end of the battery body 300 with a conductive double-sided tape.
  • the negative electrode current collector plate 102 was bonded to the negative electrode current collector 22b at the other end of the battery body 300.
  • the surface of the positive electrode current collector plate 101 opposite to the battery main body 300 was bonded to the inner peripheral surface of the case member 103a with a double-sided tape.
  • the surface of the negative electrode current collector plate 102 opposite to the battery main body 300 was bonded to the inner peripheral surface of the case member 103b with double-sided tape.
  • the flange portions were welded so that the case 103 was vacuum-sealed in such a manner that the flange portions of the case members 103a and 103b sandwich the take-out portion of the positive electrode current collector plate 101 and the negative electrode current collector plate 102.
  • Example # 1- # 8 according to the present invention relating to the bipolar secondary battery 100 and Comparative Example # 1- # 3 not according to the present invention were prepared.
  • Example # 1- # 4 corresponds to the first example
  • Example # 5 corresponds to the second example
  • Example # 6 corresponds to the third example
  • Example # 7 corresponds to the fourth example
  • Example # 8 corresponds to the fifth embodiment.
  • the positive electrode current collector 22a and the negative electrode current collector 22b are bonded to each other between the stacked bodies 30 constituting the battery main body 300, and the positive electrode current collector plate 101 and one end of the battery main body 300 are connected.
  • Acrylic conductive double-sided tape having a peel strength of 100% is used for bonding to the positive electrode current collector 22a and for bonding the negative electrode current collector plate 102 to the negative electrode current collector plate 22b at the other end of the battery body 300.
  • Comparative Example # 1 an epoxy adhesive having a peel strength of 90% is used for bonding the positive electrode current collector plate 101 and the case member 103a and bonding the negative electrode current collector plate 102 and the case member 103b.
  • Comparative Example # 2 a butyl rubber double-sided tape having a peel strength of 120% is used for bonding the positive electrode current collector plate 101 and the case member 103a, and an epoxy adhesive having a peel strength of 90% is used for bonding the negative electrode current collector plate 102 and the case member 103b. Is used.
  • Comparative Example 3 an epoxy adhesive having a peel strength of 90% is used for bonding the positive electrode current collector plate 101 and the case member 103a, and a butyl rubber double-sided tape having a peel strength of 120% is bonded to the negative electrode current collector plate 102 and the case member 103b. I use it.
  • an epoxy adhesive having a peel strength of 90% is used for bonding the positive electrode current collector 22a and the negative electrode current collector 22b between the laminates 30 constituting the battery body 300, Acrylic conductivity having a peel strength of 100% for adhesion between the positive electrode current collector plate 101 and the positive electrode current collector 22a at one end of the battery main body 300 and adhesion between the negative electrode current collector plate 102 and the negative electrode current collector 22b at the other end of the battery main body 300. Double-sided tape is used.
  • Example # 1 a butyl rubber double-sided tape having a peel strength of 120% is used for bonding the positive electrode current collector plate 101 and the case member 103a and bonding the negative electrode current collector plate 102 and the case member 103b.
  • Example # 2 an acrylic double-sided tape having a peel strength of 100% is used for adhesion between the positive electrode current collector plate 101 and the case member 103a and adhesion between the negative electrode current collector plate 102 and the case member 103b.
  • Example # 3 a butyl rubber conductive double-sided tape having a peel strength of 120% is used to bond the positive electrode current collector 22a and the negative electrode current collector 22b between the laminates 30 constituting the battery body 300, and the positive electrode current collector
  • An acrylic conductive double-sided tape having a peel strength of 100% is used to bond the positive electrode current collector 22 a at one end of the battery plate 101 and the battery main body 300, and the negative electrode current collector at the other end of the negative electrode current collector 102 and the battery main body 300.
  • a butyl rubber conductive double-sided tape having a peel strength of 120% is used for bonding 22b, and a butyl rubber system having a peel strength of 120% for bonding the positive current collector plate 101 and the case member 103a and for bonding the negative current collector plate 102 and the case member 103b. Double-sided tape is used.
  • Example # 4 the positive electrode current collector 22 a and the negative electrode current collector 22 b are bonded to each other and the positive electrode current collector 22 a at one end of the positive electrode current collector plate 101 and the battery main body 300 between the stacked bodies 30 constituting the battery main body 300.
  • a 100% peel strength acrylic conductive double-sided tape is used for bonding, and an 90% peel strength epoxy adhesive is used for bonding the negative electrode current collector plate 102 and the negative electrode current collector 22b at the other end of the battery body 300.
  • An acrylic double-sided tape having a peel strength of 100% is used for bonding the positive electrode current collector plate 101 and the case member 103a and bonding the negative electrode current collector plate 102 and the case member 103b.
  • Example # 5- # 8 an epoxy adhesive having a peel strength of 90% is used for bonding the positive electrode current collector 22a and the negative electrode current collector 22b between the laminates 30 constituting the battery body 300, and the positive electrode current collector Adhesion between the positive electrode current collector 22a at one end of the battery plate 101 and the battery main body 300, adhesion between the negative electrode current collector plate 102 and the negative electrode current collector 22b at the other end of the battery main body 300, and adhesion between the positive electrode current collector plate 101 and the case member 103a
  • an acrylic double-sided tape having a peel strength of 100% is used for adhesion between the negative electrode current collector plate 102 and the case member 103b.
  • Example # 8 the outer dimension of the separator SP of the specific cell 26 is formed large, and the outer periphery of the separator SP is placed on the case member 103a via a butyl rubber conductive double-sided tape having a peel strength of 120%. It is adhered to.
  • Case # 1 of Case # 1 is made of an aluminum alloy can, and Cases 103 of Comparative Examples # 1- # 3 and # 2-7 are made of an aluminum laminate film.
  • Cases 103 of the bipolar secondary batteries 100 of Examples # 1- # 4 and # 8 and Comparative Examples # 1- # 3 are shown in FIG. 15 is formed. This basically corresponds to the case 103 of the first embodiment.
  • Case 103 of the bipolar secondary battery 100 of Example # 5 is FIG. 3 is formed. That is, the folded portions 11 having one crest portion protruding in the stacking direction of the cells 26 are respectively provided at both ends of the top surface of the one case member 103a.
  • the bipolar secondary battery 100 of Example # 6 is shown in FIG. It is formed in the shape shown in 6 and 7. That is, the same case 103 as in Example # 5 is used, and the folded portion 12 is formed inside the folded portion 11.
  • Case 103 of Example # 7 is FIG. As shown in FIG. 10, an inflator 14 is provided in the case 103, and a controller 15 is provided outside the case 103.
  • the inventors connect a tube for pumping air to the case 103 of Comparative Example # 1- # 3 and the case 103 of Use Example # 1- # 6, and connect the electric current between the positive current collector 101 and the negative current collector 102. Air was pumped while measuring the resistance, and the internal pressure of the case 103 when the electrical resistance rapidly increased was measured. For Example # 7, the internal pressure of the case 103 was measured when the electrical resistance between the positive electrode current collector plate 101 and the negative electrode current collector plate 102 rapidly increased in a state where the inflator 14 disposed inside the case 103 was operated.
  • TABLE-2 shows the measurement results for Comparative Example # 1- # 3 and Examples # 1- # 6 and # 8.
  • Comparative Examples # 1- # 3 not according to the present invention show that the peel strength between the positive current collector plate 101 and the case 103 and the negative current collector plate 102 and the case 103 is high. And the positive electrode current collector 22a at one end of the battery body 300, or between the negative electrode current collector plate 102 and the negative electrode current collector 22b at the other end of the battery body 300, or between the stacked bodies 30 and the negative electrode current collector 22a. It is lower than any peel strength between the current collectors 22b. For this reason, separation occurs between the positive electrode current collector plate 101 and the case 103 or between the negative electrode current collector plate 102 and the case 103, and the short-circuit current in the double electrode secondary battery 100 cannot be interrupted.
  • Examples # 1- # 6 and # 8 according to the present invention are such that the peel strength between the positive electrode current collector plate 101 and the case member 103a and the peel strength between the negative electrode current collector plate 102 and the case member 103b are the same.
  • Example # 1 When Example # 1 is compared with Examples # 2- # 6 and # 8, in Example # 1, the resistance rapidly increased when the internal pressure was 12 kg / cm 2 ( ⁇ kPa), but at the same time, the case 103 was damaged by the internal pressure. From this fact, when the case 103 does not deform even when the internal pressure reaches 10 kg / cm 2 ( ⁇ kPa) or more, it is considered that the case 103 is likely to be damaged by the internal pressure.
  • Example # 2- # 4 and # 8 are compared with Example # 5- # 6, in Example # 2- # 4 and # 8, the folded portion 11 corresponding to the expansion allowance for volume change is formed in the case 103. Not. In such a case, the power cannot be cut off unless a relatively large internal pressure is applied.
  • Example # 5 and Example # 6 are compared, it can be seen that forming the folded portion 11 and the folded portion 12 can cut off the current with a smaller internal pressure than when only the folded portion 11 is formed.
  • Example 7 when the controller 15 operates the inflator 14 to apply an internal pressure of 5 kg / cm 2 ( ⁇ kPa) to the case 103, the positive current collector 101 and the negative current collector The electrical resistance between the first and second terminals increased rapidly in the same manner as in the other examples # 1- # 6. Thereby, it was confirmed that the internal current of the bipolar secondary battery 100 can be cut off.
  • Example # 1- # 8 confirmed that the short-circuit current can be easily cut off by using a case 103 of a laminate film of aluminum or the like.
  • the present invention is applicable to any bipolar secondary battery including a lithium ion battery.
  • the sealed case 103 is obtained by fusing together case members 103a and 103b made of an aluminum can or an aluminum laminate film.
  • the case 103 may be of any structure or material as long as it has a characteristic of extending as the temperature rises.
  • the present invention it is possible to block a large amount of current from flowing in the bipolar secondary battery. Therefore, it provides a favorable effect for protecting the secondary battery of the electric vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 ケースに収装された電池本体は電解質層を介して積層された複数の双極型電極からなる単数または複数の直列接続された積層体で構成される。一面をケースの内周面に接合し、もう一面を電池本体の一端に接合する正極集電板と負極集電板とが、それぞれケースから外側へ延出する。ケースの伸長変形に応じて、電池本体を介した正極集電板と負極集電板との電気的接続を切断する切断メカニズムを備えることで、短絡電流の発生時に双極型二次電池内の電流通路を遮断して、双極型二次電池を短絡電流から保護する。

Description

双極型二次電池
 この発明は、双極型二次電池の短絡電流からの保護に関する。
 日本国特許庁が2009年に発行したJP2009-252548Aは、積層された複数層のセルからなるリチウムイオン電池などの双極型二次電池に用いる流動性封止剤に関する提案を行っている。
 セルの積層方向の一端には正極活物質が、もう一端には負極活物質を配置されている。流動性封止剤は、セルの電解質が空気中の水分により劣化しないよう、電解質の周りに配置され、セルを空気から遮断する役割をもつ。
 パラフィンなどの流動性封止剤は高電圧のもとで電気分解を起こす。電気分解した流動性封止剤は必要な絶縁性を保てない。従来技術は流動封止剤を密閉された複数の層に分割することで、流動封止剤に高電圧が加わるのを防止し、電気分解が起きにくい構造を実現している。
 双極型二次電池に接続された外部回路が短絡を起こすと、電池内部に短絡電流が流れ続け、電池が発熱する。
 従来技術による双極型二次電池は、こうした状況でも流動封止剤への高電圧の負荷防止効果をもたらすが、短絡電流を遮断したり、電池それ自体の発熱を防止する作用を持たない。
 この発明の目的は、したがって、双極型二次電池を短絡電流から保護することである。
 以上の目的を達成するために、この発明による双極型二次電池は、電池本体と、電池本体を内部に収装するケースと、一面をケースの内周面に接合し、もう一面を電池本体の一端に接合すると共にケース外部に延出した正極集電板と、一面をケースの内周面に接合し、もう一面を電池本体のもう一端に接合すると共にケース外部に延出した負極集電板と、を備えている。
 電池本体は単数または複数の直列接続された積層体からなる。積層体は、板状の集電体と、集電体の一面に配置された正極活物質層、及び集電体のもう一面に配置された負極活物質層、とからなる双極型電極を電解質層を介して複数積層することで構成される。
 双極型二次電池はさらに、ケースの伸長変形に応じて、電池本体を介した正極集電板と負極集電板との電気的接続を切断する切断メカニズム、を備えている。 
 この発明の詳細並びに他の特徴や利点は、明細書の以下の記載の中で説明されるとともに、添付された図面に示される。
FIG.1はこの発明による双極型二次電池の斜視図である。 FIG.2はFIG.1のA-A線に沿って切り取った双極型二次電池の縦断面図である。 FIG.3はこの発明の第2の実施例による双極型二次電池の概略縦断面図である。 FIG.4はFIG.3に類似するが、折り返し部に関するバリエーションを示す。 FIG.5はFIG.3に類似するが、折り返し部に関する別のバリエーションを示す。 FIG.6はFIG.3に類似するが、この発明の第3の実施例を示す。 FIG.7はこの発明の第3の実施例による集電板の縦断面図である。 FIG.8はFIG.6に類似するが、折り返し部に関するバリエーションを示す。 FIG.9はFIG.6に類似するが、折り返し部に関する別のバリエーションを示す。 FIG.10はこの発明の第4の実施例による双極型二次電池の概略縦断面を含む概略構成図である。 FIGS.11A-11Cはこの発明による双極型電極の正面図と背面図と縦断面図である。 FIGS.12Aと12Bはシール前駆体を取り付けた双極型電極の正面図と横断面図である。 FIGS.13Aと13Bはセパレータを取り付けた双極型電極の正面図と横断面図である。 FIG.14は双極型二次電池の最終形成プロセスを説明するプレス機の概略側面図である。 FIG.15は折り返し部を形成しない双極型二次電池の縦断面図である。 FIG.16はこの発明の第5の実施例による双極型二次電池の概略縦断面図である。 FIG.17はこの発明の第5の実施例による双極型二次電池内部の平面図である。
 図面のFIG.1を参照すると、双極型二次電池100は、略矩形横断面のケース103と、ケース103の相対する2つの辺を介してケース103の内側から外側へ取り出される正極集電板101と負極集電板102とを備える。
 FIG.2を参照すると、双極型二次電池100は、ケース103の内側に電池本体300を備える。電池本体300は複数のセル26を積層した積層体30を2個直列接続することで構成される。正極集電板101と負極集電板102は電池本体300を挟持する形で、ケース103の内周面にそれぞれ接合される。より詳しくは、正極集電板101と負極集電板102はケース103の内周面に接着により固定される。
 ケース103は、電池本体300を外気から遮断し、電池本体300を保護する役割を持つ。ケース103は一対のケース部材103aと103bからなる。ケース部材103aと103bは、電池本体300を収容する凹部と凹部を囲むフランジ部とをそれぞれ有する
 ケース103は、ケース103の内側から外側へ至る正極集電板101と負極集電板102とを挟む形で、一対のケース部材103aと103bのフランジ部同士を溶着させることで一体に構成される。ケース103には内外に生じる圧力差に対して積層体30を損傷させない強度と、変形可能な可撓性とを備えたシート状素材が用いられる。シート状素材は、さらに電解液や気体を透過させず、電気絶縁性を有し、電解液などの材料に対して化学的に安定であることが望ましい。
 シート状素材には、好ましくはラミネートフィルム、ポリエチレン、ポリプロピレン、ポリカーボネートなどが用いられる。ラミネートフィルムは、アルミニウム、ステンレス、ニッケル、銅などの合金を含む金属の金属箔を、ポリプロピレンフィルムなどの絶縁性の合成樹脂膜で被覆したものである。
 積層体30を構成するセル26は、電解質層25と、電解質層25の両側に積層された正極活物質層23と負極活物質層24と、さらに積層方向に関して正極活物質層23と負極活物質層24の外側に積層された板状の集電体22とで構成される。ただし、図に示すように複数のセル26を積層する場合には、集電体22は隣接するセル26の間に一枚のみ挟持される。
 集電体22には公知の材料か使用される。例えば、アルミニウムやステンレス(SUS)を使用することができる。集電体22の材料に高分子材料を含むこともできる。すなわち、ポリオレフィン(ポリプロピレン、ポリエチレン)、ポリエステル(PET、PEN)、ポリイミド、ポリアミド、ポリフッ化ビニリデン(PVdF)を用いることができる。これらの高分子材料に導電性をもたせるために、好ましくは高分子材料中にケッチェンブラック、アセチレンブラック、カーボンブラックなどのカーボンや、アルミニウム(Al)、銅(Cu)、ステンレス鋼(SUS)、チタニウム(Ti)などの金属、の粒子を分散させる。
 正極活物質層23は、正極活物質を含み、さらに導電助剤やバインダーなどを含み得る。正極活物質には、溶液系のリチウムイオン電池で使用される、遷移金属とリチウムとの複合酸化物を使用できる。
 負極活物質層24は、負極活物質を含み、さらに導電助剤やバインダーなどを含み得る。負極活物質には、溶液系のリチウムイオン電池で使用される負極活物質を用いることができる。
 特に、正極活物質層23の正極活物質にリチウム-遷移金属複合酸化物を用い、負極活物質層24の負極活物質にカーボンまたはリチウム-遷移金属複合酸化物を用いることで、容量と出力特性に優れた電池を構成することができる。
 電解質層25は、イオン伝導性を有する高分子を含む層または液体電解質である。この実施例では電解質に、基材としてのセパレータにプレゲル溶液を含浸させた後、化学架橋または物理架橋により得た高分子ゲル電解質を用いている。電解質に含まれる電解液は、ポリプレンカーボネート、エチレンカーボネート、ジエチルカーボネート等の有機溶媒を含有し、温度上昇により沸騰してガス化する。この実施例において、セパレータの融点は約摂氏120度(℃)である。電解質溶媒の沸点は約140℃である。
 セル26の外周はシール部40に覆われる。シール部40は、隣接する集電体22の外周部の間に充填され、正極活物質層23と電解質層25と負極活物質層24の外気との接触を遮断する。シール部40はセル26を密封することにより、電解質のイオン伝導度の低下を防止する。また、液体または半固体のゲル状の電解質を使用する場合の、液漏れによる液絡を防止する。
 シール前駆体には、例えば加圧変形により集電体22に密着するゴム系樹脂、または加熱加圧して熱融着させることで集電体22に密着するオレフィン系樹脂などの熱融着可能な樹脂を使用することができる。
 ゴム系樹脂には特に制限はないが、好ましくは、シリコン系ゴム、フッ素系ゴム、オレフィン系ゴム、ニトリル系ゴムよりなる群から選択される。これらのゴム系樹脂は、シール性、耐アルカリ性、耐薬品性、耐久性、耐候性、耐熱性などに優れ、二次電池の使用環境においてもこれらの優れた性能と品質を長期間維持することができる。
 熱融着可能な樹脂は、積層体30のあらゆる使用環境下で優れたシール効果を発揮できるものが好ましい。熱融着可能な樹脂は、例えばシリコン、エポキシ、ウレタン、ポリブタジエン、オレフィン系樹脂(ポリプロピレン、ポリエチレンなど)、パラフィンワックスよりなる群から選択される。これらの熱融着可能な樹脂は、シール性、耐アルカリ性、耐薬品性、耐久性・耐候性、耐熱性などに優れ、二次電池の使用環境においてもこれらの優れた性能と品質を長期間維持することができる。
 積層体30の製造プロセスにおいては、集電体22の一方の面に正極活物質層23を形成し、もう一方の面に負極活物質層24を形成した複数の双極型電極21と電解質層25とが交互に6層に渡って積層される。積層方向に関する積層体30の両端には正極集電体22aと負極集電体22bが積層される。集電体22と異なり、正極集電体22aは一方の面に正極活物質層23を形成し、もう一方の面には何も形成しない。負極集電体22bは一方の面に負極活物質層24を形成し、もう一方の面には何も形成しない。正極集電体22aは正極活物質層23を電解質層25に接した状態で積層される。負極集電体22bは負極活物質層24を電解質層25に接した状態で積層される。
 以上のようにして積層された所定数のセル26を熱プレス機を用いてシール部40が所定の厚さとなるように熱プレスし、さらに未硬化のシール部40を硬化させることで双極型の積層体30が完成する。
 電池本体300は、一方の積層体30の正極集電体22aがもう一方の積層体30の負極集電体22bに接するように、直列に配置された2個の積層体30によって構成される。
 正極集電板101と負極集電板102は、電池本体300からケース103の外側へ電流を取り出し、あるいはケース103の外側から電池本体300に電流を供給する役割を持つ。正極集電板101と負極集電板102の材料には、特に制限はなく、公知の材料を使用することができる。好ましくは、アルミニウム、ステンレス(SUS)、高分子材料などが使用される。
 電池本体300を構成する2個の積層体30の隣接する正極集電体22aと22bは導電性接着剤で接着される。また、電池本体300の一端に位置する正極集電体22aと正極集電板101、及び電池本体300のもう一端に位置する負極集電体22bと負極集電板102も、導電性接着剤で接着される。接着剤には、剥離強度120%のブチルゴム系導電性両面テープ、剥離強度100%のアクリル系導電性両面テープ、剥離強度90%の導電性エポキシ接着剤のいずれかを用いる。
 さらに、正極集電板101のケース部材103aの内周面への接合と、負極集電板102のケース部材103bの内周面への接合も、それぞれ接着剤を用いた接着によって行われる。接着には、剥離強度120%のブチルゴム系両面テープ、または剥離強度100%のアクリル系両面テープを用いる。
 各剥離強度は、アクリル両面テープの剥離強度を100%とした場合の各接着剤の剥離強度をパーセンテージで表したものである。
 2個の積層体30の正極集電体22aと負極集電体22bの接着は必須の用件ではなく、これらを接着せずに単に当接させるだけでも良い。
 この発明による双極型二次電池100において、以上の接着は下記の条件を満たすように行われる。
 すなわち、2個の積層体30の正極集電体22aと負極集電体22bの剥離強度をK4,正極集電体22aと正極集電板101の剥離強度をK3、負極集電体22bと負極集電板102の剥離強度をK5、正極集電板101とケース103の剥離強度をK1、負極集電板102とケース103の剥離強度をK2とした場合に次のいずれかの条件を満たすものとする。
 K1.K2>K3または
 K1.K2>K4または
 K1.K2>K5
 なお、2個の積層体30の正極集電体22aと22bを接着しない場合には、剥離強度K4はゼロとなる。
 上記の関係は次の文章で表される。すなわち、ケース103の内周面と正極集電板101との剥離強度及びケース103の内周面と負極集電板102との剥離強度がともに、正極集電板101と正極集電体22aの剥離強度、負極集電板102と負極集電体22bの剥離強度、及び積層体30間の正極集電体22aと負極集電体22bの剥離強度の少なくとも一つより大きく設定される。
 以上の処理の後、ケース103を構成する一対のケース部材103aと103bのフランジ状の外周部同士を真空状態で融着させることで双極型二次電池100が完成する。ケース部材103aと103bの外周部同士を一部を残して融着し、未融着部からケース103内の空気を誘引することでケース103内を真空状態としても良い。
 ハイブリッド電気自動車(HEV)や電気自動車(EV)においては、車体に強い衝撃が加わった場合には、車載バッテリからの電力供給により動作する各種電気回路に故障が生じることがある。そして、故障した電気回路にバッテリから電力が供給され続けると、故障した電気回路に過大な電流が流れて回路が発熱し、強電ラインが短絡することがある。また、車載バッテリ内の強電ライン同士が短絡することも考えられる。
 このようなケースでは、双極型二次電池100内に過大な短絡電流が流れ、双極型二次電池100の内部抵抗による発熱で双極型二次電池100の温度上昇が起こる。この温度上昇により積層体30の電解質層25の電解液に含まれるポリプレンカーボネート、エチレンカーボネート、ジエチルカーボネート等の有機溶媒が沸騰し、ガス化すると、ケース103の内圧が上昇し、ケース103が膨らむ。
 ケース103の膨張は、ケース103の内周面に接着された正極集電板101及び負極集電板102を介して2個の積層体30に引っ張り荷重を及ぼす。
 この引っ張り荷重は、ケース103の内周面と正極集電板101との間及びケース103の内周面と負極集電板102との間だけでなく、2個の積層体30の正極集電体22aと負極集電体22bの間、電池本体300の一端に位置する正極集電体22aと正極集電板101の間、及び電池本体300のもう一端に位置する負極集電体22bと負極集電板102の間に引き剥がし力として作用する。
 この双極型二次電池100においては、ケース103の内周面と正極集電板101との剥離強度及びケース103の内周面と負極集電板102との剥離強度がともに、電池本体300の一端の正極集電体22aと正極集電板101の剥離強度、電池本体300のもう一端の負極集電体22bと負極集電板102の剥離強度、及び2基の積層体30間の正極集電体22aと負極集電体22bの剥離強度の少なくとも一つより大きく設定される。したがって、引き剥がし力の作用により、正極集電板101と正極集電体22a、負極集電板102と負極集電体22b、及び電池本体300を構成する2個の積層体30間の正極集電体22aと負極集電体22b、のいずれかが剥離する。そして、剥離したこれらの部材間の接触が弱まることで、短絡電流の流れが抑制される。さらに、部材間が完全に剥離することで短絡電流は遮断される。
 このようにして、この発明により双極型二次電池100に接続された外部回路の短絡電流から双極型二次電池100を保護することができる。
 この実施例では、各積層体30が6個のセルで構成され、さらに2基の積層体30を直列に接続することで電池本体300を構成している。しかし、積層体30を構成するセル26の数及び直列に接続される積層体30の個数は、双極型二次電池100に要求される電圧や容量に応じて任意に設定可能である。
 したがって、電池本体300を、例えば積層体30間の接続部が存在しない単一の積層体30で構成しても良い。その場合には、ケース103の内周面と正極集電板101との剥離強度及びケース103の内周面と負極集電板102との剥離強度がともに、正極集電板101と電池本体300の一端の正極集電体22aの剥離強度及び負極集電板102と電池本体300のもう一端の負極集電体22bの剥離強度の少なくとも一つより大きくなるように設定すれば良い。
 FIGS.3-5を参照して、この発明の第2の実施例を説明する。なお、これらの図は特徴を分かりやすく示すために、要部をデフォルメして描いている。
 第1の実施例において、双極型二次電池100内に生じる引き剥がし力はもっぱらケース103の温度膨張によってのみ生まれる構造であった。この実施例では、ケース103内のガス圧力の上昇に応じてケース103がセル26の積層方向に伸長するように、ケース103を構成する一方のケース部材103aに、ケース103の伸び代として折り返し部11を設ける。
 FIG.3を参照すると、折り返し部11は、ケース部材103aのセル26の積層方向に関する端面から電池本体300から遠ざかる向きに円筒状に突出する。突出端は略180度に折り返され、クレスト部を形成する。折り返し部11はケース103の内圧の上昇に応じて折り返し部11の内側のケース部材103aの端面を電池本体300から遠ざかる向きに変位させることで、ケース103の伸長変形を容易にする。
 ケース103以外の双極型二次電池100の構成は剥離強度の設定を含めて第1の実施例と同一である。この実施例により、内圧の上昇に対するケース103の伸長が容易になる。その結果、ケース103の内圧の上昇時に、正極集電板101と電池本体300の一端の正極集電体22a、負極集電板102と電池本体300のもう一端の負極集電体22b、及び電池本体300を構成する2個の積層体30間の正極集電体22aと負極集電体22b、のいずれかの剥離が促進される。そのため、外部回路の短絡電流に対して双極型二次電池100をより早くかつ確実に保護することができる。
 折り返し部11の形成位置や個数についてはさまざまなバリエーションが可能である。
 FIG.4を参照すると、ここではケース103を構成する一方のケース部材103aのセル26の積層方向に関する外周面にクレスト部を有する折り返し部11を360度に渡って設けている。
 FIG.5を参照すると、ここではケース103を構成する一方のケース部材103aのセル26の積層方向に関する外周面にクレスト部を有する折り返し部11を360度に渡って二重に設けている。
 折り返し部11の形成位置や個数によらず、このように伸縮可能に構成されたケース103のもとでは、双極型二次電池100に短絡電流が流れて電池温度が上昇し、ケース103の内圧が上昇すると、セル26の積層方向に関してケース103が容易に膨張変形する。好ましくは、ケース103は、0.1-10キログラム(kg)/平方センチメートル(cm)(≒キロパスカル(kPa))の内圧で破壊することなく容易に変形し得るものとする。このような内圧でケース103が容易に変形すると、正極集電板101または負極集電板102と電池本体300との間、あるいは電池本体300を構成する2個の積層体30の間を容易に切り離すことができる。
 すなわち、双極型二次電池100に接続された外部回路に過大な短絡電流が流れると、双極型二次電池100の電池温度が上昇し、各セル26の電解質層25に含まれる電解液が沸騰する。電解液の沸騰にともなって発生する有機媒体の気化ガスによりケース103の内圧が上昇し、ケース103がセル26の積層方向、すなわち折り返し部11を伸ばす向き、に伸長する。
 ケース103の伸長に伴い、剥離強度の大きな接着剤でケース103に接着された正極集電板101及び負極集電板102はケース139と一体に互いに離間方向に変位する。この引き剥がし力は、接着力の相対的に弱い、正極集電板101と電池本体300の一端の正極集電板22aの間、負極集電板102と電池本体300のもう一端の負極集電体22bの間、及び電池本体300を構成する2個の積層体30の正極集電体22aと負極集電体22bの間に作用し、これらのいずれかが切り離される。その結果、双極型二次電池100内部の短絡電流が遮断される。
 この実施例では、ケース部材103aに折り返し部11を形成しているが、ケース部材103bに折り返し部11を形成しても良い。ケース部材103aとケース部材103bの双方に折り返し部11を形成しても良い。
 FIGS.6-9を参照して、この発明の第3の実施例を説明する。これらの図も特徴を分かりやすく示すために、要部をデフォルメして描いている。
 FIG.6を参照すると、この実施例では、第2の実施例の構成に加えて、正極集電板101のケース部材103a及び電池本体300への接着部位からケース103の外への取り出し部に至る区間の長さをあらかじめ長く設定する。
 FIG.7を参照すると、具体的には、正極集電板101のケース部材103a及び電池本体300への接着部位からケース103の外への取り出し部に至る区間であって、かつ電池本体300の偶部に対応する位置に折り返し部12を形成する。好ましくは、折り返し部12による正極集電板101の変位可能な範囲が、折り返し部11によるケース103の伸長可能変位量と等しくなるように、折り返し部12の寸法を設定する。
 折り返し部12は、折り返し部11の内側に設けることが好ましい。
 すなわち、FIG.8を参照すると、ケース部材103aの外周面に折り返し部11を設ける場合には、折り返し部12を折り返し部11の内側に設けることが好ましい。
 FIG.9を参照すると、ケース部材103aの外周面に複数の折り返し部11を設ける場合には、折り返し部12を複数の折り返し部11の内側にそれぞれ設けることが好ましい。
 双極型二次電池100の他の構成は第2の実施例と同一である。
 第2の実施例では、ケース103の伸長変形に追随しようとする正極集電板101の変位が、セル26の積層方向の正極集電板101の寸法に起因して拘束される可能性がある。しかしながら、この実施例では正極集電板101に折り返し部12を設けることで、ケース103の伸長変形に追随した正極集電板101の変位が容易になる。したがって、ケース103の伸長変形に伴う、正極集電板101と電池本体300の一端の正極集電体22a、または負極集電板102と電池本体300のもう一端の負極集電体22b、または電池本体300を構成する2個の積層体30の正極集電体22aと負極集電体22b、の切り離しをより確実に行うことができる。
 この実施例では、ケース部材103aに折り返し部11を形成し、正極集電板101に折り返し部12を形成しているが、ケース部材103bに折り返し部11を形成し、負極集電板102に折り返し部12を形成することも可能である。さらに、ケース部材103aとケース部材103bの双方に折り返し部11を形成し、正極集電板101と負極集電板102の双方に折り返し部12を形成することも可能である。
 FIG.10を参照して、この発明の第4の実施例を説明する。
 この実施例による双極型二次電池100はケース103の内側にガスを発生させるインフレータ14を備える。
 インフレータ14は、化学反応によりガスを発生させる。インフレータ14はイグナイタ、着火剤、ガス発生剤などを内蔵する。インフレータ14にはケース103の外に配置したコントローラ15が接続される。コントローラ15はインフレータ14のイグナイタを作動させて、着火剤に点火してガス発生剤を燃焼させる。
 インフレータ14に関する別の構成として、高圧ガスを充填した高圧容器と、高圧容器を開口するアクチュエータを内蔵し、ケース103外に配置したコントローラ15がアクチュエータを作動させて、高圧容器のガスを放出するようにすることも可能である。両者を組合わせたハイブリッドタイプを用いても良い。
 コントローラ15には積層体30の温度を検出する温度センサ16が接続される。コントローラ15は中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ15は、積層体30の温度が例えば100℃以上になると、インフレータ14を作動させるようにあらかじめプログラムされる。
 温度センサ16の代わりに、正極集電板101または負極集電板102の電流を検出する電流センサを設け、電流センサの検出電流が短絡電流相当値を超える場合に、コントローラ15がインフレータ14を作動させるようにプログラムすることも可能である。
 さらに、温度センサ16の代わりに、正極集電板101と負極集電板102の電位差を検出する電圧センサを設け、電圧センサの検出電圧が通常作動時相当の電圧値から外れた場合に、コントローラ15がインフレータ14を作動させるようにプログラムすることも可能である。通常作動時相当の電圧値は例えば4.2V-2.5Vである。
 さらに、温度センサ16の代わりに、ケース103の内圧を検出する圧力センサを設け、ケース103の内圧が所定圧力以上になった場合に、コントローラ15がインフレータ14を作動させるようにプログラムすることも可能である。
 以上の各センサは、いずれも双極型二次電池100内の短絡電流と関連を有するパラメータを検出するセンサである。
 この実施例によれば、双極型二次電池100に短絡電流が流れると、インフレータ14が作動してガスを発生させ、ケース103をガス圧力で膨張させる。その結果、ケース103がいちはやく伸長し、正極集電板101と電池本体300の一端の正極集電体22a、または負極集電板102と電池本体300のもう一端の負極集電体22b、または電池本体300を構成する2個の積層体30の正極集電体22aと負極集電体22b,の切り離しを早期に行うことができる。
 FIGS.16と17を参照してこの発明の第5の実施例を説明する。
 この実施例では、電池本体300を構成するいずれかのセル26の電解質層25の基材であるセパレータSPをセル26の外形寸法より大きく形成し、セパレータSPの外周部をケース103の内側においてケース部材103aの端面に融着する。
 正極集電板101との干渉を避けるために、セパレータSPの外周部の一部に正極集電板101を通過させるための切欠を正極集電板101形成しておく。ケース103の仕様は第1の実施例と同一である。
 ケース103が伸長変形するのに伴い、ケース部材103aに外周部を融着したセパレータSPを含む積層体30はケース部材103aと一体に変位する。その結果、ケース103の伸長変形に伴って電池本体300に作用する引っ張り荷重は、この積層体30とケース部材103bに固定された負極集電板102との間に集中的に作用し、積層体30間の正極集電体22aと負極集電体22bの剥離、もしくは負極集電板102と電池本体300のもう一端の負極集電体22b、の剥離が促進される。
 なお、セパレータSPをケース部材103bの端面に固定しても良い。また、ケース部材103aまたは103bに固定するセパレータSPはいずれの積層体30のいずれのセル26のものでも良い。
 次にFIGS.11A-11C,FIGS.12Aと12B,FIGS.13Aと13B,FIG.14,及びFIG.15を参照して、双極型二次電池100の製造と得られた製品の電流遮断能力に関して、発明者らが行った実験について説明する。
 まず、双極型電極の制作について説明する。
 正極層を下記の要領により作成した。すなわち、正極活物質としてLiMnを85重量パーセント(wt%)に、導電助剤としてアセチレンブラックを5wt%、バインダーとしてポリフッ化ビニリデン(PVdF)を10wt%含む正極基剤を作成した、正極基剤にスラリー粘度調整溶媒としてNメチルピロドリン(NMP)を塗布作業に最適な粘度になるまで添加することで、正極スラリーを作製した。
 FIG.11Aに示すように、集電体22としての厚さ20ミクロン(μm)のSUS箔の片面に正極スラリーを塗布し、乾燥させて30μmの正極活物質層23を形成した。
 負極層を下記要領により作成した。すなわち、負極活物質としてハードカーボンを90wt%、バインダーとしてPVDFを10wt%を含む負極基剤を作成した。負極基剤にスラリー粘度調整溶媒としてNMPを塗布作業に最適な粘度になるまで添加することで、負極スラリーを作製した。FIG.11Bに示すように、正極を塗布した集電体22としてのSUS箔の反対面に、負極スラリーを塗布し、乾燥させて30μmの負極活物質層24を形成した。
 FIG.11Cに示すように集電体22としてのSUS箔の両面に正極活物質層23と負極活物質層24を形成することで、双極型電極21の基材を得た。
 次いで、基材を160×130ミリメートル(mm)に切り取り、正極、負極ともに外周部を幅10mmずつ剥がし取ることにより、SUSの表面を露出させた。結果として、140×110mmの電極面と、その外周に露出する10mm幅のSUSが構成する集電体22とを有する双極型電極21の構造体を作製した。
 次に、プロピレンカーボネート-エチレンカーボネート(PC-EC)の混合溶媒に1モルの六フッ化ホウ酸リチウム(LiPF6)を含有する電解液を90wt%と、ホストポリマーとしてヘキサフルオロプロペン(HFP)コポリマーを10%含むPVdF-HFPを10wt%含む電解質基剤を作成した。電解質基剤に粘度調製溶媒として、ジメチルカーボネート(DMC)を塗布作業に最適な粘度になるまで添加して、プレゲル電解質を作製した。このプレゲル電解質電解質を構造体の正極、負極電極部の両面に塗布し、DMCを乾燥させることで、ゲル電解質の染み込んだ双極型電極21を完成させた。
 次にシール部前駆体の形成について説明する。
 FIGS.12Aと12Bを参照すると、双極型電極21の正極外周部の露出部にディスペンサを用いて、1液性未硬化エポキシ樹脂からなるシール前駆体40Aを塗布した。
 FIG.13Aと13Bを参照すると、次に、12μm厚のポリエチレンフィルムからなる170×140(mm)のセパレータSPをSUSを含む集電体22の全面を覆うように正極側に配置した。その後に、セパレータSPのシール前駆体40Aと重なる位置にディスペンサを用いて、1液性未硬化エポキシ樹脂からなるシール前駆体40Aを塗布した。
 以上の双極型電極21とセパレータSPとを積層することで、セル26が12個積層された積層体30の構造体を作製した。
 次に双極型電池のプレス成型について説明する。
 FIG.14を参照すると、以上のように構成された積層体30の構造体を、熱プレス機により面圧1kg/cm(≒kPa)で80℃で1時間熱プレスすることにより、シール前駆体40Aを硬化させて、シール部40を得た。この工程により、シール部40を所定の厚みまでプレスでき、さらに硬化させることが可能になる。以上のプロセスでセル26を12層積層した積層体30を完成させた。
 次にパッケージングについて説明する。
 上記プロセスで作成した3個の積層体30を互いに導電性両面テープにより接着することで、直列接続された3個の積層体30、言い換えれば36層のセル26からなる電池本体300を得た。電池本体300の一端の正極集電体22aに導電性両面テープにより正極集電板101を接着した。電池本体300のもう一端の負極集電体22bに負極集電板102を接着した。正極集電板101の電池本体300と反対側の面をケース部材103aの内周面に両面テープで接着した。同様に、負極集電板102の電池本体300と反対側の面をケース部材103bの内周面に両面テープで接着した。正極集電板101と負極集電板102の取り出し部をケース部材103aと103bのフランジ部が挟む形で、ケース103が真空密封されるようにフランジ部を溶着した。
 以上のプロセスにより、双極型二次電池100に関するこの発明による用例#1-#8とこの発明によらない比較例#1-#3を作成した。
 正極集電板101とケース部材103a及び負極集電板102とケース部材103bとの接着には、剥離強度120%のブチルゴム系両面テープ、剥離強度100%のアクリル系両面テープ、及び剥離強度90%のエポキシ接着剤、のいずれかを使用した。
 また、電池本体300を構成する3個の積層体30間の正極集電体22aと負極集電体22bの接着、正極集電板101と電池戦隊300の一端の正極集電体22aの接着、及び負極集電板102と電池本体300のもう一端の負極集電体22bの接着には、剥離強度120%のブチルゴム系両面テープ、剥離強度100%のアクリル系両面テープ、及び剥離強度90%のエポキシ接着剤、のいずれかを使用した。剥離強度は、いずれもアクリル両面テープの剥離強度を100%とした場合の、相対的な剥離強度をパーセンテージで表す。
 用例#1-#8と比較例#1-#3の各部の剥離強度に関する仕様をTABLE-1に示す。なお、用例#1-#4は第1の実施例に相当し、用例#5は第2の実施例に相当し、用例#6は第3の実施例に相当し、用例#7は第4の実施例に相当し、用例#8は第5の実施例に相当する。
Figure JPOXMLDOC01-appb-T000001
 この発明によらない比較例#1-#3では、電池本体300を構成する積層体30間の正極集電体22aと負極集電体22bの接着、正極集電板101と電池本体300の一端の正極集電体22aとの接着、及び負極集電板102と電池本体300のもう一端の負極集電板22bとの接着に剥離強度100%のアクリル系導電性両面テープを使用している。
 比較例#1では、正極集電板101とケース部材103aの接着及び負極集電板102とケース部材103bの接着に、剥離強度90%のエポキシ接着剤を使用している。比較例#2では正極集電板101とケース部材103aの接着に剥離強度120%のブチルゴム系両面テープを使用し、負極集電板102とケース部材103bの接着に剥離強度90%のエポキシ接着剤を使用している。比較例3では正極集電板101とケース部材103aの接着に剥離強度90%のエポキシ接着剤を使用し、負極集電板102とケース部材103bの接着に剥離強度120%のブチルゴム系両面テープを使用している。
 一方、この発明による用例#1と#2では、電池本体300を構成する積層体30間の正極集電体22aと負極集電体22bの接着に剥離強度90%のエポキシ接着剤を使用し、正極集電板101と電池本体300の一端の正極集電体22aの接着及び負極集電板102と電池本体300のもう一端の負極集電体22bの接着に剥離強度100%のアクリル系導電性両面テープを使用している。
 用例#1では、正極集電板101とケース部材103aの接着及び負極集電板102とケース部材103bの接着に剥離強度120%のブチルゴム系両面テープを使用している。
 用例#2では、正極集電板101とケース部材103aの接着及び負極集電板102とケース部材103bの接着に剥離強度100%のアクリル系両面テープを使用している。
 この発明による用例#3では、電池本体300を構成する積層体30間の正極集電体22aと負極集電体22bの接着に剥離強度120%のブチルゴム系導電性両面テープを使用し、正極集電板101と電池本体300の一端の正極集電体22aの接着に剥離強度100%のアクリル系導電性両面テープを使用し、負極集電板102と電池本体300のもう一端の負極集電体22bの接着に剥離強度120%のブチルゴム系導電性両面テープを使用し、正極集電板101とケース部材103aの接着及び負極集電板102とケース部材103bの接着に剥離強度120%のブチルゴム系両面テープを使用している。
 この発明による用例#4では、電池本体300を構成する積層体30間の正極集電体22aと負極集電体22bの接着及び正極集電板101と電池本体300の一端の正極集電体22aの接着に剥離強度100%のアクリル系導電性両面テープを使用し、負極集電板102と電池本体300のもう一端の負極集電体22bの接着に剥離強度90%のエポキシ接着剤を使用し、正極集電板101とケース部材103aの接着及び負極集電板102とケース部材103bの接着に剥離強度100%のアクリル系両面テープを使用している。
 この発明による用例#5-#8では、電池本体300を構成する積層体30間の正極集電体22aと負極集電体22bの接着に剥離強度90%のエポキシ接着剤を使用し、正極集電板101と電池本体300の一端の正極集電体22aの接着、負極集電板102と電池本体300のもう一端の負極集電体22bの接着、正極集電板101とケース部材103aの接着、及び負極集電板102とケース部材103bの接着に剥離強度100%のアクリル系両面テープを使用している。
 さらに、この発明による用例#8においては、特定のセル26のセパレータSPの外形寸法を大きく形成し、このセパレータSPの外周部を剥離強度120%のブチルゴム系導電性両面テープを介してケース部材103aに接着している。
 次にケース103の材質並びに形状の違い及びインフレータ14の有無を説明する。
 用例#1のケース103はアルミニウム合金製の缶で構成され、比較例#1-#3と用例#2-7のケース103はアルミニウムのラミネートフィルムで構成される。
 用例#1-#4と#8、及び比較例#1-#3の双極型二次電池100のケース103はFIG.15に示す形状に形成される。これは、基本的に第1の実施例のケース103に相当する。
 用例#5の双極型二次電池100のケース103はFIG.3に示す形状に形成される。すなわち一方のケース部材103aの頂面の両端に、セル26の積層方向に突出する1個のクレスト部を有する折り返し部11がそれぞれ設けられている。
 用例#6の双極型二次電池100は、FIGS.6と7に示す形状に形成される。すなわち、用例#5と同様のケース103を用いるとともに、折り返し部11の内側に折り返し部12を形成している。
 用例#7のケース103は、FIG.10に示すように、ケース103内にインフレータ14を備え、ケース103の外側にコントローラ15を備えている。
 発明者らは、比較例#1-#3のケース103と用例#1-#6のケース103に、空気を圧送する管を接続し、正極集電板101と負極集電板102間の電気抵抗を測りながら空気を圧送し、電気抵抗が急増したときのケース103の内圧を測定した。用例#7に関してはケース103の内部に配置したインフレータ14を作動させた状態で、正極集電板101と負極集電板102の間の電気抵抗が急増したときのケース103の内圧を測定した。
 比較例#1-#3と用例#1-#6及び#8についての測定結果をTABLE-2に示す。
Figure JPOXMLDOC01-appb-T000002
 TABLE-2を参照すると、この発明によらない比較例#1-#3は、正極集電板101とケース103及び負極集電板102とケース103の間の剥離強度が、正極集電板101と電池本体300の一端の正極集電体22aの間、または負極集電板102と電池本体300のもう一端の負極集電体22bの間、または積層体30間の正極集電体22aと負極集電体22bの間、のいずれの剥離強度よりも低い。そのため、正極集電板101とケース103の間または負極集電板102とケース103の間で剥離が生じており、双電極二次電池100内部における短絡電流の遮断ができない。
 この発明による用例#1-#6及び#8は、正極集電板101とケース部材103aの剥離強度及び負極集電板102とケース部材103bの剥離強度が、正極集電板101と電池本体300の一端の正極集電体22aの剥離強度、負極集電板102と電池本体300のもう一端の負極集電体22bの剥離強度、及び電池本体300を構成する積層体30間の正極集電体22aと負極集電体22bの剥離強度の少なくとも一つよりも高い。つまり、剥離強度の最も弱い接着部が正極集電板101と負極集電板102の間に存在する。したがって、ケース103が伸長すると正極集電板101と負極集電板102の間のどこかで剥離が発生し、双極型二次電池100内部の短絡電流が遮断がされる。
 用例#2-#4の結果からは、正極集電板101と電池本体300の一端の正極集電体22aの剥離強度、負極集電板102と電池本体300のもう一端の負極集電体22bの剥離強度、及び積層体30間の極集電体22aと負極集電体22bの剥離強度の少なくとも1つが、正極集電板101とケース103の剥離強度及び負極電極板102とケース103の剥離強度を下回れば良いことがわかる。このようにして、ケース103の内圧を上昇させることで電流が遮断されることがわかる。
 用例#1と用例#2-#6及び#8とを比較すると、用例#1では内圧が12kg/cm(≒kPa)で抵抗が急増したが、同時に内圧でケース103が破損した。この事実から、内圧が10kg/cm(≒kPa)以上に達してもケース103が変形しない場合には、内圧によりケース103が破損する可能性が高いと考えられる。
 用例#2-#4及び#8と用例#5-#6とを比較すると、用例#2-#4及び#8ではケース103に体積変化のための伸び代に相当する折り返し部11が形成されていない。こうしたケースでは、比較的大きな内圧をかけなければ電力遮断をすることができない。
 さらに、用例#5と用例#6を比較すると、折返し部11と折り返し部12を形成することで、折返し部11のみを形成する場合より小さな内圧で電流を遮断できることが分かる。
 TABLE-2に示されない実施例7に関しては、コントローラ15がインフレータ14を作動させることで、ケース103に5kg/cm(≒kPa)の内圧をかけると、正極集電板101と負極集電板102との間の電気抵抗が他の用例#1-#6と同様に急増した。これにより、双極型二次電池100の内部電流を遮断できることが確認された。
 用例#1-#8により、アルミニウム等のラミネートフィルムのケース103を用いることで、短絡電流を容易に遮断できることが確認された。
 以上の説明に関して2010年5月19日を出願日とする日本国における特願2010-115113号、の内容をここに引用により合体する。
 以上、この発明をいくつかの特定の実施例を通じて説明してきたが、この発明は上記の各実施例に限定されるものではない。当業者にとっては、クレームの技術範囲でこれらの実施例にさまざまな修正あるいは変更を加えることが可能である。
 例えば、この発明はリチウムイオン電池を含む、いかなる双極型二次電池にも適用可能である。
 以上説明した各実施例においては、アルミ缶もしくはアルミラミネートフィルムによるケース部材103aと103bとを互いに融着させることで密閉されたケース103を得ている。しかしながら、ケース103は、温度上昇に応じて伸長する特性を有する限り、いかなる構造や材質であっても良い。
 以上のように、この発明によれば双極型二次電池内に大量の電流が流れるのを遮断することができる。したがって、電気自動車の二次電池の保護に好ましい効果をもたらす。
 この発明の実施例が包含する排他的性質あるいは特長は以下のようにクレームされる。

Claims (7)

  1.  板状の集電体(22)と集電体(22)の一面に配置された正極活物質層(23)及び集電体(22)のもう一面に配置された負極活物質層(24)とからなる双極型電極(21)が電解質層(25)を介して複数積層された積層体(30)が、単数または複数直列接続されてなる電池本体(300)と;
     電池本体(300)を内部に収装するケース(103)と;
     一面をケース(103)の内周面に接合し、もう一面を電池本体(300)の一端に接合すると共にケース(103)外部に延出した正極集電板(101)と;
     一面をケース(103)の内周面に接合し、もう一面を電池本体(300)のもう一端に接合すると共にケース(103)外部に延出した負極集電板(102)と;
     ケース(103)の伸長変形に応じて、電池本体(300)を介した正極集電板(101)と負極集電板(102)との電気的接続を切断する切断メカニズムと、
     を備える、双極型二次電池(100)。
  2.  切断メカニズムは、正極集電板(101)と電池本体(300)との剥離強度、負極集電板(102)と電池本体(103)との剥離強度、及び複数積層された積層体(30)の的相対同士間の剥離強度、の少なくとも一つよりも、正極集電板(101)とケース(103)の内周面との剥離強度もしくは負極集電板(102)とケース(103)の内周面との剥離強度が大きく設定されることにより構成される、請求項1の双極型二次電池(100)。
  3.  ケース(103)の内周面と正極集電板(101)、ケース(103)の内周面と負極集電板(102)、正極集電板(101)と電池本体(300)の一端、負極集電番(102)と電池本体(300)のもう一端、がそれぞれ接着により接合される、請求項1または2の双極型二次電池(100)。
  4.  ケース(103)はシート状のケース部材(103a,103b)で形成され、該ケース(103)は前記ケース部材(103a,103b)をケース(103)の内外方向に折り曲げて形成された折り返し部(11)を有する、請求項1から3のいずれかの双極型二次電池(100)。
  5.  正極集電板(101)と負極集電板(102)のいずれかに、正極集電板(101)もしくは負極集電板(102)をケース(103)の内外方向に折り曲げて形成された折り返し部(12)を有する請求項3の双極型二次電池(100)。
  6.  切断メカニズムは、ケース(103)に接続されたガスを発生させるインフレータ(14)と、電池本体(300)内部の短絡電流を検出するセンサ(16)と、電池本体(300)の内部に短絡電流が発生した場合に、インフレータ(14)を制御してケース(103)内にガスを供給するようにプログラムされたコントローラ(15)と、をさらに備える請求項2の双極型二次電池(100)。
  7.  ケース(103)は金属箔を合成樹脂膜で被覆したラミネートフィルムで形成される、請求項1から6のいずれかの双極型二次電池(100)。
PCT/JP2011/061300 2010-05-19 2011-05-17 双極型二次電池 WO2011145608A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127030460A KR101389207B1 (ko) 2010-05-19 2011-05-17 쌍극형 2차 전지
JP2012515889A JP5459398B2 (ja) 2010-05-19 2011-05-17 双極型二次電池
CN201180022309.5A CN102884668B (zh) 2010-05-19 2011-05-17 双极型二次电池
EP11783542.1A EP2573856B1 (en) 2010-05-19 2011-05-17 Bipolar secondary battery
US13/698,173 US9450266B2 (en) 2010-05-19 2011-05-17 Bipolar secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-115113 2010-05-19
JP2010115113 2010-05-19

Publications (1)

Publication Number Publication Date
WO2011145608A1 true WO2011145608A1 (ja) 2011-11-24

Family

ID=44991710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061300 WO2011145608A1 (ja) 2010-05-19 2011-05-17 双極型二次電池

Country Status (6)

Country Link
US (1) US9450266B2 (ja)
EP (1) EP2573856B1 (ja)
JP (1) JP5459398B2 (ja)
KR (1) KR101389207B1 (ja)
CN (1) CN102884668B (ja)
WO (1) WO2011145608A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138008A (zh) * 2011-12-02 2013-06-05 联想(新加坡)私人有限公司 电化学电池芯包
JPWO2012014730A1 (ja) * 2010-07-26 2013-09-12 日産自動車株式会社 双極型電池
JP2013535791A (ja) * 2010-08-05 2013-09-12 エルジー・ケム・リミテッド 安全性が向上した二次電池用ポーチ及びこれを利用したポーチ型二次電池、中大型電池パック
CN104054205A (zh) * 2012-06-28 2014-09-17 株式会社Lg化学 电极组件和包含其的电化学电池
JP2015506059A (ja) * 2012-05-23 2015-02-26 エルジー ケム. エルティーディ. 電極組立体及びこれを含む電気化学素子
JP2015526857A (ja) * 2013-02-15 2015-09-10 エルジー・ケム・リミテッド 電極組立体及びこれを含むポリマー二次電池セル
JP2015529957A (ja) * 2013-05-23 2015-10-08 エルジー・ケム・リミテッド 電極組立体及びこのための基本単位体
WO2016132961A1 (ja) * 2015-02-17 2016-08-25 日本電気株式会社 電池およびその製造方法
WO2017033420A1 (ja) * 2015-08-26 2017-03-02 パナソニックIpマネジメント株式会社 蓄電装置
JP2017182947A (ja) * 2016-03-29 2017-10-05 均 桝谷 積層型蓄電池及びこれを用いた蓄電池システム
WO2017208512A1 (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 蓄電デバイス
US10553848B2 (en) 2013-05-23 2020-02-04 Lg Chem, Ltd. Electrode assembly and radical unit for the same
JP2020030958A (ja) * 2018-08-22 2020-02-27 株式会社豊田自動織機 蓄電モジュール、蓄電装置及び蓄電装置の製造方法
JP2020074320A (ja) * 2020-01-28 2020-05-14 均 桝谷 積層型蓄電池及びこれを用いた蓄電池システム
WO2022259609A1 (ja) * 2021-06-09 2022-12-15 株式会社豊田自動織機 バイポーラ型蓄電装置の製造方法
WO2023127721A1 (ja) * 2021-12-28 2023-07-06 パナソニックIpマネジメント株式会社 蓄電装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
KR102097084B1 (ko) * 2016-09-05 2020-04-03 주식회사 엘지화학 파우치형 이차전지 및 이를 포함하는 배터리 모듈
JP6745890B2 (ja) * 2016-09-28 2020-08-26 株式会社日立製作所 全固体電池
US11081684B2 (en) 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US20190036102A1 (en) 2017-07-31 2019-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive
US10658651B2 (en) 2017-07-31 2020-05-19 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
JP6893457B2 (ja) * 2017-09-13 2021-06-23 本田技研工業株式会社 バイポーラ固体電池の集電板配置構造
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US11121358B2 (en) 2017-09-15 2021-09-14 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
WO2019073791A1 (ja) * 2017-10-11 2019-04-18 株式会社豊田自動織機 蓄電モジュール
KR102469452B1 (ko) * 2018-03-27 2022-11-21 엔지케이 인슐레이터 엘티디 리튬 이차 전지
KR102200552B1 (ko) * 2018-05-30 2021-01-07 주식회사 엘지화학 배터리 셀 장착 장치 및 그 방법
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
CN109786893A (zh) * 2019-02-01 2019-05-21 苏州安靠电源有限公司 吹胀式均温板和电池包
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
US11352258B2 (en) 2019-03-04 2022-06-07 Honda Motor Co., Ltd. Multifunctional conductive wire and method of making
US11539042B2 (en) 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making
JP2022153742A (ja) * 2021-03-30 2022-10-13 本田技研工業株式会社 電池セル及びその製造方法
JP2022156903A (ja) * 2021-03-31 2022-10-14 トヨタ自動車株式会社 蓄電装置
CN114937855B (zh) * 2022-03-30 2024-05-14 江苏正力新能电池技术有限公司 一种圆柱电池的制备方法及圆柱电池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008629A (ja) * 2000-06-16 2002-01-11 Tdk Corp 電気化学デバイス
JP2003208885A (ja) * 2002-01-11 2003-07-25 Mitsubishi Cable Ind Ltd シート状電池
JP2003288883A (ja) * 2001-09-04 2003-10-10 Nec Corp 単電池及び組電池
JP2004007919A (ja) * 2002-05-31 2004-01-08 Fuji Heavy Ind Ltd 高電圧バッテリ搭載車両のバッテリ回路遮断装置
JP2004327047A (ja) * 1998-10-19 2004-11-18 Dainippon Printing Co Ltd ポリマー電池及びポリマー電池パック
JP2005044523A (ja) * 2003-07-22 2005-02-17 Toyota Motor Corp 二次電池の電流遮断構造およびその構造を備えた二次電池
JP2007265753A (ja) * 2006-03-28 2007-10-11 Nissan Motor Co Ltd 組電池、および組電池における電気的接続の分離方法
JP2007311264A (ja) * 2006-05-20 2007-11-29 Nissan Motor Co Ltd 電池構造体
JP2008140638A (ja) * 2006-11-30 2008-06-19 Nissan Motor Co Ltd 双極型電池
JP2009252548A (ja) 2008-04-07 2009-10-29 Toyota Motor Corp 固体型電池
JP2010115113A (ja) 2007-05-30 2010-05-27 Hiroshi Wada センサー落下式ネズミ捕り

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293651C (zh) 1998-02-05 2007-01-03 大日本印刷株式会社 电池盒形成片和电池组件
CN1236507C (zh) 2000-03-17 2006-01-11 Tdk株式会社 电化学装置
US6524741B1 (en) * 2000-08-24 2003-02-25 Valence Technology, Inc. Battery package with integral disconnect mechanism
JP4736580B2 (ja) 2005-07-12 2011-07-27 日産自動車株式会社 バイポーラ電池、組電池及びそれらの電池を搭載した車両
JP2008226807A (ja) 2007-02-14 2008-09-25 Nissan Motor Co Ltd 非水電解質二次電池
JP4645606B2 (ja) * 2007-03-08 2011-03-09 日産自動車株式会社 リチウムイオン二次電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327047A (ja) * 1998-10-19 2004-11-18 Dainippon Printing Co Ltd ポリマー電池及びポリマー電池パック
JP2002008629A (ja) * 2000-06-16 2002-01-11 Tdk Corp 電気化学デバイス
JP2003288883A (ja) * 2001-09-04 2003-10-10 Nec Corp 単電池及び組電池
JP2003208885A (ja) * 2002-01-11 2003-07-25 Mitsubishi Cable Ind Ltd シート状電池
JP2004007919A (ja) * 2002-05-31 2004-01-08 Fuji Heavy Ind Ltd 高電圧バッテリ搭載車両のバッテリ回路遮断装置
JP2005044523A (ja) * 2003-07-22 2005-02-17 Toyota Motor Corp 二次電池の電流遮断構造およびその構造を備えた二次電池
JP2007265753A (ja) * 2006-03-28 2007-10-11 Nissan Motor Co Ltd 組電池、および組電池における電気的接続の分離方法
JP2007311264A (ja) * 2006-05-20 2007-11-29 Nissan Motor Co Ltd 電池構造体
JP2008140638A (ja) * 2006-11-30 2008-06-19 Nissan Motor Co Ltd 双極型電池
JP2010115113A (ja) 2007-05-30 2010-05-27 Hiroshi Wada センサー落下式ネズミ捕り
JP2009252548A (ja) 2008-04-07 2009-10-29 Toyota Motor Corp 固体型電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2573856A4

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203073B2 (en) 2010-07-26 2015-12-01 Nissan Motor Co., Ltd. Bipolar battery
JPWO2012014730A1 (ja) * 2010-07-26 2013-09-12 日産自動車株式会社 双極型電池
JP5510546B2 (ja) * 2010-07-26 2014-06-04 日産自動車株式会社 双極型電池
JP2013535791A (ja) * 2010-08-05 2013-09-12 エルジー・ケム・リミテッド 安全性が向上した二次電池用ポーチ及びこれを利用したポーチ型二次電池、中大型電池パック
JP2013118186A (ja) * 2011-12-02 2013-06-13 Lenovo Singapore Pte Ltd エレクトロケミカルセルのパッケージ
US8758931B2 (en) 2011-12-02 2014-06-24 Lenovo (Singapore) Pte. Ltd. Electrochemical cell package
CN103138008A (zh) * 2011-12-02 2013-06-05 联想(新加坡)私人有限公司 电化学电池芯包
US10516185B2 (en) 2012-05-23 2019-12-24 Lg Chem. Ltd. Electrode assembly and electrochemical cell containing the same
JP2015506059A (ja) * 2012-05-23 2015-02-26 エルジー ケム. エルティーディ. 電極組立体及びこれを含む電気化学素子
US10763534B2 (en) 2012-06-28 2020-09-01 Lg Chem, Ltd. Electrode assembly and electrochemical cell including the same
JP2014534604A (ja) * 2012-06-28 2014-12-18 エルジー ケム. エルティーディ. 電極組立体及びこれを含む電気化学素子
CN104054205A (zh) * 2012-06-28 2014-09-17 株式会社Lg化学 电极组件和包含其的电化学电池
US9899698B2 (en) 2012-06-28 2018-02-20 Lg Chem, Ltd. Electrode assembly and electrochemical cell including the same
JP2015526857A (ja) * 2013-02-15 2015-09-10 エルジー・ケム・リミテッド 電極組立体及びこれを含むポリマー二次電池セル
JP2017117798A (ja) * 2013-02-15 2017-06-29 エルジー・ケム・リミテッド 電極組立体及びこれを含むポリマー二次電池セル
US10615392B2 (en) 2013-02-15 2020-04-07 Lg Chem, Ltd. Electrode assembly and polymer secondary battery cell including the same
US9947909B2 (en) 2013-02-15 2018-04-17 Lg Chem. Ltd. Electrode assembly and polymer secondary battery cell including the same
JP2015529957A (ja) * 2013-05-23 2015-10-08 エルジー・ケム・リミテッド 電極組立体及びこのための基本単位体
US11411285B2 (en) 2013-05-23 2022-08-09 Lg Energy Solution, Ltd. Electrode assemby and radical unit for the same
US10818902B2 (en) 2013-05-23 2020-10-27 Lg Chem, Ltd. Electrode assembly and radical unit for the same
US10553848B2 (en) 2013-05-23 2020-02-04 Lg Chem, Ltd. Electrode assembly and radical unit for the same
JPWO2016132961A1 (ja) * 2015-02-17 2017-11-30 日本電気株式会社 電池およびその製造方法
US10811669B2 (en) 2015-02-17 2020-10-20 Nec Corporation Battery and method for manufacturing same
WO2016132961A1 (ja) * 2015-02-17 2016-08-25 日本電気株式会社 電池およびその製造方法
US10367225B2 (en) 2015-08-26 2019-07-30 Panasonic Intellectual Property Management Co., L' Power storage device
JPWO2017033420A1 (ja) * 2015-08-26 2018-06-14 パナソニックIpマネジメント株式会社 蓄電装置
WO2017033420A1 (ja) * 2015-08-26 2017-03-02 パナソニックIpマネジメント株式会社 蓄電装置
JP2017182947A (ja) * 2016-03-29 2017-10-05 均 桝谷 積層型蓄電池及びこれを用いた蓄電池システム
WO2017208512A1 (ja) * 2016-05-31 2017-12-07 株式会社村田製作所 蓄電デバイス
JP2020030958A (ja) * 2018-08-22 2020-02-27 株式会社豊田自動織機 蓄電モジュール、蓄電装置及び蓄電装置の製造方法
JP7067362B2 (ja) 2018-08-22 2022-05-16 株式会社豊田自動織機 蓄電モジュール、蓄電装置及び蓄電装置の製造方法
JP2020074320A (ja) * 2020-01-28 2020-05-14 均 桝谷 積層型蓄電池及びこれを用いた蓄電池システム
WO2022259609A1 (ja) * 2021-06-09 2022-12-15 株式会社豊田自動織機 バイポーラ型蓄電装置の製造方法
WO2023127721A1 (ja) * 2021-12-28 2023-07-06 パナソニックIpマネジメント株式会社 蓄電装置

Also Published As

Publication number Publication date
EP2573856B1 (en) 2017-12-27
EP2573856A4 (en) 2014-07-30
US9450266B2 (en) 2016-09-20
KR20130008620A (ko) 2013-01-22
US20130059179A1 (en) 2013-03-07
KR101389207B1 (ko) 2014-04-24
CN102884668B (zh) 2015-05-13
JP5459398B2 (ja) 2014-04-02
JPWO2011145608A1 (ja) 2013-07-22
CN102884668A (zh) 2013-01-16
EP2573856A1 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5459398B2 (ja) 双極型二次電池
JP6157569B2 (ja) 二次電池および二次電池用熱接着性絶縁フィルム
JP5477467B2 (ja) 双極型二次電池
JP6487712B2 (ja) 蓄電デバイス
US8741468B2 (en) Film-packaged electric device
JP6006104B2 (ja) タブリードの製造方法
JP2009135079A (ja) 双極型二次電池、双極型二次電池を複数個接続した組電池、およびそれらの電池を搭載した車両
TW201637264A (zh) 電池組
JP2016091801A (ja) 蓄電デバイス
TWI719050B (zh) 蓄電裝置
JP2019021636A (ja) 蓄電デバイス
KR101245280B1 (ko) 이원화된 전극 구조를 가지는 이차전지
JP7194331B2 (ja) ラミネート型電池
JP6832477B2 (ja) 積層型電池および積層型電池の製造方法
JP7410295B2 (ja) 接着部及びスポット溶接によって結合された電極リード結合部を含む電極組立体及びこれを含むパウチ型電池セル
JP6846490B1 (ja) 蓄電素子及び蓄電素子の製造方法
KR101458259B1 (ko) 파우치형 이차전지 및 그 제조방법
JP2020170667A (ja) 積層型電池の製造方法および積層型電池
JP2011216202A (ja) 蓄電デバイス
JP2021039833A (ja) 蓄電素子及び蓄電素子の製造方法
JP2015090804A (ja) ラミネート型二次電池
KR20170006046A (ko) 파우치형 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022309.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783542

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011783542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012515889

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13698173

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127030460

Country of ref document: KR

Kind code of ref document: A