WO2011145360A1 - 表示装置およびその駆動方法、ならびに表示システム - Google Patents

表示装置およびその駆動方法、ならびに表示システム Download PDF

Info

Publication number
WO2011145360A1
WO2011145360A1 PCT/JP2011/051789 JP2011051789W WO2011145360A1 WO 2011145360 A1 WO2011145360 A1 WO 2011145360A1 JP 2011051789 W JP2011051789 W JP 2011051789W WO 2011145360 A1 WO2011145360 A1 WO 2011145360A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
scanning
display device
period
vertical
Prior art date
Application number
PCT/JP2011/051789
Other languages
English (en)
French (fr)
Inventor
齊藤 浩二
柳 俊洋
正実 尾崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2011800238029A priority Critical patent/CN102906805A/zh
Priority to US13/696,434 priority patent/US20130050146A1/en
Priority to BR112012029386A priority patent/BR112012029386A2/pt
Priority to EP11783297.2A priority patent/EP2573752A4/en
Priority to JP2012515768A priority patent/JPWO2011145360A1/ja
Publication of WO2011145360A1 publication Critical patent/WO2011145360A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to a display device capable of reducing power consumption, a driving method thereof, and a display system.
  • Patent Document 1 discloses a display device that achieves low power consumption by providing a non-scanning period longer than the scanning period for scanning the screen once, and providing a pause period in which all scanning signal lines are in a non-scanning state. A driving method is disclosed.
  • Patent Document 1 has the following problems.
  • a low refresh rate is synonymous with a reduction in the number of images that can be displayed per second, a moving image cannot be displayed smoothly.
  • the refresh rate is set to 60 Hz, and 60 images are rewritten per second.
  • the refresh rate is 20 Hz, which is one third of the normal case. That is, only 20 images can be rewritten per second, resulting in a moving image display with frames dropped. For this reason, in the technique described in Patent Document 1, it is particularly difficult to display a moving image.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a display device driving method and a liquid crystal display device capable of displaying moving images without causing flicker and reducing power consumption. There is.
  • a display device is a display device that performs display on a screen composed of pixels arranged in a matrix, and is a scanning line drive that selects a plurality of scanning signal lines line-sequentially. And a signal line driving circuit that sequentially supplies a data signal to the pixels on the selected scanning signal line via the output circuit and the plurality of data signal lines, and an output circuit through which a current flows.
  • Synchronization signal output means for outputting a horizontal synchronization control signal having a period shorter than the period of the horizontal synchronization signal based on the horizontal synchronization signal and outputting a vertical synchronization control signal based on the input vertical synchronization signal;
  • the signal line driving circuit performs data transfer to all pixels on the plurality of scanning signal lines in accordance with the horizontal synchronization control signal. After feeding items, it is characterized by and a capacity control means for reducing the capacity of the output circuit.
  • the synchronization signal output means generates and outputs a horizontal synchronization control signal and a vertical synchronization control signal based on the input horizontal synchronization signal and vertical synchronization signal.
  • the horizontal synchronization control signal and the vertical synchronization control signal are signals for synchronizing the scanning line driving circuit and the signal line driving circuit.
  • the period of the horizontal synchronization control signal is shorter than the period of the input horizontal synchronization signal. Therefore, the scanning line driving circuit selects all the scanning signal lines within a period shorter than one vertical period defined by the vertical synchronization control signal, and the signal line driving circuit applies to all the pixels on the scanning signal lines. Data signals can be supplied.
  • a scanning period a period during which a data signal is supplied to pixels on all scanning signal lines within one vertical period.
  • a period after the scanning period within one vertical period is referred to as a non-scanning period.
  • the output circuit since the output circuit is in a low capacity state during the non-scanning period, the current flowing through the output circuit can be cut. As a result, the average current consumption of the signal line driving circuit is smaller than that of the conventional signal line driving circuit. In addition, since a steady current generally flows in the output circuit, it is particularly effective when a steady current flows in the output circuit.
  • the display device of the present invention can provide a sufficient rest period within one vertical period without making the length of one vertical period longer than the conventional one. For this reason, the frequency of the scanning period per unit time is not reduced as compared with the prior art. As a result, the display device of the present invention can display a moving image without causing flicker, and has the effect of reducing power consumption.
  • a display device driving method includes a scanning line driving circuit that selects a plurality of scanning signal lines in a line-sequential manner and an output circuit through which a current flows, and the selected scanning signal.
  • a display device driving method comprising: a pixel on a line; and a signal line driving circuit that sequentially supplies data signals via the output circuit and a plurality of data signal lines, and based on an input horizontal synchronization signal, A synchronization signal output step for outputting a horizontal synchronization control signal having a cycle shorter than the cycle of the horizontal synchronization signal and outputting a vertical synchronization control signal based on the inputted vertical synchronization signal, and the vertical synchronization control signal.
  • the signal line driving circuit supplies a data signal to all the pixels on the plurality of scanning signal lines in accordance with the horizontal synchronization control signal.
  • the scanning process is completed, it is characterized by including a capacity control step of reducing the ability of the output circuit.
  • the display device can display a moving image without causing flicker, and can reduce power consumption.
  • FIG. (A) is a figure which shows the internal structure of the signal line drive circuit in the conventional display apparatus, especially an output part
  • (b) is a figure which shows the consumption current waveform of the signal line drive circuit in the conventional display apparatus.
  • FIG. (B) is a figure which shows the display apparatus of the conventional display apparatus.
  • Embodiment 1 The first embodiment of the present invention will be described with reference to FIGS. 1 to 4 as follows.
  • FIG. 2 is a diagram illustrating an overall configuration of the display device 1.
  • the display device 1 includes a display panel 2, a scanning line driving circuit (gate driver) 4, a signal line driving circuit (source driver) 6, a common electrode driving circuit 8, a timing controller (synchronization signal output means, Polarity inversion means) 10, power supply generation circuit 14, and memory (recording means) 16.
  • the timing controller 10 further includes a control signal output unit (capability control means) 12.
  • the display panel 2 includes a screen composed of a plurality of pixels arranged in a matrix, and N scanning signal lines G (gate lines) for selecting and scanning the screen in a line-sequential manner. And M (M is an arbitrary integer) data signal lines S (source lines) that supply data signals to pixels of one row included in the selected line.
  • the scanning signal line G and the data signal line S are orthogonal to each other.
  • G (n) shown in FIG. 2 represents the n-th scanning signal line G (n is an arbitrary integer).
  • G (1), G (2), and G (3) represent the first, second, and third scanning signal lines G, respectively.
  • S (i) represents the i-th data signal line S (i is an arbitrary integer).
  • S (1), S (2), and S (3) represent the first, second, and third data signal lines S, respectively.
  • Each pixel in the display panel 2 is provided with a TFT, and the drain of the TFT is connected to a pixel electrode (not shown). It is connected.
  • the scanning line driving circuit 4 scans each scanning signal line G line-sequentially from the top to the bottom of the screen. At that time, a rectangular wave (scanning signal) for turning on a switching element (TFT) provided in the pixel and connected to the pixel electrode is output to each scanning signal line G. Thereby, the pixels for one row in the screen are selected.
  • a rectangular wave scanning signal
  • TFT switching element
  • the signal line driving circuit 6 Based on the video signal (arrow E) input from the memory 16, the signal line driving circuit 6 calculates the value of the voltage to be output to each pixel for the selected row, and the voltage of that value is stored in each data. Output to the signal line S. As a result, image data (data signal) is supplied to each pixel on the selected scanning signal line G.
  • the display device 1 further includes a common electrode (COM: not shown) for each pixel in the screen.
  • the common electrode driving circuit 8 drives the common electrode by outputting a predetermined common voltage to the common electrode based on the polarity inversion signal (arrow G) input from the timing controller 10.
  • the horizontal synchronization signal (Hsync) and the vertical synchronization signal (Vsync) are input to the timing controller 10 as an input video synchronization signal (arrow B). Based on these input video synchronization signals, the timing controller 10 uses a horizontal synchronization control signal (such as GCK) and a vertical synchronization control signal (such as GSP) as video synchronization signals that serve as a reference for each circuit to operate in synchronization. Generated and output to the scanning line driving circuit 4, the signal line driving circuit 6, and the memory 16 (arrows C, D, F).
  • GCK horizontal synchronization control signal
  • GSP vertical synchronization control signal
  • the horizontal synchronization control signal is used as an output timing signal for controlling the timing of outputting the video signal input from the memory 16 to the display panel 2 in the signal line driving circuit 6, and to the display panel 2 in the scanning line driving circuit 4. This is used as a timing signal for controlling the timing of outputting the scanning signal.
  • the vertical synchronization control signal is used as a timing signal for controlling the scanning start timing of the scanning signal line G in the scanning line driving circuit 4.
  • one vertical period means a period defined by the vertical synchronization control signal
  • one horizontal period means the horizontal synchronization control signal. Means a specified period.
  • the scanning line driving circuit 4 starts scanning the display panel 2 in accordance with the horizontal synchronization control signal and the vertical synchronization control signal received from the timing controller 10, and sequentially selects each scanning signal line G and outputs a scanning signal.
  • the signal line drive circuit 6 writes image data (data signal) based on the video signal input from the memory 16 to each data signal line S of the display panel 2 in accordance with the horizontal synchronization control signal received from the timing controller 10.
  • the power supply generation circuit 14 generates Vdd, Vdd2, Vcc, Vgh, and Vgl, which are voltages necessary for each circuit in the display device 1 to operate. Then, Vcc, Vgh, and Vgl are output to the scanning line driving circuit 4, Vdd and Vcc are output to the signal line driving circuit 6, Vcc is output to the timing controller 10, and Vdd 2 is output to the common electrode driving circuit 8.
  • the memory 16 has a function of recording the inputted input video signal (arrow A). Further, the memory 16 outputs a video signal (arrow E) based on the recorded input video signal to the signal line driving circuit 6 in accordance with the video synchronization signal received from the timing controller 10.
  • FIG. 9A is a diagram illustrating an internal configuration relating to an output portion of the signal line driver circuit 106
  • FIG. 9B is a diagram illustrating a consumption current waveform (I (Vdd)) of the signal line driver circuit 106. is there.
  • I (Vdd) consumption current waveform
  • the display device 1 of the present embodiment operates with less average power than the above-described conventional display device. This will be described below.
  • FIG. 3A is a diagram showing an internal configuration of the signal line driving circuit 6, particularly an output portion
  • FIG. 3B is a diagram showing a waveform of an AMP_Enable signal.
  • each analog amplifier 18 is provided for each data signal line S in the signal line drive circuit 6.
  • the signal line drive circuit 6 includes M analog amplifiers 18. That is, the number of analog amplifiers 18 and the number of data signal lines S are equal to each other.
  • the signal line drive circuit 6 further includes an AMP_Enable signal line for inputting an AMP_Enable signal to each analog amplifier 18. This signal line is connected to the control signal output unit 12 of the timing controller 10. Further, in the signal line driving circuit 6, the analog amplifiers 18 are connected in parallel.
  • Vdd is a voltage source supplied from the power supply generation circuit 14 in the display device 1, and each analog amplifier 18 including the signal line drive circuit 6 operates by receiving the supply of Vdd.
  • the control signal output unit 12 of the timing controller 10 outputs an AMP_Enable signal, which is a control signal that defines the operation state of each analog amplifier 18, to each analog amplifier 18 of the signal line drive circuit 6 at a predetermined timing.
  • the analog amplifier 18 operates when the AMP_Enable signal has an H value, and pauses when the AMP_Enable signal has an L value.
  • the control signal output unit 12 operates the analog amplifier 18 by setting the AMP_Enable signal to the H value during the scanning period.
  • the control signal output unit 12 sets the AMP_Enable signal to the L value and pauses the analog amplifier 18 during the non-scanning period.
  • FIG. 1 is a diagram showing various signal waveforms when driving the display panel 2 of the display device 1 according to the embodiment of the present invention.
  • the timing controller 10 receives a vertical synchronization signal (Vsync) and a horizontal synchronization signal (Hsync) as input video synchronization signals.
  • the input video signal is input to the memory 16 together with the input video synchronization signal input to the timing controller 10.
  • the image data transfer period for one frame of the input video signal corresponds to one vertical period defined by Hsync.
  • the timing controller 10 generates a horizontal synchronization control signal and a vertical synchronization control signal as a video synchronization signal serving as a reference for each circuit to operate in synchronization based on the input video synchronization signal.
  • the timing controller 10 generates a vertical synchronization control signal having the same cycle as that of the input Vsync, and generates a horizontal synchronization control signal having a cycle shorter than the cycle of the input Hsync.
  • the cycle of the generated horizontal synchronization control signal corresponds to 1/3 of the cycle of Hsync.
  • the timing controller 10 outputs the generated horizontal synchronization control signal and vertical synchronization control signal to the scanning line drive circuit 4, the signal line drive circuit 6, and the memory 16 as image synchronization signals.
  • the cycle of the horizontal synchronization control signal is short, scanning for one frame is performed in a period (scanning period) shorter than the one vertical period within one vertical period.
  • the period of the horizontal synchronization control signal is not limited to that illustrated.
  • the cycle of the horizontal synchronization control signal is 1 / integer of Hsync (frequency is an integral multiple).
  • the memory 16 outputs a video signal according to the input vertical synchronization control signal and horizontal synchronization control signal based on the recorded input video signal.
  • An image data transfer period for one frame of the video signal corresponds to a scanning period.
  • the control signal output unit 12 outputs an AMP_Enable signal in synchronization with the generated vertical synchronization control signal and horizontal synchronization control signal.
  • the signal line drive circuit 6 supplies a data signal to the data signal line S while the AMP_Enable signal maintains the H value.
  • a vertical synchronization control signal is input every vertical period.
  • the control signal output unit 12 changes the voltage of the AMP_Enable signal from the L value to the H value in synchronization with the vertical synchronization control signal.
  • the analog amplifier 18 included in the signal line driving circuit 6 is switched from the non-operating state to the operating state (normal state).
  • the scanning line driving circuit 4 outputs a scanning signal to the first scanning signal line G in synchronization with the vertical synchronization control signal and the horizontal synchronization control signal.
  • the gate of the TFT of the pixel connected to the scanning signal line G (1) is turned on.
  • the signal line driving circuit 6 outputs a data signal from the analog amplifier 18 connected to the data signal line S for each data signal line S in synchronization with the horizontal synchronization control signal.
  • a voltage necessary for display is supplied to each data signal line S and written to the pixel electrode on the scanning signal line G (1) through the TFT.
  • the gate of the TFT of the pixel connected to the scanning signal line G (1) returns from the on state to the off state.
  • the next vertical synchronization control signal is input.
  • the pixels connected to the second and subsequent scanning signal lines G are written by the same procedure as the pixels connected to the first scanning signal line G.
  • a period in which writing is performed on all the pixels of the N scanning signal lines G in this way is referred to as a writing period.
  • the writing period indicates the same period as the scanning period.
  • the AMP_Enable signal maintains the H value during the writing period.
  • the control signal output unit 12 changes the AMP_Enable signal from the H value to the L value. As a result, the analog amplifier 18 becomes inactive.
  • the next vertical synchronization control signal is input, and the second and subsequent frames are also driven by the same procedure as described above.
  • the connection between the output of the analog amplifier 18 and the data signal line S (i) is disconnected.
  • the data signal line S (i) may be in an electrically floating state or connected to Vdd or the like.
  • the steady current of the analog amplifier 18 is cut during the non-scanning period.
  • the average current consumption becomes a value indicated by an arrow P1 in FIG. 3B, which is significantly smaller than the average current consumption in the conventional display device (arrow P2 in FIG. 9B).
  • the rest periods are collectively provided in one scanning period, the current that flows instantaneously when switching between the scanning state and the resting state can be saved as much as possible. Therefore, the display device 1 has an effect of reducing power consumption compared to the conventional display device.
  • the effect of the present embodiment will be described in more detail using the conventional display device as Comparative Example 1 and the display device of Patent Document 1 as Comparative Example 2.
  • the number of scanning signal lines G is N.
  • FIG. 4A and 4B are diagrams showing various signal waveforms of the vertical synchronization control signal, the horizontal synchronization control signal, and the scanning signal.
  • FIG. 4A shows this embodiment
  • FIG. 4C shows Comparative Example 2.
  • Comparative Example 1 As shown in FIG. 4B, the scanning period corresponds to one vertical period. For this reason, in Comparative Example 1, the signal line driving circuit must continue to consume power at all times.
  • Comparative Example 2 as shown in FIG. 4C, the scanning period is the same as the scanning period of Comparative Example 1, but a rest period longer than the scanning period is provided after the scanning period. .
  • one vertical period corresponds to several times the one vertical period in Comparative Example 1. That is, since the frequency of the scanning period per unit time is decreasing, it is difficult to display a moving image smoothly.
  • one vertical period is the same as one vertical period in Comparative Example 1.
  • the scanning period according to this embodiment is a comparative example. 1 and shorter than Comparative Example 2. That is, the display device 1 finishes scanning all the pixels in a period shorter than one vertical period.
  • the present embodiment has a sufficient pause period in one vertical period without reducing the frequency of the scanning period per unit time as compared with the prior art. It can be seen that (non-scanning period) can be provided. The power consumption described above can be reduced during this suspension period.
  • the time during which the data signal lines S (1) to S (M) write charges in each pixel in a certain scanning signal line G in one horizontal period is conventional (Comparative Example 1 and Comparative Example 2). ) Is shorter than the time.
  • a TFT made of silicon that has been developed in recent years and has a significantly improved capability is used, it is possible to sufficiently write charges necessary for display to the pixels even in one short horizontal period as described above. It is.
  • a TFT for example, a TFT that forms a semiconductor layer by combining indium, gallium, and zinc oxide (see, for example, Japanese Patent Application Laid-Open No. 2010-98305) can be given.
  • FIG. 10 is a diagram for explaining the luminance distribution in the normally black display panel 102.
  • the liquid crystal display device has a parasitic capacitance between the pixel electrode and the data signal line S, and when the frame is inverted, an in-plane luminance distribution is generated in the display panel due to the influence of the parasitic capacitance.
  • the reason why the in-plane luminance distribution occurs is that the voltage of the data signal line S in one frame (positive polarity writing) and the next frame (negative polarity writing), and the drain of the uppermost pixel that performs scanning first in the frame. This can be understood by considering the relationship between the voltage and the drain voltage of the lowermost pixel that performs scanning last in the frame. For example, it will be specifically described below assuming that the same gradation is displayed on the entire screen.
  • the uppermost scanning signal line G1 is scanned, the TFT connected to the data signal line G1 is turned on, and a predetermined voltage value (positive polarity) from the data signal line S is applied to the drain electrode. Is applied. Since the frame inversion drive is used, the same voltage is continuously output to the data signal line S within the same frame. Thereafter, polarity inversion is performed in the next frame, and the scanning signal line G1 is scanned again in a state where a predetermined voltage value (negative polarity) is output to the data signal line S. Therefore, the voltage of the data signal line S does not fluctuate for the scanning signal line G1 for approximately one vertical period after the scanning is completed.
  • the lowermost scanning signal line Gn is scanned, the TFT connected to the scanning signal line Gn is turned on, and a predetermined voltage value (positive polarity) from the data signal line S is applied to the drain electrode. ) Is applied. Thereafter, the next frame is immediately switched, and in the next frame, the polarity is inverted, and a predetermined voltage value (negative electrode) is output to the data signal line S. Therefore, for the scanning signal line Gn, the voltage of the data signal line S changes to the opposite polarity immediately after scanning in a certain frame, and accordingly, the drain voltage changes due to parasitic capacitance. In this way, the state in which the drain voltage fluctuates (a state different from a predetermined positive voltage) is maintained for one vertical period.
  • the drain voltage differs between the uppermost stage and the lowermost stage during the holding period after scanning.
  • the phenomenon due to this mechanism is not limited to the uppermost stage and the lowermost stage, and is a phenomenon that occurs in accordance with the time until the polarity of the voltage applied to the data signal line S after the scanning signal line G is scanned.
  • Luminance distribution in the display device 1 Also in the display device 1, it is assumed that the common electrode driving circuit 8 performs frame inversion driving in which the polarity of the data signal line S is inverted every vertical period in accordance with the polarity inversion signal.
  • the display device 1 can complete scanning for one frame in a period shorter than one vertical period. For this reason, at the time of frame inversion, the period until the polarity inversion is performed after completion of the frame scanning does not change so much from the uppermost stage to the lowermost stage, so that the occurrence of luminance distribution on the display panel 2 can be reduced.
  • the number of analog amplifiers 18 and the number of data signal lines S are not necessarily the same.
  • the number can be smaller than the number of data signal lines S.
  • the data signal line S (i) connected to the pixel on the selected scanning signal line G is supplied to the analog amplifier 18 that outputs a voltage corresponding to the gradation displayed by the pixel. Can be connected.
  • the driving method described above can be executed, the steady current during the non-scanning period can be reduced, and as a result, power consumption can be reduced.
  • connection destination of the data signal line S (i) may be indefinite or an arbitrary power source.
  • the data signal line S (i) may be in an electrically floating state during the non-scanning period.
  • the connection between the analog amplifier 18 and the data signal line S (i) is disconnected in the non-scanning period (the period in which the AMP_Enable signal is at the L value), and the connection destination of the data signal line S (i) is Indefinite.
  • the data signal line S (i) may be connected to a common Vdd during the non-scanning period.
  • Vdd common voltage force source
  • connection destination of the data signal line S (i) in the non-scanning period is not limited to an arbitrary voltage source (Vdd), and may be a ground (GND) or a common node. In either case, the effect of stabilizing the voltage output to the data signal line S in the non-scanning period can be obtained.
  • the display device 1 it is preferable to set the timing for returning the analog amplifier 18 from the non-operating state to the operating state earlier than the timing for starting the next scanning period. Thereby, after the time until the analog amplifier 18 recovers from the non-operating state and stabilizes, the next scanning period is started. As a result, a normal voltage can be applied to the pixel.
  • the start point of the non-scanning period is not limited to immediately after the end of scanning for one frame, but may be a little after the end point.
  • the end point of the non-scanning period is not limited to the time point when one vertical period ends, and is not limited to a little before that. That is, a period of any length from the end of the scanning period to the end of one vertical period can be a non-scanning period.
  • analog amplifier 18 It is not limited to the analog amplifier 18 that is the target of operation suspension during the non-scanning period. In other words, the ability of any circuit group (element group) including the analog amplifier 18 through which steady current flows may be reduced. Examples of such a circuit group include a DAC (Digital-Analogue-Converter) circuit unit that determines a voltage for each gradation and a Vdd generation circuit unit.
  • DAC Digital-Analogue-Converter
  • the display device 1 can reduce power consumption by reducing the capability (driving capability) of the analog amplifier 18 during the non-scanning period as described above. However, it is possible to maximize the effect of reducing the power consumption by completely stopping the analog amplifier 18 (Off). Therefore, in the display device 1, the effect of the present invention can also be achieved by “pausing the analog amplifier 18” instead of “decreasing the driving capability of the analog amplifier 18” during the non-scanning period. Note that the state in which the ability of the analog amplifier 18 is most reduced corresponds to the state in which the analog amplifier 18 is stopped.
  • FIG. 5 is a diagram illustrating a circuit configuration of the display device 30 according to the second embodiment.
  • the display panel 2 is not shown.
  • the display device 30 further includes an oscillation circuit 20, an H counter 21, and a V counter 22, and the video signal stored in advance in the memory 16 is used as a signal line.
  • the control is to output to the drive circuit 6.
  • the oscillation circuit 20 is a circuit that oscillates a dot clock (clock signal).
  • the dot clock oscillated from the oscillation circuit 20 is supplied to the timing controller 10 and the H counter 21.
  • the H counter 21 generates Hsync based on the supplied dot clock and supplies it to the timing controller 10 and the V counter 22.
  • the V counter 22 generates Vsync from the supplied Hsync and supplies it to the timing controller 10.
  • the timing controller 10 generates a horizontal synchronization control signal (such as GCK) and a vertical synchronization control signal (such as GSP) as video synchronization signals based on the supplied dot clock, Vsync, and Hsync, and the scanning line drive circuit 4.
  • the data is output to the signal line driving circuit 6 and the memory 16.
  • the memory 16 stores a video signal to be transferred to the signal line driving circuit 6 in advance.
  • the memory 16 can transfer the video signal stored in the memory 16 to the signal line driving circuit 6 in units of frames in accordance with the video synchronization signal received from the timing controller 10.
  • the display device 30 can perform video display by providing a non-scanning period within one vertical period. it can.
  • the power consumed by the oscillation circuit 20, the H counter 21, and the V counter 22 is required, but it is not necessary to write input image data in the memory 16 each time display is performed. Power consumption for writing is reduced. Further, the power consumed by the set side for inputting the input video synchronization signal and the input image data to the display device 1 in the first embodiment is reduced in the present embodiment. Therefore, low power consumption is realized in the entire electronic device equipped with the display device 30 according to the present embodiment.
  • the oscillation circuit 20 sets the dot frequency so that the frequency of Vsync generated by the V counter 22 is higher than 60 Hz. It is preferable to oscillate the clock. As a result, similarly to this Vsync, a vertical synchronization control signal having a frequency higher than 60 Hz is generated, and in the display device 30, the polarity inversion of the data signal line S is performed at a cycle higher than 60 Hz.
  • the display device 30 completes scanning of one frame in the first half of one vertical period.
  • the flicker can be further reduced because the polarity inversion frequency becomes faster during frame inversion.
  • FIG. 6 is a diagram illustrating a schematic configuration of the display device 40 according to the third embodiment.
  • the display device 40 is a touch panel integrated display device further including a touch panel 24 and a touch panel control circuit 26.
  • the touch panel 24 is a panel that is arranged to face the display panel 2 and accepts touch input to the display surface of the display panel 2 (touching a certain position in the display surface with a finger or a dedicated pen). When a touch input is made on the display surface, the touch panel 24 generates a signal (input signal) corresponding to the position and sends the signal to the touch panel control circuit 26.
  • the touch panel 24 may be a capacitive touch panel or an electromagnetic induction touch panel.
  • the description regarding the specific structure is abbreviate
  • the touch panel control circuit 26 is a circuit that constitutes a touch input detection unit (touch input detection means) together with the touch panel 24.
  • the touch panel control circuit 26 detects an input signal sent from the touch panel 24 when a touch input is made, and coordinates indicating the position (coordinates) of the touch input in the display panel 2 based on the detected input signal. Data is generated, and the coordinate data is sent to the timing controller 10.
  • the timing controller 10 recognizes the operation content instructed by the touch input based on the coordinate data sent from the touch panel control circuit 26, and controls other members, devices, and the like based on the recognition result. It may further have a function of
  • the touch panel is a capacitive touch panel
  • a capacitance is formed between the ITO of the touch panel and the common electrode (COM). For this reason, noise is likely to appear in touch position detection in accordance with fluctuations in the potential level of the COM signal.
  • the touch panel is an electromagnetic induction type touch panel
  • the touch panel reads changes in the electric and magnetic fields when the dedicated pen moves on the surface side of the display panel.
  • the display panel constantly changes the electric field / magnetic field due to polarity reversal or the like, noise will appear between the dedicated pen and the touch panel.
  • the display device 40 of the present embodiment can accurately detect a touch input to the touch panel 24 without being affected by noise due to driving of the display panel 2. This will be described below.
  • the touch panel control circuit 26 further includes a TP_Enable signal line for receiving an input of the TP_Enable signal from the timing controller 10. This signal line is connected to the control signal output unit 12 of the timing controller 10.
  • the control signal output unit (detection control means) 12 of the timing controller 10 outputs the TP_Enable signal to the touch panel control circuit 26 at a constant timing.
  • the TP_Enable signal is a control signal for defining a detection state in which the touch panel control circuit 26 detects an input signal from the touch panel 24.
  • the control signal output unit 12 sets the voltage of the TP_Enable signal to the H value (high value) in accordance with the timing of setting the voltage of the AMP_Enable signal to the L value (low value). Thereafter, the voltage of the TP_Enable signal is set to the L value at the timing when the voltage of the AMP_Enable signal becomes the H value.
  • the touch panel control circuit 26 operates when the TP_Enable signal has an H value, and pauses when the TP_Enable signal has an L value.
  • the touch panel control circuit 26 is controlled to detect an input signal from the touch panel 24 during the non-scanning period.
  • the main circuit of the display device 1 is stopped, so that the detection can be performed without receiving drive noise from the display panel 2. This can prevent the accuracy of the coordinate data from deteriorating.
  • the present invention is not limited to the display device 40 including the touch panel 24 and the touch panel control circuit 26.
  • the present invention is realized as a display system 100 (for example, an information input device) that includes a display device 40 a and a touch input detection device 50 (touch panel 24 and touch panel control circuit 26). Also good.
  • the system-side controller 28 mediates between the display device 40a and the touch input detection device 50. Specifically, the system-side controller 28 receives the TP_Enable signal output from the control signal output unit 12 of the display device 40 a and controls the touch panel control circuit 26 of the touch input detection device 50. The touch panel control circuit 26 is controlled to detect an input signal from the touch panel 24 during the non-scanning period.
  • system-side controller 28 receives the coordinate data output from the touch panel control circuit 26, recognizes the operation content instructed by the touch input based on the coordinate data, and determines other members or the like based on the recognition result. Control the device.
  • the input signal can be detected without receiving the driving noise from the display panel 2, and the accuracy of the coordinate data can be prevented from deteriorating.
  • the capability control unit may cause the signal line driving circuit to send a data signal to all pixels on the plurality of scanning signal lines in accordance with the vertical synchronization control signal. After the supply, the output circuit is preferably stopped.
  • the period of the horizontal synchronization control signal is 1 / integer of the period of the horizontal synchronization signal.
  • a horizontal synchronization control signal with a short cycle can be generated with a simple circuit configuration.
  • the display device further includes recording means for recording the input video signal, and the recording means outputs the recorded video signal to the signal line driving circuit in accordance with the horizontal synchronization control signal. Is preferred.
  • the video signal can be suitably input to the signal line driving circuit in synchronization with the horizontal synchronization control signal.
  • the display device includes an oscillation circuit that generates a clock signal, and a counter that generates the horizontal synchronizing signal and the vertical synchronizing signal based on the clock signal and outputs the generated signals to the synchronizing signal output unit. Furthermore, it is preferable to provide.
  • the horizontal synchronization signal and the vertical synchronization signal are generated based on the clock signal generated by the oscillation circuit.
  • a horizontal synchronization control signal and a vertical synchronization control signal are generated, and the video data recorded on the recording means can be displayed. That is, the recorded moving image can be displayed without causing flicker, and the power consumption can be reduced.
  • the display device preferably further comprises polarity inversion means for inverting the polarity of the plurality of data signal lines every one vertical period.
  • the polarity inversion means further has a function of reversing the polarity of the data signal lines adjacent to each other.
  • the display device has a touch input detection unit that detects a touch input to the display surface of the display panel, and a detection operation performed by the touch input detection unit. It is preferable to further include detection control means that is performed while the power is being lowered.
  • the touch input detection means is controlled by the ability control means and detects the coordinate data of the touch input during the non-scanning period. In the non-scanning period, main circuits of the display device are stopped. Therefore, the touch input detection means can detect without receiving the driving noise of the display panel, and the deterioration of detection accuracy is prevented.
  • the touch input detection unit includes a capacitive touch panel or an electromagnetic induction touch panel.
  • the display system performs the above-described display device, the touch input detection device that detects a touch input to the display surface of the display panel, and the detection operation by the touch input detection device in the one vertical period. And a detection control means for performing while the capability of the output circuit is reduced.
  • the touch input detection device is controlled by the capability control means and detects the coordinate data of the touch input during the non-scanning period.
  • the main circuits of the display device are stopped during the non-scanning period. Therefore, the touch input detection device can detect without receiving the driving noise of the display panel, and the deterioration of detection accuracy is prevented.
  • the display device according to the present invention can be widely used as various display devices such as liquid crystal display devices, organic EL display devices, and electronic paper.

Abstract

 本発明に係る表示装置の駆動方法は、複数の走査信号線を線順次に選択する走査線駆動回路と、電流が流れる出力回路が設けられ、当該出力回路および複数のデータ信号線を介して、選択された走査信号線上の画素にデータ信号を順次供給する信号線駆動回路とを備える装置において、入力された水平同期信号および垂直同期信号に基づいて、当該水平同期信号の周期よりも短い周期の水平同期制御信号と垂直同期制御信号を出力する同期信号出力工程と、垂直同期制御信号により規定される1垂直期間内において複数の走査信号線上における全ての画素にデータ信号を供給する走査工程と、1垂直期間内において、走査工程が終了した後、出力回路の能力を低下させる能力制御工程とを含んでいる。

Description

表示装置およびその駆動方法、ならびに表示システム
 本発明は、消費電力を低減できる表示装置およびその駆動方法、ならびに表示システムに関する。
 近年、液晶表示装置に代表される薄型、軽量、および低消費電力の表示装置が盛んに活用されている。こうした表示装置は、例えば携帯電話、スマートフォン、またはラップトップ型パーソナルコンピュータへの搭載が顕著である。また、今後はより薄型の表示装置である電子ペーパーの開発および普及も急速に進むことが期待されている。このような状況の中、現在、各種の表示装置において消費電力を低下させることが共通の課題となっている。
 特許文献1には、画面を1回走査する走査期間よりも長い非走査期間であって、全走査信号線を非走査状態とする休止期間を設けることによって、低消費電力を実現する表示装置の駆動方法が開示されている。
日本国公開特許公報「特開2001-312253号公報(2001年11月9日公開)」
 しかしながら、特許文献1に記載の技術においては、以下のような問題がある。
 特許文献1の技術においては、走査期間よりも長い非走査期間すなわち休止期間を設けることによって、低消費電力を実現する。この走査期間と非走査期間とを合わせて1垂直期間としているため、当該1垂直期間は従来の1垂直期間よりも長く、単位時間あたりに画面を書き換える回数が少なくなる。したがって、各画素の駆動周波数(リフレッシュレート)が低くなる。リフレッシュレートが低くなると、表示パネルの特性によっては、画面上におけるフリッカ(ちらつき)を生じ易くなる。
 また、リフレッシュレートが低くなることは、1秒間に表示できる画像枚数が減ることと同義であるため、動画を滑らかに表示することができない。通常、リフレッシュレート=60Hzに設定して、1秒間に60枚の画像を書き換えている。ここで特許文献1に記載の技術を使用して、走査期間を1フレーム、休止期間を2フレームとすると、リフレッシュレートは上記通常の場合の3分の1の20Hzとなる。つまり1秒間に20枚の画像しか書き換えられないため、コマ落ちした動画表示となってしまう。このため、特許文献1に記載の技術においては、特に動画を表示することは困難である。
 本発明は、前記の問題に鑑みてなされたものであり、その目的は、フリッカを発生させることなく動画を表示でき、なおかつ消費電力を低減できる表示装置の駆動方法、ならびに液晶表示装置を提供することにある。
 本発明に係る表示装置は、上記課題を解決するために、マトリクス状に配置された画素からなる画面に表示を行う表示装置であって、複数の走査信号線を線順次に選択する走査線駆動回路と、電流が流れる出力回路が設けられ、選択された走査信号線上の画素に、当該出力回路および複数のデータ信号線を介して、データ信号を順次供給する信号線駆動回路と、入力された水平同期信号に基づいて、当該水平同期信号の周期よりも短い周期の水平同期制御信号を出力し、かつ、入力された垂直同期信号に基づいて垂直同期制御信号を出力する同期信号出力手段と、上記垂直同期制御信号により規定される1垂直期間内において、上記信号線駆動回路が、上記水平同期制御信号に従って、上記複数の走査信号線上における全ての画素にデータ信号を供給した後、上記出力回路の能力を低下させる能力制御手段とを備えていることを特徴としている。
 上記構成では、同期信号出力手段が、入力された水平同期信号および垂直同期信号に基づいて、水平同期制御信号および垂直同期制御信号を生成し出力する。水平同期制御信号および垂直同期制御信号は、走査線駆動回路と信号線駆動回路とを同期させる信号である。水平同期制御信号の周期は、入力された水平同期信号の周期よりも短い。このため、垂直同期制御信号により規定される1垂直期間よりも短い期間内に、走査線駆動回路が全ての走査信号線を選択し、信号線駆動回路は全ての走査信号線上の画素に対してデータ信号を供給することが可能になる。
 ここで、1垂直期間内において、全ての走査信号線上の画素に対してデータ信号を供給する期間を走査期間と称する。また1垂直期間内における走査期間経過後の期間を非走査期間と称する。
 上記構成によれば、非走査期間において、上記出力回路が低能力状態になるため、当該出力回路に流れる電流をカットできる。この結果、信号線駆動回路の平均消費電流が、従来の信号線駆動回路に比べて小さくなる。なお、上記出力回路には定常電流が流れていることが一般的であるため、上記出力回路に定常電流が流れている場合において、特に効果を発揮する。
 したがって本発明の表示装置は、1垂直期間の長さを従来よりも長くすることなく、当該1垂直期間内に十分な休止期間を設けることができる。このため、単位時間あたりの走査期間の頻度を従来よりも少なくすることがない。これによって、本発明の表示装置は、フリッカを発生させることなく動画を表示でき、なおかつ消費電力を低減できる効果を奏する。
 本発明に係る表示装置の駆動方法は、上記課題を解決するために、複数の走査信号線を線順次に選択する走査線駆動回路と、電流が流れる出力回路が設けられ、選択された走査信号線上の画素に、当該出力回路および複数のデータ信号線を介してデータ信号を順次供給する信号線駆動回路とを備える表示装置の駆動方法であって、入力された水平同期信号に基づいて、当該水平同期信号の周期よりも短い周期の水平同期制御信号を出力し、かつ、入力された垂直同期信号に基づいて垂直同期制御信号を出力する同期信号出力工程と、上記垂直同期制御信号により規定される1垂直期間内において、上記信号線駆動回路が、上記水平同期制御信号に従って、上記複数の走査信号線上における全ての画素にデータ信号を供給する走査工程と、上記1垂直期間内において、上記走査工程が終了した後、上記出力回路の能力を低下させる能力制御工程とを含むことを特徴としている。
 上記方法によれば、本発明に係る表示装置と同様の作用効果を奏する。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
 本発明に係る表示装置は、フリッカを発生させることなく動画を表示でき、なおかつ消費電力を低減できるという効果を奏する。
本発明の第1の実施形態に係る表示装置の表示パネルを駆動する際の各種信号波形を示す図である。 第1の実施形態に係る表示装置の全体構成を示す図である。 (a)は、信号線駆動回路の内部構成、特に出力部分を示す図であり、(b)は、AMP_Enable信号の波形および信号線駆動回路の消費電流波形を示す図である。 従来技術と比較した第1の実施形態の効果を説明する図である。 本発明の第2の実施形態に係る表示装置の回路構成を示す図である。 本発明の第3の実施形態に係る表示装置の回路構成を示す図である。 第3の実施形態に係る表示装置のタッチパネルを駆動する際の各種信号波形を示す図である。 図6に示す回路構成の他の例を示す図である。 (a)は、従来の表示装置における信号線駆動回路の内部構成、特に出力部分を示す図であり、(b)は、従来の表示装置における信号線駆動回路の消費電流波形を示す図である。 従来の表示装置の表示装置を示す図である。
 〔実施形態1〕
 本発明の第1の実施形態について図1から図4に基づいて説明すると以下の通りである。
 (1.表示装置1の構成)
 まず、本実施形態に係る表示装置(液晶表示装置)1の構成について、図2を参照して説明する。図2は、表示装置1の全体構成を示す図である。この図に示すように、表示装置1は、表示パネル2、走査線駆動回路(ゲートドライバ)4、信号線駆動回路(ソースドライバ)6、共通電極駆動回路8、タイミングコントローラ(同期信号出力手段、極性反転手段)10、電源生成回路14、およびメモリ(記録手段)16を備えている。タイミングコントローラ10はさらに制御信号出力部(能力制御手段)12を備えている。
 表示パネル2は、マトリクス状に配置された複数の画素からなる画面と、前記画面を線順次に選択して走査するためのN本(Nは任意の整数)の走査信号線G(ゲートライン)と、選択されたラインに含まれる一行分の画素にデータ信号を供給するM本(Mは任意の整数)のデータ信号線S(ソースライン)とを備えている。走査信号線Gとデータ信号線Sとは互いに直交している。
 図2に示すG(n)はn本目(nは任意の整数)の走査信号線Gを表す。たとえばG(1)、G(2)およびG(3)は、それぞれ1本目、2本目および3本目の走査信号線Gを表す。一方、S(i)はi本目(iは任意の整数)のデータ信号線Sを表す。たとえば、S(1)、S(2)およびS(3)は、それぞれ1本目、2本目および3本目のデータ信号線Sを表す。
 なお、本実施形態は、説明の簡便のため等価回路を対象にした駆動を例にしており、表示パネル2内の各画素にはTFTが設けられており、TFTのドレインは図示しない画素電極に接続されている。
 走査線駆動回路4は、各走査信号線Gを画面の上から下に向かって線順次走査する。その際、各走査信号線Gに対して、画素に備えられ画素電極に接続されるスイッチング素子(TFT)をオン状態にさせるための矩形波(走査信号)を出力する。これにより、画面内の1行分の画素を選択状態にする。
 信号線駆動回路6には、メモリ16から入力された映像信号(矢印E)に基づき、選択された1行分の各画素に出力すべき電圧の値を算出し、その値の電圧を各データ信号線Sに出力する。結果、選択された走査信号線G上にある各画素に対して画像データ(データ信号)を供給する。
 表示装置1は、画面内の各画素に対して、更に共通電極(COM:不図示)を備えている。共通電極駆動回路8は、タイミングコントローラ10から入力される極性反転信号(矢印G)に基づき、所定の共通電圧を共通電極に出力することで共通電極を駆動する。
 タイミングコントローラ10には、入力映像同期信号として、水平同期信号(Hsync)、垂直同期信号(Vsync)が入力される(矢印B)。タイミングコントローラ10は、これらの入力映像同期信号に基づき、各回路が同期して動作するための基準となる映像同期信号として、水平同期制御信号(GCKなど)および垂直同期制御信号(GSPなど)を生成し、走査線駆動回路4、信号線駆動回路6、およびメモリ16に出力する(矢印C、D、F)。
 水平同期制御信号は、信号線駆動回路6において、メモリ16から入力された映像信号を表示パネル2へ出力するタイミングを制御する出力タイミング信号として使用され、走査線駆動回路4において、表示パネル2へ走査信号を出力するタイミングを制御するタイミング信号として使用される。また、垂直同期制御信号は、走査線駆動回路4において、走査信号線Gの走査スタートのタイミングを制御するタイミング信号として使用される。
 なお、本明細書において、特段の断りがない限り、「1垂直期間」とは、上記垂直同期制御信号により規定される期間を意味し、「1水平期間」とは、上記水平同期制御信号により規定される期間を意味する。
 走査線駆動回路4は、タイミングコントローラ10から受け取った水平同期制御信号および垂直同期制御信号に従って、表示パネル2の走査を開始し、各走査信号線Gを順次選択して走査信号を出力する。
 信号線駆動回路6は、タイミングコントローラ10から受け取った水平同期制御信号に従って、メモリ16から入力された映像信号に基づく画像データ(データ信号)を、表示パネル2の各データ信号線Sに書き込む。
 電源生成回路14は、表示装置1内の各回路が動作するために必要な電圧であるVdd、Vdd2、Vcc、Vgh、およびVglを生成する。そして、Vcc、Vgh、Vglを走査線駆動回路4に出力し、VddおよびVccを信号線駆動回路6に出力し、Vccをタイミングコントローラ10に出力し、Vdd2を共通電極駆動回路8に出力する。
 メモリ16は、入力された入力映像信号(矢印A)を記録する機能を有する。また、メモリ16は、タイミングコントローラ10から受け取った映像同期信号に従って、記録した入力映像信号に基づく映像信号(矢印E)を、信号線駆動回路6に出力する。
 (2.従来の表示装置における消費電力)
 従来の表示装置における消費電力の問題について図9を参照して説明する。図9の(a)は信号線駆動回路106の出力部分に関する内部構成を示す図であり、図9の(b)は信号線駆動回路106の消費電流波形(I(Vdd))を示す図である。一般的な解像度WSVGA(1024RGB×600)を有する表示装置を例に挙げると、このような表示装置の信号線駆動回路106は1024×3(RGB)=3072個のアナログアンプ118を必要とする。各アナログアンプ118は、データ信号線Sにデータ信号を出力する素子である。個々のアナログアンプ118には、出力能力を確保するために、0.01mA程度の常時定常電流が流れている。
 したがって、3072個のアナログアンプ118では常時定常電流の総計は約30.7mAとなる。信号線駆動回路106に供給される電圧源(Vdd)は通常10V程度であるため、10V×30.7mA=307mWの電力を信号線駆動回路が消費する。結果、平均消費電流は図9の(b)の矢印P2に示す値となり、この値は表示装置全体の消費電力に対して相当量を占めており、表示装置の低消費電力化を妨げる1つの大きな原因となっている。
 (3.表示装置1における消費電力)
 本実施形態の表示装置1は、前記した従来の表示装置に比べてより少ない平均電力で動作する。この点について以下に説明する。
 <アナログアンプ18の動作>
 まず、信号線駆動回路6の備えるアナログアンプ(出力回路)18について図3を参照して説明する。図3の(a)は、信号線駆動回路6の内部構成、特に出力部分を示す図であり、図3の(b)は、AMP_Enable信号の波形を示す図である。
 図3の(a)に示すように、信号線駆動回路6において、各アナログアンプ18はデータ信号線Sごとに設けられる。したがって、本実施形態に係る信号線駆動回路6はM個のアナログアンプ18を備えている。すなわちアナログアンプ18の数とデータ信号線Sの数とは互いに等しい。
 信号線駆動回路6は、各アナログアンプ18にAMP_Enable信号を入力するためのAMP_Enable信号線をさらに備えている。この信号線は、タイミングコントローラ10の制御信号出力部12に接続されている。また、信号線駆動回路6の内部においては、各アナログアンプ18に並列に接続されている。
 上述したように、Vddは表示装置1内の電源生成回路14から供給される電圧源であり、信号線駆動回路6を含め、各アナログアンプ18もVddの供給を受けて動作する。
 タイミングコントローラ10の制御信号出力部12は、各アナログアンプ18の動作状態を規定する制御信号であるAMP_Enable信号を、予め定められたタイミングで信号線駆動回路6の各アナログアンプ18に出力する。アナログアンプ18は、AMP_Enable信号がH値のときには動作し、L値のときには休止する。
 後述にて詳細に説明するが、表示装置1では、表示パネル2を駆動する際、垂直同期制御信号に規定される1垂直期間が走査期間と非走査期間とに分割される。制御信号出力部12は、図3の(b)に示すように、走査期間においてはAMP_Enable信号をH値にしてアナログアンプ18を動作させる。また、制御信号出力部12は、非走査期間においては、AMP_Enable信号をL値にしてアナログアンプ18を休止させる。
 <信号波形>
 表示パネル2を駆動する際の各種信号の波形について、図1を参照して説明する。図1は、本発明の一実施形態に係る表示装置1の表示パネル2を駆動する際の各種信号波形を示す図である。
 図1の上段には、タイミングコントローラ10およびメモリ16へ入力される入力信号について示している。例えば、タイミングコントローラ10には、入力映像同期信号として、垂直同期信号(Vsync)および水平同期信号(Hsync)が入力される。また、タイミングコントローラ10への入力映像同期信号の入力と共に、メモリ16には、入力映像信号が入力される。入力映像信号の1フレーム分の画像データ転送期間は、Hsyncに規定される1垂直期間に相当する。
 また、図1の下段には、タイミングコントローラ10およびメモリ16が出力する出力信号について示している。
 例えば、タイミングコントローラ10は、入力された入力映像同期信号に基づき、各回路が同期して動作するための基準となる映像同期信号として、水平同期制御信号および垂直同期制御信号を生成する。ここで、タイミングコントローラ10は、入力されたVsyncと同じ周期の垂直同期制御信号を生成し、入力されたHsyncの周期よりも短い周期の水平同期制御信号を生成する。図1では、生成される水平同期制御信号の周期は、Hsyncの周期の1/3に相当する。タイミングコントローラ10は、生成した水平同期制御信号および垂直同期制御信号を、画像同期信号として、走査線駆動回路4、信号線駆動回路6、およびメモリ16に出力する。
 ここで、水平同期制御信号の周期は短いため、1垂直期間内において、当該1垂直期間よりも短い期間(走査期間)に1フレーム分の走査が行われる。なお、水平同期制御信号の周期は例示したものに限られない。例えば、水平同期制御信号の周期は、Hsyncの整数分の1(周波数が整数倍)であることが好ましい。
 メモリ16は、記録している入力映像信号に基づき、入力された垂直同期制御信号および水平同期制御信号に従って映像信号を出力する。映像信号の1フレーム分の画像データ転送期間は、走査期間に相当する。
 制御信号出力部12は、生成された垂直同期制御信号および水平同期制御信号に同期して、AMP_Enable信号を出力する。
 また、信号線駆動回路6は、AMP_Enable信号がH値を維持する間、データ信号線Sへデータ信号の供給を行う。
 <表示パネル2の駆動>
 以下、上述の各種信号によって制御される表示パネル2の駆動について、さらに図1を参照して説明する。
 表示装置1では、垂直同期制御信号が1垂直期間ごとに入力される。まず、制御信号出力部12が、垂直同期制御信号に同期して、AMP_Enable信号の電圧をL値からH値に変化させる。これにより、信号線駆動回路6が備えるアナログアンプ18が、非動作状態から動作状態(通常状態)へと切り替わる。
 次に、走査線駆動回路4は、垂直同期制御信号および水平同期制御信号に同期して、1本目の走査信号線Gに走査信号を出力する。これによって、走査信号線G(1)に接続された画素のTFTのゲートがオン状態になる。
 次に、信号線駆動回路6は、水平同期制御信号に同期して、データ信号線Sごとに、当該データ信号線Sに接続されたアナログアンプ18からデータ信号を出力する。これにより、表示に必要な電圧が各データ信号線Sに供給され、TFTを通じて走査信号線G(1)上の画素電極に書き込まれる。当該書き込みの終了後、走査信号線G(1)に接続された画素のTFTのゲートがオン状態からオフ状態に戻る。
 最初の1水平期間が経過したら、次の垂直同期制御信号が入力される。2本目以降の走査信号線Gに接続された画素は、1本目の走査信号線Gに接続された画素と同様の手順によって書き込みが行われる。このようにして、N本全ての走査信号線Gの画素に書き込みが行われる期間を書き込み期間と称する。当該書き込み期間は走査期間と同じ期間を示す。
 AMP_Enable信号は、上記書き込み期間の間、H値を維持している。
 最初の1垂直期間において、上記書き込み期間(走査期間)が経過した後、制御信号出力部12は、AMP_Enable信号をH値からL値に変化させる。この結果、アナログアンプ18が非動作状態になる。
 最初の1垂直期間が経過したら、次の垂直同期制御信号が入力され、2フレーム目以降の駆動についても、上述と同様の手順によって行われる。
 なお、アナログアンプ18が非動作状態の間、アナログアンプ18の出力とデータ信号線S(i)との接続が切られる。詳しくは後述するが、データ信号線S(i)は電気的に浮いた状態にしてもよく、Vdd等に接続させた状態にしてもよい。
 <作用効果>
 以上の構成によれば、非走査期間の間、アナログアンプ18の定常電流がカットされている。結果、平均消費電流は図3の(b)の矢印P1に示す値となり、この値は従来の表示装置における平均消費電流(図9の(b)の矢印P2)に比べて著しく小さい。また、1走査期間内に休止期間をまとめて設けているため、走査状態と休止状態とを切り替える際に瞬間に流れる電流についても極力省くことができる。したがって表示装置1では、従来の表示装置に比べて消費電力を低減する効果を奏する。
 次に、従来の表示装置を比較例1とし、上記特許文献1の表示装置を比較例2として用い、本実施形態の効果をより詳細に説明する。各例において、走査信号線GはN本とする。
 図4は、垂直同期制御信号、水平同期制御信号、および走査信号の各種信号波形を示す図であり、図4の(a)は本実施形態を示し、図4の(b)は比較例1を示し、また図4の(c)は比較例2を示す。
 比較例1では、図4の(b)に示すように、走査期間が1垂直期間に相当する。このため、比較例1では、信号線駆動回路が常時電力を消費し続けなくてはならない。
 比較例2では、図4の(c)に示すように、走査期間が比較例1の走査期間と同じ時間であるが、走査期間後に当該走査期間よりも長い時間の休止期間が設けられている。このため、比較例2では、1垂直期間が、比較例1の1垂直期間の数倍に相当する。すなわち、単位時間あたりの走査期間の頻度が減っているため、動画を滑らかに表示することが難しい。
 本実施形態では、図4の(a)に示すように、1垂直期間は比較例1の1垂直期間と同じである。しかし、本実施形態では、1水平期間が比較例1および比較例2よりも短いため(図4では比較例1および2の1/2に相当する)、本実施形態に係る走査期間は比較例1および比較例2よりも短い。すなわち、表示装置1は、1垂直期間よりも短い期間に、全ての画素に対する走査を終える。
 したがって、図4の(a)~図4の(b)を参照すると、本実施形態は、単位時間あたりの走査期間の頻度を従来よりも少なくすることなく、1垂直期間内に十分な休止期間(非走査期間)を設けることができることが分かる。この休止期間中に、上述する消費電力の低減を行うことができる。
 なお、本実施形態において、1水平期間、すなわち、ある走査信号線Gにおける各画素にデータ信号線S(1)~S(M)が電荷を書き込む時間は、従来(比較例1および比較例2)の時間よりも短い。しかしながら、近年開発されている、能力を大幅に向上されたシリコンからなるTFTを用いれば、上述のような短い1水平期間においても、画素に対して表示に必要な電荷を十分に書き込むことが可能である。
 このようなTFTとして、例えば、インジウム、ガリウム、および酸化亜鉛を組み合わせて半導体層を構成するTFT(例えば特開2010-98305公報参照)などが挙げられる。
 (4.従来の表示装置における輝度分布)
 次に、従来の表示装置における輝度分布の問題について図10を参照して説明する。図10は、ノーマリブラックの表示パネル102における輝度分布を説明するための図である。
 液晶表示装置は、画素電極とデータ信号線S間に寄生容量を有しており、フレーム反転駆動の際、この寄生容量の影響によって表示パネルには面内輝度分布が生じてしまう。
 面内輝度分布が生じる理由については、あるフレーム(正極性書き込み)及びその次のフレーム(負極性書き込み)におけるデータ信号線Sの電圧と、当該フレームにおいて最初に走査を行う最上段の画素のドレイン電圧と、当該フレームにおいて最後に走査を行う最下段の画素のドレイン電圧との関係を考えることで理解できる。例えば全画面で同じ階調を表示することを想定した上で、以下に具体的に説明する。
 あるフレームの1垂直期間の最初に、最上段の走査信号線G1が走査され、そのデータ信号線G1に繋がるTFTがONになり、ドレイン電極にデータ信号線Sからの所定の電圧値(正極)が印加される。フレーム反転駆動であるため、同じフレーム内では同じ電圧がデータ信号線Sに出力され続ける。この後、次のフレームにおいては極性反転を行い、データ信号線Sには所定の電圧値(負極)が出力された状態で、再度走査信号線G1を走査する。よって、走査信号線G1にとっては、走査完了後ほぼ1垂直期間の間、データ信号線Sの電圧は変動しない。
 また、あるフレームの1垂直期間の最後に、最下段の走査信号線Gnが走査され、その走査信号線Gnに繋がるTFTがONなり、ドレイン電極にデータ信号線Sからの所定の電圧値(正極)が印加される。この後、直ぐに次のフレームに切り替わり、この次のフレームにおいては極性反転を行い、データ信号線Sには所定の電圧値(負極)が出力される。よって、走査信号線Gnにとっては、あるフレームにおける走査の後直ぐにデータ信号線Sの電圧が逆極性へと変動するため、これに伴い寄生容量によるドレイン電圧の変動が生じる。このようにドレイン電圧が変動した状態(所定の正極電圧と異なった状態)が1垂直期間保持される。
 このメカニズムにより、最上段と最下段では、走査後の保持期間において、ドレイン電圧が異なってしまう。また、このメカニズムによる現象は、最上段と最下段に限らず、ある走査信号線Gを走査後、データ信号線Sへの印加電圧が極性反転するまでの時間に応じて生じる現象である。
 したがって、従来の表示装置では、図10に示すように、画面の上部から下部にかけて輝度傾斜が生じることとなる。
 (5.表示装置1における輝度分布)
 表示装置1においても、共通電極駆動回路8は、極性反転信号に従って、1垂直期間毎にデータ信号線Sの極性を反転するフレーム反転駆動を行っているものとする。
 ここで、表示装置1では、上述したように、1垂直期間よりも短い期間に1フレーム分の走査を完了させることができる。このため、フレーム反転の際、当該フレーム走査完了後に極性反転を行うまでの期間が最上段から最下段まであまり変わらなくなるため、表示パネル2に輝度分布が発生することを低減できる。
 なお、隣り合うデータ信号線S毎に、印加される極性が反対の極性となる、列反転駆動を行うことがより好ましい。具体的には、あるフレームにおいて、偶数番目のデータ信号線Sには正極性の電圧を印加し、奇数番目のデータ信号線Sには負極性の電圧を印加する。次のフレームでは、それぞれ逆の極性の電圧を印加する。こうすることで、正負極性の切替えにおけるチラツキを空間的に相殺させることができるため、表示パネル2におけるフリッカの発生を低減させることができる。
 (その他構成)
 <階調アンプを備える場合>
 本発明では、アナログアンプ18の数と、データ信号線Sの数とは必ずしも同一である必要はない。たとえばアナログアンプ18を階調毎に構成する方式にすると、その数をデータ信号線Sの数よりも少なくできる。例えば、表示パネル2の駆動時には、選択された走査信号線G上の画素に接続されたデータ信号線S(i)を、当該画素が表示する階調に応じた電圧を出力するアナログアンプ18に接続させることができる。
 この場合においても、上述した駆動方法を実行できるため、非走査期間における定常電流を削減でき、結果、消費電力を低減できる。
 <非走査期間におけるデータ信号線の接続先>
 非走査期間において、データ信号線S(i)の接続先は不定であってもよく、または任意の電源であってもよい。
 例えば、非走査期間においてデータ信号線S(i)が電気的に浮いている状態であってもよい。この場合、非走査期間(AMP_Enable信号がL値になっている期間)において、アナログアンプ18とデータ信号線S(i)との接続は切れており、データ信号線S(i)の接続先は不定である。
 また、非走査期間においてデータ信号線S(i)が共通のVddに接続されていてもよい。この場合、非走査期間において、アナログアンプ18とデータ信号線S(i)との接続は切れており、かつ、いずれのデータ信号線S(i)も、共通の電圧力源(Vdd)に接続されている。これにより、データ信号線S(i)に出力された電圧は、走査期間の終了後、すなわちAMP_Enable信号がH値からL値に変化した後、ピークの値から一定値だけ減少し、その値を安定して保つ。結果、非走査期間において、データ信号線Sに出力された電圧が安定するので、安定した表示を維持することができる。
 なお、非走査期間におけるデータ信号線S(i)の接続先は、任意の電圧源(Vdd)に限らず、グラウンド(GND)または共通のノードであってもよい。いずれの場合も、非走査期間における、データ信号線Sに出力された電圧を安定化できる効果が得られる。
 <タイミングをずらす例>
 表示装置1では、アナログアンプ18を非動作状態から動作状態に復帰させた場合、アナログアンプ18の正常な動作が可能となるまでに、ある程度の時間が必要になる。そのため、アナログアンプ18を復帰させるタイミングと、次の走査期間を開始するタイミングとを同じにした場合、アナログアンプ18からデータ信号線Sに出力する信号の状態が安定しなくなってしまう。これにより、本来は意図しない電圧を画素に印加してしまう可能性が生じる。
 そこで、表示装置1では、アナログアンプ18を非動作状態から動作状態に復帰させるタイミングを、次の走査期間を開始するタイミングよりも早めに設定することが好ましい。これにより、アナログアンプ18が非動作状態から復帰して安定するまでの時間が経過した後に、次の走査期間が開始される。結果、正常な電圧を画素に印加できる。
 (付記事項)
 非走査期間においては、信号線駆動回路6内の全てのアナログアンプ18のうち、少なくとも1つを休止させれば、動画表示を可能にしつつ、消費電力を削減できる効果が得られる。全てのアナログアンプ18を動作させれば、消費電力を最も多く削減できるので望ましい。
 非走査期間の開始時点は、1フレーム分の走査が終了した直後に限らず、終了時点の少しあとでもよい。一方、非走査期間の終了時点は、1垂直期間が終了する時点に限らず、その少し前でも限らない。すなわち、走査期間が終了した時点から1垂直期間が終了する時点までの間における任意の長さの期間が、非走査期間となりうる。
 非走査期間においては動作休止の対象とするのは、アナログアンプ18に限られない。すなわち、アナログアンプ18を含む、定常電流が流れる何らかの回路群(素子群)の能力を低下させてもよい。このような回路群の例として、たとえば階調毎の電圧を決定するDAC(Digital-Analogue-Converter)回路部、およびVdd生成回路部がある。
 表示装置1では、上述のように非走査期間にアナログアンプ18の能力(駆動能力)を低下させることによって低消費電力化を図ることができる。しかし、アナログアンプ18は完全に休止(Off)させることによって、低消費電力化の効果を最も高くすることが可能である。従って表示装置1では、非走査期間において「アナログアンプ18の駆動能力を低下させる」代わりに「アナログアンプ18を休止させる」ことによっても、本発明の効果を奏することができる。なお、アナログアンプ18の能力を最も低下させた状態が、アナログアンプ18を休止させた状態に相当する。
 〔実施形態2〕
 本発明の第2の実施形態について、図5に基づいて説明すると以下の通りである。図5は、第2の実施形態に係る表示装置30の回路構成を示す図である。なお、図5において、表示パネル2の図示は省略されている。
 上述した実施形態1に対する本実施形態の主な相違点は、表示装置30が、発振回路20、Hカウンタ21およびVカウンタ22をさらに備えており、メモリ16に予め格納された映像信号を信号線駆動回路6に出力する制御を行う点にある。
 したがって、以下では、上記相違点を中心に説明する。なお、実施形態1における構成要素と対応する機能を有する構成要素には、同一符号を用いることとする。
 発振回路20は、ドットクロック(クロック信号)を発振する回路である。発振回路20から発振されたドットクロックは、タイミングコントローラ10およびHカウンタ21に供給される。
 Hカウンタ21は、供給されたドットクロックに基づいてHsyncを生成し、タイミングコントローラ10およびVカウンタ22に供給する。Vカウンタ22は、供給されたHsyncからVsyncを生成し、タイミングコントローラ10に供給する。
 タイミングコントローラ10は、供給されたドットクロック、Vsync、およびHsyncに基づいて、水平同期制御信号(GCKなど)および垂直同期制御信号(GSPなど)を映像同期信号として生成し、走査線駆動回路4、信号線駆動回路6、およびメモリ16に出力する。
 本実施形態において、メモリ16は、信号線駆動回路6に転送する映像信号を予め格納している。メモリ16は、タイミングコントローラ10から受け取った映像同期信号に従って、メモリ16に格納された映像信号をフレーム単位で信号線駆動回路6に転送することができる。
 上記構成によれば、表示装置30に入力映像同期信号および入力画像データが入力されていない場合であっても、表示装置30は1垂直期間内に非走査期間を設けて映像表示を行うことができる。
 また、本実施形態に係る表示装置30では、発振回路20、Hカウンタ21およびVカウンタ22が消費する電力を必要するが、表示のたびにメモリ16に入力画像データを書き込む必要がなくなるため、当該書き込みのための消費電力が削減される。また、実施形態1において表示装置1に入力映像同期信号および入力画像データを入力するためのセット側が消費していた分の電力は、本実施形態において削減される。したがって、本実施形態に係る表示装置30を搭載した電子機器全体では、低消費電力化が実現される。
 (表示装置30の動作)
 本実施形態に係る表示装置30では、上述した輝度分布の発生を防止するために、Vカウンタ22が生成するVsyncの周波数を60Hzよりも高い周波数にすることがより好ましい。
 具体的には、表示装置30に入力映像同期信号および入力画像データが入力されていない場合、発振回路20は、Vカウンタ22が生成するVsyncの周波数を60Hzよりも高い周波数になるように、ドットクロックを発振することが好ましい。これによって、このVsyncと同じように、60Hzよりも高い周波数の垂直同期制御信号が生成され、表示装置30では、データ信号線Sの極性反転が60Hzよりも高い周期で行われる。
 ここで、表示装置30では、実施形態1と同様に、1垂直期間の前半部分において1フレームの走査を完了させる。
 上記構成によれば、フレーム反転の際、極性反転周波数が早くなるためフリッカをより低減させることができる。
 〔実施形態3〕
 本発明の第3の実施形態について、図6および図7に基づいて説明すると以下の通りである。
 (1.表示装置40の構成)
 図6は、実施形態3に係る表示装置40の概略的な構成を示す図である。
 上述した実施形態1に対する本実施形態の主な相違点は、表示装置40が、タッチパネル24およびタッチパネル制御回路26をさらに備えたタッチパネル一体型の表示装置である点にある。
 したがって、以下では、上記相違点を中心に説明する。なお、実施形態1における構成要素と対応する機能を有する構成要素には、同一符号を用いることとする。
 タッチパネル24は、表示パネル2に対向して配置され、表示パネル2の表示面へのタッチ入力(指や専用ペンなどによって表示面内のある位置に触れること)を受け付けるパネルである。タッチパネル24は、表示面へのタッチ入力がなされると、その位置に応じた信号(入力信号)を生成し、その信号をタッチパネル制御回路26へ送る。タッチパネル24は、静電容量方式タッチパネルであってもよいし、電磁誘導方式タッチパネルであってもよい。なお、タッチパネル24は周知のものを用いることができるため、ここではその具体的構成に関する説明を省略する。
 タッチパネル制御回路26は、タッチパネル24とともにタッチ入力検出部(タッチ入力検出手段)を構成する回路である。タッチパネル制御回路26は、タッチ入力がなされることによりタッチパネル24から送られてくる入力信号を検出し、検出した入力信号に基づいて、表示パネル2内でのタッチ入力の位置(座標)を示す座標データを生成し、さらに、この座標データをタイミングコントローラ10へ送る。
 本実施形態において、タイミングコントローラ10は、タッチパネル制御回路26から送られてくる座標データに基づいて、タッチ入力により指示された操作内容等を認識し、その認識結果によって他の部材や装置等を制御する機能をさらに有してもよい。
 (2.従来の表示装置におけるタッチ入力検出のノイズ)
 次に、従来の表示装置におけるタッチ入力検出の問題について説明する。
 一般に、タッチパネル入力装置として機能する表示装置を駆動する際、表示パネルの駆動によるノイズにより、タッチパネルのタッチ位置検出精度が悪化してしまうという問題が存在する。従来の液晶表示装置では、上記ノイズを防止するための回路の追加や、表示パネルとタッチパネルとの距離をあけること等の対策を行っている。しかしながら、このような対策にはコストがかかったり、装置の小型化の弊害になったりしてしまう。
 具体的には、タッチパネルが静電容量方式タッチパネルである場合、タッチパネルのITOと、共通電極(COM)との間に容量を形成してしまう。このため、タッチ位置検出には、COM信号の電位レベルの変動に応じてノイズが載りやすい。
 また、タッチパネルが電磁誘導方式タッチパネルである場合、表示パネルの表面側で専用ペンが動いた際の電界・磁界の変化を、タッチパネルで読み取っている。しかし、表示パネルが極性反転などにより、常に電界・磁界を変動させていると、専用ペンとタッチパネルとの間にノイズが載ることになる。
 (3.表示装置40におけるタッチ入力検出)
 本実施形態の表示装置40は、表示パネル2の駆動によるノイズの影響を受けることなく、タッチパネル24へのタッチ入力を精度よく検出することができる。この点について以下に説明する。
 本実施形態において、タッチパネル制御回路26は、タイミングコントローラ10からTP_Enable信号の入力を受けるためのTP_Enable信号線をさらに備えている。この信号線は、タイミングコントローラ10の制御信号出力部12に接続されている。
 タイミングコントローラ10の制御信号出力部(検出制御手段)12は、TP_Enable信号を一定のタイミングでタッチパネル制御回路26に出力する。TP_Enable信号は、タッチパネル制御回路26がタッチパネル24からの入力信号を検出する検出状態を規定するための制御信号である。
 具体的には、図7に示すように、制御信号出力部12は、AMP_Enable信号の電圧をL値(低い値)にするタイミングに合わせて、TP_Enable信号の電圧をH値(高値)にする。その後、次にAMP_Enable信号の電圧がH値になるタイミングに合わせて、当該TP_Enable信号の電圧をL値にする。
 タッチパネル制御回路26は、TP_Enable信号がH値のときには動作し、L値のときには休止する。
 上記駆動によれば、図7に示すように、タッチパネル制御回路26は、非走査期間に、タッチパネル24からの入力信号の検出を行うように制御される。非走査期間には、表示装置1の主要な回路は停止しているため、表示パネル2からの駆動ノイズを受けることなく、当該検出が可能である。これによって、座標データの精度が悪化することを防止できる。
 (変形例)
 本発明は、表示装置40がタッチパネル24及びタッチパネル制御回路26を含んで構成されることに限定されない。例えば、図8に示すように、本発明は、表示装置40aと、タッチ入力検出装置50(タッチパネル24及びタッチパネル制御回路26)とをそれぞれ備える表示システム100(例えば情報入力装置等)として実現されてもよい。
 図8に示す例では、システム側コントローラー28が、表示装置40aと、タッチ入力検出装置50との仲介を行う。具体的には、表示装置40aの制御信号出力部12が出力したTP_Enable信号をシステム側コントローラー28が受け取って、タッチ入力検出装置50のタッチパネル制御回路26を制御する。タッチパネル制御回路26は、非走査期間に、タッチパネル24からの入力信号の検出を行うように制御される。
 また、システム側コントローラー28は、タッチパネル制御回路26から出力された座標データを受信し、当該座標データに基づいて、タッチ入力により指示された操作内容等を認識し、その認識結果によって他の部材や装置等を制御する。
 本例においても、図7に示す実施形態と同様に、表示パネル2からの駆動ノイズを受けることなく入力信号を検出でき、座標データの精度が悪化することを防止できる。
 また、本発明に係る表示装置において、上記能力制御手段は、上記1垂直期間において、上記信号線駆動回路が、上記垂直同期制御信号に従って、上記複数の走査信号線上における全ての画素にデータ信号を供給した後、上記出力回路を休止させることが好ましい。
 上記構成によれば、消費電力をより一層低減できる。
 また、本発明に係る表示装置において、上記水平同期制御信号の周期は、上記水平同期信号の周期の整数分の1であることが好ましい。
 上記構成によれば、簡易な回路構成で、短い周期の水平同期制御信号を生成することが可能となる。
 また、本発明に係る表示装置は、入力された映像信号を記録する記録手段をさらに備え、上記記録手段は、上記水平同期制御信号に従って、記録した映像信号を上記信号線駆動回路に出力することが好ましい。
 上記構成によれば、信号線駆動回路に対して、映像信号を水平同期制御信号にタイミングを合わせて好適に入力することができる。
 また、本発明に係る表示装置は、クロック信号を生成する発振回路と、上記クロック信号に基づいて、上記水平同期信号および上記垂直同期信号を生成し、上記同期信号出力手段に出力するカウンタとをさらに備えていることが好ましい。
 上記構成によれば、外部からの映像入力がない場合であっても、上記発振回路により生成したクロック信号を基に、水平同期信号および垂直同期信号が生成される。結果、水平同期制御信号および垂直同期制御信号が生成され、記録手段に記録された映像データを表示させることができる。すなわち、フリッカを発生させることなく記録動画を表示でき、なおかつ消費電力を低減できる効果を奏する。
 また、本発明に係る表示装置において、上記1垂直期間毎に上記複数のデータ信号線の極性を反転する極性反転手段をさらに備えていることが好ましい。
 上記構成によれば、1垂直期間の前半部分で走査が終了するため、フレーム反転駆動による画面に輝度分布を生じさせることなく、低消費電力化を実現できる。
 また、本発明に係る表示装置において、上記極性反転手段は、互いに隣り合った上記データ信号線の極性を逆極性にする機能をさらに有していることが好ましい。
 上記構成によれば、ソース反転駆動が行われるため、フリッカの発生をより低減させることができる。
 また、本発明に係る表示装置は、上記表示パネルの表示面へのタッチ入力を検出するタッチ入力検出手段と、上記タッチ入力検出手段による検出動作を、上記1垂直期間において上記出力回路の能力が低下している間に行わせる検出制御手段とをさらに備えていることが好ましい。
 上記構成によれば、タッチ入力検出手段は、能力制御手段に制御され、タッチ入力の座標データの検出を非走査期間に行う。非走査期間において、表示装置の主要な回路類は停止している。したがって、タッチ入力検出手段は、表示パネルの駆動ノイズを受けることなく検出が可能となり、検出精度の悪化が防止される。
 また、本発明に係る表示装置において、上記タッチ入力検出手段は、静電容量方式タッチパネルまたは電磁誘導方式タッチパネルを備えていることが好ましい。
 上記構成によれば、検出精度の悪化を防止する効果がより効果的に現れた表示装置を実現できる。
 また、本発明に係る表示システムは、上述した表示装置と、上記表示パネルの表示面へのタッチ入力を検出するタッチ入力検出装置と、上記タッチ入力検出装置による検出動作を、上記1垂直期間において上記出力回路の能力が低下している間に行わせる検出制御手段とを備えていることを特徴としている。
 上記構成によれば、タッチ入力検出装置は、能力制御手段により制御されて、タッチ入力の座標データの検出を非走査期間に行う。非走査期間において表示装置の主要な回路類は停止している。したがって、タッチ入力検出装置は、表示パネルの駆動ノイズを受けることなく検出が可能となり、検出精度の悪化が防止される。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。
 本発明に係る表示装置は、液晶表示装置、有機EL表示装置、および電子ペーパーなどの各種の表示装置として広く利用できる。
 1、30、40 表示装置
 2 表示パネル
 4 走査線駆動回路
 6 信号線駆動回路
 8 共通電極駆動回路
 10 タイミングコントローラ(同期信号出力手段、極性反転手段)
 12 制御信号出力部(能力制御手段、検出制御手段)
 14 電源生成回路
 16 メモリ(記録手段)
 18 アナログアンプ(出力回路)
 20 発振回路
 21 Hカウンタ(カウンタ)
 22 Vカウンタ(カウンタ)
 24 タッチパネル(タッチ入力検出手段)
 26 タッチパネル制御回路(タッチ入力検出手段)
 28 システム側コントローラー
 50 タッチ入力検出装置
 100 表示システム
 G 走査信号線
 S データ信号線
 

Claims (11)

  1.  マトリクス状に配置された画素からなる画面に表示を行う表示装置であって、
     複数の走査信号線を線順次に選択する走査線駆動回路と、
     電流が流れる出力回路が設けられ、選択された走査信号線上の画素に、当該出力回路および複数のデータ信号線を介して、データ信号を順次供給する信号線駆動回路と、
     入力された水平同期信号に基づいて、当該水平同期信号の周期よりも短い周期の水平同期制御信号を出力し、かつ、入力された垂直同期信号に基づいて垂直同期制御信号を出力する同期信号出力手段と、
     上記垂直同期制御信号により規定される1垂直期間内において、上記信号線駆動回路が、上記水平同期制御信号に従って、上記複数の走査信号線上における全ての画素にデータ信号を供給した後、上記出力回路の能力を低下させる能力制御手段とを備えていることを特徴とする表示装置。
  2.  上記能力制御手段は、上記1垂直期間において、上記信号線駆動回路が、上記垂直同期制御信号に従って、上記複数の走査信号線上における全ての画素にデータ信号を供給した後、上記出力回路を休止させること
    を特徴とする請求項1に記載の表示装置。
  3.  上記水平同期制御信号の周期は、上記水平同期信号の周期の整数分の1である
    ことを特徴とする請求項1または2に記載の表示装置。
  4.  入力された映像信号を記録する記録手段をさらに備え、
     上記記録手段は、上記水平同期制御信号に従って、記録した映像信号を上記信号線駆動回路に出力する
    ことを特徴とする請求項1から3のいずれか1項に記載の表示装置。
  5.  クロック信号を生成する発振回路と、
     上記クロック信号に基づいて、上記水平同期信号および上記垂直同期信号を生成し、上記同期信号出力手段に出力するカウンタとをさらに備えている
    ことを特徴とする請求項4に記載の表示装置。
  6.  上記1垂直期間毎に上記複数のデータ信号線の極性を反転する極性反転手段をさらに備える
    ことを特徴とする請求項1から5のいずれか1項に記載の表示装置。
  7.  上記極性反転手段は、互いに隣り合った上記データ信号線の極性を逆極性にする機能をさらに有している
    ことを特徴とする請求項6に記載の表示装置。
  8.  上記画面へのタッチ入力を検出するタッチ入力検出手段と、
     上記タッチ入力検出手段による検出動作を、上記1垂直期間において上記出力回路の能力が低下している間に行わせる検出制御手段とをさらに備える
    ことを特徴とする請求項1から7のいずれか1項に記載の表示装置。
  9.  上記タッチ入力検出手段は、静電容量方式タッチパネルまたは電磁誘導方式タッチパネルを備えていることを特徴とする請求項8に記載の表示装置。
  10.  請求項1から7のいずれか1項に記載の表示装置と、
     上記画面へのタッチ入力を検出するタッチ入力検出装置と、
     上記タッチ入力検出装置による検出動作を、上記1垂直期間において上記出力回路の能力が低下している間に行わせる検出制御手段とを備える
    ことを特徴とする表示システム。
  11.  複数の走査信号線を線順次に選択する走査線駆動回路と、
     電流が流れる出力回路が設けられ、選択された走査信号線上の画素に、当該出力回路および複数のデータ信号線を介してデータ信号を順次供給する信号線駆動回路とを備える表示装置の駆動方法であって、
     入力された水平同期信号に基づいて、当該水平同期信号の周期よりも短い周期の水平同期制御信号を出力し、かつ、入力された垂直同期信号に基づいて垂直同期制御信号を出力する同期信号出力工程と、
     上記垂直同期制御信号により規定される1垂直期間内において、上記信号線駆動回路が、上記水平同期制御信号に従って、上記複数の走査信号線上における全ての画素にデータ信号を供給する走査工程と、
     上記1垂直期間内において、上記走査工程が終了した後、上記出力回路の能力を低下させる能力制御工程とを含む表示装置の駆動方法。
     
PCT/JP2011/051789 2010-05-21 2011-01-28 表示装置およびその駆動方法、ならびに表示システム WO2011145360A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2011800238029A CN102906805A (zh) 2010-05-21 2011-01-28 显示装置及其驱动方法、以及显示系统
US13/696,434 US20130050146A1 (en) 2010-05-21 2011-01-28 Display device and method of driving the same, and display system
BR112012029386A BR112012029386A2 (pt) 2010-05-21 2011-01-28 dispositivo de vídeo, método de acionamento de dispositivo de vídeo, e sistema de vídeo
EP11783297.2A EP2573752A4 (en) 2010-05-21 2011-01-28 DISPLAY DEVICE AND CONTROL METHOD THEREFOR, AND DISPLAY SYSTEM
JP2012515768A JPWO2011145360A1 (ja) 2010-05-21 2011-01-28 表示装置およびその駆動方法、ならびに表示システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010117804 2010-05-21
JP2010-117804 2010-05-21

Publications (1)

Publication Number Publication Date
WO2011145360A1 true WO2011145360A1 (ja) 2011-11-24

Family

ID=44991478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051789 WO2011145360A1 (ja) 2010-05-21 2011-01-28 表示装置およびその駆動方法、ならびに表示システム

Country Status (6)

Country Link
US (1) US20130050146A1 (ja)
EP (1) EP2573752A4 (ja)
JP (1) JPWO2011145360A1 (ja)
CN (1) CN102906805A (ja)
BR (1) BR112012029386A2 (ja)
WO (1) WO2011145360A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073465A (ja) * 2010-09-29 2012-04-12 Sony Corp タッチ検出機能付き表示装置および電子機器
WO2012137816A1 (ja) * 2011-04-08 2012-10-11 シャープ株式会社 表示装置、電子機器、表示装置の制御方法及び電子機器の制御方法
WO2012137817A1 (ja) * 2011-04-08 2012-10-11 シャープ株式会社 表示装置および表示装置の駆動方法
JP2013084195A (ja) * 2011-10-12 2013-05-09 Lg Display Co Ltd タッチパネルを備えた液晶表示装置およびその駆動方法
WO2014041975A1 (ja) * 2012-09-14 2014-03-20 シャープ株式会社 表示装置および表示方法
JP2014178434A (ja) * 2013-03-14 2014-09-25 Renesas Sp Drivers Inc ドライバic
JP2014209171A (ja) * 2013-03-26 2014-11-06 株式会社ジャパンディスプレイ 表示装置及び電子機器
JP2014219489A (ja) * 2013-05-07 2014-11-20 株式会社ルネサスエスピードライバ 表示ドライバic
JP2016027432A (ja) * 2012-02-20 2016-02-18 シャープ株式会社 駆動装置および表示装置
WO2016208321A1 (ja) * 2015-06-26 2016-12-29 ソニー株式会社 制御回路、表示装置、電子機器および投射型表示装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2544169A4 (en) * 2010-03-03 2015-04-22 Sharp Kk DISPLAY DEVICE, ITS CONTROL METHOD, AND LIQUID CRYSTAL DISPLAY DEVICE
WO2012137756A1 (ja) * 2011-04-07 2012-10-11 シャープ株式会社 表示装置およびその駆動方法
JP2013250523A (ja) * 2012-06-04 2013-12-12 Mitsubishi Electric Corp 液晶表示装置
JP6204025B2 (ja) * 2013-03-05 2017-09-27 シナプティクス・ジャパン合同会社 ドライバic
CN104793775B (zh) * 2014-01-20 2018-03-09 瀚宇彩晶股份有限公司 触控显示装置及其驱动方法与触控感测方法
KR101637174B1 (ko) * 2014-06-30 2016-07-21 엘지디스플레이 주식회사 터치스크린 일체형 표시장치
KR101638336B1 (ko) * 2014-07-24 2016-07-12 엘지디스플레이 주식회사 터치 패널을 포함한 표시 장치
CN105824449B (zh) 2015-01-09 2019-11-05 南京瀚宇彩欣科技有限责任公司 触控显示装置及其驱动方法
CN107273130B (zh) * 2017-06-20 2020-08-04 深圳市万普拉斯科技有限公司 加速界面绘制的方法、装置和终端
WO2019157735A1 (zh) * 2018-02-14 2019-08-22 深圳市为通博科技有限责任公司 触摸控制器、触控显示系统及触控显示同步方法
US10895933B2 (en) * 2019-03-14 2021-01-19 Novatek Microelectronics Corp. Timing control circuit and operation method thereof
JP7268436B2 (ja) * 2019-03-25 2023-05-08 セイコーエプソン株式会社 駆動回路、電気光学装置、電気光学装置を備える電子機器、及び電子機器を備える移動体
CN111696483B (zh) * 2020-07-10 2022-04-08 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
JP2022178015A (ja) * 2021-05-19 2022-12-02 セイコーエプソン株式会社 液晶装置および電子機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312253A (ja) 2000-04-28 2001-11-09 Sharp Corp 表示装置の駆動方法およびそれを用いた表示装置ならびに携帯機器
JP2004163828A (ja) * 2002-11-15 2004-06-10 Sharp Corp 液晶表示装置
JP2006133673A (ja) * 2004-11-09 2006-05-25 Casio Comput Co Ltd 表示駆動装置、表示装置及び表示駆動装置の駆動制御方法
WO2008015814A1 (en) * 2006-07-31 2008-02-07 Sharp Kabushiki Kaisha Display controller, display device, display system, and control method for display device
JP2009294903A (ja) * 2008-06-05 2009-12-17 Casio Comput Co Ltd 表示装置
JP2010098305A (ja) 2008-09-19 2010-04-30 Semiconductor Energy Lab Co Ltd 表示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100204334B1 (ko) * 1996-07-05 1999-06-15 윤종용 표시모드 변환기능을 갖는 비디오신호 변환장치 및 그 장치를 구비한 표시장치
EP1296174B1 (en) * 2000-04-28 2016-03-09 Sharp Kabushiki Kaisha Display unit, drive method for display unit, electronic apparatus mounting display unit thereon
JP4137394B2 (ja) * 2000-10-05 2008-08-20 シャープ株式会社 表示装置の駆動方法、それを用いた表示装置、およびその表示装置を搭載した携帯機器
JP3647426B2 (ja) * 2001-07-31 2005-05-11 キヤノン株式会社 走査回路及び画像表示装置
JP3862994B2 (ja) * 2001-10-26 2006-12-27 シャープ株式会社 表示装置の駆動方法およびそれを用いた表示装置
KR100870018B1 (ko) * 2002-06-28 2008-11-21 삼성전자주식회사 액정 표시 장치 및 그 구동 방법
JP4357188B2 (ja) * 2003-02-28 2009-11-04 株式会社 日立ディスプレイズ 液晶表示装置
JP4059180B2 (ja) * 2003-09-26 2008-03-12 セイコーエプソン株式会社 表示ドライバ、電気光学装置及び電気光学装置の駆動方法
JP4108623B2 (ja) * 2004-02-18 2008-06-25 シャープ株式会社 液晶表示装置及びその駆動方法
US20090201274A1 (en) * 2004-09-30 2009-08-13 Sharp Kabushiki Kaisha Timing Signal Generating Circuit, Electronic Apparatus, Display Apparatus, Image-Reception Apparatus, and Driving Method
JP2010033038A (ja) * 2008-06-30 2010-02-12 Nec Electronics Corp 表示パネル駆動方法及び表示装置
KR101501481B1 (ko) * 2008-12-24 2015-03-30 삼성디스플레이 주식회사 디스플레이장치, 백라이트 유닛 및 상기 디스플레이 장치의구동 방법
KR101319346B1 (ko) * 2009-09-15 2013-10-16 엘지디스플레이 주식회사 광센싱 방식의 터치 패널 내장형 액정 표시 장치 및 이의 구동 방법
EP2544169A4 (en) * 2010-03-03 2015-04-22 Sharp Kk DISPLAY DEVICE, ITS CONTROL METHOD, AND LIQUID CRYSTAL DISPLAY DEVICE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001312253A (ja) 2000-04-28 2001-11-09 Sharp Corp 表示装置の駆動方法およびそれを用いた表示装置ならびに携帯機器
JP2004163828A (ja) * 2002-11-15 2004-06-10 Sharp Corp 液晶表示装置
JP2006133673A (ja) * 2004-11-09 2006-05-25 Casio Comput Co Ltd 表示駆動装置、表示装置及び表示駆動装置の駆動制御方法
WO2008015814A1 (en) * 2006-07-31 2008-02-07 Sharp Kabushiki Kaisha Display controller, display device, display system, and control method for display device
JP2009294903A (ja) * 2008-06-05 2009-12-17 Casio Comput Co Ltd 表示装置
JP2010098305A (ja) 2008-09-19 2010-04-30 Semiconductor Energy Lab Co Ltd 表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2573752A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073465A (ja) * 2010-09-29 2012-04-12 Sony Corp タッチ検出機能付き表示装置および電子機器
US10692448B2 (en) 2010-09-29 2020-06-23 Japan Display Inc. Display unit with touch detection function and electronic unit
WO2012137816A1 (ja) * 2011-04-08 2012-10-11 シャープ株式会社 表示装置、電子機器、表示装置の制御方法及び電子機器の制御方法
WO2012137817A1 (ja) * 2011-04-08 2012-10-11 シャープ株式会社 表示装置および表示装置の駆動方法
JP5373224B2 (ja) * 2011-04-08 2013-12-18 シャープ株式会社 表示装置、電子機器、表示装置の制御方法及び電子機器の制御方法
JP5399586B2 (ja) * 2011-04-08 2014-01-29 シャープ株式会社 表示装置
JP2013084195A (ja) * 2011-10-12 2013-05-09 Lg Display Co Ltd タッチパネルを備えた液晶表示装置およびその駆動方法
KR101926525B1 (ko) 2011-10-12 2018-12-10 엘지디스플레이 주식회사 터치 센서를 구비한 표시 장치 및 그 구동 방법
JP2016027432A (ja) * 2012-02-20 2016-02-18 シャープ株式会社 駆動装置および表示装置
US9601074B2 (en) 2012-02-20 2017-03-21 Sharp Kabushiki Kaisha Drive device and display device
WO2014041975A1 (ja) * 2012-09-14 2014-03-20 シャープ株式会社 表示装置および表示方法
US9704450B2 (en) 2013-03-14 2017-07-11 Synaptics Japan Gk Driver IC for display panel
JP2014178434A (ja) * 2013-03-14 2014-09-25 Renesas Sp Drivers Inc ドライバic
JP2014209171A (ja) * 2013-03-26 2014-11-06 株式会社ジャパンディスプレイ 表示装置及び電子機器
US9715322B2 (en) 2013-03-26 2017-07-25 Japan Display Inc. Display device and electronic apparatus
US9791954B2 (en) 2013-03-26 2017-10-17 Japan Display Inc. Display device and electronic apparatus
JP2014219489A (ja) * 2013-05-07 2014-11-20 株式会社ルネサスエスピードライバ 表示ドライバic
WO2016208321A1 (ja) * 2015-06-26 2016-12-29 ソニー株式会社 制御回路、表示装置、電子機器および投射型表示装置
JPWO2016208321A1 (ja) * 2015-06-26 2018-04-12 ソニー株式会社 制御回路、表示装置、電子機器および投射型表示装置
US10991329B2 (en) 2015-06-26 2021-04-27 Sony Corporation Control circuit, display device, electronic apparatus, and projection display apparatus

Also Published As

Publication number Publication date
US20130050146A1 (en) 2013-02-28
EP2573752A1 (en) 2013-03-27
BR112012029386A2 (pt) 2016-07-26
CN102906805A (zh) 2013-01-30
JPWO2011145360A1 (ja) 2013-07-22
EP2573752A4 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
WO2011145360A1 (ja) 表示装置およびその駆動方法、ならびに表示システム
JP5296273B2 (ja) 電子機器およびそのタイミング制御方法
JP5734951B2 (ja) 表示装置およびその駆動方法、ならびに液晶表示装置
JP5341281B2 (ja) 電子機器および電子機器の制御方法
WO2012057044A1 (ja) 表示装置およびその表示方法、ならびに液晶表示装置
TWI547930B (zh) 顯示裝置
US10878768B2 (en) Display device supporting normal and variable frame modes
TWI537926B (zh) 顯示裝置及其驅動方法
WO2013047456A1 (ja) 表示装置およびその駆動方法、ならびに該表示装置を備えた表示システム
JP2007058157A (ja) 電気光学装置、電気光学装置の駆動方法、および電子機器
WO2012161022A1 (ja) 表示装置、液晶表示装置、および駆動方法
US9147372B2 (en) Display device
JP5823603B2 (ja) 駆動装置および表示装置
JP2008170842A (ja) 電気光学装置、駆動回路および電子機器
US20110234653A1 (en) Liquid crystal display device and method of operating the same
JP5373224B2 (ja) 表示装置、電子機器、表示装置の制御方法及び電子機器の制御方法
JP2008233283A (ja) 液晶表示装置およびその駆動方法
JP4428401B2 (ja) 電気光学装置、駆動回路および電子機器
JP2008158385A (ja) 電気光学装置、その駆動方法および電子機器
JP2011013420A (ja) 電気光学装置、その駆動方法および電子機器
JP2009223173A (ja) 電気光学装置、駆動回路および電子機器
JP2009205044A (ja) 電気光学装置、駆動回路および電子機器
JP5713658B2 (ja) 電気光学装置の駆動回路及び駆動方法
JP2008292536A (ja) 電気光学装置、駆動回路および電子機器
WO2011077825A1 (ja) 液晶表示装置、液晶表示装置の駆動方法並びに電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023802.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515768

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13696434

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011783297

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9751/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012029386

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012029386

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121119