WO2012161022A1 - 表示装置、液晶表示装置、および駆動方法 - Google Patents

表示装置、液晶表示装置、および駆動方法 Download PDF

Info

Publication number
WO2012161022A1
WO2012161022A1 PCT/JP2012/062335 JP2012062335W WO2012161022A1 WO 2012161022 A1 WO2012161022 A1 WO 2012161022A1 JP 2012062335 W JP2012062335 W JP 2012062335W WO 2012161022 A1 WO2012161022 A1 WO 2012161022A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
voltage
pixels
display device
display panel
Prior art date
Application number
PCT/JP2012/062335
Other languages
English (en)
French (fr)
Inventor
齊藤 浩二
淳 中田
章純 藤岡
大和 朝日
村井 淳人
正実 尾崎
柳 俊洋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012161022A1 publication Critical patent/WO2012161022A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/027Arrangements or methods related to powering off a display

Definitions

  • the present invention relates to a display device, a liquid crystal display device, and a driving method.
  • liquid crystal display devices In recent years, thin, lightweight, and low power consumption display devices typified by liquid crystal display devices have been actively used. Such a display device is remarkably mounted on, for example, a mobile phone, a smartphone, a PDA (portable information terminal), an electronic book, a laptop personal computer, and the like. In the future, electronic paper, which is a thinner display device, is expected to develop and spread rapidly.
  • TFT Thin Film Transistor
  • Patent Document 1 when the power switch of the display device main body is turned off, the source power supply driver's operating power supply voltage slowly falls to the common potential at the same time as the output terminal of the source bus driver. Since all the TFTs of the liquid crystal display element are turned on at the same time and the display electrodes of each pixel are electrically connected to the signal line driver circuit, A technique for discharging the charge accumulated in the capacitor is disclosed.
  • Japanese Published Patent Publication Japanese Patent Laid-Open No. 10-214062 (Released on August 11, 1998)”
  • the present invention has been made in view of the above problems, and an object of the present invention is to efficiently discharge electric charges stored in each pixel of the display panel when the display by the display panel is turned off.
  • a display device and a driving method are provided.
  • a display device has a display panel having a plurality of pixels, a plurality of gate signal lines, and a plurality of source signal lines, and a common electrode of each of the plurality of pixels.
  • a common electrode driving circuit for supplying a common voltage; a scanning line driving circuit for sequentially selecting and scanning the plurality of gate signal lines; and the plurality of sources for each of the plurality of pixels on the selected gate signal line.
  • a signal line driving circuit for supplying a source signal from a signal line, and a first for releasing charge stored in the pixel to each pixel electrode of the plurality of pixels when display of the display panel is turned off.
  • a display end-time control means for controlling to apply the above voltage.
  • the voltage level of the pixel electrode of each pixel can be changed in a short time to the first voltage for releasing the charge stored in the pixel. That is, since the electric charge stored in each pixel of the display panel can be discharged in a short time, display by the display panel can be turned off without causing display defects such as burn-in and flicker.
  • a liquid crystal display device includes any one of the display devices described above.
  • liquid crystal display device it is possible to provide a liquid crystal display device having the same effects as the above display device.
  • the driving method provides a display panel having a plurality of pixels, a plurality of gate signal lines, and a plurality of source signal lines, and a common that supplies a common voltage to each common electrode of the plurality of pixels.
  • a display device driving method including a signal line driving circuit to supply, wherein when the display of the display panel is turned off, a charge stored in the pixel is released to each pixel electrode of the plurality of pixels
  • a display end-time control step for controlling to apply a first voltage to perform the above operation.
  • the present driving method by adopting the driving method as a driving method of the display device, it is possible to provide a display device that exhibits the same effect as the display device.
  • the display device the liquid crystal display device, and the driving method thereof according to the present invention, it is possible to efficiently discharge the electric charge stored in each pixel of the display panel when the display by the display panel is turned off. There is an effect.
  • FIG. 3 is a diagram illustrating a configuration example of a display device according to Embodiment 1.
  • FIG. It is a figure which shows the structure of the pixel with which a display panel is provided.
  • movement at the time of the display end by the display apparatus which concern on Embodiment 1 are shown.
  • movement at the time of the display end by the display apparatus which concern on Embodiment 2 are shown.
  • movement at the time of the display end by the display apparatus which concern on Embodiment 3 are shown.
  • 10 shows various voltage values in an end-of-display operation by the display device according to the fourth embodiment.
  • 10 shows various voltage values in an end-of-display operation by the display device 1 according to the fifth embodiment.
  • Embodiment 1 First, Embodiment 1 of the present invention will be described.
  • FIG. 1 is a diagram illustrating a configuration example of the display device 1 according to the first embodiment.
  • the display device 1 includes a display panel 2, a scanning line driving circuit 4, a signal line driving circuit 6, a common electrode driving circuit 8, a timing controller 10, and a power generation circuit 12.
  • an active matrix type liquid crystal display device is employed as the display device 1. Therefore, the display panel 2 of Embodiment 1 is an active matrix type liquid crystal display panel, and the other components described above are for driving the liquid crystal display panel.
  • the display panel 2 includes a plurality of pixels, a plurality of gate signal lines G, and a plurality of source signal lines S.
  • a plurality of pixels are arranged in a grid pattern.
  • the plurality of gate signal lines G are provided side by side in the pixel column direction (direction along the pixel column). Each of the plurality of gate signal lines G is connected to a corresponding pixel row of the plurality of pixels.
  • the plurality of source signal lines S are arranged side by side in the pixel row direction (the direction along the pixel row), and each of them is orthogonal to each of the plurality of gate signal lines G.
  • Each of the plurality of source signal lines S is connected to a corresponding pixel column among the plurality of pixels.
  • the gate signal line G connected to the pixel row of the nth row (n is an arbitrary integer) is denoted as G (n).
  • G (n) is a gate signal line G connected to the tenth pixel row
  • G (n + 1), G (n + 2), and G (n + 3) are the 11th and 12th rows, respectively.
  • the source signal line S that connects the i-th pixel column (i is an arbitrary integer) is denoted by S (i).
  • S (i) is a source signal line S connecting pixels in the 10th column
  • S (i + 1), S (i + 2), and S (i + 3) are in the 11th, 12th, and 13th columns, respectively.
  • a source signal line S connecting the pixel columns of the eye is shown.
  • the scanning line driving circuit 4 sequentially selects and scans a plurality of gate signal lines G. Specifically, the scanning line driving circuit 4 sequentially selects a plurality of gate signal lines G, and with respect to the selected gate signal line G, switching elements (TFTs) provided in each pixel on the gate signal line G. ) To turn on.
  • TFTs switching elements
  • the signal line driving circuit 6 supplies a source signal from the corresponding source signal line S to each pixel on the gate signal line G while the gate signal line G is selected. More specifically, the signal line driving circuit 6 calculates the value of the voltage to be output to each pixel on the selected gate signal line G based on the input video signal, and uses the voltage of the value as a source. Output from the output amplifier toward each source signal line S. As a result, a source signal is supplied to each pixel on the selected gate signal line G, and the source signal is written.
  • the common electrode drive circuit 8 supplies a predetermined common voltage for driving the common electrode to the common electrode provided in each of the plurality of pixels.
  • the video signal is inputted to the timing controller 10 from the outside (in the example shown in FIG. 1, the system side control unit).
  • the video signal here includes a clock signal, a synchronization signal, and a video data signal.
  • the timing controller 10 outputs a signal serving as a reference for each drive circuit to operate synchronously to each drive circuit.
  • the timing controller 10 supplies a gate start pulse signal, a gate clock signal GCK, and a gate output control signal GOE to the scanning line driving circuit 4.
  • the timing controller 10 outputs a source start pulse signal, a source latch strobe signal, and a source clock signal to the signal line driver circuit 6.
  • the scanning line driving circuit 4 When the scanning line driving circuit 4 receives the gate start pulse signal, the scanning line driving circuit 4 starts to operate the plurality of gate signal lines G. Then, the scanning line driving circuit 4 sequentially supplies an ON voltage to each gate signal line G according to the gate clock signal GCK and the gate output control signal GOE.
  • the signal line driving circuit 6 Based on the source start pulse signal, the signal line driving circuit 6 stores the input image data of each pixel in a register according to the source clock signal, and for each source signal line S according to the next source latch strobe signal. The source signal corresponding to the is supplied.
  • the power supply generation circuit 12 generates Vdd, Vdd2, Vcc, Vgh, and Vgl, which are voltages necessary for each circuit in the display device 1 to operate. Then, Vcc, Vgh, and Vgl are supplied to the scanning line driving circuit 4, Vdd and Vcc are supplied to the signal line driving circuit 6, Vcc is supplied to the timing controller 10, and Vdd 2 is supplied to the common electrode driving circuit 8.
  • the display device 1 according to the first embodiment further includes a display end control unit 20.
  • the display device 1 is provided with a display end time control unit 20 as one function of the timing controller 10.
  • the display end control unit 20 controls the display end operation by the display device 1.
  • the operation at the end of display means that when the display on the display panel 2 is turned off, the first voltage is applied to the pixel electrodes of the plurality of pixels on the display panel 2. Each part is controlled.
  • the first voltage is a voltage applied to the pixel electrode in order to release the electric charge stored in the pixel.
  • the first voltage is a voltage for releasing more charge stored in the pixel in a shorter time, and at least a ground voltage GND (0 V) than a voltage for displaying a normal state during normal driving.
  • the voltage is preferably close, and most preferably the ground voltage GND (0 V).
  • a voltage of about ⁇ 0.5 to 1.0 V is adopted as a voltage for displaying a normally state during normal driving than the common voltage.
  • the first voltage is preferably set to ⁇ 0 to ⁇ 0.5 V, more preferably the ground voltage GND (0 V), compared to the ground voltage GND.
  • the ground voltage GND (0 V) is adopted as the first voltage.
  • a voltage that is intentionally increased or decreased from the ground voltage GND is set as the first voltage. There is also.
  • FIG. 2 is a diagram illustrating a configuration of pixels included in the display panel 2.
  • FIG. 2 shows a configuration of two pixels (pixel (i, n) and pixel (i + 1, n)) among a plurality of pixels included in the display panel 2.
  • Pixel (i, n) indicates a pixel connected to the source signal line S (i) and the gate signal line G (n).
  • Pixel (i + 1, n) indicates a pixel connected to the source signal line S (i + 1) and the gate signal line G (n).
  • the other pixels included in the display panel 2 have the same configuration as these pixels.
  • the pixel includes a TFT 200 as a switching element.
  • the gate electrode of the TFT 200 is connected to the corresponding gate signal line G.
  • the source electrode of the TFT 200 is connected to the corresponding source signal line S.
  • the drain electrode of the TFT 200 is connected to the liquid crystal capacitor Clc and the storage capacitor Ccs.
  • the source signal is supplied from the drain electrode of the TFT 200 to the pixel electrode of the liquid crystal capacitor Clc and the storage capacitor Ccs.
  • the arrangement direction of the liquid crystal sealed between the pixel electrode of the liquid crystal capacitor Clc and the common electrode is supplied to the pixel. It changes according to the difference between the voltage level of the source signal and the voltage level supplied to the common electrode, and an image corresponding to this difference is displayed.
  • the pixel can maintain a state where an image is displayed for a certain period of time due to the electric charge stored in the storage capacitor Ccs.
  • a so-called oxide semiconductor is used as the TFT 200.
  • This oxide semiconductor has extremely excellent off characteristics in that almost no leakage current occurs in the off state.
  • the charges stored in the liquid crystal capacitor Clc and the holding capacitor Ccs are held in the liquid crystal capacitor Clc and the holding capacitor Ccs for a longer time unless some control such as releasing the charge is performed.
  • FIG. 3 shows various voltage values in the display end operation by the display device 1 according to the first embodiment.
  • FIG. 3 (a) shows voltage values of the two source signal lines S (source signal lines S (i) and (i + 1)) shown in FIG.
  • FIG. 3B shows the voltage value of the drain electrode of each of the two pixels (pixel (i, n) and pixel (i + 1, n)) shown in FIG.
  • FIG. 3C shows the voltage value of the common voltage applied to each common electrode of the plurality of pixels.
  • FIG. 3D shows voltage values of the two gate signal lines G (gate signal lines G (n) and (n + 1)) shown in FIG.
  • timing t1 indicates the timing when the display on the display panel 2 is switched off.
  • the signal line driving circuit 6 includes a source output amplifier that supplies a source signal (first source signal; hereinafter referred to as “source signal (+)”) whose voltage level is on the + side of the common voltage. (A first source output amplifier) and a source output amplifier that supplies a source signal (second source signal; hereinafter referred to as “source signal ( ⁇ )”) whose voltage level is ⁇ side of the common voltage. And a second source output amplifier).
  • the signal line driving circuit 6 performs the supply of the source signal (+) to a certain source signal line S and the supply of the source signal ( ⁇ ) to another source signal line S in parallel. It is possible.
  • FIG. 3A shows that the source signal supply to the source signal line S (i) and the source signal supply to the source signal line S (i + 1) are performed in parallel.
  • the polarity (positive or negative) of the voltage supplied to each source signal line S is alternately switched every predetermined period.
  • the polarity (positive / negative) of the voltage supplied to the source signal line S (i) and the voltage supplied to the source signal line S (i + 1) is 1 horizontal. It is shown that the switching is alternately performed every scanning period (that is, every time the selection of the gate signal line G is switched).
  • the signal line driving circuit 6 supplies the source signal to each source signal line S every horizontal scanning period. As a result, the source signal is written to each pixel included in the display panel 2, and the display panel 2 displays an image.
  • each pixel can maintain the state of displaying an image during the frame period.
  • the voltage level of the common voltage COM is slightly less than the ground voltage GND in consideration of the pull-in by Cgd (see FIG. 2). On the side.
  • the voltage level of the source signal (+) is set to the + side with respect to the ground voltage GND, and the voltage level of the source signal ( ⁇ ) is set to the ⁇ side with respect to the ground voltage GND.
  • the display device 1 employs a positive / negative power supply system, and the withstand voltage design range of the source output amplifier that supplies the source signal (+) is set to the + side with respect to the ground voltage GND.
  • the withstand voltage design range of the source output amplifier that supplies the source signal ( ⁇ ) is set to the ⁇ side of the ground voltage GND.
  • the display device 1 performs the following display end operations (1) to (3) under the control of the display end control unit 20.
  • the ON voltage is applied to all the gate signal lines G all at once. Thereby, TFTs of all the pixels included in the display panel 2 are turned on.
  • the voltage level of the drain electrode of each pixel included in the display panel 2 (that is, the voltage level of the pixel electrode) gradually increases toward the ground voltage GND. A transition is made and the ground voltage GND is reached at timing t2.
  • the TFTs of all the pixels included in the display panel 2 are turned on, when the ground voltage GND is applied to a certain source signal line S, the TFTs are connected to the source signal line S.
  • the voltage level of the drain electrode of all the pixels gradually changes toward the ground voltage GND, and becomes the ground voltage GND at timing t2.
  • the display device 1 does not apply the off voltage to any of the gate signal lines G. That is, the TFTs of all the pixels on the display panel 2 are not switched off.
  • the display device 1 of Embodiment 1 does not switch off the TFTs of all the pixels on the display panel 2, the potential difference does not occur.
  • the display device 1 of Embodiment 1 applies the ground voltage GND to the pixel electrode of each pixel included in the display panel 2 when the display of the display panel 2 is switched off.
  • the voltage level of the pixel electrode of each pixel can be changed to the ground voltage GND in a short time. That is, since the charge stored in each pixel of the display panel 2 can be discharged in a short time, the display by the display panel 2 can be turned off without causing display defects such as burn-in and flicker. it can.
  • the ground voltage GND is applied to the pixel electrode of each pixel included in the display panel 2 but also the common of each pixel included in the display panel 2.
  • An example in which the ground voltage GND is applied also to the electrodes will be described.
  • points other than those described below are the same as the configuration of the display device 1 according to the first embodiment, and thus the description thereof is omitted.
  • FIG. 4 shows various voltage values in the display end operation by the display device 1 according to the second embodiment.
  • FIG. 4 (a) shows voltage values of the two source signal lines S (source signal lines S (i) and (i + 1)) shown in FIG.
  • FIG. 4B shows the voltage value of the drain electrode of each of the two pixels (pixel (i, n) and pixel (i + 1, n)) shown in FIG.
  • FIG. 4C shows the voltage value of the common voltage applied to each common electrode of the plurality of pixels.
  • FIG. 4D shows voltage values of the two gate signal lines G (gate signal lines G (n) and (n + 1)) shown in FIG.
  • timing t1 indicates the timing when the display on the display panel 2 is switched off.
  • the display device 1 When the display on the display panel is switched off (When the display on the display panel is switched off) When the display on the display panel 2 is switched off at timing t1, the display device 1 according to the second embodiment performs the following display end operation (1) to (4) under the control of the display end control unit 20. Do.
  • the ON voltage is applied to all the gate signal lines G all at once.
  • TFTs of all the pixels included in the display panel 2 are turned on.
  • the voltage level of the drain electrode of each pixel included in the display panel 2 (that is, the voltage level of the pixel electrode) gradually increases toward the ground voltage GND. A transition is made and the ground voltage GND is reached at timing t2.
  • the TFTs of all the pixels included in the display panel 2 are turned on, when the ground voltage GND is applied to a certain source signal line S, the TFTs are connected to the source signal line S.
  • the voltage level of the drain electrode of all the pixels gradually changes toward the ground voltage GND, and becomes the ground voltage GND at timing t2.
  • the ground voltage GND is applied to the common electrode of all the pixels included in the display panel 2. As a result, as shown in FIG. 4C, the voltage level of each source signal line S gradually changes toward the ground voltage GND, and becomes the ground voltage GND by the timing t2.
  • the display device 1 of Embodiment 2 applies the ground voltage GND to each of the pixel electrode and the common electrode of each pixel included in the display panel 2 when the display of the display panel 2 is switched off. It was decided.
  • the display by the display panel 2 can be turned off without causing a display residue and causing more display defects such as burn-in and flicker.
  • Embodiment 3 an example will be described in which when the display on the display panel 2 is switched off, the ground voltage GND is applied after the common voltage is applied to the pixel electrode of each pixel included in the display panel 2.
  • points other than those described below are the same as the configuration of the display device 1 according to the first embodiment, and thus description thereof is omitted.
  • FIG. 5 shows various voltage values in the display end operation by the display device 1 according to the third embodiment.
  • FIG. 5 (a) shows voltage values of the two source signal lines S (source signal lines S (i) and (i + 1)) shown in FIG.
  • FIG. 5B shows the voltage value of the drain electrode of each of the two pixels (pixel (i, n) and pixel (i + 1, n)) shown in FIG. 2 and each of the plurality of pixels. The voltage value of the common voltage applied to the common electrode is shown.
  • FIG. 5C shows voltage values of the two gate signal lines G (gate signal lines G (n) and (n + 1)) shown in FIG.
  • timing t1 indicates the timing when the display on the display panel 2 is switched off.
  • a one-side power supply system is employed, and the common voltage, the voltage level of the source signal (+), and the voltage level of the source signal ( ⁇ ) are all set to the + side with respect to the ground voltage GND. Yes.
  • the withstand voltage design range of the source output amplifier that supplies the source signal (+) and the withstand voltage design range of the source output amplifier that supplies the source signal ( ⁇ ) are both set to the + side from the ground voltage GND. Yes.
  • FIG. 5A shows that the source signal supply to the source signal line S (i) and the source signal supply to the source signal line S (i + 1) are performed in parallel. It is shown that any voltage level of these source signals is set to the + side with respect to the ground voltage GND.
  • the common voltage, the voltage level of the pixel (i, n), and the voltage level of the pixel (i + 1, n) are all set to the + side with respect to the ground voltage GND. It is shown.
  • the display device 1 of Embodiment 3 performs the following display end operation (1) to (6) under the control of the display end control unit 20. Do.
  • the ON voltage is applied to all the gate signal lines G all at once. Thereby, TFTs of all the pixels included in the display panel 2 are turned on.
  • the voltage level of the drain electrode of each pixel included in the display panel 2 (that is, the voltage level of the pixel electrode) gradually increases toward the common voltage COM.
  • the transition is made and at the timing t2, the common voltage COM is obtained.
  • the potential difference between the voltage level of the pixel electrode and the electrode level of the common electrode in each pixel included in the display panel 2 is eliminated.
  • the TFTs of all the pixels included in the display panel 2 are turned on, when the common voltage COM is applied to a certain source signal line S, the TFTs are connected to the source signal line S.
  • the voltage level of the drain electrode of all the pixels gradually changes toward the common voltage COM, and becomes the common voltage COM at timing t2.
  • the voltage level of the drain electrode of each pixel included in the display panel 2 (that is, the voltage level of the pixel electrode) gradually increases toward the ground voltage GND. A transition is made and the ground voltage GND is reached at timing t3.
  • the ground voltage GND is applied to the common electrode of all the pixels included in the display panel 2.
  • the common electrode of all the pixels included in the display panel 2 gradually changes toward the ground voltage GND, and becomes the ground voltage GND at the timing t3. .
  • the potential difference between the pixel electrode and the common electrode of each pixel, which causes the remaining display, is eliminated in a shorter time, and the voltage levels of the pixel electrode and the common electrode of each pixel are reduced to the ground voltage GND in a shorter time. Since the transition can be performed, the display by the display panel 2 can be turned off without causing a display remaining and without causing display defects such as burn-in and flicker.
  • the second voltage is a voltage applied to the pixel electrode in order to display a normally state during normal driving.
  • a voltage of about ⁇ 0.5 to 1.0 V than the common voltage is adopted as the second voltage.
  • FIG. 6 shows various voltage values in the display end operation by the display device 1 according to the fourth embodiment.
  • FIG. 6 (a) shows voltage values of the two source signal lines S (source signal lines S (i) and (i + 1)) shown in FIG.
  • FIG. 6B shows the voltage value of the drain electrode of each of the two pixels (pixel (i, n) and pixel (i + 1, n)) shown in FIG. 2 and each of the plurality of pixels. The voltage value of the common voltage applied to the common electrode is shown.
  • FIG. 6C shows voltage values of the two gate signal lines G (gate signal lines G (n) and (n + 1)) shown in FIG.
  • timing t1 indicates the timing when the display on the display panel 2 is switched off.
  • the display device 1 When the display on the display panel is switched off (When the display on the display panel is switched off) When the display on the display panel 2 is switched off at timing t1, the display device 1 according to the fourth embodiment performs the following display end operation (1) to (6) under the control of the display end control unit 20. Do.
  • the ON voltage is applied to all the gate signal lines G all at once. Thereby, TFTs of all the pixels included in the display panel 2 are turned on.
  • a second voltage for displaying a normal state is applied to each source signal line S during normal driving. Accordingly, as shown in FIG. 6A, the voltage level of each source signal line S gradually transitions toward the second voltage, and becomes the second voltage at timing t2.
  • the voltage level of the drain electrode of each pixel included in the display panel 2 (that is, the voltage level of the pixel electrode) gradually increases toward the second voltage. And at the timing t2, the voltage becomes the second voltage.
  • each pixel included in the display panel 2 displays a normally state.
  • the TFTs of all the pixels included in the display panel 2 are in an on state, when a second voltage is applied to a certain source signal line S, the TFT is connected to the source signal line S.
  • the voltage level of the drain electrode of all the pixels gradually transitions toward the second voltage, and becomes the second voltage at timing t2.
  • the voltage level of the drain electrode of each pixel included in the display panel 2 (that is, the voltage level of the pixel electrode) gradually increases toward the ground voltage GND. A transition is made and the ground voltage GND is reached at timing t3.
  • the ground voltage GND is applied to the common electrode of all the pixels included in the display panel 2.
  • the common electrode of all the pixels included in the display panel 2 gradually changes toward the ground voltage GND, and becomes the ground voltage GND at the timing t3. .
  • the display device 1 when the display of the display panel 2 is switched off, the display device 1 according to the fourth embodiment applies the second voltage to the pixel electrode of each pixel included in the display panel 2, and then the display panel 1 The ground voltage GND is applied to each of the pixel electrode and the common electrode of each pixel included in 2.
  • the normal state can be displayed for all the pixels in a shorter time, and the voltage levels of the pixel electrode and the common electrode of each pixel can be changed to the ground voltage GND in a short time.
  • the display on the display panel 2 can be turned off without causing the occurrence of burn-in and flickering.
  • the gate signal lines G are simultaneously turned on when the display on the display panel 2 is switched off.
  • each gate signal line G is sequentially scanned, and each time the selection of the gate signal line G is switched.
  • An example in which the ground voltage GND is applied to each pixel whose signal is connected to the line G will be described.
  • FIG. 7 shows various voltage values in the display end operation by the display device 1 according to the fifth embodiment.
  • FIG. 7 (a) shows voltage values of the two source signal lines S (source signal lines S (i) and (i + 1)) shown in FIG.
  • FIG. 7B shows the voltage values of the drain electrodes of the TFTs of the two pixels (pixel (i, n) and pixel (i + 1, n)) shown in FIG.
  • FIG. 7C shows the voltage value of the common voltage applied to each common electrode of the plurality of pixels.
  • FIG. 7D shows voltage values of the gate signal lines G (gate signal lines G (n) to (N)) included in the display device 1.
  • timing t1 indicates the timing when the display on the display panel 2 is switched off.
  • the display device 1 controls all the gate signal lines G as shown in FIG. A turn-on voltage is sequentially applied. Accordingly, the TFTs of all the pixels included in the display panel 2 are sequentially turned on for each gate signal line G.
  • the display device 1 performs the following display end-time operations (1) and (2) every time the gate signal line G turned on is switched.
  • a ground voltage GND is applied to each source signal line S. Accordingly, as shown in FIG. 7A, the voltage level of each source signal line S gradually transitions toward the ground voltage GND, and becomes the ground voltage GND at the timing t2.
  • the display device 1 performs the above (1) and (2) each time the gate signal line G is switched, thereby setting the voltage levels of the pixel electrodes of all the pixels to the ground voltage GND.
  • the common voltage COM is not changed until all the pixels transition to the ground voltage GND. This is because when the gate signal line G is switched off, there is a potential difference between the voltage level of the pixel electrode and the voltage level of the common electrode due to the voltage change of the gate signal line G caused by pulling in Cgd (see FIG. 2). This is to prevent the occurrence.
  • the period during which the gate signal line G is turned on is at least as long as the voltage level of the pixel electrodes of all the pixels connected to the gate signal line G can be set to the ground voltage GND than during normal driving. It can be shortened.
  • the voltage level of the pixel electrode of each pixel can be changed to the ground voltage GND in a short time without turning on the gate signal lines G all at once. That is, since the charge stored in each pixel of the display panel 2 can be discharged in a short time, the display by the display panel 2 can be turned off without causing display defects such as burn-in and flicker. it can.
  • the display end control unit 20 applies the ground voltage GND to each pixel electrode of the plurality of pixels when the display of the display panel 2 is turned off.
  • the backlight of the display panel 2 may be controlled to be turned off after being applied and the voltage level of each pixel electrode of the plurality of pixels transitions to the ground voltage GND.
  • the display end control unit 20 may perform control so that the backlight of the display panel 2 is not turned off until the voltage level of each pixel electrode of the plurality of pixels transitions to the ground voltage GND.
  • the time required for the voltage level of each pixel electrode to transition to the ground voltage GND can be further shortened.
  • the display end control unit 20 of each embodiment controls the scanning line drive circuit 4, the signal line drive circuit 6, and the common electrode drive circuit 8 to perform the display end operation by the display device 1 described so far. Realize.
  • the display end control unit 20 transmits a predetermined instruction signal (predetermined voltage output instruction signal) to the signal line driving circuit 6 to thereby generate a predetermined voltage (first voltage) for each source signal line S. , Voltage, second voltage, common voltage, ground voltage, etc.).
  • the display end control unit 20 transmits a predetermined instruction signal (predetermined voltage output instruction signal) to the scanning line driving circuit 4 to thereby determine a predetermined voltage (on voltage, off voltage) for each gate signal line G. ) Is applied.
  • a predetermined instruction signal predetermined voltage output instruction signal
  • the display end control unit 20 transmits a predetermined instruction signal (predetermined voltage output instruction signal) to the common electrode driving circuit 8, thereby determining a predetermined voltage (common voltage) for each common electrode of the plurality of pixels. , Ground voltage, etc.).
  • the display device 1 starts the operation at the end of display when the display on the display panel 2 is turned off under the control of the display end control unit 20.
  • the display end control unit 20 needs to determine when the display on the display panel 2 is turned off. For example, the display end control unit 20 determines the timing when the display on the display panel 2 is turned off by the following method.
  • FIG. 8 is a diagram illustrating a first configuration example of the display device 1 to which a configuration for detecting the timing at which the display on the display panel 2 is turned off is added.
  • the display end time control unit 20 sends a notification signal for notifying the display panel 2 to be turned off (see FIG. 8). In the example shown in FIG. 8, it is determined that the display on the display panel 2 is turned off when received from the system-side control unit.
  • the notification signal may be transmitted to the display end control unit 20 by a command by SPI or the like, and an input terminal for the notification signal is provided in the display end control unit 20, and the High / You may make it control by a Low signal.
  • FIG. 9 is a diagram illustrating a second configuration example of the display device 1 to which a configuration for detecting the timing at which the display of the display panel 2 is turned off is added.
  • the display device 1 has a power supply voltage supplied to the display device from the outside (in the example shown in FIG. 9, the system-side control unit) from a predetermined threshold value. Is also provided with a power supply lowering detection circuit 900 for detecting that the voltage is lower.
  • the display end control unit 20 detects that the power supply voltage has become lower than a predetermined threshold value by the power supply drop detection circuit 900, it determines that the display on the display panel 2 is turned off.
  • the power supply drop detection circuit 900 includes a comparator 902.
  • the positive input terminal of the comparator 902 is connected to the supply line of the power supply voltage Vi supplied to the display device. That is, the power supply voltage Vi detected on the power supply voltage supply line is input to the positive input terminal of the comparator 902.
  • the reference voltage Vref is input to the negative input terminal of the comparator 902.
  • a voltage value is set such that the display on the display panel 2 is turned off when the reference voltage Vref is lower than the voltage.
  • the comparator 902 outputs a high-level control signal as long as the power supply voltage Vi is higher than the reference voltage Vref.
  • the comparator 902 switches the output control signal from the Hi level control signal to the Low level control signal at the timing when the power supply voltage Vi becomes lower than the reference voltage Vref.
  • the display end control unit 20 determines that the timing at which the control signal received from the comparator 902 is switched from the Hi level control signal to the Low level control signal is the timing at which the display on the display panel 2 is turned off. .
  • the display end control unit 20 applies a scanning voltage to all the gate signal lines G all at once when the display on the display panel 2 is turned off. 4 has been described.
  • FIG. 10 is a diagram illustrating various signal waveforms input and output in the scanning line driving circuit 4.
  • the scanning line driving circuit 4 of each embodiment is provided with an XAO input terminal.
  • the display end control unit 20 supplies a Hi signal to the XAO input terminal.
  • the display end control unit 20 supplies a Low signal to the XAO input terminal.
  • the scanning line driving circuit 4 applies an ON voltage to all the gate signal lines G while the Low signal is supplied to the XAO input terminal.
  • the input signal to the XAO input terminal is switched from the Hi level to the Low level at the timing t1 when the display of the display panel 2 is turned off.
  • FIG. 10 shows that the scanning line driving circuit 4 applies an ON voltage to all the gate signal lines G in response to this switching.
  • FIG. 10 shows that the scanning line driving circuit 4 finishes applying the on-voltage to all the gate signal lines G in response to this switching.
  • FIG. 11 is a diagram illustrating a configuration example of the signal line driving circuit 6 included in the display device 1.
  • the signal line drive circuit 6 includes a source output amplifier circuit 1100 and a source output amplifier circuit control unit 1120.
  • the source output amplifier circuit 1100 includes a voltage control circuit 1100, a source output amplifier 1102, and a source output amplifier 1104.
  • the source output amplifier 1102 supplies a source signal (+) to the source signal line S.
  • the source output amplifier 1104 supplies the source signal ( ⁇ ) to the source signal line S.
  • the voltage control circuit 1110 is provided between the source output amplifier 1102 and the source output amplifier 1104 and the source signal line S.
  • the voltage control circuit 1110 includes switches S1, S2, S3, and S4.
  • the switch S1 is provided between the source output amplifier 1102 and the source signal line S.
  • the switch S2 is provided between the source output amplifier 1104 and the source signal line S.
  • the switches S3 and S4 are provided between the ground and the source signal line S.
  • the voltage control circuit 1110 switches the connection destination of the source signal line S among the source output amplifier 1102 and the source output amplifier 1104 and the ground by controlling on / off of these switches.
  • the voltage control circuit 1110 switches the voltage (source output voltage) supplied to the source signal line S between the voltage corresponding to the normal source signal and the ground voltage.
  • the voltage control circuit 1110 normally connects the source output amplifier 1102 or the source output amplifier 1104 to the source signal line S by turning on the switch S1 or S2, and converts it into a normal source signal. Supply the appropriate voltage.
  • the voltage control circuit 1110 connects the ground to the source signal line S and supplies the ground voltage by turning on the switches S3 and S4.
  • the operation of the voltage control circuit 1110 is controlled by the source output amplifier circuit control unit 1120.
  • FIG. 12 is a diagram illustrating waveforms of various control signals supplied from the source output amplifier circuit control unit 1120 to the voltage control circuit 1110.
  • the source output amplifier circuit control unit 1120 alternately switches a control signal for turning on the switch S1 and a control signal for turning on the switch S2 to the voltage control circuit 1110. To supply.
  • the source output amplifier circuit control unit 1120 supplies a control signal for setting each of the switches S3 and S4 to the short state to the voltage control circuit 1110.
  • the source output amplifier 1102 and the source output amplifier 1104 are alternately connected to the source signal line S, and normal source signals are alternately supplied from the source output amplifier 1102 and the source output amplifier 1104. Become.
  • a timing t1 in FIG. 12 is a timing at which the display on the display panel 2 is turned off when a predetermined voltage output instruction signal is supplied from the display end control unit 20.
  • the source output amplifier circuit control unit 1120 supplies a control signal for turning on each of the switches S3 and S4 to the voltage control circuit 1110.
  • the source output amplifier circuit control unit 1120 supplies the voltage control circuit 1110 with a control signal that turns off each of the switches S1 and S2.
  • the source is connected to the source output amplifier 1102 with respect to the source signal line S, and the ground voltage is supplied.
  • the display devices 1 of the first, second, and fifth embodiments employ so-called positive and negative power supply systems.
  • This positive and negative power supply system is a source output amplifier that supplies a source signal (+) in the voltage range on the + side of the ground voltage (0 V), and a source output that supplies the source signal ( ⁇ ) in the voltage range on the ⁇ side.
  • the power supply system supplies each source signal by two source output amplifiers together with an amplifier.
  • FIG. 13 is a diagram illustrating an example of an amplifier power supply voltage range and an amplifier output range in a positive / negative power supply system.
  • the amplifier power supply voltage range is Vdd1 (6V) to GND (0V)
  • the amplifier output range is the source high output (maximum output). Value: 5V) to GND (0V).
  • the amplifier power supply voltage range is set to GND (0 V) to Vdd2 ( ⁇ 6 V) to GND (0 V), and the amplifier output range is set to GND (0 V) to Source Low output (minimum output value: -5V).
  • the center value (source center) becomes the ground voltage GND (0 V), but the common voltage COM is slightly smaller than the center value (ground voltage (0 V)) in consideration of the pull-in of the center value (source center) by Cgd. -Set to the-side.
  • the display devices 1 of the third and fourth embodiments employ a so-called one-side power supply system.
  • This single-side power supply system supplies both the source signal (+) and the source signal (-) in either the voltage range on the + side or the voltage range on the-side with respect to the ground voltage (0V).
  • the power supply system supplies each source signal by one source output amplifier.
  • FIG. 14 is a diagram showing an example of the amplifier power supply voltage range and the amplifier output range in the one-side power supply system.
  • FIG. 14 shows the amplifier power supply voltage range and the amplifier output range of the source output amplifier that supplies both the source signal (+) and the source signal ( ⁇ ).
  • the amplifier power supply voltage range is Vdd (12 V) to GND (0 V)
  • the amplifier output range is source high output (maximum output value: 11 V) to source low output (minimum output value: 1 V).
  • the center value (source center) is 6V, but the common voltage COM is set slightly to the minus side from the center value (6V) in consideration of the pull-in of the center value (source center) by Cgd.
  • FIG. 15 is a diagram illustrating another example of the amplifier power supply voltage range and the amplifier output range in the positive / negative power supply system.
  • the display devices 1 of the first, second, and fifth embodiments employ the positive / negative power supply system illustrated in FIG. 13 in which the common voltage COM is set slightly to the negative side from the center value (0 V). Yes.
  • a positive / negative power supply system in which the common voltage COM and the ground voltage GND are set to be substantially equal to 0V as shown in FIG. 15 may be adopted.
  • the common voltage COM is already the ground voltage GND. Therefore, it is not necessary to perform an operation of transitioning the common voltage COM to the ground voltage GND.
  • the voltage levels of the pixel electrodes can be made uniform by making transitions to the ground voltage GND and the common voltage COM at which the charge is most released.
  • FIG. 16 is a diagram for explaining the pull-in of the drain potential by Cgd.
  • the potential level of the drain electrode of the TFT 200 provided in the pixel (i, n) of the display device 1 corresponds to the source signal supplied from the source signal line S (i) through the transistor element 200.
  • the battery is charged with the appropriate voltage.
  • the potential level of the drain electrode of the TFT 200 changes via the Cgd parasitic capacitance as the voltage of the gate signal line G (n) changes from the on voltage Vgh to the off voltage Vgl.
  • the amount of fluctuation ⁇ Vgd that the drain electrode receives by Cgd is calculated by the following mathematical formula (1).
  • ⁇ Vgd (Cgd / ⁇ C) ⁇ ⁇ Vg (1)
  • ⁇ C is substantially equal to Cls + Ccs + Cgd + Csd1 + Csd2
  • ⁇ Vg is equal to the absolute value of Vgh ⁇ Vgl.
  • Clc is a liquid crystal capacitance between the drain electrode and the common electrode
  • Ccs is a storage capacitance between the drain electrode and the CS electrode
  • Csd1 is a parasitic capacitance between the drain electrode and the source signal line S (i)
  • Csd2 is A parasitic capacitance between the drain electrode and the source signal line S (i + 1)
  • Cgd is a parasitic capacitance between the drain electrode and the gate signal line G (n).
  • the drain potential after the change in the maximum value of the signal voltage Vs (voltage after pulling) is Vsh ⁇ Vgd
  • the drain potential after fluctuation (the voltage after pulling in) at the lowest value of the signal voltage Vs becomes Vsl ⁇ Vgd.
  • the voltage after the fluctuation of the center value of the drain electrode is the voltage after the fluctuation at the highest value of the signal voltage Vs (the voltage after the pull-in) and the voltage after the fluctuation at the lowest value of the signal voltage Vs ( The average value ⁇ (Vsh ⁇ Vgd) + (Vsl ⁇ Vgd) ⁇ / 2 with respect to the voltage after pulling in, and (Vsh + Vsl) / 2 ⁇ Vgd.
  • a TFT using a so-called oxide semiconductor for its semiconductor layer is employed as the TFT.
  • This oxide semiconductor includes, for example, IGZO (InGaZnOx).
  • IGZO InGaZnOx
  • FIG. 17 shows the characteristics of various TFTs.
  • FIG. 17 shows the characteristics of a TFT using an oxide semiconductor, a TFT using a-Si (amorphous silicon), and a TFT using LTPS (Low Temperature Poly Silicon).
  • the horizontal axis (Vgh) indicates the voltage value of the ON voltage supplied to the gate in each TFT
  • the vertical axis (Id) indicates the amount of current between the source and drain in each TFT.
  • the timing indicated as “TFT-on” in the figure indicates the timing when the on state is turned on according to the voltage value of the on-voltage
  • the timing indicated as “TFT-off” in the figure indicates that The timing at which the OFF state is set according to the voltage value of the ON voltage is shown.
  • a TFT using an oxide semiconductor has a higher current amount (that is, electron mobility) in an on state than a TFT using a-Si.
  • a TFT using a-Si has an Id current of 1 uA when the TFT is turned on, whereas a TFT using an oxide semiconductor is used when the TFT is turned on.
  • the Id current is about 20 to 50 uA.
  • a TFT using an oxide semiconductor has an electron mobility about 20 to 50 times higher in an on state than a TFT using a-Si, and has an excellent on-characteristic. .
  • a TFT using a so-called oxide semiconductor for its semiconductor layer is employed as the TFT.
  • the display device 1 of each embodiment has very excellent on characteristics of the TFT of each pixel. Therefore, the amount of electron movement when writing data to each pixel can be increased, and the time required for the writing can be further shortened. Therefore, the voltage level of the pixel electrode of each pixel can be changed in a shorter time to the first voltage for releasing the charge stored in the pixel. That is, the charge stored in each pixel of the display panel can be discharged in a shorter time.
  • the display device applies a common voltage to a display panel having a plurality of pixels, a plurality of gate signal lines, and a plurality of source signal lines, and a common electrode of each of the plurality of pixels.
  • a signal line driving circuit for supplying a source signal and a first voltage for releasing charge stored in the pixel to each pixel electrode of the plurality of pixels when display of the display panel is turned off.
  • a display end time control means for controlling to apply.
  • the voltage level of the pixel electrode of each pixel can be changed in a short time to the first voltage for releasing the charge stored in the pixel. That is, since the electric charge stored in each pixel of the display panel can be discharged in a short time, display by the display panel can be turned off without causing display defects such as burn-in and flicker.
  • the display end-time control unit applies the first electrode to each pixel electrode of each of the plurality of pixels and each common electrode of the plurality of pixels. It is preferable to control to apply a voltage.
  • the display on the display panel can be turned off without causing a display residue and without causing display defects such as burn-in and flicker.
  • the display end time control unit controls the pixel electrode of each of the plurality of pixels to apply the common voltage when the display of the display panel is turned off. It is preferable that the first voltage is controlled to be applied to the pixel electrode of each of the plurality of pixels and the common electrode of each of the plurality of pixels.
  • the voltage level of each of the pixel electrode and the common electrode of each pixel is set to the first voltage while eliminating the potential difference between the pixel electrode and the common electrode of each pixel that causes display remaining. Therefore, the display on the display panel can be turned off without causing a display residue and causing more display defects such as burn-in and flicker.
  • the display end time control means displays a normally state during normal driving for each pixel electrode of the plurality of pixels when display of the display panel is turned off. It is preferable to control so that the first voltage is applied to the pixel electrode of each of the plurality of pixels and the common electrode of each of the plurality of pixels.
  • the display on the display panel can be turned off without causing a display residue and without causing display defects such as burn-in and flicker.
  • the display end-time control means transmits a predetermined instruction signal to the signal line driving circuit and the common electrode driving circuit when the display of the display panel is turned off.
  • the signal line driver circuit is controlled to apply the first voltage to each pixel electrode of the plurality of pixels
  • the common electrode driver circuit controls the common electrode of each of the plurality of pixels.
  • the first voltage is preferably controlled to be applied.
  • the operation of the display device according to the present invention can be realized with a simple configuration in which only a predetermined instruction signal is transmitted to the signal line driving circuit and the common electrode driving circuit. Therefore, the present invention can be achieved by simply adding a display end-time control means for transmitting a predetermined instruction signal to the signal line driving circuit and the common electrode driving circuit. The operation of the display device can be realized.
  • the display device further includes detection means for detecting that a power supply voltage supplied to the display device is lower than a predetermined threshold, and the display end time control means is configured to detect the display end control means by the detection means. It is preferable to determine that the display of the display panel is turned off when it is detected that the power supply voltage is lower than the predetermined threshold.
  • the operation of the display device according to the present invention can be performed at a more appropriate timing such as when the power supply voltage becomes lower than a predetermined threshold value.
  • a more appropriate timing such as when the power supply voltage becomes lower than a predetermined threshold value.
  • an unexpected power supply voltage drop such as when the battery is removed from a portable terminal or the like, it is possible to appropriately determine this timing and operate the display device according to the present invention.
  • the display end time control means determines that the display on the display panel is turned off when receiving an instruction signal for turning off the display on the display panel from the outside.
  • the display device since it is possible to appropriately determine when to turn off display on the display panel based on an instruction signal received from the outside, the display device according to the present invention is operated at a more appropriate timing. be able to.
  • the display end time control means controls to supply ON signals simultaneously to all the gate signal lines from the scanning line driving circuit when the display of the display panel is turned off.
  • the TFTs of all the pixels on the display panel are turned on simultaneously, the first voltage is applied to the pixel electrodes of the plurality of pixels, and then the TFTs of all the pixels on the display panel Is preferably not switched off.
  • the voltage level of the drain electrode of the TFT varies due to the parasitic capacitance between the drain electrode of the TFT and the gate signal line according to the voltage change of the gate signal line (so-called pull-in by the parasitic capacitance). ) Occurs. As a result, even if there is no potential difference between the voltage level of the pixel electrode and the voltage level of the common electrode, a potential difference causing a display defect or the like is caused by the above-described fluctuation.
  • the display end control unit may apply the first voltage to the common electrode of each of the plurality of pixels after the first voltage is applied to the pixel electrode of each of the plurality of pixels. It is preferable to apply a voltage of 1.
  • the first voltage is preferably a ground voltage.
  • the voltage level of the pixel electrode of each pixel can be changed in a short time to the ground voltage at which the charge is most released.
  • more charge stored in each pixel of the display panel can be discharged in a short time, so that display by the display panel is turned off without causing more display defects such as burn-in and flicker. be able to.
  • an oxide semiconductor is preferably used for the semiconductor layer of each of the plurality of pixels.
  • the oxide semiconductor is preferably IGZO (InGaZnOx).
  • the present invention is employed for a display device in which such a semiconductor is used. Thus, a more remarkable effect can be obtained.
  • the on-characteristics of the TFT of each pixel are very excellent. Therefore, the amount of electron movement when writing data to each pixel can be increased, and the time required for the writing can be further shortened. Therefore, the voltage level of the pixel electrode of each pixel can be changed in a shorter time to the first voltage for releasing the charge stored in the pixel. That is, the charge stored in each pixel of the display panel can be discharged in a shorter time.
  • the display end time control unit applies the first voltage to each pixel electrode of the plurality of pixels when the display of the display panel is turned off, and then displays the display. It is preferable to control to turn off the backlight of the panel.
  • the signal line driver circuit includes a first source output amplifier that supplies a first source signal whose source signal potential is more positive than the ground voltage, and the source signal potential is more negative than the ground voltage.
  • a second source output amplifier that supplies a second source signal, and alternately supplying the first source signal and the second source signal to each of the plurality of source signal lines,
  • Each of the first voltage and the common voltage is preferably substantially equal to the ground voltage.
  • a liquid crystal display device includes any one of the display devices described above.
  • liquid crystal display device it is possible to provide a liquid crystal display device having the same effects as the above display device.
  • the driving method provides a display panel having a plurality of pixels, a plurality of gate signal lines, and a plurality of source signal lines, and a common that supplies a common voltage to each common electrode of the plurality of pixels.
  • a display device driving method including a signal line driving circuit to supply, wherein when the display of the display panel is turned off, a charge stored in the pixel is released to each pixel electrode of the plurality of pixels
  • a display end-time control step for controlling to apply a first voltage to perform the above operation.
  • the present driving method by adopting the driving method as a driving method of the display device, it is possible to provide a display device that exhibits the same effect as the display device.
  • the display device and the driving method according to the present invention can be used in various display devices employing an active matrix system, such as a liquid crystal display device.
  • Display device liquid crystal display device
  • Display Panel Scan Line Drive Circuit
  • Signal Line Drive Circuit Common Electrode Drive Circuit
  • Timing Controller Power Supply Generation Circuit
  • Display End Control Unit Display End Control Unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明の表示装置は、表示パネルの表示がオフされるとき、画素に電荷が残留しないようにすることを目的とする。本発明の表示装置(1)は、表示パネル(2)の表示がオフされるとき、複数の画素の各々に対し、画素に蓄えられた電荷を除去するための第1の電圧を印加するように表示パネル(2)を制御する表示終了時制御部(20)を備える。

Description

表示装置、液晶表示装置、および駆動方法
 本発明は、表示装置、液晶表示装置、および駆動方法に関する。
 近年、液晶表示装置に代表される薄型、軽量、および低消費電力の表示装置が盛んに活用されている。こうした表示装置は、例えば携帯電話、スマートフォン、PDA(携帯型情報端末)、電子ブック、ラップトップ型パーソナルコンピュータ等への搭載が顕著である。また、今後はより薄型の表示装置である電子ペーパーの開発および普及も急速に進むことが期待されている。
 このような表示装置においては、表示パネルの表示をオフしたとき、表示パネルが備える各画素の画素容量に蓄えられていた電荷は、自然放電により徐々に減少していくが、その速度が非常に遅いため、この電荷は長期間画素容量に残ったままとなる。
 特に、各画素にスイッチング素子として用いられるTFT(Thin Film Transistor)のオフ性能が高まってきており、それにつれ、各画素の自然放電量が少なくなり、電荷が画素容量に残ったままとなる期間は、より長期間化してきている。
 このように、画素容量に蓄えられていた電荷が長期間残ったままであると、焼き付きや、フリッカ等の表示の不具合が発生してしまう。また、画素に電圧がかかったままとなってしまうため、画素の寿命が低下し、表示パネルの信頼性が損なわれることとなる。
 このように、表示装置においては、画素容量に蓄えられていた電荷をいかに残さないかが課題となっており、これまでに、この課題を解決するための様々な技術が考案されている。
 例えば、下記特許文献1には、表示装置本体の電源スイッチをオフに操作したときに、ソースバスドライバの動作電源電圧が共通電位までゆっくりと立ち下がるのと略同時に、そのソースバスドライバの出力端子の電位が共通電位までゆっくりと立ち下がることから、このときに液晶表示素子の全てのTFTを一斉にオンとし、各画素の表示電極を信号線駆動回路に電気的に接続することで、各画素容量に蓄積されていた電荷を放電する技術が開示されている。
日本国公開特許公報「特開平10-214062号公報(公開日:1998年8月11日)」
 しかしながら、上記特許文献1に開示された技術によると、各画素の電位はゆっくりと立ち下がるので、各画素の電位を短時間で共通電位にまで立ち下げることができず、各画素の電位が共通電位に立ち下がるまでの期間が長いため、焼き付き等の表示の不具合が生じてしまう。また、上記期間において再度表示装置本体の電源スイッチがオンにされると、各画素容量に電荷が残ったまま表示が再開されることとなるので、フリッカ等の表示の不具合が生じてしまう。
 本発明は、前記の問題に鑑みてなされたものであり、その目的は、表示パネルによる表示をオフしたときにその表示パネルの各画素に蓄えられている電荷を効率的に放電することができる表示装置および駆動方法を提供することにある。
 本発明に係る表示装置は、上述した課題を解決するため、複数の画素、複数のゲート信号ライン、および複数のソース信号ラインを有する表示パネルと、前記複数の画素の各々の共通電極に対し、共通電圧を供給する共通電極駆動回路と、前記複数のゲート信号ラインを順次選択して走査する走査線駆動回路と、選択されたゲート信号ライン上の複数の画素の各々に対し、前記複数のソース信号ラインからソース信号を供給する信号線駆動回路と、前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極に対し、画素に蓄えられた電荷を開放するための第1の電圧を印加するように制御する表示終了時制御手段とを備えることを特徴とする。
 本表示装置によれば、各画素の画素電極の電圧レベルを、画素に蓄えられた電荷を開放するための第1の電圧まで短時間で遷移させることができる。すなわち、表示パネルの各画素に蓄えられている電荷を短時間で放電することができるので、焼き付きや、フリッカ等の表示の不具合を生じさせることなく、表示パネルによる表示をオフすることができる。
 また、本発明に係る液晶表示装置は、上記のいずれかに記載の表示装置を備えたことを特徴とする。
 本液晶表示装置によれば、上記表示装置と同様の効果を奏する液晶表示装置を提供することができる。
 また、本発明に係る駆動方法は、複数の画素、複数のゲート信号ライン、および複数のソース信号ラインを有する表示パネルと、前記複数の画素の各々の共通電極に対し、共通電圧を供給する共通電極駆動回路と、前記複数のゲート信号ラインを順次選択して走査する走査線駆動回路と、選択されたゲート信号ライン上の複数の画素の各々に対し、前記複数のソース信号ラインからソース信号を供給する信号線駆動回路とを備えた表示装置の駆動方法であって、前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極に対し、画素に蓄えられた電荷を開放するための第1の電圧を印加するように制御する表示終了時制御工程を含んだことを特徴とする。
 本駆動方法によれば、当該駆動方法を表示装置の駆動方法として採用することにより、上記表示装置と同様の効果を奏する表示装置を提供することができる。
 本発明に係る表示装置、液晶表示装置、およびその駆動方法によれば、表示パネルによる表示をオフしたときにその表示パネルの各画素に蓄えられている電荷を効率的に放電することができるという効果を奏する。
実施形態1に係る表示装置の構成例を示す図である。 表示パネルが備える画素の構成を示す図である。 実施形態1に係る表示装置による表示終了時動作における各種電圧値を示す。 実施形態2に係る表示装置による表示終了時動作における各種電圧値を示す。 実施形態3に係る表示装置による表示終了時動作における各種電圧値を示す。 実施形態4に係る表示装置による表示終了時動作における各種電圧値を示す。 実施形態5に係る表示装置1による表示終了時動作における各種電圧値を示す。 表示パネルの表示がオフされるタイミングを検出する構成を加えた表示装置の第1の構成例を示す図である。 表示パネルの表示がオフされるタイミングを検出する構成を加えた表示装置の第2の構成例を示す図である。 走査線駆動回路において入出力される各種信号波形を示す図である。 表示装置が備える信号線駆動回路の構成例を示す図である。 ソース出力アンプ回路制御部から、電圧制御回路に供給される、各種制御信号の波形を示す図である。 正負電源システムにおける、アンプ電源電圧範囲およびアンプ出力範囲の一例を示す図である。 片側電源システムにおける、アンプ電源電圧範囲およびアンプ出力範囲の一例を示す図である。 正負電源システムにおける、アンプ電源電圧範囲およびアンプ出力範囲の他の一例を示す図である。 Cgdによるドレイン電位の引き込みを説明するための図である。 各種TFTの特性を示す図である。
 本発明に係る実施形態について、図面を参照して以下に説明する。
 (実施形態1)
 まず、本発明の実施形態1について説明する。
 (表示装置の構成)
 はじめに、図1を参照して、実施形態1に係る表示装置1の構成例について説明する。図1は、実施形態1に係る表示装置1の構成例を示す図である。図1に示すように、表示装置1は、表示パネル2、走査線駆動回路4、信号線駆動回路6、共通電極駆動回路8、タイミングコントローラ10、および電源生成回路12を備えている。
 実施形態1では、表示装置1としてアクティブマトリクス型の液晶表示装置を採用している。したがって、実施形態1の表示パネル2は、アクティブマトリクス型の液晶表示パネルであり、上記したその他の構成要素は、液晶表示パネルを駆動するためのものである。
 表示パネル2は、複数の画素、複数のゲート信号ラインG、および複数のソース信号ラインSを備えている。
 複数の画素は、格子状に配置されている。
 複数のゲート信号ラインGは、画素列方向(画素列に沿った方向)に並べて設けられている。複数のゲート信号ラインGの各々は、複数の画素のうちの対応する画素行に接続されている。
 複数のソース信号ラインSは、画素行方向(画素行に沿った方向)に並べて設けられており、いずれも複数のゲート信号ラインGの各々と直交している。複数のソース信号ラインSの各々は、複数の画素のうちの対応する画素列に接続されている。
 以降の説明では、n行目(nは任意の整数)の画素行に接続されているゲート信号ラインGを、G(n)と示す。例えば、G(n)を10行目の画素行に接続されているゲート信号ラインGとした場合、G(n+1),G(n+2),G(n+3)は、それぞれ11行目,12行目,13行目の画素行に接続されているゲート信号ラインGを示す。
 また、以降の説明では、i列目(iは任意の整数)の画素列を接続するソース信号ラインSを、S(i)と示す。例えば、S(i)を10列目の画素を接続するソース信号ラインSとした場合、S(i+1),S(i+2),S(i+3)は、それぞれ11列目,12列目,13列目の画素列を接続するソース信号ラインSを示す。
 走査線駆動回路4は、複数のゲート信号ラインGを順次選択して走査する。具体的には、走査線駆動回路4は、複数のゲート信号ラインGを順次選択し、選択したゲート信号ラインGに対して、当該ゲート信号ラインG上の各画素に備えられたスイッチング素子(TFT)をオンに切り換えるためのオン電圧を供給する。
 信号線駆動回路6は、ゲート信号ラインGが選択されている間、そのゲート信号ラインG上の各画素に対して、対応するソース信号ラインSから、ソース信号を供給する。具体的に説明すると、信号線駆動回路6は、入力された映像信号に基づいて、選択されたゲート信号ラインG上の各画素に出力すべき電圧の値を算出し、その値の電圧をソース出力アンプから各ソース信号ラインSに向けて出力する。その結果、選択されたゲート信号ラインG上にある各画素に対してソース信号が供給され、ソース信号が書き込まれることとなる。
 共通電極駆動回路8は、複数の画素の各々に設けられている共通電極に対し、当該共通電極を駆動するための所定の共通電圧を供給する。
 タイミングコントローラ10には、外部(図1に示す例では、システム側コントロール部)から映像信号が入力される。ここでいう映像信号とは、クロック信号、同期信号、映像データ信号を含んでいる。そして、タイミングコントローラ10は、各駆動回路が同期して動作するための基準となる信号を各駆動回路に対して出力する。例えば、タイミングコントローラ10は、走査線駆動回路4に対して、ゲートスタートパルス信号、ゲートクロック信号GCK、およびゲート出力制御信号GOEを供給する。また、タイミングコントローラ10は、信号線駆動回路6に対しては、ソーススタートパルス信号、ソースラッチストローブ信号、およびソースクロック信号を出力する。
 走査線駆動回路4は、ゲートスタートパルス信号受け取ると、複数のゲート信号ラインGの操作を開始する。そして、走査線駆動回路4は、ゲートクロック信号GCKおよびゲート出力制御信号GOEに従って、各ゲート信号ラインGに対して、順次オン電圧を供給していく。
 信号線駆動回路6は、ソーススタートパルス信号を基に、入力された各画素の画像データをソースクロック信号に従ってレジスタに蓄え、次のソースラッチストローブ信号に従って、各ソース信号ラインSに対し、画像データに応じたソース信号を供給する。
 電源生成回路12は、表示装置1内の各回路が動作するために必要な電圧であるVdd、Vdd2、Vcc、Vgh、およびVglを生成する。そして、Vcc、Vgh、Vglを走査線駆動回路4に供給し、VddおよびVccを信号線駆動回路6に供給し、Vccをタイミングコントローラ10に供給し、Vdd2を共通電極駆動回路8に供給する。
 (表示終了時制御部20)
 ここで、実施形態1の表示装置1は、表示終了時制御部20をさらに備えている。例えば、図1に示す例では、表示装置1には、タイミングコントローラ10の1つの機能として、表示終了時制御部20が設けられている。
 この表示終了時制御部20は、表示装置1による表示終了時動作を制御する。この表示終了時動作とは、表示パネル2の表示がオフされるとき、表示パネル2上の複数の画素の各々の画素電極に対し、第1の電圧が印加されるように、表示装置1の各部を制御するというものである。
 第1の電圧とは、画素に蓄えられた電荷を開放するために、画素電極に印加する電圧である。例えば、第1の電圧には、画素に蓄えられたより多くの電荷をより短時間で開放するための電圧として、少なくとも通常駆動時にノーマリー状態を表示するための電圧よりもグランド電圧GND(0V)により近い電圧とすることが好ましく、グランド電圧GND(0V)とすることが最も好ましい。
 例えば、通常駆動時にノーマリー状態を表示するための電圧としては共通電圧よりも±0.5~1.0V程度の電圧が採用される。
 したがって、第1の電圧としては、グランド電圧GNDよりも±0~±0.5Vとすることが好ましく、グランド電圧GND(0V)とすることが最も好ましい。
 実施形態1の表示装置1においては、第1の電圧として、グランド電圧GND(0V)が採用されている。
 但し、画素電極の電圧レベルの変動や、共通電圧の電圧レベルの変動等を考慮して、グランド電圧GNDから意図的にこの変動分を増加または減少させた電圧を、第1の電圧とすることもある。
 以下、表示装置1が行う表示終了時動作の具体例について説明する。
 (画素の構成)
 まず、表示パネル2が備える画素の構成について説明する。図2は、表示パネル2が備える画素の構成を示す図である。図2では、表示パネル2が備える複数の画素のうち、2つの画素(画素(i,n)および画素(i+1,n))の構成を示している。画素(i,n)は、ソース信号ラインS(i)およびゲート信号ラインG(n)に接続された画素を示す。画素(i+1,n)は、ソース信号ラインS(i+1)およびゲート信号ラインG(n)に接続された画素を示す。なお、表示パネル2が備えるその他の画素についても、これらの画素と同様の構成である。
 図2に示すように、画素は、スイッチング素子としてのTFT200を備えている。TFT200のゲート電極は、対応するゲート信号ラインGに接続されている。また、TFT200のソース電極は、対応するソース信号ラインSに接続されている。そして、TFT200のドレイン電極は、液晶容量Clcおよび保持容量Ccsに接続されている。
 この画素に対して画素データが書き込まれる際には、まず、TFT200のゲート電極に対して、ゲート信号ラインGからオン電圧が供給される。これにより、TFT200はオン状態に切り換えられる。
 そして、TFT200がオン状態のときに、対応するソース信号ラインSから、ソース信号が供給されると、このソース信号は、TFT200のドレイン電極から、液晶容量Clcの画素電極および保持容量Ccsへ供給される。
 このように、液晶容量Clcの画素電極へソース信号が供給されることにより、当該画素においては、液晶容量Clcの画素電極と共通電極との間に封入されている液晶の配列方向が供給されたソース信号の電圧レベルと共通電極に供給された電圧レベルの差分に応じて変化し、この差分に応じた画像が表示されることとなる。
 また、保持容量Ccsへソース信号が供給されることにより、保持容量Ccsにはこのソース信号の電圧に応じた電荷が蓄えられる。そして、保持容量Ccsに蓄えられた電荷により、当該画素は、ある程度の期間、画像を表示した状態を維持することができる。
 特に、実施形態1の表示装置1においては、TFT200として、いわゆる酸化物半導体を採用している。この酸化物半導体は、オフ状態のときのリーク電流が殆ど生じない、というオフ特性が非常に優れたものである。これにより、液晶容量Clcおよび保持容量Ccsに蓄えられた電荷は、この電荷を開放する等といった何らかの制御を行わない限り、より長時間、液晶容量Clcおよび保持容量Ccsに保持されることとなる。
 (表示終了時動作)
 続いて、実施形態1に係る表示装置1による表示終了時動作について説明する。図3は、実施形態1に係る表示装置1による表示終了時動作における各種電圧値を示す。
 図3において、図3(a)は、図2に示した2つのソース信号ラインS(ソース信号ラインS(i)および(i+1))の各々の電圧値を示す。
 また、図3(b)は、図2に示した2つの画素(画素(i,n)および画素(i+1,n))の各々のTFTのドレイン電極の電圧値を示す。
 また、図3(c)は、複数の画素の各々の共通電極に印加される共通電圧の電圧値を示す。
 また、図3(d)は、図2に示した2つのゲート信号ラインG(ゲート信号ラインG(n)および(n+1))の各々の電圧値を示す。
 また、図3において、タイミングt1は、表示パネル2の表示がオフに切り換えられたタイミングを示す。
 (表示パネルの表示がオン状態のとき)
 表示パネルの表示がオン状態のとき、各ゲート信号ラインGが順次選択され、ゲート信号ラインGが順次選択される毎に、各ソース信号ラインSに対して、ソース信号の電圧が印加される。
 実施形態1の信号線駆動回路6は、電圧レベルが共通電圧よりも+側となるソース信号(第1のソース信号。以下、「ソース信号(+)と示す。」)を供給するソース出力アンプ(第1のソース出力アンプ)と、電圧レベルが共通電圧よりも-側となるソース信号(第2のソース信号。以下、「ソース信号(-)と示す。」)を供給するソース出力アンプ(第2のソース出力アンプ)との双方を備えている。
 これにより、実施形態1の信号線駆動回路6は、あるソース信号ラインSに対するソース信号(+)の供給と、他のソース信号ラインSに対するソース信号(-)の供給とを、並行して行うことが可能となっている。
 例えば、図3(a)では、ソース信号ラインS(i)に対するソース信号の供給と、ソース信号ラインS(i+1)に対するソース信号の供給とが、並行して行われることが示されている。
 ここで、各ソース信号ラインSに対して供給される電圧の極性(正負)は、所定期間毎に、交互に切り換えられる。
 例えば、図3(a)では、ソース信号ラインS(i)に対して供給される電圧、およびソース信号ラインS(i+1)に対して供給される電圧の各々の極性(正負)が、1水平走査期間毎(すなわち、ゲート信号ラインGの選択が切り換えられる毎)に、交互に切り換えられることが示されている。
 このように、表示パネル2の表示がオン状態のとき、信号線駆動回路6は、1水平走査期間毎に、各ソース信号ラインSに対して、ソース信号を供給する。これにより、表示パネル2が備える各画素に対してソース信号が書き込まれ、表示パネル2が画像を表示することとなる。
 ここで、各画素においては、この画素に書き込まれたソース信号の電圧レベルに応じた電荷が、図2に示した液晶容量Clcおよび保持容量Ccsによって、そのフレーム期間の間保持される。
 例えば、図3(b)では、画素(i,n)および画素(i+1,n)の各々において、これらの画素に書き込まれたソース信号の電圧レベルに応じた電荷が、継続して保持されることが示されている。
 これにより、各画素は、そのフレーム期間、画像を表示した状態を維持することができるようになっている。
 なお、図3(c)に示すように、実施形態1の表示装置1においては、共通電圧COMの電圧レベルは、Cgd(図2参照)による引き込みを考慮し、グランド電圧GNDよりも僅かに-側となっている。
 また、ソース信号(+)の電圧レベルは、グランド電圧GNDよりも+側に設定されており、ソース信号(-)の電圧レベルは、グランド電圧GNDよりも-側に設定されている。
 すなわち、実施形態1の表示装置1は、正負電源システムを採用しており、ソース信号(+)を供給するソース出力アンプの耐圧設計範囲は、グランド電圧GNDよりも+側に設定されており、ソース信号(-)を供給するソース出力アンプの耐圧設計範囲は、グランド電圧GNDよりも-側に設定されている。
 (表示パネルの表示がオフに切り換えられたとき)
 タイミングt1において、表示パネル2の表示がオフに切り換えられると、表示終了時制御部20の制御により、表示装置1は、以下の表示終了時動作(1)~(3)を行う。
 (1)図3(d)に示すように、全てのゲート信号ラインGに対して一斉にオン電圧が印加される。これにより、表示パネル2が備える全ての画素のTFTがオン状態となる。
 (2)各ソース信号ラインSに対して、グランド電圧GNDが印加される。これにより、図3(a)に示すように、各ソース信号ラインSの電圧レベルは、グランド電圧GNDに向かって徐々に遷移し、タイミングt2において、グランド電圧GNDとなる。
 (3)これに応じて、図3(b)に示すように、表示パネル2が備える各画素のドレイン電極の電圧レベル(すなわち、画素電極の電圧レベル)は、グランド電圧GNDに向かって徐々に遷移し、タイミングt2において、グランド電圧GNDとなる。
 このとき、表示パネル2が備える全ての画素のTFTがオン状態となっていることから、あるソース信号ラインSに対してグランド電圧GNDが印加されると、そのソース信号ラインSに接続されている全ての画素のドレイン電極の電圧レベル(すなわち、画素電極の電圧レベル)が、グランド電圧GNDに向かって徐々に遷移し、タイミングt2において、グランド電圧GNDとなる。
 なお、上記(3)以降、表示装置1は、いずれのゲート信号ラインGに対してもオフ電圧を印加しない。すなわち、表示パネル2上の全ての画素のTFTをオフに切り換えない。
 TFTをオフに切り換えるときには、ゲート信号ラインGの電圧変化に応じ、寄生容量Cgd(図2参照)に起因したTFTのドレイン電極の電圧レベルに変動(いわゆる、Cgdによる引き込み)が生じる。
 これにより、画素電極の電圧レベルと、共通電極の電圧レベルとに電位差が生じていない場合であっても、上記変動により、表示不具合等の原因となる上記電位差が生じてしまうこととなる。
 そこで、実施形態1の表示装置1は、表示パネル2上の全ての画素のTFTをオフに切り換えないこととしたので、上記電位差が生じてしまうことがない。
 (効果)
 以上のように、実施形態1の表示装置1は、表示パネル2の表示がオフに切り換えられると、表示パネル2が備える各画素の画素電極に対してグランド電圧GNDを印加することとした。
 これにより、各画素の画素電極の電圧レベルをグランド電圧GNDまで短時間で遷移させることができる。すなわち、表示パネル2の各画素に蓄えられている電荷を短時間で放電することができるので、焼き付きや、フリッカ等の表示の不具合を生じさせることなく、表示パネル2による表示をオフすることができる。
 (実施形態2)
 次に、本発明の実施形態2について説明する。実施形態1では、表示パネル2の表示がオフに切り換えられると、表示パネル2が備える各画素の画素電極に対してグランド電圧GNDを印加することとした。
 この実施形態2では、表示パネル2の表示がオフに切り換えられると、表示パネル2が備える各画素の画素電極に対してグランド電圧GNDを印加するだけでなく、表示パネル2が備える各画素の共通電極に対してもグランド電圧GNDを印加する例を説明する。なお、実施形態2の表示装置1において、以下に説明する以外の点は、実施形態1の表示装置1の構成と同様であるため、説明を省略する。
 (表示終了時動作)
 以下、図4を参照して、実施形態2に係る表示装置1による表示終了時動作について説明する。図4は、実施形態2に係る表示装置1による表示終了時動作における各種電圧値を示す。
 図4において、図4(a)は、図2に示した2つのソース信号ラインS(ソース信号ラインS(i)および(i+1))の各々の電圧値を示す。
 また、図4(b)は、図2に示した2つの画素(画素(i,n)および画素(i+1,n))の各々のTFTのドレイン電極の電圧値を示す。
 また、図4(c)は、複数の画素の各々の共通電極に印加される共通電圧の電圧値を示す。
 また、図4(d)は、図2に示した2つのゲート信号ラインG(ゲート信号ラインG(n)および(n+1))の各々の電圧値を示す。
 また、図4において、タイミングt1は、表示パネル2の表示がオフに切り換えられたタイミングを示す。
 (表示パネルの表示がオフに切り換えられたとき)
 この実施形態2の表示装置1は、タイミングt1において、表示パネル2の表示がオフに切り換えられると、表示終了時制御部20の制御により、以下の表示終了時動作(1)~(4)を行う。
 (1)図4(d)に示すように、全てのゲート信号ラインGに対して一斉にオン電圧が印加される。これにより、表示パネル2が備える全ての画素のTFTがオン状態となる。これにより、後の処理において、一のソース信号ラインSに対する電圧の印加により、このソース信号ラインSに接続された複数の画素に対して同時に電圧を印加することができるので、処理時間を短縮することができるようになっている。
 (2)各ソース信号ラインSに対して、グランド電圧GNDが印加される。これにより、図4(a)に示すように、各ソース信号ラインSの電圧レベルは、グランド電圧GNDに向かって徐々に遷移し、タイミングt2において、グランド電圧GNDとなる。
 (3)これに応じて、図4(b)に示すように、表示パネル2が備える各画素のドレイン電極の電圧レベル(すなわち、画素電極の電圧レベル)は、グランド電圧GNDに向かって徐々に遷移し、タイミングt2において、グランド電圧GNDとなる。
 このとき、表示パネル2が備える全ての画素のTFTがオン状態となっていることから、あるソース信号ラインSに対してグランド電圧GNDが印加されると、そのソース信号ラインSに接続されている全ての画素のドレイン電極の電圧レベル(すなわち、画素電極の電圧レベル)が、グランド電圧GNDに向かって徐々に遷移し、タイミングt2において、グランド電圧GNDとなる。
 (4)表示パネル2が備える全ての画素の共通電極に対して、グランド電圧GNDが印加される。これにより、図4(c)に示すように、各ソース信号ラインSの電圧レベルは、グランド電圧GNDに向かって徐々に遷移し、タイミングt2までに、グランド電圧GNDとなる。
 (効果)
 以上のように、実施形態2の表示装置1は、表示パネル2の表示がオフに切り換えられると、表示パネル2が備える各画素の画素電極および共通電極の各々に対してグランド電圧GNDを印加することとした。
 これにより、各画素の画素電極および共通電極の各々の電圧レベルをグランド電圧GNDまで短時間で遷移させることができるだけでなく、表示残りの原因となる各画素の画素電極と共通電極との電位差をより少なくすることができるので、表示残りを生じさせることなく、また、焼き付きや、フリッカ等の表示の不具合をより生じさせることなく、表示パネル2による表示をオフすることができる。
 (実施形態3)
 次に、本発明の実施形態3について説明する。実施形態1および2では、表示パネル2の表示がオフに切り換えられると、表示パネル2が備える各画素の画素電極に対してグランド電圧GNDを印加することとした。
 この実施形態3では、表示パネル2の表示がオフに切り換えられると、表示パネル2が備える各画素の画素電極に対して共通電圧を印加した後に、グランド電圧GNDを印加する例を説明する。なお、実施形態3の表示装置1において、以下に説明する以外の点は、実施形態1の表示装置1の構成と同様であるため、説明を省略する。
 (表示終了時動作)
 以下、図5を参照して、実施形態3に係る表示装置1による表示終了時動作について説明する。図5は、実施形態3に係る表示装置1による表示終了時動作における各種電圧値を示す。
 図5において、図5(a)は、図2に示した2つのソース信号ラインS(ソース信号ラインS(i)および(i+1))の各々の電圧値を示す。
 また、図5(b)は、図2に示した2つの画素(画素(i,n)および画素(i+1,n))の各々のTFTのドレイン電極の電圧値、および、複数の画素の各々の共通電極に印加される共通電圧の電圧値を示す。
 また、図5(c)は、図2に示した2つのゲート信号ラインG(ゲート信号ラインG(n)および(n+1))の各々の電圧値を示す。
 また、図5において、タイミングt1は、表示パネル2の表示がオフに切り換えられたタイミングを示す。
 (表示パネルの表示がオン状態のとき)
 表示パネルの表示がオン状態のとき、各ゲート信号ラインGが順次選択され、ゲート信号ラインGが順次選択される毎に、各ソース信号ラインSに対して、ソース信号の電圧が印加される。
 実施形態3では、片側電源システムを採用しており、共通電圧、ソース信号(+)の電圧レベル、およびソース信号(-)の電圧レベルのいずれも、グランド電圧GNDよりも+側に設定されている。
 すなわち、ソース信号(+)を供給するソース出力アンプの耐圧設計範囲、およびソース信号(-)を供給するソース出力アンプの耐圧設計範囲は、いずれも、グランド電圧GNDよりも+側に設定されている。
 例えば、図5(a)では、ソース信号ラインS(i)に対するソース信号の供給と、ソース信号ラインS(i+1)に対するソース信号の供給とが、並行して行われることが示されているが、これらソース信号のいずれの電圧レベルも、グランド電圧GNDよりも+側に設定されていることが示されている。
 また、図5(b)では、共通電圧、画素(i,n)の電圧レベル、および画素(i+1,n)の電圧レベルのいずれも、グランド電圧GNDよりも+側に設定されていることが示されている。
 (表示パネルの表示がオフに切り換えられたとき)
 この実施形態3の表示装置1は、タイミングt1において、表示パネル2の表示がオフに切り換えられると、表示終了時制御部20の制御により、以下の表示終了時動作(1)~(6)を行う。
 (1)図5(c)に示すように、全てのゲート信号ラインGに対して一斉にオン電圧が印加される。これにより、表示パネル2が備える全ての画素のTFTがオン状態となる。
 (2)各ソース信号ラインSに対して、共通電圧COMが印加される。これにより、図5(a)に示すように、各ソース信号ラインSの電圧レベルは、共通電圧COMに向かって徐々に遷移し、タイミングt2において、共通電圧COMとなる。
 (3)これに応じて、図5(b)に示すように、表示パネル2が備える各画素のドレイン電極の電圧レベル(すなわち、画素電極の電圧レベル)は、共通電圧COMに向かって徐々に遷移し、タイミングt2において、共通電圧COMとなる。
 すなわち、タイミングt2において、表示パネル2が備える各画素における、画素電極の電圧レベルと共通電極の電極レベルとの電位差が解消されることとなる。
 このとき、表示パネル2が備える全ての画素のTFTがオン状態となっていることから、あるソース信号ラインSに対して共通電圧COMが印加されると、そのソース信号ラインSに接続されている全ての画素のドレイン電極の電圧レベル(すなわち、画素電極の電圧レベル)が、共通電圧COMに向かって徐々に遷移し、タイミングt2において、共通電圧COMとなる。
 (4)タイミングt2においては、各ソース信号ラインSに対して、グランド電圧GNDが印加される。これにより、図5(a)に示すように、各ソース信号ラインSの電圧レベルは、グランド電圧GNDに向かって徐々に遷移し、タイミングt3において、グランド電圧GNDとなる。
 (5)これに応じて、図5(b)に示すように、表示パネル2が備える各画素のドレイン電極の電圧レベル(すなわち、画素電極の電圧レベル)は、グランド電圧GNDに向かって徐々に遷移し、タイミングt3において、グランド電圧GNDとなる。
 (6)上記(4)と同時に、表示パネル2が備える全ての画素の共通電極に対して、グランド電圧GNDが印加される。これにより、図5(a)および(b)に示すように、表示パネル2が備える全ての画素の共通電極は、グランド電圧GNDに向かって徐々に遷移し、タイミングt3において、グランド電圧GNDとなる。
 (効果)
 以上のように、実施形態3の表示装置1は、表示パネル2の表示がオフに切り換えられると、表示パネル2が備える各画素の画素電極に対して共通電圧を印加した後に、表示パネル2が備える各画素の画素電極および共通電極の各々に対してグランド電圧GNDを印加することとした。
 これにより、表示残りの原因となる各画素の画素電極と共通電極との電位差をより短時間で解消しつつ、各画素の画素電極および共通電極の各々の電圧レベルをグランド電圧GNDまで短時間で遷移させることができるので、表示残りを生じさせることなく、また、焼き付きや、フリッカ等の表示の不具合をより生じさせることなく、表示パネル2による表示をオフすることができる。
 (実施形態4)
 次に、本発明の実施形態4について説明する。実施形態3では、表示パネル2の表示がオフに切り換えられると、表示パネル2が備える各画素の画素電極に対して共通電圧を印加した後に、グランド電圧GNDを印加することとした。
 この実施形態4では、表示パネル2の表示がオフに切り換えられると、表示パネル2が備える各画素の画素電極に対して第2の電圧を印加した後に、グランド電圧GNDを印加する例を説明する。
 上記第2の電圧とは、通常駆動時にノーマリー状態を表示するために、画素電極に印加する電圧である。例えば、第2の電圧には、共通電圧よりも±0.5~1.0V程度の電圧が採用される。
 なお、実施形態4の表示装置1において、以下に説明する以外の点は、実施形態3の表示装置1の構成と同様であるため、説明を省略する。
 (表示終了時動作)
 以下、図6を参照して、実施形態4に係る表示装置1による表示終了時動作について説明する。図6は、実施形態4に係る表示装置1による表示終了時動作における各種電圧値を示す。
 図6において、図6(a)は、図2に示した2つのソース信号ラインS(ソース信号ラインS(i)および(i+1))の各々の電圧値を示す。
 また、図6(b)は、図2に示した2つの画素(画素(i,n)および画素(i+1,n))の各々のTFTのドレイン電極の電圧値、および、複数の画素の各々の共通電極に印加される共通電圧の電圧値を示す。
 また、図6(c)は、図2に示した2つのゲート信号ラインG(ゲート信号ラインG(n)および(n+1))の各々の電圧値を示す。
 また、図6において、タイミングt1は、表示パネル2の表示がオフに切り換えられたタイミングを示す。
 (表示パネルの表示がオフに切り換えられたとき)
 この実施形態4の表示装置1は、タイミングt1において、表示パネル2の表示がオフに切り換えられると、表示終了時制御部20の制御により、以下の表示終了時動作(1)~(6)を行う。
 (1)図6(c)に示すように、全てのゲート信号ラインGに対して一斉にオン電圧が印加される。これにより、表示パネル2が備える全ての画素のTFTがオン状態となる。
 (2)各ソース信号ラインSに対して、通常駆動時にノーマリー状態を表示するための第2の電圧が印加される。これにより、図6(a)に示すように、各ソース信号ラインSの電圧レベルは、第2の電圧に向かって徐々に遷移し、タイミングt2において、第2の電圧となる。
 (3)これに応じて、図6(b)に示すように、表示パネル2が備える各画素のドレイン電極の電圧レベル(すなわち、画素電極の電圧レベル)は、第2の電圧に向かって徐々に遷移し、タイミングt2において、第2の電圧となる。
 すなわち、タイミングt2において、表示パネル2が備える各画素は、ノーマリー状態を表示することとなる。
 このとき、表示パネル2が備える全ての画素のTFTがオン状態となっていることから、あるソース信号ラインSに対して第2の電圧が印加されると、そのソース信号ラインSに接続されている全ての画素のドレイン電極の電圧レベル(すなわち、画素電極の電圧レベル)が、第2の電圧に向かって徐々に遷移し、タイミングt2において、第2の電圧となる。
 (4)タイミングt2においては、各ソース信号ラインSに対して、グランド電圧GNDが印加される。これにより、図6(a)に示すように、各ソース信号ラインSの電圧レベルは、グランド電圧GNDに向かって徐々に遷移し、タイミングt3において、グランド電圧GNDとなる。
 (5)これに応じて、図6(b)に示すように、表示パネル2が備える各画素のドレイン電極の電圧レベル(すなわち、画素電極の電圧レベル)は、グランド電圧GNDに向かって徐々に遷移し、タイミングt3において、グランド電圧GNDとなる。
 (6)上記(4)と同時に、表示パネル2が備える全ての画素の共通電極に対して、グランド電圧GNDが印加される。これにより、図6(a)および(b)に示すように、表示パネル2が備える全ての画素の共通電極は、グランド電圧GNDに向かって徐々に遷移し、タイミングt3において、グランド電圧GNDとなる。
 (効果)
 以上のように、実施形態4の表示装置1は、表示パネル2の表示がオフに切り換えられると、表示パネル2が備える各画素の画素電極に対して第2の電圧を印加した後に、表示パネル2が備える各画素の画素電極および共通電極の各々に対してグランド電圧GNDを印加することとした。
 これにより、全ての画素に対してより短時間でノーマリー状態を表示させつつ、各画素の画素電極および共通電極の各々の電圧レベルをグランド電圧GNDまで短時間で遷移させることができるので、表示残りを生じさせることなく、また、焼き付きや、フリッカ等の表示の不具合をより生じさせることなく、表示パネル2による表示をオフすることができる。
 (実施形態5)
 次に、本発明の実施形態5について説明する。実施形態1~4では、表示パネル2の表示がオフに切り換えられたとき、各ゲート信号ラインGを一斉にオンすることとした。
 この実施形態5では、通常の駆動時のように、表示パネル2の表示がオフに切り換えられたとき、各ゲート信号ラインGを順次走査し、ゲート信号ラインGの選択が切り換えられる毎に、ゲート信号がラインGに接続されている画素の各々に対し、グランド電圧GNDを印加する例を説明する。
 なお、実施形態5の表示装置1において、以下に説明する以外の点は、実施形態1の表示装置1の構成と同様であるため、説明を省略する。
 (表示終了時動作)
 以下、図7を参照して、実施形態5に係る表示装置1による表示終了時動作について説明する。図7は、実施形態5に係る表示装置1による表示終了時動作における各種電圧値を示す。
 図7において、図7(a)は、図2に示した2つのソース信号ラインS(ソース信号ラインS(i)および(i+1))の各々の電圧値を示す。
 また、図7(b)は、図2に示した2つの画素(画素(i,n)および画素(i+1,n))の各々のTFTのドレイン電極の電圧値を示す。
 また、図7(c)は、複数の画素の各々の共通電極に印加される共通電圧の電圧値を示す。
 また、図7(d)は、表示装置1が備える各ゲート信号ラインG(ゲート信号ラインG(n)~(N))の各々の電圧値を示す。
 また、図7において、タイミングt1は、表示パネル2の表示がオフに切り換えられたタイミングを示す。
 (表示パネルの表示がオフに切り換えられたとき)
 タイミングt1において、表示パネル2の表示がオフに切り換えられると、表示終了時制御部20の制御により、表示装置1は、図7(d)に示すように、全てのゲート信号ラインGに対して順次オン電圧が印加される。これにより、表示パネル2が備える全ての画素のTFTが、ゲート信号ラインG毎に順次オン状態となる。
 そして、表示装置1は、オン状態とされたゲート信号ラインGが切り換えられる毎に、以下の表示終了時動作(1)および(2)を行う。
 (1)各ソース信号ラインSに対して、グランド電圧GNDが印加される。これにより、図7(a)に示すように、各ソース信号ラインSの電圧レベルは、グランド電圧GNDに向かって徐々に遷移し、タイミングt2において、グランド電圧GNDとなる。
 (2)これに応じて、図7(b)に示すように、オン状態となっているゲート信号ラインGに接続された全ての画素のドレイン電極の電圧レベル(すなわち、画素電極の電圧レベル)は、グランド電圧GNDに向かって徐々に遷移し、タイミングt2において、グランド電圧GNDとなる。
 表示装置1は、ゲート信号ラインGが切り換えられる毎に、上記(1)および(2)を行うことで、全ての画素の画素電極の電圧レベルをグランド電圧GNDとする。
 なお、全ての画素がグランド電圧GNDに遷移するまで、共通電圧COMは変化させない。これは、ゲート信号ラインGをオフに切り換えたとき、Cgd(図2参照)の引き込みに起因するゲート信号ラインGの電圧変化により、画素電極の電圧レベルと、共通電極の電圧レベルとに電位差が生じてしまうことを防止するためである。
 なお、ゲート信号ラインGをオンにする期間は、少なくともそのゲート信号ラインGに接続された全ての画素の画素電極の電圧レベルをグランド電圧GNDとすることが可能であれば、通常駆動時よりも短くしても良い。
 (効果)
 以上のように、実施形態5の表示装置1は、表示パネル2の表示がオフに切り換えられると、各ゲート信号ラインGを順次オンにしつつ、表示パネル2が備える各画素の画素電極に対してグランド電圧GNDを印加することとした。
 これにより、各ゲート信号ラインGを一斉にオン状態にしなくとも、各画素の画素電極の電圧レベルをグランド電圧GNDまで短時間で遷移させることができる。すなわち、表示パネル2の各画素に蓄えられている電荷を短時間で放電することができるので、焼き付きや、フリッカ等の表示の不具合を生じさせることなく、表示パネル2による表示をオフすることができる。
 (バックライトの消灯タイミング)
 以上、実施形態1~5について説明したが、各実施形態において、表示終了時制御部20は、表示パネル2の表示がオフされるとき、複数の画素の各々の画素電極に対しグランド電圧GNDが印加され、複数の画素の各々の画素電極の電圧レベルがグランド電圧GNDへ遷移した後、表示パネル2のバックライトを消灯するよう制御しても良い。
 すなわち、表示終了時制御部20は、複数の画素の各々の画素電極の電圧レベルがグランド電圧GNDへ遷移するまでは、表示パネル2のバックライトを消灯しないよう制御しても良い。
 一般的な画素においては、光が照射されていると、光が照射されていないときよりも、そのドレイン電極の電圧レベルの変動量が多くなる傾向がある。
 そこで、各画素電極の電圧レベルがグランド電圧GNDへ遷移するまで光を照射することで、各画素電極の電圧レベルがグランド電圧GNDへ遷移するまでに係る時間をより短くすることができる。
 (具体的な制御方法)
 以下、各実施形態で説明した、表示終了時制御部20による制御の具体例について説明する。
 各実施形態の表示終了時制御部20は、走査線駆動回路4、信号線駆動回路6、および共通電極駆動回路8を制御することにより、これまでに説明した表示装置1による表示終了時動作を実現する。
 具体的には、表示終了時制御部20は、信号線駆動回路6に対し、所定の指示信号(所定電圧出力指示信号)を送信することにより、各ソース信号ラインSに対する所定の電圧(第1の電圧、第2の電圧、共通電圧、グランド電圧等)の印加を指示する。
 また、表示終了時制御部20は、走査線駆動回路4に対し、所定の指示信号(所定電圧出力指示信号)を送信することにより、各ゲート信号ラインGに対する所定の電圧(オン電圧、オフ電圧)の印加を指示する。
 また、表示終了時制御部20は、共通電極駆動回路8に対し、所定の指示信号(所定電圧出力指示信号)を送信することにより、複数の画素の各々の共通電極に対する所定の電圧(共通電圧、グランド電圧等)の印加を指示する。
 (表示終了時動作の開始タイミング)
 ここで、表示装置1が表示終了時動作を開始するタイミングについて説明する。
 既に説明したとおり、表示装置1は、表示終了時制御部20の制御により、表示パネル2の表示がオフされるとき、表示終了時動作を開始する。
 このため、表示終了時制御部20は、表示パネル2の表示がオフされるタイミングを判断する必要がある。例えば、表示終了時制御部20は、以下の方法により、表示パネル2の表示がオフされるタイミングを判断する。
 ここで、図8および図9を参照して、表示パネル2の表示がオフされるタイミングを検出する構成例を説明する。
 (第1の構成例)
 図8は、表示パネル2の表示がオフされるタイミングを検出する構成を加えた表示装置1の第1の構成例を示す図である。
 図8に示すように、第1の構成例では、表示終了時制御部20は、図8の矢印802に示すように、表示パネル2の表示のオフを通知するための通知信号を外部(図8に示す例では、システム側コントロール部)から受信すると、表示パネル2の表示がオフされると判断する。
 この場合、通知信号は、SPI等によるコマンドによって、表示終了時制御部20へ送信されても良く、この通知信号の入力端子を表示終了時制御部20に設け、この入力端子から、そのHigh/Low信号によって制御するようにしても良い。
 (第2の判断方法)
 一方、図9は、表示パネル2の表示がオフされるタイミングを検出する構成を加えた表示装置1の第2の構成例を示す図である。
 図9に示すように、第2の構成例では、表示装置1は、外部(図9に示す例では、システム側コントロール部)から当該表示装置に対して供給される電源電圧が所定の閾値よりも低くなったことを検出する電源低下検出回路900を備えている。
 表示終了時制御部20は、電源低下検出回路900によって上記電源電圧が所定の閾値よりも低くなったことを検出されると、表示パネル2の表示がオフされると判断する。
 具体的には、電源低下検出回路900は、比較器902を備えている。比較器902のプラス入力端子は、当該表示装置に対して供給される電源電圧Viの供給線上に接続されている。すなわち、比較器902のプラス入力端子には、電源電圧の供給線上において検出された電源電圧Viが入力される。
 一方、比較器902のマイナス入力端子には、基準電圧Vrefが入力される。この基準電圧Vrefとしては、その電圧以下になると表示パネル2の表示がオフされるような電圧値が設定されている。
 この構成により、比較器902は、電源電圧Viが基準電圧Vrefよりも高い限りは、Hiレベルの制御信号を出力する。そして、比較器902は、電源電圧Viが基準電圧Vrefよりも低くなったタイミングで、出力する制御信号を、Hiレベルの制御信号からLowレベルの制御信号へ切り換える。
 表示終了時制御部20は、この比較器902から受け取った制御信号がHiレベル制御信号からLowレベルの制御信号へ切り換えられたタイミングを、表示パネル2の表示がオフされるタイミングであると判断する。
 (ゲート信号ラインGに対するオン電圧の印加方法)
 実施形態1~4において、表示終了時制御部20は、表示パネル2の表示がオフされるとき、全てのゲート信号ラインGに対して一斉にオン電圧が印加されるように、走査線駆動回路4を制御することについて説明した。
 以下、図10を参照して、その制御方法の具体例について説明する。図10は、走査線駆動回路4において入出力される各種信号波形を示す図である。
 各実施形態の走査線駆動回路4は、XAO入力端子が設けられている。通常、表示終了時制御部20は、このXAO入力端子に対し、Hi信号を供給する。
 そして、表示パネル2の表示がオフされるとき、表示終了時制御部20は、このXAO入力端子に対し、Low信号を供給する。
 走査線駆動回路4は、XAO入力端子にLow信号が供給されている間、全てのゲート信号ラインGに対して、オン電圧を印加する。
 例えば、図10に示す例では、表示パネル2の表示がオフされるタイミングt1において、XAO入力端子への入力信号が、HiレベルからLowレベルへ切り換えられている。そして、図10では、この切り換えに応じて、走査線駆動回路4が、全てのゲート信号ラインGに対して、オン電圧を印加することが示されている。
 さらに、図10に示す例では、タイミングt2において、XAO入力端子への入力信号が、LowレベルからHiレベルへ切り換えられている。そして、図10では、この切り換えに応じて、走査線駆動回路4が、全てのゲート信号ラインGに対して、オン電圧の印加を終了することが示されている。
 (ソース信号ラインSに対するグランド電圧の印加方法)
 以下、ソース信号ラインSに対するグランド電圧の印加方法について具体的に説明する。図11は、表示装置1が備える信号線駆動回路6の構成例を示す図である。
 図11に示すように、信号線駆動回路6は、ソース出力アンプ回路1100およびソース出力アンプ回路制御部1120を備えている。ソース出力アンプ回路1100は、電圧制御回路1100、ソース出力アンプ1102、およびソース出力アンプ1104を有している。
 ソース出力アンプ1102は、ソース信号ラインSに対して、ソース信号(+)を供給する。ソース出力アンプ1104は、ソース信号ラインSに対して、ソース信号(-)を供給する。
 電圧制御回路1110は、ソース出力アンプ1102およびソース出力アンプ1104と、ソース信号ラインSとの間に設けられている。電圧制御回路1110は、スイッチS1,S2,S3,S4を備えている。
 スイッチS1は、ソース出力アンプ1102とソース信号ラインSとの間に設けられている。スイッチS2は、ソース出力アンプ1104とソース信号ラインSとの間に設けられている。スイッチS3およびS4は、グランドとソース信号ラインSとの間に設けられている。
 電圧制御回路1110は、これらスイッチのオン/オフを制御することにより、ソース信号ラインSの接続先を、ソース出力アンプ1102およびソース出力アンプ1104と、グランドとの間で切り換える。
 これにより、電圧制御回路1110は、ソース信号ラインSに対して供給する電圧(ソース出力電圧)を、通常のソース信号に応じた電圧とグランド電圧とで切り換える。
 具体的には、電圧制御回路1110は、通常、スイッチS1またはS2をオン状態とすることにより、ソース信号ラインSに対し、ソース出力アンプ1102またはソース出力アンプ1104を接続し、通常のソース信号に応じた電圧を供給する。
 そして、電圧制御回路1110は、表示パネル2の表示をオフするときには、スイッチS3およびS4をオン状態とすることにより、ソース信号ラインSに対し、グランドを接続し、グランド電圧を供給するのである。
 このような電圧制御回路1110の動作は、ソース出力アンプ回路制御部1120によって制御される。
 図12は、ソース出力アンプ回路制御部1120から、電圧制御回路1110に供給される、各種制御信号の波形を示す図である。
 図12に示すように、通常、ソース出力アンプ回路制御部1120は、電圧制御回路1110に対し、スイッチS1をオン(Open)に切り換える制御信号と、スイッチS2をオンに切り換える制御信号とを、交互に供給する。
 同時に、ソース出力アンプ回路制御部1120は、電圧制御回路1110に対し、スイッチS3およびS4のそれぞれをオフ(Short)状態としておく制御信号を供給する。
 これにより、ソース信号ラインSに対し、ソース出力アンプ1102とソース出力アンプ1104とが交互に接続され、ソース出力アンプ1102とソース出力アンプ1104とから、通常のソース信号が交互に供給されることとなる。
 一方、図12のタイミングt1は、表示終了時制御部20から所定電圧出力指示信号が供給され、表示パネル2の表示をオフするタイミングである。このタイミングt1において、ソース出力アンプ回路制御部1120は、電圧制御回路1110に対し、スイッチS3およびS4のそれぞれをオンに切り換える制御信号を供給する。
 同時に、ソース出力アンプ回路制御部1120は、電圧制御回路1110に対し、スイッチS1およびS2のそれぞれをオフ状態としておく制御信号を供給する。
 これにより、ソース信号ラインSに対し、グランドがソース出力アンプ1102とソース接続され、グランド電圧が供給されることとなる。
 以下、各実施形態の表示装置1が採用している電源システムについて説明する。
 (正負電源システム)
 実施形態1,2,5の表示装置1は、いわゆる正負電源システムを採用している。この正負電源システムとは、グランド電圧(0V)よりも、+側の電圧範囲でソース信号(+)を供給するソース出力アンプと、-側の電圧範囲でソース信号(-)を供給するソース出力アンプとの2つのソース出力アンプにより、各ソース信号を供給する電源システムである。
 図13は、正負電源システムにおける、アンプ電源電圧範囲およびアンプ出力範囲の一例を示す図である。
 図13に示す例では、ソース信号(+)を供給するソース出力アンプについては、そのアンプ電源電圧範囲をVdd1(6V)~GND(0V)としており、そのアンプ出力範囲をソースHigh出力(最高出力値:5V)~GND(0V)としている。
 一方、ソース信号(+)を供給するソース出力アンプについては、そのアンプ電源電圧範囲をGND(0V)~Vdd2(-6V)~GND(0V)としており、そのアンプ出力範囲をGND(0V)~ソースLow出力(最低出力値:-5V)としている。
 すなわち、センター値(ソースセンター)はグランド電圧GND(0V)となるが、Cgdによるセンター値(ソースセンター)の引き込みを考慮し、共通電圧COMがセンター値(グランド電圧(0V))よりも僅かに-側に設定されている。
 なお、Cgdによる引き込み量はモジュール毎に異なるため、共通電圧COMは、図示されているモジュール個別の調整範囲内で調整されることとなる。
 (片側電源システム)
 一方、実施形態3および4の表示装置1は、いわゆる片側電源システムを採用している。この片側電源システムとは、グランド電圧(0V)よりも、+側の電圧範囲または-側の電圧範囲のいずれか一方の電圧範囲で、ソース信号(+)およびソース信号(-)の双方を供給する1つのソース出力アンプにより、各ソース信号を供給する電源システムである。
 図14は、片側電源システムにおける、アンプ電源電圧範囲およびアンプ出力範囲の一例を示す図である。
 図14では、ソース信号(+)およびソース信号(-)の双方を供給するソース出力アンプのアンプ電源電圧範囲およびアンプ出力範囲が示されている。
 この例では、アンプ電源電圧範囲をVdd(12V)~GND(0V)とし、アンプ出力範囲をソースHigh出力(最高出力値:11V)~ソースLow出力(最低出力値:1V)としている。
 すなわち、センター値(ソースセンター)は6Vとなるが、Cgdによるセンター値(ソースセンター)の引き込みを考慮し、共通電圧COMがセンター値(6V)よりも僅かに-側に設定されている。
 この場合も、Cgdによる引き込み量はモジュール毎に異なるため、共通電圧COMは、図示されているモジュール個別の調整範囲内で調整されることとなる。
 (正負電源システムの他の構成例)
 図15は、正負電源システムにおける、アンプ電源電圧範囲およびアンプ出力範囲の他の一例を示す図である。
 上記したとおり、実施形態1,2,5の表示装置1は、図13に例示した、共通電圧COMがセンター値(0V)よりも僅かに-側に設定されている正負電源システムを採用している。
 ここで、実施形態1,2,5の表示装置1において、図15に示すような、共通電圧COMとグランド電圧GNDとが略等しく0Vに設定されている正負電源システムを採用しても良い。
 これにより、表示パネル2の表示がオフに切り換えられたとき、既に共通電圧COMがグランド電圧GNDとなっているので、共通電圧COMをグランド電圧GNDまで遷移させるといった動作を行う必要なく、各画素の画素電極の各々の電圧レベルを、最も電荷が開放された状態となるグランド電圧GNDおよび共通電圧COMまで遷移させて揃えることができる。
 (Cgdによる引き込みの具体的説明)
 以下、Cgdによるドレイン電位の引き込みについて具体的に説明する。図16は、Cgdによるドレイン電位の引き込みを説明するための図である。
 図16に示すように、表示装置1の画素(i,n)に設けられたTFT200のドレイン電極の電位レベルは、トランジスタ素子200を介してソース信号ラインS(i)から供給されるソース信号に応じた電圧で充電される。その後、ゲート信号ラインG(n)のオン電圧Vghからオフ電圧Vglへの電圧変化に伴って、TFT200のドレイン電極の電位レベルは、Cgd寄生容量を介して変化する。
 上記変化は、正極性および負極性のいずれにおいても、Vgl側に引き込まれるため、正負極性のセンター値(ソースセンター)がずれることとなる。したがって、共通電圧COMの調整が必要となる。
 上記ドレイン電極が、Cgdによって受ける変動量(引き込み量)ΔVgdは、下記数式(1)によって算出される。
 ΔVgd=(Cgd/ΣC)×ΔVg・・・数式(1)
 上記数式(1)において、ΣCは、Cls+Ccs+Cgd+Csd1+Csd2と略等しく、ΔVgはVgh-Vglの絶対値と等しい。
 Clcはドレイン電極と共通電極間の液晶容量であり、Ccsは、ドレイン電極とCS電極間の保持容量であり、Csd1はドレイン電極~ソース信号ラインS(i)間の寄生容量であり、Csd2はドレイン電極~ソース信号ラインS(i+1)間の寄生容量であり、Cgdはドレイン電極~ゲート信号ラインG(n)間の寄生容量である。
 そして、ソース信号ラインS(i)から供給された信号電圧Vsの最高値をVshとし、最低値をVslとすると、信号電圧Vsの最高値における変動後のドレイン電位(引き込み後の電圧)は、Vsh-ΔVgdとなり、信号電圧Vsの最低値における変動後のドレイン電位(引き込み後の電圧)は、Vsl-ΔVgdとなる。
 そして、ドレイン電極のセンター値の変動後の電圧(引き込み後の電圧)は、信号電圧Vsの最高値における変動後の電圧(引き込み後の電圧)と信号電圧Vsの最低値における変動後の電圧(引き込み後の電圧)との平均値{(Vsh-ΔVgd)+(Vsl-ΔVgd)}/2であり、(Vsh+Vsl)/2-ΔVgdとなる。
 各実施形態の表示装置1においては、TFTとして、その半導体層にいわゆる酸化物半導体を用いたTFTを採用している。この酸化物半導体には、例えばIGZO(InGaZnOx)が含まれる。このように、各実施形態の表示装置1においては、TFTとして、その半導体層にいわゆる酸化物半導体を用いたTFTを採用することが好ましい。以下、その優位性について説明する。
 (TFT特性)
 図17は、各種TFTの特性を示す。この図17では、酸化物半導体を用いたTFT、a-Si(amorphous silicon)を用いたTFT、およびLTPS(Low Temperature Poly Silicon)を用いたTFTの各々の特性を示す。
 図17において、横軸(Vgh)は、上記各TFTにおいてゲートに供給されるオン電圧の電圧値を示し、縦軸(Id)は、上記各TFTにおけるソース-ドレイン間の電流量を示す。
 特に、図中において「TFT-on」と示されているタイミングは、オン電圧の電圧値に応じてオン状態となるタイミングを示し、図中において「TFT-off」と示されているタイミングは、オン電圧の電圧値に応じてオフ状態となるタイミングを示す。
 図17に示すように、酸化物半導体を用いたTFTは、a-Siを用いたTFTよりも、オン状態の時の電流量(すなわち、電子移動度)が高い。
 図示は省略するが、具体的には、a-Siを用いたTFTは、そのTFT-on時のId電流が1uAであるのに対し、酸化物半導体を用いたTFTは、そのTFT-on時のId電流が20~50uA程度である。
 このことから、酸化物半導体を用いたTFTは、a-Siを用いたTFTよりも、オン状態の時の電子移動度が20~50倍程度高く、オン特性が非常に優れていることが分かる。
 既に説明したとおり、各実施形態の表示装置1においては、TFTとして、その半導体層にいわゆる酸化物半導体を用いたTFTを採用している。
 これにより、各実施形態の表示装置1は、各画素のTFTのオン特性が非常に優れたものとなる。そのため、各画素に対してデータを書き込む際の電子移動量を増大し、該書き込みにかかる時間をより短時間化することができる。したがって、各画素の画素電極の電圧レベルを、画素に蓄えられた電荷を開放するための第1の電圧までより短時間で遷移させることができる。すなわち、表示パネルの各画素に蓄えられている電荷をより短時間で放電することができる。
 (変形例)
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 (まとめ)
 以上のように、本発明に係る表示装置は、複数の画素、複数のゲート信号ライン、および複数のソース信号ラインを有する表示パネルと、前記複数の画素の各々の共通電極に対し、共通電圧を供給する共通電極駆動回路と、前記複数のゲート信号ラインを順次選択して走査する走査線駆動回路と、選択されたゲート信号ライン上の複数の画素の各々に対し、前記複数のソース信号ラインからソース信号を供給する信号線駆動回路と、前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極に対し、画素に蓄えられた電荷を開放するための第1の電圧を印加するように制御する表示終了時制御手段とを備えることを特徴とする。
 本表示装置によれば、各画素の画素電極の電圧レベルを、画素に蓄えられた電荷を開放するための第1の電圧まで短時間で遷移させることができる。すなわち、表示パネルの各画素に蓄えられている電荷を短時間で放電することができるので、焼き付きや、フリッカ等の表示の不具合を生じさせることなく、表示パネルによる表示をオフすることができる。
 上記表示装置において、前記表示終了時制御手段は、前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極および前記複数の画素の各々の共通電極に対し、前記第1の電圧を印加するように制御することが好ましい。
 この構成によれば、各画素の画素電極および共通電極の各々の電圧レベルを第1の電圧まで短時間で遷移させることができるだけでなく、表示残りの原因となる各画素の画素電極と共通電極との電位差をより少なくすることができるので、表示残りを生じさせることなく、また、焼き付きや、フリッカ等の表示の不具合をより生じさせることなく、表示パネルによる表示をオフすることができる。
 また、上記表示装置において、前記表示終了時制御手段は、前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極に対し、前記共通電圧を印加するように制御した後、前記複数の画素の各々の画素電極および前記複数の画素の各々の共通電極に対し、前記第1の電圧を印加するように制御することが好ましい。
 この構成によれば、表示残りの原因となる各画素の画素電極と共通電極との電位差をより短時間で解消しつつ、各画素の画素電極および共通電極の各々の電圧レベルを第1の電圧まで短時間で遷移させることができるので、表示残りを生じさせることなく、また、焼き付きや、フリッカ等の表示の不具合をより生じさせることなく、表示パネルによる表示をオフすることができる。
 また、上記表示装置において、前記表示終了時制御手段は、前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極に対し、通常駆動時にノーマリー状態を表示するための第2の電圧を印加するように制御した後、前記複数の画素の各々の画素電極および前記複数の画素の各々の共通電極に対し、前記第1の電圧を印加するように制御することが好ましい。
 この構成によれば、全ての画素に対してより短時間でノーマリー状態を表示させつつ、各画素の画素電極および共通電極の各々の電圧レベルを第1の電圧まで短時間で遷移させることができるので、表示残りを生じさせることなく、また、焼き付きや、フリッカ等の表示の不具合をより生じさせることなく、表示パネルによる表示をオフすることができる。
 また、上記表示装置において、前記表示終了時制御手段は、前記表示パネルの表示がオフされるとき、前記信号線駆動回路および前記共通電極駆動回路に対して所定の指示信号を送信することにより、前記信号線駆動回路から、前記複数の画素の各々の画素電極に対し、前記第1の電圧を印加するように制御し、前記共通電極駆動回路から、前記複数の画素の各々の共通電極に対し、前記第1の電圧を印加するように制御することが好ましい。
 この構成によれば、前記信号線駆動回路および前記共通電極駆動回路に対して所定の指示信号を送信するだけといった簡単な構成で、本発明に係る表示装置の動作を実現することができる。したがって、従来の表示装置に対し、前記信号線駆動回路および前記共通電極駆動回路に対して所定の指示信号を送信する表示終了時制御手段を設けるだけといった簡単な改良を加えるだけで、本発明に係る表示装置の動作を実現することができる。
 また、上記表示装置において、当該表示装置に対して供給される電源電圧が所定の閾値よりも低くなったことを検出する検出手段をさらに備え、前記表示終了時制御手段は、前記検出手段によって前記電源電圧が前記所定の閾値よりも低くなったことが検出されると、前記表示パネルの表示がオフされると判断することが好ましい。
 この構成によれば、電源電圧が所定の閾値よりも低くなったときという、より適切なタイミングで、本発明に係る表示装置の動作を行うことができる。特に、携帯端末等においてバッテリーが外れたときなど、予期せぬ電源電圧の低下が生じた場合であっても、このタイミングを適切に判断し、本発明に係る表示装置の動作を行うことができる。
 また、上記表示装置において、前記表示終了時制御手段は、表示パネルの表示をオフするための指示信号を外部から受信すると、前記表示パネルの表示がオフされると判断することが好ましい。
 この構成によれば、外部から受信した指示信号に基づいて、表示パネルの表示をオフするときを適切に判断することができるので、より適切なタイミングで、本発明に係る表示装置の動作を行うことができる。
 また、上記表示装置において、前記表示終了時制御手段は、前記表示パネルの表示がオフされるとき、前記走査線駆動回路から全てのゲート信号ラインに対して同時にオン信号を供給するよう制御することにより、前記表示パネル上の全ての画素のTFTを同時にオンに切り換え、前記複数の画素の各々の画素電極に対し前記第1の電圧が印加された後、前記表示パネル上の全ての画素のTFTをオフに切り換えないことが好ましい。
 TFTをオフに切り換えるときには、ゲート信号ラインの電圧変化に応じ、TFTのドレイン電極とゲート信号ラインとの間の寄生容量に起因したTFTのドレイン電極の電圧レベルに変動(いわゆる、上記寄生容量による引き込み)が生じる。これにより、画素電極の電圧レベルと、共通電極の電圧レベルとに電位差が生じていない場合であっても、上記変動により、表示不具合等の原因となる電位差が生じてしまうこととなる。
 そこで、この構成によれば、表示パネル上の全ての画素のTFTをオフに切り換えないこととしたので、このような電位差が生じてしまうことがない。
 また、上記表示装置において、前記表示終了時制御手段は、前記複数の画素の各々の画素電極に対し前記第1の電圧が印加された後、前記複数の画素の各々の共通電極に対し前記第1の電圧を印加することが好ましい。
 この構成によれば、ゲート信号ラインをオフに切り換えたとき、Cgdの引き込みに起因するゲート信号ラインの電圧変化により、画素電極の電圧レベルと、共通電極の電圧レベルとに電位差が生じてしまうことを防止することができる。
 また、上記表示装置において、前記第1の電圧はグランド電圧であることが好ましい。
 本発明によれば、各画素の画素電極の電圧レベルを、最も電荷が開放された状態となるグランド電圧まで短時間で遷移させることができる。すなわち、表示パネルの各画素に蓄えられている電荷をより多くかつ短時間で放電することができるので、焼き付きや、フリッカ等の表示の不具合をより生じさせることなく、表示パネルによる表示をオフすることができる。
 また、上記表示装置において、前記複数の画素の各々のTFTの半導体層には、酸化物半導体が用いられていることが好ましい。特に、上記表示装置において、前記酸化物半導体は、IGZO(InGaZnOx)であることが好ましい。
 酸化物半導体は、オフ状態のときのリーク電流が殆ど生じない、というオフ特性が非常に優れたものであるため、このような半導体が用いられている表示装置に対して、本発明を採用することで、より顕著な効果を得られることができる。
 また、上記構成により、各画素のTFTのオン特性が非常に優れたものとなる。そのため、各画素に対してデータを書き込む際の電子移動量を増大し、該書き込みにかかる時間をより短時間化することができる。したがって、各画素の画素電極の電圧レベルを、画素に蓄えられた電荷を開放するための第1の電圧までより短時間で遷移させることができる。すなわち、表示パネルの各画素に蓄えられている電荷をより短時間で放電することができる。
 また、上記表示装置において、前記表示終了時制御手段は、前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極に対し前記第1の電圧が印加された後、前記表示パネルのバックライトを消灯するよう制御することが好ましい。
 一般的な画素においては、光が照射されていると、光が照射されていないときよりも、そのドレイン電極の電圧レベルの変動量が多くなる傾向がある。そこで、この構成によれば、各画素電極の電圧レベルが第1の電圧へ遷移するまで光を照射することで、各画素電極の電圧レベルが第1の電圧へ遷移するまでに係る時間をより短くすることができる。
 また、上記表示装置において、前記信号線駆動回路は、ソース信号電位がグランド電圧よりも正となる第1のソース信号を供給する第1のソース出力アンプ、およびソース信号電位がグランド電圧よりも負となる第2のソース信号を供給する第2のソース出力アンプを有し、前記複数のソース信号ラインの各々に対し、前記第1のソース信号および前記第2のソース信号を交互に供給し、前記第1の電圧および前記共通電圧の各々は、前記グランド電圧と略等しいことが好ましい。
 この構成によれば、表示パネルの表示がオフに切り換えられたとき、既に共通電圧がグランド電圧となっているので、共通電圧をグランド電圧まで遷移させるといった動作を行う必要なく、各画素の画素電極の各々の電圧レベルを、最も電荷が開放された状態となるグランド電圧および共通電圧まで遷移させて揃えることができる。
 また、本発明に係る液晶表示装置は、上記のいずれかに記載の表示装置を備えたことを特徴とする。
 本液晶表示装置によれば、上記表示装置と同様の効果を奏する液晶表示装置を提供することができる。
 また、本発明に係る駆動方法は、複数の画素、複数のゲート信号ライン、および複数のソース信号ラインを有する表示パネルと、前記複数の画素の各々の共通電極に対し、共通電圧を供給する共通電極駆動回路と、前記複数のゲート信号ラインを順次選択して走査する走査線駆動回路と、選択されたゲート信号ライン上の複数の画素の各々に対し、前記複数のソース信号ラインからソース信号を供給する信号線駆動回路とを備えた表示装置の駆動方法であって、前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極に対し、画素に蓄えられた電荷を開放するための第1の電圧を印加するように制御する表示終了時制御工程を含んだことを特徴とする。
 本駆動方法によれば、当該駆動方法を表示装置の駆動方法として採用することにより、上記表示装置と同様の効果を奏する表示装置を提供することができる。
 本発明に係る表示装置および駆動方法は、液晶表示装置等の、アクティブマトリクス方式を採用した各種表示装置において利用可能である。
 1    表示装置(液晶表示装置)
 2    表示パネル
 4    走査線駆動回路
 6    信号線駆動回路
 8    共通電極駆動回路
 10   タイミングコントローラ
 12   電源生成回路
 20   表示終了時制御部(表示終了時制御手段)

Claims (16)

  1.  複数の画素、複数のゲート信号ライン、および複数のソース信号ラインを有する表示パネルと、
     前記複数の画素の各々の共通電極に対し、共通電圧を供給する共通電極駆動回路と、
     前記複数のゲート信号ラインを順次選択して走査する走査線駆動回路と、
     選択されたゲート信号ライン上の複数の画素の各々に対し、前記複数のソース信号ラインからソース信号を供給する信号線駆動回路と、
     前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極に対し、画素に蓄えられた電荷を開放するための第1の電圧を印加するように制御する表示終了時制御手段と
     を備えることを特徴とする表示装置。
  2.  前記表示終了時制御手段は、
     前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極および前記複数の画素の各々の共通電極に対し、前記第1の電圧を印加するように制御する
     ことを特徴とする請求項1に記載の表示装置。
  3.  前記表示終了時制御手段は、
     前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極に対し、前記共通電圧を印加するように制御した後、前記複数の画素の各々の画素電極および前記複数の画素の各々の共通電極に対し、前記第1の電圧を印加するように制御する
     ことを特徴とする請求項2に記載の表示装置。
  4.  前記表示終了時制御手段は、
     前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極に対し、通常駆動時にノーマリー状態を表示するための第2の電圧を印加するように制御した後、前記複数の画素の各々の画素電極および前記複数の画素の各々の共通電極に対し、前記第1の電圧を印加するように制御する
     ことを特徴とする請求項2に記載の表示装置。
  5.  前記表示終了時制御手段は、
     前記表示パネルの表示がオフされるとき、前記信号線駆動回路および前記共通電極駆動回路に対して所定の指示信号を送信することにより、前記信号線駆動回路から、前記複数の画素の各々の画素電極に対し、前記第1の電圧を印加するように制御し、前記共通電極駆動回路から、前記複数の画素の各々の共通電極に対し、前記第1の電圧を印加するように制御する
     ことを特徴とする請求項2から4のいずれかに記載の表示装置。
  6.  当該表示装置に対して供給される電源電圧が所定の閾値よりも低くなったことを検出する検出手段をさらに備え、
     前記表示終了時制御手段は、
     前記検出手段によって前記電源電圧が前記所定の閾値よりも低くなったことが検出されると、前記表示パネルの表示がオフされると判断する
     ことを特徴とする請求項5に記載の表示装置。
  7.  前記表示終了時制御手段は、
     表示パネルの表示をオフするための指示信号を外部から受信すると、前記表示パネルの表示がオフされると判断する
     ことを特徴とする請求項5に記載の表示装置。
  8.  前記表示終了時制御手段は、
     前記表示パネルの表示がオフされるとき、前記走査線駆動回路から全てのゲート信号ラインに対して同時にオン信号を供給するよう制御することにより、前記表示パネル上の全ての画素のTFTを同時にオンに切り換え、
     前記複数の画素の各々の画素電極に対し前記第1の電圧が印加された後、前記表示パネル上の全ての画素のTFTをオフに切り換えない
     ことを特徴とする請求項1から7のいずれかに記載の表示装置。
  9.  前記表示終了時制御手段は、
     前記複数の画素の各々の画素電極に対し前記第1の電圧が印加された後、前記複数の画素の各々の共通電極に対し前記第1の電圧を印加する
     ことを特徴とする請求項2から7のいずれかに記載の表示装置。
  10.  前記第1の電圧はグランド電圧である
     ことを特徴とする請求項1から9のいずれかに記載の表示装置。
  11.  前記複数の画素の各々のTFTの半導体層には、酸化物半導体が用いられている
     ことを特徴とする請求項1から10のいずれかに記載の表示装置。
  12.  前記酸化物半導体は、IGZOである
     ことを特徴とする請求項11に記載の表示装置。
  13.  前記表示終了時制御手段は、
     前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極に対し前記第1の電圧が印加された後、前記表示パネルのバックライトを消灯するよう制御する
     ことを特徴とする請求項1から12のいずれかに記載の表示装置。
  14.  前記信号線駆動回路は、
     ソース信号電位がグランド電圧よりも正となる第1のソース信号を供給する第1のソース出力アンプ、およびソース信号電位がグランド電圧よりも負となる第2のソース信号を供給する第2のソース出力アンプを有し、
     前記複数のソース信号ラインの各々に対し、前記第1のソース信号および前記第2のソース信号を交互に供給し、
     前記第1の電圧および前記共通電圧の各々は、
     前記グランド電圧と略等しい
     ことを特徴とする請求項1に記載の表示装置。
  15.  請求項1から14のいずれかに記載の表示装置を備えたことを特徴とする液晶表示装置。
  16.  複数の画素、複数のゲート信号ライン、および複数のソース信号ラインを有する表示パネルと、
     前記複数の画素の各々の共通電極に対し、共通電圧を供給する共通電極駆動回路と、
     前記複数のゲート信号ラインを順次選択して走査する走査線駆動回路と、
     選択されたゲート信号ライン上の複数の画素の各々に対し、前記複数のソース信号ラインからソース信号を供給する信号線駆動回路と
     を備えた表示装置の駆動方法であって、
     前記表示パネルの表示がオフされるとき、前記複数の画素の各々の画素電極に対し、画素に蓄えられた電荷を開放するための第1の電圧を印加するように制御する表示終了時制御工程
     を含んだことを特徴とする駆動方法。
PCT/JP2012/062335 2011-05-20 2012-05-14 表示装置、液晶表示装置、および駆動方法 WO2012161022A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-113715 2011-05-20
JP2011113715 2011-05-20

Publications (1)

Publication Number Publication Date
WO2012161022A1 true WO2012161022A1 (ja) 2012-11-29

Family

ID=47217102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062335 WO2012161022A1 (ja) 2011-05-20 2012-05-14 表示装置、液晶表示装置、および駆動方法

Country Status (2)

Country Link
TW (1) TW201301238A (ja)
WO (1) WO2012161022A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129239A1 (ja) * 2012-02-29 2013-09-06 シャープ株式会社 駆動装置および表示装置
US20140354609A1 (en) * 2013-05-30 2014-12-04 Sharp Kabushiki Kaisha Liquid crystal display device and method of driving liquid crystal display device
JP2014228561A (ja) * 2013-05-17 2014-12-08 シャープ株式会社 液晶表示装置、液晶表示装置の制御方法、液晶表示装置の制御プログラムおよびその記録媒体
EP3038085A1 (en) * 2014-12-24 2016-06-29 LG Display Co., Ltd. Display device and method of driving the same
US9865621B2 (en) 2013-06-10 2018-01-09 Sharp Kabushiki Kaisha Display device
JP2018180284A (ja) * 2017-04-13 2018-11-15 株式会社 オルタステクノロジー 液晶調光装置及び液晶調光方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271707A (ja) * 1998-03-19 1999-10-08 Toshiba Corp 液晶表示装置
JP2002040997A (ja) * 2000-07-25 2002-02-08 Hitachi Ltd 液晶表示装置
WO2005088726A1 (ja) * 2004-03-12 2005-09-22 Japan Science And Technology Agency アモルファス酸化物及び薄膜トランジスタ
JP2006011311A (ja) * 2004-06-29 2006-01-12 Optrex Corp 液晶表示装置および液晶表示装置の制御方法
JP2008146086A (ja) * 2007-12-28 2008-06-26 Seiko Epson Corp 電気光学装置の駆動方法
JP2009186542A (ja) * 2008-02-04 2009-08-20 Seiko Epson Corp プロジェクタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271707A (ja) * 1998-03-19 1999-10-08 Toshiba Corp 液晶表示装置
JP2002040997A (ja) * 2000-07-25 2002-02-08 Hitachi Ltd 液晶表示装置
WO2005088726A1 (ja) * 2004-03-12 2005-09-22 Japan Science And Technology Agency アモルファス酸化物及び薄膜トランジスタ
JP2006011311A (ja) * 2004-06-29 2006-01-12 Optrex Corp 液晶表示装置および液晶表示装置の制御方法
JP2008146086A (ja) * 2007-12-28 2008-06-26 Seiko Epson Corp 電気光学装置の駆動方法
JP2009186542A (ja) * 2008-02-04 2009-08-20 Seiko Epson Corp プロジェクタ

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129239A1 (ja) * 2012-02-29 2013-09-06 シャープ株式会社 駆動装置および表示装置
JPWO2013129239A1 (ja) * 2012-02-29 2015-07-30 シャープ株式会社 駆動装置および表示装置
US9412324B2 (en) 2012-02-29 2016-08-09 Sharp Kabushiki Kaisha Drive device and display device
JP2014228561A (ja) * 2013-05-17 2014-12-08 シャープ株式会社 液晶表示装置、液晶表示装置の制御方法、液晶表示装置の制御プログラムおよびその記録媒体
US20140354609A1 (en) * 2013-05-30 2014-12-04 Sharp Kabushiki Kaisha Liquid crystal display device and method of driving liquid crystal display device
JP2014235187A (ja) * 2013-05-30 2014-12-15 シャープ株式会社 液晶表示装置および液晶表示装置の駆動方法
US9865621B2 (en) 2013-06-10 2018-01-09 Sharp Kabushiki Kaisha Display device
EP3038085A1 (en) * 2014-12-24 2016-06-29 LG Display Co., Ltd. Display device and method of driving the same
CN105741724A (zh) * 2014-12-24 2016-07-06 乐金显示有限公司 显示装置和驱动该显示装置的方法
US10008152B2 (en) 2014-12-24 2018-06-26 Lg Display Co., Ltd. Display device and method of driving the same
JP2018180284A (ja) * 2017-04-13 2018-11-15 株式会社 オルタステクノロジー 液晶調光装置及び液晶調光方法

Also Published As

Publication number Publication date
TW201301238A (zh) 2013-01-01

Similar Documents

Publication Publication Date Title
KR101597407B1 (ko) 표시 장치 및 그 구동 방법
JP6105026B2 (ja) 駆動装置および表示装置
WO2011145360A1 (ja) 表示装置およびその駆動方法、ならびに表示システム
US20130293526A1 (en) Display device and method of operating the same
WO2012161022A1 (ja) 表示装置、液晶表示装置、および駆動方法
TWI537926B (zh) 顯示裝置及其驅動方法
US9093045B2 (en) Liquid crystal display device and method for driving the same
US20150022476A1 (en) Display device
WO2018030226A1 (ja) 表示装置
JP2006003512A (ja) 液晶表示装置とその駆動方法
US9934743B2 (en) Drive device, drive method, display device and display method
JP2017021142A (ja) 表示装置およびシステム
US9959828B2 (en) Method and apparatus for driving display panels during display-off periods
US9147372B2 (en) Display device
JP2005274658A (ja) 液晶表示装置
US9437154B2 (en) Display device, and method for driving display device
JP5823603B2 (ja) 駆動装置および表示装置
WO2013024776A1 (ja) 表示装置およびその駆動方法
JP2006078588A (ja) 液晶表示装置及び液晶表示装置の駆動方法
EP2479746A1 (en) Liquid crystal display device and drive method therefor
KR101785339B1 (ko) 공통전압 드라이버 및 이를 포함하는 액정표시장치
WO2013115100A1 (ja) 液晶表示装置、液晶表示装置の駆動方法
JP2008233283A (ja) 液晶表示装置およびその駆動方法
JP2006011004A (ja) 液晶表示装置ならびにその駆動回路および駆動方法
KR101159352B1 (ko) 액정표시장치 및 그의 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12790014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP