WO2016208321A1 - 制御回路、表示装置、電子機器および投射型表示装置 - Google Patents

制御回路、表示装置、電子機器および投射型表示装置 Download PDF

Info

Publication number
WO2016208321A1
WO2016208321A1 PCT/JP2016/065609 JP2016065609W WO2016208321A1 WO 2016208321 A1 WO2016208321 A1 WO 2016208321A1 JP 2016065609 W JP2016065609 W JP 2016065609W WO 2016208321 A1 WO2016208321 A1 WO 2016208321A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
field
control circuit
signal
field period
Prior art date
Application number
PCT/JP2016/065609
Other languages
English (en)
French (fr)
Inventor
誠一郎 甚田
佳明 神山
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017524773A priority Critical patent/JPWO2016208321A1/ja
Priority to US15/737,620 priority patent/US10991329B2/en
Publication of WO2016208321A1 publication Critical patent/WO2016208321A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133397Constructional arrangements; Manufacturing methods for suppressing after-image or image-sticking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • G09G2320/0214Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display with crosstalk due to leakage current of pixel switch in active matrix panels

Definitions

  • the present disclosure relates to a control circuit, a display device, an electronic device, and a projection display device.
  • an AC driving method is employed in which the polarity of the signal voltage applied to the pixel electrode of the liquid crystal cell with respect to the potential of the counter electrode of the liquid crystal cell is inverted at a predetermined cycle.
  • the common voltage applied to the counter electrode is made constant and the polarity of the signal voltage is inverted every field period, or not only the signal voltage but also the common voltage is inverted every field period.
  • a field inversion driving method is known (for example, see Patent Document 1).
  • the potential difference between the source and the drain of the pixel transistor increases in a specific period within one field period, and a leak current flows through the pixel transistor.
  • the period during which a large amount of leakage current flows (hereinafter referred to as “leak period”) differs within one screen.
  • the leak periods are different between the upper part of the screen, the central part of the screen, and the lower part of the screen.
  • the characteristics of the pixel transistor vary from pixel to pixel. For this reason, since the amount of leak differs not only in the vertical direction of the screen but also for each pixel, there is a problem that shading occurs from the center of the screen to the lower side, mottled patterns occur, and image quality deteriorates.
  • control circuit that can significantly suppress deterioration in image quality due to current leakage in field inversion driving, as well as a display device, an electronic apparatus, and a projection display device including the control circuit.
  • a control circuit is a control circuit that controls driving of an electro-optical element.
  • the control circuit When the signal waveform output from the control circuit is observed with a display resolution of 200 ⁇ sec or a display resolution lower than 200 ⁇ sec, the control circuit has a vertical effective display period of one field defined by the vertical start signal.
  • the active matrix drive is controlled by the field inversion drive method so that it is closer to the start of the period.
  • a display device includes an electro-optical element and a control circuit that controls driving of the electro-optical element.
  • the control circuit When the signal waveform output from the control circuit is observed with a display resolution of 200 ⁇ sec or a display resolution lower than 200 ⁇ sec, the control circuit has a vertical effective display period of one field defined by the vertical start signal.
  • the active matrix drive is controlled by the field inversion drive method so that it is closer to the start of the period.
  • An electronic apparatus includes a display device.
  • the display device includes an electro-optical element and a control circuit that controls driving of the electro-optical element.
  • the control circuit When the signal waveform output from the control circuit is observed with a display resolution of 200 ⁇ sec or a display resolution lower than 200 ⁇ sec, the control circuit has a vertical effective display period of one field defined by the vertical start signal.
  • the active matrix drive is controlled by the field inversion drive method so that it is closer to the start of the period.
  • a projection display device includes an illumination optical system, a plurality of electro-optical elements that generate image light by modulating light from the illumination optical system, and driving of the plurality of electro-optical elements.
  • a control circuit for controlling and a projection optical system for projecting image light generated by a plurality of electro-optical elements are provided.
  • the control circuit When the signal waveform output from the control circuit is observed with a display resolution of 200 ⁇ sec or a display resolution lower than 200 ⁇ sec, the control circuit has a vertical effective display period of one field defined by the vertical start signal.
  • the active matrix drive is controlled by the field inversion drive method so that it is closer to the start of the period.
  • the active matrix drive is controlled by the field inversion drive method so that the vertical effective display period is closer to the start of one field period.
  • the in-plane distribution of the leak amount in one field period becomes more uniform as compared with the case where the active matrix drive control is performed by the conventional field inversion drive method.
  • the in-plane distribution of the leak amount in one field period is made more uniform. Alleviated.
  • in field inversion driving it is possible to suppress deterioration in image quality due to current leakage.
  • the effect of this technique is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.
  • FIG. 19B is an enlarged view of the waveform diagram of FIG. 19A. It is a wave form chart for explaining an example of an effective display period and a blanking period.
  • FIG. 20B is an enlarged view of the waveform diagram of FIG. 20A. It is a schematic diagram for demonstrating an example of an effective display period and a blanking period. It is a schematic diagram for demonstrating an example of an effective display period and a blanking period.
  • FIG. 36 is a diagram illustrating an example of a schematic configuration of a display panel module in the display device of FIG. It is a figure showing an example of the circuit structure of a horizontal drive circuit and a precharge circuit. It is a figure showing an example of the circuit structure of a horizontal drive circuit and a precharge circuit.
  • FIG. 1 illustrates an example of a schematic configuration of the display device 1 according to the first embodiment of the present disclosure.
  • the display device 1 can be applied as a light valve of a three-plate projector (projection display device).
  • the display device 1 includes, for example, a pixel array unit 10, a controller 20, and a liquid crystal driver 30.
  • the pixel array unit 10 may be a transmissive type or a reflective type. When the pixel array unit 10 is a transmissive type, the display device 1 may include a light source (not shown) behind the pixel array unit 10 as necessary.
  • the display device 1 corresponds to a specific example of “display device” of the present disclosure.
  • the controller 20 corresponds to a specific example of a “control circuit” of the present disclosure.
  • the pixel array unit 10 has, for example, normally black transmittance characteristics or reflectance characteristics.
  • normally black refers to an optical characteristic in which the transmittance or reflectance is minimized when no voltage is applied, and a black display is obtained.
  • the pixel array unit 10 may have, for example, normally white transmittance characteristics or reflectance characteristics.
  • normally white refers to an optical characteristic in which the transmittance or reflectance is maximized when no voltage is applied, and white display is performed.
  • the pixel array unit 10 generates image light by electrically changing the polarization state of light by applying a voltage.
  • FIG. 2 shows an example of a schematic configuration of the display panel module 40.
  • the display device 1 includes a display panel module 40.
  • the display panel module 40 includes a display panel 41 in which the pixel array unit 10 and the liquid crystal driver 30 are provided on a substrate made of, for example, a glass plate or a resin plate.
  • the display panel module 40 further includes, for example, an FPC (Flexible Printed Circuits) 42 connected to the liquid crystal driver 30 on the display panel 41 and a control board 43 connected to the FPC 42.
  • the control board 43 controls the pixel array unit 10 via the liquid crystal driver 30 and includes, for example, a controller 20.
  • the controller 20 is composed of, for example, an IC.
  • the controller 20 may be provided on the FPC 42 or may be provided on the substrate of the display panel module 40.
  • the pixel array unit 10 includes a plurality of scanning lines WS extending in the row direction, a plurality of signal lines Sig extending in the column direction, and one for each portion where the scanning lines WS and the signal lines Sig intersect each other. And a plurality of pixels 11 provided. Each pixel 11 is connected in parallel to a liquid crystal cell CL, a pixel transistor Tr that samples the voltage of the signal line Sig based on a signal input from the scanning line WS and writes to the liquid crystal cell CL, and the liquid crystal cell CL, for example. And a capacitive element Cs.
  • the pixel transistor Tr is composed of, for example, a thin film transistor (TFT: “Thin” Film “Transistor”).
  • the liquid crystal cell CL includes, for example, a liquid crystal layer and a pixel electrode and a counter electrode that sandwich the liquid crystal layer.
  • the liquid crystal cell CL may further include, for example, a polarizing plate.
  • the pixel electrode is connected to the source or drain of the pixel transistor Tr, and the counter electrode is connected to a VCOM circuit 24 described later.
  • the display state of the liquid crystal cell CL is, for example, TN (TwistedistNematic) mode, VA (Vertical Alignment) mode, IPS (In Plane Switching) mode, FFS (Fringe Field Switching) mode, STN (Super Twisted Nematic) mode, or ECB (Electrically Controlled Birefringence) mode.
  • TN TransmissionistNematic
  • VA Vertical Alignment
  • IPS In Plane Switching
  • FFS Feringe Field Switching
  • STN Super Twisted Nematic
  • ECB Electrically Controlled Birefringence
  • the liquid crystal driver 30 causes the pixel array unit 10 to generate image light based on a video signal input from the outside by active matrix driving each pixel 11.
  • the liquid crystal driver 30 includes a vertical drive circuit 31 connected to a plurality of scanning lines WS and a horizontal drive circuit 32 connected to a plurality of signal lines.
  • FIG. 3 shows an example of the circuit configuration of the horizontal drive circuit 32.
  • FIG. 4 is a waveform diagram for explaining an example of dot sequential driving by the controller 20.
  • the horizontal drive circuit 32 is not limited to the configuration shown in FIG.
  • the horizontal drive circuit 32 operates based on a control signal supplied from the controller 20 and outputs the signal voltage Vsig in parallel to the pixel array unit 10 via each signal line Sig one line at a time.
  • the signal voltage Vsig has a peak value or a pulse width corresponding to the gradation of a video signal DA (described later) input from the outside.
  • the vertical drive circuit 31 operates based on a control signal supplied from the controller 20, and outputs a drive pulse for scanning each pixel 11 line-sequentially to the pixel array unit 10 via each scan line WS.
  • the horizontal drive circuit 32 includes, for example, a plurality of shift registers SR (SR (a1), SR (a2)... SR (a41)) assigned to each group of signal lines Sig, and signal lines Sig.
  • Each of the groups includes a plurality of switch elements SWa to which one switch is assigned for each signal line Sig.
  • the output terminal is connected to the ON / OFF control terminal of each switch element SWa in the corresponding group, and the input terminal is connected via the FPC 42.
  • the controller 20 Connected to the controller 20.
  • In each switch element SWa one end is connected to each signal line Sig one by one, and the other end is connected to the controller 20 via the FPC 42.
  • the horizontal drive circuit 32 sequentially outputs the control signal SR from each shift register SR to the on / off control terminal of each switch element SWa in the corresponding group.
  • the signal voltage Vsig is sequentially output from each group to each corresponding signal line Sig.
  • the controller 20 controls the liquid crystal driver 30 for active matrix driving of each pixel 11 by the field inversion driving method.
  • the field inversion driving method will be described in detail later.
  • the controller 20 includes a signal processing circuit 31, a timing generation circuit 32, an inversion circuit 33, a VCOM circuit 34, and a power supply generation circuit 25.
  • the signal processing circuit 31 converts, for example, an externally input digital video signal Din into an analog video signal DA for the pixel array unit 10, and outputs the converted video signal DA to the inverting circuit 33.
  • the signal processing circuit 31 further separates the synchronization signal Ts from the video signal Din, and outputs the separated synchronization signal Ts to the timing generation circuit 32.
  • the timing generation circuit 32 generates, for example, a horizontal start signal HST and a horizontal clock signal HCK that are synchronized with the synchronization signal Ts and outputs the horizontal start signal HST to the horizontal drive circuit 32.
  • the timing generation circuit 32 further forms, for example, a vertical start signal VST and a vertical clock signal VCK synchronized with the synchronization signal Ts, and outputs them to the vertical drive circuit 31.
  • the timing generation circuit 32 further forms, for example, an inversion control pulse synchronized with the synchronization signal Ts and outputs it to the inversion circuit 33.
  • the timing generation circuit 32 further forms, for example, a vertical clock signal VCK synchronized with the synchronization signal Ts and outputs it to the VCOM circuit 34.
  • the inversion circuit 33 performs a polarity inversion operation according to the inversion control pulse.
  • the inverting circuit 33 forms a signal voltage Vsig whose polarity is inverted every field period from the video signal DA.
  • the inverting circuit 33 outputs the formed signal voltage Vsig to the horizontal drive circuit 32.
  • the power generation circuit 25 generates a voltage necessary for the signal processing circuit 21 and the VCOM circuit 24 and supplies the voltage to the signal processing circuit 21 and the VCOM circuit 24.
  • one field period is a period defined by the vertical start signal VST, for example, as shown in FIG.
  • the start of one field period corresponds to the rise of the vertical start signal VST
  • the end of one field period corresponds to the rise of the vertical start signal VST generated first after the start of one field period.
  • one field period may be a period defined by the pulse waveform of the common voltage Vcom.
  • one field period corresponds to a period from the rising time to the falling time of the common voltage Vcom, or a period from the falling time to the rising time of the common voltage Vcom.
  • One field period includes an effective display period Ta in which the signal voltage Vsig is applied to the pixel array unit 10, and a blanking period Tb provided at least one before and after the effective display period Ta. .
  • an effective display period Ta in which the signal voltage Vsig is applied to the pixel array unit 10
  • a blanking period Tb provided at least one before and after the effective display period Ta.
  • the signal voltage Vsig for all lines is sequentially output from the horizontal drive circuit 32 to each signal line Sig in synchronization with the vertical clock signal VCK for each signal voltage Vsig for one line. Is done.
  • the blanking period Tb is a period in which no image is displayed on the pixel array unit 10, and is a period in which various signal processes are performed.
  • the horizontal start signal HST defines, for example, one horizontal period (1H) as shown in FIG.
  • the start of one horizontal period (1H) corresponds to the rise of the horizontal start signal HST, and the end of one horizontal period corresponds to the rise of the horizontal start signal HST generated first after the start of one horizontal period.
  • Each horizontal period in the effective display period Ta includes an effective display period Tc in which the signal voltage Vsig is applied to the pixel array unit 10, and a blanking period Td provided at least before or after the effective display period Tc. It is comprised including.
  • the signal voltage Vsig for one line is output simultaneously from the horizontal drive circuit 32 to each signal line Sig in synchronization with the horizontal clock signal HCK, or sequentially for each group of signal lines Sig. Or output.
  • the blanking period Td is a period during which no image is displayed on the pixel array unit 10.
  • the VCOM circuit 34 generates a predetermined common voltage Vcom and applies it to the counter electrode of the liquid crystal cell CL. For example, when performing DC driving, the VCOM circuit 34 keeps the common voltage Vcom constant and applies it to the counter electrode of the liquid crystal cell CL. For example, when performing AC driving, the VCOM circuit 34 applies a common voltage Vcom, which changes in pulse in synchronization with the vertical start signal VST, to the counter electrode of the liquid crystal cell CL. At this time, the VCOM circuit 34 forms a common voltage Vcom whose polarity is inverted for each field, and applies the formed common voltage Vcom to the counter electrode of the liquid crystal cell CL.
  • FIG. 7 shows another example of the circuit configuration of the horizontal drive circuit 32.
  • FIG. 8 is a waveform diagram for explaining an example of line-sequential driving by the controller 20.
  • the horizontal drive circuit 32 is not limited to the configuration shown in FIG.
  • the horizontal drive circuit 32 includes, for example, a plurality of selection lines SEL (SEL (1), SEL (2)... SEL (41)) assigned to each group of signal lines Sig, and signal lines Sig.
  • Each group includes a plurality of switch elements SWb assigned to each signal line Sig.
  • SEL selection lines
  • Each group includes a plurality of switch elements SWb assigned to each signal line Sig.
  • the horizontal drive circuit 32 is configured so that the switch SWb is sequentially turned on for each group of signal lines Sig based on a control signal supplied from the controller 20, thereby causing the signal voltage for each group of signal lines Sig. Vsig is output sequentially.
  • FIG. 9 is a schematic diagram for explaining an example of field inversion driving according to the present embodiment.
  • the field inversion driving refers to driving in which a signal voltage Vsig having a polarity inverted with respect to the common voltage Vcom of the liquid crystal cell CL is applied to the liquid crystal cell CL every field period (1F).
  • “+” indicates that the polarity of the signal voltage Vsig is positive with respect to the common voltage Vcom.
  • indicates that the polarity of the signal voltage Vsig is negative with respect to the common voltage Vcom.
  • “+” and “ ⁇ ” represent the relative magnitude relationship between the signal voltage Vsig and the common voltage Vcom.
  • the polarity of the signal voltage Vsig with respect to the common voltage Vcom is positive over the entire screen.
  • time t2 the polarity of the signal voltage Vsig with respect to the common voltage Vcom is shifted from positive to negative in the uppermost line in one screen.
  • the polarity of the signal voltage Vsig with respect to the common voltage Vcom is shifted from positive to negative in the second and third lines from the top in one screen.
  • the polarity of the signal voltage Vsig with respect to the common voltage Vcom is negative over the entire screen.
  • the polarity of the signal voltage Vsig with respect to the common voltage Vcom is shifted from negative to positive in the uppermost line in one screen.
  • the polarity of the signal voltage Vsig with respect to the common voltage Vcom is shifted from negative to positive in the second and third lines from the top in one screen.
  • the change of the polarity of the signal voltage Vsig with respect to the common voltage Vcom from positive to negative and from negative to positive over one screen every one field period is referred to as field inversion driving.
  • FIG. 10 is a schematic diagram for explaining an example of field inversion driving according to the present embodiment.
  • the controller 20 may always perform point-sequential driving in a specific direction in the horizontal direction when controlling field inversion driving.
  • the controller 20 controls the pixel voltage Vpix so that the polarity of the signal voltage Vsig with respect to the common voltage Vcom is positive over the entire screen, and from left to right in the horizontal direction. Point-sequential driving is performed toward.
  • the controller 20 controls the pixel voltage Vpix so that the polarity of the signal voltage Vsig with respect to the common voltage Vcom changes from positive to negative in the uppermost line in one screen, and from the left to the right in the horizontal direction. Point-sequential driving is performed toward.
  • the controller 20 controls the pixel voltage Vpix so that the polarity of the signal voltage Vsig with respect to the common voltage Vcom is shifted from positive to negative in the second and third lines from the top in one screen. At the same time, point-sequential driving is performed from left to right in the horizontal direction. At time t4, the controller 20 controls the pixel voltage Vpix so that the polarity of the signal voltage Vsig with respect to the common voltage Vcom is negative over the entire screen, and the first and second stages from the bottom of the screen. In this line, point-sequential driving is performed from left to right in the horizontal direction.
  • the controller 20 controls the pixel voltage Vpix so that the polarity of the signal voltage Vsig with respect to the common voltage Vcom shifts from negative to positive in the uppermost line in one screen, and from the left in the horizontal direction. Point-sequential driving is performed toward the right.
  • the controller 20 controls the pixel voltage Vpix so that the polarity of the signal voltage Vsig with respect to the common voltage Vcom changes from negative to positive in the second and third lines from the top in one screen.
  • point-sequential driving is performed from left to right in the horizontal direction.
  • FIG. 11 is a schematic diagram for explaining an example of field inversion driving according to the present embodiment.
  • the controller 20 may change the direction of dot sequential driving in the horizontal direction for each field period when controlling the field inversion driving.
  • the controller 20 controls the pixel voltage Vpix so that the polarity of the signal voltage Vsig with respect to the common voltage Vcom is positive over the entire screen, and from left to right in the horizontal direction. Point-sequential driving is performed toward.
  • the controller 20 controls the pixel voltage Vpix so that the polarity of the signal voltage Vsig with respect to the common voltage Vcom changes from positive to negative in the uppermost line in one screen, and from the right to the left in the horizontal direction. Point-sequential driving is performed toward.
  • the controller 20 controls the pixel voltage Vpix so that the polarity of the signal voltage Vsig with respect to the common voltage Vcom is shifted from positive to negative in the second and third lines from the top in one screen. At the same time, point-sequential driving is performed from right to left in the horizontal direction. At time t4, the controller 20 controls the pixel voltage Vpix so that the polarity of the signal voltage Vsig with respect to the common voltage Vcom is negative over the entire screen, and the first and second stages from the bottom of the screen. In this line, point-sequential driving is performed from right to left in the horizontal direction.
  • the controller 20 controls the pixel voltage Vpix so that the polarity of the signal voltage Vsig with respect to the common voltage Vcom shifts from negative to positive in the uppermost line in one screen, and from the left in the horizontal direction. Point-sequential driving is performed toward the right.
  • the controller 20 controls the pixel voltage Vpix so that the polarity of the signal voltage Vsig with respect to the common voltage Vcom changes from negative to positive in the second and third lines from the top in one screen.
  • point-sequential driving is performed from left to right in the horizontal direction.
  • field inversion driving of the present embodiment will be described in comparison with the field inversion driving according to the comparative example.
  • field inversion driving according to the present embodiment will be described.
  • FIG. 12 and 13 are waveform diagrams for explaining an example of the field inversion driving according to the comparative example.
  • FIG. 12 is a waveform diagram when the controller according to the comparative example performs control for DC driving of the counter electrode of the liquid crystal cell.
  • FIG. 13 is a waveform diagram when the controller according to the comparative example performs control for AC driving the counter electrode of the liquid crystal cell.
  • the horizontal axis represents time and the vertical axis represents voltage.
  • the top two diagrams are waveform diagrams of signals applied to the pixel 11 located at “11a” in FIGS. 9 to 11.
  • the two diagrams in the center are waveform diagrams of signals applied to the pixel 11 located at “11b” in FIGS. 9 to 11.
  • the bottom two diagrams are waveform diagrams of signals applied to the pixel 11 located at “11c” in FIGS. 9 to 11.
  • the leak period is longer at the pixel 11c at the bottom of the screen than the pixel 11b at the center of the screen, and the amount of leak is greater at the pixel 11c at the bottom of the screen than the pixel 11b at the center of the screen.
  • the leak period and the leak amount are greatly different between the upper part of the screen, the center part of the screen, and the lower part of the screen.
  • the characteristics of the pixel transistor Tr vary for each pixel 11. Therefore, the leak amount differs not only in the vertical direction of the screen but also for each pixel 11. As a result, for example, as shown in FIG. 14, shading occurs from the center of the screen to the lower side, mottled patterns occur, and image quality deteriorates.
  • FIG. 15 illustrates an example of the effective display period Te and the blanking period Tf in the comparative example.
  • the horizontal axis represents time.
  • the display resolution on the horizontal axis is 400 ⁇ sec (display resolution inferior to 200 ⁇ sec) when one field period is 1/60 sec ( ⁇ 16.7 msec).
  • the display resolution on the horizontal axis is 200 ⁇ sec when one field period is 1/120 sec ( ⁇ 8.3 msec).
  • the display resolution on the horizontal axis is 200 ⁇ sec when one field period is 1/180 sec ( ⁇ 5.6 msec).
  • the display resolution on the horizontal axis is 100 ⁇ sec when one field period is 1/240 sec ( ⁇ 4.2 msec). In FIG. 15, the display resolution on the horizontal axis is 500 ⁇ sec (display resolution inferior to 200 ⁇ sec) when one field period is 1/50 sec ( ⁇ 20.0 msec). In FIG. 15, the display resolution on the horizontal axis is 300 ⁇ sec (display resolution inferior to 200 ⁇ sec) when one field period is 1/100 sec ( ⁇ 20.0 msec). In FIG. 15, the display resolution on the horizontal axis is 200 ⁇ sec when one field period is 1/150 sec ( ⁇ 6.7 msec). In FIG. 15, the display resolution on the horizontal axis is 200 ⁇ sec when one field period is 1/200 sec ( ⁇ 6.7 msec).
  • the display resolution represents the ability to identify a waveform in the display when the waveform is measured with an oscilloscope or the like and displayed on the display. For example, when the display resolution on the horizontal axis is 100 ⁇ sec, a pulse of less than 100 ⁇ sec is represented by a single line. For example, when the display resolution of the horizontal axis is 100 ⁇ sec, two pulses with a gap of less than 100 ⁇ sec are represented by one line or two pulses without a gap.
  • the effective display period Te occupies most of one field period from the viewpoint of increasing luminance and securing a timing margin, and generally occupies about 98%. That is, the blanking period Tf occupies about 2% of one field period. Therefore, when one field period is 1/60 sec, the blanking period Tf occupying the entire one field period is about 333 ⁇ sec. When one field period is 1/120 sec, the blanking period Tf occupying the entire one field period is about 167 ⁇ sec. When one field period is 1/180 sec, the blanking period Tf occupying the entire one field period is about 111 ⁇ sec. Further, when one field period is 1/240 sec, the blanking period Tf occupying the entire one field period is about 83 ⁇ sec.
  • the blanking period Tf occupying the entire one field period is about 400 ⁇ sec.
  • the blanking period Tf occupying the entire one field period is about 200 ⁇ sec.
  • the blanking period Tf occupying the entire one field period is about 133 ⁇ sec.
  • the blanking period Tf occupying the entire one field period is about 100 ⁇ sec.
  • the blanking period Tf is less than the display resolution of the horizontal axis. Accordingly, at this time, the blanking period Tf is represented by one line, and the two effective display periods Te having a gap of about 333 ⁇ sec are represented by two effective display periods Te without a gap. In addition, when one field period is 1/120 sec and the horizontal axis display resolution is 200 ⁇ sec, the blanking period Tf is less than the horizontal axis display resolution. Accordingly, at this time, the blanking period Tf is represented by one line, and the two effective display periods Te having a gap of about 167 ⁇ sec are represented by two effective display periods Te without a gap.
  • the blanking period Tf is less than the display resolution on the horizontal axis. Accordingly, at this time, the blanking period Tf is represented by one line, and the two effective display periods Te having a gap of about 111 ⁇ sec are represented by two effective display periods Te without a gap. Further, when one field period is 1/240 sec and the horizontal axis display resolution is 100 ⁇ sec, the blanking period Tf is less than the horizontal axis display resolution. Accordingly, at this time, the blanking period Tf is represented by one line, and the two effective display periods Te having a gap of about 83 ⁇ sec are represented by two effective display periods Te without a gap.
  • the blanking period Tf is less than the display resolution on the horizontal axis. Therefore, at this time, the blanking period Tf is represented by one line, and the two effective display periods Te having a gap of about 400 ⁇ sec are represented by two effective display periods Te without a gap. Further, when one field period is approximately 1/100 sec and the horizontal axis display resolution is 300 ⁇ sec, the blanking period Tf is less than the horizontal axis display resolution. Therefore, at this time, the blanking period Tf is represented by one line, and the two effective display periods Te having a gap of about 200 ⁇ sec are represented by two effective display periods Te without a gap.
  • the blanking period Tf is less than the horizontal axis display resolution. Therefore, at this time, the blanking period Tf is represented by one line, and the two effective display periods Te having a gap of about 133 ⁇ sec are represented by two effective display periods Te without a gap. Further, when one field period is approximately 1/200 sec and the display resolution on the horizontal axis is 200 ⁇ sec, the blanking period Tf is less than the display resolution on the horizontal axis. Accordingly, at this time, the blanking period Tf is represented by one line, and the two effective display periods Te having a gap of about 100 ⁇ sec are represented by two effective display periods Te without a gap.
  • the ratio of the blanking period Tf to the effective display period Te is very small, immediately after the desired pixel voltage Vpix is applied to the lowermost pixel 11, the ratio to the common voltage Vcom is increased.
  • the polarity of the signal voltage Vsig shifts from negative to positive. As a result, shading occurs from the center to the bottom of the screen, and mottled patterns occur, resulting in a deterioration in image quality.
  • FIG. 16 and 17 are waveform diagrams for explaining an example of the field inversion driving according to the present embodiment.
  • FIG. 16 is a waveform diagram when the controller 20 of the present embodiment performs control for DC driving of the counter electrode of the liquid crystal cell CL.
  • FIG. 17 is a waveform diagram when the controller 20 of the present embodiment performs control for AC driving the counter electrode of the liquid crystal cell CL.
  • the horizontal axis represents time
  • the vertical axis represents voltage
  • the horizontal axis represents time
  • the top two diagrams are waveform diagrams of signals applied to the pixel 11 located at the position “11a” in FIGS. 16 and 17, the two diagrams in the center are waveform diagrams of signals applied to the pixel 11 located at the position “11b” in FIGS. 9 to 11.
  • the bottom two diagrams are waveform diagrams of signals applied to the pixel 11 located at the position “11c” in FIGS. 9 to 11.
  • the controller 20 controls the active matrix drive by the field inversion drive method so that the vertical scanning speed is higher than the vertical scanning speed according to the comparative example in each one field period. Do. For this reason, the polarity of the signal voltage Vsig with respect to the common voltage Vcom changes from negative to positive after a lapse of time after the desired pixel voltage Vpix is applied to the lowermost pixel 11. As a result, the difference between the leak period and the leak amount becomes smaller in the upper part of the screen, the central part of the screen, and the lower part of the screen than in the comparative example. As a result, for example, as shown in FIG. 18, the region where shading and mottled patterns occur is shifted to the lower part of the screen as compared with the comparative example, and the shading and mottled patterns become less conspicuous as compared with the comparative example. .
  • FIG. 19A shows an example of the effective display period Te and the blanking period Tf when the controller 20 of the present embodiment DC-drives the counter electrode of the liquid crystal cell CL. That is, in FIG. 19A, the controller 20 controls the field inversion drive while keeping the common voltage Vcom at a fixed potential.
  • FIG. 19B is an enlarged view of the waveform diagram of FIG. 19A.
  • FIG. 20A shows an example of the effective display period Te and the blanking period Tf when the controller 20 of the present embodiment AC drives the counter electrode of the liquid crystal cell CL. That is, in FIG. 20A, the controller 20 controls the field inversion drive so that the common voltage Vcom changes every field period.
  • FIG. 20A shows an example of the effective display period Te and the blanking period Tf when the controller 20 of the present embodiment DC-drives the counter electrode of the liquid crystal cell CL. That is, in FIG. 20A, the controller 20 controls the field inversion drive so that the common voltage Vcom changes every field period.
  • FIG. 20A shows an example of the effective display
  • FIG. 20B is an enlarged view of the waveform diagram of FIG. 20A.
  • the horizontal axis is time.
  • the display resolution on the horizontal axis is 400 ⁇ sec (display resolution inferior to 200 ⁇ sec) when one field period is 1/60 sec.
  • the display resolution on the horizontal axis is 200 ⁇ sec when one field period is 1/120 sec.
  • the display resolution on the horizontal axis is 200 ⁇ sec when one field period is 1/180 sec.
  • the display resolution on the horizontal axis is 100 ⁇ sec when one field period is 1/240 sec.
  • the display resolution on the horizontal axis is 500 ⁇ sec (display resolution inferior to 200 ⁇ sec) when one field period is 1/50 sec.
  • the display resolution on the horizontal axis is 300 ⁇ sec (display resolution inferior to 200 ⁇ sec) when one field period is 1/100 sec.
  • the display resolution on the horizontal axis is 200 ⁇ sec when one field period is 1/150 sec.
  • the display resolution on the horizontal axis is 200 ⁇ sec when one field period is 1/200 sec.
  • 19B and 20B the display resolution on the horizontal axis is 1 ⁇ sec.
  • the period from the rising time to the falling time of the common voltage Vcom, or the period from the falling time to the rising time of the common voltage Vcom coincides with one field period.
  • the controller 20 controls the active matrix drive by the field inversion drive method so that the effective display period Ta approaches the start of one field period. Therefore, in each one field period, the vertical scanning speed is faster than the vertical scanning speed according to the comparative example. As a result, the effective display period Ta is shorter than the effective display period Te, and the blanking period Tb is longer than 2% of one field period.
  • the controller 20 has an effective display period when one field period is 1/60 sec and the signal waveform output from the controller 20 is observed with a display resolution of 400 ⁇ sec (a display resolution inferior to 200 ⁇ sec).
  • Active matrix drive control is performed by a field inversion drive method so that Ta is closer to the start of one field period.
  • the controller 20 controls the active matrix driving by the field inversion driving method so that the blanking period Tb occupying the entire one field period is longer than 400 ⁇ sec when the one field period is 1/60 sec. .
  • the controller 20 sets the blanking period Tb following the effective display period Ta to 1/120 sec (1
  • the active matrix drive may be controlled by the field inversion drive method so that it is equal to or longer than 1 ⁇ 2) of the field period.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig is, for example, 1 field period is 1/120 sec and the effective display period Te is 1.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig may be equal.
  • the controller 20 sets the blanking period Tb following the effective display period Ta to 2/180 sec (1
  • the active matrix drive may be controlled by the field inversion drive method so that it is not less than 2/3) of the field period.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig is, for example, 1 field period is 1/180 sec and the effective display period Te is 1.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig may be equal.
  • the controller 20 sets the blanking period Tb following the effective display period Ta to 3/240 sec (1/60 sec) when one field period is 1/60 sec.
  • the active matrix driving may be controlled by the field inversion driving method so as to be 3/4) or more of the field period.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig is, for example, 1 field period is 1/240 sec and the effective display period Te is 1.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig may be equal.
  • the controller 20 When the one field period is 1/120 sec and the signal waveform output from the controller 20 is observed with a display resolution of 200 ⁇ sec, the controller 20 has an effective display period Ta at the start of one field period.
  • the active matrix drive is controlled by the field inversion drive method so as to be closer. Specifically, when one field period is 1/120 sec, the controller 20 controls the active matrix driving by the field inversion driving method so that the blanking period Tf following the effective display period Ta is longer than 200 ⁇ sec. Do.
  • the controller 20 sets the blanking period Tb following the effective display period Ta to (1/120 sec ⁇ ) when one field period is 1/120 sec.
  • the active matrix drive may be controlled by the field inversion drive method so that 1/180 sec) (1/6 of one field period) or more.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig is, for example, 1 field period is 1/180 sec and the effective display period Te is 1.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig may be equal.
  • the controller 20 sets the blanking period Tb following the effective display period Ta to 1/240 sec (1
  • the active matrix drive may be controlled by the field inversion drive method so that it is equal to or longer than 1 ⁇ 2) of the field period.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig is, for example, 1 field period is 1/240 sec and the effective display period Te is 1.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig may be equal.
  • the controller 20 When the one field period is 1/180 sec and the signal waveform output from the controller 20 is observed with a display resolution of 200 ⁇ sec, the controller 20 has an effective display period Ta at the start of one field period.
  • the active matrix drive is controlled by the field inversion drive method so as to be closer. Specifically, when one field period is 1/180 sec, the controller 20 controls the active matrix drive by the field inversion driving method so that the blanking period Tf occupying the entire one field period is longer than 200 ⁇ sec. .
  • the controller 20 sets the blanking period Tb following the effective display period Ta to (1/180 sec ⁇
  • the active matrix driving may be controlled by the field inversion driving method so that it becomes 1/240 sec) (1/12 of one field period) or more.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig is, for example, 1 field period is 1/240 sec and the effective display period Te is 1.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig may be equal.
  • the controller 20 has an effective display period when one field period is 1/50 sec and the signal waveform output from the controller 20 is observed with a display resolution of 500 ⁇ sec (display resolution inferior to 200 ⁇ sec). Active matrix drive control is performed by a field inversion drive method so that Ta is closer to the start of one field period. Specifically, when one field period is 1/50 sec, the controller 20 controls the active matrix drive by the field inversion driving method so that the blanking period Tb occupying the entire one field period is longer than 500 ⁇ sec. .
  • the controller 20 sets the blanking period Tb following the effective display period Ta to 1/100 sec (1
  • the active matrix drive may be controlled by the field inversion drive method so that it is equal to or longer than 1 ⁇ 2) of the field period.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig is, for example, 1 field period is 1/100 sec and the effective display period Te is 1.
  • it may be equal to the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig.
  • the controller 20 sets the blanking period Tb following the effective display period Ta to 2/150 sec (1
  • the active matrix drive may be controlled by the field inversion drive method so that it is not less than 2/3) of the field period.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig is 1/150 sec in one field period and 1 in the effective display period Te.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig may be equal.
  • the controller 20 sets the blanking period Tb following the effective display period Ta to 3/200 sec (1/50 sec) when one field period is 1/50 sec.
  • the active matrix driving may be controlled by the field inversion driving method so as to be 3/4) or more of the field period.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig is, for example, 1 field period is 1/200 sec and the effective display period Te is 1.
  • it may be equal to the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig.
  • the controller 20 sets the effective display period Ta to the start of the one field period.
  • the active matrix drive is controlled by the field inversion drive method so as to be closer. Specifically, when one field period is 1/100 sec, the controller 20 controls the active matrix driving by the field inversion driving method so that the blanking period Tf that follows the effective display period Ta becomes larger than 300 ⁇ sec. Do.
  • the controller 20 determines that the blanking period Tb following the effective display period Ta is (1/100 sec ⁇ ) when one field period is 1/100 sec.
  • the active matrix drive control may be performed by the field inversion drive method so that 1/150 sec) (1/6 of one field period) or more.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig is 1/150 sec in one field period and 1 in the effective display period Te.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig may be equal.
  • the controller 20 sets the blanking period Tb following the effective display period Ta to 1/200 sec (1) when the one field period is 1/100 sec.
  • the active matrix drive may be controlled by the field inversion drive method so that it is equal to or longer than 1 ⁇ 2) of the field period.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig is, for example, 1 field period is 1/200 sec and the effective display period Te is 1.
  • it may be equal to the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig.
  • the controller 20 When the one field period is 1/150 sec and the signal waveform output from the controller 20 is observed with a display resolution of 200 ⁇ sec, the controller 20 has an effective display period Ta at the start of one field period.
  • the active matrix drive is controlled by the field inversion drive method so as to be closer. Specifically, the controller 20 controls the active matrix driving by the field inversion driving method so that the blanking period Tf occupying the entire one field period is longer than 200 ⁇ sec when the one field period is 1/150 sec. .
  • the controller 20 sets the blanking period Tb following the effective display period Ta to (1/150 sec ⁇ ) when one field period is 1/150 sec.
  • the active matrix drive may be controlled by the field inversion drive method so that it becomes 1/200 sec) (1/12 of one field period) or more.
  • the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig is, for example, 1 field period is 1/200 sec and the effective display period Te is 1.
  • it may be equal to the output timing of the signal voltage Vsig output from the horizontal drive circuit 32 to each signal line Sig.
  • the effective display period Ta occupying the entire one field period is The active matrix drive is controlled by the field inversion drive method so as to approach the start of one field period.
  • the ratio of the blanking period Tf to the effective display period Ta becomes very large as compared with the comparative example. Therefore, the polarity of the signal voltage Vsig with respect to the common voltage Vcom changes from negative to positive after a while after the desired pixel voltage Vpix is applied to the lowermost pixel 11.
  • the difference in leak period and leak amount is significantly smaller than in the comparative example. As a result, for example, as shown in FIG.
  • the region where shading and mottled patterns occur is shifted to the lower side of the screen to the extent that the user can intuitively recognize compared to the comparative example. Furthermore, shading and mottled patterns become less noticeable to the extent that the user can intuitively recognize them compared to the comparative example. Therefore, in this embodiment, it is possible to significantly suppress image quality degradation due to current leakage in field inversion driving.
  • the controller 20 controls the active matrix driving by the field inversion driving method so that the blanking period Tb occupying the entire one field period is on the order of msec, for example, FIG. As shown at 33, there is almost no area where shading and mottled patterns occur. Therefore, in the present embodiment, when the active matrix driving is controlled by the field inversion driving method so that the blanking period Tb occupying the entire one field period is on the order of msec, Degradation of image quality due to leakage can be almost eliminated.
  • Modification of First Embodiment> [Modification A]
  • only one effective display period Ta is provided in one field period.
  • the controller 20 displays two effective displays that occupy the entire one field period when the signal waveform output from the controller 20 is observed with a predetermined display resolution corresponding to the size of the one field period.
  • the active matrix drive is controlled by the field inversion drive method so that the period Ta approaches the start of one field period.
  • FIG. 35 illustrates a modification of the schematic configuration of the display device 1 according to the above embodiment.
  • FIG. 36 illustrates an example of a schematic configuration of the display panel module 40 of the present modification.
  • the liquid crystal driver 30 further includes a precharge circuit 33.
  • the precharge circuit 33 generates a precharge signal (predetermined voltage) for precharging the pixel array unit 10 and applies it to the pixel array unit 10.
  • the precharge circuit 33 is formed on the substrate 41 of the display panel module 40.
  • FIG. 37 and 38 show examples of circuit configurations of the horizontal drive circuit 32 and the precharge circuit 33.
  • FIG. The precharge circuit 33 is connected to each signal line Sig together with the horizontal drive circuit 32.
  • the precharge circuit 33 is connected to each signal line Sig together with the horizontal drive circuit 32 shown in FIG.
  • the precharge circuit 33 is connected to each signal line Sig together with the horizontal drive circuit 32 shown in FIG.
  • the precharge circuit 33 operates based on a control signal supplied from the controller 20, and outputs the precharge signal voltage Vpsig in parallel to the pixel array unit 10 via each signal line Sig.
  • the precharge signal voltage Vpsig includes a precharge signal voltage VpsigB, a precharge signal voltage VpsigG1, and a precharge signal voltage VpsigG2.
  • the precharge signal voltage VpsigB is a signal voltage for reducing variations in the voltage of the counter electrode of each pixel 11, and has a fixed value regardless of the magnitude or polarity of the signal voltage Vsig.
  • the precharge signal voltages VpsigG1 and VpsigG2 are signal voltages output following the precharge signal voltage VpsigB.
  • the precharge signal voltage VpsigG1 is a signal voltage output immediately before the signal voltage Vsig is output when the polarity of the signal voltage Vsig is positive, and has a voltage value slightly lower than the signal voltage Vsig.
  • the precharge signal voltage VpsigG2 is a signal voltage output immediately before the signal voltage Vsig is output when the polarity of the signal voltage Vsig is negative, and has a voltage value slightly higher than the signal voltage Vsig.
  • the precharge signal voltages VpsigB and VpsigG1 or the precharge signal voltages VpsigB and VpsigG2 are applied immediately before the signal voltage Vsig is applied.
  • FIG. 40 illustrates a perspective configuration example of the electronic apparatus 2 according to the present embodiment.
  • the electronic device 2 is, for example, a mobile terminal provided with a display surface 2A on the main surface of a plate-shaped housing.
  • the electronic device 2 corresponds to a specific example of “electronic device” of the present technology.
  • the electronic device 2 includes, for example, the display device 1 according to the above-described embodiment and the modification thereof at the position of the display surface 2A. In the present embodiment, since the display device 1 is provided, the same effects as those of the first embodiment are obtained.
  • FIG. 41 illustrates a schematic configuration example of the electronic apparatus 3 according to the present embodiment.
  • the electronic device 3 is, for example, a notebook personal computer including a display surface 3A on the main surface of one of two foldable plate-shaped housings.
  • the electronic device 3 corresponds to a specific example of “electronic device” of the present technology.
  • the electronic device 3 includes, for example, the display device 1 according to the above embodiment and the modification thereof at the position of the display surface 3A. In the present embodiment, since the display device 1 is provided, the same effects as those of the first embodiment are obtained.
  • FIG. 42 illustrates a schematic surface configuration example of the projector 4 according to the fourth embodiment of the present technology.
  • the projector 4 includes, for example, a light source device 5, an image generation system 6, and a projection optical system 7.
  • the image generation system 6 generates image light of a plurality of colors by modulating light (for example, white light) emitted from the light source device 5 based on the video signal, and combines the generated image light of the plurality of colors.
  • the light is emitted to the projection optical system 7.
  • the image generation system 6 includes an illumination optical system 610, an image generation unit 620, and an image composition unit 630.
  • the projection optical system 7 projects the image light (synthesized image light) emitted from the image generation system 6 onto a screen or the like.
  • the image generation system 6 corresponds to a specific example of “light modulation unit” of the present technology.
  • the projection optical system 7 corresponds to a specific example of a “projection unit” of the present technology.
  • the illumination optical system 610 decomposes light (for example, white light) emitted from the light source device 5 into a plurality of color lights.
  • the illumination optical system 610 includes, for example, an integrator element 611, a polarization conversion element 612, a condenser lens 613, dichroic mirrors 614 and 615, and mirrors 616 to 618.
  • the integrator element 611 includes, for example, a fly eye lens 611a and a fly eye lens 611b.
  • the fly-eye lens 611a has a plurality of microlenses arranged two-dimensionally.
  • the fly-eye lens 611b also has a plurality of microlenses arranged two-dimensionally.
  • the fly-eye lens 611a divides light (for example, white light) emitted from the light source device 5 into a plurality of light beams and forms an image on each microlens in the fly-eye lens 611b.
  • the fly-eye lens 611b functions as a secondary light source, and allows a plurality of parallel lights with uniform brightness to enter the polarization conversion element 612.
  • the dichroic mirrors 614 and 615 selectively reflect color light in a predetermined wavelength range and transmit light in other wavelength ranges. For example, the dichroic mirror 614 selectively reflects red light. For example, the dichroic mirror 615 selectively reflects green light.
  • the image generation unit 620 modulates each color light decomposed by the illumination optical system 610 based on a video signal corresponding to each color input from the outside, and generates image light of each color.
  • the image generation unit 620 includes, for example, a light valve 621 for red light, a light valve 622 for green light, and a light valve 623 for blue light.
  • the light valve 621 for red light modulates red light input from the illumination optical system 610 based on a video signal corresponding to red input from the outside, and generates red image light.
  • the light valve 622 for green light modulates green light input from the illumination optical system 610 based on a video signal corresponding to green input from the outside, and generates green image light.
  • the blue light light valve 623 modulates blue light input from the illumination optical system 610 based on a video signal corresponding to blue input from the outside, and generates blue image light.
  • the light valve 621 for red light, the light valve 622 for green light, and the light valve 623 for blue light are configured by the display device 1 according to the above-described embodiment and its modification.
  • the image composition unit 630 synthesizes the image light of each color generated by the image generation unit 620 to generate color image light.
  • the display device 1 according to the above-described embodiment and its modification is used as the light valve 621 for red light, the light valve 622 for green light, and the light valve 623 for blue light. .
  • the display apparatus 1 since the display apparatus 1 is provided, it has the same effect as the said 1st Embodiment.
  • this technique can take the following composition.
  • a control circuit for controlling driving of an electro-optic element When the signal waveform output from the control circuit is observed with a display resolution of 200 ⁇ sec or a display resolution inferior to 200 ⁇ sec, the vertical effective display period in one field period defined by the vertical start signal is the start of the one field period A control circuit that controls the active matrix drive using the field inversion drive method so that it is timed.
  • the vertical effective display period is shorter than 1 ⁇ 2 of the one field period,
  • An electro-optic element; A control circuit for controlling the driving of the electro-optic element, The control circuit has an effective display period in one field period defined by a vertical start signal when the signal waveform output from the control circuit is observed with a display resolution of 200 ⁇ sec or a display resolution lower than 200 ⁇ sec.
  • a display device that controls the active matrix drive by the field inversion drive method so that it is closer to the start of the field period.
  • the electro-optic element is A plurality of scan lines extending in the row direction; A plurality of signal lines extending in the column direction; A plurality of pixels provided one for each portion where the scanning line and the signal line cross each other; A vertical driving circuit connected to the plurality of scanning lines; A horizontal drive circuit connected to a plurality of the signal lines, Each said pixel is A liquid crystal cell; A pixel transistor for sampling the voltage of the signal line based on a signal input from the scanning line and writing to the liquid crystal cell; The display device according to (12), wherein the control circuit controls the vertical driving circuit and the horizontal driving circuit for active matrix driving by a field inversion driving method for each pixel.
  • a display device The display device An electro-optic element; A control circuit for controlling the driving of the electro-optic element, The control circuit has an effective display period in one field period defined by a vertical start signal when the signal waveform output from the control circuit is observed with a display resolution of 200 ⁇ sec or a display resolution lower than 200 ⁇ sec.
  • An electronic device that controls the active matrix drive using the field inversion drive method so that it is closer to the start of the field period.
  • Illumination optics A plurality of electro-optic elements that generate image light by modulating light from the illumination optical system; A control circuit for controlling driving of the plurality of electro-optic elements; A projection optical system for projecting image light generated by the plurality of electro-optical elements, and The control circuit has an effective display period in one field period defined by a vertical start signal when the signal waveform output from the control circuit is observed with a display resolution of 200 ⁇ sec or a display resolution lower than 200 ⁇ sec.
  • a projection display device that controls the active matrix drive by the field inversion drive method so that it is closer to the start of the field period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

本開示の一実施形態に係る制御回路は、当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における垂直有効表示期間が1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。

Description

制御回路、表示装置、電子機器および投射型表示装置
 本開示は、制御回路、表示装置、電子機器および投射型表示装置に関する。
 電気光学素子として液晶セルを備えた表示装置では、液晶セルに長時間にわたって直流電圧が印加され続けると、液晶の比抵抗(物質固有の抵抗値)等の劣化や、「焼き付き」と呼ばれる残像現象が生じる。そのため、液晶セルの画素電極に印加される信号電圧の、液晶セルの対向電極の電位に対する極性を所定の周期で反転させる交流駆動法が採られている。この交流駆動法としては、例えば、対向電極に印加するコモン電圧を一定にして、信号電圧の極性を1フィールド期間ごとに反転させたり、信号電圧だけでなくコモン電圧も1フィールド期間ごとに反転させたりするフィールド反転駆動法が知られている(例えば、特許文献1参照)。
特開2001-42287号公報
 しかし、フィールド反転駆動法では、1フィールド期間内の特定の期間において、画素トランジスタのソース・ドレイン間の電位差が大きくなり、画素トランジスタにリーク電流が流れる。しかも、リーク電流の多く流れる期間(以下、「リーク期間」と称する。)が1画面内で異なる。具体的には、画面上部、画面中央部、画面下部で、リーク期間が互いに異なる。さらに、画素トランジスタの特性が画素ごとにばらついている。そのため、リーク量が画面上下方向だけでなく、画素ごとに異なるので、画面中央から下方にかけて、シェーディングが発生するとともに、まだら模様が発生し、画質が劣化してしまうという問題があった。
 したがって、フィールド反転駆動において、電流リークに起因する画質の劣化を有意に抑制することの可能な制御回路、ならびにそれを備えた表示装置、電子機器および投射型表示装置を提供することが望ましい。
 本開示の一実施形態に係る制御回路は、電気光学素子の駆動を制御する制御回路である。制御回路は、当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における垂直有効表示期間が1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。
 本開示の一実施形態に係る表示装置は、電気光学素子と、電気光学素子の駆動を制御する制御回路とを備えている。制御回路は、当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における垂直有効表示期間が1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。
 本開示の一実施形態に係る電子機器は、表示装置を備えている。表示装置は、電気光学素子と、電気光学素子の駆動を制御する制御回路とを有している。制御回路は、当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における垂直有効表示期間が1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。
 本開示の一実施形態に係る投射型表示装置は、照明光学系と、照明光学系からの光を変調することで画像光を生成する複数の電気光学素子と、複数の電気光学素子の駆動を制御する制御回路と、複数の電気光学素子で生成された画像光を投射する投影光学系とを備えている。制御回路は、当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における垂直有効表示期間が1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。
 本開示の一実施形態に係る制御回路、表示装置、電子機器および投射型表示装置では、制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直有効表示期間が1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御が行われる。これにより、従前のフィールド反転駆動方式でアクティブマトリクス駆動の制御が行われた場合と比べて、1フィールド期間におけるリーク量の面内分布がより均一化する。
 本開示の一実施形態に係る制御回路、表示装置、電子機器および投射型表示装置によれば、1フィールド期間におけるリーク量の面内分布がより均一化するようにしたので、シェーディングおよびまだら模様が緩和される。その結果、フィールド反転駆動において、電流リークに起因する画質の劣化を抑制することができる。なお、本技術の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。
本開示の第1の実施の形態に係る表示装置の概略構成の一例を表す図である。 表示パネルモジュールの概略構成の一例を表す図である。 水平駆動回路の回路構成の一例を表す図である。 コントローラによる点順次駆動の一例について説明するための波形図である。 1フィールド期間について説明するための波形図である。 1水平期間について説明するための波形図である。 水平駆動回路の回路構成の他の例を表す図である。 コントローラによる線順次駆動の一例について説明するための波形図である。 フィールド反転駆動の一例について説明するための模式図である。 フィールド反転駆動の一例について説明するための模式図である。 フィールド反転駆動の一例について説明するための模式図である。 比較例に係るフィールド反転駆動の一例について説明するための波形図である。 比較例に係るフィールド反転駆動の一例について説明するための波形図である。 比較例に係るフィールド反転駆動によって生じるシェーディングおよびまだら模様の一例を表す図である。 比較例に係るフィールド反転駆動の一例について説明するための波形図である。 本実施の形態のフィールド反転駆動の一例について説明するための波形図である。 本実施の形態のフィールド反転駆動の一例について説明するための波形図である。 本実施の形態の表示装置における表示画面の一例を表す図である。 有効表示期間およびブランキング期間の一例について説明するための波形図である。 図19Aの波形図の拡大図である。 有効表示期間およびブランキング期間の一例について説明するための波形図である。 図20Aの波形図の拡大図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 本実施の形態の表示装置における表示画面の一例を表す図である。 有効表示期間およびブランキング期間の一例について説明するための模式図である。 図1の表示装置の概略構成の一変形例を表す図である。 図35の表示装置における表示パネルモジュールの概略構成の一例を表す図である。 水平駆動回路およびプリチャージ回路の回路構成の一例を表す図である。 水平駆動回路およびプリチャージ回路の回路構成の一例を表す図である。 フィールド反転駆動の一例について説明するための波形図である。 本開示の第2の実施の形態に係る電子機器の斜視構成の一例を表す図である。 本開示の第3の実施の形態に係る電子機器の斜視構成の一例を表す図である。 本開示の第4の実施の形態に係るプロジェクタの概略構成の一例を表す図である。
 以下、開示を実施するための形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。

 1.第1の実施の形態(表示装置)
    プリチャージ回路が省略されている例(図1~図33)
 2.第1の実施の形態の変形例(表示装置)
    変形例B:1F中にリフレッシュ書き込みが行われる例
                         (図34、図35)
    変形例A:プリチャージ回路が設けられている例(図36~図39)
 3.第3の実施の形態(電子機器)
    第1の実施の形態およびその変形例に係る表示装置が電子機器に
    用いられている例(図40)
 4.第4の実施の形態(電子機器)
    第1の実施の形態およびその変形例に係る表示装置が電子機器に
    用いられている例(図41)
 5.第5の実施の形態(プロジェクタ)
    第1の実施の形態およびその変形例に係る表示装置がプロジェクタに用いられている例(図42)
<1.第1の実施の形態>
[構成]
 図1は、本開示の第1の実施の形態に係る表示装置1の概略構成の一例を表したものである。表示装置1は、3板式のプロジェクタ(投射型表示装置)のライトバルブとして適用可能なものである。表示装置1は、例えば、画素アレイ部10、コントローラ20および液晶ドライバ30を備えている。画素アレイ部10は、透過型となっていてもよいし、反射型となっていてもよい。なお、画素アレイ部10が透過型となっている場合には、表示装置1は、必要に応じて、画素アレイ部10の背後に、図示しない光源を備えていてもよい。表示装置1は、本開示の「表示装置」の一具体例に相当する。コントローラ20は、本開示の「制御回路」の一具体例に相当する。
(画素アレイ部10)
 画素アレイ部10は、例えば、ノーマリーブラックの透過率特性または反射率特性となっている。ここで、ノーマリーブラックとは、電圧がかかっていない時に透過率あるいは反射率が最小となり 、黒表示になる光学特性を指している。なお、画素アレイ部10は、例えば、ノーマリーホワイトの透過率特性または反射率特性となっていてもよい。ここで、ノーマリーホワイトとは、電圧がかかっていない時に透過率あるいは反射率が最大となり、白表示になる光学特性を指している。画素アレイ部10は、電圧印加により光の偏光状態を電気的に変えることで画像光を生成するものである。
 図2は、表示パネルモジュール40の概略構成の一例を表したものである。表示装置1は、表示パネルモジュール40を備えている。表示パネルモジュール40は、例えば、ガラス板または樹脂板などからなる基板上に、画素アレイ部10および液晶ドライバ30が設けられた表示パネル41を備えている。表示パネルモジュール40は、例えば、さらに、表示パネル41上の液晶ドライバ30に連結されたFPC( Flexible Printed Circuits)42と、FPC42に連結された制御基板43とを備えている。制御基板43は、液晶ドライバ30を介して画素アレイ部10を制御するものであり、例えば、コントローラ20を有している。コントローラ20は、例えば、ICなどで構成されている。なお、コントローラ20は、FPC42上に設けられたり、表示パネルモジュール40の基板上に設けられたりしていてもよい。
 画素アレイ部10は、行方向に延在する複数の走査線WSと、列方向に延在する複数の信号線Sigと、走査線WSと信号線Sigとが互いに交差する箇所ごとに1つずつ設けられた複数の画素11とを有している。各画素11は、例えば、液晶セルCLと、走査線WSから入力される信号に基づいて信号線Sigの電圧をサンプリングするとともに液晶セルCLに書き込む画素トランジスタTrと、液晶セルCLに並列接続された容量素子Csとを有している。
 画素トランジスタTrは、例えば、薄膜トランジスタ(TFT: Thin Film Transistor)によって構成されている。液晶セルCLは、例えば、液晶層と、液晶層を挟み込む画素電極および対向電極とを含んで構成されている。液晶セルCLは、さらに、例えば、偏光板を含んで構成されていてもよい。液晶セルCLでは、画素電極が画素トランジスタTrのソースまたはドレインに接続され、対向電極が、後述のVCOM回路24に接続されている。液晶セルCLの表示状態は、例えば、TN(Twisted Nematic)モード、VA(Vertical Alignment)モード、IPS(In Plane Switching)モード、FFS(Fringe Field Switching)モード、STN(Super Twisted Nematic)モード、または、ECB(Electrically Controlled Birefringence)モードとなっている。容量素子Csでは、一端が、液晶セルCLの画素電極に接続され、他端が、液晶セルCLの画素電極、または、液晶セルCLの画素電極とは異なる電位の部位に接続されている。
(液晶ドライバ30)
 液晶ドライバ30は、各画素11をアクティブマトリクス駆動することにより、外部から入力された映像信号に基づく画像光を画素アレイ部10から生成させる。液晶ドライバ30は、複数の走査線WSに接続された垂直駆動回路31と、複数の信号線に接続された水平駆動回路32とを有している。
 図3は、水平駆動回路32の回路構成の一例を表したものである。図4は、コントローラ20による点順次駆動の一例について説明するための波形図である。図3、図4では、複数の信号線Sigが、複数のグループ(例えば41ユニット)に分けられており、各グループには、複数の(例えば48相)の信号線Sigが割り当てられている。つまり、図3、図4では、48相×41ユニット=1968ラインの信号線Sigが設けられている。なお、水平駆動回路32は、図3に記載の構成に限定されるものではない。
 水平駆動回路32は、コントローラ20から供給される制御信号に基づいて作動し、信号電圧Vsigを1ライン分ずつ、各信号線Sigを介して画素アレイ部10にパラレル出力する。信号電圧Vsigは、外部から入力された映像信号DA(後述)の階調に応じた波高値もしくはパルス幅を有している。垂直駆動回路31は、コントローラ20から供給される制御信号に基づいて作動し、各画素11を線順次に走査する駆動パルスを、各走査線WSを介して画素アレイ部10にパラレル出力する。
 水平駆動回路32は、例えば、信号線Sigのグループごとに1つずつ割り当てられた複数のシフトレジスタSR(SR(a1),SR(a2)・・・,SR(a41))と、信号線Sigの各グループにおいて信号線Sigごとに1つずつスイッチが割り当てられた複数のスイッチ素子SWaとを含んで構成されている。各シフトレジスタSR(a1),SR(a2)・・・,SR(a41)では、出力端が、対応するグループ内の各スイッチ素子SWaのオンオフ制御端子に接続され、入力端が、FPC42を介してコントローラ20に接続されている。各スイッチ素子SWaでは、一端が各信号線Sigに1つずつ接続され、他端が、FPC42を介してコントローラ20に接続されている。水平駆動回路32は、例えば、コントローラ20から供給される制御信号に基づいて、各シフトレジスタSRから制御信号SRが、対応するグループ内の各スイッチ素子SWaのオンオフ制御端子に、順次、出力されることにより、各グループから、対応する各信号線Sigに、信号電圧Vsigを順次、出力する。
(コントローラ20)
 コントローラ20は、液晶ドライバ30に対して、各画素11の、フィールド反転駆動方式によるアクティブマトリクス駆動の制御を行う。フィールド反転駆動方式については、後に詳述する。コントローラ20は、信号処理回路31、タイミング生成回路32、反転回路33、VCOM回路34および電源生成回路25を有している。
 信号処理回路31は、例えば、外部から入力されたデジタルの映像信号Dinを、画素アレイ部10用のアナログの映像信号DAに変換し、変換した映像信号DAを反転回路33に出力する。信号処理回路31は、さらに、例えば、映像信号Dinから、同期信号Tsを分離し、分離した同期信号Tsをタイミング生成回路32に出力する。タイミング生成回路32は、例えば、同期信号Tsに同期した水平スタート信号HSTおよび水平クロック信号HCKを形成して水平駆動回路32に出力する。タイミング生成回路32は、さらに、例えば、同期信号Tsに同期した垂直スタート信号VSTおよび垂直クロック信号VCKを形成して垂直駆動回路31に出力する。タイミング生成回路32は、さらに、例えば、同期信号Tsに同期した反転制御パルスを形成して反転回路33に出力する。タイミング生成回路32は、さらに、例えば、同期信号Tsに同期した垂直クロック信号VCKを形成してVCOM回路34に出力する。反転回路33は、反転制御パルスに応じた極性反転動作を行う。反転回路33は、映像信号DAから、1フィールド期間ごとに極性反転した信号電圧Vsigを形成する。反転回路33は、形成した信号電圧Vsigを水平駆動回路32に出力する。電源生成回路25は、信号処理回路21やVCOM回路24等で必要となる電圧を生成し、信号処理回路21やVCOM回路24に供給するものである。
 ここで、1フィールド期間は、例えば、図5に示したように、垂直スタート信号VSTによって規定される期間である。1フィールド期間の開始時は、垂直スタート信号VSTの立ち上がり時に対応し、1フィールド期間の終了時は、1フィールド期間が開始された後に最初に生成される垂直スタート信号VSTの立ち上がり時に対応する。なお、1フィールド期間が、コモン電圧Vcomのパルス波形によって規定された期間であってもよい。この場合、1フィールド期間は、コモン電圧Vcomの立ち上がり時から立ち下がり時までの期間、または、コモン電圧Vcomの立ち下がり時から立ち上がり時までの期間に対応する。
 1フィールド期間は、信号電圧Vsigが画素アレイ部10に印加される有効表示期間Taと、有効表示期間Taの前および後のうち少なくとも一方に設けられるブランキング期間Tbとを含んで構成されている。本実施の形態では、1フィールド期間内に1つだけ有効表示期間Taが設けられている。有効表示期間Taでは、全ライン分の信号電圧Vsigが、水平駆動回路32から各信号線Sigに対して、1ライン分の信号電圧Vsigごとに、垂直クロック信号VCKに同期して、順次、出力される。ブランキング期間Tbは、画素アレイ部10に映像が表示されない期間であり、種々の信号処理が行われる期間である。
 水平スタート信号HSTは、例えば、図6に示したように、1水平期間(1H)を規定する。1水平期間(1H)の開始時は、水平スタート信号HSTの立ち上がり時に対応し、1水平期間の終了時は、1水平期間が開始された後に最初に生成される水平スタート信号HSTの立ち上がり時に対応する。有効表示期間Ta内の各1水平期間は、信号電圧Vsigが画素アレイ部10に印加される有効表示期間Tcと、有効表示期間Tcの前および後のうち少なくとも一方に設けられるブランキング期間Tdとを含んで構成されている。有効表示期間Tcでは、1ライン分の信号電圧Vsigが、水平駆動回路32から各信号線Sigに対して、水平クロック信号HCKに同期して、同時に出力されたり、信号線Sigのグループごとに順次、出力されたりする。ブランキング期間Tdは、画素アレイ部10に映像が表示されない期間である。
 VCOM回路34は、所定のコモン電圧Vcomを生成して、液晶セルCLの対向電極に印加する。VCOM回路34は、例えば、DC駆動を行う場合には、コモン電圧Vcomを一定にして、液晶セルCLの対向電極に印加する。VCOM回路34は、例えば、AC駆動を行う場合には、垂直スタート信号VSTに同期してパルス変化するコモン電圧Vcomを、液晶セルCLの対向電極に印加する。このとき、VCOM回路34は、1フィールドごとに極性反転したコモン電圧Vcomを形成し、形成したコモン電圧Vcomを、液晶セルCLの対向電極に印加する。
 図7は、水平駆動回路32の回路構成の他の例を表したものである。図8は、コントローラ20による線順次駆動の一例について説明するための波形図である。図7、図8では、複数の信号線Sigが、複数のグループ(例えば41セル)に分けられており、各グループには、複数の(例えば48チャンネル)の信号線Sigが割り当てられている。つまり、図7、図8では、48チャンネル×41セル=1968ラインの信号線Sigが設けられている。なお、水平駆動回路32は、図5に記載の構成に限定されるものではない。
 水平駆動回路32は、例えば、信号線Sigのグループごとに1つずつ割り当てられた複数の選択線SEL(SEL(1),SEL(2)・・・,SEL(41))と、信号線Sigの各グループにおいて、信号線Sigごとに1つずつ割り当てられた複数のスイッチ素子SWbとを含んで構成されている。対応する選択線SELの互いに異なる複数のスイッチ素子SWbを1つのスイッチ群とし、全てのスイッチSWbを、いずれかのスイッチ群に割り当てたときに、各スイッチ群では、一端が、互いに異なる信号線に接続され、他端が、共通の配線(以下、「共通配線」と称する。)に接続されている。各共通配線は、スイッチ群ごとに1本ずつ割り当てられており、互いに電気的に分離されている。各共通配線は、FPC42を介してコントローラ20に接続されている。水平駆動回路32は、例えば、コントローラ20から供給される制御信号に基づいて、信号線Sigのグループごとに、各スイッチSWbが順次、オンされることにより、信号線Sigのグループごとに、信号電圧Vsigを順次、出力する。
(フィールド反転駆動)
 図9は、本実施の形態のフィールド反転駆動の一例について説明するための模式図である。フィールド反転駆動とは、1フィールド期間(1F)ごとに液晶セルCLのコモン電圧Vcomに対して極性を反転させた信号電圧Vsigを液晶セルCLに印加する駆動を指している。図9において、「+」とは、信号電圧Vsigの極性がコモン電圧Vcomに対して正であることを指している。図9において、「-」とは、信号電圧Vsigの極性がコモン電圧Vcomに対して負であることを指している。つまり、「+」「-」とは、信号電圧Vsigの、コモン電圧Vcomに対する相対的な大小関係を表したものである。
 図9では、図9の左上から反時計まわりに移動する方向に、時間が経過しており、時刻t1、t2、t3、t4、t5、t6の順に時間が経過している。時刻t1から時刻t4までの期間が1フィールド期間に対応しており、時刻t4から時刻t1までの期間が1フィールド期間に対応している。まず、時刻t1では、1画面全体において、コモン電圧Vcomに対する信号電圧Vsigの極性が正となっている。時刻t2では、1画面中の最上段のラインにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が正から負に変位している。時刻t3では、1画面中の上から2段目、3段目のラインにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が正から負に変位している。時刻t4では、1画面全体において、コモン電圧Vcomに対する信号電圧Vsigの極性が負となっている。時刻t5では、1画面中の最上段のラインにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が負から正に変位している。時刻t6では、1画面中の上から2段目、3段目のラインにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が負から正に変位している。このように、コモン電圧Vcomに対する信号電圧Vsigの極性が、1フィールド期間ごと1画面全体で正から負へ、負から正へ変化することをフィールド反転駆動と称する。
 図10は、本実施の形態のフィールド反転駆動の一例について説明するための模式図である。コントローラ20は、例えば、図10の矢印で示したように、フィールド反転駆動の制御を行う際に、水平方向において常に特定の方向に向かって点順次駆動を行ってもよい。
 具体的には、まず、時刻t1では、コントローラ20は、1画面全体において、コモン電圧Vcomに対する信号電圧Vsigの極性が正となるように、画素電圧Vpixを制御するとともに、水平方向の左から右に向かって点順次駆動を行う。時刻t2では、コントローラ20は、1画面中の最上段のラインにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が正から負となるように、画素電圧Vpixを制御するとともに、水平方向の左から右に向かって点順次駆動を行う。時刻t3では、コントローラ20は、1画面中の上から2段目、3段目のラインにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が正から負に変位するように、画素電圧Vpixを制御するとともに、水平方向の左から右に向かって点順次駆動を行う。時刻t4では、コントローラ20は、1画面全体において、コモン電圧Vcomに対する信号電圧Vsigの極性が負となるように、画素電圧Vpixを制御するとともに、1画面中の下から1段目、2段目のラインにおいて、水平方向の左から右に向かって点順次駆動を行う。時刻t5では、コントローラ20は、1画面中の最上段のラインにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が負から正に変位するように、画素電圧Vpixを制御するとともに、水平方向の左から右に向かって点順次駆動を行う。時刻t6では、コントローラ20は、1画面中の上から2段目、3段目のラインにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が負から正に変位するように、画素電圧Vpixを制御するとともに、水平方向の左から右に向かって点順次駆動を行う。
 図11は、本実施の形態のフィールド反転駆動の一例について説明するための模式図である。コントローラ20は、例えば、図11の矢印で示したように、フィールド反転駆動の制御を行う際に、1フィールド期間ごとに、水平方向の点順次駆動の方向を変えてもよい。
 具体的には、まず、時刻t1では、コントローラ20は、1画面全体において、コモン電圧Vcomに対する信号電圧Vsigの極性が正となるように、画素電圧Vpixを制御するとともに、水平方向の左から右に向かって点順次駆動を行う。時刻t2では、コントローラ20は、1画面中の最上段のラインにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が正から負となるように、画素電圧Vpixを制御するとともに、水平方向の右から左に向かって点順次駆動を行う。時刻t3では、コントローラ20は、1画面中の上から2段目、3段目のラインにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が正から負に変位するように、画素電圧Vpixを制御するとともに、水平方向の右から左に向かって点順次駆動を行う。時刻t4では、コントローラ20は、1画面全体において、コモン電圧Vcomに対する信号電圧Vsigの極性が負となるように、画素電圧Vpixを制御するとともに、1画面中の下から1段目、2段目のラインにおいて、水平方向の右から左に向かって点順次駆動を行う。時刻t5では、コントローラ20は、1画面中の最上段のラインにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が負から正に変位するように、画素電圧Vpixを制御するとともに、水平方向の左から右に向かって点順次駆動を行う。時刻t6では、コントローラ20は、1画面中の上から2段目、3段目のラインにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が負から正に変位するように、画素電圧Vpixを制御するとともに、水平方向の左から右に向かって点順次駆動を行う。
 次に、本実施の形態のフィールド反転駆動を、比較例に係るフィールド反転駆動と対比して説明する。最初に、比較例に係るフィールド反転駆動について説明したのち、本実施の形態のフィールド反転駆動について説明する。
 図12、図13は、比較例に係るフィールド反転駆動の一例について説明するための波形図である。図12は、比較例に係るコントローラが、液晶セルの対向電極をDC駆動するための制御を行ったときの波形図である。図13は、比較例に係るコントローラが、液晶セルの対向電極をAC駆動するための制御を行ったときの波形図である。
 図12、図13の左側の3つの波形図では、横軸が時間となっており、縦軸が電圧となっている。図12、図13の右側の3つの波形図では、横軸が時間となっており、縦軸が画素電圧Vpix(=信号電圧Vsig-コモン電圧Vcom)となっている。図12、図13において、一番上の2つの図は、図9~図11の「11a」の箇所に位置する画素11に印加される信号の波形図である。図12、図13において、中央の2つの図は、図9~図11の「11b」の箇所に位置する画素11に印加される信号の波形図である。図12、図13において、一番下の2つの図は、図9~図11の「11c」の箇所に位置する画素11に印加される信号の波形図である。
 画面上部の画素11aにおいて、コモン電圧Vcomに対する信号電圧Vsigの極性が正から負に変位したとき(時刻t1から時刻t2に移行したとき)、画面中央の画素11bおよび画面下部の画素11cでは、画素トランジスタTrのソース・ドレイン間には、大きな電位差が発生する。そのため、画素11b,11cでは、画素トランジスタTrにリーク電流が流れる。このとき、画素11b,11cの画素電圧Vpixは、画素トランジスタTrによる電流リークによって、時間の経過とともに徐々に減少する(図中で丸で囲んだ箇所を参照)。リーク期間は、画面下部の画素11cの方が画面中央の画素11bよりも長く、リーク期間が長い分だけ、リーク量が、画面下部の画素11cの方が画面中央の画素11bよりも大きい。特に、画面下部の画素11cでは、画素電圧Vpixが所望の電圧に設定された直後から、電流リークが生じており、リーク量が非常に大きい。このように、比較例では、画面上部、画面中央部、画面下部で、リーク期間およびリーク量が大きく異なる。さらに、画素トランジスタTrの特性が画素11ごとにばらついている。そのため、リーク量が画面上下方向だけでなく、画素11ごとに異なる。その結果、例えば、図14に示したように、画面中央から下方にかけて、シェーディングが発生するとともに、まだら模様が発生し、画質が劣化する。
 次に、このような問題が起こる原因について考察する。図15は、比較例における有効表示期間Teおよびブランキング期間Tfの一例について表したものである。図15において、横軸は時間である。図15において、横軸の表示分解能は、1フィールド期間が1/60sec(≒16.7msec)となっているとき、400μsec(200μsecよりも劣る表示分解能)となっている。図15において、横軸の表示分解能は、1フィールド期間が1/120sec(≒8.3msec)となっているとき、200μsecとなっている。図15において、横軸の表示分解能は、1フィールド期間が1/180sec(≒5.6msec)となっているとき、200μsecとなっている。また、図15において、横軸の表示分解能は、1フィールド期間が1/240sec(≒4.2msec)となっているとき、100μsecとなっている。図15において、横軸の表示分解能は、1フィールド期間が1/50sec(≒20.0msec)となっているとき、500μsec(200μsecよりも劣る表示分解能)となっている。図15において、横軸の表示分解能は、1フィールド期間が1/100sec(≒20.0msec)となっているとき、300μsec(200μsecよりも劣る表示分解能)となっている。図15において、横軸の表示分解能は、1フィールド期間が1/150sec(≒6.7msec)となっているとき、200μsecとなっている。また、図15において、横軸の表示分解能は、1フィールド期間が1/200sec(≒6.7msec)となっているとき、200μsecとなっている。
 表示分解能とは、オシロスコープなどで波形が計測され、ディスプレイに表示されたときに、ディスプレイ中で波形が識別される能力を表すものである。例えば、横軸の表示分解能が100μsecとなっているとき、100μsec未満のパルスは1本の線で表される。また、例えば、横軸の表示分解能が100μsecとなっているとき、間隙が100μsec未満の2つのパルスは、1本の線、または、間隙の無い2つのパルスで表される。
 通常、有効表示期間Teは、高輝度化やタイミングマージン確保の観点から、1フィールド期間のほとんどを占めており、一般的には98%程度を占めている。つまり、ブランキング期間Tfは、1フィールド期間の2%程度を占めている。従って、1フィールド期間が1/60secのとき、1フィールド期間全体に占めるブランキング期間Tfは、333μsec程度である。1フィールド期間が1/120secのとき、1フィールド期間全体に占めるブランキング期間Tfは、167μsec程度である。1フィールド期間が1/180secのとき、1フィールド期間全体に占めるブランキング期間Tfは、111μsec程度である。また、1フィールド期間が1/240secのとき、1フィールド期間全体に占めるブランキング期間Tfは、83μsec程度である。1フィールド期間が1/50secのとき、1フィールド期間全体に占めるブランキング期間Tfは、400μsec程度である。1フィールド期間が1/100secのとき、1フィールド期間全体に占めるブランキング期間Tfは、200μsec程度である。1フィールド期間が1/150secのとき、1フィールド期間全体に占めるブランキング期間Tfは、133μsec程度である。また、1フィールド期間が1/200secのとき、1フィールド期間全体に占めるブランキング期間Tfは、100μsec程度である。
 そのため、1フィールド期間が1/60secとなっている場合に、横軸の表示分解能が400μsecとなっているときには、ブランキング期間Tfは横軸の表示分解能未満である。従って、このときは、ブランキング期間Tfは1本の線で表され、333μsec程度の間隙を有する2つの有効表示期間Teは、間隙の無い2つの有効表示期間Teで表される。また、1フィールド期間が1/120secとなっている場合に、横軸の表示分解能が200μsecとなっているときには、ブランキング期間Tfは横軸の表示分解能未満である。従って、このときは、ブランキング期間Tfは1本の線で表され、167μsec程度の間隙を有する2つの有効表示期間Teは、間隙の無い2つの有効表示期間Teで表される。また、1フィールド期間が1/180secとなっている場合に、横軸の表示分解能が200μsecとなっているときには、ブランキング期間Tfは横軸の表示分解能未満である。従って、このときは、ブランキング期間Tfは1本の線で表され、111μsec程度の間隙を有する2つの有効表示期間Teは、間隙の無い2つの有効表示期間Teで表される。また、1フィールド期間が1/240secとなっている場合に、横軸の表示分解能が100μsecとなっているときには、ブランキング期間Tfは横軸の表示分解能未満である。従って、このときは、ブランキング期間Tfは1本の線で表され、83μsec程度の間隙を有する2つの有効表示期間Teは、間隙の無い2つの有効表示期間Teで表される。
 また、1フィールド期間が概ね1/50secとなっている場合に、横軸の表示分解能が500μsecとなっているときには、ブランキング期間Tfは横軸の表示分解能未満である。従って、このときは、ブランキング期間Tfは1本の線で表され、400μsec程度の間隙を有する2つの有効表示期間Teは、間隙の無い2つの有効表示期間Teで表される。また、1フィールド期間が概ね1/100secとなっている場合に、横軸の表示分解能が300μsecとなっているときには、ブランキング期間Tfは横軸の表示分解能未満である。従って、このときは、ブランキング期間Tfは1本の線で表され、200μsec程度の間隙を有する2つの有効表示期間Teは、間隙の無い2つの有効表示期間Teで表される。また、1フィールド期間が概ね1/150secとなっている場合に、横軸の表示分解能が200μsecとなっているときには、ブランキング期間Tfは横軸の表示分解能未満である。従って、このときは、ブランキング期間Tfは1本の線で表され、133μsec程度の間隙を有する2つの有効表示期間Teは、間隙の無い2つの有効表示期間Teで表される。また、1フィールド期間が概ね1/200secとなっている場合に、横軸の表示分解能が200μsecとなっているときには、ブランキング期間Tfは横軸の表示分解能未満である。従って、このときは、ブランキング期間Tfは1本の線で表され、100μsec程度の間隙を有する2つの有効表示期間Teは、間隙の無い2つの有効表示期間Teで表される。
 このように、比較例では、有効表示期間Teに対するブランキング期間Tfの割合が非常に小さいことから、最下段の画素11に対して所望の画素電圧Vpixが印加された直後に、コモン電圧Vcomに対する信号電圧Vsigの極性が負から正に変位する。その結果、画面中央から下方にかけて、シェーディングが発生するとともに、まだら模様が発生し、画質が劣化する。
 次に、本実施の形態のフィールド反転駆動について説明する。図16、図17は、本実施の形態のフィールド反転駆動の一例について説明するための波形図である。図16は、本実施の形態のコントローラ20が、液晶セルCLの対向電極をDC駆動するための制御を行ったときの波形図である。図17は、本実施の形態のコントローラ20が、液晶セルCLの対向電極をAC駆動するための制御を行ったときの波形図である。
 図16、図17の左側の3つの波形図では、横軸が時間となっており、縦軸が電圧となっている。図16、図17の右側の3つの波形図では、横軸が時間となっており、縦軸が画素電圧Vpix(=信号電圧Vsig-コモン電圧Vcom)となっている。図16、図17において、一番上の2つの図は、図9~図11の「11a」の箇所に位置する画素11に印加される信号の波形図である。図16、図17において、中央の2つの図は、図9~図11の「11b」の箇所に位置する画素11に印加される信号の波形図である。図16、図17において、一番下の2つの図は、図9~図11の「11c」の箇所に位置する画素11に印加される信号の波形図である。
 本実施の形態では、コントローラ20は、各1フィールド期間において、垂直方向の走査速度が、比較例に係る垂直方向の走査速度よりも速くなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。そのため、最下段の画素11に対して所望の画素電圧Vpixが印加されてから、しばらく時間が経過した後に、コモン電圧Vcomに対する信号電圧Vsigの極性が負から正に変位する。その結果、画面上部、画面中央部、画面下部で、リーク期間およびリーク量の差が比較例と比べて小さくなる。これにより、例えば、図18に示したように、シェーディングおよびまだら模様の発生する領域が、比較例と比べて画面下方にシフトし、さらに、シェーディングおよびまだら模様が、比較例と比べて目立ち難くなる。
 次に、各1フィールド期間における垂直方向の走査速度の速さについて例示する。図19Aは、本実施の形態のコントローラ20が液晶セルCLの対向電極をDC駆動したときの、有効表示期間Teおよびブランキング期間Tfの一例について表したものである。つまり、図19Aでは、コントローラ20は、コモン電圧Vcomを固定電位にしつつフィールド反転駆動の制御を行う。図19Bは、図19Aの波形図を拡大したものである。図20Aは、本実施の形態のコントローラ20が液晶セルCLの対向電極をAC駆動したときの、有効表示期間Teおよびブランキング期間Tfの一例について表したものである。つまり、図20Aでは、コントローラ20は、1フィールド期間ごとにコモン電圧Vcomが変化するようにフィールド反転駆動の制御を行う。図20Bは、図20Aの波形図を拡大したものである。図19A、図19B、図20A、図20Bにおいて、横軸は時間である。図19A、図20Aにおいて、横軸の表示分解能は、1フィールド期間が1/60secとなっているとき、400μsec(200μsecよりも劣る表示分解能)となっている。また、図19A、図20Aにおいて、横軸の表示分解能は、1フィールド期間が1/120secとなっているとき、200μsecとなっている。また、図19A、図20Aにおいて、横軸の表示分解能は、1フィールド期間が1/180secとなっているとき、200μsecとなっている。また、図19A、図20Aにおいて、横軸の表示分解能は、1フィールド期間が1/240secとなっているとき、100μsecとなっている。また、図19A、図20Aにおいて、横軸の表示分解能は、1フィールド期間が1/50secとなっているとき、500μsec(200μsecよりも劣る表示分解能)となっている。また、図19A、図20Aにおいて、横軸の表示分解能は、1フィールド期間が1/100secとなっているとき、300μsec(200μsecよりも劣る表示分解能)となっている。また、図19A、図20Aにおいて、横軸の表示分解能は、1フィールド期間が1/150secとなっているとき、200μsecとなっている。また、図19A、図20Aにおいて、横軸の表示分解能は、1フィールド期間が1/200secとなっているとき、200μsecとなっている。図19B、図20Bにおいて、横軸の表示分解能は、1μsecとなっている。また、図20A、図20Bにおいて、コモン電圧Vcomの立ち上がり時から立ち下がり時までの期間、または、コモン電圧Vcomの立ち下がり時から立ち上がり時までの期間が、1フィールド期間と一致している。
 本実施の形態では、コントローラ20は、有効表示期間Taが1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。そのため、各1フィールド期間において、垂直方向の走査速度が、比較例に係る垂直方向の走査速度よりも速い。その結果、有効表示期間Taが有効表示期間Teよりも短く、ブランキング期間Tbが1フィールド期間の2%よりも大きくなる。
 コントローラ20は、1フィールド期間が1/60secのときであって、かつ、コントローラ20から出力される信号波形が400μsecの表示分解能(200μsecよりも劣る表示分解能)で観察されたときに、有効表示期間Taが1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。具体的には、コントローラ20は、1フィールド期間が1/60secのとき、1フィールド期間全体に占めるブランキング期間Tbが400μsecよりも大きくなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。
 コントローラ20は、例えば、図21(A)、図22(A)に示したように、1フィールド期間が1/60secのとき、有効表示期間Taの後に続くブランキング期間Tbが1/120sec(1フィールド期間の1/2)以上となるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行ってもよい。このとき、有効表示期間Taにおいて、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングは、例えば、1フィールド期間が1/120secであって、かつ有効表示期間Teが1フィールド期間にほぼ等しいとき(図21(B)、図22(B)参照)に、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングと等しくなっていてもよい。
 コントローラ20は、例えば、図23(A)、図24(A)に示したように、1フィールド期間が1/60secのとき、有効表示期間Taの後に続くブランキング期間Tbが2/180sec(1フィールド期間の2/3)以上となるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行ってもよい。このとき、有効表示期間Taにおいて、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングは、例えば、1フィールド期間が1/180secであって、かつ有効表示期間Teが1フィールド期間にほぼ等しいとき(図23(C)、図24(C)参照)に、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングと等しくなっていてもよい。
 コントローラ20は、例えば、図25(A)、図26(A)に示したように、1フィールド期間が1/60secのとき、有効表示期間Taの後に続くブランキング期間Tbが3/240sec(1フィールド期間の3/4)以上となるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行ってもよい。このとき、有効表示期間Taにおいて、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングは、例えば、1フィールド期間が1/240secであって、かつ有効表示期間Teが1フィールド期間にほぼ等しいとき(図25(D)、図26(D)参照)に、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングと等しくなっていてもよい。
 コントローラ20は、1フィールド期間が1/120secのときであって、かつ、コントローラ20から出力される信号波形が200μsecの表示分解能で観察されたときに、有効表示期間Taが1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。具体的には、コントローラ20は、1フィールド期間が1/120secのとき、有効表示期間Taの後に続くブランキング期間Tfが200μsecよりも大きくなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。
 コントローラ20は、例えば、図23(B)、図24(B)に示したように、1フィールド期間が1/120secのとき、有効表示期間Taの後に続くブランキング期間Tbが(1/120sec-1/180sec)(1フィールド期間の1/6)以上となるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行ってもよい。このとき、有効表示期間Taにおいて、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングは、例えば、1フィールド期間が1/180secであって、かつ有効表示期間Teが1フィールド期間にほぼ等しいとき(図23(C)、図24(C)参照)に、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングと等しくなっていてもよい。
 コントローラ20は、例えば、図25(B)、図26(B)に示したように、1フィールド期間が1/120secのとき、有効表示期間Taの後に続くブランキング期間Tbが1/240sec(1フィールド期間の1/2)以上となるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行ってもよい。このとき、有効表示期間Taにおいて、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングは、例えば、1フィールド期間が1/240secであって、かつ有効表示期間Teが1フィールド期間にほぼ等しいとき(図25(D)、図26(D)参照)に、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングと等しくなっていてもよい。
 コントローラ20は、1フィールド期間が1/180secのときであって、かつ、コントローラ20から出力される信号波形が200μsecの表示分解能で観察されたときに、有効表示期間Taが1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。具体的には、コントローラ20は、1フィールド期間が1/180secのとき、1フィールド期間全体に占めるブランキング期間Tfが200μsecよりも大きくなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。
 コントローラ20は、例えば、図25(C)、図26(C)に示したように、1フィールド期間が1/180secのとき、有効表示期間Taの後に続くブランキング期間Tbが(1/180sec-1/240sec)(1フィールド期間の1/12)以上となるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行ってもよい。このとき、有効表示期間Taにおいて、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングは、例えば、1フィールド期間が1/240secであって、かつ有効表示期間Teが1フィールド期間にほぼ等しいとき(図25(D)、図26(D)参照)に、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングと等しくなっていてもよい。
 コントローラ20は、1フィールド期間が1/50secのときであって、かつ、コントローラ20から出力される信号波形が500μsecの表示分解能(200μsecよりも劣る表示分解能)で観察されたときに、有効表示期間Taが1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。具体的には、コントローラ20は、1フィールド期間が1/50secのとき、1フィールド期間全体に占めるブランキング期間Tbが500μsecよりも大きくなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。
 コントローラ20は、例えば、図27(A)、図28(A)に示したように、1フィールド期間が1/50secのとき、有効表示期間Taの後に続くブランキング期間Tbが1/100sec(1フィールド期間の1/2)以上となるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行ってもよい。このとき、有効表示期間Taにおいて、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングは、例えば、1フィールド期間が1/100secであって、かつ有効表示期間Teが1フィールド期間にほぼ等しいとき(図27(B)、図28(B)参照)に、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングと等しくなっていてもよい。
 コントローラ20は、例えば、図29(A)、図30(A)に示したように、1フィールド期間が1/50secのとき、有効表示期間Taの後に続くブランキング期間Tbが2/150sec(1フィールド期間の2/3)以上となるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行ってもよい。このとき、有効表示期間Taにおいて、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングは、例えば、1フィールド期間が1/150secであって、かつ有効表示期間Teが1フィールド期間にほぼ等しいとき(図29(C)、図30(C)参照)に、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングと等しくなっていてもよい。
 コントローラ20は、例えば、図31(A)、図32(A)に示したように、1フィールド期間が1/50secのとき、有効表示期間Taの後に続くブランキング期間Tbが3/200sec(1フィールド期間の3/4)以上となるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行ってもよい。このとき、有効表示期間Taにおいて、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングは、例えば、1フィールド期間が1/200secであって、かつ有効表示期間Teが1フィールド期間にほぼ等しいとき(図31(D)、図32(D)参照)に、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングと等しくなっていてもよい。
 コントローラ20は、1フィールド期間が1/100secのときであって、かつ、コントローラ20から出力される信号波形が300μsecの表示分解能で観察されたときに、有効表示期間Taが1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。具体的には、コントローラ20は、1フィールド期間が1/100secのとき、有効表示期間Taの後に続くブランキング期間Tfが300μsecよりも大きくなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。
 コントローラ20は、例えば、図29(B)、図30(B)に示したように、1フィールド期間が1/100secのとき、有効表示期間Taの後に続くブランキング期間Tbが(1/100sec-1/150sec)(1フィールド期間の1/6)以上となるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行ってもよい。このとき、有効表示期間Taにおいて、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングは、例えば、1フィールド期間が1/150secであって、かつ有効表示期間Teが1フィールド期間にほぼ等しいとき(図29(C)、図30(C)参照)に、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングと等しくなっていてもよい。
 コントローラ20は、例えば、図31(B)、図32(B)に示したように、1フィールド期間が1/100secのとき、有効表示期間Taの後に続くブランキング期間Tbが1/200sec(1フィールド期間の1/2)以上となるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行ってもよい。このとき、有効表示期間Taにおいて、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングは、例えば、1フィールド期間が1/200secであって、かつ有効表示期間Teが1フィールド期間にほぼ等しいとき(図31(D)、図32(D)参照)に、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングと等しくなっていてもよい。
 コントローラ20は、1フィールド期間が1/150secのときであって、かつ、コントローラ20から出力される信号波形が200μsecの表示分解能で観察されたときに、有効表示期間Taが1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。具体的には、コントローラ20は、1フィールド期間が1/150secのとき、1フィールド期間全体に占めるブランキング期間Tfが200μsecよりも大きくなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う。
 コントローラ20は、例えば、図31(C)、図32(C)に示したように、1フィールド期間が1/150secのとき、有効表示期間Taの後に続くブランキング期間Tbが(1/150sec-1/200sec)(1フィールド期間の1/12)以上となるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行ってもよい。このとき、有効表示期間Taにおいて、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングは、例えば、1フィールド期間が1/200secであって、かつ有効表示期間Teが1フィールド期間にほぼ等しいとき(図31(D)、図32(D)参照)に、水平駆動回路32から各信号線Sigに出力される信号電圧Vsigの出力タイミングと等しくなっていてもよい。
 このように、本実施の形態では、コントローラ20から出力される信号波形が1フィールド期間の大きさに応じた所定の表示分解能で観察されたときに、1フィールド期間全体に占める有効表示期間Taが1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御が行われる。これにより、有効表示期間Taに対するブランキング期間Tfの割合が比較例と比べて非常に大きくなる。そのため、最下段の画素11に対して所望の画素電圧Vpixが印加されてからしばらく経過した後に、コモン電圧Vcomに対する信号電圧Vsigの極性が負から正に変位するので、画面上部、画面中央部、画面下部で、リーク期間およびリーク量の差が比較例と比べて有意に小さくなる。その結果、例えば、図18に示したように、シェーディングおよびまだら模様の発生する領域が、比較例と比べて、ユーザが直観的に認識することができる程度に画面下方にシフトする。さらに、シェーディングおよびまだら模様が、比較例と比べて、ユーザが直観的に認識することができる程度に目立ち難くなる。従って、本実施の形態では、フィールド反転駆動において、電流リークに起因する画質の劣化を有意に抑制することができる。
 また、本実施の形態において、コントローラ20が、1フィールド期間全体に占めるブランキング期間Tbがmsecオーダとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行った場合には、例えば、図33に示したように、シェーディングおよびまだら模様の発生する領域が、ほとんどなくなる。従って、本実施の形態において、1フィールド期間全体に占めるブランキング期間Tbがmsecオーダとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御が行われた場合には、フィールド反転駆動において、電流リークに起因する画質の劣化をほとんどなくすことができる。
<2.第1の実施の形態の変形例>
[変形例A]
 上記実施の形態では、1フィールド期間内に1つだけ有効表示期間Taが設けられていた。しかし、例えば、図34に示したように、有効表示期間Taが、1フィールド期間の1/2よりも短い場合には、1フィールド期間内に2つの有効表示期間Taが設けられていてもよい。ただし、本変形例では、コントローラ20は、コントローラ20から出力される信号波形が1フィールド期間の大きさに応じた所定の表示分解能で観察されたときに、1フィールド期間全体に占める2つの有効表示期間Taが1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御が行われる。
[変形例B]
 図35は、上記実施の形態の表示装置1の概略構成の一変形例を表したものである。図36は、本変形例の表示パネルモジュール40の概略構成の一例を表したものである。本変形例では、液晶ドライバ30は、プリチャージ回路33をさらに有している。プリチャージ回路33は、画素アレイ部10をプリチャージするプリチャージ信号(所定の電圧)を生成し、画素アレイ部10に印加するようになっている。プリチャージ回路33は、表示パネルモジュール40の基板41上に形成されている。
 図37、図38は、水平駆動回路32およびプリチャージ回路33の回路構成の一例を表したものである。プリチャージ回路33は、水平駆動回路32とともに、各信号線Sigに接続されている。なお、図31では、プリチャージ回路33が、図3に記載の水平駆動回路32とともに、各信号線Sigに接続されている。図32では、プリチャージ回路33が、図4に記載の水平駆動回路32とともに、各信号線Sigに接続されている。
 プリチャージ回路33は、コントローラ20から供給される制御信号に基づいて作動し、プリチャージ信号電圧Vpsigを、各信号線Sigを介して画素アレイ部10にパラレル出力する。プリチャージ信号電圧Vpsigは、例えば、図39に示したように、プリチャージ信号電圧VpsigBと、プリチャージ信号電圧VpsigG1と、プリチャージ信号電圧VpsigG2とを含んでいる。プリチャージ信号電圧VpsigBは、各画素11の対向電極の電圧のばらつきを減らすための信号電圧であり、信号電圧Vsigの大きさや極性に依らず固定値となっている。プリチャージ信号電圧VpsigG1,VpsigG2は、プリチャージ信号電圧VpsigBに続いて出力される信号電圧である。プリチャージ信号電圧VpsigG1は、信号電圧Vsigの極性が正のときに、信号電圧Vsigが出力される直前に出力される信号電圧であり、信号電圧Vsigよりも少し低い電圧値となっている。プリチャージ信号電圧VpsigG2は、信号電圧Vsigの極性が負のときに、信号電圧Vsigが出力される直前に出力される信号電圧であり、信号電圧Vsigよりも少し高い電圧値となっている。
 本変形例では、信号電圧Vsigが印加される直前に、プリチャージ信号電圧VpsigB,VpsigG1、または、プリチャージ信号電圧VpsigB,VpsigG2が印加される。これにより、各画素11における画素電圧Vpixのばらつきを低減することができるので、シェーディングの発生を抑制することができる。
<3.第2の実施の形態>
 次に、本技術の第2の実施の形態に係る電子機器2について説明する。図40は、本実施の形態に係る電子機器2の斜視構成例を表したものである。電子機器2は、例えば、板状の筐体の主面に表示面2Aを備えた携帯端末である。電子機器2は、本技術の「電子機器」の一具体例に対応する。電子機器2は、例えば、表示面2Aの位置に、上記実施の形態およびその変形例に係る表示装置1を備えている。本実施の形態では、表示装置1が設けられているので、上記第1の実施の形態と同様の効果を有している。
<4.第3の実施の形態>
 次に、本技術の第3の実施の形態に係る電子機器3について説明する。図41は、本実施の形態に係る電子機器3の概略構成例を表したものである。電子機器3は、例えば、折りたたみ可能な2枚の板状の筐体のうちの一方の筐体の主面に表示面3Aを備えたノート型のパーソナルコンピュータである。電子機器3は、本技術の「電子機器」の一具体例に対応する。電子機器3は、例えば、表示面3Aの位置に、上記実施の形態およびその変形例に係る表示装置1を備えている。本実施の形態では、表示装置1が設けられているので、上記第1の実施の形態と同様の効果を有している。
<5.第4の実施の形態>
[構成]
 次に、本技術の第4の実施の形態に係るプロジェクタ4について説明する。プロジェクタ4は、本技術の「投射型表示装置」の一具体例に対応する。図42は、本技術の第4の実施の形態に係るプロジェクタ4の概略面構成例を表したものである。プロジェクタ4は、例えば、光源装置5、画像生成システム6および投射光学系7を備えている。
 画像生成システム6は、光源装置5から出射された光(例えば白色光)を映像信号に基づいて変調することにより複数色の画像光を生成し、生成した複数色の画像光を合成した上で、投影光学系7に出射するようになっている。画像生成システム6は、照明光学系610、画像生成部620および画像合成部630を有している。投射光学系7は、画像生成システム6から出射された画像光(合成された画像光)をスクリーンなどに投射するようになっている。画像生成システム6は、本技術の「光変調部」の一具体例に対応する。投射光学系7は、本技術の「投射部」の一具体例に対応する。
 照明光学系610は、光源装置5から出射された光(例えば白色光)を複数の色光に分解するものである。照明光学系610は、例えば、インテグレータ素子611、偏光変換素子612、集光レンズ613、ダイクロイックミラー614,615およびミラー616~618を有している。インテグレータ素子611は、例えば、フライアイレンズ611aおよびフライアイレンズ611bを有している。フライアイレンズ611aは、2次元配置された複数のマイクロレンズを有している。フライアイレンズ611bも、2次元配置された複数のマイクロレンズを有している。フライアイレンズ611aは、光源装置5から出射された光(例えば白色光)を複数の光束に分割し、フライアイレンズ611bにおける各マイクロレンズに結像させるようになっている。フライアイレンズ611bは、二次光源として機能し、輝度の揃った複数の平行光を、偏光変換素子612に入射させるようになっている。ダイクロイックミラー614,615は、所定の波長域の色光を選択的に反射し、それ以外の波長域の光を透過させるようになっている。ダイクロイックミラー614は、例えば、赤色光を選択的に反射するようになっている。ダイクロイックミラー615は、例えば、緑色光を選択的に反射するようになっている。
 画像生成部620は、外部から入力された各色に対応する映像信号に基づいて、照明光学系610によって分解された各色光を変調し、各色の画像光を生成するものである。画像生成部620は、例えば、赤色光用のライトバルブ621、緑色光用のライトバルブ622、青色光用のライトバルブ623を有している。赤色光用のライトバルブ621は、外部から入力された赤色に対応する映像信号に基づいて、照明光学系610から入力された赤色光を変調し、赤色の画像光を生成するものである。緑色光用のライトバルブ622は、外部から入力された緑色に対応する映像信号に基づいて、照明光学系610から入力された緑色光を変調し、緑色の画像光を生成するものである。青色光用のライトバルブ623は、外部から入力された青色に対応する映像信号に基づいて、照明光学系610から入力された青色光を変調し、青色の画像光を生成するものである。赤色光用のライトバルブ621、緑色光用のライトバルブ622、および青色光用のライトバルブ623は、上記実施の形態およびその変形例に係る表示装置1によって構成されている。
 画像合成部630は、画像生成部620で生成された各色の画像光を合成し、カラー画像光を生成するものである。
[効果]
 次に、本実施の形態のプロジェクタ4の効果について説明する。
 本実施の形態では、赤色光用のライトバルブ621、緑色光用のライトバルブ622、および青色光用のライトバルブ623として、上記実施の形態およびその変形例に係る表示装置1が用いられている。これにより、表示装置1が設けられているので、上記第1の実施の形態と同様の効果を有している。
 以上、4つの実施の形態およびその変形例を挙げて本技術を説明したが、本技術は上記各実施の形態に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本技術の効果は、本明細書中に記載された効果に限定されるものではない。本技術が、本明細書中に記載された効果以外の効果を持っていてもよい。
 また、例えば、本技術は以下のような構成を取ることができる。
(1)
 電気光学素子の駆動を制御する制御回路であって、
 当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における垂直有効表示期間が前記1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う
 制御回路。
(2)
 前記1フィールド期間ごとに前記電気光学素子のコモン電圧に対して極性を反転させた信号電圧が前記電気光学素子に印加されるようにフィールド反転駆動の制御を行う
 (1)に記載の制御回路。
(3)
 前記1フィールド期間ごとに前記コモン電圧が変化するようにフィールド反転駆動の制御を行う
 (2)に記載の制御回路。
(4)
 前記コモン電圧を固定電位にしつつフィールド反転駆動の制御を行う
 (2)に記載の制御回路。
(5)
 前記垂直ブランキング期間が、前記1フィールド期間の1/2以上となっている
 (1)ないし(4)のいずれか1つに記載の制御回路。
(6)
 前記垂直ブランキング期間が、前記1フィールド期間の2/3以上となっている
 (1)ないし(4)のいずれか1つに記載の制御回路。
(7)
 前記垂直ブランキング期間が、前記1フィールド期間の3/4以上となっている
 (1)ないし(4)のいずれか1つに記載の制御回路。
(8)
 前記垂直ブランキング期間が、前記1フィールド期間の1/6以上となっている
 (1)ないし(4)のいずれか1つに記載の制御回路。
(9)
 前記垂直ブランキング期間が、前記1フィールド期間の1/12以上となっている
 (1)ないし(4)のいずれか1つに記載の制御回路。
(10)
 前記1フィールド期間内に1つだけ前記垂直有効表示期間が設けられている
 (1)ないし(9)のいずれか1つに記載の制御回路。
(11)
 前記垂直有効表示期間は、前記1フィールド期間の1/2よりも短く、
 前記1フィールド期間内に2つだけ前記垂直有効表示期間が設けられている
 (1)ないし(10)のいずれか1つに記載の制御回路。
(12)
 電気光学素子と、
 前記電気光学素子の駆動を制御する制御回路と
 を備え、
 前記制御回路は、当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における有効表示期間が前記1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う
 表示装置。
(13)
 前記電気光学素子は、
 行方向に延在する複数の走査線と、
 列方向に延在する複数の信号線と、
 前記走査線と前記信号線とが互いに交差する箇所ごとに1つずつ設けられた複数の画素と、
 複数の前記走査線に接続された垂直駆動回路と、
 複数の前記信号線に接続された水平駆動回路と
を有し、
 各前記画素は、
 液晶セルと、
 前記走査線から入力される信号に基づいて前記信号線の電圧をサンプリングするとともに前記液晶セルに書き込む画素トランジスタと
 を有し、
 前記制御回路は、前記垂直駆動回路および前記水平駆動回路に対して、各前記画素のフィールド反転駆動方式によるアクティブマトリクス駆動の制御を行う
 (12)に記載の表示装置。
(14)
 表示装置を備え、
 前記表示装置は、
 電気光学素子と、
 前記電気光学素子の駆動を制御する制御回路と
 を有し、
 前記制御回路は、当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における有効表示期間が前記1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う
 電子機器。
(15)
 照明光学系と、
 前記照明光学系からの光を変調することで画像光を生成する複数の電気光学素子と、
 複数の前記電気光学素子の駆動を制御する制御回路と、
 複数の前記電気光学素子で生成された画像光を投射する投影光学系と
 を備え、
 前記制御回路は、当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における有効表示期間が前記1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う
 投射型表示装置。
 本出願は、日本国特許庁において2015年6月26日に出願された日本特許出願番号第2015-128929号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (15)

  1.  電気光学素子の駆動を制御する制御回路であって、
     当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における垂直有効表示期間が前記1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う
     制御回路。
  2.  前記1フィールド期間ごとに前記電気光学素子のコモン電圧に対して極性を反転させた信号電圧が前記電気光学素子に印加されるようにフィールド反転駆動の制御を行う
     請求項1に記載の制御回路。
  3.  前記1フィールド期間ごとに前記コモン電圧が変化するようにフィールド反転駆動の制御を行う
     請求項2に記載の制御回路。
  4.  前記コモン電圧を固定電位にしつつ、フィールド反転駆動の制御を行う
     請求項2に記載の制御回路。
  5.  前記垂直ブランキング期間が、前記1フィールド期間の1/2以上となっている
     請求項2に記載の制御回路。
  6.  前記垂直ブランキング期間が、前記1フィールド期間の2/3以上となっている
     請求項2に記載の制御回路。
  7.  前記垂直ブランキング期間が、前記1フィールド期間の3/4以上となっている
     請求項2に記載の制御回路。
  8.  前記垂直ブランキング期間が、前記1フィールド期間の1/6以上となっている
     請求項2に記載の制御回路。
  9.  前記垂直ブランキング期間が、前記1フィールド期間の1/12以上となっている
     請求項2に記載の制御回路。
  10.  前記1フィールド期間内に1つだけ前記垂直有効表示期間が設けられている
     請求項2に記載の制御回路。
  11.  前記垂直有効表示期間は、前記1フィールド期間の1/2よりも短く、
     前記1フィールド期間内に2つだけ前記垂直有効表示期間が設けられている
     請求項2に記載の制御回路。
  12.  電気光学素子と、
     前記電気光学素子の駆動を制御する制御回路と
     を備え、
     前記制御回路は、当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における垂直有効表示期間が前記1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う
     表示装置。
  13.  前記電気光学素子は、
     行方向に延在する複数の走査線と、
     列方向に延在する複数の信号線と、
     前記走査線と前記信号線とが互いに交差する箇所ごとに1つずつ設けられた複数の画素と、
     複数の前記走査線に接続された垂直駆動回路と、
     複数の前記信号線に接続された水平駆動回路と
    を有し、
     各前記画素は、
     液晶セルと、
     前記走査線から入力される信号に基づいて前記信号線の電圧をサンプリングするとともに前記液晶セルに書き込む画素トランジスタと
     を有し、
     前記制御回路は、前記垂直駆動回路および前記水平駆動回路に対して、各前記画素のフィールド反転駆動方式によるアクティブマトリクス駆動の制御を行う
     請求項12に記載の表示装置。
  14.  表示装置を備え、
     前記表示装置は、
     電気光学素子と、
     前記電気光学素子の駆動を制御する制御回路と
     を有し、
     前記制御回路は、当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における垂直有効表示期間が前記1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う
     電子機器。
  15.  照明光学系と、
     前記照明光学系からの光を変調することで画像光を生成する複数の電気光学素子と、
     複数の前記電気光学素子の駆動を制御する制御回路と、
     複数の前記電気光学素子で生成された画像光を投射する投影光学系と
     を備え、
     前記制御回路は、当該制御回路から出力される信号波形が200μsecの表示分解能または200μsecよりも劣る表示分解能で観察されたときに、垂直スタート信号によって規定される1フィールド期間における垂直有効表示期間が前記1フィールド期間の開始時寄りとなるように、フィールド反転駆動方式でアクティブマトリクス駆動の制御を行う
     投射型表示装置。
PCT/JP2016/065609 2015-06-26 2016-05-26 制御回路、表示装置、電子機器および投射型表示装置 WO2016208321A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017524773A JPWO2016208321A1 (ja) 2015-06-26 2016-05-26 制御回路、表示装置、電子機器および投射型表示装置
US15/737,620 US10991329B2 (en) 2015-06-26 2016-05-26 Control circuit, display device, electronic apparatus, and projection display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015128929 2015-06-26
JP2015-128929 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016208321A1 true WO2016208321A1 (ja) 2016-12-29

Family

ID=57586620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065609 WO2016208321A1 (ja) 2015-06-26 2016-05-26 制御回路、表示装置、電子機器および投射型表示装置

Country Status (3)

Country Link
US (1) US10991329B2 (ja)
JP (1) JPWO2016208321A1 (ja)
WO (1) WO2016208321A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016208321A1 (ja) * 2015-06-26 2018-04-12 ソニー株式会社 制御回路、表示装置、電子機器および投射型表示装置
US10475404B2 (en) * 2016-12-27 2019-11-12 Shenzhen China Star Optoelectronics Technology Co., Ltd Driving method of scan lines in display panel and driving device thereof
CN109658893B (zh) * 2019-01-30 2021-05-28 惠科股份有限公司 显示面板的驱动方法、驱动装置及显示设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204159A (ja) * 1996-01-29 1997-08-05 Canon Inc 表示装置の駆動回路と駆動方法
JP2002182621A (ja) * 2000-10-06 2002-06-26 Sharp Corp アクティブマトリクス型液晶表示装置およびその駆動方法
JP2003131632A (ja) * 2001-10-26 2003-05-09 Sharp Corp 表示装置の駆動方法およびそれを用いた表示装置
WO2011145360A1 (ja) * 2010-05-21 2011-11-24 シャープ株式会社 表示装置およびその駆動方法、ならびに表示システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812210A (en) * 1994-02-01 1998-09-22 Hitachi, Ltd. Display apparatus
JP3661193B2 (ja) * 1997-07-16 2005-06-15 セイコーエプソン株式会社 液晶装置及びその駆動方法、並びにそれを用いた投写型表示装置及び電子機器
JP2001042287A (ja) 1999-07-30 2001-02-16 Sony Corp 液晶表示装置およびその駆動方法
JP4218249B2 (ja) * 2002-03-07 2009-02-04 株式会社日立製作所 表示装置
JP4053508B2 (ja) * 2004-03-10 2008-02-27 シャープ株式会社 表示装置の駆動方法および表示装置
JP4887727B2 (ja) * 2005-10-20 2012-02-29 ソニー株式会社 画像信号処理装置、カメラシステム、および画像信号処理方法
US8638282B2 (en) * 2006-08-24 2014-01-28 Sharp Kabushiki Kaisha Liquid crystal display device
BRPI0821156A2 (pt) * 2007-12-20 2015-06-16 Sharp Kk Dispositivo de exibição tendfo sensores óticos
JP5024110B2 (ja) * 2008-02-22 2012-09-12 セイコーエプソン株式会社 電気光学装置及び電子機器
JP4544326B2 (ja) * 2008-03-26 2010-09-15 セイコーエプソン株式会社 集積回路装置、電気光学装置及び電子機器
US9362892B2 (en) * 2011-05-23 2016-06-07 Sharp Kabushiki Kaisha Scanning signal line drive circuit, display device having the same, and driving method for scanning signal line
US9690418B2 (en) * 2012-09-14 2017-06-27 Sharp Kabushiki Kaisha Touch panel and touch panel integrated display device
KR101560535B1 (ko) * 2012-12-11 2015-10-15 엘지디스플레이 주식회사 터치스크린 일체형 표시장치 및 그 구동 방법
US8988416B2 (en) * 2012-12-14 2015-03-24 Parade Technologies, Ltd. Power reduction technique for digital display panel with point to point intra panel interface
JP6047450B2 (ja) * 2013-06-19 2016-12-21 株式会社ジャパンディスプレイ 液晶表示装置
JP2015232602A (ja) * 2014-06-09 2015-12-24 株式会社ジャパンディスプレイ 表示装置
JP6503171B2 (ja) * 2014-09-18 2019-04-17 株式会社ジャパンディスプレイ 表示装置
JPWO2016208321A1 (ja) * 2015-06-26 2018-04-12 ソニー株式会社 制御回路、表示装置、電子機器および投射型表示装置
CN104934007A (zh) * 2015-07-06 2015-09-23 合肥京东方光电科技有限公司 数据线驱动方法及单元、源极驱动器、面板驱动装置和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204159A (ja) * 1996-01-29 1997-08-05 Canon Inc 表示装置の駆動回路と駆動方法
JP2002182621A (ja) * 2000-10-06 2002-06-26 Sharp Corp アクティブマトリクス型液晶表示装置およびその駆動方法
JP2003131632A (ja) * 2001-10-26 2003-05-09 Sharp Corp 表示装置の駆動方法およびそれを用いた表示装置
WO2011145360A1 (ja) * 2010-05-21 2011-11-24 シャープ株式会社 表示装置およびその駆動方法、ならびに表示システム

Also Published As

Publication number Publication date
US20180151138A1 (en) 2018-05-31
US10991329B2 (en) 2021-04-27
JPWO2016208321A1 (ja) 2018-04-12

Similar Documents

Publication Publication Date Title
TWI497476B (zh) 光電裝置的驅動裝置及方法、光電裝置及電子機器
US20080074568A1 (en) Liquid crystal display device and driving method of the same
JP2007256916A (ja) 液晶表示装置及びその駆動方法
US9607563B2 (en) Liquid crystal display device, method for driving liquid crystal display device, and electronic apparatus
KR20060107805A (ko) 전기 광학 장치, 전기 광학 장치의 구동 방법, 구동 회로및 전자 기기
JP6773054B2 (ja) 表示装置、電子機器および投射型表示装置
JP6488651B2 (ja) 電気光学装置、電気光学装置の制御方法および電子機器
JP4501952B2 (ja) 電気光学装置、その駆動方法および電子機器
JPWO2010032528A1 (ja) データ処理装置、液晶表示装置、テレビジョン受像機、およびデータ処理方法
JP2010079151A (ja) 電気光学装置、その駆動方法、および電子機器
KR102169032B1 (ko) 표시장치
JP2016085401A (ja) 電気光学装置、電気光学装置の制御方法および電子機器
KR100754113B1 (ko) 액정 표시 장치
WO2016208321A1 (ja) 制御回路、表示装置、電子機器および投射型表示装置
JP2005148304A (ja) 電気光学装置の駆動方法、電気光学装置および電子機器
JP6741046B2 (ja) 液晶装置および電子機器
JP5162830B2 (ja) 電気光学装置、駆動方法および電子機器
WO2005081052A1 (ja) 液晶表示装置
US20130258241A1 (en) Liquid crystal display apparatus
JP2006195387A (ja) 電気光学装置および電子機器
US20160063930A1 (en) Electro-optical device and electronic apparatus
KR101585691B1 (ko) 액정표시장치
KR100980022B1 (ko) 액정 표시 장치의 구동 방법
KR20070081217A (ko) 표시 장치
KR20070076302A (ko) 액정 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524773

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15737620

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814092

Country of ref document: EP

Kind code of ref document: A1