WO2012137756A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2012137756A1
WO2012137756A1 PCT/JP2012/059035 JP2012059035W WO2012137756A1 WO 2012137756 A1 WO2012137756 A1 WO 2012137756A1 JP 2012059035 W JP2012059035 W JP 2012059035W WO 2012137756 A1 WO2012137756 A1 WO 2012137756A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
scanning
display device
frame
pause
Prior art date
Application number
PCT/JP2012/059035
Other languages
English (en)
French (fr)
Inventor
齊藤 浩二
大和 朝日
正実 尾崎
柳 俊洋
正一 和田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/009,340 priority Critical patent/US9293103B2/en
Publication of WO2012137756A1 publication Critical patent/WO2012137756A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0219Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to a display device capable of reducing power consumption and a driving method thereof.
  • Patent Document 1 discloses a display device driving method that realizes low power consumption by providing a pause period in which all scanning signal lines are in a non-scanning state.
  • FIG. 16 is a timing chart showing a vertical synchronization signal, an operating state, and a power supply current waveform in the display device described in Patent Document 1.
  • one scanning period and one pause period are set for one frame.
  • one frame is one in two consecutive frames.
  • a scanning period is set, and one pause period is set for another frame.
  • the operation state of the apparatus is set to the scanning period in which the scanning state is set.
  • the latter frame is set to a pause period in which the operation state of the display device is a pause state. That is, a frame between t16_1 and t16_2 is a scan frame, and a frame between t16_2 and t16_3 is a pause frame.
  • a frame between t16_3 and t16_4 is a scan frame
  • a frame between t16_4 and t16_5 is a pause frame.
  • the current value I 161 of the average consumption current with respect to the ground potential GND is reduced.
  • one pause period is set to one frame.
  • This stop period that is, the rest period, corresponds to one frame, and is long enough to reduce the current value I 162 of the self-consumption current.
  • one scanning period is set to one frame as in the pause period. This means that there is still room for further reduction in current consumption in each scanning period. This is because by shortening the scanning period, the self-consumption current in the scanning period can be reduced, and as a result, the power consumption of the display device can be further reduced.
  • the period until the next polarity reversal is lengthened, and there is an effect that the possibility that the luminance gradient in the display panel is visually recognized by the user can be reduced.
  • Patent Document 1 there is no disclosure in Patent Document 1 regarding such shortening of the scanning period.
  • an object of the present invention is to provide a display device capable of reducing power consumption and a driving method thereof in a display device that repeats a scanning period and a pause period.
  • the display device is a display device in which a scanning period for scanning the display panel and a pause period in which the scanning is not performed are repeated, and scanning is performed in a preceding preceding frame of two consecutive frames.
  • the period and the pause period are set to be consecutive in order, and in the subsequent frame that follows, the pause period is set for the entire period of the subsequent frame.
  • the ratio of the pause period to the scanning period in the entire period of two consecutive frames increases.
  • it is consumed by a scanning line driving circuit and a signal line driving circuit for driving scanning signal lines and data signal lines of the display panel, a power generation circuit for supplying power to the scanning line driving circuit and the signal line driving circuit, and the like.
  • the generation of self-consumption current can be effectively suppressed. That is, the current value of the average consumption current of the scanning line driving circuit, the signal line driving circuit, and the like can be reduced by the reduction of the current value of the self-consumption current during such a sufficiently long rest period.
  • the ratio of the scanning period to the pause period in the entire period of two consecutive frames can be greatly reduced. Therefore, it is possible to prevent the display quality from being deteriorated due to the occurrence of the luminance gradient.
  • the display device is a display device in which a scanning period for scanning the display panel and a pause period in which the scanning is not performed are repeated, and in a preceding preceding frame of two consecutive frames, A pause period is set for the entire period of the preceding frame, and a pause period and a scanning period are set to be consecutive in the subsequent subsequent frame.
  • the ratio of the pause period to the scanning period in the entire period of two consecutive frames increases.
  • it is consumed by a scanning line driving circuit and a signal line driving circuit for driving scanning signal lines and data signal lines of the display panel, a power generation circuit for supplying power to the scanning line driving circuit and the signal line driving circuit, and the like.
  • the generation of self-consumption current can be effectively suppressed. That is, the current value of the average consumption current of the scanning line driving circuit, the signal line driving circuit, and the like can be reduced by the reduction of the current value of the self-consumption current during such a sufficiently long rest period.
  • a driving method of a display device is a driving method of a display device in which a scanning period for scanning the display panel and a pause period in which the scanning is not performed are repeated.
  • the scanning period and the pause period are set to be consecutive in order, and in the succeeding subsequent frame, the pause period is set in the entire period of the subsequent frame.
  • the ratio of the pause period to the scanning period in the entire period of two consecutive frames increases.
  • it is consumed by a scanning line driving circuit and a signal line driving circuit for driving scanning signal lines and data signal lines of the display panel, a power generation circuit for supplying power to the scanning line driving circuit and the signal line driving circuit, and the like.
  • the generation of self-consumption current can be effectively stopped.
  • the decrease in the current value of the self-consumption current during such a sufficiently long rest period can reduce the current value of the average consumption current of the scanning line driving circuit, the signal line driving circuit, and the like.
  • the ratio of the scanning period to the rest period in the entire period of two consecutive frames is significantly greater than that of the display device described in Patent Document 1 and the above-described reference form of the display device. Can be reduced. Thereby, it is possible to prevent the display quality from being deteriorated due to the occurrence of the luminance gradient.
  • a driving method of a display device is a driving method of a display device in which a scanning period for scanning the display panel and a pause period in which the scanning is not performed are repeated.
  • the pause period is set for the entire period of the preceding frame, and in the subsequent succeeding frame, the pause period and the scanning period are set to be consecutive in order.
  • the ratio of the pause period to the scanning period in the entire period of two consecutive frames increases.
  • it is consumed by a scanning line driving circuit and a signal line driving circuit for driving scanning signal lines and data signal lines of the display panel, a power generation circuit for supplying power to the scanning line driving circuit and the signal line driving circuit, and the like.
  • the generation of self-consumption current can be effectively suppressed. That is, the current value of the average consumption current of the scanning line driving circuit, the signal line driving circuit, and the like can be reduced by the reduction of the current value of the self-consumption current during such a sufficiently long rest period.
  • the display device is a display device in which a scanning period for scanning the display panel and a pause period in which the scanning is not performed are repeated, and scanning is performed in a preceding preceding frame of two consecutive frames.
  • the period and the pause period are set to be consecutive in order, and in the subsequent frame that follows, the pause period is set for the entire period of the subsequent frame.
  • FIG. 4 is a timing chart showing a vertical synchronization signal, an operation state, and a power supply current waveform in the display device according to the embodiment of the present invention. It is a block diagram which shows schematic structure of the said display apparatus. It is a timing chart which shows the vertical synchronizing signal in the reference form of the said display apparatus, an operation state, and a power supply current waveform. 6 is a timing chart showing a vertical synchronization signal and an operation state in a display device according to another embodiment of the present invention. 6 is a timing chart illustrating a vertical synchronization signal, an operation state, and a source output state in a display device according to another embodiment of the present invention.
  • 6 is a timing chart illustrating a vertical synchronization signal, an operation state, and a source output state in a display device according to another embodiment of the present invention.
  • 6 is a timing chart showing a vertical synchronization signal and an operation state in a display device according to another embodiment of the present invention.
  • 6 is a timing chart showing a vertical synchronization signal, an operating state, and a power supply current waveform in a display device according to another embodiment of the present invention.
  • 6 is a timing chart showing a vertical synchronization signal, an operating state, and a power supply current waveform in a display device according to another embodiment of the present invention. It is a timing chart which shows the vertical synchronizing signal in the said display apparatus, an operation state, a power supply current waveform, and a scanning signal.
  • (A) (b) is explanatory drawing explaining the drive of a display panel.
  • FIG. 2 is a diagram illustrating an overall configuration of the display device 1.
  • the display device 1 includes a display panel 2, a scanning line driving circuit (gate driver) 4, a signal line driving circuit (source driver) 6, a common electrode driving circuit 8, a timing controller 10, and the like.
  • the timing controller 10 also has a control signal output unit 12.
  • the display panel 2 includes a screen composed of a plurality of pixels arranged in a matrix, and N (N is an arbitrary integer) scanning signal lines G (gate lines) for selecting and scanning the screen in line sequence. And M (M is an arbitrary integer) data signal lines S (source lines) that supply data signals to pixels of one row included in the selected line.
  • the scanning signal line G and the data signal line S cross each other.
  • a liquid crystal display panel can be used as the display panel 2.
  • the display device 1 can be configured as a liquid crystal display device.
  • the display panel 2 can be an EL display panel such as an organic electroluminescence (EL) display panel.
  • the display device 1 can be configured as an electroluminescence display device.
  • G (n) shown in FIG. 2 represents the n-th scanning signal line G (n is an arbitrary integer).
  • G (1), G (2), and G (3) represent the first, second, and third scanning signal lines G, respectively.
  • S (i) represents the i-th data signal line S (i is an arbitrary integer).
  • S (1), S (2), and S (3) represent the first, second, and third data signal lines S, respectively.
  • Each pixel in the display panel 2 is provided with a TFT, and the drain of the TFT is connected to the pixel electrode. ing.
  • the scanning line driving circuit 4 scans each scanning signal line G line-sequentially from the top to the bottom of the screen. At that time, a rectangular wave (scanning signal) for turning on a switching element (TFT) provided in the pixel and connected to the pixel electrode is output to each scanning signal line G. Thereby, the pixels for one row in the screen are selected.
  • a rectangular wave scanning signal
  • TFT switching element
  • the signal line driving circuit 6 Based on the video signal (arrow E) input from the memory 16, the signal line driving circuit 6 calculates the value of the voltage to be output to each pixel for the selected row, and the voltage of that value is stored in each data. Output to the signal line S. As a result, image data (data signal) is supplied to each pixel on the selected scanning signal line G.
  • the display device 1 further includes a common electrode (COM: not shown) for each pixel in the screen.
  • the common electrode driving circuit 8 drives the common electrode by outputting a predetermined common voltage to the common electrode based on the polarity inversion signal (arrow G) input from the timing controller 10.
  • the timing controller 10 receives a horizontal synchronization signal (Hsync), a vertical synchronization signal (Vsync), and an input clock signal (DotClock signal) as input video synchronization signals from the main unit (not shown) (arrow B). Based on the input video synchronization signal and the input clock signal (DotClock signal), the timing controller 10 uses a horizontal synchronization control signal (such as GCK) and a vertical as a video synchronization signal serving as a reference for each circuit to operate in synchronization. A synchronization control signal (such as GSP) is generated. Then, these signals are output to the scanning line driving circuit 4, the signal line driving circuit 6, and the memory 16 (arrows C, D, F). In addition, an input video signal is input to the timing controller 10 from a main body device (not shown) (arrow A).
  • the horizontal synchronization control signal is used as an output timing signal for controlling the timing at which the video signal input from the memory 16 is output to the display panel 2 in the signal line driving circuit 6.
  • the horizontal synchronization control signal is used as a timing signal for controlling the timing of outputting the scanning signal to the display panel 2 in the scanning line driving circuit 4.
  • the vertical synchronization control signal is used as a timing signal for controlling the start timing of scanning of the scanning signal line G in the scanning line driving circuit 4.
  • the scanning line driving circuit 4 starts scanning the display panel 2 in accordance with the horizontal synchronization control signal and the vertical synchronization control signal received from the timing controller 10, and sequentially selects each scanning signal line G and outputs a scanning signal.
  • the signal line drive circuit 6 writes image data (data signal) based on the video signal input from the memory 16 to each data signal line S of the display panel 2 in accordance with the horizontal synchronization control signal received from the timing controller 10.
  • the power supply generation circuit 14 generates Vdd, Vdd2, Vcc, Vgh, and Vgl, which are voltages necessary for each circuit in the display device 1 to operate. Then, Vcc, Vgh, and Vgl are output to the scanning line driving circuit 4, Vdd and Vcc are output to the signal line driving circuit 6, Vcc is output to the timing controller 10, and Vdd 2 is output to the common electrode driving circuit 8.
  • the memory 16 has a function of recording the input video signal (arrow J) input from the timing controller 10. Further, the memory 16 outputs a video signal (arrow E) based on the recorded input video signal to the signal line driving circuit 6 in accordance with the video synchronization signal received from the timing controller 10. Due to the arrangement of the memory 16, when the main body device transmits the video signal (arrow A) and the video synchronization signal (arrow B) to the timing controller 10, the main device converts the signals to a speed according to the scanning by the display device 1. There is no need. For this reason, the main body apparatus does not need to have a special circuit configuration separately according to the scanning speed of the display device 1, and can use the same circuit configuration as the conventional one. In other words, it can be said that an increase in the manufacturing cost of the main device can be suppressed.
  • FIG. 3 is a diagram for explaining the power consumption of the reference form of the display device 1, specifically, a timing chart showing the vertical synchronization signal, the operating state, and the power supply current waveform in the reference form of the display device 1. .
  • the reference embodiment of the display device 1 one frame, for example, a frame and between t 3_3 from t 3_1, to each of a plurality of frames frame, such as between t 3_5 from t 3_3,
  • One scanning period and one rest period are set. That is, in the frame between t 3_3 from t 3_1, set the fast scan period for high-speed scanning between t 3_2 from t 3_1, it is set rest period between t 3_3 from t 3_2. Similarly, in the frame between t 3_3 of t 3_5, set the fast scan period for high-speed scanning between t 3_4 from t 3_3, it is set rest period between t 3_5 from t 3_4.
  • high-speed scanning refers to scanning that enables display of the entire screen of the display panel 2 in a period shorter than the entire period of one frame.
  • the scanning period is included in all frames, and all the frames are scanning frames. That is, it can be said that a plurality of scanning frames are continuous. In such a reference mode, high display quality in which flickering of the screen is sufficiently suppressed can be achieved.
  • a rest period is further set.
  • a high-speed scanning period in one frame, in other words, in one vertical period.
  • power is supplied to the driving circuit for driving the scanning lines and signal lines of the display panel and the driving circuit during the pause period included in each scanning frame.
  • the generation of the self-consumption current consumed by the power supply circuit or the like can be stopped or suppressed.
  • a decrease in the current value I 32 of quiescent current in the rest period it is possible reduce the power consumption of the display device.
  • the ratio of the scanning period in one frame cannot be reduced to an extreme, that is, until the above-described generation of the self-consumption current can be stopped or suppressed. Therefore, when the source inversion driving that outputs from the signal line driving circuit 6 while switching between the positive polarity data signal and the negative polarity data signal by AC driving is used for one data signal line S, generation of a luminance gradient described later occurs. There is also a problem that the display quality is deteriorated due to the above.
  • the display device 1 according to the first embodiment of the present invention can be operated with less power consumption than the above-described reference embodiment, and can prevent deterioration in display quality due to the occurrence of a luminance gradient. It has the advantage of being able to
  • FIG. 1 is a timing chart showing a vertical synchronization signal, an operation state, and a power supply current waveform in the display device 1.
  • the display device 1 the two consecutive frames, e.g., frames between t 1_4 from the frame and t 1_3 between t 1_1 of t 1_3, for two frames such as, one high-speed A scanning period and one pause period are set.
  • the display device 1 is different from the display device described in Patent Document 1 described above in that the preceding frame (hereinafter simply referred to as “preceding frame”) out of two consecutive frames by increasing the scanning period.
  • the scan period is not set for the entire period, but the rest period is further set for the remaining period after the end of the scan period.
  • a pause period is set for the entire period.
  • a frame including a scanning period is called a scanning frame
  • a frame not including a scanning period is called a pause frame.
  • the preceding frame frame between t 1_3 from t 1_1 when the frame between t 1_4 from t 1_3 and the subsequent frame, of the previous frame, the scanning period from t 1_1 during the t 1_2 (fast scan period ) And a pause period is set in the period from t 1 — 2 to t 1 — 3 .
  • the rest period is also set for the entire period of the subsequent frame.
  • previous frame frame between t 1_6 from t 1_4 when the frame between t 1_7 from t 1_6 and the subsequent frame, of the previous frame, the scanning period from t 1_4 during the t 1_5 (fast scan set the period), it has set a rest period from t 1_5 during the period of t 1_6.
  • the rest period is also set for the entire period of the subsequent frame.
  • the display device 1 first, by increasing the scanning period, the remaining frame after the end of the scanning period is set in the preceding frame of the two consecutive frames without setting the scanning period in the entire period. A suspension period is set for the period. Further, a pause period is set for the entire period of the subsequent frame.
  • the ratio of the pause period to the scanning period in the entire period of two consecutive frames is significantly higher than that of the display device described in Patent Document 1 and the above-described reference form of the display device. Can be increased.
  • power is supplied to the scanning line driving circuit 4 and the signal line driving circuit 6 for driving the scanning signal lines G and the data signal lines S of the display panel 2, and the scanning line driving circuit 4 and the signal line driving circuit 6.
  • Generation of self-consumption current consumed by the power generation circuit 14 or the like can be stopped or suppressed more effectively.
  • the ratio of the scanning period to the rest period in the entire period of two consecutive frames is significantly larger than the above-described reference form of the display device and the display device described in Patent Document 1 above. It can be said that it can be reduced. Thereby, it is possible to prevent the display quality from being deteriorated due to the occurrence of the luminance gradient. This point will be described later, including the principle of generation of the luminance gradient.
  • FIG. 4 is a timing chart showing a vertical synchronization signal and an operation state in the display device according to the second embodiment of the present invention.
  • the structure of the display apparatus which concerns on Embodiment 2 of this invention is the same structure as the display apparatus 1 of said Embodiment 1 shown in FIG. Hereinafter, different points will be described.
  • two consecutive frames e.g., frames between T 4_4 from the frame and T 4_3 between T 4_1 of T 4_3, such as 2
  • One high-speed scanning period and one pause period are set for one frame.
  • the display device 1 further speeds up the scanning period, so that in the preceding frame of the two consecutive frames, the scanning period is not set in the entire period, but in the remaining period after the end of the scanning period.
  • Set a rest period Of the two frames, in the subsequent frame, a rest period is set for the entire period.
  • the second embodiment is the same as the first embodiment, and the second embodiment of the present invention is different from the first embodiment in that the high-speed scanning period Td and the pause period Ts are in two consecutive frames. It is in the point which satisfies the following relationship between.
  • period T 4_2 from T 4_1 is meant to be the following (1/2) of the period T 4_4 from T 4_2.
  • the power consumption of the display device 1 can be greatly reduced.
  • FIG. 5 is a timing chart showing a vertical synchronization signal, an operation state, and a source output state in the display device according to the third embodiment of the present invention.
  • the structure of the display apparatus which concerns on Embodiment 3 of this invention is the same structure as the display apparatus 1 of said Embodiment 1 shown in FIG. Hereinafter, different points will be described.
  • two consecutive frames e.g., frames between T 5_4 from the frame and T 5_3 between T 5_1 of T 5_3, such as 2
  • One high-speed scanning period and one pause period are set for one frame.
  • the display device 1 further speeds up the scanning period, so that in the preceding frame of the two consecutive frames, the scanning period is not set in the entire period, but in the remaining period after the end of the scanning period.
  • Set a rest period Of the two frames, in the subsequent frame, a rest period is set for the entire period.
  • the steps so far are the same as those in the first embodiment, and the third embodiment of the present invention is different from the first embodiment in that a positive data signal and a negative data signal are transmitted to one data signal line S.
  • a positive data signal and a negative data signal are transmitted to one data signal line S.
  • source inversion driving that outputs from the signal line driving circuit 6 while being switched by AC driving.
  • a two consecutive frames in the frame between the frame and the T 5_3 between T 5_1 of T 5_3 of T 5_4, which is the source output state with positive polarity.
  • a two consecutive frames in the frame between the T 5_7 from the frame and T 5_6 between T 5_4 of T 5_6, which is the source output state with negative polarity.
  • the power consumption of the display device 1 can be greatly reduced, and the deterioration of the display quality due to the occurrence of the luminance gradient can be prevented.
  • FIG. 6 is a timing chart showing a vertical synchronization signal, an operation state, and a source output state in the display device according to the fourth embodiment of the present invention.
  • the structure of the display apparatus which concerns on Embodiment 4 of this invention is the same structure as the display apparatus 1 of said Embodiment 1 shown in FIG. Hereinafter, different points will be described.
  • two consecutive frames e.g., frames between T 6_4 from the frame and T 6_3 between T 6_1 of T 6_3, such as 2
  • One high-speed scanning period and one pause period are set for one frame.
  • the display device 1 further speeds up the scanning period, so that in the preceding frame of the two consecutive frames, the scanning period is not set in the entire period, but in the remaining period after the end of the scanning period.
  • Set a rest period Of the two frames, in the subsequent frame, a rest period is set for the entire period.
  • the following relationship is satisfied between the high-speed scanning period Td and the pause period Ts in two consecutive frames.
  • period T 6_2 from T 6_1 is meant to be the following (1/2) of the period T 6_4 from T 6_2.
  • the signal line driving circuit 6 is switched to the single data signal line S while switching the positive data signal and the negative data signal by AC driving. It is in the point which combined the source inversion drive which outputs from.
  • T 6 is a two consecutive frames, in the frame between the frame and the T 6_3 between T 6_1 of T 6_3 of T 6_4, which is the source output state with positive polarity. Further, a two consecutive frames, in the frame between the T 5_7 from the frame and T 5_6 between T 6_4 of T 6_6, which is the source output state with negative polarity.
  • the power consumption of the display device 1 can be significantly reduced, and the display quality can be prevented from being deteriorated due to the occurrence of the luminance gradient.
  • FIG. 7 is a timing chart showing a vertical synchronization signal and an operation state in the display device according to the fifth embodiment of the present invention.
  • the structure of the display apparatus which concerns on Embodiment 5 of this invention is the same structure as the display apparatus 1 of said Embodiment 1 shown in FIG. Hereinafter, different points will be described.
  • two consecutive frames e.g., frames between T 7_4 from the frame and T 7_3 between T 7_1 of T 7_3, such as 2
  • One high-speed scanning period and one pause period are set for one frame.
  • the display device 1 further speeds up the scanning period, so that in the preceding frame of the two consecutive frames, the scanning period is not set in the entire period, but in the remaining period after the end of the scanning period.
  • Set a rest period Of the two frames, in the subsequent frame, a rest period is set for the entire period.
  • the fifth embodiment of the present invention is different from the first embodiment in that the drive frequency (refresh rate) is set to at least about 40 Hz in such two consecutive frames. It is in the point to make. That is, the following relationship is satisfied between the high-speed scanning period Td and the pause period Ts.
  • period T 7_4 from T 7_1 is meant to be a about 25 msec.
  • the proportion of the high-speed scanning period in two consecutive frames is not reduced. Thereby, power consumption can be reduced without generating flicker.
  • FIG. 8 is a timing chart showing a vertical synchronization signal, an operating state, and a power supply current waveform in the display device according to the sixth embodiment of the present invention.
  • the structure of the display apparatus which concerns on Embodiment 6 of this invention is the same structure as the display apparatus 1 of said Embodiment 1 shown in FIG. Hereinafter, different points will be described.
  • Embodiment 6 of the present invention is a form in which a plurality of pause frames are continued after a plurality of scanning frames are continued. That is, a plurality of continuous scanning frames and a plurality of continuous pause frames are alternately continuous.
  • scanning frames are set between T 8_1 and T 8_3 , between T 8_3 and T 8_5 , and between T 8_5 and T 8_7 . That is, three scanning frames are continuous.
  • the scanning period is speeded up so that the preceding frame (scanning frame between T 8 — 5 and T 8 — 7 ) of the two consecutive frames is scanned during the entire period.
  • the rest period is set in the remaining period after the end of the scanning period without setting the period.
  • a pause period is further set for the entire period of the subsequent frame (pause frame between T 8 — 7 and T 8 — 8 ).
  • the power consumption of the display device 1 is greatly increased as in the first embodiment.
  • the display quality can be reduced and deterioration of display quality due to the occurrence of the luminance gradient can be prevented.
  • FIG. 9 is a timing chart showing a vertical synchronization signal, an operation state, and a power supply current waveform in the display device according to the seventh embodiment of the present invention.
  • the structure of the display apparatus which concerns on Embodiment 7 of this invention is the same structure as the display apparatus 1 of said Embodiment 1 shown in FIG. Hereinafter, different points will be described.
  • Embodiment 7 of the present invention is a form in which a plurality of pause frames are continued after a plurality of scanning frames are continued, similarly to Embodiment 6 described above. That is, a plurality of continuous scanning frames and a plurality of continuous pause frames are alternately continuous.
  • a pause period is set for the entire period of the preceding frame (pause frame between T 9 — 10 and T 9 — 11 ).
  • a pause period (between T 9 — 11 and T 9 — 12 ) is set, and a high-speed scanning period (T) is set in the remaining period after the pause period ends. 9_12 to T9_13 ).
  • the current value I 91 of the average consumption current with respect to the ground potential GND is greatly reduced by the decrease of the current value I 92 of the self-consumption current in such a sufficiently long rest period before the start of the scanning period. Can be made. Therefore, the power consumption of the display device 1 can be significantly reduced.
  • the power consumption of the display device 1 is greatly increased as in the first embodiment.
  • the display quality can be reduced and deterioration of display quality due to the occurrence of the luminance gradient can be prevented.
  • FIG. 10 is a timing chart showing a vertical synchronization signal, an operating state, a power supply current waveform, and a scanning signal in the display device 1 according to the first to seventh embodiments of the present invention.
  • two consecutive frames e.g., from T 10_1 from the frame and T 10_3 between T 10_3 frames between the T 10_4, for two frames such as, one fast scan period and one
  • the rest period is set.
  • the scanning period is not set for the entire period, but the rest period is set for the remaining period after the end of the scanning period.
  • a rest period is set for the entire period.
  • the vertical synchronization control signal is input every high-speed scanning period.
  • the control signal output unit 12 changes the voltage of the AMP_Enable signal from the L value to the H value in synchronization with the vertical synchronization control signal.
  • the analog amplifier (not shown) included in the signal line driving circuit 6 is switched from the non-operating state to the operating state (normal state).
  • the scanning line driving circuit 4 outputs a scanning signal to the first scanning signal line G in synchronization with the vertical synchronization control signal and the horizontal synchronization control signal.
  • the gate of the TFT of the pixel connected to the first scanning signal line G is turned on.
  • the signal line drive circuit 6 outputs a data signal from the analog amplifier in the signal line drive circuit 6 connected to the data signal line S for each data signal line S in synchronization with the horizontal synchronization control signal. .
  • a voltage necessary for display is supplied to each data signal line S and written to the pixel electrode through the TFT.
  • the gate of the TFT of the pixel connected to the first scanning signal line G returns from the on state to the off state.
  • the next horizontal synchronization control signal is input.
  • the pixels connected to the second and subsequent scanning signal lines G are written by the same procedure as the pixels connected to the first scanning signal line G.
  • a period during which writing is performed on pixels connected to all N scanning signal lines G in this way is referred to as a “writing period”.
  • the writing period indicates the same period as the high-speed scanning period.
  • the AMP_Enable signal maintains the H value during the writing period.
  • the control signal output unit 12 changes the AMP_Enable signal from the H value to the L value.
  • the analog amplifier in the signal line drive circuit 6 becomes non-operating (low performance).
  • the next vertical synchronization control signal is input, and the second and subsequent frames are also driven by the same procedure as described above.
  • the connection between the output of the analog amplifier in the signal line drive circuit 6 and the data signal line S may be disconnected.
  • the TFT of each pixel mounted on the display panel 2 is switched between its on state and off state.
  • the liquid crystal capacitor and auxiliary capacitor connected to each TFT are charged.
  • a feed-through phenomenon occurs in a liquid crystal display device using a TFT as a pixel selection element.
  • This pull-in phenomenon is a cause of the occurrence of a luminance gradient.
  • the pull-in phenomenon will be described.
  • FIG. 11 shows an equivalent circuit of one pixel.
  • One pixel 100 is provided at the intersection of the gate line Gj and the source line Si.
  • the pixel 100 includes a TFT 101, a liquid crystal capacitor Clc, and an auxiliary capacitor Ccs, and further includes a parasitic capacitor such as a capacitor Cgd formed between the drain electrode 102 and the gate line Gj.
  • the gate of the TFT 101 is connected to the gate line Gj
  • the source of the TFT 101 is connected to the source line Si
  • the drain of the TFT 101 is connected to the drain electrode 102.
  • the liquid crystal capacitor Clc is formed by arranging a liquid crystal layer between the drain electrode 102 and the common electrode to which the voltage COM is applied.
  • the auxiliary capacitor Ccs includes the drain electrode 102 or an electrode connected to the drain electrode 102 and a voltage CS.
  • An insulating film is disposed between the auxiliary capacitor bus line to which is applied.
  • the voltage CS is equal to the voltage COM, for example, but may be a voltage having another value.
  • the potential level of the drain electrode 102 is first charged to the source voltage supplied from the source line Si through the TFT 101. Thereafter, the voltage fluctuates due to a voltage change (Vgh ⁇ Vgl) on the gate line Gj via the parasitic capacitance Cgd. Further, since there is a parasitic capacitance Csd1, it fluctuates due to a voltage change caused by polarity inversion of the source line Si.
  • the following equations (1) and (2) are established for the amount of fluctuation that the drain electrode 102 receives. Note that the amount of variation due to the parasitic capacitance Cgd is ⁇ Vgd, and the amount of variation due to the parasitic capacitance Csd1 is ⁇ Vsd1.
  • ⁇ C, ⁇ Vg and ⁇ Vs are calculated from the following equations (3) to (5).
  • Vgh, Vgl, Vsh and Vsl are as follows.
  • the fluctuation range of the potential level of the drain electrode 102 expressed by the above formulas (1) and (2) is referred to as a drawing voltage.
  • ⁇ Brightness gradient occurs due to such a pull-in voltage.
  • the drain voltage is charged to the drain electrode through the TFT of each pixel by the data signal output from the signal line driving circuit 6. Thereafter, the drain voltage is affected by the pull-in voltage due to the fall of the scanning signal and the polarity inversion of the data signal.
  • the polarity inversion of the data signal is different in the timing at which the first line and the m-th line are subjected to the fluctuation.
  • the effective liquid crystal applied voltage is smaller in the m-th line. Accordingly, when viewed on the entire screen, the liquid crystal applied voltage is inclined along the scanning direction of the scanning line driving circuit 4, leading to a luminance inclination.
  • the effective liquid crystal applied voltage drop in the final line does not include the pause frame shown in FIG. That is, it is about half ( ⁇ Vsd1 ⁇ ⁇ Vsd1 ⁇ (1/2)) as compared with the case where no pause driving is performed. That is, since the fluctuation amount of the applied voltage is reduced, the luminance gradient is suppressed.
  • the present invention has an effect of reducing power consumption even when the dot inversion driving shown in FIG. 15A or the line inversion driving shown in FIG. 15B is used.
  • FIG. 14 and 15 are structural diagrams showing the structure of the scanning signal line G, the data signal line S, and the pixel electrode in the display panel 2.
  • FIG. 14 (a) and 14 (b) and FIG. 15 (a) and 15 (b) the polarity of the voltage of each pixel electrode in the nth frame and the (n + 1) th frame which is the next frame.
  • the polarity of the voltage of each pixel electrode to which a reverse polarity voltage is applied is shown.
  • the polarity of the voltage of each pixel electrode is indicated by + (plus) and-(minus) in the figure.
  • FIG. 14A shows an example of source inversion.
  • the polarity of the voltage applied to each data signal line (source line) S is inverted.
  • the polarity of the voltage can be reversed for each pixel electrode arranged in the direction of the scanning signal line G.
  • FIG. 14B is the same source inversion as that in FIG. 14A, but the arrangement of the pixel electrodes is different from that in FIG. 14A.
  • the pixel electrode connected to the data signal line S is arranged on one side (right side in the illustrated example) with respect to the data signal line S.
  • the pixel electrodes connected to the data signal line S are arranged in a staggered manner with respect to the data signal line S. For this reason, the polarities of the voltages of the pixel electrodes arranged between the adjacent data signal lines S are the same in the arrangement of FIG. 14A, but are different in the arrangement of FIG. 14B. Yes.
  • FIG. 15A shows an example of line inversion.
  • the polarity of the voltage applied to the data signal line S is inverted for each scanning signal line G to be driven (every horizontal scanning period). Thereby, the polarity of the voltage can be reversed for each pixel electrode arranged in the direction of the data signal line S.
  • FIG. 15B shows an example of dot inversion.
  • the dot inversion can be realized by combining the source inversion shown in FIG. 14A and the line inversion shown in FIG. Specifically, when the first scanning signal line G1 is driven, the polarity of the voltage applied to each data signal line S is changed to the plus (+), and thereafter, the polarity is reversed in order. Next, when the second scanning signal line G2 is driven, the polarity of the voltage applied to each data signal line S is set to minus ( ⁇ ) for the first, and thereafter is inverted in order.
  • pixel electrodes adjacent to each other in the direction of the scanning signal line G and the direction of the data signal line S as shown in FIG. The polarity of the voltage can be made different.
  • FIG. 17 shows the characteristics of a TFT using an oxide semiconductor, a TFT using a-Si (amorphous silicon), and a TFT using LTPS (Low Temperature Poly Silicon).
  • the horizontal axis (Vg) represents the value of the gate voltage supplied to each TFT
  • the vertical axis (Id) represents the current value between the source and drain of each TFT.
  • a period indicated as “TFT-on” indicates a period in which the TFT is on
  • a period indicated as “TFT-off” indicates that the TFT is in an off state. Indicates the period.
  • a TFT using an oxide semiconductor has a higher current value (that is, electron mobility) in an on state than a TFT using a-Si.
  • the Id current in the on state (“TFT-on”) is 1 uA
  • the Id current at the time of TFT-on is about 20 to 50 uA.
  • TFTs using oxide semiconductors have on-state current values (electron mobility) that are about 20 to 50 times higher than TFTs using a-Si, and have excellent on characteristics. I understand that.
  • the TFT using an oxide semiconductor is used for each pixel as the transistor of the display panel 2, so that the on characteristics of the TFT of each pixel are very excellent. Therefore, the electron mobility when writing pixel data to each pixel increases, and the time required for the writing can be further shortened.
  • the length of the scanning period is Td, and the length obtained by adding the pause period set for the preceding frame and the pause period set for the subsequent frame is Ts.
  • Td the length obtained by adding the pause period set for the preceding frame and the pause period set for the subsequent frame.
  • the power consumption of the display device can be more effectively reduced.
  • the luminance gradient can be reduced in a state where the flicker in the display device is sufficiently suppressed.
  • the polarity of the voltage of the data signal supplied to the display panel is inverted every one scanning period.
  • the power consumption of the display device can be significantly reduced, and the deterioration of display quality due to the occurrence of the luminance gradient can be prevented.
  • a pause period is set for each of all the periods in a plurality of frames consecutive to the subsequent frame.
  • the power consumption of the display device is greatly reduced, and the display quality is deteriorated due to the occurrence of the luminance gradient. Can be prevented.
  • the display device preferably includes a memory that temporarily holds a video signal supplied from the outside of the display device.
  • the video signal is transmitted from the main unit outside the display device, for example, to the timing controller of the display device.
  • the main unit need not convert the video signal to a speed corresponding to scanning by the display device when transmitting the video signal to the timing controller due to the arrangement of the memory.
  • the display device according to the embodiment of the present invention is preferably a liquid crystal display device.
  • a display device includes a display panel including a data signal line, a scanning signal line, a pixel electrode, and a data signal line, a scanning signal line, and a transistor connected to the pixel electrode.
  • An oxide semiconductor is preferably used for the semiconductor layer of the transistor.
  • the oxide semiconductor is preferably IGZO.
  • the display device includes a liquid crystal display panel or an organic electroluminescence display panel, and can be a liquid crystal display device or an organic EL display device.
  • the display device according to the present invention can be widely used as various display devices such as liquid crystal display devices, organic EL display devices, and electronic paper.

Abstract

表示パネルを走査する走査期間と、当該走査が行われない休止期間とが繰り返される表示装置である。連続する2つのフレームのうち、先行する先行フレームにおいては走査期間と休止期間とが順に連続するように設定し、且つ、後続する後続フレームにおいては、当該後続フレームの全期間に休止期間を設定している。それゆえ、連続する2つのフレームに対し、休止期間よりも走査期間が短くなるように設定することにより、消費電力の低減化を図ることができる。

Description

表示装置およびその駆動方法
 本発明は、消費電力を低減可能な表示装置およびその駆動方法に関する。
 近年、液晶表示装置に代表される薄型、軽量、および低消費電力の表示装置が盛んに活用されている。こうした表示装置は、例えば携帯電話、スマートフォン、またはラップトップ型パーソナルコンピュータへの搭載が顕著である。また、今後はより薄型の表示装置である電子ペーパーの開発および普及も急速に進むことが期待されている。このような状況の中、現在、各種の表示装置において消費電力を低減させることが共通の課題となっている。
 特許文献1には、全走査信号線を非走査状態とする休止期間を設けることにより、低消費電力を実現する表示装置の駆動方法が開示されている。図16は、特許文献1に記載の表示装置における垂直同期信号、動作状態および電源電流波形を示すタイミングチャートである。なお、特許文献1では、1つのフレームに対し、1つの走査期間と1つの休止期間とを設定しているが、以下の図16においては、連続する2つのフレームにおいて、1つのフレームに1つの走査期間を設定し、他の1つのフレームに1つの休止期間を設定している。
 図16に示すように、この表示装置では、2つの連続するフレーム、例えば、t16_1からt16_2の間のフレームと、t16_2からt16_3の間のフレームと、に対し、前者のフレームを表示装置の動作状態を走査状態とする走査期間に設定している。一方、後者のフレームを表示装置の動作状態を休止状態とする休止期間に設定している。すなわち、t16_1からt16_2の間のフレームを走査フレームとし、t16_2からt16_3の間のフレームを休止フレームとしている。同様に、t16_3からt16_4の間のフレームを走査フレームとし、t16_4からt16_5の間のフレームを休止フレームとしている。
 特許文献1に記載の表示装置では、このような休止フレームを設けることにより、接地電位GNDを基準とした、平均消費電流の電流値I161を小さくする。上で述べたように、1つの休止期間を1つのフレームに設定している。その休止フレームにおいて、表示パネルの走査線や信号線を駆動するための駆動回路や、その駆動回路に電源を供給する電源回路等により消費される定常的な電流(自己消費電流)の発生を停止させる。この停止期間、つまり、休止期間は1つのフレームに相当し、この自己消費電流の電流値I162を低下させるのに十分な長さである。この休止フレームにおける自己消費電流の電流値I162の低下により、表示装置の消費電力の低減化を図ることができる。
日本国公開特許公報「特開2001-312253号公報(2001年11月9日公開)」
 確かに、特許文献1に記載の表示装置では、1つのフレームに1つの休止期間を設定することにより、休止期間における自己消費電流の電流値I162を低下させ、これにより、表示装置の低消費電力化を図ることができる。
 ところで、この表示装置では、1つの走査期間についても、休止期間と同様、1つのフレームに設定している。このことは、各々の走査期間における消費電流に関し、さらなる低減化の余地が残されていることを意味する。なぜなら、走査期間を短縮することにより、走査期間における自己消費電流を低減することができ、延いては、表示装置の低消費電力化をより一層進めることができるからである。
 また、走査期間の短縮により、次の極性反転に至るまでの期間が長くなり、表示パネルにおける輝度傾斜が利用者に視認されてしまう可能性を低下させることができる、という効果もある。
 しかしながら、このような走査期間の短縮に関し、特許文献1には何ら開示はされていない。
 上記課題に鑑み、本発明の目的は、走査期間と休止期間とを繰り返す表示装置において、消費電力の低減化を図ることができる表示装置およびその駆動方法を提供することにある。
 本発明に係る表示装置は、表示パネルを走査する走査期間と、当該走査が行われない休止期間とが繰り返される表示装置であって、連続する2つのフレームのうち、先行する先行フレームにおいては走査期間と休止期間とが順に連続するように設定し、且つ、後続する後続フレームにおいては、当該後続フレームの全期間に休止期間を設定している。
 上記の構成によれば、2つの連続するフレームの全期間における、走査期間に対する休止期間の占める割合が増大する。これにより、表示パネルの走査信号線やデータ信号線を駆動するための走査線駆動回路や信号線駆動回路、それら走査線駆動回路や信号線駆動回路に電源を供給する電源生成回路等により消費される自己消費電流の発生を効果的に抑制させることができる。すなわち、このような十分に長い休止期間における自己消費電流の電流値の低下により、走査線駆動回路や信号線駆動回路等の平均消費電流の電流値を減少させることができる。
 したがって、表示装置の消費電力を低減することができる。
 さらに、逆に言えば、2つの連続するフレームの全期間における、休止期間に対する走査期間の割合を大幅に減少させることができる。これにより、輝度傾斜の発生に起因する表示品位の劣化を防止することができる。
 本発明に係る表示装置は、表示パネルを走査する走査期間と、当該走査が行われない休止期間とが繰り返される表示装置であって、連続する2つのフレームのうち、先行する先行フレームにおいては、当該先行フレームの全期間に休止期間を設定し、且つ、後続する後続フレームにおいては休止期間と走査期間とが順に連続するように設定している。
 上記の構成によれば、2つの連続するフレームの全期間における、走査期間に対する休止期間の占める割合が増大する。これにより、表示パネルの走査信号線やデータ信号線を駆動するための走査線駆動回路や信号線駆動回路、それら走査線駆動回路や信号線駆動回路に電源を供給する電源生成回路等により消費される自己消費電流の発生を効果的に抑制させることができる。すなわち、このような十分に長い休止期間における自己消費電流の電流値の低下により、走査線駆動回路や信号線駆動回路等の平均消費電流の電流値を減少させることができる。
 したがって、表示装置の消費電力を低減することができる。
 本発明に係る表示装置の駆動方法は、表示パネルを走査する走査期間と、当該走査が行われない休止期間とが繰り返される表示装置の駆動方法であって、連続する2つのフレームのうち、先行する先行フレームにおいては走査期間と休止期間とが順に連続するように設定し、且つ、後続する後続フレームにおいては、当該後続フレームの全期間に休止期間を設定する。
 上記の構成によれば、2つの連続するフレームの全期間における、走査期間に対する休止期間の占める割合が増大する。これにより、表示パネルの走査信号線やデータ信号線を駆動するための走査線駆動回路や信号線駆動回路、それら走査線駆動回路や信号線駆動回路に電源を供給する電源生成回路等により消費される自己消費電流の発生を効果的に停止させることができる。
 このような十分に長い休止期間における自己消費電流の電流値の低下により、走査線駆動回路や信号線駆動回路等の平均消費電流の電流値を減少させることができる。
 したがって、表示装置の消費電力を低減することができる。
 さらに、逆に言えば、2つの連続するフレームの全期間における、休止期間に対する走査期間の占める割合を、上記の特許文献1に記載の表示装置や表示装置の上述した参考形態よりも、大幅に減少させることができる。これにより、輝度傾斜の発生に起因する表示品位の劣化を防止することができる。
 本発明に係る表示装置の駆動方法は、表示パネルを走査する走査期間と、当該走査が行われない休止期間とが繰り返される表示装置の駆動方法であって、連続する2つのフレームのうち、先行する先行フレームにおいては、当該先行フレームの全期間に休止期間を設定し、且つ、後続する後続フレームにおいては休止期間と走査期間とが順に連続するように設定する。
 上記の構成によれば、2つの連続するフレームの全期間における、走査期間に対する休止期間の占める割合が増大する。これにより、表示パネルの走査信号線やデータ信号線を駆動するための走査線駆動回路や信号線駆動回路、それら走査線駆動回路や信号線駆動回路に電源を供給する電源生成回路等により消費される自己消費電流の発生を効果的に抑制させることができる。すなわち、このような十分に長い休止期間における自己消費電流の電流値の低下により、走査線駆動回路や信号線駆動回路等の平均消費電流の電流値を減少させることができる。
 したがって、表示装置の消費電力を低減することができる。
 本発明に係る表示装置は、表示パネルを走査する走査期間と、当該走査が行われない休止期間とが繰り返される表示装置であって、連続する2つのフレームのうち、先行する先行フレームにおいては走査期間と休止期間とが順に連続するように設定し、且つ、後続する後続フレームにおいては、当該後続フレームの全期間に休止期間を設定している。
 それゆえ、連続する2つのフレームに対し、休止期間よりも走査期間が短くなるように設定することにより、消費電力の低減化を図ることができるという効果を奏する。
本発明の一実施形態に係る表示装置における垂直同期信号、動作状態および電源電流波形を示すタイミングチャートである。 上記表示装置の概略構成を示すブロック図である。 上記表示装置の参考形態における垂直同期信号、動作状態および電源電流波形を示すタイミングチャートである。 本発明の他の実施形態に係る表示装置における垂直同期信号および動作状態を示すタイミングチャートである。 本発明の他の実施形態に係る表示装置における垂直同期信号、動作状態およびソース出力状態を示すタイミングチャートである。 本発明の他の実施形態に係る表示装置における垂直同期信号、動作状態およびソース出力状態を示すタイミングチャートである。 本発明の他の実施形態に係る表示装置における垂直同期信号および動作状態を示すタイミングチャートである。 本発明の他の実施形態に係る表示装置における垂直同期信号、動作状態および電源電流波形を示すタイミングチャートである。 本発明の他の実施形態に係る表示装置における垂直同期信号、動作状態および電源電流波形を示すタイミングチャートである。 上記表示装置における垂直同期信号、動作状態、電源電流波形および走査信号を示すタイミングチャートである。 1つの画素の等価回路図である。 輝度傾斜の発生の原理を説明するための、垂直同期信号、水平同期信号、ソース出力状態および各種の信号を示すタイミングチャートである。 輝度傾斜の発生の原理を説明するための、垂直同期信号、水平同期信号、ソース出力状態および各種の信号を示すタイミングチャートである。 (a)(b)は、表示パネルの駆動を説明する説明図である。 (a)(b)は、表示パネルの駆動を説明する説明図である。 従来の表示装置における垂直同期信号、動作状態および電源電流波形を示すタイミングチャートである。 酸化物半導体を用いたTFTの特性を示すグラフである。
 〔実施形態1〕
 本発明の一実施形態について図1から図3に基づいて説明すると以下の通りである。
 (表示装置1の構成)
 まず、本発明の実施に係る表示装置(液晶表示装置)1の構成について、図2を参照して説明する。図2は、表示装置1の全体構成を示す図である。この図に示すように、表示装置1は、表示パネル2と、走査線駆動回路(ゲートドライバ)4と、信号線駆動回路(ソースドライバ)6と、共通電極駆動回路8と、タイミングコントローラ10と、電源生成回路14と、メモリ16と、を備えている。また、タイミングコントローラ10は、制御信号出力部12を有している。
 表示パネル2は、マトリクス状に配置された複数の画素からなる画面と、その画面を線順次に選択して走査するためのN本(Nは任意の整数)の走査信号線G(ゲートライン)と、選択されたラインに含まれる一行分の画素にデータ信号を供給するM本(Mは任意の整数)のデータ信号線S(ソースライン)とを備えている。走査信号線Gとデータ信号線Sとは互いに交差している。
 表示パネル2は、例えば、液晶表示パネルを用いることができる。この場合、表示装置1を液晶表示装置として構成することが可能である。また、表示パネル2は、有機エレクトロルミネッセンス(EL)表示パネルなどのEL表示パネルを用いることができる。この場合、表示装置1をエレクトロルミネッセンス表示装置として構成することが可能である。
 図2に示すG(n)はn本目(nは任意の整数)の走査信号線Gを表す。例えば、G(1)、G(2)およびG(3)は、それぞれ1本目、2本目および3本目の走査信号線Gを表す。一方、S(i)はi本目(iは任意の整数)のデータ信号線Sを表す。例えば、S(1)、S(2)およびS(3)は、それぞれ1本目、2本目および3本目のデータ信号線Sを表す。
 なお、本実施形態は、説明の簡便のため等価回路を対象にした駆動を例にしており、表示パネル2内の各画素にはTFTが設けられており、TFTのドレインは画素電極に接続されている。
 走査線駆動回路4は、各走査信号線Gを画面の上から下に向かって線順次に走査する。その際、各走査信号線Gに対して、画素に備えられ画素電極に接続されるスイッチング素子(TFT)をオン状態にさせるための矩形波(走査信号)を出力する。これにより、画面内の1行分の画素を選択状態にする。
 信号線駆動回路6には、メモリ16から入力された映像信号(矢印E)に基づき、選択された1行分の各画素に出力すべき電圧の値を算出し、その値の電圧を各データ信号線Sに出力する。結果、選択された走査信号線G上にある各画素に対して画像データ(データ信号)を供給する。
 表示装置1は、画面内の各画素に対して、さらに共通電極(COM:不図示)を備えている。共通電極駆動回路8は、タイミングコントローラ10から入力される極性反転信号(矢印G)に基づき、所定の共通電圧を共通電極に出力することで共通電極を駆動する。
 タイミングコントローラ10には、本体装置(図示省略)から、入力映像同期信号として、水平同期信号(Hsync)、垂直同期信号(Vsync)および入力クロック信号(DotClock信号)が入力される(矢印B)。タイミングコントローラ10は、これらの入力映像同期信号および入力クロック信号(DotClock信号)に基づき、各回路が同期して動作するための基準となる映像同期信号として、水平同期制御信号(GCKなど)および垂直同期制御信号(GSPなど)を生成する。そして、それら信号を、走査線駆動回路4、信号線駆動回路6、およびメモリ16に出力する(矢印C、D、F)。また、タイミングコントローラ10には、本体装置(図示省略)から、入力映像信号が入力される(矢印A)。
 水平同期制御信号は、信号線駆動回路6において、メモリ16から入力された映像信号を表示パネル2へ出力するタイミングを制御する出力タイミング信号として使用される。また、水平同期制御信号は、走査線駆動回路4において、表示パネル2へ走査信号を出力するタイミングを制御するタイミング信号として使用される。
 また、垂直同期制御信号は、走査線駆動回路4において、走査信号線Gの走査の開始のタイミングを制御するタイミング信号として使用される。
 走査線駆動回路4は、タイミングコントローラ10から受け取った水平同期制御信号および垂直同期制御信号に従って、表示パネル2の走査を開始し、各走査信号線Gを順次選択して走査信号を出力する。
 信号線駆動回路6は、タイミングコントローラ10から受け取った水平同期制御信号に従って、メモリ16から入力された映像信号に基づく画像データ(データ信号)を、表示パネル2の各データ信号線Sに書き込む。
 電源生成回路14は、表示装置1内の各回路が動作するために必要な電圧であるVdd、Vdd2、Vcc、Vgh、およびVglを生成する。そして、Vcc、Vgh、Vglを走査線駆動回路4に出力し、VddおよびVccを信号線駆動回路6に出力し、Vccをタイミングコントローラ10に出力し、Vdd2を共通電極駆動回路8に出力する。
 メモリ16は、タイミングコントローラ10から入力された入力映像信号(矢印J)を記録する機能を有する。また、メモリ16は、タイミングコントローラ10から受け取った映像同期信号に従って、記録した入力映像信号に基づく映像信号(矢印E)を、信号線駆動回路6に出力する。このメモリ16の配置により、本体装置は、映像信号(矢印A)や映像同期信号(矢印B)をタイミングコントローラ10に送信する際、それら信号を、表示装置1による走査に応じたスピードに変換する必要が無くなる。このため、本体装置は、表示装置1の走査スピードに応じ、別途、特別な回路構成を備える必要性が無く、従来と同じ回路構成を利用することができる。言い換えれば、本体装置の製造コストの増大を抑制することができるとも言える。
 (表示装置1の消費電力)
 先ず、表示装置1の参考形態の消費電力について説明する。図3は、表示装置1の参考形態の消費電力を説明するための図であり、具体的には、表示装置1の参考形態における垂直同期信号、動作状態および電源電流波形を示すタイミングチャートである。
 図3に示すように、表示装置1の参考形態では、1つのフレーム、例えば、t3_1からt3_3の間のフレームや、t3_3からt3_5の間のフレーム、といった複数のフレームの各々に、1つの走査期間と1つの休止期間とを設定している。すなわち、t3_1からt3_3の間のフレームでは、t3_1からt3_2の間に高速走査する高速走査期間を設定し、t3_2からt3_3の間に休止期間を設定している。同様に、t3_3からt3_5の間のフレームでは、t3_3からt3_4の間に高速走査する高速走査期間を設定し、t3_4からt3_5の間に休止期間を設定している。そして、例えば、通常の60Hz相当の走査期間であれば16~17msec程度であるところ、この高速走査期間は、駆動周波数の上昇により、10msec程度となっている。ここで、本実施の形態において、「高速走査」とは、1つフレームの全期間よりも短い期間において、表示パネル2の全画面を表示可能とする走査のことを言う。
 なお、図3においては、走査期間がすべてのフレームに含まれており、すべてのフレームが走査フレームとなる。すなわち、複数の走査フレームが連続していると言える。このような参考形態では、画面のチラツキが十分に抑制された高表示品位を達成することができる。
 表示装置1の参考形態では、1つのフレーム、言い換えれば、1つの垂直期間において、このような高速走査期間を設定することにより、さらに休止期間を設定している。これにより、複数の走査フレームが連続する場合であっても、各走査フレームに含まれる休止期間において、表示パネルの走査線や信号線を駆動するための駆動回路や、その駆動回路に電源を供給する電源回路等により消費される自己消費電流の発生を停止あるいは抑制させることができる。この参考形態においても、休止期間における自己消費電流の電流値I32の低下により、表示装置の消費電力の低減化は可能である。
 しかし、この参考形態では、上で述べたように、1つのフレームに走査期間と休止期間とを設定していることから、先ず、休止期間の長さを十分に取ることができないといった問題点がある。このことは、上述した駆動回路や電源回路の停止から復帰までの期間が短いことを意味する。すなわち、図3に示すように、自己消費電流の電流値I32を接地電位GND付近まで低下させることができず、その結果、接地電位GNDを基準とした、平均消費電流の電流値I31を大幅に削減することが困難となる。
 さらに、1つのフレームにおける走査期間が占める割合を極端に、すなわち、上述した自己消費電流の発生を停止あるいは抑制させることができるまで減らすことができない。そのため、1本のデータ信号線Sに正極性のデータ信号と負極性のデータ信号とを交流駆動によって切り替えながら信号線駆動回路6から出力するソース反転駆動を用いた場合、後述する輝度傾斜の発生に起因する表示品位の劣化を招くといった問題点もある。
 一方、本発明の実施形態1に係る表示装置1では、上述した参考形態と比較し、より少ない消費電力により動作可能であり、且つ、輝度傾斜の発生に起因する表示品位の劣化を防止することができるといった有利な点を備えている。
 以下、表示装置1の、このような有利な点について説明する。図1は、表示装置1における垂直同期信号、動作状態および電源電流波形を示すタイミングチャートである。
 図1に示すように、表示装置1では、連続する2つのフレーム、例えば、t1_1からt1_3の間のフレームとt1_3からt1_4の間のフレーム、といった2つのフレームに対し、1つの高速走査期間と1つの休止期間とを設定している。
 ここで、表示装置1が上述した特許文献1に記載の表示装置と異なる点は、走査期間を高速化することにより、連続する2つのフレームのうち、先行するフレーム(以下、単に「先行フレーム」と呼ぶ場合もある)において、その全期間に走査期間を設定するのではなく、その走査期間の終了後の残余期間に休止期間をさらに設定する点である。もちろん、2つのフレームのうち、後続するフレーム(以下、単に「後続フレーム」と呼ぶ場合もある)においては、その全期間に休止期間を設定している。なお、図1においては、走査期間が含まれるフレームを走査フレームと呼び、走査期間が含まれないフレームを休止フレームと呼んでいる。
 例えば、t1_1からt1_3の間のフレームを先行フレーム、t1_3からt1_4の間のフレームを後続フレームとした場合、先行フレームのうち、t1_1からt1_2の期間に走査期間(高速走査期間)を設定し、t1_2からt1_3の期間に休止期間を設定している。そして、後続フレームの全期間にも休止期間を設定している。
 同様に、t1_4からt1_6の間のフレームを先行フレーム、t1_6からt1_7の間のフレームを後続フレームとした場合、先行フレームのうち、t1_4からt1_5の期間に走査期間(高速走査期間)を設定し、t1_5からt1_6の期間に休止期間を設定している。そして、後続フレームの全期間にも休止期間を設定している。
 このように、表示装置1では、先ず、走査期間を高速化することにより、2つの連続するフレームのうち、先行フレームにおいて、その全期間に走査期間を設定することなく、走査期間終了後の残余期間に休止期間を設定している。そして、後続フレームの全期間にさらに休止期間を設定している。
 このため、表示装置1では、2つの連続するフレームの全期間における、走査期間に対する休止期間の割合を、上記の特許文献1に記載の表示装置や表示装置の上述した参考形態よりも、大幅に増大させることができる。これにより、表示パネル2の走査信号線Gやデータ信号線Sを駆動するための走査線駆動回路4や信号線駆動回路6、それら走査線駆動回路4や信号線駆動回路6に電源を供給する電源生成回路14等により消費される自己消費電流の発生をより効果的に停止あるいは抑制させることができる。このような十分に長い休止期間における自己消費電流の電流値I12の低下により、接地電位GNDを基準とした、平均消費電流の電流値I11を大幅に減少させることができる。したがって、表示装置1の消費電力を大幅に低減することができる。
 さらに、表示装置1では、2つの連続するフレームの全期間における、休止期間に対する走査期間の占める割合を、上記の特許文献1に記載の表示装置や表示装置の上述した参考形態よりも、大幅に減少させることができるとも言える。これにより、輝度傾斜の発生に起因する表示品位の劣化を防止することができる。この点については、輝度傾斜の発生の原理も含め、後述する。
 〔実施形態2〕
 次に、本発明の実施形態2について説明する。図4は、本発明の実施形態2に係る表示装置における垂直同期信号および動作状態を示すタイミングチャートである。なお、本発明の実施形態2に係る表示装置の構成は、図2に示す、上記の実施形態1の表示装置1と同一の構成である。以下、異なる点について説明する。
 図4に示すように、本発明の実施形態2に係る表示装置1では、連続する2つのフレーム、例えば、T4_1からT4_3の間のフレームとT4_3からT4_4の間のフレーム、といった2つのフレームに対し、1つの高速走査期間と1つの休止期間とを設定している。
 表示装置1はさらに、走査期間を高速化することにより、連続する2つのフレームのうち、先行フレームにおいて、その全期間に走査期間を設定するのではなく、その走査期間の終了後の残余期間に休止期間をさらに設定する。2つのフレームのうち、後続フレームにおいては、その全期間に休止期間を設定している。
 ここまでは上記の実施形態1と同様であり、本発明の実施形態2が上記の実施形態1と異なる点は、このような連続する2つのフレームにおいて、高速走査期間Tdと休止期間Tsとの間に以下の関係を満足させる点にある。
Figure JPOXMLDOC01-appb-M000003
 図4においては、上記の関係は、例えば、T4_1からT4_2の期間がT4_2からT4_4の期間の(1/2)以下になることを意味する。
 本発明の実施形態2によれば、上記実施形態1と同様、表示装置1の消費電力を大幅に低減することができる。
 〔実施形態3〕
 次に、本発明の実施形態3について説明する。図5は、本発明の実施形態3に係る表示装置における垂直同期信号、動作状態およびソース出力状態を示すタイミングチャートである。なお、本発明の実施形態3に係る表示装置の構成は、図2に示す、上記の実施形態1の表示装置1と同一の構成である。以下、異なる点について説明する。
 図5に示すように、本発明の実施形態3に係る表示装置1では、連続する2つのフレーム、例えば、T5_1からT5_3の間のフレームとT5_3からT5_4の間のフレーム、といった2つのフレームに対し、1つの高速走査期間と1つの休止期間とを設定している。
 表示装置1はさらに、走査期間を高速化することにより、連続する2つのフレームのうち、先行フレームにおいて、その全期間に走査期間を設定するのではなく、その走査期間の終了後の残余期間に休止期間をさらに設定する。2つのフレームのうち、後続フレームにおいては、その全期間に休止期間を設定している。
 ここまでは上記の実施形態1と同様であり、本発明の実施形態3が上記の実施形態1と異なる点は、1本のデータ信号線Sに正極性のデータ信号と負極性のデータ信号とを交流駆動によって切り替えられながら信号線駆動回路6から出力するソース反転駆動を組み合わせた点にある。
 図5においては、連続する2つのフレームである、T5_1からT5_3の間のフレームとT5_3からT5_4の間のフレームにおいて、ソース出力状態が正極性となっている。また、連続する2つのフレームである、T5_4からT5_6の間のフレームとT5_6からT5_7の間のフレームにおいて、ソース出力状態が負極性となっている。
 本発明の実施形態3によれば、上記実施形態1と同様、表示装置1の消費電力を大幅に低減し、且つ、輝度傾斜の発生に起因する表示品位の劣化を防止することができる。
 〔実施形態4〕
 次に、本発明の実施形態4について説明する。図6は、本発明の実施形態4に係る表示装置における垂直同期信号、動作状態およびソース出力状態を示すタイミングチャートである。なお、本発明の実施形態4に係る表示装置の構成は、図2に示す、上記の実施形態1の表示装置1と同一の構成である。以下、異なる点について説明する。
 図6に示すように、本発明の実施形態4に係る表示装置1では、連続する2つのフレーム、例えば、T6_1からT6_3の間のフレームとT6_3からT6_4の間のフレーム、といった2つのフレームに対し、1つの高速走査期間と1つの休止期間とを設定している。
 表示装置1はさらに、走査期間を高速化することにより、連続する2つのフレームのうち、先行フレームにおいて、その全期間に走査期間を設定するのではなく、その走査期間の終了後の残余期間に休止期間をさらに設定する。2つのフレームのうち、後続フレームにおいては、その全期間に休止期間を設定している。
 本発明の実施形態4は、上記の実施形態2と同様、このような連続する2つのフレームにおいて、高速走査期間Tdと休止期間Tsとの間に以下の関係を満足させる点にある。
Figure JPOXMLDOC01-appb-M000004
 図6においては、上記の関係は、例えば、T6_1からT6_2の期間がT6_2からT6_4の期間の(1/2)以下になることを意味する。
 さらに、本発明の実施形態4は、上記の実施形態3と同様、1本のデータ信号線Sに正極性のデータ信号と負極性のデータ信号とを交流駆動によって切り替えられながら信号線駆動回路6から出力するソース反転駆動を組み合わせた点にある。
 図6においては、連続する2つのフレームである、T6_1からT6_3の間のフレームとT6_3からT6_4の間のフレームにおいて、ソース出力状態が正極性となっている。また、連続する2つのフレームである、T6_4からT6_6の間のフレームとT5_6からT5_7の間のフレームにおいて、ソース出力状態が負極性となっている。
 本発明の実施形態4によれば、上記実施形態1と同様、表示装置1の消費電力を大幅に低減し、且つ、輝度傾斜の発生に起因する表示品位の劣化を防止することができる。
 〔実施形態5〕
 次に、本発明の実施形態5について説明する。図7は、本発明の実施形態5に係る表示装置における垂直同期信号および動作状態を示すタイミングチャートである。なお、本発明の実施形態5に係る表示装置の構成は、図2に示す、上記の実施形態1の表示装置1と同一の構成である。以下、異なる点について説明する。
 図7に示すように、本発明の実施形態5に係る表示装置1では、連続する2つのフレーム、例えば、T7_1からT7_3の間のフレームとT7_3からT7_4の間のフレーム、といった2つのフレームに対し、1つの高速走査期間と1つの休止期間とを設定している。
 表示装置1はさらに、走査期間を高速化することにより、連続する2つのフレームのうち、先行フレームにおいて、その全期間に走査期間を設定するのではなく、その走査期間の終了後の残余期間に休止期間をさらに設定する。2つのフレームのうち、後続フレームにおいては、その全期間に休止期間を設定している。
 ここまでは上記の実施形態1と同様であり、本発明の実施形態5が上記の実施形態1と異なる点は、このような連続する2つのフレームにおいて、駆動周波数(リフレッシュレート)を少なくとも40Hz程度にする点にある。すなわち、高速走査期間Tdと休止期間Tsとの間に以下の関係を満足させる点にある。
Figure JPOXMLDOC01-appb-M000005
 図7においては、上記の関係は、例えば、T7_1からT7_4の期間が25msec程度となることを意味する。
 本発明の実施形態5によれば、連続する2つのフレームにおける高速走査期間の占める割合を減らすことがない。これにより、フリッカを発生させることなく、消費電力を低減することができる。
 〔実施形態6〕
 次に、本発明の実施形態6について説明する。図8は、本発明の実施形態6に係る表示装置における垂直同期信号、動作状態および電源電流波形を示すタイミングチャートである。なお、本発明の実施形態6に係る表示装置の構成は、図2に示す、上記の実施形態1の表示装置1と同一の構成である。以下、異なる点について説明する。
 上記の実施形態1~5は、走査フレームと休止フレームとが1つずつ交互に連続する形態であった。これに対し、本発明の実施形態6は、複数の走査フレームが連続した後、複数の休止フレームが連続する形態である。すなわち、連続する複数の走査フレームと、連続する複数の休止フレームとが、交互に連続する形態である。
 図8に示すように、先ず、T8_1からT8_3の間、T8_3からT8_5の間、および、T8_5からT8_7の間の各々に走査フレームを設定している。すなわち、3つの走査フレームが連続している。
 次に、T8_7からT8_8の間、T8_8からT8_9の間、T8_9からT8_10の間、および、T8_10からT8_11の間の各々に休止フレームを設定している。すなわち、4つの走査フレームが連続している。
 そして、T8_11からT8_13の間、T8_13からT8_15の間、および、T8_15からT8_17の間の各々に走査フレームを設定している。すなわち、3つの走査フレームが連続している。
 ここで、T8_5からT8_7の間の走査フレームおよびT8_7からT8_8の間の休止フレームに着目すれば、上記の実施の形態1~5と同様なことが言える。すなわち、連続するこれら2つのフレームにおいて、先ず、走査期間を高速化することにより、2つの連続するフレームのうち、先行フレーム(T8_5からT8_7の間の走査フレーム)において、その全期間に走査期間を設定することなく、走査期間終了後の残余期間に休止期間を設定している。そして、後続フレーム(T8_7からT8_8の間の休止フレーム)の全期間にさらに休止期間を設定している。
 これにより、走査期間終了後の、このような十分に長い休止期間における自己消費電流の電流値I82の低下により、接地電位GNDを基準とした、平均消費電流の電流値I81を大幅に減少させることができる。したがって、表示装置1の消費電力を大幅に低減することができる。
 したがって、本発明の実施形態6のような、複数の走査フレームが連続した後、複数の休止フレームが連続する形態の場合でも、上記の実施形態1と同様、表示装置1の消費電力を大幅に低減し、且つ、輝度傾斜の発生に起因する表示品位の劣化を防止することができる。
 〔実施形態7〕
 次に、本発明の実施形態7について説明する。図9は、本発明の実施形態7に係る表示装置における垂直同期信号、動作状態および電源電流波形を示すタイミングチャートである。なお、本発明の実施形態7に係る表示装置の構成は、図2に示す、上記の実施形態1の表示装置1と同一の構成である。以下、異なる点について説明する。
 本発明の実施形態7は、上記の実施形態6と同様、複数の走査フレームが連続した後、複数の休止フレームが連続する形態である。すなわち、連続する複数の走査フレームと、連続する複数の休止フレームとが、交互に連続する形態である。
 図9に示すように、先ず、T9_1からT9_3の間、T9_3からT9_5の間、および、T9_5からT9_7の間の各々に走査フレームを設定している。すなわち、3つの走査フレームが連続している。
 次に、T9_7からT9_8の間、T9_8からT9_9の間、T9_9からT9_10の間、および、T9_10からT9_11の間の各々に休止フレームを設定している。すなわち、4つの走査フレームが連続している。
 そして、T9_11からT9_13の間、T9_13からT9_15の間、および、T9_15からT9_17の間の各々に走査フレームを設定している。すなわち、3つの走査フレームが連続している。
 ここで、T9_10からT9_11の間の休止フレームおよびT9_11からT9_13の間の走査フレームに着目すれば、上記の実施の形態1~6とは異なり、連続するこれら2つのフレームにおいて、先ず、2つの連続するフレームのうち、先行フレーム(T9_10からT9_11の間の休止フレーム)の全期間に休止期間を設定している。そして、後続フレーム(T9_11からT9_13の間の走査フレーム)において、先ず、休止期間(T9_11からT9_12の間)を設定し、その休止期間終了後の残余の期間に高速走査期間(T9_12からT9_13の間)を設定している。
 これにより、走査期間開始前の、このような十分に長い休止期間における自己消費電流の電流値I92の低下により、接地電位GNDを基準とした、平均消費電流の電流値I91を大幅に減少させることができる。したがって、表示装置1の消費電力を大幅に低減することができる。
 したがって、本発明の実施形態7のような、複数の走査フレームが連続した後、複数の休止フレームが連続する形態の場合でも、上記の実施形態1と同様、表示装置1の消費電力を大幅に低減し、且つ、輝度傾斜の発生に起因する表示品位の劣化を防止することができる。
 〔輝度傾斜の発生〕
 輝度傾斜の発生原理およびそれに起因する表示品位の劣化の防止について説明する。
 先ず、本発明の実施形態1~7に係る表示装置1の表示パネル2の駆動について説明する。図10は、本発明の実施形態1~7に係る表示装置1における垂直同期信号、動作状態、電源電流波形および走査信号を示すタイミングチャートである。
 図10に示すように、連続する2つのフレーム、例えば、T10_1からT10_3の間のフレームとT10_3からT10_4の間のフレーム、といった2つのフレームに対し、1つの高速走査期間と1つの休止期間とを設定している。また、連続する2つのフレームのうち、先行フレームにおいて、その全期間に走査期間を設定するのではなく、その走査期間の終了後の残余期間に休止期間を設定している。さらに、2つのフレームのうち、後続フレームにおいては、その全期間に休止期間を設定している。
 このような走査期間および休止期間の設定において、垂直同期制御信号が1高速走査期間ごとに入力される。まず、制御信号出力部12が、垂直同期制御信号に同期して、AMP_Enable信号の電圧をL値からH値に変化させる。これにより、信号線駆動回路6が備えるアナログアンプ(図示省略)が、非動作状態から動作状態(通常状態)へと切り替わる。
 次に、走査線駆動回路4は、垂直同期制御信号および水平同期制御信号に同期して、1本目の走査信号線Gに走査信号を出力する。これによって、その1本目の走査信号線Gに接続された画素のTFTのゲートがオン状態になる。
 次に、信号線駆動回路6は、水平同期制御信号に同期して、データ信号線Sごとに、当該データ信号線Sに接続された信号線駆動回路6内のアナログアンプからデータ信号を出力する。これにより、表示に必要な電圧が各データ信号線Sに供給され、TFTを通じて画素電極に書き込まれる。当該書き込みの終了後、1本目の走査信号線Gに接続された画素のTFTのゲートがオン状態からオフ状態に戻る。
 最初の1水平期間が経過したら、次の水平同期制御信号が入力される。2本目以降の走査信号線Gに接続された画素は、1本目の走査信号線Gに接続された画素と同様の手順によって書き込みが行われる。このようにして、N本全ての走査信号線Gに連なる画素に書き込みが行われる期間を「書き込み期間」と称する。当該書き込み期間は高速走査期間と同じ期間を示す。
 AMP_Enable信号は、上記書き込み期間の間、H値を維持している。
 最初の1高速走査期間において、上記書き込み期間(高速走査期間)が経過した後、制御信号出力部12は、AMP_Enable信号をH値からL値に変化させる。この結果、信号線駆動回路6内のアナログアンプが非動作状態(低能力化)になる。
 最初の1垂直期間が経過したら、次の垂直同期制御信号が入力され、2フレーム目以降の駆動についても、上述と同様の手順によって行われる。
 なお、信号線駆動回路6内のアナログアンプが非動作状態(低能力化)の間、信号線駆動回路6内のアナログアンプの出力とデータ信号線Sとの接続を切っても良い。
 次に、輝度傾斜の発生原理について説明する。表示パネル2に搭載された、各画素のTFTは、上述したように、そのゲートがオン状態とオフ状態との間において切り替えが行われる。このTFTのゲートのオン状態とオフ状態との間に切り替えにより、各々のTFTに接続された液晶容量および補助容量を充電する。このように、画素の選択素子にTFTを用いた液晶表示装置において、引き込み現象(feed through)が起こることは一般によく知られている。この引き込み現象が輝度傾斜の発生の要因である。以下、引き込み現象について説明する。
 図11に、1つの画素の等価回路を示す。ゲートラインGjとソースラインSiとの交差点に1つの画素100が対応して設けられている。画素100は、TFT101と、液晶容量Clcと、補助容量Ccsとを備え、さらに、ドレイン電極102とゲートラインGjとの間に形成された容量Cgd等の寄生容量も含んでいる。TFT101のゲートはゲートラインGjに、TFT101のソースはソースラインSiに、TFT101のドレインはドレイン電極102に、それぞれ接続されている。液晶容量Clcは、ドレイン電極102と電圧COMが印加された共通電極との間に液晶層が配置されてなり、補助容量Ccsは、ドレイン電極102もしくはドレイン電極102に接続された電極と、電圧CSが印加された補助容量バスラインとの間に絶縁膜が配置されてなる。電圧CSは、例えば、電圧COMに等しいが、他の値の電圧でもよい。
 ドレイン電極102の電位レベルは、先ず、TFT101を介してソースラインSiから供給されるソース電圧に充電される。その後、寄生容量Cgdを介して、ゲートラインGj上における電圧変化(Vgh→Vgl)により変動する。また、寄生容量Csd1があるため、ソースラインSiの極性反転による電圧変化によっても変動する。
 すなわち、図11に示す等価回路においては、ドレイン電極102が受ける変動量は、以下の式(1)および(2)が成立する。なお、寄生容量Cgdによる変動量をΔVgd、寄生容量Csd1による変動量をΔVsd1とする。
Figure JPOXMLDOC01-appb-M000006
 ここで、ΣC、ΔVgおよびΔVsは、以下の式(3)~(5)から算出される。
Figure JPOXMLDOC01-appb-M000007
 Vgh、Vgl,VshおよびVslは以下の通りである。
Figure JPOXMLDOC01-appb-M000008
 なお、厳密には、寄生容量Csd1と同様、寄生容量Csd2による影響も受けるが、絶対値としては、輝度傾斜への影響が出るほどではないため無視している。
 上記の式(1)および(2)で表されるドレイン電極102の電位レベルの変動幅を引き込み電圧と呼ぶ。
 このような引き込み電圧により、輝度傾斜が発生する。例えば、図12に示すように、信号線駆動回路6から出力されたデータ信号によって、各画素のTFTを通し、ドレイン電極にドレイン電圧が充電される。その後、走査信号の立下りとデータ信号の極性反転によって、上記の引き込み電圧により、ドレイン電圧が変動を受ける。特に、データ信号の極性反転は、第1ラインと第mラインとでは、その変動を受けるタイミングが異なる。
 このため、実効的な液晶印加電圧が第mラインのほうが小さくなる。したがって、画面全体でみると走査線駆動回路4の走査方向に沿って、液晶印加電圧の傾斜が発生し、輝度傾斜に繋がる。
 一方、図13に示すように、休止フレーム(休止期間)を挟むことによって、最終ライン(第mライン)の、実効的な液晶印加電圧の低下分は、図11に示す、休止フレームが無い(つまり、休止駆動をしない)場合と比較し、約半分(ΔVsd1→ΔVsd1・(1/2))となる。つまり、印加電圧の変動量が少なくなるため輝度傾斜が抑制される。
 (本発明の適用例)
 本発明は、上述したように、図14の(a)および(b)に示すソース反転駆動を用いる場合に、上述した輝度傾斜の発生による表示品位の劣化を防止する効果が大きい。
 また、本発明は、図15の(a)に示すドット反転駆動や図15の(b)に示すライン反転駆動を用いる場合でも、消費電力の低減化の効果を有することはもちろんである。
 以下、図14および図15を参照してこれらの反転を詳細に説明する。
 図14および図15は、表示パネル2における走査信号線G、データ信号線S、および画素電極の構造を示す構造図である。図14の(a)および(b)、並びに図15の(a)および(b)の各々では、第nフレームにおける各画素電極の電圧の極性と、次のフレームである第(n+1)フレームにて逆極性の電圧が印加された各画素電極の電圧の極性と、を示している。各画素電極の電圧の極性は、図中の+(プラス)および-(マイナス)によって示されている。
 図14の(a)は、ソース反転の一例を示している。ソース反転は、データ信号線(ソース線)Sごとに印加する電圧の極性を反転したものである。これにより、図14の(a)に示すように、走査信号線Gの方向に配列した画素電極ごとに電圧の極性を反転することができる。
 図14の(b)は、図14の(a)と同じソース反転であるが、図14の(a)に比べて画素電極の配置が異なっている。図14の(a)では、データ信号線Sに接続する画素電極が、当該データ信号線Sに対して一方の側(図示の例では右側)に配置されている。これに対し、図14の(b)では、データ信号線Sに接続する画素電極が、当該データ信号線Sに対して千鳥状に配置されている。このため、隣り合うデータ信号線Sの間に配置された画素電極の電圧の極性は、図14の(a)の配置では同じであるが、図14の(b)の配置では互い違いとなっている。
 図15の(a)は、ライン反転の一例を示している。ライン反転は、データ信号線Sに印加する電圧の極性を、駆動される走査信号線Gごと(水平走査期間ごと)に反転したものである。これにより、データ信号線Sの方向に配列した画素電極ごとに電圧の極性を反転することができる。
 図15の(b)は、ドット反転の一例を示している。ドット反転は、図14の(a)に示すソース反転と、図15の(a)に示すライン反転とを組み合わせることにより実現できる。具体的には、1番目の走査信号線G1の駆動時に、各データ信号線Sに印加する電圧の極性を、1番目をプラス(+)とし、以下、順番に反転する。次に、2番目の走査信号線G2の駆動時に、各データ信号線Sに印加する電圧の極性を、1番目をマイナス(-)とし、以下、順番に反転する。そして、3番目以降の走査信号線Gの駆動時にも同様に繰り返すことにより、図15の(b)に示すように、走査信号線Gの方向およびデータ信号線Sの方向に隣り合う画素電極どうしの電圧の極性を異なるようにすることができる。
 (その他の実施の形態)
 上記各実施の形態では、表示パネル2のトランジスタとして、半導体層にいわゆる酸化物半導体を用いたTFTを用いることが望ましい。この酸化物半導体には、例えばIGZO(InGaZnOx)が含まれる。図17に、酸化物半導体を用いたTFT、a-Si(amorphous silicon)を用いたTFT、およびLTPS(Low Temperature Poly Silicon)を用いたTFTの各々の特性を示す。図17においては、横軸(Vg)は、各TFTに供給されるゲート電圧の値を示し、縦軸(Id)は、各TFTのソース-ドレイン間の電流値を示す。また、図中において「TFT-on」と示されている期間は、TFTがオン状態となっている期間を示し、「TFT-off」と示されている期間は、TFTがオフ状態となっている期間を示す。
 図17に示すように、酸化物半導体を用いたTFTは、a-Siを用いたTFTよりも、オン状態の時の電流値(すなわち、電子移動度)が高い。図示は省略するが、具体的には、a-Siを用いたTFTでは、オン状態の時(「TFT-on」)のId電流が1uAであるのに対し、酸化物半導体を用いたTFTでは、TFT-on時のId電流が20~50uA程度である。このことから、酸化物半導体を用いたTFTは、a-Siを用いたTFTよりも、オン状態の時の電流値(電子移動度)が20~50倍程度高く、オン特性が非常に優れていることが分かる。
 以上のことから、上記各実施の形態において、表示パネル2のトランジスタとして、酸化物半導体を用いたTFTを各画素に用いることによって、各画素のTFTのオン特性が非常に優れたものとなる。そのため、各画素に対して画素データを書き込む際の電子移動度が増大し、該書き込みにかかる時間をより短時間化することができる。
 本発明の実施の形態に係る表示装置では、上記走査期間の長さをTd、上記先行フレームに設定された休止期間と上記後続フレームに設定された休止期間とを加えた長さをTsとしたとき、以下の式を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000009
 上記の構成によれば、表示装置の消費電力をより効果的に低減することができる。
 本発明の実施の形態に係る表示装置では、以下の式を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000010
 上記の構成によれば、表示装置におけるフリッカが十分に抑えられた状態により、輝度傾斜を軽減させることができる。
 本発明の実施の形態に係る表示装置では、上記表示パネルに供給されるデータ信号の電圧の極性は、1つの走査期間ごとに反転することが好ましい。
 上記の構成によれば、いわゆるソース反転駆動においても、表示装置の消費電力を大幅に低減し、且つ、輝度傾斜の発生に起因する表示品位の劣化を防止することができる。
 本発明の実施の形態に係る表示装置では、上記後続フレームに連続する複数のフレームにおいて、各々の全期間に休止期間を設定していることが好ましい。
 上記の構成によれば、各々に休止期間が設定された、複数のフレームが連続する場合でも、表示装置の消費電力を大幅に低減し、且つ、輝度傾斜の発生に起因する表示品位の劣化を防止することができる。
 本発明の実施の形態に係る表示装置では、上記表示装置の外部から供給される映像信号を一時的に保持するメモリを備えていることが好ましい。
 上記の構成では、映像信号が、表示装置の外部にある本体装置より、例えば、表示装置のタイミングコントローラに送信される。この場合、本体装置は、このメモリの配置により、映像信号をタイミングコントローラに送信する際、その映像信号を、表示装置による走査に応じたスピードに変換する必要が無くなる。
 それゆえ、本体装置に、表示装置による走査スピードに応じた、別途、特別な回路構成を設ける必要性が無く、従来と同じ回路構成を利用することができる。
 本発明の実施の形態に係る表示装置は、液晶表示装置であることが好ましい。
 上記の構成によれば、消費電力を低減し、且つ、輝度傾斜の発生に起因する表示品位の劣化を防止することができる液晶表示装置を実現することができる。
 本発明の実施の形態に係る表示装置では、データ信号線と、走査信号線と、画素電極と、データ信号線および走査信号線並びに画素電極に接続されたトランジスタとを含む表示パネルを備え、上記トランジスタの半導体層に、酸化物半導体が用いられていることが好ましい。
 本発明の実施の形態に係る表示装置では、上記酸化物半導体は、IGZOであることが好ましい。
 本発明の実施の形態に係る表示装置は、液晶表示パネルあるいは有機エレクトロルミネッセンス表示パネルを備え、液晶表示装置あるいは有機EL表示装置とすることもできる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
 本発明に係る表示装置は、液晶表示装置、有機EL表示装置、および電子ペーパーなどの各種の表示装置として広く利用できる。
 1  表示装置
 2  表示パネル
 4  走査線駆動回路
 6  信号線駆動回路
 8  共通電極駆動回路
 10  タイミングコントローラ
 12  制御信号出力部
 14  電源生成回路
 16  メモリ
 G  走査信号線
 S  データ信号線

Claims (14)

  1.  表示パネルを走査する走査期間と、当該走査が行われない休止期間とが繰り返される表示装置であって、
     連続する2つのフレームのうち、先行する先行フレームにおいては走査期間と休止期間とが順に連続するように設定し、且つ、後続する後続フレームにおいては、当該後続フレームの全期間に休止期間を設定していることを特徴とする表示装置。
  2.  上記走査期間の長さをTd、上記先行フレームに設定された休止期間と上記後続フレームに設定された休止期間とを加えた長さをTsとしたとき、以下の式を満たすことを特徴とする請求項1に記載の表示装置。
    Figure JPOXMLDOC01-appb-M000001
  3.  以下の式を満たすことを特徴とする請求項2に記載の表示装置。
    Figure JPOXMLDOC01-appb-M000002
  4.  上記表示パネルに供給されるデータ信号の電圧の極性は、1つの走査期間ごとに反転することを特徴とする請求項1~3のいずれか1項に記載の表示装置。
  5.  上記後続フレームに連続する複数のフレームにおいて、各々の全期間に休止期間を設定していることを特徴とする請求項1~4のいずれか1項に記載の表示装置。
  6.  表示パネルを走査する走査期間と、当該走査が行われない休止期間とが繰り返される表示装置であって、
     連続する2つのフレームのうち、先行する先行フレームにおいては、当該先行フレームの全期間に休止期間を設定し、且つ、後続する後続フレームにおいては休止期間と走査期間とが順に連続するように設定していることを特徴とする表示装置。
  7.  上記表示装置の外部から供給される映像信号を一時的に保持するメモリを備えていることを特徴とする請求項1~6のいずれか1項に記載の表示装置。
  8.  上記表示装置は、液晶表示装置であることを特徴とする請求項1~7のいずれか1項に記載の表示装置。
  9.  データ信号線と、走査信号線と、画素電極と、データ信号線および走査信号線並びに画素電極に接続されたトランジスタとを含む表示パネルを備え、
     上記トランジスタの半導体層に、酸化物半導体が用いられていることを特徴とする請求項1~8のいずれか1項に記載の表示装置。
  10.  上記酸化物半導体は、IGZOであることを特徴とする請求項9に記載の表示装置。
  11.  表示パネルを備え、
     上記表示パネルが、液晶表示パネルであることを特徴とする請求項1~10のいずれか1項に記載の表示装置。
  12.  表示パネルを備え、
     上記表示パネルが、有機エレクトロルミネッセンス表示パネルであることを特徴とする請求項1~10のいずれか1項に記載の表示装置。
  13.  表示パネルを走査する走査期間と、当該走査が行われない休止期間とが繰り返される表示装置の駆動方法であって、
     連続する2つのフレームのうち、先行する先行フレームにおいては走査期間と休止期間とが順に連続するように設定し、且つ、後続する後続フレームにおいては、当該後続フレームの全期間に休止期間を設定することを特徴とする表示装置の駆動方法。
  14.  表示パネルを走査する走査期間と、当該走査が行われない休止期間とが繰り返される表示装置の駆動方法であって、
     連続する2つのフレームのうち、先行する先行フレームにおいては、当該先行フレームの全期間に休止期間を設定し、且つ、後続する後続フレームにおいては休止期間と走査期間とが順に連続するように設定することを特徴とする表示装置の駆動方法。
PCT/JP2012/059035 2011-04-07 2012-04-03 表示装置およびその駆動方法 WO2012137756A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/009,340 US9293103B2 (en) 2011-04-07 2012-04-03 Display device, and method for driving same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-085812 2011-04-07
JP2011085812 2011-04-07

Publications (1)

Publication Number Publication Date
WO2012137756A1 true WO2012137756A1 (ja) 2012-10-11

Family

ID=46969153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059035 WO2012137756A1 (ja) 2011-04-07 2012-04-03 表示装置およびその駆動方法

Country Status (3)

Country Link
US (1) US9293103B2 (ja)
TW (1) TWI537926B (ja)
WO (1) WO2012137756A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118652A1 (ja) * 2012-02-10 2013-08-15 シャープ株式会社 表示装置およびその駆動方法
WO2014103912A1 (ja) * 2012-12-27 2014-07-03 シャープ株式会社 液晶表示装置およびその駆動方法
WO2015025772A1 (ja) * 2013-08-23 2015-02-26 シャープ株式会社 液晶表示装置
CN104781871A (zh) * 2012-11-20 2015-07-15 夏普株式会社 液晶显示装置及其驱动方法
WO2017094605A1 (ja) * 2015-12-02 2017-06-08 シャープ株式会社 表示装置およびその駆動方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179787A1 (ja) * 2012-06-01 2013-12-05 シャープ株式会社 液晶表示装置の駆動方法、液晶表示装置およびそれを備えた携帯機器
KR102518922B1 (ko) * 2016-01-21 2023-04-07 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
CN108665844B (zh) * 2018-05-21 2021-05-14 京东方科技集团股份有限公司 显示装置及其驱动方法、驱动装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206075A (ja) * 2002-12-10 2004-07-22 Hitachi Ltd 液晶表示装置の駆動方法および液晶表示装置
JP2005148362A (ja) * 2003-11-14 2005-06-09 Seiko Instruments Inc Tft液晶パネルの駆動方法及びtft液晶パネル駆動モジュール
JP2008298997A (ja) * 2007-05-30 2008-12-11 Toshiba Matsushita Display Technology Co Ltd 表示装置及び表示装置の駆動方法
JP2010092036A (ja) * 2008-09-12 2010-04-22 Semiconductor Energy Lab Co Ltd 表示装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3766926B2 (ja) 2000-04-28 2006-04-19 シャープ株式会社 表示装置の駆動方法およびそれを用いた表示装置ならびに携帯機器
US7321353B2 (en) * 2000-04-28 2008-01-22 Sharp Kabushiki Kaisha Display device method of driving same and electronic device mounting same
JP3842030B2 (ja) * 2000-10-06 2006-11-08 シャープ株式会社 アクティブマトリクス型表示装置およびその駆動方法
JP2004233526A (ja) * 2003-01-29 2004-08-19 Mitsubishi Electric Corp 液晶表示装置
JP2004287163A (ja) * 2003-03-24 2004-10-14 Seiko Epson Corp 表示システム、データドライバ及び表示駆動方法
JP4510530B2 (ja) * 2004-06-16 2010-07-28 株式会社 日立ディスプレイズ 液晶表示装置とその駆動方法
CN1985209B (zh) * 2004-07-14 2010-04-21 夏普株式会社 有源矩阵基板及其驱动电路和显示装置
JP4072732B2 (ja) * 2004-10-29 2008-04-09 ソニー株式会社 入出力装置および方法、記録媒体、並びにプログラム
JP5164531B2 (ja) * 2007-11-13 2013-03-21 キヤノン株式会社 固体撮像装置
JP5487585B2 (ja) * 2008-09-19 2014-05-07 セイコーエプソン株式会社 電気光学装置、その駆動方法、および電子機器
JP5088294B2 (ja) * 2008-10-29 2012-12-05 ソニー株式会社 画像表示装置及び画像表示装置の駆動方法
TWI402798B (zh) * 2009-04-29 2013-07-21 Chunghwa Picture Tubes Ltd 具省電功能之時序控制器
KR102011801B1 (ko) * 2010-01-20 2019-08-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치의 구동 방법
KR101815838B1 (ko) * 2010-01-24 2018-01-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
US8879010B2 (en) * 2010-01-24 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Display device
WO2011108166A1 (ja) * 2010-03-03 2011-09-09 シャープ株式会社 表示装置およびその駆動方法、ならびに液晶表示装置
WO2011145360A1 (ja) * 2010-05-21 2011-11-24 シャープ株式会社 表示装置およびその駆動方法、ならびに表示システム
RU2543566C1 (ru) * 2011-04-07 2015-03-10 Шарп Кабусики Кайся Электронное устройство и способ управления электронным устройством
CN103299255B (zh) * 2011-04-15 2015-06-17 夏普株式会社 显示装置、显示装置的驱动方法以及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206075A (ja) * 2002-12-10 2004-07-22 Hitachi Ltd 液晶表示装置の駆動方法および液晶表示装置
JP2005148362A (ja) * 2003-11-14 2005-06-09 Seiko Instruments Inc Tft液晶パネルの駆動方法及びtft液晶パネル駆動モジュール
JP2008298997A (ja) * 2007-05-30 2008-12-11 Toshiba Matsushita Display Technology Co Ltd 表示装置及び表示装置の駆動方法
JP2010092036A (ja) * 2008-09-12 2010-04-22 Semiconductor Energy Lab Co Ltd 表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118652A1 (ja) * 2012-02-10 2013-08-15 シャープ株式会社 表示装置およびその駆動方法
JPWO2013118652A1 (ja) * 2012-02-10 2015-05-11 シャープ株式会社 表示装置およびその駆動方法
US9177517B2 (en) 2012-02-10 2015-11-03 Sharp Kabushiki Kaisha Display device and drive method therefor
CN104781871A (zh) * 2012-11-20 2015-07-15 夏普株式会社 液晶显示装置及其驱动方法
WO2014103912A1 (ja) * 2012-12-27 2014-07-03 シャープ株式会社 液晶表示装置およびその駆動方法
WO2015025772A1 (ja) * 2013-08-23 2015-02-26 シャープ株式会社 液晶表示装置
JPWO2015025772A1 (ja) * 2013-08-23 2017-03-02 シャープ株式会社 液晶表示装置
WO2017094605A1 (ja) * 2015-12-02 2017-06-08 シャープ株式会社 表示装置およびその駆動方法
US10497330B2 (en) 2015-12-02 2019-12-03 Sharp Kabushiki Kaisha Display device that performs pause driving

Also Published As

Publication number Publication date
TW201248602A (en) 2012-12-01
TWI537926B (zh) 2016-06-11
US9293103B2 (en) 2016-03-22
US20140028646A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
WO2012137756A1 (ja) 表示装置およびその駆動方法
US9997112B2 (en) Display device
JP5805770B2 (ja) 表示装置
JP5911867B2 (ja) 液晶表示装置およびその駆動方法
TWI536339B (zh) 顯示裝置及其驅動方法
JP6105026B2 (ja) 駆動装置および表示装置
US9171517B2 (en) Display device, driving device, and driving method
WO2013115088A1 (ja) 表示装置およびその駆動方法
WO2012057044A1 (ja) 表示装置およびその表示方法、ならびに液晶表示装置
JP5734951B2 (ja) 表示装置およびその駆動方法、ならびに液晶表示装置
JP5897136B2 (ja) 液晶表示装置およびその駆動方法
WO2012115051A1 (ja) ドライバ装置、駆動方法、及び、表示装置
JP6153530B2 (ja) 液晶表示装置およびその駆動方法
US9934743B2 (en) Drive device, drive method, display device and display method
WO2012161022A1 (ja) 表示装置、液晶表示装置、および駆動方法
WO2012165302A1 (ja) 表示制御装置およびその制御方法、並びに表示システム
US9412324B2 (en) Drive device and display device
WO2013024776A1 (ja) 表示装置およびその駆動方法
JP6198818B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14009340

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP