WO2011136329A1 - 吸着材及びその製造方法 - Google Patents

吸着材及びその製造方法 Download PDF

Info

Publication number
WO2011136329A1
WO2011136329A1 PCT/JP2011/060370 JP2011060370W WO2011136329A1 WO 2011136329 A1 WO2011136329 A1 WO 2011136329A1 JP 2011060370 W JP2011060370 W JP 2011060370W WO 2011136329 A1 WO2011136329 A1 WO 2011136329A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
monomer
group
solute
phase extraction
Prior art date
Application number
PCT/JP2011/060370
Other languages
English (en)
French (fr)
Inventor
純 布重
博之 香川
伊藤 伸也
勝弘 神田
泉 和氣
康太郎 荒谷
田村 輝美
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to EP11775110A priority Critical patent/EP2564923A1/en
Priority to JP2012512906A priority patent/JPWO2011136329A1/ja
Priority to CN2011800212616A priority patent/CN102883805A/zh
Priority to US13/643,926 priority patent/US20130048853A1/en
Publication of WO2011136329A1 publication Critical patent/WO2011136329A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/62In a cartridge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J2220/82Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph

Definitions

  • the present invention relates to an adsorbent, a production method thereof, and a solid phase extraction method using the adsorbent.
  • TDM drug therapy monitoring
  • MS analysis has problems such as a decrease in measurement sensitivity due to the influence of impurities and downsizing of the apparatus, it is an analysis method with excellent detection sensitivity and selectivity, and as a TDM analysis method that can eliminate the drawbacks of HPLC analysis. Attention has been paid.
  • a sample pretreatment method by solid phase extraction (SPE) is proposed in (Non-patent Document 1).
  • Solid-phase extraction is a technique used when preparing a sample for quantitative analysis such as MS analysis. It separates and removes matrix components (impurities / contaminants) that are not analyzed in the sample, and concentrates the measurement object. Purification can be performed.
  • the impurities may include a component that causes a decrease in the measurement sensitivity of the quantitative analysis, and the influence of the impurities on the quantitative analysis can be reduced by performing solid phase extraction. Therefore, solid-phase extraction is a useful separation technique, and is a useful technique for analyzing trace organic substances, for example, analyzing trace components such as water quality and soil, quantitative analysis of trace additives, poisons, agricultural chemicals, etc.
  • Solid phase extraction is also effective for removing plasma proteins, phospholipids, and other matrix components that are interfering components of TDM analysis, and is also effective for analysis of in vivo drugs and their metabolites.
  • Non-Patent Document 2 Solid phase extraction of an aqueous solution is performed by the following process.
  • the sample solution is passed through a column or cartridge filled with an adsorbent in a cylinder, the object is adsorbed on the adsorbent surface, and the matrix component is allowed to flow out as it is.
  • the adsorbent is washed by passing a washing solvent, and then the target is washed away with the elution solvent and concentrated.
  • the affinity between the solvent and the adsorbent, the adsorption strength between the object and the adsorbent, and the surface area of the adsorbent are important factors that determine the solid-phase extraction performance.
  • a syringe, a column, and a cartridge-like container are usually used.
  • cartridges include not only ordinary cylindrical cartridges, but also disks and disk cartridges, multiwell plates, SPE pipette tips. And robot-compatible large reservoirs.
  • LC-MS liquid phase chromatography
  • FIA-MS mass spectrometry by flow injection
  • a cartridge that can be used for both of them includes a multi-well plate system (for example, a 96-well plate, a 384-well plate, and a 1536-well plate).
  • porous silica particles whose surface is modified with silica particles or hydrophobic octyl (C8) functional groups or octadecyl (C18) functional groups are known.
  • Non-Patent Document 4 The surface-modified silica particle adsorbent is immersed in an aqueous solution of a polar organic solvent before use, and the hydrophobic functional group and the polar organic solvent are solvated to increase the affinity between the functional group and water and adsorb the solute. Increased surface area to hold.
  • the adsorbent is insufficiently solvated with a polar organic solvent or dried, the ability to retain solutes decreases due to aggregation of hydrophobic functional groups, and separation by solid phase extraction becomes difficult. Therefore, the surface of the adsorbent must always be subjected to solid-phase extraction while maintaining a state sufficiently solvated with the polar organic solvent (conditioning), and the operation becomes very complicated. In addition, the residual silanol groups on the silica surface are easily affected by pH and ionic strength, and the solute retention ability may decrease depending on the solid-phase extraction conditions.
  • Patent Documents 1 to 3 a technique using resin particles having a polymerization main chain of styrene-divinylbenzene or methacrylic acid ester is known (Patent Documents 1 to 3).
  • Resin particles have higher stability against the influence of pH and ionic strength than silica particles, and are high surface area particles, and therefore have higher solute retention capacity than silica particles.
  • the surface becomes hydrophobic, a complicated operation such as conditioning with a polar organic solvent is essential as in the case of surface-modified silica.
  • each particle has a problem that the solute retention ability varies depending on the polarity of the solute and the solid phase extraction conditions, and the measurement reliability varies depending on the solid phase extraction conditions.
  • an adsorbent comprising a hydrophobic-hydrophilic monomer copolymer in which a hydrophilic monomer such as N-vinylpyrrolidone or vinylpyridine is introduced into a hydrophobic monomer such as divinylbenzene is used.
  • a method to be used is known (Patent Document 4).
  • An example of the structure is a copolymer of divinylbenzene and N-vinylpyrrolidone such as OASIS (registered trademark) HLB manufactured by Waters.
  • the adsorbent contains a hydrophilic molecular structure, the wettability between the polar solvent such as water and the adsorbent is improved, and the solvent retention ability by the hydrophilic group is high, so that excessive conditioning as described above is unnecessary.
  • some drugs for example, drugs with a large cyclic structure and molecular weight
  • compounds with high polar structures such as drug metabolites cannot be sufficiently retained on the adsorbent surface, and solid phase extraction In the introduction and / or washing process of the drug solution, unintentional desorption and elution of polar solute molecules occur, and the solute recovery rate decreases.
  • the recovery rate is lowered, the loss of the sample due to the solid phase extraction is large, and the reliability of the analysis result is lost.
  • the hydrophilic adsorption site is small and isolated in the copolymer, so it does not form a strong molecular adsorption due to hydrophilic interaction, and the adsorption with a highly polar molecule is weak. It is estimated that.
  • the hydrophilic functional group contained in the adsorbent has a bulky structure, it is presumed that the hydrophilic functional group becomes a steric hindrance factor at the time of drug adsorption and contributes to a decrease in solute recovery rate.
  • Resin particles surface-modified with sulfonic acid or amine for the purpose of using ionic bonds are also commercially available. Only improving hydrophilicity cannot achieve recovery of solutes with a wide range of chromatographic polarities.
  • the surface of styrene-divinylbenzene copolymer particles is surface treated in the order of nitration, reduction and acetylation to form a hydrophilic surface capable of retaining polar solute molecules.
  • a formed polymer adsorbent is disclosed (Patent Document 5). By forming spherical particles whose surfaces are covered with acetyl groups, a hydrophilic surface is formed, and the performance of retaining polar solutes is excellent.
  • Patent Document 6 describes a method for producing an adsorbent in which a specific compound is reacted with a particulate polymer having a specific solubility parameter.
  • an adsorbent that can remove impurities by washing the adsorbent with water, an aqueous solution, or an organic solvent with respect to the adsorbent that has adsorbed the solute. Further, by removing impurities that may interfere with mass spectrometry detection and cause ion suppression in the cleaning process, an increase in measurement sensitivity of MS analysis can be expected. In addition, it is desirable that it is easily solvated with water or a polar solvent, maintains a solvated state for a long period of time, and exhibits equivalent solid-phase extraction performance under wet or dry conditions.
  • the drug to be measured has a wide variety of molecular structures, and the presence or absence of polarity and the level of polarity differ depending on the molecular structure. Therefore, the adsorbent for solid phase extraction is strongly required to have an adsorption performance capable of holding a solute having a wider range of chromatographic polarities with high efficiency.
  • the selectivity for adsorbing only the component to be measured is also important for the adsorbent.
  • the adsorbent shown in the above can simplify conditioning by improving the wettability of the adsorbent surface, and can perform solid-phase extraction with excellent processability.
  • adsorption due to sufficient hydrophilic interaction with the drug hydrophilic structure does not occur, and the higher the polarity of the molecule, the lower the amount of sample recovered by solid phase extraction.
  • hydrophilic functional groups become steric hindrance and solute adsorption is inhibited.
  • Anti-epileptic drugs and antibiotics which are one type of target drugs for TDM analysis, contain many drugs with a cyclic molecular structure, drugs with a high molecular weight, and drugs with a high polarity.
  • Patent Document 5 in a structure covered with a hydrophilic structure, hydrophobic interaction with a nonpolar structure such as a hydrocarbon group is weakened, and there is a concern that the recovery efficiency of a low-polarity drug may be reduced. Is done. Since this structure can increase the adsorption of impurities, the functionality of the adsorbent cannot be improved by simply increasing the hydrophilic structure on the adsorbent surface.
  • the hydrophobic monomer and the hydrophilic monomer used in the production of the adsorbent have low affinity, and the polymer obtained depends on the polymerization conditions when copolymerizing them. For example, the polymerization ratio and particle size may vary greatly. Therefore, the adsorbent produced in this way has a problem that performance as an adsorbent is not stable. As a result, in order to stabilize the performance, it is sometimes necessary to strictly control the polymerization conditions. As a result, there is a problem that the production cost is high.
  • Patent Document 6 is a hydrophobic adsorbent in which the resin surface is covered with a long-chain hydrocarbon (alkyl) group, and there is a problem that the solid-phase extraction performance of a highly polar drug is low. .
  • an adsorbent capable of solid phase extraction with high efficiency and excellent selectivity for solutes having a wide range of chromatographic polarities including highly polar solute molecules has not been obtained at present. That is. Therefore, for the purpose of solving the problem and other problems, the following copolymer adsorbents and solid-phase extraction methods using the same were investigated.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an adsorbent that is inexpensive and excellent in extraction performance and a method for producing the same.
  • a polyfunctional heterocyclic monomer having a heterocyclic ring containing at least two heteroatoms in the ring structure and having two or more polymerization-reactive functional groups; It consists of a copolymer containing at least one monomer having at least one polymerization-reactive functional group capable of copolymerization with the polyfunctional heterocyclic monomer, and the heterocyclic ring constitutes the main chain structure
  • heteroatom contained in the ring structure a typical element having electronegativity higher than that of carbon is desirable.
  • the heteroatom is an atom capable of inducing a hydrophilic interaction with the hydrophilic portion of the solute through other hydrophilic structures and hydrogen bonds.
  • the heterocyclic structure since the heterocyclic structure has a heteroatom having an unshared electron pair, the polarity in the heterocyclic ring is biased and exhibits a hydrophilic interaction with the polar part of the solute.
  • a polar group contained in one solute can be adsorbed and held by a plurality of adsorption sites in the heterocyclic ring.
  • This is in the form of a polydentate ligand in a complex, for example, forming a bridging hydrophilic bond to one solute polar group, and a ladder-like hydrophilic group to a plurality of solute polar groups.
  • a solid phase extraction method for separating a solute contained in a solution is disclosed.
  • One method is that the above-mentioned heterocyclic copolymer adsorbent is brought into contact with a solution containing one or more of a low-polar solute molecule, a medium-polar solute molecule and a high-polar solute molecule as a solute, resulting in wetting.
  • a solid phase extraction method comprising a step of selectively adsorbing and holding the above solute.
  • the solution include a biological substrate containing a specimen, an environmental sample, a pharmaceutical sample, and the like.
  • the solid phase extraction apparatus examples include a solid phase extraction cartridge, a solid phase extraction column, and the like in which a container having an open end is filled with the above-mentioned heterocyclic copolymer adsorbent.
  • a mass spectrometry (LC-MS) system using liquid phase chromatography a mass spectrometry (FIA) using a flow injection method, characterized in that a solid phase extraction apparatus is used for sample pretreatment. -MS) system.
  • An amphiphilic copolymer adsorbent comprising a contact surface capable of adsorbing solutes.
  • High polar monomers are methylene bisacrylamide, tetrahydrofurfuryl acrylate, tetrahydrofurfuryl methacrylate, diallyl phthalate, divinyl isophthalate, diallyl isophthalate, divinyl terephthalate, diallyl terephthalate, furfuryl acrylate and methacrylic acid
  • the amphiphilic copolymer adsorbent according to (5), which is selected from furfuryl.
  • An amphiphilic copolymer adsorbent comprising a contact surface capable of adsorbing a solute, comprising a copolymer containing at least one monomer unit composed of the following low-polar monomers.
  • Highly polar monomers are N-phenylmaleimide, triallyl isocyanurate, triallyl cyanurate, 1,3,5-triacryloylhexahydro-1,3,5-triazine, N-phenylmaleimide and 1-vinyl
  • High polarity having one or more kinds of highly polar molecular structures selected from ether bond, ester bond, urethane bond, amide bond, thioester bond, carboxyl group, amino group, alkylamino group, dialkylamino group and heterocycle
  • a monomer comprising a monomer unit composed of a highly polar monomer in which the weight ratio of heteroatoms in the highly polar monomer is 30% by weight or more, and a monomer composed of a low polarity monomer having an SP value of 10.0 or less
  • An amphiphilic copolymer adsorbent comprising a contact surface capable of adsorbing a solute, comprising a copolymer containing at least one unit.
  • the low polar monomer is allyl glycidyl ether (SP value 8.7), styrene (SP value 9.2), divinylbenzene (SP value 9.3), methyl methacrylate (SP value 9.4), acrylic Any one of (1) to (11) above, selected from methyl acid (SP value 9.5), vinyl acetate (SP value 9.5) and bisvinylphenylethane (SP value 9.9) Amphiphilic copolymer adsorbent.
  • An amphiphilic copolymer adsorbent comprising a monomer unit composed of divinylbenzene as a monomer and having a contact surface capable of adsorbing a solute.
  • a solution containing one or more types selected from nonpolar solute molecules, low polar solute molecules, medium polar solute molecules and high polar solute molecules as a solute, and any one of (1) to (17) above A solid phase extraction method comprising a step of bringing an amphiphilic copolymer adsorbent into contact with each other and allowing a solute in the solution to be adsorbed and held by the amphiphilic copolymer adsorbent. (19) The solid phase extraction method according to (18), wherein the solution contains a polar solvent. (20) The solid phase extraction method according to (19), wherein the polar solvent is water or a mixed solvent of water and a polar organic solvent.
  • Polar solvents are methanol, ethanol, propanol, 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, acetonitrile, tetrahydrofuran, 1,4-dioxane, N, N-dimethylformamide and dimethyl sulfoxide
  • the solution comprises plasma, serum, blood, urine, spinal fluid, synovial fluid, biological tissue extract, aqueous solution, groundwater, surface water, soil extract, cosmetics, food substance, or an extract of food substance,
  • the solid phase extraction method according to any one of (18) to (21).
  • a solid phase extraction column wherein a container having an open end is filled with the amphiphilic copolymer adsorbent according to any one of (1) to (17).
  • LC-UV liquid phase chromatography / ultraviolet spectroscopic analysis
  • LC-MS Liquid phase chromatography / mass spectrometry
  • FIA-MS mass spectrometry
  • the solute is strongly adsorbed and retained by hydrophilic interaction with the hydrophilic functional group of the solute and the highly polar structure.
  • a heterocycle-containing copolymer adsorbent that can be obtained can be obtained.
  • the hydrophilic group can be present in the main chain structure, not as a side chain, as in a polymer composed of a monofunctional monomer. Therefore, the steric hindrance due to the functional group on the adsorption surface of the solute is reduced, and more efficient solute adsorption is possible.
  • a hydrophilic adsorption site capable of solute adsorption with higher efficiency than that with a single hydrophilic group is formed, and an adsorbent having a single hydrophilic group
  • the copolymerization ratio of the hydrophilic monomer can be suppressed.
  • polar impurities for example, phospholipids
  • a high-polarity structure and a low-polarity structure are combined in the adsorbent so that both the high-polarity structure and the low-polarity structure of the solute are highly efficient. It is possible to obtain an amphiphilic copolymer adsorbent that can be adsorbed and retained on the substrate.
  • the solute and adsorbent are more firmly bound in the adsorption process, and the solute can be easily recovered and is highly efficient and highly selective.
  • a solid phase extraction method and a solid phase extraction apparatus such as a solid phase extraction cartridge and a solid phase extraction column can be provided. Furthermore, by implementing the solid phase extraction method of the present invention as a pretreatment, it is possible to provide an LC-MS system, FIA-MS system, etc. with high measurement sensitivity.
  • an adsorbent that is inexpensive and excellent in adsorption performance and a method for producing the adsorbent.
  • FIA-MS against solute molecules (vancomycin, theophylline, phenobarbital, phenytoin, carbamazepine, diazepam, everolimus, rapamycin, dibutyl phthalate) It is a graph which shows the result of having evaluated solid phase extraction performance.
  • solute molecules vancomycin, theophylline, phenobarbital, phenytoin, carbamazepine
  • It is a graph which shows the result of having evaluated the solid-phase extraction performance with respect to diazepam, everolimus, rapamycin, and dibutyl phthalate.
  • 4 is a graph showing the results of measuring the particle size distribution of divinylbenzene-triallyl cyanuric acid copolymers of Examples 5, 11 and 12 with different adsorbent particle sizes and particle size distributions.
  • FIG. 7 is a graph showing the recovery rate of solutes measured by LC-MS after solid phase extraction of solutions containing highly polar solute molecules (theophylline) using the amphiphilic copolymer adsorbents of Examples 18 to 23.
  • amphiphilic copolymer adsorbents of Examples 18 to 23 solid phase extraction of a mixed solution containing medium polar solute molecules (phenobarbital, phenytoin, carbamazepine, diazepam) was performed, and the solute measured by LC-MS It is a graph which shows the recovery rate of.
  • the mixed solution containing low-polarity solute molecules everolimus, rapamycin, dibutyl phthalate
  • heterocyclic copolymer adsorbent which is a first embodiment of the present invention and a solid phase extraction method using the same will be described.
  • a copolymer having a hydrophobic-hydrophilic structure has been proposed for the purpose of improving the wettability of a polar solvent, but it is more hydrophilic than the main chain structure of a heterocyclic ring as in the present invention.
  • the introduction of low monomer is mainly, and the contribution of hydrophilic interaction is low in the formation of adsorption.
  • the ability to recover highly polar solute molecules by solid-phase extraction tends to decrease, and adsorption by hydrophilic interaction remains an auxiliary effect.
  • the target solute is described assuming a drug and a drug.
  • the target solute in the present invention is not particularly limited as long as it is a substance recovered by solid phase extraction. Suitable target solutes include drugs, drugs, antibacterial agents, antiepileptics, immunosuppressants, drugs, insecticides, herbicides, poisons, biomolecules, contaminants, metabolic drugs, or metabolite degradation products. It is done.
  • the polyfunctional heterocyclic monomer in the present invention refers to a group of monomers having a heterocyclic ring containing at least two heteroatoms in the ring structure and having two or more functional groups capable of polymerization reaction. Since each of these monomer groups has multiple hydrophilic adsorption sites in the heterocyclic ring, it is presumed that these multiple sites will generate a hydrophilic interaction in concert, and adsorb solutes more than when there is a single hydrophilic group. Easy to hold and strong. In addition, by having two or more functional groups capable of polymerization reaction, the heterocyclic ring is incorporated into the main chain of the copolymer.
  • the hydrophilic adsorption site has a planar structure with respect to the main chain of the copolymer, not a bulky structure like a functional group existing as a conventional side chain.
  • the hydrophilic part of the solute easily causes hydrophilic interaction with the adsorbent and causes adsorption.
  • the hydrophobic portion of the solute is adsorbed and stabilized by the hydrophobic interaction with the hydrophobic skeleton of the adsorbent, and the entire solute is adsorbed and held.
  • solvation with a polar solvent and wettability are improved by introducing a heterocyclic main chain structure.
  • the monomer having a functional group capable of copolymerization with the polyfunctional heterocyclic monomer in the present invention is a monomer capable of copolymerizing with the polyfunctional heterocyclic monomer, as long as the structure of the polymerization site or the main chain structure
  • the structure of the functional group is not particularly limited. In the solute adsorption in the present invention, it is presumed that the hydrophilic interaction is an effect mainly brought about by the structure of the heterocyclic ring, and thus does not depend on the structure of the monomer that is a copolymerization partner.
  • a monomer group having a hydrophobic structure such as a hydrocarbon group, a hydrocarbon ring, or an aromatic hydrocarbon is more desirable as the copolymerization partner monomer.
  • the monomer group has high affinity with a hydrophobic structure such as a hydrocarbon group, and adsorption occurs due to hydrophobic interaction.
  • a polar contrast with the heterocyclic structure it is possible to provide an adsorbent surface excellent in adsorption retention ability for any of high polar solute molecules, medium polar solute molecules, and low polar solute molecules.
  • Adsorption in the present invention refers to a state in which a solute and an adsorbent are reversibly bound by a hydrophilic interaction and a hydrophobic interaction.
  • Hydrophilic interactions are mainly intermolecular forces involving polar structures such as hydrogen bonds, dipole-dipole interactions, ion-dipole interactions, dipole-induced dipole interactions, and London dispersion forces. Point to.
  • the polarity of the solute in the present invention is defined as follows based on the octanol / water partition coefficient (log P).
  • a highly polar solute molecule means a molecule having a log P value of ⁇ 2.0 to 1.5.
  • a medium polar solute molecule has a log P value of 1.5 to 3.0
  • a low polarity solute molecule has a log P value of 3.0 or more.
  • the log P value numerically indicates the polarity of the solute, and any of the molecular structure calculation value and the actual measurement value can be applied.
  • the classifications of low polarity, medium polarity and high polarity are shown for explaining the embodiments of the present invention, and the scope of the present invention is not limited by these classifications.
  • medium polar solute molecules phenobarbit
  • the polymer adsorbent of the present invention can overcome the problems of commercially available materials by adopting the configuration as shown below.
  • the adsorbent in the present invention is characterized by the following configuration.
  • a polyfunctional heterocyclic monomer having a heterocyclic ring containing at least two or more heteroatoms in the ring structure and having two or more polymerization-reactive functional groups and the polyfunctional heterocyclic monomer Heterocyclic copolymer adsorbent comprising a copolymer containing at least one monomer having at least one polymerization-reactive functional group capable of copolymerization reaction, wherein a heterocyclic ring constitutes a main chain structure .
  • heterocyclic copolymer adsorbent.
  • heterocyclic copolymer-containing adsorbent according to any one of (1) to (3), wherein the heterocyclic ring contained in the polyfunctional heterocyclic monomer is a 5-membered ring or a 6-membered ring.
  • heterocyclic copolymer-containing adsorbent wherein the heterocyclic ring contained in the polyfunctional heterocyclic monomer is a diazole ring, a triazole ring, a tetrazole ring, a diazine ring, a triazine ring or a tetrazine ring. .
  • the polyfunctional heterocyclic monomer is at least one selected from the group consisting of triallyl cyanurate or a derivative thereof, triallyl isocyanurate or a derivative thereof, and a melamine derivative. Heterocyclic copolymer adsorbent.
  • One or more polyfunctional heterocyclic monomers selected from the group consisting of triallyl isocyanurate, diallyl isocyanurate, triallyl cyanurate and 1,3,5-triacryloylhexahydro-1,3,5-triazine
  • the heterocycle-containing copolymer adsorbent according to any one of (4) to (6) above.
  • the heterocyclic ring is incorporated into the main chain of the copolymer, and the influence of steric hindrance during solute adsorption is suppressed, Adsorption due to hydrophilic interaction with the hydrophilic portion of the solute occurs more easily.
  • both the hydrophilic interaction due to the specific heterocyclic structure and the hydrophobic interaction due to the low-polar structure are compatible, and a strong adsorption is formed between the solute and the adsorbent.
  • the solid phase extraction efficiency of highly polar solute molecules can be greatly improved.
  • the polarity of the heterocyclic structure showing hydrophilicity is high, even with conditions having a low high-polar monomer copolymerization ratio compared to conventional copolymers, water and polar organic solvents Adsorption performance with sufficient solutes while maintaining wettability.
  • an adsorbent that can be adapted to various solutes can be obtained by applying a heterocycle-containing copolymer having a low polarity-heterocyclic structure contrast.
  • a polyfunctional heterocyclic copolymer having a heterocyclic ring containing at least two heteroatoms in the ring structure and having two or more polymerizable functional groups examples thereof include a copolymer of a ring monomer and a monomer having a polymerizable reactive functional group capable of copolymerizing with a polyfunctional heterocyclic monomer.
  • a polyfunctional monomer By using a polyfunctional monomer, a heterocyclic ring is incorporated into the main chain structure, and a planar adsorption site with small steric hindrance can be formed.
  • an unsaturated hydrocarbon group that can easily control the copolymerization ratio by radical copolymerization or the like is more desirable.
  • heteroatoms contained in the ring structure are preferably one or more selected from the group consisting of nitrogen, oxygen, phosphorus, sulfur, selenium, and tellurium, and more preferably nitrogen, oxygen, and sulfur.
  • These heteroatoms are typical elements whose electronegativity is higher than that of carbon, and are atoms that can induce hydrophilic interaction with the solute hydrophilic portion through other hydrophilic structures and hydrogen bonds.
  • the polarity of the ring structure is increased, and the solute can be more strongly and stably adsorbed and held by concerted adsorption and holding by a plurality of hydrophilic structures.
  • the heterocyclic ring containing at least two heteroatoms in the ring structure is not particularly limited as long as the heterocyclic ring satisfies the conditions, but the polarity of the ring structure and the likelihood of concerted adsorption retention due to multiple hydrophilic structures are likely to occur.
  • a 5-membered or 6-membered heterocyclic ring for example, an azole ring, a triazole ring, a tetrazole ring, a diazine ring, a triazine ring, a tetrazine ring or the like is desirable, and a 6-membered heterocyclic ring is more desirable.
  • heterocyclic structure examples include imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline ring, pyrazolidine ring, oxazole ring, oxazoline ring, oxazolidine ring, isoxazole ring, isoxazoline ring, isoxazolidin ring , Thiazole ring, thiazoline ring, thiazolidine ring, isothiazole ring, isothiazoline ring, isothiazolidine ring, tellurazole ring, selenazole ring, furazane ring, sydnone ring, urazole ring, guanazole ring, pyrazine ring, piperazine ring, pyrimidine ring, pyridazine ring , Morpholine ring, selenomorpholine ring, thiomorpholine ring, tria
  • a derivative containing a functional group may be used.
  • a more preferred example is a derivative containing a heteroatom having a high electronegativity such as a carbonyl group in the heterocyclic ring.
  • the polarity and hydrophilicity of the heterocyclic ring are further increased, and the interaction with the hydrophilic structure is further increased.
  • the heterocycle in the present invention can be appropriately modified according to the solute to be adsorbed.
  • Desirable examples of the polyfunctional heterocyclic monomer used in the present invention include triallyl isocyanurate, diallyl isocyanurate, triallyl cyanurate, 1,3,5-triacryloylhexahydro-1,3,5-triazine and the like. Can be mentioned.
  • the monomer containing a polymerizable reactive functional group capable of copolymerization with the polyfunctional heterocyclic monomer in the present invention is not particularly limited as long as it is a monomer capable of copolymerizing with the polyfunctional heterocyclic monomer. .
  • the structure can be appropriately changed according to the structure of the polymerization reaction site of the polyfunctional heterocyclic monomer.
  • an unsaturated hydrocarbon group in which the copolymerization ratio can be easily controlled by radical copolymerization or the like is more desirable.
  • hydrophobic monomer having an unsaturated hydrocarbon used in the present invention include styrene, vinyltoluene, ⁇ -methylstyrene, m-divinylbenzene, p-divinylbenzene, 1,2-diisopropenylbenzene.
  • functional group-containing monomers such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, glycidyl methacrylate, vinyl pyridine, diethylaminoethyl acrylate, N-methyl methacrylamide, acrylonitrile, etc. are not limited thereto. .
  • the monomer group since it is desirable that the monomer group has a structure having a high affinity with a hydrophobic structure such as a hydrocarbon group, the hydrophobic group having a hydrophobic structure such as a hydrocarbon group, a hydrocarbon ring, or an aromatic hydrocarbon.
  • a monomer group is more desirable.
  • the monomer containing a functional group capable of copolymerization with the above-mentioned polyfunctional heterocyclic-containing monomer in particular, from the viewpoint of suppressing the steric hindrance of the copolymer, a polyfunctional having a plurality of functional groups capable of copolymerization reaction. More desirably it is a monomer. Desirable examples of the monomer include m-divinylbenzene, p-divinylbenzene, 1,2-diisopropenylbenzene, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, 1,3-divinyl.
  • the steric hindrance of the adsorbent surface structure can be reduced by applying the monomer, and it is possible to provide an adsorbent more suitable for solid phase adsorption. Moreover, a strong crosslinked network structure is formed in the resin, and an adsorbent excellent in mechanical strength and thermal stability can be obtained. Further, swelling due to a solvent or the like can be suppressed, and deformation, modification, softening, dissolution, or the like of the adsorbent can be suppressed.
  • the aforementioned heterocyclic copolymer can be polymerized by a known copolymerization reaction. Examples include random polymerization, alternating copolymerization, block copolymerization, and graft polymerization. Of the above polymerization methods, random polymerization and alternating copolymerization capable of forming a contrast of a hydrophobic-heterocyclic structure are particularly preferable.
  • the above-mentioned heterocyclic copolymer can be polymerized by a known copolymerization reaction.
  • examples include suspension polymerization, emulsion polymerization, emulsion polymerization, spray drying method, pulverization, crushing, bulk polymerization, solution polymerization and the like.
  • suspension polymerization and emulsion polymerization are more preferably used.
  • a ring opening reaction, dehydration condensation, intermolecular bonding, and other reaction steps involving intramolecular structure changes may be included, and the present invention is not particularly limited.
  • a preferred example of the polymerization method is a suspension polymerization method.
  • an aqueous solution of a surfactant that is uniformly dissolved and a monomer solution are mixed, and polymerization proceeds by heating and stirring in a nitrogen atmosphere.
  • the concentration of the aqueous surfactant solution is not particularly limited, but it is preferably 0.5 to 10 wt% with the saturation concentration at the polymerization temperature being the limit.
  • the surfactant preferably has an HLB value (Hydrophile-Lipophile Balance) in the range of 9 to 16, more preferably 10 to 14.
  • surfactants dissolve in water and act as emulsifiers for water phase oil droplet (O / W) type emulsions. Both can be adjusted according to the viscosity of the aqueous solution and the solubility of the surfactant.
  • the mixing ratio of the surfactant aqueous solution to the monomer solution is not particularly limited. It is preferable to adjust appropriately in consideration. These conditions can also be used without particular limitation in the present invention.
  • the polymerization initiator a general-purpose organic reaction reagent is used, but a radical reaction initiator is preferable, and a radical reaction initiator that is hardly soluble in water such as azobisisobutyronitrile is more preferable.
  • the radical reaction initiator since the polymerization proceeds only in the oil droplets, the reaction with the monomer dissolved in the aqueous phase can be suppressed, and spherical resin particles can be obtained.
  • the reaction temperature is appropriately adjusted depending on the half-life of the radical initiator, the type of monomer, and the like.
  • a preferred example is 60 to 90 ° C.
  • a preferred example of the stirring speed is 100 to 600 rpm. When the stirring speed is higher, the copolymer particles can be made finer, but depending on the conditions, breakage may be caused and fragmented particles may be generated.
  • adsorption of polar impurities such as phospholipids tends to increase with an increase in hydrophilic adsorption sites.
  • the adsorption strength of the solute becomes too high, and desorption is hindered when the adsorbed solute is eluted, and there is a concern that the solute remains on the surface of the adsorbent. Therefore, it is desirable to use an adsorbent having a copolymerization ratio of a monomer containing a hydrophilic group as low as possible within a range that does not affect the solid-phase extraction performance.
  • the copolymerization ratio of the polyfunctional heterocyclic monomer is desirably 0.5 to 35 mol%, more desirably 1 to 30 mol%, and particularly desirably 2 to 20 mol%.
  • the particles preferably have a 50% average particle size of the copolymer particles in the range of 0.5 to 100 ⁇ m in order to secure a specific surface area and an appropriate packing density of the adsorbent. If the particle size is too large, the effective surface area of the adsorbent becomes low, so that the solution flows out before adsorption occurs in the process of introducing the solution, and sufficient solid-phase extraction performance cannot be exhibited.
  • the 50% average particle diameter of the particles is more preferably 1 to 90 ⁇ m, and still more preferably 10 to 80 ⁇ m.
  • particle distribution conditions in which the 50% average particle size of particles is 0.5 to 80 ⁇ m and the 80% average particle size is 0.5 to 100 ⁇ m are desirable.
  • the solution penetrates into the particles, the effective surface area of the adsorbent involved in the adsorption is increased, and more efficient solute adsorption is possible.
  • the particle size is too small, the pressure loss in the flow path is significantly increased, so that the solid-phase extraction efficiency is impaired. Therefore, it is desirable to adjust the polymerization conditions so that the particle diameter of the particles to be prepared is within a predetermined range, or to apply a known classification technique (for example, classification sieve, wet classification, dry classification, etc.).
  • the present invention is not particularly limited with respect to the polymerization conditions and the classification method.
  • the present invention also relates to an adsorbent using a heterocyclic copolymer, and exhibits solid-phase extraction performance even when the adsorbent has a shape other than granular.
  • the heterocyclic copolymer is a porous bulk polymer prepared by bulk polymerization or solution polymerization.
  • the porous bulk polymer include a monolithic polymer porous structure that is integrated with a column and has a low pressure loss during fluid permeation. Although the structure requires dimensional control in accordance with the column shape, the continuity of the pores is high, the size thereof is not biased, and there is no need to consider voids at the time of particle filling.
  • the adsorbent is easier to handle than the particle adsorbent.
  • a heterocyclic polymer containing a film into a polymer porous membrane structure by bulk polymerization, solution polymerization, or solid phase polymerization, for example, a carrier such as thin layer chromatography or a solid phase adsorption film for simple test Etc. can be applied.
  • the heterocycle-containing copolymer of the present invention can exhibit adsorption performance depending on the shape and form of various copolymers as mentioned above.
  • the heterocyclic copolymer-containing adsorbent of the present invention When preparing the heterocyclic copolymer-containing adsorbent of the present invention, not only confirming the incorporation of a highly polar monomer and a highly polar structure into the adsorbent, but also determining the copolymerization ratio and overall structure of the adsorbent. It is more preferable.
  • various non-limiting measurement techniques can be used.
  • FTIR Fourier transform infrared spectroscopy
  • solid phase 13C nuclear magnetic resonance method By combustion method, or the like can be used.
  • Such evaluation is performed by a known procedure, and the structure can be identified and analyzed.
  • the solid phase extraction method of the present invention is characterized by the following constitution.
  • (20) The heterocyclic copolymer-containing adsorbent according to any one of (1) to (19) above, from the group consisting of nonpolar solute molecules, low polar solute molecules, medium polar solute molecules and high polar solute molecules
  • a solid phase extraction method comprising a step of bringing a solution containing one or more selected solutes into contact with each other and adsorbing and holding one or more solutes contained in the solution.
  • (21) The solid phase extraction method according to (20), wherein the solution contains a polar solvent.
  • (22) The solid phase extraction method according to (21), wherein the polar solvent is water or a mixed solvent of one or more polar organic solvents and water.
  • Polar solvent is methanol, ethanol, propanol, 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, acetonitrile, tetrahydrofuran, 1,4-dioxane, N, N-dimethylformamide and dimethyl sulfoxide
  • the solution to be brought into contact with the heterocyclic copolymer-containing adsorbent is plasma, serum, blood, urine, spinal fluid, synovial fluid, biological tissue extract, aqueous solution, groundwater, surface water, soil extract, cosmetics, food
  • the solid phase extraction method according to any one of the above (20) to (23), which comprises an extract of a substance or food substance.
  • the solute that is subject to solid-phase extraction is a drug, drug, antibacterial agent, antiepileptic agent, immunosuppressant, drug, insecticide, herbicide, poison, biomolecule, pollutant, metabolic drug, or metabolism thereof.
  • a solid-phase extraction cartridge comprising the heterocyclic-containing copolymer adsorbent according to any one of (1) to (19) in a container having an open end.
  • a solid-phase extraction column comprising the heterocyclic-containing copolymer adsorbent according to any one of (1) to (19) in a container having an open end.
  • a mass spectrometry (LC-MS) system using liquid phase chromatography wherein the solid phase extraction cartridge according to (27) is used for pretreatment of a specimen.
  • a mass spectrometry (FIA-MS) system using a flow injection method wherein the solid phase extraction column described in (28) is used for pretreatment of a specimen.
  • the solid-phase extraction method using the heterocyclic copolymer-containing adsorbent of the present invention is particularly suitable for component analysis with a complicated composition (analysis of trace components such as water quality and soil, quantitative analysis of trace additives, poisons, agricultural chemicals, etc. It is suitable as a means for isolating a target substance from a sample for contamination evaluation, pharmaceutical development, food nutrition evaluation, functional food nutrition evaluation, drinking water purity evaluation, TDM analysis, and the like.
  • a specimen such as a biological substrate (for example, whole blood, plasma, saliva or urine) containing a target substance such as a drug can be used.
  • the specimen includes environmental samples such as drinking water or contaminated water.
  • the solution is plasma, serum, blood, urine, spinal fluid, synovial fluid, biological tissue extract, aqueous solution, ground water, surface water, soil extract, cosmetics, food substance. Or an extract of a food substance.
  • Preferred examples of the solute of the present invention include drugs, antibacterial agents, antiepileptic agents, immunosuppressive agents, drugs, insecticides, herbicides, poisons, biomolecules, contaminants, metabolic drugs, or metabolite degradation products. It is a thing etc.
  • biomolecules include proteins, vitamins, hormones, polypeptides, polynucleotides, lipids or carbohydrates.
  • a more preferable method of solid-phase extraction for isolating a solute as a measurement object from a solution includes the above-mentioned heterocyclic copolymer-containing adsorbent, and includes a low-polar solute molecule, a medium-polar solute molecule, and a high-polarity solute molecule. It is a method including a step of bringing a solution containing any one of solute molecules into a solute into contact with a heterocyclic-containing copolymer adsorbent and adsorbing and holding the solute.
  • the isolation method involves four general steps: conditioning the adsorbent with a solvent that enhances the surface properties, introducing the sample solution, and washing solvent (water or organic solvent).
  • a step of washing the adsorbent together and a step of eluting the solute with an elution solvent organic solvent.
  • the solvent, washing solvent, and elution solvent of the solution are not particularly limited, but are more preferably polar solvents in order to maintain the hydrophilicity of the surface.
  • water or a hydrous solvent such as a mixed solvent of polar organic solvent and water, methanol, ethanol, propanol, 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, acetonitrile, tetrahydrofuran, 1, Polar organic solvents such as 4-dioxane, N, N-dimethylformamide, dimethyl sulfoxide. These may be used alone or in combination.
  • a hydrous solvent such as a mixed solvent of polar organic solvent and water, methanol, ethanol, propanol, 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, acetonitrile, tetrahydrofuran, 1, Polar organic solvents such as 4-dioxane, N, N-d
  • the adsorbent surface can be adjusted by washing the adsorbent with water after the polar organic solvent.
  • a preferred example of conditioning is performed by filling a support such as a column with an adsorbent and then treating it first with methanol and then with water (eg, 1 ml each). Methanol moderately swells the adsorbent and increases the effective surface area. Water treatment removes excess methanol and at the same time hydrates the surface. Thereafter, excess solvent can be removed and the adsorbent can remain fully hydrated.
  • a low-viscosity solution such as a whole blood component from which serum or protein components have been removed
  • a high-viscosity solution is included, it is preferably introduced as a dilute aqueous solution (at least 1: 1 dilution).
  • plasma since plasma has high viscosity, it may inhibit adsorption of adsorbents and solutes.
  • proteins in plasma components may be denatured and precipitated by an organic solvent to contaminate the adsorbent surface, it is desirable to avoid dilution with an organic solvent. It is also desirable to adjust the flow rate of the solution to a value suitable for adsorbing and holding the solute.
  • the solute eg, drug
  • the solute can be present at a level of 1 ng to 10 ⁇ g per mL.
  • the filling amount of the solid phase extraction device depends on the volume of each device, about 1 ⁇ L to 100 ⁇ L of the measurement sample is loaded on the solid phase extraction plate, and about 100 ⁇ L to 1 mL of the measurement sample is loaded on the solid phase extraction column. be able to.
  • an example using a solid phase extraction plate will be described.
  • the adsorbent adsorbed with the solute can be washed with water and an organic washing solvent. More preferably, it is washed with water.
  • An arbitrary amount of solvent can be used for washing, but preferably about 50 to 500 ⁇ L of solvent is used.
  • impurities such as salt and non-measurable water-soluble substrate or proteinaceous substance that may exist in the sample are removed.
  • a sample contains a substrate component or an organic impurity that adheres to the adsorbent surface and is insoluble in water, it can be removed using an organic cleaning solvent. At this time, it is preferable to adjust the washing conditions so as not to break the adsorption between the adsorbent surface and the solute.
  • silica adsorbents and polymer adsorbents are used for separation, there is a possibility that many solutes to be measured are removed from the adsorbents in the cleaning process.
  • the eluent is used to elute the solute from the adsorbent surface. Elution occurs when the elution solvent reaches and contacts the adsorption interface between the solute and the adsorbent, and can be performed by passing a certain amount of the elution solvent.
  • Representative elution solvents are selected from polar organic solvents and aqueous solutions. It is desirable to include at least about 80 wt% to 90 wt% organic solvent. Typical organic solvents include, but are not limited to, alcohol solutions such as methanol, ethanol, 2-propanol, acetonitrile, and the like.
  • Trailing ions such as trifluoroacetic acid can also be used as the eluting solvent component and are known to be useful for efficiently breaking the polar interaction between the polar drug and the adsorbent.
  • elution is preferably carried out using a methanol solvent.
  • An arbitrary amount of solvent can be used for elution, but preferably about 50 ⁇ L to 200 ⁇ L of solvent is used. By using the solvent, 90% to almost the entire amount of the solute having a wide range of polarities held in the adsorbent can be recovered.
  • a sample containing impurities can be pretreated.
  • an analytical method such as mass spectrometry (MS), liquid chromatography (LC), gas chromatography (GC), or a combination thereof can be used.
  • MS mass spectrometry
  • LC liquid chromatography
  • GC gas chromatography
  • the elution solution of the phase extraction can be collected, and the solute adsorbed and held by the adsorbent can be identified.
  • the elution solution can be evaporated and re-dissolved, and introduced into the mobile phase of LC or LC / MS for analysis.
  • the loss before and after pretreatment in the field is preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less with respect to the total amount of solute. .
  • the advantage of the heterocyclic copolymer-containing adsorbent and the solid-phase extraction method of the present invention is that the eluted solution can be directly passed through a solute identification device. This is because an adsorbent that can be adapted to various solutes was obtained by applying a heterocycle-containing copolymer having a low-polarity-high-polarity contrast, which could not be realized with prior art adsorbents. is there. In the prior art, it was difficult to adsorb and hold a wide range of solutes and to separate and recover by solid phase extraction due to the ion suppression effect of the adsorbent in MS analysis and the polarity dependence of the solute.
  • the adsorbent of the present invention for example, using a solid-phase extraction apparatus for pretreatment, it is easy to link with LC-MS systems, FIA-MS systems, HPLC systems, LC-UV systems, and other analysis systems. It can be carried out.
  • amphiphilic copolymer according to the second aspect of the present invention and the solid phase extraction method using the same will be described.
  • the SP value (solubility parameter: ⁇ ) of the monomer and copolymer constituting the amphiphilic copolymer of the present invention is defined by the following equation in the Hildebrand-Scatchard solution theory.
  • ⁇ Ev represents the evaporation energy (cal / mol)
  • V represents the molecular volume (cm 3 / mol)
  • ⁇ Ev / V represents the cohesive energy density (cal / cm 3 ).
  • the SP value indicates that the larger the value, the more polar the molecule.
  • the high polarity monomer in the present invention is (1) a monomer having an SP value of 2.2 or higher with respect to a low polarity monomer having an SP value of 10.0 or less applied to the copolymer, and (2) an SP value of 11 A monomer that is 5 or more, (3) one or more types selected from ester bonds, urethane bonds, amide bonds, thioester bonds, tetrahydrofuran rings, furan rings, carboxyl groups, amino groups, alkylamino groups, and dialkylamino groups.
  • Each of the monomer groups has a highly polar molecular structure, and can form a strong hydrophilic interaction with the polar structure of the solute. Moreover, it solvates with a polar solvent and wettability improves. Even in the conventional adsorbent technology, a copolymer having a hydrophobic-hydrophilic structure has been proposed for the purpose of improving the wettability with respect to a polar solvent, but it is lower in polarity than a highly polar monomer like the present invention. Monomer introduction is the main and the contribution of hydrophilic interaction in the formation of adsorption is low.
  • the low polarity monomer in the present invention refers to a monomer having an SP value of 10.0 or less, which is not included in the high polarity monomer.
  • the low-polarity monomer group has high affinity with a hydrophobic structure such as a hydrocarbon group, and adsorption occurs due to hydrophobic interaction.
  • a polar contrast with the high polarity monomer, it is possible to provide an adsorbent surface that is excellent in adsorption holding ability for any of high polarity solute molecules, medium polarity solute molecules, and low polarity solute molecules.
  • the adsorption in the present invention refers to a state in which a solute and an adsorbent are reversibly bound by a hydrophilic interaction and a hydrophobic interaction.
  • Hydrophilic interactions are mainly intermolecular forces involving polar structures such as hydrogen bonds, dipole-dipole interactions, ion-dipole interactions, dipole-induced dipole interactions, and London dispersion forces. Point to.
  • the polarity of the solute in the present invention is defined as follows based on the octanol / water partition coefficient (log P).
  • a highly polar solute molecule means a molecule having a log P value of ⁇ 2.0 to 1.5.
  • a medium polar solute molecule has a log P value of 1.5 to 3.0
  • a low polarity solute molecule has a log P value of 3.0 or more.
  • One of the objects of the present invention is, as described above, an adsorbent capable of high-efficiency and selective adsorption and solid-phase extraction with respect to solutes having a wide range of chromatographic polarities including highly polar solute molecules. Is an offer.
  • solutes that can be retained depending on the composition and surface structure.
  • solutes that are particularly unfavorable in polarity the recovery efficiency by solid-phase extraction decreases, and in some cases, the solute cannot be recovered.
  • solute flows out during the cleaning process the cleaning conditions and the number of times are limited, and there is a concern that the purity of the collected solute is lowered.
  • the polymer adsorbent of the present invention can overcome the conventional problems in commercial materials.
  • adsorbents that can be used to isolate solutes with a wide range of chromatographic polarities
  • the present inventors focused on the molecular structure on the adsorbent side and combined highly polar monomers with higher polarity than conventional materials. It was found that an adsorbent satisfying the desired performance can be obtained by using a modified amphiphilic copolymer. That is, by introducing a highly polar monomer, a highly polar site can be locally formed in the adsorbent, and an adsorbent having a low polarity-high polarity structure contrast can be obtained.
  • the hydrophobic structure of the adsorbent is maintained as it is, and the adsorption performance with low-polar solute molecules is also excellent.
  • an amphiphilic copolymer having a low polar-high polar structure contrast, an adsorbent that can be adapted to various solutes could be obtained.
  • a monomer unit composed of a highly polar monomer and a monomer unit composed of a low polarity monomer having an SP value of 10.0 or less examples include copolymers having a difference of at least 2.2.
  • a copolymer including a monomer unit composed of a high polarity monomer having an SP value of 11.5 or more and a monomer unit composed of a low polarity monomer having an SP value of 10.0 or less. can be mentioned. In either case, the solute recovery performance by solid phase extraction is enhanced by utilizing the difference in polarity between the low polarity monomer and the high polarity monomer.
  • a highly polar monomer having an SP value of 11.5 or more is excellent in wettability and solvation with respect to water and a polar organic solvent, and also has a high adsorption retention capability for highly polar solute molecules. It is suitable as a monomer constituting the combined adsorbent.
  • the copolymer so that the SP value is 9.5 or more, the affinity and wettability with the solvent and solute are further improved, and in particular, the solid-phase extraction performance of highly polar solute molecules is further improved.
  • Preferable examples used for such highly polar monomers include N-phenylmaleimide (SP value 12.3), maleic anhydride (SP value 12.9), fumaric acid (SP value 13.5), maleic acid. (SP value 13.5), triallyl isocyanurate (SP value 13.6), and the like.
  • amphiphilic copolymer of the present invention is selected from ester bond, urethane bond, amide bond, thioester bond, tetrahydrofuran ring, furan ring, carboxyl group, amino group, alkylamino group and dialkylamino group.
  • the carbon atoms between the highly polar molecular structures do not include the carbon atoms of the highly polar molecular structures themselves (for example, C in the ester bond COO).
  • the highly polar monomer having a localized high polar molecular structure the low polar-high polar structure contrast, which is a feature of the present invention, is formed even when the entire monomer molecule has a low SP value.
  • Adsorbent with excellent adsorption performance Among the above structures, monomers having an ester bond, a urethane bond and an amide bond have particularly high affinity and wettability with solvents and solutes, and high adsorption performance for highly polar solute molecules.
  • the properties unique to the polar structures such as intermolecular associations, dipolar interactions between adjacent atoms, conjugated structure formation, resonance effects, intramolecular associations, etc. will be weakened. It is presumed that the polarity in the coalescence is averaged and the contrast of the low polarity-high polarity structure, which is a feature of the present invention, is weakened. Moreover, this causes effects such as a decrease in the ability to retain and retain polar molecules and a decrease in hydrophobic interaction due to the delocalization of polar molecules, thereby reducing the solid-phase extraction performance.
  • Preferred examples used for such highly polar monomers include methylene bisacrylamide, tetrahydrofurfuryl acrylate, tetrahydrofurfuryl methacrylate, diallyl phthalate, divinyl isophthalate, diallyl isophthalate, divinyl terephthalate, diallyl terephthalate. , Furfuryl acrylate, furfuryl methacrylate and the like.
  • amphiphilic copolymer of the present invention is selected from isocyanuric acid ester skeleton, cyanuric acid ester skeleton, hexahydrotriazine skeleton, maleimide skeleton, and imidazole skeleton, which are high-polarity cyclic heteroatom skeletons.
  • examples thereof include a copolymer containing at least one monomer unit composed of a highly polar monomer having a highly polar molecular structure and one or more monomer units composed of a low polarity monomer having an SP value of 10.0 or less.
  • the cyclic heteroatom skeleton is a highly polar cyclic structure, which itself has a localized structure of highly polar molecules.
  • the contrast of the low polarity-high polarity structure, which is a feature of the present invention, is formed, and the adsorbent is excellent in solute adsorption performance.
  • Preferable examples used for such highly polar monomers include N-phenylmaleimide, triallyl isocyanurate, triallyl cyanurate, 1,3,5-triacryloylhexahydro-1,3,5-triazine, N -Phenylmaleimide, 1-vinylimidazole and the like.
  • amphiphilic copolymer of the present invention is selected from ether bond, ester bond, urethane bond, amide bond, thioester bond, carboxyl group, amino group, alkylamino group, dialkylamino group and heterocyclic ring.
  • a copolymer containing monomer units composed of low-polar monomers is a heteroatom having a large electronegativity.
  • the polarity increases as the monomer molecule contains more specific polar structures.
  • the carboxyl group is an acidic functional group and has a structure suitable for adsorption of ionic solute molecules.
  • Preferable examples used for such a highly polar monomer include N, N-dimethylacrylamide, maleic acid, fumaric acid, methacrylic acid, acrylic acid and the like.
  • At least one monomer is a polyfunctional monomer containing two or more polymerizable unsaturated functional groups.
  • a polyfunctional monomer By using a polyfunctional monomer, a crosslinked network structure is formed in the copolymer, and an adsorbent excellent in mechanical strength and thermal stability can be obtained. Further, swelling due to a solvent or the like can be suppressed, and deformation, modification, softening, dissolution, or the like of the adsorbent can be suppressed.
  • any monomer can be used as long as it does not correspond to the above high polarity monomer and has a SP value of 10 or less.
  • Preferable examples used for the low polarity monomer include allyl glycidyl ether (SP value 8.7), styrene (SP value 9.2), divinylbenzene (SP value 9.3), methyl methacrylate (SP value 9. 4), methyl acrylate (SP value 9.5), vinyl acetate (SP value 9.5), and bisvinylphenylethane (SP value 9.9).
  • divinylbenzene is a polyfunctional monomer and is particularly preferable as a low-polarity monomer for the adsorbent because a polymer having excellent mechanical strength and thermal stability can be obtained.
  • the amphiphilic copolymer can be obtained by a known copolymerization reaction.
  • Examples include random polymerization, alternating copolymerization, block copolymerization, and graft polymerization.
  • random polymerization and alternating copolymerization capable of forming a contrast with a low polarity-high polarity structure are particularly preferable.
  • the amphiphilic copolymer can be produced using a known polymerization method.
  • examples include suspension polymerization, emulsion polymerization, emulsion polymerization, spray drying, pulverization, crushing, and the like.
  • these polymerization methods a method in which massive or uniform spherical particles are obtained is preferable. From this viewpoint, it is particularly preferable to use suspension polymerization or emulsion polymerization.
  • polymerization and other treatment processes may include a process involving ring-opening reaction, dehydration condensation, intermolecular bonding, and other intramolecular structure changes, and is not particularly limited in the present invention.
  • a preferred example of the polymerization method is a suspension polymerization method.
  • an aqueous solution of a surfactant that has been uniformly dissolved and a monomer solution including a monomer, a polymerization initiator, and a solvent that does not mix with water
  • the concentration of the surfactant in the aqueous solution is not particularly limited, but is preferably 0.5 to 10% by weight with the saturation concentration at the polymerization temperature being the limit.
  • the surfactant preferably has an HLB value (Hydrophile-Lipophile Balance) in the range of 9 to 16, more preferably 10 to 14.
  • HLB value Hydrophile Balance
  • the mixing ratio of the surfactant aqueous solution to the monomer solution is not particularly limited, but it takes into consideration various conditions such as monomer reactivity, type of polymerization initiator, reaction temperature, stirring speed, shape of polymerization vessel, polymerization scale, etc. Therefore, it is preferable to adjust appropriately. Further, for the purpose of stabilizing the dispersion of the emulsion, increasing the yield of the resin particles, promoting the reaction, and the like, suspension polymerization may be performed by appropriately adding an additive to the aqueous solution and the monomer solution.
  • water-soluble additives include electrolytes such as salts made of ionic crystals, non-electrolytes such as sugars, and water-soluble resins such as polyvinyl alcohol.
  • the additive for the monomer solution include higher alcohols that are hardly soluble in water. These conditions can also be adopted without particular limitation in the present invention.
  • the polymerization initiator As a preferable example of the polymerization initiator, a general-purpose organic reaction reagent is used, but a radical polymerization initiator is preferable, and a radical polymerization initiator that is hardly soluble in water such as azobisisobutyronitrile is more preferable.
  • the radical polymerization initiator By using the radical polymerization initiator, the polymerization proceeds only in the oil droplets, so that the reaction with the monomer dissolved in the aqueous phase is suppressed, and spherical particles can be obtained.
  • the reaction temperature is appropriately adjusted in consideration of the half-life temperature of the radical initiator, the type of monomer, and the like.
  • a preferable example is 60 to 90 ° C.
  • a preferable example of the stirring speed is 100 to 400 rpm. Note that higher agitation speeds can cause breakage of the copolymer particles and produce fragmented particles.
  • the copolymer particles preferably have an average particle diameter in the range of 0.5 to 100 ⁇ m in order to ensure a specific surface area and an appropriate packing density of the adsorbent. If the particle size is too large, the solution flows out before adsorption occurs in the process of introducing the solution, and sufficient solid-phase extraction performance cannot be exhibited. On the other hand, if the particle size is too small, pressure loss occurs in the flow path, and the solid-phase extraction efficiency is impaired.
  • the average particle size of the particles is more preferably 1 to 90 ⁇ m, and still more preferably 10 to 80 ⁇ m.
  • the amphiphilic copolymer adsorbent of the present invention When preparing the amphiphilic copolymer adsorbent of the present invention, it is possible not only to confirm the incorporation of a highly polar monomer and a highly polar structure into the adsorbent, but also to determine the composition and overall structure of the adsorbent. More preferred. In this regard, various non-limiting measurement techniques can be used. For example, for the evaluation of the copolymer adsorbent of the present invention, Fourier transform infrared spectroscopy (FTIR), solid phase 13C nuclear magnetic resonance method, elemental analysis (by combustion method), or the like can be used. With this technique, the structure can be identified and analyzed.
  • FTIR Fourier transform infrared spectroscopy
  • solid phase 13C nuclear magnetic resonance method solid phase 13C nuclear magnetic resonance method
  • elemental analysis by combustion method
  • the copolymerization ratio of the highly polar monomer can be adjusted as appropriate and is not particularly limited. However, under conditions where too much high-polarity monomer is present, the hydrophobicity of the copolymer is reduced and the recovery efficiency of low-polarity solute molecules is reduced. This reduces the recovery efficiency of highly polar solute molecules.
  • the copolymerization ratio of the highly polar monomer having the highest performance is 5 to 50 mol%, more preferably 10 to 30 mol% in the copolymer.
  • monomers having a particularly high SP value tend to suppress a decrease in recovery efficiency even under conditions where the copolymerization ratio is low.
  • the solid phase extraction method of the present invention includes a solution containing one or more types selected from nonpolar solute molecules, low polar solute molecules, medium polar solute molecules and high polar solute molecules as a solute, and the above-mentioned amphiphilic copolymer.
  • the type of solution to be treated is not particularly limited, but the amphiphilic copolymer adsorbent and the solid phase extraction method of the present invention are particularly suitable for component analysis with a complicated composition (a trace amount of water quality, soil, etc.).
  • a biological substrate containing a solute such as a drug (for example, whole blood, plasma, saliva or urine) can be used.
  • the solution also includes environmental samples such as drinking water or contaminated water.
  • Preferred examples of the solution in the present invention include plasma, serum, blood, urine, spinal fluid, synovial fluid, biological tissue extract, aqueous solution, ground water, surface water, soil extract, cosmetics, food substance, or food substance extraction. It is a thing.
  • Preferred examples of the solute in the present invention include drugs, antibacterial agents, drugs, insecticides, herbicides, poisons, biomolecules, contaminants, metabolites or degradation products thereof.
  • preferable examples of biomolecules include proteins, vitamins, hormones, polypeptides, polynucleotides, lipids or carbohydrates.
  • water or a water-containing solvent such as a mixed solvent of water and a polar organic solvent, methanol, ethanol, propanol, 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, acetonitrile, tetrahydrofuran, 1, Polar organic solvents such as 4-dioxane, N, N-dimethylformamide and dimethyl sulfoxide are used.
  • a water-containing solvent such as a mixed solvent of water and a polar organic solvent, methanol, ethanol, propanol, 2-propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, acetonitrile, tetrahydrofuran, 1, Polar organic solvents such as 4-dioxane, N, N-di
  • the adsorbent surface can be adjusted by washing the adsorbent with water after the polar organic solvent.
  • a preferred example of conditioning is performed by filling a support such as a column with an adsorbent, first treating with methanol, and then treating with water (eg, 1 ml each). Methanol moderately swells the adsorbent and increases the effective surface area. Water treatment removes excess methanol and at the same time hydrates the adsorbent surface. Thereafter, excess solvent can be removed and the adsorbent can be kept fully hydrated.
  • a low-viscosity solution such as a whole blood component from which serum or protein components have been removed
  • plasma or the like It is desirable to introduce as a dilute aqueous solution (at least 1: 1 dilution).
  • plasma since plasma has a high viscosity, there is a risk of inhibiting the adsorption between the adsorbent and the solute.
  • proteins in plasma components may be denatured and precipitated by an organic solvent to contaminate the adsorbent surface, it is desirable to avoid dilution with an organic solvent. It is also desirable to adjust the flow rate of the solution so that the contact time is suitable for adsorbing and holding solutes.
  • the solute eg, drug
  • the solute can be present at a level of 1 ng to 10 ⁇ g per mL of solution.
  • the filling amount of the solution into the solid phase extraction device depends on the volume of each device, and about 1 ⁇ L to 100 ⁇ L of the solution sample is used for the solid phase extraction plate, and about 100 ⁇ L to 1 mL of the solution sample is used for the solid phase extraction column. Can be loaded.
  • a solid phase extraction plate is used will be described.
  • the adsorbent adsorbed with the solute can be washed with water and an organic washing solvent. More preferably, it is washed with water.
  • An arbitrary amount of solvent can be used for washing, but preferably about 50 to 500 ⁇ L of solvent is used.
  • impurities such as salts and water-soluble substrates and proteinaceous substances that are not measured and may be present in the sample are removed.
  • a sample contains a substrate component or an organic impurity that adheres to the adsorbent surface and is insoluble in water, it can be removed using an organic cleaning solvent. At this time, it is preferable to adjust the washing conditions so as not to break the adsorption between the adsorbent surface and the solute.
  • the conventional silica adsorbent and polymer adsorbent are used for separation, a large amount of solute may be eluted from the adsorbent in the washing step.
  • the eluent is used to elute the solute from the adsorbent surface. Elution occurs when the elution solvent reaches and contacts the adsorption interface between the solute and the adsorbent, and can be performed by passing a certain amount of the elution solvent.
  • Representative elution solvents are selected from polar organic solvents and aqueous solutions. Desirably, the solvent comprises at least about 80% to 90% by weight of organic components.
  • Representative organic components include, but are not limited to, alcohols such as methanol, ethanol, 2-propanol, acetonitrile, and the like.
  • Trailing ions such as trifluoroacetic acid can also be used as the eluting solvent component and are useful for efficiently breaking the polar interaction between the polar solute and the adsorbent.
  • an arbitrary amount of solvent can be used for elution, for example, when elution is performed using a methanol solvent, approximately 50 ⁇ L to 200 ⁇ L of solvent is preferably used. By using the solvent, it is possible to recover 90% to almost the entire amount of the solute having a wide polarity held in the adsorbent.
  • pretreatment when analyzing a sample containing impurities can be performed by using solid phase extraction with the amphiphilic copolymer adsorbent of the present invention.
  • the elution solution by solid phase extraction is collected through a highly efficient and highly selective pretreatment process, for example, analytical methods such as mass spectrometry (MS), liquid chromatography (LC), gas chromatography (GC), Alternatively, a solute that is adsorbed and held by the adsorbent can be specified using a combination thereof. Even when a predetermined solute is present in a very small amount ( ⁇ 1 ng) in the measurement solution, the elution solution can be evaporated and re-dissolved, introduced into the mobile phase of LC or LC / MS, and analyzed.
  • the loss before and after pretreatment in the field is preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less with respect to the total amount of solute. According to the present invention, the amount of solute loss can be further reduced.
  • amphiphilic copolymer adsorbent of the present invention and the solid-phase extraction method using the same is that the eluted solution can be directly passed through an apparatus for identifying a solute.
  • an adsorbent compatible with various solutes was obtained by forming an amphiphilic copolymer having a low-polarity-high-polarity structure contrast, which could not be realized with prior art adsorbents. That is.
  • due to the dependence of the solute on polarity due to the dependence of the solute on polarity, adsorption and retention of a wide range of solutes and separation / recovery by solid phase extraction are difficult, and unnecessary components are contained in the elution solution due to the ion suppression effect of the adsorbent in MS analysis.
  • the adsorbent according to the present embodiment is an adsorbent containing a hydrophobic resin, and a hydrophilic group is directly or indirectly bonded to a part of the surface of the hydrophobic resin.
  • “the hydrophilic group is bonded to a part of the surface” means a state where both the hydrophobic portion of the hydrophobic resin and the hydrophilic group exist on the surface of the hydrophobic resin. In this state, for example, the hydrophobic part may be concentrated on a part of the surface and the hydrophilic group may be concentrated on the remaining part, or the hydrophobic part and the hydrophilic group are mixed. It may be a thing.
  • the adsorbent according to the present embodiment has hydrophilicity and hydrophobicity (that is, high polarity and low polarity) within the same adsorbent. It has a good balance and can adsorb various substances including drugs.
  • the amount of the hydrophilic group present on the surface of the hydrophobic resin is too small, the hydrophobicity of the adsorbent becomes excessively large and it may be difficult to adsorb the hydrophilic substance.
  • the hydrophilicity degree of an adsorbent material becomes large too much and it may become difficult to adsorb
  • the amount of the hydrophilic group can be calculated from the size of the peak detected by, for example, infrared absorption (IR) spectrum measurement.
  • it is preferable that the hydrophilic group is bonded to the hydrophobic resin via one or more of the above bonds. These bonds may be bonds that the hydrophilic group has, or may be a state in which the above-described bond becomes a linking group and the desired hydrophilic group and the hydrophobic resin are bonded. .
  • the hydrophobic resin and the hydrophilic group contained in the adsorbent define physical properties by their solubility parameters (SP values) ⁇ .
  • solubility parameter When the solubility parameter is large, it indicates that the polarity is large, that is, hydrophilic.
  • F. Fedors A Method for Estimating Both the Solubility Parameters and Molar Volumes of Liquids, Polymer Engineering and Science, Vol. 14, No. 2 (1974).
  • hydrophobic resin and the hydrophilic group are defined by the solubility parameter. That is, since all the hydrophilic groups contained in the adsorbent according to the present embodiment have a highly polar (that is, high polarity) molecular structure, the polar structure of the substance adsorbed by the adsorbent and a strong hydrophilic interaction. Can be formed. Moreover, since the adsorbent according to the present embodiment has a highly polar molecular structure on the surface thereof, solvation with a polar solvent and wettability are improved.
  • an adsorbent containing a copolymer having a hydrophobic-hydrophilic structure has been proposed for the purpose of improving the wettability of the adsorbent with respect to a polar solvent.
  • surface modification techniques for hydrophobic resins have also been proposed.
  • the polarity is still lower than that of the hydrophilic group bonded to the surface of the adsorbent of the present embodiment. The contribution of hydrophilic interaction is low.
  • the recovery ability of, for example, a highly polar drug, for example, due to solid phase extraction tends to be reduced, and the above-described adsorption by the hydrophilic interaction remains an auxiliary action.
  • the present invention has been devised.
  • the inventors have come to define hydrophilic groups present on the surface of the adsorbent.
  • the solubility parameter as a rule for the hydrophobic resin and the hydrophilic group can be said to be a particularly preferable index.
  • the solubility parameter of the hydrophobic resin contained in the adsorbent according to the present embodiment is 10 or less, preferably 9.5 or less, more preferably 9 or less.
  • a hydrophobic resin having a solubility parameter of 10 or less such a hydrophobic resin has a high affinity with a hydrophobic structure such as a hydrocarbon group. Substances can be adsorbed.
  • a hydrophilic substance can also be couple
  • hydrophobic resin is arbitrary as long as the effects of the present invention are not significantly impaired.
  • examples thereof include a methyl polymer, polyvinyl acetate, and bisvinylphenylethane polymer.
  • Hydrophobic resin may contain 1 type independently, and may contain 2 or more types by arbitrary ratios and combinations.
  • the shape of the hydrophobic resin is arbitrary as long as the effects of the present invention are not significantly impaired, and examples thereof include a spherical shape (spherical shape) and a flake shape.
  • the hydrophobic resin is preferably spherical.
  • the “spherical shape” does not need to be a true sphere, and represents a “sphere” in the broadest sense, such as an oval shape or a shape whose cross section is an ellipse.
  • the average diameter of the hydrophobic resin is usually the same as the average diameter of the adsorbent described later.
  • a hydrophilic group is directly or indirectly bonded to a part of its surface.
  • the adsorbent according to this embodiment will be described with reference to five embodiments of the adsorbent to which different hydrophilic groups are bonded.
  • the adsorbent according to the first embodiment is [1-1.
  • the difference between the solubility parameter of the hydrophilic group and the solubility parameter of the hydrophobic resin is 2.2 or more.
  • the specific value of the solubility parameter of the hydrophilic group is arbitrary as long as the effect of the present invention is not significantly impaired, and is determined according to the value of the solubility parameter of the hydrophobic resin contained in the adsorbent according to the first embodiment. That's fine.
  • the difference between the solubility parameter of the hydrophobic resin and the solubility parameter of the hydrophilic group is usually 2.2 or more, preferably 2.5 or more, more preferably 3 or more. If the difference is too small, the type of substance that can be adsorbed may be limited, but if it is too large, the adsorbed substance may not be eluted.
  • hydrophilic group is arbitrary as long as the effects of the present invention are not significantly impaired. Examples thereof include a nurate skeleton.
  • hydrophilic groups contained in the adsorbent according to the first embodiment are preferably those described above.
  • One type of hydrophilic group may be included alone, or two or more types may be included in any ratio and combination.
  • the “skeleton” refers to a compound in which the word “skeleton” is attached, in which at least one atom of the compound is directly or indirectly bonded to the hydrophobic resin.
  • N-phenylmaleimide skeleton means a state in which at least one of carbon atoms, oxygen atoms or nitrogen atoms of N-phenylmaleimide and a hydrophobic resin are bonded directly or indirectly. belongs to.
  • skeleton has the same meaning.
  • the adsorbent according to the second embodiment is described in [1-1.
  • the solubility parameter of the hydrophilic group is 11.5 or more.
  • the solubility parameter of the hydrophilic group is preferably 12 or more, more preferably 13 or more, and the upper limit is usually 23 or less, preferably 22 or less.
  • the value of the solubility parameter is too small, the adsorption performance with respect to the highly polar substance may be lowered, and when it is too large, the adsorbed substance may not be eluted.
  • hydrophilic group having such a solubility parameter is arbitrary as long as the effect of the present invention is not significantly impaired, but is the same as the hydrophilic group described in the above [Adsorbent according to the first embodiment]. Those are preferred.
  • the adsorbent according to the third embodiment is described in [1-1. Hydrophobic resin] and the hydrophilic group consists of an ester bond, a urethane bond, an amide bond, a thioester bond, a tetrahydrofuran ring, a furan ring, a carboxyl group, an amino group, an alkylamino group, and a dialkylamino group. A plurality of one or more structures selected from the group are included, and the hydrophilic group includes a hydrocarbon group having 6 or less carbon atoms.
  • the specific number is not limited.
  • the hydrophilic group which the adsorbent which concerns on 3rd embodiment has includes the hydrocarbon group which has specific carbon number. Carbon number which the hydrocarbon group contained has is 6 or less normally, Preferably it is 4 or less. When the number of carbon atoms is too large, the hydrophobicity increases and the adsorption performance of highly polar substances may be reduced.
  • the hydrophilic group contained in the adsorbent according to the third embodiment there is no particular limitation on the bonding mode between the structure and the hydrocarbon group, but usually the hydrocarbon group is bonded to the hydrophobic resin through the bond. It is supposed to be. Therefore, specific examples of the hydrophilic group having such a binding mode include a methylenebisacrylamide skeleton, a tetrahydrofurfuryl acrylate acrylate, a tetrahydrofurfuryl acrylate acrylate, a diallyl phthalate skeleton, a divinyl isophthalate skeleton, and a diallyl isophthalate.
  • hydrophilic group contained in the adsorbent according to the third embodiment Is preferred. One of these may be used alone, or two or more thereof may be used in any ratio and combination.
  • Hydrophobic resin and the hydrophilic group contains one or more skeletons selected from the group consisting of an isocyanuric acid ester skeleton, a cyanuric acid ester skeleton, a hexahydrotriazine skeleton, a maleimide skeleton, and an imidazole skeleton. It is a waste.
  • skeleton of the hydrophilic group contained in the adsorbent according to the fourth embodiment include, for example, N-phenylmaleimide skeleton, triallyl isocyanurate skeleton, triallyl cyanurate skeleton, 1,3,5- Examples include a triacryloyl hexahydro-1,3,5-triazine skeleton, an N-phenylmaleimide skeleton, and a 1-vinylimidazole skeleton.
  • the skeleton described above is preferable as the skeleton of the hydrophilic group contained in the adsorbent according to the fourth embodiment. One of these may be included alone, or two or more thereof may be included in any ratio and combination.
  • the adsorbent according to the fifth embodiment is described in [1-1. Hydrophobic resin] and having at least one heteroatom selected from the group consisting of (1) an oxygen atom, a nitrogen atom and a sulfur atom, and (2) an ether bond and an ester bond
  • the total content of is 30 mol% or more based on the total number of moles of atoms of the hydrophilic group.
  • the hydrophilic group contained in the adsorbent according to the fifth embodiment contains one or more heteroatoms selected from the group consisting of an oxygen atom, a nitrogen atom and a sulfur atom.
  • One of these heteroatoms may be contained alone, or two or more thereof may be contained in any ratio and combination.
  • the hetero atom an oxygen atom and a nitrogen atom are preferable.
  • the hydrophilic group contained in the adsorbent according to the fifth embodiment includes one or more of the structures described above, these structures include those containing an oxygen atom, a nitrogen atom, or a sulfur atom. Therefore, the total content of heteroatoms in the hydrophilic group contained in the adsorbent according to the fifth embodiment represents the total content of the heteroatoms of (1) and (2). Shall.
  • the total content of these heteroatoms is 30 mol% or more, preferably 35 mol% or more, more preferably 40 mol% or more, and the upper limit thereof based on the total number of moles of the atoms of the hydrophilic group. Is usually 50 mol% or less, preferably 45 mol% or less.
  • hydrophilic group having the above structure examples include N, N′-dimethylacrylamide skeleton, maleic acid skeleton, fumaric acid skeleton, methacrylic acid skeleton, and acrylic acid bone.
  • the skeleton is preferable as the hydrophilic group contained in the adsorbent according to the fifth embodiment.
  • One type of these skeletons may be included alone, or two or more types may be included in any ratio and combination.
  • the shape of the adsorbent according to the present embodiment is arbitrary as long as the effect of the present invention is not significantly impaired, but usually has the same shape as the above-described hydrophobic resin. Therefore, it is preferable that the adsorbent according to the present embodiment has a spherical shape.
  • the average diameter is usually 0.5 ⁇ m from the viewpoint of securing an appropriate packing density of the adsorbent when the adsorbent is packed in a column, for example.
  • the average diameter is 1 micrometer or more, More preferably, it is 10 micrometers or more, and the upper limit is 100 micrometers or less normally, Preferably it is 90 micrometers or less, More preferably, it is 80 micrometers or less.
  • the average diameter when the average diameter is too long, the solution flows out before the target substance is adsorbed on the adsorbent in the process of passing the solution, and the solid-phase extraction efficiency may be lowered.
  • the average diameter can be measured using a laser diffraction particle size distribution measurement apparatus.
  • the adsorbent according to this embodiment has been described on the assumption that the adsorbent according to this embodiment has a particulate shape
  • the adsorbent according to this embodiment may be in the form of powder (that is, powder). Therefore, even if the adsorbent is in the form of powder (that is, the adsorbent after binding the hydrophilic group is also usually in the form of powder), the hydrophilic group is bonded to the surface of the adsorbent and the present embodiment is concerned. It can be used as an adsorbent.
  • adsorbent according to this embodiment can adsorb any substance.
  • “adsorb” refers to a state in which the adsorbent and the substance are bound by a reversible bond, for example, by a hydrophilic interaction or a hydrophobic interaction. Hydrophilic interactions are mainly intermolecular forces involving polar structures such as hydrogen bonds, dipole-dipole interactions, ion-dipole interactions, dipole-induced dipole interactions, and London dispersion forces. .
  • the adsorbent according to the present embodiment contains drugs having various polarities from large to small (that is, hydrophilic to hydrophobic). Can be adsorbed.
  • a highly polar drug means a drug having a log P value of ⁇ 2.0 to 1.5.
  • a medium polarity drug means a log P value of 1.5 to 3.0
  • a low polarity drug means a log P value of 3.0 or more.
  • the “medicine” represents a drug, a drug, a medicine, and the like, and in particular, a drug prepared for a purpose of use.
  • the adsorbent according to the present embodiment enables highly efficient adsorption and solid phase extraction for substances having a wide range of polarities (solutes).
  • adsorbent In conventional adsorbents, the types of substances that can be held differ depending on the composition, surface structure, and the like. That is, whether or not retention is possible is usually determined by the degree of polarity on the surface of the adsorbent, and if the adsorbent intends to adsorb a substance having a polarity that is difficult to retain, recovery efficiency during solid layer extraction May decrease, and in some cases, recovery may be extremely difficult. In addition, even if such substances are adsorbed on the adsorbent surface, the adsorbed substances may flow out during the washing process after adsorption, so the washing conditions and the number of washings are limited, and the purity of the substance after recovery may be reduced. There is also sex.
  • an adsorbent capable of adsorbing a polar substance can be provided. That is, a highly polar site is formed on the surface of the adsorbent by bonding a highly polar hydrophilic group to the surface of the hydrophobic resin, and a low polarity and a high polarity, that is, a site having greatly different polarities is simultaneously formed on the surface. It has been found that an adsorbent can be provided.
  • the adsorbent Since the adsorbent has such a structure, both the hydrophilic interaction due to the high polar structure and the hydrophobic interaction due to the low polar structure are compatible, and the adsorbent is adsorbed firmly between the substance and the adsorbent.
  • the solid-phase extraction efficiency of polar to highly polar substances can be greatly improved.
  • the hydrophilic group contained in the adsorbent has a large polarity, even if the amount of the hydrophilic group bonded to the surface of the hydrophobic resin is small, it has a polarity such as water or a polar organic solvent.
  • the target substance can be sufficiently adsorbed while ensuring wettability with the solvent. Therefore, according to the adsorbent according to the present embodiment, it is possible to produce an amphiphilic adsorbent that can be adsorbed with high efficiency to either the high-polar structure or the low-polar structure of the target substance. .
  • Adsorbent manufacturing method The adsorbent according to this embodiment can be produced by any method as long as the effects of the present invention are not significantly impaired.
  • the adsorbent which concerns on this embodiment is not manufactured only by the manufacturing method described below.
  • the adsorbent according to the present embodiment is, for example, the above [1-1.
  • the hydrophobic resin described in [Hydrophobic Resin] is produced in a spherical shape, and the surface of the produced spherical hydrophobic resin is [1-2. It can be produced by bonding the hydrophilic group described in [Hydrophilic group].
  • the hydrophobic resin can be produced, for example, by polymerizing a known monomer under known conditions.
  • a known monomer for example, when polystyrene is used as the hydrophobic resin, styrene is used as a monomer, and radical polymerization is performed using azobisisobutyronitrile (AIBN), benzoyl peroxide or the like as a polymerization initiator until it has a desired molecular weight, Polystyrene can be produced.
  • the reaction conditions for performing radical polymerization may be any known conditions.
  • the polymerization can also be performed by other than radical polymerization. Moreover, you may use a commercial item as hydrophobic resin.
  • the produced hydrophobic resin may be molded into a desired shape.
  • the shape of the adsorbent according to the present embodiment is usually the same as the shape of the hydrophobic resin before the hydrophilic group is bonded to the surface. Therefore, normally, [1-3. What is necessary is just to shape
  • the hydrophilic resin surface is subjected to at least one treatment selected from the group consisting of ozone treatment, plasma treatment, and oxidant treatment on the surface of the hydrophobic resin.
  • UV ozone treatment when ozone treatment is performed on the surface of a hydrophobic resin, ultraviolet (UV) ozone treatment can be performed in an air atmosphere using, for example, PL21-200 manufactured by Sen Special Light Company.
  • the intensity of the irradiated ultraviolet light can be set to, for example, about 3 J / cm 2.
  • oxygen plasma processing can be performed using, for example, a plasma dry cleaner PDC210 manufactured by Yamato Scientific.
  • a specific method for example, it can be performed in the soft mode in the apparatus, with an output of 300 W and a processing time of 2 minutes.
  • the hydrophobic resin surface may be treated using, for example, potassium permanganate, potassium dichromate, or the like as a specific type of oxidizing agent.
  • concentration and treatment time of the oxidant can be set arbitrarily, but if an excess of oxidant is used or the reaction is carried out for an excessively long time, there is a possibility that hydrophilic groups will bind to the entire surface of the hydrophobic resin in a later step. There is. Therefore, it is preferable to determine the conditions while appropriately checking the degree of surface oxidation using a method such as fluorescent X-ray analysis (XPS).
  • XPS fluorescent X-ray analysis
  • the surface of the hydrophobic resin is oxidized and a reactive functional group (for example, a hydroxyl group, a carboxyl group, etc.) is generated. Accordingly, by bringing the compound having a hydrophilic group into contact with the hydrophobic resin surface after this treatment, the generated reactive functional group and the compound having a hydrophilic group react, The adsorbent according to this embodiment in which the hydrophilic group is bonded to the surface of the hydrophobic resin can be produced.
  • a reactive functional group for example, a hydroxyl group, a carboxyl group, etc.
  • Patent Document 4 For example, in the method for producing an adsorbent by copolymerizing the hydrophobic monomer and the hydrophilic monomer described in the above (Patent Document 4), for example, compounds having conflicting properties such as water and oil, that is, The monomers having low compatibility are polymerized. In such a case, for example, suspension polymerization, emulsion polymerization, emulsion polymerization and the like are usually used as the polymerization method. However, these methods usually have difficulty in controlling the particle shape and the yield is low. However, in the method for producing an adsorbent according to the present embodiment, a reactive functional group is generated by performing a specific treatment on the surface of the hydrophobic resin, and a highly polar hydrophilic group is bonded. it can.
  • the particle size of the polymer particles (adsorbent) was measured using Microtrack particle size distribution measurement (Microtrac FRA, laser diffraction scattering type) manufactured by Nikkiso Co., Ltd.
  • the measurement range is 0.1 to 700 ⁇ m
  • the 50% median particle size (the cumulative curve is obtained by setting the total volume of the powder population to 100%, the particle diameter at which the cumulative curve becomes 50%) is the particle size of the polymer particles. The diameter.
  • Infrared spectroscopic measurement of polymer particles is performed using a Perkin Elmer Fourier transform infrared spectrometer (Spectrum 100, Attenuated Total Reflection (ATR)). It was.
  • the specific surface area and pore distribution measurement were performed using a specific surface area measuring device (AUTOSORB-1, multipoint method (40-point measurement) measurement) manufactured by QUANTACHROME.
  • the pretreatment of the measurement sample was performed at 120 ° C./10 minutes (under reduced pressure).
  • the specific surface area was measured from the BET plot slope and intercept using the BET (Brunauer, Emmett, Teller) adsorption isotherm.
  • the pore diameter was measured by calculating the pore distribution from the amount of change in the cumulative pore volume using the BJH (Barrett, Joyner, Halenda) method, and the peak diameter of the distribution was taken as the pore diameter.
  • the copolymerization ratio of polymer particles is determined from the composition ratio of polymer particles by quantifying the element ratio of carbon (C), hydrogen (H), and nitrogen (N) by a combustion method. The polymerization ratio was determined. CHN elemental analysis was performed using an element analyzer (MT-5) manufactured by Yanagimoto Seisakusho.
  • the filling of the heterocyclic copolymer adsorbent or the amphiphilic copolymer adsorbent is The following method was used. 2 mg of a heterocyclic-containing copolymer adsorbent or an amphiphilic copolymer adsorbent to be evaluated was slurried in methanol (100 to 200 ⁇ L), and a solid phase extraction plate (OASIS (registered trademark) ⁇ Elution plate).
  • OASIS registered trademark
  • the solute adsorption evaluation was performed by the following method. 200 ⁇ L of methanol and then 200 ⁇ L of pure water were passed through a solid-phase extraction plate filled with a heterocyclic copolymer-containing adsorbent or an amphiphilic copolymer adsorbent. Next, 100 ⁇ L of the solution was added to the plate, and after allowing to stand for 1 minute, the solution was sucked and passed through. Next, 200 ⁇ L of pure water was passed through the plate to wash the adsorbent. After washing, 100 ⁇ L of methanol was passed through the plate, and the solute adsorbed on the adsorbent was collected. The amount of solute recovered by this operation relative to the charged amount was defined as the recovery rate of solid phase extraction.
  • the evaluation of the amount of adsorbed phospholipid (phosphatidylcholine (lecithin)) in serum by the heterocyclic copolymer-containing adsorbent was performed by the following method. 200 ⁇ L of methanol and then 200 ⁇ L of pure water were passed through a solid-phase extraction plate filled with a heterocyclic copolymer-containing adsorbent. Next, 100 ⁇ L of commercially available control serum was added to the plate, and after allowing to stand for 1 minute, the solution was aspirated and passed through. Next, 200 ⁇ L of pure water was passed through the plate to wash the adsorbent.
  • phospholipid phosphatidylcholine (lecithin)
  • LC-UV measurement is performed by Hitachi High-Technologies L-2000 series liquid chromatograph (L-2100 type pump (low pressure gradient, with degasser), L-2200 type autosampler (with cooling unit), L-2400 type UV detector. (With semi-micro flow cell), model D-2000 HPLC system manager).
  • L-2100 type pump low pressure gradient, with degasser
  • L-2200 type autosampler with cooling unit
  • L-2400 type UV detector with semi-micro flow cell
  • model D-2000 HPLC system manager As the LC column, Shiseido Capcell PAK C18 MG (particle diameter 3 ⁇ m, inner diameter 2.0 mm ⁇ length 75 mm) was used.
  • LC-MS measurement was performed by Hitachi High-Technologies L-2000 series liquid chromatograph (L-2100 type pump (low pressure gradient, with degasser), L-2200 type autosampler (with cooling unit), D-2000 type HPLC system manager. ) + Applied 3200Qtrap mass spectrometer manufactured by Biosystems was used in combination.
  • As the LC column Shiseido Capcell PAK C18 MG (particle size 3 ⁇ m, inner diameter 2.0 mm ⁇ length 75 mm) was used.
  • the ionization conditions were electrospray ionization and positive ion measurement, and the mass spectrometry scan mode was mass scan (MS) + product ion scan (MS / MS).
  • the measurement conditions for LC-MS are as follows.
  • FIA-MS measurement was performed by Hitachi High-Technologies L-2000 series liquid chromatograph (L-2100 pump (low pressure gradient, with degasser), L-2200 autosampler (with cooling unit), D-2000 HPLC system manager. ) + Applied 3200Qtrap mass spectrometer manufactured by Biosystems was used in combination.
  • the ionization conditions were performed by electrospray ionization and positive ion measurement, and the mass spectrometry scan mode was performed by multiple reaction monitoring (MRM).
  • MRM multiple reaction monitoring
  • Example 1 Preparation of divinylbenzene-isocyanuric acid triallyl copolymer
  • HPC hydroxypropyl cellulose
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask became uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 200 rpm. After stopping the stirring, the polymerization solution and the resin particles were separated by filtration with a glass filter. The resin particles are repeatedly washed with pure water until the surfactant is completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • Example 2 Preparation of divinylbenzene-triallyl cyanuric acid copolymer (1) To a 500 mL separable flask, 2.0 g of hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight ⁇ 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) and 100 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • divinylbenzene (DVB, manufactured by Aldrich, 80% divinylbenzene + 19% ethylvinylbenzene mixture) 7.8 g (0.06 mol), triallyl cyanurate (TACy, manufactured by Tokyo Chemical Industry) 15.0 g (0.06 mol) , 11.5 g of toluene (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.2 g of azoisobutyronitrile (AIBN, manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed and completely dissolved, and then added to a separable flask.
  • TACy triallyl cyanurate
  • AIBN azoisobutyronitrile
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask became uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 200 rpm. After stopping the stirring, the polymerization solution and the resin particles were separated by filtration with a glass filter. The resin particles are repeatedly washed with pure water until the surfactant is completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • Example 3 Preparation of divinylbenzene-triallyl cyanurate copolymer (2) To a 500 mL separable flask, 6.0 g of hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight ⁇ 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) and 200 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask was uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 400 rpm. After stopping the stirring, the polymerization solution and the resin particles were separated by filtration with a glass filter. The resin particles are repeatedly washed with pure water until the surfactant is completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • 2-butanone manufactured by Wako Pure Chemical Industries
  • toluene manufactured by Wako Pure Chemical Industries
  • 2-butanone 2-butanone
  • Example 4 Preparation of divinylbenzene-triallyl cyanuric acid copolymer (3) To a 500 mL separable flask, 6.0 g of hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight ⁇ 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) and 200 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask was uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 400 rpm. After stopping the stirring, the polymerization solution and the resin particles were separated by filtration with a glass filter. The resin particles are repeatedly washed with pure water until the surfactant is completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • 2-butanone manufactured by Wako Pure Chemical Industries
  • toluene manufactured by Wako Pure Chemical Industries
  • 2-butanone 2-butanone
  • Example 5 Preparation of divinylbenzene-triallyl cyanuric acid copolymer (4) To a 500 mL separable flask, 8.0 g of hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight ⁇ 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) and 200 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask became uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 300 rpm. After stopping the stirring, the polymerization solution and the resin particles were separated by filtration with a glass filter. The resin particles are repeatedly washed with pure water until the surfactant is completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • Example 6 Preparation of divinylbenzene-triallyl cyanuric acid copolymer (5) To a 500 mL separable flask, 8.0 g of hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight ⁇ 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) and 200 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask was uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 400 rpm. After stopping the stirring, the polymerization solution and the resin particles were separated by filtration with a glass filter. The resin particles are repeatedly washed with pure water until the surfactant is completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • 2-butanone manufactured by Wako Pure Chemical Industries
  • toluene manufactured by Wako Pure Chemical Industries
  • 2-butanone 2-butanone
  • Example 7 Preparation of divinylbenzene-triallyl cyanuric acid copolymer (6) To a 500 mL separable flask, 6.0 g of hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight ⁇ 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) and 200 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask became uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 300 rpm. After stopping the stirring, the polymerization solution and the resin particles were separated by filtration with a glass filter. The resin particles are repeatedly washed with pure water until the surfactant is completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • Example 8 Preparation of divinylbenzene-triallyl cyanurate copolymer (7) To a 500 mL separable flask, 8.0 g of hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight ⁇ 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) and 200 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask was uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 400 rpm. After stopping the stirring, the polymerization solution and the resin particles were separated by filtration with a glass filter. The resin particles are repeatedly washed with pure water until the surfactant is completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • 2-butanone manufactured by Wako Pure Chemical Industries
  • toluene manufactured by Wako Pure Chemical Industries
  • 2-butanone 2-butanone
  • Example 9 Preparation of divinylbenzene-triallyl cyanuric acid copolymer (8) To a 500 mL separable flask, 6.0 g of hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight ⁇ 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) and 200 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • divinylbenzene (DVB, manufactured by Aldrich, 80% divinylbenzene + 19% ethylvinylbenzene mixture) 7.8 g (0.06 mol), triallyl cyanurate (TACy, manufactured by Tokyo Chemical Industry) 15.0 g (0.06 mol) , Toluene (manufactured by Wako Pure Chemical Industries, Ltd.) 8.0 g, and azoisobutyronitrile (AIBN, manufactured by Tokyo Chemical Industry Co., Ltd.) 0.3 g were mixed and completely dissolved, and then added to a separable flask.
  • TACy triallyl cyanurate
  • AIBN azoisobutyronitrile
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask was uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 400 rpm. After stopping the stirring, the polymerization solution and the resin particles were separated by filtration with a glass filter. The resin particles are repeatedly washed with pure water until the surfactant is completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • 2-butanone manufactured by Wako Pure Chemical Industries
  • toluene manufactured by Wako Pure Chemical Industries
  • 2-butanone 2-butanone
  • Example 10 Preparation of Heterocyclic Copolymer Monolithic Column Divinylbenzene (DVB, Aldrich, 80% divinylbenzene + 19% ethylvinylbenzene mixture) 12.5 g (0.10 mol), triallyl cyanurate (TACy, Tokyo Chemical Industry Co., Ltd. (6.0 g, 0.02 mol), toluene (Wako Pure Chemical Industries, Ltd.) 10.0 g, and azoisobutyronitrile (AIBN, Tokyo Chemical Industry Co., Ltd.) 0.3 g are mixed, and the solution is nitrogen. Replaced.
  • DVB Divinylbenzene
  • TACy Tokyo Chemical Industry Co., Ltd.
  • AIBN azoisobutyronitrile
  • a 20 ⁇ L monomer solution was poured into a mold having the same shape as the packed portion of the solid phase extraction plate, and bulk polymerization was performed in a nitrogen stream at 80 ° C. for 6 hours.
  • Example 11 Preparation of divinylbenzene-triallyl cyanurate copolymer (50% average particle size> 80 ⁇ m) To a 500 mL separable flask, 6.0 g of hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight ⁇ 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) and 200 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask was uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 400 rpm. After stopping the stirring, the polymerization solution and the resin particles were separated by filtration with a glass filter. The resin particles are repeatedly washed with pure water until the surfactant is completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • 2-butanone manufactured by Wako Pure Chemical Industries
  • toluene manufactured by Wako Pure Chemical Industries
  • 2-butanone 2-butanone
  • Example 12 Preparation of divinylbenzene-triallyl cyanuric acid copolymer (50% average particle size ⁇ 80 ⁇ m, 80% average particle size> 100 ⁇ m) To a 500 mL separable flask, 4.0 g of hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight ⁇ 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) and 200 mL of water were added, and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask became uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 300 rpm. After stopping the stirring, the polymerization solution and the resin particles were separated by filtration with a glass filter. The resin particles are repeatedly washed with pure water until the surfactant is completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • Divinylbenzene-N-vinylpyrrolidone copolymer As a comparative example, a copolymer resin of divinylbenzene (DVB) and N-vinylpyrrolidone (NVP) was used. To a 500 mL separable flask, 2.0 g of hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight ⁇ 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) and 100 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask became uniformly dispersed, polymerization was performed at 70 ° C., 20 hours, and a stirring speed of 300 rpm. After stopping the stirring, the polymerization solution and the resin particles were separated by filtration with a glass filter. The resin particles are repeatedly washed with pure water until the surfactant is completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • Example 13 Comparison of Solid Phase Extraction Performance of Heterocyclic Copolymer Adsorbent and Comparative Example Resin Particles Regarding the heterocycle copolymer adsorbent shown in Examples 1 and 2 and the resin particles in the comparative example
  • LC FIG. 1 shows the results of comparing the solid-phase extraction performance for each solute (phenobarbital, phenytoin, rapamycin, vancomycin) using -MS and FIA-MS.
  • the heterocyclic copolymer-containing adsorbent of the present invention is suitable for solid-phase extraction of medium to high polar solute molecules and solutes having a large molecular weight. Since the heterocyclic skeleton has multiple heteroatoms, it forms a hydrophilic adsorption site that can adsorb solutes more efficiently than a single hydrophilic group, resulting in a solid phase of medium to high polarity solute molecules. It is estimated that the recovery rate by extraction increased.
  • a planar adsorption site is formed by incorporating a heterocyclic structure into the main chain, and steric hindrance during solute adsorption is suppressed, so that a molecule having a large molecular weight such as vancomycin can be easily obtained. It is presumed that it could be adsorbed.
  • the adsorbent composed of the resin particles of the comparative example has a lower adsorption performance especially for medium to high polar solute molecules, so even when the same solid phase extraction treatment is performed, the recovery rate is 80% or less, and the recovery rate It became inferior result.
  • the recovery rate of cyclic amphiphilic solute molecules such as rapamycin tended to decrease. This is presumably because the functional group containing a hydrophilic group exists as a side chain and becomes steric hindrance, thereby inhibiting the adsorption of a cyclic amphiphilic solute molecule such as rapamycin and reducing the recovery rate.
  • a heterocyclic structure serving as a hydrophilic adsorption site into the main chain, steric hindrance at the time of drug adsorption is suppressed, and a solute having a cyclic structure can be easily adsorbed. It is estimated to be.
  • adsorption of hydrophobic structures hydrophobic interaction
  • it is possible to further improve the drug recovery performance by designing a heterocyclic copolymer-containing adsorbent with a balanced structure and copolymerization ratio of hydrophilic interaction and hydrophobic interaction. .
  • solute recovery rate was evaluated. The results are summarized in FIG. 2 and Table 1.
  • solid phase extraction could be performed by adsorbing and holding 80% or more of the solute introduction amount regardless of the solute polarity.
  • LC-MS and FIA-MS it is possible to recover each solute with high efficiency even in a mixed solution system for medium and low polarity solute molecules, and analysis of a solution containing multiple solutes It was also shown that it is applicable.
  • the divinylbenzene-triallyl cyanuric acid triallyl copolymer (Example 2) showed particularly superior drug recovery performance over the divinylbenzene-isocyanuric acid triallyl copolymer (Example 1). This is probably because the heterocyclic main chain structure of triallyl cyanurate has higher affinity for drug adsorption. Examples of divinylbenzene-triallyl cyanuric acid copolymer will be described below as representative examples of the present invention.
  • the heterocyclic structure itself is a structure that is also found in drugs, and is considered to have a high affinity with drugs.
  • By controlling the molecular structure of the heterocycle it is possible to form a specific structure using intermolecular interactions such as association, hydrogen bonding, and self-assembly, and impart structure selectivity in addition to the polar structure of the adsorbent. It can also be expected to be applied to molecular recognition functions.
  • the adsorption amount of phospholipid was evaluated for the divinylbenzene-triallyl cyanurate copolymers shown in Examples 2 to 9. The results are shown in Table 2. The relationship between the triallyl cyanurate (TACy) copolymerization ratio and the relative intensity obtained from the peak height of the LC-MS signal intensity corresponding to the mass-to-charge ratio of LPC and PC (m / z 758) is shown. Each is shown in FIG.
  • the LPC and PC relative strength of the polymer were evaluated. From this result, in the serum sample treated under the same conditions, when the introduction amount of the heterocyclic main chain structure (TACy copolymerization ratio) increases, the relative strength of phospholipid (LPC, PC) increases, and solid phase extraction treatment The amount of adsorption increased.
  • the heterocyclic structure in the present invention has a molecular structure including a plurality of hydrophilic adsorption sites capable of high-efficiency adsorption in the heterocyclic ring, and a plurality of the heterocyclic structures in the heterocyclic structure with respect to a polar group contained in one solute. Adsorption can be held by the adsorption site. Therefore, it is presumed that even in a small amount of the hydrophilic structure, the hydrophilic interaction with the solute hydrophilic portion is efficiently exhibited.
  • heterocyclic copolymer into a film-like polymer porous membrane structure by bulk polymerization, solution polymerization, or solid phase polymerization, for example, a carrier such as thin layer chromatography or a solid phase adsorption film for simple test Etc.
  • a carrier such as thin layer chromatography or a solid phase adsorption film for simple test Etc.
  • the heterocycle-containing copolymer of the present invention can exhibit adsorption performance depending on the shape and form of various copolymers as mentioned above.
  • Example 17 Comparison of solid-phase extraction performance by particle size of heterocyclic copolymer-containing adsorbent For divinylbenzene-isocyanuric acid triallyl copolymer particles, the particle size of the adsorbent, the particle size distribution and the drug recovery rate The relationship is shown below.
  • the divinylbenzene-triallyl cyanurate triaryl copolymer shown in Examples 5, 11 and 12 is contained in a solution in which a solute is adsorbed (100 ⁇ L) and pure water added for the purpose of washing the adsorbent (200 ⁇ L).
  • the recovery rate of solute components (defined as solute loss) is shown in FIG. 6, and the recovery amount of solute components eluted and recovered from the adsorbent with methanol is shown in FIG.
  • the heterocycle-containing copolymer of Example 5 in which the particle size distribution was within the specified range, no solute loss was observed, and most solute components could be recovered by adding methanol.
  • Examples 11 and 12 are adsorbents containing a large number of large particles having a particle size of 100 ⁇ m or more, as shown in FIG.
  • an adsorbent containing a large number of large particles having a particle size of 100 ⁇ m or more only the surface of the particles is involved in the adsorption when the solution is introduced, so that the solution may not penetrate into the particles.
  • the extraction efficiency can be improved by controlling the particle size distribution of the adsorbent particles to reduce the content of particles of 100 ⁇ m or more.
  • the 50% average particle size of the copolymer particles is within the range of 0.5 to 100 ⁇ m. If the particle size is too large, the effective surface area of the adsorbent is low, so that the solution flows out before adsorption occurs in the process of introducing the solution, and sufficient solid-phase extraction performance cannot be shown.
  • the solid-phase extraction performance may be deteriorated if the particles have a wide particle size distribution and contain many particles of 100 ⁇ m or more.
  • the extraction efficiency can be further improved by controlling the particle size distribution of the adsorbent particles and reducing the content of particles of 100 ⁇ m or more.
  • particle distribution conditions are more desirable in which the 50% average particle size of the particles is 0.5 to 80 ⁇ m and the 80% average particle size is 0.5 to 100 ⁇ m.
  • the solution penetrates into the particles, the effective surface area of the adsorbent involved in the adsorption is increased, and more efficient solute adsorption is possible.
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask became uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 200 rpm. After stopping the stirring, the polymerization solution and the polymer particles were separated by filtration with a glass filter. The polymer particles were repeatedly washed with pure water until the surfactant was completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • Example 19 Preparation of divinylbenzene-maleic anhydride copolymer Into a 500 mL separable flask, hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight to 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) 2 0.0 g and 100 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • divinylbenzene (DVB, manufactured by Aldrich, 80% divinylbenzene + 19% ethylvinylbenzene mixture) 7.84 g (0.06 mol), maleic anhydride (MAn, manufactured by Tokyo Chemical Industry Co., Ltd.) 5.94 g (0.06 mol) , Toluene (manufactured by Wako Pure Chemical Industries, Ltd.) 17.2 g and azoisobutyronitrile (AIBN, manufactured by Tokyo Chemical Industry Co., Ltd.) 0.14 g are mixed, heated to 50 ° C. and completely dissolved, and then added to a separable flask. It was.
  • AIBN azoisobutyronitrile
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask became uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 200 rpm. After stopping the stirring, the polymerization solution and the polymer particles were separated by filtration with a glass filter. The polymer particles were repeatedly washed with pure water until the surfactant was completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • Example 20 Preparation of divinylbenzene-diallyl isophthalate copolymer Into a 500 mL separable flask, hydroxypropylcellulose (HPC, Aldrich, average molecular weight to 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) 2 0.0 g and 100 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask became uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 200 rpm. After stopping the stirring, the polymerization solution and the polymer particles were separated by filtration with a glass filter. The polymer particles were repeatedly washed with pure water until the surfactant was completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • Example 21 Preparation of Divinylbenzene-Tetrahydrofurfuryl Acrylate Copolymer Into a 500 mL separable flask, hydroxypropylcellulose (HPC, Aldrich, average molecular weight to 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.) ) 8.0 g and 200 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • divinylbenzene (DVB, manufactured by Aldrich, 80% divinylbenzene + 19% ethylvinylbenzene mixture) 7.84 g (0.06 mol), tetrahydrofurfuryl acrylate (THFA, manufactured by Tokyo Chemical Industry Co., Ltd.) 9.37 g (0. 06 mol), 13.8 g of toluene (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.16 g of azoisobutyronitrile (AIBN, manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed, heated to 50 ° C. and completely dissolved, and then in a separable flask. Added to.
  • THFA tetrahydrofurfuryl acrylate
  • AIBN azoisobutyronitrile
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask became uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 200 rpm. After stopping the stirring, the polymerization solution and the polymer particles were separated by filtration with a glass filter. The polymer particles were repeatedly washed with pure water until the surfactant was completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • Example 22 Preparation of divinylbenzene-triallyl cyanurate copolymer Into a 500 mL separable flask, hydroxypropylcellulose (HPC, manufactured by Aldrich, average molecular weight to 10,000, viscosity 5 cP (2 wt% aqueous solution, 20 ° C.)) 2.0 g and 100 mL of water were added and stirred until completely dissolved.
  • HPC hydroxypropylcellulose
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask became uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 200 rpm. After stopping the stirring, the polymerization solution and the polymer particles were separated by filtration with a glass filter. The polymer particles were repeatedly washed with pure water until the surfactant was completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • a nitrogen introduction tube and a cooling tube were connected to the separable flask, and the polymerization system was stirred with a stirring blade for 30 minutes while purging with nitrogen. After the solution in the flask became uniformly dispersed, polymerization was performed at 80 ° C., 6 hours, and a stirring speed of 300 rpm. After stopping the stirring, the polymerization solution and the polymer particles were separated by filtration with a glass filter. The polymer particles were repeatedly washed with pure water until the surfactant was completely removed, and then repeated in the order of 2-butanone (manufactured by Wako Pure Chemical Industries), toluene (manufactured by Wako Pure Chemical Industries), and 2-butanone. Washing was performed.
  • Example 24 Comparison of solid-phase extraction performance between an amphiphilic copolymer adsorbent and a comparative adsorbent About the amphiphilic copolymer adsorbent prepared in Examples 18 to 23 and the comparative adsorbent, FIG. 9 shows the results of comparing the solid-phase extraction performance for each solute (phenobarbital, phenytoin, rapamycin) using LC-UV and FIA-MS.
  • solute phenobarbital, phenytoin, rapamycin
  • solid-phase extraction can be performed by adsorbing and holding 80% or more of the total amount of solutes of phenobarbital and phenytoin, which are medium polar solute molecules.
  • the adsorbent of the comparative example has a lower recovery rate even when the same solid-phase extraction treatment is performed because the adsorption performance particularly for medium to high polar solute molecules is lowered. became.
  • the recovery rate of cyclic amphiphilic solute molecules such as rapamycin tended to decrease. From the above results, it is clear that strong adsorption by hydrophilic interaction is essential depending on the structure of the solute, and that the recovery rate of the solute can be improved by using the adsorbent of the present invention containing a highly polar structure. became.
  • each solute can be recovered with high efficiency even in a mixed solution system of medium polarity and low polarity solute molecules, and analysis of a solution containing a plurality of solutes is possible. Was also shown to be applicable.
  • Phthalate molecules represented by dibutyl phthalate are mainly used as plasticizers for polyvinyl chloride (PVC), but in recent years, there has been concern about endocrine disrupting effects on the human body, which is subject to regulation. It has become.
  • Example about the adsorbent which is the 3rd aspect of this invention is shown, it is not limited to these Examples, It implements arbitrarily changing within the range which does not deviate from the summary. Can do.
  • IR infrared
  • a Perkin Elmer Fourier transform infrared spectrometer (Spectrum 100, Attenuated Total Reflection (ATR) was used.
  • Example 25 Polystyrene particles plasma treated by the same method as in Example 24 and methyl chloroglyoxylate were stirred in a flask. Excess methyl chloroglyoxylate was removed by filtration, and the polystyrene particles after contact were washed with alcohol and dried. Since the peak derived from the ester bond was observed by IR spectroscopic measurement of the polystyrene particle after contact, it was confirmed that methyl glyoxylate was immobilized on the polystyrene particle surface by the ester bond. The SP value ⁇ of glyoxylic acid methyl ester calculated based on the above formula was 12.4.
  • Example 26 The polystyrene particles plasma-treated in the same manner as in Example 24 were immersed in a thionyl chloride-methylene chloride solution, the excess thionyl chloride solution was distilled off under reduced pressure, and the mixture was stirred in an allantoin methylene chloride solution in a flask. Excess allantoin / methylene chloride solution was removed by filtration, and the polystyrene particles after contact were washed with alcohol and dried. A peak derived from an amide bond was observed by IR spectroscopic measurement of the polystyrene particles after contact, confirming that allantoin was immobilized on the polystyrene particle surface by the amide bond. The SP value ⁇ of allantoin calculated based on the above formula was 21.1.
  • Example 27 The polystyrene particles plasma-treated in the same manner as in Example 24 were immersed in a methanol solution of 3-ureidopropyltriethoxysilane, the excess 3-ureidopropyltriethoxysilane solution was removed by filtration, and the polystyrene particles after contact Was washed with alcohol and dried. Since a peak derived from silanol bonds was observed by IR spectroscopic measurement of polystyrene after contact, it was confirmed that 3-ureidopropyl was immobilized on the polystyrene particle surface after contact by silanol bonds. The SP value ⁇ of 3-ureidopropyl calculated based on the above formula was 13.8.
  • Example 29 Polymethyl methacrylate particles obtained by treating polymethyl methacrylate particles having an average particle diameter of 10 ⁇ m used in Example 28 in the same manner as in Example 25 and immobilizing glyoxylic acid methyl ester on the particle surface via ester bonds was made.
  • Example 30 The polymethyl methacrylate particles having an average particle diameter of 10 ⁇ m used in Example 28 were treated in the same manner as in Example 26 to produce polymethyl methacrylate particles in which allantoin was immobilized on the particle surface via an amide bond. .
  • Example 31 Polymethyl methacrylate particles having an average particle diameter of 10 ⁇ m used in Example 28 were treated in the same manner as in Example 27, and 3-ureidopropyl was immobilized on the particle surface via silanol bonds. Was made.
  • Example 33 The fine polyethylene powder having a medium particle size of 15 to 25 ⁇ m used in Example 32 was treated in the same manner as in Example 25 to produce a fine polyethylene powder in which glyoxylic acid methyl ester was immobilized on the particle surface via an ester bond. .
  • Example 34 The fine polyethylene powder having a medium particle size of 15 to 25 ⁇ m used in Example 32 was treated in the same manner as in Example 26 to produce a fine polyethylene powder in which allantoin was immobilized on the particle surface via an amide bond.
  • Example 35 The fine polyethylene powder having a medium particle size of 15 to 25 ⁇ m used in Example 32 was treated in the same manner as in Example 27 to produce a fine polyethylene powder in which 3-ureidopropyl was immobilized on the particle surface via silanol bonds. .
  • Example 37 Polystyrene particles treated with UV ozone in the same manner as in Example 36 and methyl chloroglyoxylate were stirred in the flask. Excess methyl chloroglyoxylate was removed by filtration, and the polystyrene particles after contact were washed with alcohol and dried. Since the peak derived from the ester bond was observed by IR spectroscopic measurement of polystyrene after the contact, it was confirmed that methyl glyoxylate was immobilized on the polystyrene particle surface by the ester bond.
  • Example 38 Polystyrene particles treated with UV ozone in the same manner as in Example 36 were immersed in a solution of thionyl chloride in methylene chloride, and the excess thionyl chloride solution was distilled off under reduced pressure, followed by stirring in a methylene chloride solution of allantoin in a flask. . Excess allantoin / methylene chloride solution was removed by filtration, and the polystyrene particles after contact were washed with alcohol and dried. A peak derived from an amide bond was observed by IR spectroscopic measurement of the polystyrene particles after contact, confirming that allantoin was immobilized on the polystyrene particle surface by the amide bond.
  • Example 39 Polystyrene particles treated with UV ozone in the same manner as in Example 36 were immersed in a methanol solution of 3-ureidopropyltriethoxysilane, the excess 3-ureidopropyltriethoxysilane solution was removed by filtration, and polystyrene after contact was obtained. The particles were washed with alcohol and dried. From the IR spectroscopic measurement of the polystyrene particles after contact, a peak derived from silanol bonds was observed, confirming that 3-ureidopropyl was immobilized on the polystyrene particle surfaces by silanol bonds.
  • the measurement apparatus and measurement conditions of FIA-MS are the same as those in Examples 1 to 23 above.
  • LC-UV and LC-MS measuring devices and LC-UV and LC-MS measuring conditions using these measuring devices are the same as in Examples 1 to 23 above.
  • the amount of drug recovered by the above operation and the amount and ratio of drug passed through the solid phase extraction plate were defined as the recovery rate. That is, the recovery rate is a value calculated by dividing the amount of the recovered drug by the amount of the passed drug and multiplying by 100. The results are shown in Table 5.
  • this invention is not limited to each above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. It is also possible to delete a part of the configuration of a certain embodiment or replace it with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of a certain embodiment. . All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 高極性溶質分子を含めた広範なクロマトグラフィー極性を有する溶質に対し、不純物吸着を抑制しつつ、高効率かつ選択性に優れた固相抽出が可能となる吸着材、及び固相抽出方法を提供すること。 環構造中に少なくとも2つ以上のヘテロ原子を含む複素環を有する多官能含複素環モノマーと、当該モノマーと共重合反応が可能なモノマーからなる共重合体からなり、多官能複素環が主鎖構造を構成することを特徴とする含複素環共重合体吸着材を提供する。また、固相抽出の方法は、当該含複素環共重合体吸着材に、低極性溶質分子、中極性溶質分子及び高極性溶質分子のいずれかを溶質とする溶液を接触させ、1種以上の溶質を選択的に吸着保持する工程を含む。

Description

吸着材及びその製造方法
 本発明は、吸着材及びその製造方法、並びに吸着材を用いた固相抽出方法に関する。
 近年、生体試料中の薬物濃度の微量分析技術が進歩し、薬物濃度に基づく臨床薬理学的検討が多くの薬物について行われている。その結果、薬理作用は投与量よりも薬物濃度に強く依存し、血中薬物濃度が治療効果や副作用発現の重要な判断基準になることが分かってきた。また従来、治療効果の個人差が大きいと考えられていた薬物のかなりの部分は、感受性ではなく薬物濃度の個人差に由来することが明らかになってきた。
 強い副作用を伴う薬剤に対して、薬物治療モニタリング(Therapeutic Drug Monitoring:TDM)と呼ばれる薬剤投与の方法が注目されている。通常、薬剤の使用量は、治験、臨床検査等の結果から投与量(標準用量)が決められるが、同一用量の薬剤を服用しても人によって血中薬物濃度は必ずしも等しくならない。これは吸収、組織分布、蛋白結合、肝代謝、腎排泄等、薬物体内動態における個人差があるためで、本来は投与する患者の症状に合わせて個別に最適化することが最も望ましい。TDMは個々の患者の血中薬物濃度を測定することにより、望ましい有効治療濃度に収まるように用量・用法を個別化する医療技術である。
 TDMの薬物血中濃度測定方法として、測定薬剤に対する抗体を使用した免疫学的測定法、質量分析計(Mass Spectrometry:MS)や高速液体クロマトグラフィー(High Performance Liquid Chromatography:HPLC)等を使用した分離分析法が主に用いられている。免疫学的測定法は、測定が簡便かつ迅速なため、TDM分析手法として広く用いられている。しかし、低分子量(分子量1,500以下)の分子は抗体の選択性が低く、分析精度が低い。低分子量の薬物分析手法として、HPLC分析の導入が進行しているが、測定のスループットが低く、低濃度検査で感度が不足するという欠点があった。
 一方、MS分析は不純物の影響による測定感度の低下、装置の小型化等の課題があるものの、検出感度、選択性に優れた分析方法であり、HPLC分析の欠点を解消可能なTDM分析方法として注目されている。また、MS分析の感度低下を補償する技術として、固相抽出(Solid Phase Extraction:SPE)による検体の前処理方法が(非特許文献1)で提案されている。
 固相抽出は、MS分析等の定量分析用サンプルを調製する際に用いられる手法であり、検体に含まれる分析対象外のマトリックス成分(不純物・夾雑物)を分離除去し、測定対象物の濃縮、精製を行うことができる。ここで、不純物の中には定量分析の測定感度の低下要因となる成分が含まれることがあり、固相抽出を行うことで定量分析への不純物の影響を低減できる。そのため、固相柚出は有用な分離技術として、微量な有機物の分析、例えば水質や土壌等の微量成分分析、微量添加物、毒物、農薬等の定量分析等に有用な手法であり、環境汚染、医薬開発、食品栄養評価、機能性食品栄養評価、飲料水純度評価、及びバイオテクノロジーを含め、広範な分野で使用されている。固相抽出はさらに、TDM分析の妨害成分である血漿タンパク質、リン脂質、他のマトリックス成分の除去に対しても有効であり、体内薬物及びその代謝物の分析に対しても効果を示す。
 SPE技術の理論及び実践については、例えば(非特許文献2)及び(非特許文献3)に記載の方法が挙げられる。水溶液の固相抽出は、次のような過程により行われる。まず、吸着材を筒内に充填したカラム又はカートリッジにサンプル溶液を通液し、対象物を吸着材表面に吸着し、マトリックス成分をそのまま流出させる。続いて、洗浄溶媒を通液して吸着材を洗浄した後、溶出溶媒で対象物を流去、濃縮する。ここで、溶媒-吸着材間の親和性、対象物-吸着材間の吸着強度、吸着材の表面積は、固相抽出性能を決める重要な要素である。
 汎用の固相抽出においては、通常は、シリンジやカラム、カートリッジ状の容器が使用され、カートリッジの例としては、通常の円筒状カートリッジだけでなく、ディスク及びディスクカートリッジ、マルチウェルプレート、SPEピペットチップ及びロボット互換大型貯蔵器が挙げられる。薬剤スクリーニング及び臨床試験での利用は、ともに、高い試料処理能力を必要とし、主要分析手段として液相クロマトグラフィーによる質量分析(LC-MS)、フローインジェクション方式による質量分析(FIA-MS)システムが挙げられる。この両者に利用可能なカートリッジとして、マルチウェルプレート方式(例えば、96ウェルプレート、384ウェルプレート及び1536ウェルプレート)が挙げられる。
 固相抽出用として広く使用されている吸着材の例として、シリカ粒子や疎水性のオクチル(C8)官能基やオクタデシル(C18)官能基等で表面修飾された多孔質シリカ粒子が知られている(非特許文献4)。表面修飾したシリカ粒子吸着材は、使用前に極性有機溶媒の水溶液に浸漬し、疎水性官能基と極性有機溶媒が溶媒和することで、官能基と水との親和性が高まり、溶質を吸着保持する表面積が増大する。一方、極性有機溶媒との溶媒和が不十分、もしくは乾燥した吸着材では、疎水性官能基の凝集により溶質の保持能力が低下して、固相抽出による分離が難しくなる。そのため、当該吸着材の表面は常に極性有機溶媒と十分に溶媒和した状態を保持(コンディショニング)したまま固相抽出を行う必要があり、操作が非常に煩雑となる。また、シリカ表面の残存シラノール基はpH及びイオン強度の影響を受けやすく、固相抽出条件によっては溶質の保持能力が低下することがある。
 シリカに代わる吸着材の例として、スチレン-ジビニルベンゼン又はメタクリル酸エステルを重合主鎖とする樹脂粒子を用いた技術が知られている(特許文献1~特許文献3)。樹脂粒子はシリカ粒子よりpH及びイオン強度の影響に対する安定性が高く、かつ広表面積の粒子であるため、溶質の保持能力がシリカ粒子よりも高い。一方で、表面が疎水性となるため、表面修飾シリカと同様に極性有機溶媒によるコンディショニング等の煩雑な操作が必須となる。また、いずれの粒子も溶質の極性及び固相抽出条件によって溶質の保持能力が変化し、固相抽出条件によって測定信頼性が異なるという課題があった。
 上記樹脂粒子の疎水性を緩和する方法として、ジビニルベンゼン等の疎水性モノマー中にN-ビニルピロリドンやビニルピリジン等の親水性モノマーを導入した疎水性-親水性モノマー共重合体からなる吸着材を用いる方法が知られている(特許文献4)。当該構造を有する例として、ウォーターズ社製OASIS(登録商標)HLB等のジビニルベンゼンとN-ビニルピロリドンの共重合体が挙げられる。当該吸着材は親水性の分子構造を含むため、水等の極性溶媒と吸着材間のぬれ性が向上し、かつ親水基による溶媒保持能力が高く、先述のような過剰なコンディショニングは不要となる。一方で、一部の薬剤(例えば、環状構造や分子量の大きな薬剤等)及び薬剤代謝産物のような高極性構造を持つ化合物について、吸着材表面で十分に保持することができず、固相抽出において薬剤溶液の導入及び/又は洗浄工程中に、極性溶質分子の意図しない脱離、溶出が起こり、溶質の回収率が低下する。特に、中、高極性溶質分子の固相抽出では回収率の低下が起こり、固相抽出によるサンプルの喪失が大きく、分析結果の信頼性を棄損する結果となる。この原因として、当該共重合体では親水性吸着サイトが小さく、かつ孤立しているため、親水性相互作用による分子の強固な吸着を形成するには至らず、極性の高い分子との吸着が弱いためと推定される。加えて、吸着材に含まれる親水性官能基は、かさ高い構造を有するため、薬剤吸着時の立体障害要因となり溶質回収率低下の一因になると推定される。
 また、イオン性結合の利用を目的として、スルホン酸やアミンで表面修飾した樹脂粒子も市販されているが、表面極性が高まることで低極性溶質分子の回収率が相対的に低下するため、単純な親水性向上だけでは、広範なクロマトグラフィー極性を有する溶質の回収を達成することができない。
 高極性薬剤をターゲットとした吸着材の例として、スチレン-ジビニルベンゼン共重合体粒子の表面をニトロ化、還元及びアセチル化の順で表面処理を行い、極性溶質分子を保持可能な親水性表面を形成した重合体吸着材が開示されている(特許文献5)。表面がアセチル基で覆われた球状粒子とすることで親水性表面が形成され、極性溶質の保持能に優れた性能を示す。一方、表面が親水基で覆われるため、非極性構造を持つ分子では吸着材表面への保持能力が低下し、十分な固相抽出性能を発現することができない。また、表面親水性が非常に高いため、薬剤以外の意図しない不純物吸着の発生、薬剤-吸着材間の強固な吸着による脱離阻害等、疎水性-親水性モノマー共重合体とは異なる課題がある。
 また、例えば(特許文献6)には、特定の溶解性パラメータを有する粒子状重合体に対して特定の化合物を反応させる吸着材の製造方法が記載されている。
米国特許第5,618,438号明細書 米国特許第5,882,521号明細書 米国特許第6,106,721号明細書 国際公開第97/38774号パンフレット 国際公開第03/102061号パンフレット 特開2000-5598号公報
P. McDonald, Solid Phase Extraction Applications Guide and Bibliography, sixth edition, Waters, Milford, MA (1995) E. M. Thurman and M. S. Mills, Solid-Phase Extraction Principles and Practice, Wiley and Sons, New York, NY (1998) N. J. K. Simpson, Solid-Phase Extraction: Principles, Techniques and Application, Marcel Dekker, New York, NY (2000) Bakerbond SPE Bibliography, JTBaker, Inc., Phillipsburg, NJ (1995)
 先に示したように、固相抽出において、不純物(夾雑物)の影響による分析装置の測定感度低下は大きな課題であり、固相抽出による前処理は測定対象物の濃縮、精製に有効な手段である。組成の複雑な成分分析(水質や土壌等の微量成分分析、微量添加物、毒物、農薬等の定量分析、環境汚染評価、医薬開発、食品栄養評価、機能性食品栄養評価、飲料水純度評価、TDM分析等)において、測定対象の溶質を強力に保持することのできる吸着材を求めるニーズがある。また、溶質を吸着した吸着材について、水、水溶液又は有機溶媒で吸着材を洗浄し、不純物の除去が可能な吸着材を求めるニーズもある。また、洗浄過程において、質量分析検出に干渉してイオンサプレッションを引き起こす恐れのある不純物を除去することで、MS分析の測定感度上昇が期待できる。また、水や極性溶媒によって容易に溶媒和され、長期間、溶媒和された状態を保ち、湿潤条件下又は乾燥条件下で同等の固相抽出性能を示すことが望ましい。
 特に、TDM用薬剤定量分析においては、当該前処理による不純物量の低減が不可欠である。その一方で、測定対象の薬剤は多種多様な分子構造を持ち、極性の有無、極性の高低は分子構造により異なる。そのため、固相抽出用の吸着材には、より広範なクロマトグラフィー極性を有する溶質を高効率に保持できる吸着性能が強く求められる。また、MS分析の分析回数の低減、高効率化、血中に含まれる薬剤成分のスクリーニング等を目的として、一度に複数の測定対象物について評価を行うケースも十分考えられる。そのため、吸着材には測定対象成分のみを吸着する選択性も重要である。
 上記(特許文献4)に示した吸着材は、吸着材表面のぬれ性向上によってコンディショニングの簡素化が可能となり、プロセス性に優れた固相抽出を行うことができる。しかし、当該吸着材においては薬剤親水性構造との十分な親水性相互作用による吸着を起こすに至らず、極性の高い分子ほど固相抽出によるサンプル回収量が低下する傾向がある。また、親水性官能基が立体障害となって、溶質吸着が阻害される。TDM分析のターゲット薬剤の一種となる、抗てんかん剤や抗生物質には環状の分子構造を持つ薬剤、分子量の大きい薬剤及び極性の高い薬剤が多く含まれており、これらの薬剤を高効率に固相抽出できる吸着材の開発が強く求められる。一方で、上記(特許文献5)のように、親水性構造で覆われた構造では、炭化水素基等の非極性構造との疎水性相互作用が弱まり、低極性薬剤の回収効率の低下が懸念される。当該構造は不純物吸着の増加要因となり得るため、吸着材表面における親水構造の単純な増加だけでは、吸着材の機能性向上を図ることはできない。
 また、(特許文献4)に記載の技術においては、吸着材の製造時に用いられる疎水性モノマーと親水性モノマーとは親和性が低く、これらを共重合させる際の重合条件によって、得られる重合体の例えば重合比及び粒径等が大きくばらつくことがある。したがって、このようにして製造された吸着材は、吸着材としての性能が安定しないという課題がある。ひいては、性能を安定させるために重合条件を厳密に制御しなければならないことがあり、結果として製造コストが高いという課題もある。
 また、(特許文献6)に記載の技術においては、樹脂表面を長鎖の炭化水素(アルキル)基で覆った疎水性吸着材であり、高極性薬剤の固相抽出性能が低いという課題がある。
 本発明の課題としては、高極性溶質分子を含めた広範なクロマトグラフィー極性を有する溶質に対し、高効率かつ選択性に優れた固相抽出が可能となる吸着材について、現状では得られていないことである。そのため、当該課題及びその他の問題の解決を目的として、下記の共重合体吸着材及びそれを用いた固相抽出の方法について検討した。
 また、本発明は上記の課題を解決するべくなされたものであり、その目的は、安価で抽出性能に優れる吸着材及びその製造方法を提供することにある。
 本発明者らは、親水性官能基の高極性化、立体障害を低減可能な親水性官能基の適用及び不純物の吸着抑制と薬剤回収性能の両立等の技術課題を解決するための手段として、含複素環共重合体吸着材に着目し、当該吸着材について鋭意検討を進めた結果、本発明を完成するに至った。以下、本発明の解決手段について開示する。
 本発明の解決手段の一つとしては、環構造中に少なくとも2つ以上のヘテロ原子を含む複素環を有し、かつ重合反応性の官能基を2つ以上有する多官能含複素環モノマーと、当該多官能含複素環モノマーと共重合反応が可能な重合反応性の官能基を1つ以上有するモノマーとを、それぞれ少なくとも1種以上含む共重合体からなり、複素環が主鎖構造を構成することを特徴とする含複素環共重合体吸着材である。多官能モノマーと採用することで複素環を主鎖構造に組み込み、立体障害の小さい平面状吸着サイトを形成できる。環構造に含まれるヘテロ原子の例としては、電気陰性度が炭素よりも高い典型元素が望ましい。当該ヘテロ原子は他の親水構造及び水素結合等を介して溶質の親水部との親水性相互作用を誘起できる原子である。加えて、複素環構造は非共有電子対を有するヘテロ原子を有することで複素環内の極性に偏りが生じ、溶質の極性部位との親水性相互作用を示すようになる。ここで、複素環に含まれるヘテロ原子が単数であると環構造の十分な極性差が得られず、高極性薬剤等の吸着力は弱いが、ヘテロ原子を2つ以上有する構造とすることで、環構造内の高い極性差が得られるようになる。また、複数の親水構造を含むことにより、1つの溶質に含まれる極性基に対して複素環内の複数の吸着サイトにより吸着保持できるようになる。これは、錯体における多座配位子のような形で、例えば1つの溶質極性基に対して橋掛け状の親水性結合を形成し、複数含まれる溶質極性基に対しては梯子状の親水性結合の形成により、薬剤をより強固かつ安定に吸着保持することが可能となる。
 本発明における他の解決手段としては、溶液中に含まれる溶質を分離する固相抽出の方法を開示する。その方法は、前述の含複素環共重合体吸着材に、低極性溶質分子、中極性溶質分子及び高極性溶質分子の1種以上を溶質とする溶液を接触させ、ぬれが生じることで1種類以上の溶質を選択的に吸着保持させる工程を含むことを特徴とする、固相抽出方法である。溶液の例としては、例えば検体を含む生体基質、環境試料、医薬試料等が挙げられる。固相抽出用装置の例としては、端部が開放された容器中に、先述の含複素環共重合体吸着材が充填された固相抽出カートリッジ、固相抽出カラム等が挙げられる。また、本解決手段の適用例としては、固相抽出装置を検体の前処理に用いることを特徴とする、液相クロマトグラフィーによる質量分析(LC-MS)システム、フローインジェクション方式による質量分析(FIA-MS)システム等が挙げられる。
 また、両親媒性の共重合体吸着材及びそれを用いた固相抽出方法について検討した結果、本発明における他の解決手段として、以下の(1)~(29)を提供する。
(1)高極性分子構造を有する高極性モノマーから構成されるモノマー単位、及び溶解度パラメータ(SP値)が10.0以下の低極性モノマーから構成されるモノマー単位をそれぞれ1種類以上含み、両モノマー間のSP値の差が少なくとも2.2である共重合体からなり、溶質の吸着が可能な接触表面を備える、両親媒性共重合体吸着材。
(2)SP値が11.5以上の高極性モノマーから構成されるモノマー単位、及びSP値が10.0以下の低極性モノマーから構成されるモノマー単位をそれぞれ1種類以上含む共重合体からなり、溶質の吸着が可能な接触表面を備える、両親媒性共重合体吸着材。
(3)共重合体のSP値が9.5以上である、前記(1)又は(2)に記載の両親媒性共重合体吸着材。
(4)高極性モノマーが、N-フェニルマレイミド、無水マレイン酸、フマル酸、マレイン酸及びトリアリルイソシアヌレートから選択される、前記(1)~(3)のいずれかに記載の両親媒性共重合体吸着材。
(5)エステル結合、ウレタン結合、アミド結合、チオエステル結合、テトラヒドロフラン環、フラン環、カルボキシル基、アミノ基、アルキルアミノ基及びジアルキルアミノ基から選択される1種類以上の高極性分子構造を複数個有し、かつ該複数個の高極性分子構造間に含まれる炭素原子が4原子以内である高極性モノマーから構成されるモノマー単位、及びSP値が10.0以下の低極性モノマーから構成されるモノマー単位をそれぞれ1種類以上含む共重合体からなり、溶質の吸着が可能な接触表面を備える、両親媒性共重合体吸着材。
(6)高極性モノマーが、メチレンビスアクリルアミド、アクリル酸テトラヒドロフルフリル、メタクリル酸テトラヒドロフルフリル、フタル酸ジアリル、イソフタル酸ジビニル、イソフタル酸ジアリル、テレフタル酸ジビニル、テレフタル酸ジアリル、アクリル酸フルフリル及びメタクリル酸フルフリルから選択される、前記(5)に記載の両親媒性共重合体吸着材。
(7)イソシアヌル酸エステル骨格、シアヌル酸エステル骨格、ヘキサヒドロトリアジン骨格、マレイミド骨格及びイミダゾール骨格から選択される高極性分子構造を有する高極性モノマーから構成されるモノマー単位、及びSP値が10.0以下の低極性モノマーから構成されるモノマー単位をそれぞれ1種類以上含む共重合体からなり、溶質の吸着が可能な接触表面を備える、両親媒性共重合体吸着材。
(8)高極性モノマーが、N-フェニルマレイミド、トリアリルイソシアヌレート、トリアリルシアヌレート、1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジン、N-フェニルマレイミド及び1-ビニルイミダゾールから選択される、前記(7)に記載の両親媒性共重合体吸着材。
(9)エーテル結合、エステル結合、ウレタン結合、アミド結合、チオエステル結合、カルボキシル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基及びヘテロ環から選択される1種類以上の高極性分子構造を有する高極性モノマーであって、該高極性モノマー中のヘテロ原子の重量比が30重量%以上である高極性モノマーから構成されるモノマー単位、及びSP値が10.0以下の低極性モノマーから構成されるモノマー単位をそれぞれ1種類以上含む共重合体からなり、溶質の吸着が可能な接触表面を備える、両親媒性共重合体吸着材。
(10)高極性モノマーが、N,N-ジメチルアクリルアミド、マレイン酸、フマル酸、メタクリル酸及びアクリル酸から選択される、前記(9)に記載の両親媒性共重合体吸着材。
(11)共重合体を構成する少なくとも1種類のモノマーが、重合可能な不飽和官能基を2個以上含む多官能モノマーである、前記(1)~(10)のいずれかに記載の両親媒性共重合体吸着材。
(12)低極性モノマーが、アリルグリシジルエーテル(SP値8.7)、スチレン(SP値9.2)、ジビニルベンゼン(SP値9.3)、メタクリル酸メチル(SP値9.4)、アクリル酸メチル(SP値9.5)、酢酸ビニル(SP値9.5)及びビスビニルフェニルエタン(SP値9.9)から選択される、前記(1)~(11)のいずれかに記載の両親媒性共重合体吸着材。
(13)トリアリルイソシアヌレート、無水マレイン酸、イソフタル酸ジアリル、アクリル酸テトラヒドロフルフリル、トリアリルシアヌレート及びN,N-ジメチルアクリルアミドから選択される高極性モノマーから構成されるモノマー単位、及び低極性モノマーとしてジビニルベンゼンから構成されるモノマー単位を含み、溶質の吸着が可能な接触表面を備える、両親媒性共重合体吸着材。
(14)懸濁重合、乳化重合、エマルション重合、スプレードライ法、粉砕又は破砕により粒子として調製される、前記(1)~(13)のいずれかに記載の両親媒性共重合体吸着材。
(15)塊状の粒子である、前記(14)に記載の両親媒性共重合体吸着材。
(16)球状の粒子である、前記(14)に記載の両親媒性共重合体吸着材。
(17)粒子の粒径が0.5~100μmである、前記(16)に記載の両親媒性共重合体吸着材。
(18)非極性溶質分子、低極性溶質分子、中極性溶質分子及び高極性溶質分子から選択される1種類以上を溶質として含む溶液と、前記(1)~(17)のいずれかに記載の両親媒性共重合体吸着材とを接触させ、溶液中の溶質を両親媒性共重合体吸着材に吸着保持させる工程を含む、固相抽出方法。
(19)溶液が極性溶媒を含む、前記(18)に記載の固相抽出方法。
(20)極性溶媒が、水又は水と極性有機溶媒との混合溶媒である、前記(19)に記載の固相抽出方法。
(21)極性溶媒が、メタノール、エタノール、プロパノール、2-プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、1,4-ジオキサン、N,N-ジメチルホルムアミド及びジメチルスルホキシドから選択される1種類以上を含む、前記(19)に記載の固相抽出方法。
(22)溶液が、血漿、血清、血液、尿、髄液、滑液、生体組織抽出物、水溶液、地下水、地表水、土壌抽出物、化粧品、食品物質、又は食品物質の抽出物を含む、前記(18)~(21)のいずれかに記載の固相抽出方法。
(23)固相抽出対象である溶質が、薬剤、抗菌剤、薬物、殺虫剤、除草剤、毒物、生体分子、汚染物質、又はそれらの代謝産物もしくは分解生成物である、前記(18)~(22)のいずれかに記載の固相抽出方法。
(24)生体分子が、タンパク質、ビタミン、ホルモン、ポリペプチド、ポリヌクレオチド、脂質又は炭水化物である、前記(23)に記載の固相抽出方法。
(25)端部が開放された容器に、前記(1)~(17)のいずれかに記載の両親媒性共重合体吸着材が充填されてなる、固相抽出カートリッジ。
(26)端部が開放された容器に、前記(1)~(17)のいずれかに記載の両親媒性共重合体吸着材が充填されてなる、固相抽出カラム。
(27)前処理として、前記(25)記載の固相抽出カートリッジ又は前記(26)に記載の固相抽出カラムによる溶質の固相抽出を行う、液相クロマトグラフィー/紫外分光分析(LC-UV)システム。
(28)前処理として、前記(25)記載の固相抽出カートリッジ又は前記(26)に記載の固相抽出カラムによる溶質の固相抽出を行う、液相クロマトグラフィー/質量分析(LC-MS)システム。
(29)前処理として、前記(25)記載の固相抽出カートリッジ又は前記(26)に記載の固相抽出カラムによる溶質の固相抽出を行う、フローインジェクション方式による質量分析(FIA-MS)システム。
 さらに、本発明者らが上記課題を解決するべく鋭意検討した結果、他の解決手段として、特定の溶解度パラメータを有する疎水性樹脂の表面の一部に、特定の溶解度パラメータを有する親水性基を結合させることにより、安価で吸着性能に優れる吸着材及びその製造方法を提供することができることを見出し、本発明を完成させた。
 本明細書は本願の優先権の基礎である日本国特許出願2010-270421号、2010-104201号、2010-140691号の明細書及び/又は図面に記載される内容を包含する。
 本発明によれば、非共有電子対を有するヘテロ元素を複数個有する複素環を適用することで、溶質の親水性官能基、高極性構造との親水性相互作用によって溶質を強固に吸着、保持することが可能な含複素環共重合体吸着材を得ることができる。また、多官能の複素環とすることで、親水基は単官能モノマーからなる重合体のように側鎖としてではなく、主鎖構造に取り込まれて存在することができる。そのため、溶質の吸着表面に対する、官能基による立体障害が低減され、より高効率な溶質吸着が可能となる。加えて、複数のヘテロ原子を有する複素環を導入することで、単数の親水基を持つ場合よりも高効率に溶質吸着が可能な親水性吸着サイトが形成され、単数の親水基を有する吸着材と比較して、親水性モノマーの共重合比を抑えることが可能となる。背景技術でも示したとおり、吸着材の親水性が高くなると、例えばTDM分析における薬剤以外の極性不純物(例えば、リン脂質等)の吸着が起こりやすくなるが、含複素環共重合体吸着材の適用により、極性不純物の吸着抑制と溶質回収性能の維持を両立することが可能となる。また、当該吸着材を用いることで、広範なクロマトグラフィー極性を有する溶質に対して、吸着過程では溶質と吸着材とがより強固に結合し、かつ容易に溶質の回収が可能な高効率かつ選択性に優れた固相抽出の方法、固相抽出カートリッジ、固相抽出カラム等の固相抽出装置の提供、それらの固相抽出装置を検体の前処理として用いたLC-MSシステム、FIA-MSシステム等の提供することができる。上記した以外の課題、構成及び構成は、以下の実施形態の説明により明らかにされる。
 また、本発明によれば、別の解決手段として、高極性及び低極性構造を吸着材中に併存させた共重合体とすることで、溶質の高極性構造、低極性構造のいずれも高効率に吸着、保持することが可能な両親媒性共重合体吸着材を得ることができる。また、当該吸着材を用いることで、広範なクロマトグラフィー極性を有する溶質について、吸着過程では溶質と吸着材がより強固に結合し、かつ容易に溶質の回収が可能な高効率かつ選択性に優れた固相抽出の方法、並びに固相抽出カートリッジ、固相抽出カラム等の固相抽出装置を提供することができる。さらに、本発明の固相抽出方法を前処理として実施することにより、測定感度が高いLC-MSシステム、FIA-MSシステム等を提供することができる。
 さらに、本発明によれば、安価で吸着性能に優れる吸着材及びその製造方法を提供することができる。
実施例1及び2の含複素環共重合体吸着材と比較例の樹脂粒子について、LC-MS分析(フェノバルビタール、フェニトイン)及びFIA-MS分析(バンコマイシン、ラパマイシン)を用いて、各溶質の固相抽出を行い、溶質の回収率を比較した結果を示すグラフである。 実施例1及び2の含複素環共重合体吸着材について、LC-MS分析(フェノバルビタール、フェニトイン、カルバマゼピン、ジアゼパム)及びFIA-MS分析(バンコマイシン、テオフィリン、エベロリムス、ラパマイシン、フタル酸ジブチル)を用いて、各溶質分子に対する固相抽出性能を評価した結果を示すグラフである。 実施例2~9のジビニルベンゼン-シアヌル酸トリアリル共重合体について、シアヌル酸トリアリル(TACy)共重合比と、リン脂質の一種であるリゾホスファチジルコリン(LPC)及びホスファチジルコリン(PC)の質量電荷比(LPC:m/z496、PC:m/z758)に対応するLC-MSの信号強度のピーク高さより求めた各相対強度との関係を示すグラフである。ここで、LC-MSの信号強度のピーク高さが最も高かった実施例9(TACy共重合比=33.4mol%)のピーク高さを100%として、他の共重合体のLPC及びPCのそれぞれの相対強度を求めた。 実施例3、5及び7のジビニルベンゼン-シアヌル酸トリアリル共重合体について、FIA-MSを用いて溶質分子(バンコマイシン、テオフィリン、フェノバルビタール、フェニトイン、カルバマゼピン、ジアゼパム、エベロリムス、ラパマイシン、フタル酸ジブチル)に対する固相抽出性能を評価した結果を示すグラフである。 実施例10のジビニルベンゼン-シアヌル酸トリアリル共重合体からなるモノリス状カラムについて、FIA-MSを用いて溶質分子(バンコマイシン、テオフィリン、フェノバルビタール、フェニトイン、カルバマゼピン、ジアゼパム、エベロリムス、ラパマイシン、フタル酸ジブチル)に対する固相抽出性能を評価した結果を示すグラフである。 吸着材の粒径、粒径分布の異なる実施例5、11及び12のジビニルベンゼン-シアヌル酸トリアリル共重合体について、溶質を吸着させた溶液(100μL)、及び吸着材の洗浄を目的に添加した純水(200μL)中に含まれる溶質成分(バンコマイシン、テオフィリン、フェノバルビタール、フェニトイン、カルバマゼピン、ジアゼパム、エベロリムス、ラパマイシン、フタル酸ジブチル)の回収率(溶質ロス)をFIA-MSを用いて評価した結果を示すグラフである。 吸着材の粒径、粒径分布の異なる実施例5、11及び12のジビニルベンゼン-シアヌル酸トリアリル共重合体について、FIA-MSを用いて溶質分子(バンコマイシン、テオフィリン、フェノバルビタール、フェニトイン、カルバマゼピン、ジアゼパム、エベロリムス、ラパマイシン、フタル酸ジブチル)に対する固相抽出性能を評価した結果を示すグラフである。 吸着材の粒径、粒径分布の異なる実施例5、11及び12のジビニルベンゼン-シアヌル酸トリアリル共重合体について、粒径分布を測定した結果を示すグラフである。 実施例18~23の両親媒性共重合体吸着材及び比較例の吸着材を用いて、各溶質を含む溶液の固相抽出を行い、LC-UV分析(フェノバルビタール、フェニトイン)及びFIA-MS分析(ラパマイシン)によって測定した溶質の回収率を示すグラフである。 実施例18~23の両親媒性共重合体吸着材を用いて、高極性溶質分子(テオフィリン)を含む溶液の固相抽出を行い、LC-MSによって測定した溶質の回収率を示すグラフである。 実施例18~23の両親媒性共重合体吸着材を用いて、中極性溶質分子(フェノバルビタール、フェニトイン、カルバマゼピン、ジアゼパム)を含む混合溶液の固相抽出を行い、LC-MSによって測定した溶質の回収率を示すグラフである。 実施例18~23の両親媒性共重合体吸着材を用いて、低極性溶質分子(エベロリムス、ラパマイシン、フタル酸ジブチル)を含む混合溶液の固相抽出を行い、FIA-MSによって測定した溶質の回収率を示すグラフである。
 まず、本発明の第一の態様である含複素環共重合体吸着材及びそれを用いた固相抽出方法について説明する。
 従来の吸着材技術において、極性溶媒のぬれ性向上を目的として疎水-親水構造を持つ共重合体の提案がなされていたが、本発明のような複素環の主鎖構造と比較して親水性の低いモノマーの導入が主であり、吸着の形成において親水性相互作用の寄与が低い。特に、固相抽出による高極性溶質分子の回収能力が低下する傾向があり、親水性相互作用による吸着は補助的な作用にとどまっている。本発明では、高効率な薬剤吸着を達成するための指標として(1)親水性吸着サイトの吸着能向上(2)薬剤吸着部位の立体障害低減(3)極性不純物の吸着抑制の3つの項目に着目し、多官能含複素環モノマーを定義するに至った。以下、本発明では、対象溶質に薬剤、薬品を想定して記述する。しかし、本発明における対象溶質は、固相抽出により回収される物質であれば特に限定されない。好適な対象溶質としては薬品、薬剤、抗菌剤、抗てんかん剤、免疫抑制剤、薬物、殺虫剤、除草剤、毒物、生体分子、汚染物、代謝薬剤、又は代謝産物の分解生成物等が挙げられる。
 本発明における多官能含複素環モノマーとは、環構造中に少なくとも2つ以上のヘテロ原子を含む複素環を有し、かつ重合反応が可能な官能基を2つ以上有するモノマー群を指す。当該モノマー群はいずれも複素環内に複数の親水性吸着サイトを有するため、それらの複数のサイトが協奏的に親水性相互作用を起こすと推定され、親水基が単数の場合よりも溶質の吸着保持が容易かつ強固である。加えて、重合反応が可能な官能基を2つ以上有することで、複素環は共重合体の主鎖に組み込まれることとなる。これにより、親水性吸着サイトは従来の側鎖として存在する官能基のようなかさ高い構造ではなく共重合体の主鎖に対して平面状の構造を取ると推定される。この結果、溶質吸着時の立体障害の影響が抑制され、溶質の親水部が容易に吸着材と親水性相互作用を起こして吸着を生じる。続いて、溶質の疎水性部位が吸着材の疎水性骨格との疎水性相互作用により吸着されて安定化し、溶質全体が吸着保持されるものと推定する。また、複素環の主鎖構造の導入によって極性溶媒との溶媒和、ぬれ性が向上する。
 本発明における多官能含複素環モノマーと共重合反応が可能な官能基を含むモノマーとは、上記多官能含複素環モノマーと共重合が可能なモノマーであれば、重合部位の構造や主鎖構造、官能基の構造について特に制限はない。本発明における溶質吸着においては、親水性相互作用は主に複素環の構造によってもたらされる効果であるため、共重合の相手となるモノマーの構造には依存しないと推定される。ここで、疎水性部位が多い疎水性溶質を吸着させる場合、従来のように親水性部位の多いモノマーを導入することで、吸着性能の低下及び不純物吸着量の増加等の意図しない結果を生じる可能性がある。そのため、当該共重合相手のモノマーについては炭化水素基、炭化水素環、芳香族炭化水素等の疎水性構造を持つモノマー群がより望ましい。当該モノマー群は炭化水素基等の疎水性構造との親和性が高く、疎水性相互作用によって吸着が起こる。また、複素環構造との極性コントラストの形成により、高極性溶質分子、中極性溶質分子、低極性溶質分子のいずれに対しても吸着保持能力に優れた吸着材表面を提供することができる。
 本発明における吸着とは、親水性相互作用及び疎水性相互作用によって、溶質と吸着材とが可逆的に結合した状態を指す。親水性相互作用は、主に水素結合、双極子-双極子相互作用、イオン-双極子間相互作用、双極子-誘起双極子相互作用、ロンドン分散力等の極性構造が関与する分子間力全般を指す。
 本発明における溶質の極性については、オクタノール・水分配係数(logP)に基づき、以下のように定義する。高極性溶質分子とは、logP値が-2.0~1.5である分子を意味する。同様に、中極性溶質分子はlogP値が1.5~3.0、低極性溶質分子はlogP値が3.0以上のものを意味する。なお、logP値は溶質の極性を数値的に示したものであり、分子構造計算の値、実測値のいずれも適用することができる。また、低極性、中極性及び高極性の分類は、本発明の実施形態を説明するために示したものであり、これらの分類によって本発明の範囲が制限されることはない。
 本発明の目的の一つは、高極性溶質分子を含む広範なクロマトグラフィー極性を有する溶質に対して、高効率かつ選択性に優れた吸着及び固相抽出が可能となる吸着材の提供である。具体的には、高極性溶質分子(テオフィリン(logP=-0.02)等)、中極性溶質分子(フェノバルビタール(logP=1.7)、フェニトイン(logP=2.5)、カルバマゼピン(logP=2.5)、ジアゼパム(logP=2.9)等)、低極性溶質分子(エベロリムス(logP=3.4)、ラパマイシン(logP=3.5)、フタル酸ジブチル(logP=4.7)等)のいずれの溶質についても、固相抽出によって容易に吸着保持、回収が可能な吸着材の開発である。
 背景技術の項でも示した通り、市販されている先行技術の重合体吸着材は、組成及び表面構造によって保持できる溶質の種類が異なる。特に、不得意な極性の溶質に対しては、固相抽出による回収効率が低下し、場合によっては溶質の回収ができないこともある。また、洗浄過程で溶質の流出が起こるため、洗浄条件や回数が制限されてしまい、回収した溶質の純度が低下する懸念もある。しかし、下記に示すような構成とすることで、本発明の重合体吸着材は市販材の課題を克服することが可能である。本発明における吸着材は、以下の構成を特徴とする。
(1)環構造中に少なくとも2つ以上のヘテロ原子を含む複素環を有し、かつ重合反応性の官能基を2つ以上有する多官能含複素環モノマーと、当該多官能含複素環モノマーと共重合反応が可能な重合反応性の官能基を1つ以上有するモノマーとを、それぞれ少なくとも1種以上含む共重合体からなり、複素環が主鎖構造を構成する含複素環共重合体吸着材。
(2)重合反応性の官能基が、不飽和炭化水素を含む官能基である上記(1)に記載の含複素環共重合体吸着材。
(3)多官能含複素環モノマーに含まれるヘテロ原子が、窒素、酸素、リン、硫黄、セレン及びテルルからなる群より選ばれる1種以上である上記(1)又は(2)に記載の含複素環共重合体吸着材。
(4)多官能含複素環モノマーに含まれる複素環が、五員環又は六員環である上記(1)~(3)のいずれかに記載の含複素環共重合体吸着材。
(5)多官能含複素環モノマーに含まれる複素環が、ジアゾール環、トリアゾール環、テトラゾール環、ジアジン環、トリアジン環又はテトラジン環である上記(4)に記載の含複素環共重合体吸着材。
(6)多官能含複素環モノマーが、シアヌル酸トリアリル又はその誘導体、イソシアヌル酸トリアリル又はその誘導体及びメラミン誘導体からなる群より選ばれる1種以上である上記(4)又は(5)に記載の含複素環共重合体吸着材。
(7)多官能含複素環モノマーが、イソシアヌル酸トリアリル、イソシアヌル酸ジアリル、シアヌル酸トリアリル及び1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジンからなる群より選ばれる1種以上である上記(4)~(6)のいずれかに記載の含複素環共重合体吸着材。
(8)重合反応性の官能基を1つ以上有するモノマーが、疎水性モノマーである上記(1)~(7)のいずれかに記載の含複素環共重合体吸着材。
(9)重合反応性の官能基を1つ以上有するモノマーが、アリルグリシジルエーテル、スチレン、ジビニルベンゼン、メタクリル酸メチル、アクリル酸メチル、酢酸ビニル及びビスビニルフェニルエタンからなる群より選ばれる1種以上である上記(1)~(8)のいずれかに記載の含複素環共重合体吸着材。
(10)共重合体が、ランダム共重合体、交互共重合体又はブロック共重合体である上記(1)~(9)のいずれかに記載の含複素環共重合体吸着材。
(11)多官能含複素環モノマーの共重合比が、0.5~35mol%である上記(1)~(10)のいずれかに記載の含複素環共重合体吸着材。
(12)懸濁重合、乳化重合、エマルション重合、スプレードライ法、粉砕又は破砕により調製される共重合体粒子である上記(1)~(11)のいずれかに記載の含複素環共重合体吸着材。
(13)塊状の共重合体粒子である上記(12)に記載の含複素環共重合体吸着材。
(14)球状の共重合体粒子である上記(12)に記載の含複素環共重合体吸着材。
(15)水及び有機溶媒が内部を透過できる多孔質の共重合体粒子である上記(12)~(14)のいずれかに記載の含複素環共重合体吸着材。
(16)共重合体粒子の50%平均粒径が、0.5~100μmである上記(12)~(15)のいずれかに記載の含複素環共重合体吸着材。
(17)共重合体粒子の50%平均粒径が0.5~80μmであり、80%平均粒径が0.5~100μmである上記(12)~(15)のいずれかに記載の含複素環共重合体吸着材。
(18)塊状重合又は溶液重合により調製されるモノリス状高分子多孔質構造体からなる上記(1)~(11)のいずれかに記載の含複素環共重合体吸着材。
(19)塊状重合、溶液重合又は固相重合により調製される高分子多孔質膜構造体からなる上記(1)~(11)のいずれかに記載の含複素環共重合体吸着材。
 広範なクロマトグラフィー極性を有する溶質の単離に使用できる吸着材の設計を鋭意検討した結果、我々は吸着材側の分子構造に着目し、従来材よりも極性の高い特定の複素環構造を持つ多官能モノマーを複合化した含複素環共重合体とすることで、目的の性能を満足できる吸着材が得られることを新規に見出した。すなわち、多官能含複素環モノマーの導入によって、吸着材中に極性の高い部位を局所的に形成し、低極性-高極性構造のコントラストを持つ吸着材を得ることができる。また、重合反応が可能な官能基を2つ以上有する多官能含複素環モノマーとすることで、複素環は共重合体の主鎖に組み込まれ、溶質吸着時の立体障害の影響が抑制され、溶質の親水部との親水性相互作用による吸着がより容易に生じる。
 当該構造を持つ吸着材とすることで、特定の複素環構造による親水性相互作用、及び低極性構造による疎水性相互作用をそれぞれ両立し、溶質-吸着材間に強固な吸着を形成し、中、高極性溶質分子の固相抽出効率を大幅に向上させることができる。また、親水性を示す複素環構造の極性が高いことから、従来材のような共重合体と比較して、高極性モノマー共重合比の低い条件であっても、水や極性有機溶媒とのぬれ性を確保したまま、十分な溶質との吸着性能を示す。また、親水性表面処理のような従来手法とは異なるため、吸着材の疎水性構造はそのまま維持され、低極性溶質分子との吸着性能にも優れた性能を示す。以上に示したように、低極性-複素環構造のコントラストをもつ含複素環共重合体を適用することで、様々な溶質に適合可能な吸着材を得ることができる。
 本発明に適した含複素環共重合体の例として、環構造中に少なくとも2つ以上のヘテロ原子を含む複素環を有し、かつ重合反応性の官能基を2つ以上有する多官能含複素環モノマーと、多官能含複素環モノマーと共重合反応が可能な重合反応性の官能基を含むモノマーとの共重合体が挙げられる。多官能モノマーとすることで複素環が主鎖構造に組み込まれ、立体障害の小さい平面状吸着サイトを形成することができる。重合反応が可能な官能基の例としては、ラジカル共重合等により共重合比のコントロールの容易な不飽和炭化水素基等がより望ましい。
 環構造に含まれるヘテロ原子の例としては、窒素、酸素、リン、硫黄、セレン及びテルルからなる群より選ばれる1種以上が望ましく、より望ましくは窒素、酸素及び硫黄である。これらのヘテロ原子は、電気陰性度が炭素よりも高い典型元素であり、他の親水構造及び水素結合等を介して溶質親水部との親水性相互作用を誘起できる原子である。特に、ヘテロ原子を2つ以上有することで、環構造の極性が高まり、また複数の親水構造による協奏的吸着保持によって溶質をより強固かつ安定に吸着保持することが可能となる。環構造中に少なくとも2つ以上のヘテロ原子を含む複素環としては、条件を満たす複素環であれば特に制限は無いが、環構造の極性や複数の親水構造による協奏的吸着保持の起こりやすさを考慮し、5員環もしくは6員環の複素環、例えばアゾール環、トリアゾール環、テトラゾール環、ジアジン環、トリアジン環、テトラジン環等が望ましく、より望ましくは6員環の複素環である。具体的な複素環構造の例としては、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、オキサゾール環、オキサゾリン環、オキサゾリジン環、イソオキサゾール環、イソオキサゾリン環、イソオキサゾリジン環、チアゾール環、チアゾリン環、チアゾリジン環、イソチアゾール環、イソチアゾリン環、イソチアゾリジン環、テルラゾール環、セレナゾール環、フラザン環、シドノン環、ウラゾール環、グアナゾール環、ピラジン環、ピペラジン環、ピリミジン環、ピリダジン環、モルホリン環、セレノモルホリン環、チオモルホリン環、トリアジン環、キナゾリン環、フタラジン環、プテリジン環、ベンゾジアゼピン環、ベンズイミダゾール環、プリン環、フェノキサジン環、フェノチアジン環等が挙げられる。これらに官能基が含まれる誘導体を用いても良い。より好ましい例としては、複素環にカルボニル基等の電気陰性度の高いヘテロ原子を含む誘導体である。これらを含むことで、複素環の極性及び親水性がより高まり、親水性構造との相互作用がより高まる。本発明における複素環は、吸着対象の溶質に応じて、適宜修飾することができる。本発明で使用される多官能含複素環モノマーの望ましい例としては、イソシアヌル酸トリアリル、イソシアヌル酸ジアリル、シアヌル酸トリアリル、1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジン等が挙げられる。
 本発明における多官能含複素環モノマーと共重合反応が可能な重合反応性の官能基を含むモノマーとは、上記多官能含複素環モノマーと共重合が可能なモノマーであれば、特に制限はない。多官能含複素環モノマーの重合反応部位の構造に応じて適宜構造を変えることができる。重合反応性の官能基の例としては、ラジカル共重合等により共重合比のコントロールの容易な不飽和炭化水素基がより望ましい。本発明で使用される、不飽和炭化水素を持つ疎水性モノマーの望ましい例としては、スチレン、ビニルトルエン、α-メチルスチレン、m-ジビニルベンゼン、p-ジビニルベンゼン、1,2-ジイソプロペニルベンゼン、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、1,3-ジビニルナフタレン、1,8-ジビニルナフタレン、1,4-ジビニルナフタレン、1,5-ジビニルナフタレン、2,3-ジビニルナフタレン、2,7-ジビニルナフタレン、2,6-ジビニルナフタレン、4,4’-ジビニルビフェニル、4,3’-ジビニルビフェニル、4,2’-ジビニルビフェニル、3,2’-ジビニルビフェニル、3,3’-ジビニルビフェニル、2,2’-ジビニルビフェニル、2,4-ジビニルビフェニル、1,2-ジビニル-3,4-ジメチルベンゼン、1,3-ジビニル-4,5,8-トリブチルナフタレン、2,2’-ジビニル-4-エチル-4’-プロピルビフェニル、ビスビニルフェニルエタン、1,2,4-トリビニルベンゼン、1,3,5-トリビニルベンゼン、1,2,4-トリイソプロペニルベンゼン、1,3,5-トリイソプロペニルベンゼン、1,3,5-トリビニルナフタレン、3,5,4’-トリビニルビフェニル等の芳香族ビニル化合物、(メタ)アクリル酸メチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベンジル、(ポリ)エチレングリコールのモノあるいはジ(メタ)アクリレート、(ポリ)プロピレングリコールのモノあるいはジ(メタ)アクリレート、1,4-ブタンジオールのモノ-あるいはジ-(メタ)アクリレート、トリメチロールプロパンのモノ-、ジ-あるいはトリ-(メタ)アクリレート等の不飽和カルボン酸エステル類、アリルグリシジルエーテル、酢酸ビニル、ビスビニルフェニルエタン、ジアリルフタレート、ジアリルアクリルアミド、トリアリル(イソ)シアヌレート、トリアリルトリメリテート等のアリル化合物;(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート等の(ポリ)オキシアルキレングリコールジ(メタ)アクリレート等が挙げられる。また、アクリル酸、メタクリル酸、イタコン酸、フマル酸、グリシジルメタクリレート、ビニルピリジン、ジエチルアミノエチルアクリレート、N-メチルメタクリルアミド、アクリロニトリル等の官能基含有モノマーが挙げられるが、これらに制限されるものではない。ここで、当該モノマー群は炭化水素基等の疎水性構造との親和性が高い構造とすることが望ましいため、炭化水素基、炭化水素環、芳香族炭化水素等の疎水性構造を持つ疎水性モノマー群であることがより望ましい。当該疎水性モノマー群の適用により、炭化水素基等の疎水性構造との疎水性相互作用が起こり、溶質の吸着性能が高まる。これらは単独で又は2種以上を組合せて用いることができる。
 前述の多官能含複素環モノマーと共重合反応が可能な官能基を含むモノマーとしては、特に、共重合体の立体障害を抑制する観点から、共重合反応が可能な官能基を複数持つ多官能モノマーであることがより望ましい。当該モノマーの望ましい例としては、m-ジビニルベンゼン、p-ジビニルベンゼン、1,2-ジイソプロペニルベンゼン、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、1,3-ジビニルナフタレン、1,8-ジビニルナフタレン、1,4-ジビニルナフタレン、1,5-ジビニルナフタレン、2,3-ジビニルナフタレン、2,7-ジビニルナフタレン、2,6-ジビニルナフタレン、4,4’-ジビニルビフェニル、4,3’-ジビニルビフェニル、4,2’-ジビニルビフェニル、3,2’-ジビニルビフェニル、3,3’-ジビニルビフェニル、2,2’-ジビニルビフェニル、2,4-ジビニルビフェニル、1,2-ジビニル-3,4-ジメチルベンゼン、1,3-ジビニル-4,5,8-トリブチルナフタレン、2,2’-ジビニル-4-エチル-4’-プロピルビフェニル、ビスビニルフェニルエタン、1,2,4-トリビニルベンゼン、1,3,5-トリビニルベンゼン、1,2,4-トリイソプロペニルベンゼン、1,3,5-トリイソプロペニルベンゼン、1,3,5-トリビニルナフタレン、3,5,4’-トリビニルビフェニル等の多官能芳香族モノマーが挙げられるが、これらに制限されるものではない。吸着材表面構造の立体障害が当該モノマーを適用することにより低減できると考えられ、固相吸着により適した吸着材の提供が可能となる。また、樹脂内に強固な架橋ネットワーク構造が形成され、機械強度、熱安定性に優れた吸着材が得られる。また、溶媒等による膨潤が抑えられ、吸着材の変形、変性、軟化、溶解等を抑制することができる。
 前述の含複素環共重合体は公知の共重合反応によって重合を行うことができる。例としてはランダム重合、交互共重合、ブロック共重合、グラフト重合等が挙げられる。上記重合方法のうち、疎水性-複素環構造のコントラスト形成が可能なランダム重合、交互共重合であることが特に好ましい。
 前述の含複素環共重合体は、公知の共重合反応によって重合することができる。例としては懸濁重合、乳化重合、エマルション重合、スプレードライ法、粉砕、破砕、バルク重合、溶液重合等が挙げられる。上記重合方法のうち、均一な球状粒子が得られる方法がより好ましく、懸濁重合、乳化重合を用いることがより好ましい。また、重合及びその他処理の過程で、開環反応、脱水縮合、分子間結合、その他の分子内構造変化を伴う反応工程が含まれていてもよく、本発明においては特に限定されない。
 重合方法の好ましい例として、懸濁重合による方法が挙げられる。まず、均一に溶解した界面活性剤の水溶液とモノマー溶液(モノマー、重合開始剤、水と混じり合わない溶媒)とを混合し、窒素雰囲気下で加熱撹拌を行うことで重合が進行する。このとき、界面活性剤水溶液の濃度は特に限定されないが、重合温度における飽和濃度を限界として、0.5~10wt%とすることが好ましい。また、界面活性剤のHLB値(Hydrophile-Lipophile Balance)が9~16の範囲にあるものが好ましく、より好ましくは10~14である。これらの界面活性剤は、水に溶解して、水相油滴(O/W)型エマルジョンの乳化剤として作用する。いずれも水溶液の粘度、界面活性剤の溶解度に合わせて調整することができる。
 また、界面活性剤の水溶液とモノマー溶液との混合比についても特に限定されないが、モノマーの反応性、重合開始剤の種類、反応温度、撹拌速度、重合容器の形状、重合スケール等の諸条件を勘案して適宜調整することが好ましい。これらの条件についても本発明では特に限定されずに用いることができる。重合開始剤の好ましい例としては、汎用の有機反応試薬が用いられるが、好ましくはラジカル反応開始剤であり、より好ましくはアゾビスイソブチロニトリル等の水に溶けにくいラジカル反応開始剤である。当該ラジカル反応開始剤を用いることで、重合は油滴中のみで進行するため、水相に溶解したモノマーとの反応を抑制し、球状の樹脂粒子を得ることができる。反応温度はラジカル開始剤の半減期、モノマーの種類等により適宜調整されるが、好ましい例としては、60~90℃である。また、撹拌速度の好ましい例としては100~600rpmである。より速い撹拌速度とすると、共重合体粒子の微粒子化が可能となるが、条件によっては破損を引き起こし、破片状粒子が生成することがある。
 また、複素環構造の導入量が増加すると、親水性吸着サイトの増加に伴ってリン脂質等の極性不純物吸着が増加する傾向がある。また、溶質の種類によっては溶質の吸着強度が高くなりすぎ、吸着した溶質の溶出時に脱離が阻害されて、吸着材表面に溶質が残留する懸念が生じる。そのため、固相抽出性能に影響の無い範囲で、できるだけ親水性基を含むモノマーの共重合比が低い吸着材とすることが望ましい。本発明では溶質を高効率に吸着することが可能な特定の複素環主鎖骨格を適用しており、共重合比の低い条件においても優れた吸着性能を実現可能である。具体的には、多官能含複素環モノマーの共重合比は0.5~35mol%であることが望ましく、より望ましくは1~30mol%、特に2~20mol%であることがさらに望ましい。
 また、当該粒子は比表面積の確保、吸着材の適度な充填密度確保のために、共重合体粒子の50%平均粒径が0.5~100μmの範囲に収まっていることが好ましい。粒径が大きすぎると、吸着材の有効表面積が低くなるため、溶液導入の過程で吸着が起こる前に溶液の流出が起こり、十分な固相抽出性能を発揮することができない。粒子の50%平均粒径は、より好ましくは1~90μmであり、さらに好ましくは10~80μmの範囲である。
 加えて、本発明における固相抽出条件においては、100μm以上の粒子の割合が増加すると、十分な固相抽出性能を発揮できない傾向があることが明らかになった。100μm以上の粒子では、溶液導入時に粒子表面のみが吸着に関与し、粒子内部にまで溶液が浸透しないことが主要因と推定される。固相抽出条件について鋭意検討した結果、吸着材粒子の粒径分布を制御して100μm以上の粒子の含有量を下げることにより、抽出効率を向上させ得ることを見出した。具体的には、粒子の50%平均粒径が0.5~80μm、80%平均粒径が0.5~100μmとなる粒子分布条件が望ましいことを見出した。当該条件を満たす粒子では、溶液が粒子内部にまで浸透し、吸着に関わる吸着材の有効表面積が高まり、より高効率な溶質吸着が可能となる。一方、粒径が小さすぎると流路での圧力損失が大幅に上昇するため、固相抽出効率が損なわれる。そのため、調製する粒子の粒径が所定範囲内となるように重合条件を調整するか、公知の分級技術(例えば、分級ふるい、湿式分級、乾式分級等)を適用することが望ましい。重合条件及び分級の方法について、本発明は特に限定されるものではない。
 また、本発明は含複素環共重合体を用いた吸着材に関するものであり、吸着材の形状が粒状以外の場合においても固相抽出性能を示す。例えば、含複素環共重合体が塊状重合、溶液重合により調製される多孔質のバルク重合体である場合にも、優れた固相抽出性能を示すと考えられる。当該多孔質のバルク重合体の例としては、カラムと一体化して流体透過時の圧力損失が低いモノリス状高分子多孔質構造体が挙げられる。当該構造体はカラム形状に合わせた寸法制御が必要となるものの、空孔の連続性が高く、またその大きさに偏りがなく、粒子充填時の空隙等を考慮する必要が無い。そのため、粒子吸着材よりも扱いやすい吸着材である。また、含複素環共重合体を塊状重合、溶液重合、固相重合によりフィルム状の高分子多孔質膜構造体とすることで、例えば薄層クロマトグラフィー等の担体や簡易試験用固相吸着フィルム等としての適用が考えられる。本発明の含複素環共重合体は、上記に挙げたように様々な共重合体の形状や形態によって吸着性能を示すことができる。
 本発明の含複素環共重合体吸着材を調製する場合には、吸着材への高極性モノマー、高極性構造の組み込みを確認するだけでなく、吸着材の共重合比及び構造全体を確定することがより好ましい。これに関して、限定されない様々な測定技術を用いることができる。例えば、本発明の共重合体吸着材の評価には、フーリエ変換赤外分光(FTIR)、固相13C核磁気共鳴法、(燃焼法による)元素分析等を用いることができる。かかる評価は公知の手順により行われ、構造の同定及び解析を行うことができる。
また、本発明における固相抽出の方法は、以下の構成を特徴とする。
(20)上記(1)~(19)のいずれかに記載の含複素環共重合体吸着材に、非極性溶質分子、低極性溶質分子、中極性溶質分子及び高極性溶質分子からなる群より選ばれる1種以上を溶質とする溶液を接触させ、溶液中に含まれる溶質の1種以上を吸着保持させる工程を含む固相抽出方法。
(21)溶液が、極性溶媒を含む上記(20)に記載の固相抽出方法。
(22)極性溶媒が、水、又は1種以上の極性有機溶媒と水との混合溶媒である上記(21)に記載の固相抽出方法。
(23)極性溶媒が、メタノール、エタノール、プロパノール、2-プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、1,4-ジオキサン、N,N-ジメチルホルムアミド及びジメチルスルホキシドからなる群より選ばれる1種以上を含む上記(21)に記載の固相抽出方法。
(24)含複素環共重合体吸着材に接触させる溶液が、血漿、血清、血液、尿、髄液、滑液、生体組織抽出物、水溶液、地下水、地表水、土壌抽出物、化粧品、食品物質、又は食品物質の抽出物を含む上記(20)~(23)のいずれかに記載の固相抽出方法。
(25)固相抽出対象である溶質が、薬品、薬剤、抗菌剤、抗てんかん剤、免疫抑制剤、薬物、殺虫剤、除草剤、毒物、生体分子、汚染物質、代謝薬剤、又はそれらの代謝産物もしくは分解生成物である上記(20)~(24)のいずれかに記載の固相抽出方法。
(26)生体分子が、タンパク質、ビタミン、ホルモン、ポリペプチド、ポリヌクレオチド、脂質又は炭水化物である上記(25)に記載の固相抽出方法。
(27)端部が開放された容器中に、上記(1)~(19)のいずれかに記載の含複素環共重合体吸着材を備える固相抽出カートリッジ。
(28)端部が開放された容器中に、上記(1)~(19)のいずれかに記載の含複素環共重合体吸着材を備える固相抽出カラム。
(29)上記(27)に記載の固相抽出カートリッジを検体の前処理に用いる、液相クロマトグラフィーによる質量分析(LC-MS)システム。
(30)上記(28)に記載の固相抽出カラムを検体の前処理に用いる、液相クロマトグラフィーによる質量分析(LC-MS)システム。
(31)上記(27)に記載の固相抽出カートリッジを検体の前処理に用いる、フローインジェクション方式による質量分析(FIA-MS)システム。
(32)上記(28)に記載の固相抽出カラムを検体の前処理に用いる、フローインジェクション方式による質量分析(FIA-MS)システム。
 本発明の含複素環共重合体吸着材を用いる固相抽出方法は、特に、組成の複雑な成分分析(水質や土壌等の微量成分分析、微量添加物、毒物、農薬等の定量分析、環境汚染評価、医薬開発、食品栄養評価、機能性食品栄養評価、飲料水純度評価、TDM分析等)用の試料から対象物質を単離する手段として適している。例えば、薬剤のような対象物質を含む生体基質(例えば、全血、血漿、唾液又は尿)等の検体が挙げられる。また、検体には、飲料水、又は汚染水のような環境試料が含まれる。本発明の試料となる溶液の好ましい例としては、溶液が、血漿、血清、血液、尿、髄液、滑液、生体組織抽出物、水溶液、地下水、地表水、土壌抽出物、化粧品、食品物質、又は食品物質の抽出物等である。また、本発明の溶質の好ましい例としては、薬剤、抗菌剤、抗てんかん剤、免疫抑制剤、薬物、殺虫剤、除草剤、毒物、生体分子、汚染物、代謝薬剤、又は代謝産物の分解生成物等である。このうち、生体分子の好ましい例としては、タンパク質、ビタミン、ホルモン、ポリペプチド、ポリヌクレオチド、脂質又は炭水化物等が挙げられる。
 測定対象物である溶質を溶液から単離するための、固相抽出のより好ましい方法としては、先述の含複素環共重合体吸着材を含み、低極性溶質分子、中極性溶質分子及び高極性溶質分子のいずれかを溶質とする溶液を含複素環共重合体吸着材に接触させ、溶質を吸着保持する工程を含む方法である。この実施形態では、単離方法には、4つの一般的工程、すなわち、表面特性を強化する溶媒を用いて吸着材をコンディショニングする工程、試料溶液を導入する工程、洗浄溶媒(水又は有機溶媒)で吸着材ごと洗浄する工程、及び溶出溶媒(有機溶媒)で溶質を溶出させる工程が含まれる。当該溶液の溶媒、洗浄溶媒、溶出溶媒は特に限定されないが、表面の親水性を保つ上でより好ましくは極性溶媒である。さらに好ましくは、水又は極性有機溶媒と水との混合溶媒等の含水溶媒、メタノール、エタノール、プロパノール、2-プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、1,4-ジオキサン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の極性有機溶媒である。これらは単独で用いても良いし、組み合わせて用いても良い。
 コンディショニングの過程では、極性有機溶媒に次いで水で吸着材を洗浄することによって、吸着材表面の調整を行うことができる。コンディショニングの好ましい例としては、カラムのような支持体へ吸着材を充填した後、まずメタノールで、次に水で(例えば、各1mlずつ)処理することによって行われる。メタノールは、吸着材を適度に膨潤させ、有効表面積を増大させる。水処理は、余分なメタノールを除去し、同時に、表面を水和する。その後、余分な溶媒を除去することができ、吸着材は、完全に水和された状態を保つことができる。
 固相抽出対象物の溶液が薬剤溶液、血清や蛋白質成分等を除去した全血成分等の低粘度溶液である場合、特に処理を行わずに吸着材へ導入することができるが、血漿等の高粘度溶液を含む場合には、希釈水溶液(少なくとも1:1希釈)として導入することが望ましい。特に血漿は粘性が高いため、吸着材と溶質の吸着を阻害する恐れがある。また、血漿成分中の蛋白質が有機溶媒により変性、沈殿して吸着材表面を汚染することがあるため、有機溶媒による希釈は避けることが望ましい。また、溶質の吸着保持に適した値まで溶液の流通速度を調整することも望ましい。
 本発明の一実施形態では、溶質(例えば、薬剤)は、1mL当たり1ng~10μgのレベルで存在することができる。また、固相抽出装置の充填量は各装置の体積に依存するものの、固相抽出プレートではおよそ1μL~100μLの測定試料を、固相抽出カラムであればおよそ100μL~1mLの測定試料を装填することができる。以下、固相抽出プレートを用いた例について記述する。
 その後、溶質が吸着した吸着材を水及び有機洗浄溶媒で洗浄することができる。より好ましくは水を用いて洗浄する。洗浄には任意量の溶媒を用いることができるが、好ましくは、およそ50μL~500μLの溶媒を用いる。水洗浄により、塩と、試料中に存在する可能性のある測定対象外の水溶性基質、蛋白質性物質等の不純物除去を行う。また、吸着材表面に付着し、かつ水に不溶の基質構成物や有機不純物が試料中に含まれる場合は、有機洗浄溶媒を用いて除去することができる。このとき、吸着材表面と溶質との吸着を壊さないように、洗浄条件を調整することが好ましい。既知の多数のシリカ吸着材及び重合体吸着材を分離に使用した場合には、洗浄工程において、吸着材から多数の測定対象の溶質を除去してしまう可能性がある。
 次に、溶離溶媒を用いて、溶質を吸着材表面から溶離する。溶離は、溶質と吸着材の吸着界面に溶離溶媒が到達、接触することで起こり、一定量の溶離溶媒を通すことによって行うことができる。代表的な溶離溶媒には、極性有機溶媒及び水溶液から選ばれる。少なくとも約80wt%~90wt%の有機溶媒を含むことが望ましい。代表的な有機溶媒には、メタノール、エタノール、2-プロパノール等のアルコール溶液、アセトニトリル等が挙げられるが、それらに限定されない。トリフルオロ酢酸のようなトレーリングイオンもまた、溶離溶媒成分として使用することができ、極性薬剤と吸着材との間の極性相互作用を効率的に壊すために有用であることが知られている。本発明ではメタノール溶媒を用いて溶離を実施することが好ましい。溶離には任意量の溶媒を用いることができるが、好ましくは、およそ50μL~200μLの溶媒を用いる。当該溶媒を用いることで、吸着材に保持された幅広い範囲の極性を有する溶質の90%~ほぼ全量の回収を行うことができる。
 また、本発明の含複素環共重合体吸着材による固相抽出を組み合わせる方法を用いることで、不純物を含む試料の前処理を行うことができる。高効率かつ高選択性の前処理過程を経ることで、例えば、質量分析(MS)、液体クロマトグラフィー(LC)、ガスクロマトグラフィー(GC)等の分析手法、又はこれらの組み合わせを用いて、固相抽出の溶離溶液を収集し、吸着材が吸着保持した溶質を同定することができる。また、所定の溶質が測定溶液中に極微少量(<1ng)で存在する場合でも、溶離溶液を蒸発させて再溶解し、LC又はLC/MSの移動相に導入、分析することができる。当該微量分析において、前処理過程による溶質の損失はできるだけ低く抑えることが何よりも重要である。検出対象物の感度、含有量によって異なるが、当該分野において前処理前後の損失は溶質全量に対して20%以下とすることが好ましく、より好ましくは10%以下、さらに好ましくは5%以下である。
 本発明の含複素環共重合体吸着材及び固相抽出方法の長所は、溶質同定用の機器に溶離した溶液を直接通すことができることである。これは、先行技術の吸着材では実現できなかった、低極性-高極性構造のコントラストを持つ含複素環共重合体を適用することで、様々な溶質に適合可能な吸着材が得られたためである。先行技術では、MS分析における吸着材のイオンサプレッション効果と、溶質の極性依存性により広範な溶質の吸着保持、固相抽出による分離回収が難しかった。イオンサプレッション効果により、溶離溶液中に不要成分が含まれて、溶質の同定操作が著しく困難となる。また、回収量低下により測定感度が弱まり、十分なMS分析を行うことができない。一方で、本発明の吸着材では、例えば固相抽出装置を前処理に用いて、LC-MSシステム、FIA-MSシステム、HPLCシステム、LC-UVシステム、その他の分析システムとの連携を容易に行うことができる。
 続いて、本発明の第2の態様である両親媒性共重合体及びそれを用いた固相抽出方法について説明する。
 本発明の両親媒性共重合体を構成するモノマー及び共重合体のSP値(溶解性パラメーター:δ)は、Hildebrand-Scatchardの溶液理論において、次式により定義される。
 δ=(ΔEv/V)1/2
 ここで、ΔEvは蒸発エネルギー(cal/mol)、Vは分子体積(cm/mol)、ΔEv/Vは凝集エネルギー密度(cal/cm)を示す。SP値はその値が大きい程、極性の大きい分子であることを表す。SP値の求め方はいくつか報告がなされているが、本発明においては、主にモノマーの分子構造及び共重合比の実測値から、Fedorsらが報告した方法(F. Fedors, A Method for Estimating Both the Sorbility Parameters and Molar Volumes of Liquids, Polymer Engineering and Science, Vol. 14, No. 2 (1974))を用い、計算により求めた。
 本発明における高極性モノマーとは、(1)共重合体に適用するSP値が10.0以下の低極性モノマーに対して、SP値が2.2以上高いモノマー、(2)SP値が11.5以上であるモノマー、(3)エステル結合、ウレタン結合、アミド結合、チオエステル結合、テトラヒドロフラン環、フラン環、カルボキシル基、アミノ基、アルキルアミノ基及びジアルキルアミノ基から選択される1種類以上の高極性分子構造を複数個有し、かつ該複数個の高極性分子構造間に含まれる炭素原子が4原子以内であるモノマー、(4)イソシアヌル酸エステル骨格、シアヌル酸エステル骨格、ヘキサヒドロトリアジン骨格、マレイミド骨格及びイミダゾール骨格から選択される高極性分子構造を有するモノマー、及び(5)エーテル結合、エステル結合、ウレタン結合、アミド結合、チオエステル結合、カルボキシル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基及びヘテロ環から選択される1種類以上の高極性分子構造を有するモノマーであって、当該モノマー中のヘテロ原子の重量比が30重量%以上であるモノマー、であり、以上のうち少なくとも1つの条件を満たすモノマーを指す。当該モノマー群は、いずれも高極性分子構造を有し、溶質の極性構造と強固な親水性相互作用を形成することができる。また、極性溶媒によって溶媒和し、ぬれ性が向上する。従来の吸着材技術においても、極性溶媒に対するぬれ性向上を目的として疎水-親水構造を持つ共重合体の提案がなされていたが、本発明のような高極性モノマーと比較すると、より極性の低いモノマーの導入が主であり、吸着の形成における親水性相互作用の寄与が低い。特に、従来の吸着材では固相抽出による高極性溶質分子の回収能力が低下する傾向があり、親水性相互作用による吸着は補助的な作用にとどまっている。本発明では、高極性構造の指標として(1)SP値、(2)特定分子構造(3)分子内ヘテロ原子の含有量の3つの項目に着目し、高極性モノマーを定義するに至った。特に、極性の絶対的指標を示す上で、SP値の導入は最適な評価項目といえる。
 本発明における低極性モノマーとは、上記高極性モノマーには含まれない、SP値が10.0以下のモノマーを指す。当該低極性モノマー群は炭化水素基等の疎水性構造との親和性が高く、疎水性相互作用によって吸着を生ずる。また、高極性モノマーとの極性コントラストの形成により、高極性溶質分子、中極性溶質分子、及び低極性溶質分子のいずれに対しても吸着保持能力に優れた吸着材表面を提供することができる。
 本発明における吸着とは、上述の通り、親水性相互作用及び疎水性相互作用によって、溶質と吸着材とが可逆的に結合した状態を指す。親水性相互作用は、主に水素結合、双極子-双極子相互作用、イオン-双極子相互作用、双極子-誘起双極子相互作用、ロンドン分散力等の、極性構造が関与する分子間力全般を指す。
 また、本発明における溶質の極性については、オクタノール・水分配係数(logP)に基づき、以下のように定義する。高極性溶質分子とは、logP値が-2.0~1.5である分子を意味する。同様に、中極性溶質分子はlogP値が1.5~3.0、低極性溶質分子はlogP値が3.0以上のものを意味する。
 本発明の目的の一つは、上述の通り、高極性溶質分子を含む広範なクロマトグラフィー極性を有する溶質に対して、高効率かつ選択性に優れた吸着及び固相抽出が可能となる吸着材の提供である。具体的には、高極性溶質分子(テオフィリン(logP=-0.02)等)、中極性溶質分子(フェノバルビタール(logP=1.7)、フェニトイン(logP=2.5)、カルバマゼピン(logP=2.5)、ジアゼパム(logP=2.9)等)、低極性溶質分子(エベロリムス(logP=3.4)、ラパマイシン(logP=3.5)、フタル酸ジブチル(logP=4.7)等)のいずれの溶質に対しても、固相抽出により容易に吸着保持、回収が可能な吸着材を開発することである。
 上述のように、市販されている従来の重合体吸着材は、組成及び表面構造によって保持できる溶質の種類が異なる。特に不得意な極性を持つ溶質に対しては、固相抽出による回収効率が低下し、場合によっては溶質の回収ができないこともある。また、洗浄過程で溶質の流出が起こるため、洗浄条件や回数が制限されてしまい、回収した溶質の純度が低下する懸念もある。しかし、上記に示すような構成とすることで、本発明の重合体吸着材は市販材における従来の課題を克服することが可能となる。
 広範なクロマトグラフィー極性を有する溶質の単離に使用可能な吸着材について鋭意検討した結果、本発明者らは吸着材側の分子構造に着目し、従来材よりも極性の高い高極性モノマーを複合化した両親媒性の共重合体とすることで、目的の性能を満足する吸着材が得られることを見出した。すなわち、高極性モノマーの導入によって、吸着材中に極性の高い部位を局所的に形成し、低極性-高極性構造のコントラストを持つ吸着材を得ることができる。
 当該コントラスト構造を持つ吸着材とすることで、高極性構造による親水性相互作用、低極性構造による疎水性相互作用をそれぞれ両立させ、溶質-吸着材間に強固な吸着状態を形成し、中、高極性溶質分子の固相抽出効率を大幅に向上させることができる。また、親水性を示す構造の極性が高いため、従来の共重合体と比較して、高極性モノマーの共重合比が低い条件であっても水や極性有機溶媒とのぬれ性を確保したまま、溶質との十分な吸着性能を示す。また、親水性表面処理のような手法と異なり、吸着材の疎水構造はそのまま維持され、低極性溶質分子との吸着性能にも優れている。以上に示したように、低極性-高極性構造のコントラストを持つ両親媒性共重合体を利用することで、様々な溶質に適合可能な吸着材を得ることができた。
 本発明の両親媒性共重合体の例として、高極性モノマーから構成されるモノマー単位と、SP値が10.0以下の低極性モノマーから構成されるモノマー単位を含み、両モノマーのSP値の差が少なくとも2.2である共重合体が挙げられる。また、もう一つの例として、SP値が11.5以上の高極性モノマーから構成されるモノマー単位と、SP値が10.0以下の低極性モノマーから構成されるモノマー単位を含む共重合体が挙げられる。いずれも低極性モノマーと高極性モノマーとの極性の差を利用して、固相抽出による溶質の回収性能を高める方法である。特に、SP値が11.5以上の高極性モノマーは、水及び極性有機溶媒に対するぬれ性及び溶媒和に優れ、高極性溶質分子の吸着保持能力も高いことから、本発明の両親媒性共重合体吸着材を構成するモノマーとして適している。また、共重合体のSP値が9.5以上になるように設計することで、溶媒及び溶質との親和性、ぬれ性がより一層向上し、特に高極性溶質分子の固相抽出性能が一層高まる。このような高極性モノマーに使用される好ましい例としては、N-フェニルマレイミド(SP値12.3)、無水マレイン酸(SP値12.9)、フマル酸(SP値13.5)、マレイン酸(SP値13.5)、トリアリルイソシアヌレート(SP値13.6)等が挙げられる。
 本発明の両親媒性共重合体のもう一つの例として、エステル結合、ウレタン結合、アミド結合、チオエステル結合、テトラヒドロフラン環、フラン環、カルボキシル基、アミノ基、アルキルアミノ基及びジアルキルアミノ基から選択される1種類以上の高極性分子構造を複数個有し、かつ該複数個の高極性分子構造間に含まれる炭素原子が4原子以内である高極性モノマーから構成されるモノマー単位と、SP値が10.0以下の低極性モノマーから構成されるモノマー単位とを含む共重合体が挙げられる。ここで、高極性分子構造間の炭素原子には、高極性分子構造自体の炭素原子(例えばエステル結合COO中のC)は含まないものとする。高極性分子構造が局在化した高極性モノマーを用いることで、モノマー分子全体のSP値が低い構造であっても、本発明の特長である低極性-高極性構造のコントラストが形成され、溶質の吸着性能に優れた吸着材となる。上記構造のうち、特にエステル結合、ウレタン結合及びアミド結合を有するモノマーは、溶媒及び溶質との親和性、ぬれ性が高く、高極性溶質分子の吸着性能が高い。なお、高極性分子構造間が離れ過ぎると、分子間会合や隣接原子間の双極子相互作用、共役構造の形成、共鳴効果、分子内会合等の高極性分子構造特有の性質が弱まり、共重合体中の極性が平均化されて、本発明の特長である低極性-高極性構造のコントラストが弱まると推定される。また、これにより極性分子の吸着保持能力の低下、極性分子非局在化による疎水性相互作用の低下等の影響が生じ、固相抽出性能が低下する。このような高極性モノマーに使用される好ましい例としては、メチレンビスアクリルアミド、アクリル酸テトラヒドロフルフリル、メタクリル酸テトラヒドロフルフリル、フタル酸ジアリル、イソフタル酸ジビニル、イソフタル酸ジアリル、テレフタル酸ジビニル、テレフタル酸ジアリル、アクリル酸フルフリル、メタクリル酸フルフリル等が挙げられる。
 本発明の両親媒性共重合体のもう一つの例として、高極性の環状含ヘテロ原子骨格であるイソシアヌル酸エステル骨格、シアヌル酸エステル骨格、ヘキサヒドロトリアジン骨格、マレイミド骨格及びイミダゾール骨格から選択される高極性分子構造を有する高極性モノマーから構成されるモノマー単位と、SP値が10.0以下の低極性モノマーから構成されるモノマー単位をそれぞれ1種類以上含む共重合体が挙げられる。当該環状含ヘテロ原子骨格は、高極性の環状構造であり、それ自身が高極性分子の局在化した構造となる。これにより、モノマー分子全体のSP値が低い構造であっても、本発明の特長である低極性-高極性構造のコントラストが形成され、溶質の吸着性能に優れた吸着材となる。このような高極性モノマーに使用される好ましい例としては、N-フェニルマレイミド、トリアリルイソシアヌレート、トリアリルシアヌレート、1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジン、N-フェニルマレイミド、1-ビニルイミダゾール等が挙げられる。
 本発明の両親媒性共重合体のもう一つの例として、エーテル結合、エステル結合、ウレタン結合、アミド結合、チオエステル結合、カルボキシル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基及びヘテロ環から選択される1種類以上の高極性分子構造を有するモノマーであって、当該モノマー中のヘテロ原子の重量比が30重量%以上である高極性モノマーから構成されるモノマー単位と、SP値が10.0以下の低極性モノマーから構成されるモノマー単位とを含む共重合体が挙げられる。高極性モノマーの極性構造を司るものは電気陰性度の大きなヘテロ原子である。特に酸素、窒素原子は電気陰性度が大きいため極性を持った分子を形成しやすい。加えて、特定の極性構造を多く含むモノマー分子ほど極性が高まると考えられる。特にカルボキシル基は酸性を示す官能基であり、イオン性の溶質分子の吸着にも適した構造となる。このような高極性モノマーに使用される好ましい例としては、N,N-ジメチルアクリルアミド、マレイン酸、フマル酸、メタクリル酸、アクリル酸等が挙げられる。
 前述の両親媒性共重合体は、少なくとも1種類のモノマーが、重合可能な不飽和官能基を2個以上含む多官能モノマーであることが望ましい。多官能モノマーを用いることで、共重合体内に架橋ネットワーク構造が形成され、機械強度、熱安定性に優れた吸着材が得られる。また、溶媒等による膨潤が抑えられ、吸着材の変形、変性、軟化、溶解等を抑制することができる。
 本発明の両親媒性共重合体における低極性モノマーとしては、上述の高極性モノマーに該当せず、かつSP値が10以下のモノマーであれば任意のものを用いることができる。低極性モノマーに使用される好ましい例としては、アリルグリシジルエーテル(SP値8.7)、スチレン(SP値9.2)、ジビニルベンゼン(SP値9.3)、メタクリル酸メチル(SP値9.4)、アクリル酸メチル(SP値9.5)、酢酸ビニル(SP値9.5)、ビスビニルフェニルエタン(SP値9.9)が挙げられる。特にジビニルベンゼンは多官能性モノマーであり、機械強度、熱安定性に優れた重合体が得られるため、吸着材の低極性モノマーとして特に好ましい。
 両親媒性共重合体は、公知の共重合反応によって得ることができる。例としては、ランダム重合、交互共重合、ブロック共重合、グラフト重合が挙げられる。この中でも、低極性-高極性構造のコントラスト形成が可能なランダム重合、交互共重合が特に好ましい。
 両親媒性共重合体は公知の重合方法を用いて製造することができる。例としては、懸濁重合、乳化重合、エマルション重合、スプレードライ法、粉砕、破砕等が挙げられる。これらの重合方法のうち、塊状、又は均一な球状粒子が得られる方法が好ましく、この観点から懸濁重合、乳化重合を用いることが特に好ましい。また、重合及びその他の処理過程において、開環反応、脱水縮合、分子間結合、その他の分子内構造変化を伴う工程が含まれていてもよく、本発明においては特に限定されない。
 重合方法の好ましい例として、懸濁重合による方法が挙げられる。まず、均一に溶解した界面活性剤の水溶液とモノマー溶液(モノマー、重合開始剤、及び水と混じり合わない溶媒を含む)とを混合し、窒素雰囲気下で加熱撹拌を行うことで重合が進行する。このとき、水溶液中の界面活性剤の濃度は特に限定されないが、重合温度における飽和濃度を限界として、0.5~10重量%とすることが好ましい。また、界面活性剤のHLB値(Hydrophile-Lipophile Balance)が9~16の範囲にあるものが好ましく、より好ましくは10~14である。これらの界面活性剤は、水に溶解して、水中油滴(O/W)型エマルションの乳化剤として作用する。いずれも水溶液の粘度、界面活性剤の溶解度に合わせて調整することができる。
 また、界面活性剤の水溶液とモノマー溶液との混合比は特に限定されないが、モノマーの反応性、重合開始剤の種類、反応温度、撹拌速度、重合容器の形状、重合スケール等の諸条件を勘案して適宜調整することが好ましい。また、エマルションの分散安定化や樹脂粒子の高収率化、反応促進等を目的として、水溶液、モノマー溶液に添加材を適宜加えて、懸濁重合を行ってもよい。水溶性の添加材の例としてはイオン性結晶からなる塩等の電解質、糖類等の非電解質、ポリビニルアルコール等の水溶性樹脂等が挙げられる。モノマー溶液の添加材の例としては、水に難溶の高級アルコール等が挙げられる。これらの条件についても本発明では特に限定されずに採用することができる。
 重合開始剤の好ましい例としては、汎用の有機反応試薬が用いられるが、好ましくはラジカル重合開始剤であり、より好ましくはアゾビスイソブチロニトリル等の水に溶けにくいラジカル重合開始剤である。ラジカル重合開始剤を用いることで、重合が油滴中のみで進行するため、水相に溶解したモノマーとの反応が抑制され、球状の粒子を得ることができる。反応温度は、ラジカル開始剤の半減期温度、モノマーの種類等を勘案して適宜調整されるが、好ましい例としては、60~90℃である。また、撹拌速度の好ましい例としては100~400rpmである。より速い撹拌速度では、共重合体粒子の破損を引き起こし、破片状粒子が生成することがあるため留意する。
 また、共重合体粒子は、比表面積の確保、吸着材の適度な充填密度確保のために、平均粒径が0.5~100μmの範囲内であることが好ましい。粒径が大き過ぎると、溶液導入の過程で吸着が起こる前に溶液の流出が起こり、十分な固相抽出性能を発揮することができない。一方、粒径が小さ過ぎると、流路で圧力損失が起こり、固相抽出効率が損なわれる。粒子の平均粒径は、より好ましくは1~90μmであり、さらに好ましくは10~80μmの範囲である。
 本発明の両親媒性共重合体吸着材を調製する場合には、吸着材への高極性モノマー、高極性構造の組み込みを確認するだけでなく、吸着材の組成及び構造全体を確定することがより好ましい。これに関して、限定されない様々な測定技術を用いることができる。例えば、本発明の共重合体吸着材の評価には、フーリエ変換赤外分光(FTIR)、固相13C核磁気共鳴法、(燃焼法による)元素分析等を用いることができる。かかる技術により、構造の同定及び解析を行うことができる。
 回収する溶質の極性に応じて、高極性モノマーの共重合比は適宜調整することができ、特に限定されることはない。ただし、高極性モノマーが多すぎる条件下では共重合体の疎水性が低下して低極性溶質分子の回収効率が低下し、高極性モノマーが少なすぎる条件下では共重合体の親水性が低下して高極性溶質分子の回収効率が低下する。本発明において性能が最も高くなるような高極性モノマーの共重合比は、共重合体中5~50mol%、より好ましくは10~30mol%である。高極性モノマーのうち、特にSP値の高いモノマーは、共重合比が低い条件でも回収効率の低下は抑制される傾向がある。
 次に、上記の両親媒性共重合体吸着材を用いた固相抽出方法について説明する。
 本発明の固相抽出方法は、非極性溶質分子、低極性溶質分子、中極性溶質分子及び高極性溶質分子から選択される1種類以上を溶質として含む溶液と、上述の両親媒性共重合体吸着材とを接触させ、溶液中の溶質を両親媒性共重合体吸着材に吸着保持させる工程を含む。処理対象とする溶液の種類は特に限定されるものではないが、本発明の両親媒性共重合体吸着材及び固相抽出方法は、特に、組成の複雑な成分分析(水質や土壌等の微量成分分析、微量添加物、毒物、農薬等の定量分析、環境汚染評価、医薬開発、食品栄養評価、機能性食品栄養評価、飲料水純度評価、TDM分析等)用の試料から対象物質を単離する手段として適している。例えば、薬剤のような溶質を含む生体基質(例えば、全血、血漿、唾液又は尿)が挙げられる。また、溶液には、飲料水、又は汚染水のような環境試料が含まれる。本発明における溶液の好ましい例としては、血漿、血清、血液、尿、髄液、滑液、生体組織抽出物、水溶液、地下水、地表水、土壌抽出物、化粧品、食品物質、又は食品物質の抽出物等である。また、本発明における溶質の好ましい例としては、薬剤、抗菌剤、薬物、殺虫剤、除草剤、毒物、生体分子、汚染物質、又はそれらの代謝産物もしくは分解生成物等である。このうち、生体分子の好ましい例としては、タンパク質、ビタミン、ホルモン、ポリペプチド、ポリヌクレオチド、脂質又は炭水化物等が挙げられる。
 対象となる溶質を溶液から単離するための方法には、4つの一般的工程、すなわち、表面特性を強化する溶媒を用いて吸着材をコンディショニングする工程、試料溶液を導入する工程、洗浄溶媒(水又は有機溶媒)で吸着材ごと洗浄する工程、及び溶出溶媒(有機溶媒)で溶質を溶出させる工程が含まれる。試料溶液の溶媒、洗浄溶媒、及び溶出溶媒の種類は特に限定されないが、吸着材表面の親水性を保つ上で極性溶媒を含むことが好ましい。さらに好ましくは、水又は水と極性有機溶媒との混合溶媒等の含水溶媒、メタノール、エタノール、プロパノール、2-プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、1,4-ジオキサン、N,N-ジメチルホルムアミド及びジメチルスルホキシド等の極性有機溶媒が用いられる。
 コンディショニングの過程では、極性有機溶媒に次いで水で吸着材を洗浄することにより、吸着材表面の調整を行うことができる。コンディショニングの好ましい例としては、カラムのような支持物へ吸着材を充填した後、まずメタノールで処理し、次に水で処理する(例えば、各1mlずつ)ことによって行われる。メタノールは、吸着材を適度に膨潤させ、有効表面積を増大させる。水処理は、余分なメタノールを除去し、同時に吸着材表面を水和する。その後、余分な溶媒を除去することができ、吸着材を完全に水和された状態に保つことができる。
 固相抽出対象物の溶液が、薬剤溶液、血清や蛋白質成分等を除去した全血成分等の低粘度溶液である場合、特に処理を行わずに吸着材へ導入することができるが、血漿等の高粘度溶液を含む場合、希釈水溶液(少なくとも1:1希釈)として導入することが望ましい。特に血漿は粘性が高いため、吸着材と溶質との吸着を阻害する恐れがある。また、血漿成分中の蛋白質が有機溶媒により変性、沈殿して吸着材表面を汚染することがあるため、有機溶媒による希釈は避けることが望ましい。また、溶質の吸着保持に適した接触時間となるよう溶液の流通速度を調整することも望ましい。
 本発明の一実施形態では、溶質(例えば、薬剤)は、溶液1mLあたり1ng~10μgのレベルで存在することができる。また、固相抽出装置への溶液の充填量は、各装置の体積に依存し、固相抽出プレートではおよそ1μL~100μLの溶液試料を、固相抽出カラムであればおよそ100μL~1mLの溶液試料を装填することができる。以下、固相抽出プレートを用いた場合について記述する。
 溶質が吸着した吸着材は、水及び有機洗浄溶媒で洗浄することができる。より好ましくは水を用いて洗浄する。洗浄には任意量の溶媒を用いることができるが、好ましくは、およそ50μL~500μLの溶媒を用いる。水洗浄によって、塩と、試料中に存在する可能性のある測定対象外の水溶性基質、蛋白質性物質等の夾雑物除去を行う。また、吸着材表面に付着し、かつ水に不溶な基質構成物や有機不純物が試料中に含まれる場合は、有機洗浄溶媒を用いて除去することができる。このとき、吸着材表面と溶質との吸着を壊さないように、洗浄条件を調整することが好ましい。従来のシリカ吸着材及び重合体吸着材を分離に使用した場合、洗浄工程において、吸着材から多量の溶質が溶出する恐れがある。
 次に、溶離溶媒を用いて、溶質を吸着材表面から溶離する。溶離は、溶質と吸着材との吸着界面に溶離溶媒が到達、接触することで起こり、一定量の溶離溶媒を通すことによって行うことができる。代表的な溶離溶媒としては、極性有機溶媒及び水溶液から選択される。溶媒は、少なくとも約80重量%~90重量%の有機成分を含むことが望ましい。代表的な有機成分には、メタノール、エタノール、2-プロパノール等のアルコール、アセトニトリル等が挙げられるが、それらに限定されない。トリフルオロ酢酸のようなトレーリングイオンもまた、溶離溶媒成分として使用することができ、極性溶質と吸着材との間の極性相互作用を効率的に壊すために有用である。溶離には任意量の溶媒を用いることができるが、例えばメタノール溶媒を用いて溶離を実施する場合、好ましくは、およそ50μL~200μLの溶媒を用いる。当該溶媒を用いることで、吸着材に保持された幅広い極性を有する溶質のうち、90%~ほぼ全量の回収を行うことができる。
 また、本発明の両親媒性共重合体吸着材による固相抽出を利用して、夾雑物を含む試料を分析する際の前処理を行うことができる。高効率かつ高選択性の前処理過程を経ることで、固相抽出による溶離溶液を収集し、例えば、質量分析(MS)、液体クロマトグラフィー(LC)、ガスクロマトグラフィ(GC)等の分析手法、又はこれらの組み合わせを用いて、吸着材が吸着保持した溶質を特定することができる。また、所定の溶質が測定溶液中に極微少量(<1ng)で存在する場合でも、溶離溶液を蒸発させて再溶解し、LC又はLC/MSの移動相に導入し、分析することができる。当該微量分析において、前処理過程による溶質の損失はできるだけ低く抑えることが何よりも重要である。溶質の感度、含有量によって異なるが、当該分野において前処理前後の損失は溶質全量に対して20%以下であることが好ましく、より好ましくは10%以下、さらに好ましくは5%以下である。本発明により、溶質の損失量をより低減することができる。
 本発明の両親媒性共重合体吸着材及びそれを用いた固相抽出方法の長所は、溶質を同定するための機器に、溶離した溶液を直接通すことができることである。これは、低極性-高極性構造のコントラストを持つ両親媒性共重合体を形成することで、様々な溶質に適合可能な吸着材が得られたためであり、先行技術の吸着材では実現できなかったことである。先行技術では、溶質の極性依存性により、広範な溶質の吸着保持、固相抽出による分離回収が難しく、また、MS分析における吸着材のイオンサプレッション効果により、溶離溶液中に不要成分が含まれて、溶質の同定操作が著しく困難となる。また、回収量低下により測定感度が弱まり、十分なMS分析を行うことができない。一方、本発明の吸着材を充填した固相抽出装置を前処理に用いることにより、LC-MSシステム、FIA-MSシステム、HPLCシステム、LC-UVシステム、その他の分析システムとの連携を容易に行うことができる。
 次に、本発明の第3の態様である吸着材及びその製造方法について説明する。本発明は、以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で任意に変更して実施することができる。
[1.吸着材]
[1-1.疎水性樹脂]
 本実施形態に係る吸着材は、疎水性樹脂を含む吸着材であって、該疎水性樹脂の表面の一部に親水性基が直接又は間接的に結合しているものである。
 ここで、“表面の一部に親水性基が結合している”とは、疎水性樹脂表面に、疎水性樹脂の疎水性部と親水性基とがともに存在している状態を表す。この状態は、例えば表面の一部に疎水性部が集中し、残りの部位に親水性基が集中しているものであってもよいし、疎水性部と親水性基とが混在しているものであってもよい。このように親水性基が疎水性樹脂表面の一部のみに結合していることにより、本実施形態に係る吸着材は親水性及び疎水性(即ち高極性及び低極性)を同一吸着材内でバランス良く有するものになり、薬剤をはじめとする様々な物質を吸着することができる。
 ただし、疎水性樹脂の表面に存在する親水性基の量が少なすぎる場合、吸着材の疎水性度が過度に大きくなり、親水性の物質を吸着することが困難になる可能性がある。また、親水性基の量が多すぎる場合、吸着材の親水性度が過度に大きくなり、疎水性の物質を吸着することが困難になる可能性がある。親水性基の量は、例えば赤外線吸収(IR)スペクトル測定により検出されたピークの大きさにより算出することができる。
 また、“親水性基が直接又は間接的に結合している”とは、疎水性樹脂表面に対して、親水性基が直接共有結合等によって結合してもよいし、親水性基が、例えばエーテル結合、エステル結合、アミド結合、シラノール結合等を介して疎水性樹脂に結合していてもよい。ただし、本実施形態に係る吸着材においては、親水性基が上記の結合のうちの1種以上の結合を介して疎水性樹脂に結合していることが好ましい。なお、これらの結合は、親水性基が有する結合であってもよいし、上記の結合が連結基となって、所望の親水性基と疎水性樹脂とが結合される状態であってもよい。
 本実施形態に係る吸着材において、当該吸着材に含まれる疎水性樹脂及び親水性基は、それぞれの溶解度パラメータ(SP値)δによって物性を規定している。本実施形態において「溶解度パラメータδ」は、Hildebrand-Scatchardの溶液理論における次式で定義されるものである。
  δ=(ΔEv/V)1/2
 上記式は、Hildebrand-Scatchardの溶液理論における式である。上記式において、ΔEvは蒸発エネルギー(cal/mol)、Vは分子体積(cm/mol)を表し、ΔEv/Vは凝集エネルギー密度(cal/cm)を表す。ただし、1calは4.2Jである。
 溶解度パラメータが大きい場合、極性が大きい、即ち親水性であることを表す。本実施形態における溶解度パラメータの具体的な算出方法としては、主にモノマーの分子構造及び共重合比の実測値から、F. Fedors, A Method for Estimating Both the Solubility Parameters and Molar Volumes of Liquids, Polymer Engineering and Science, Vol. 14, No. 2 (1974)に記載の方法に従って算出することができる。
 疎水性樹脂及び親水性基を溶解度パラメータにより規定する理由は、以下の通りである。
 即ち、本実施形態に係る吸着材に含まれる親水性基はいずれも高極性(即ち極性が大きい)分子構造を有するため、吸着材により吸着される物質の極性構造と強固な親水性相互作用を形成できる。また、本実施形態に係る吸着材は、その表面に高極性分子構造を有するため、極性溶媒との溶媒和及び濡れ性が向上している。
 従来の吸着材技術においても、吸着材の極性溶媒に対する濡れ性の向上を目的として、疎水-親水性構造を有する共重合体を含む吸着材の提案がなされていた。また、濡れ性の向上を目的として、疎水性樹脂の表面改質技術も提案されていた。しかしながら、本発明者らの検討によると、これらの技術においては、本実施形態の吸着材の表面に結合している親水性基と比較して依然として極性の低いものであり、物質を吸着する際に親水性相互作用の寄与が低いものとなっている。従って、特に固相抽出による、例えば高極性薬剤等の回収能力が低下する傾向にあり、上記の親水性相互作用による吸着は補助的な作用に留まっている。これらの点に鑑み本発明が創案されたものであって、本実施形態においては、高極性構造の指標として(1)溶解度パラメータ、(2)特定分子構造、(3)分子内へテロ原子の含有量の3つの要素に着目し、吸着材表面に存在する親水性基を定義するに到ったものである。特に、吸着材表面の極性の指標として、疎水性樹脂及び親水性基についての規定としての溶解度パラメータはとりわけ好適な指標と言える。
 本実施形態に係る吸着材に含まれる疎水性樹脂の溶解度パラメータは10以下であるが、好ましくは9.5以下、より好ましくは9以下である。溶解度パラメータが10以下の疎水性樹脂を用いることにより、このような疎水性樹脂は例えば炭化水素基等の疎水性構造との親和性が高いため、疎水性相互作用によって疎水性樹脂表面に疎水性物質を吸着させることができる。また、本実施形態に係る吸着材は、その表面に親水性基が結合しているため、当該親水性基と物質との極性コントラストの形成により、親水性の物質も結合させることができる。
 疎水性樹脂の具体的な種類は、本発明の効果を著しく損なわない限り任意であるが、例えばポリプロピレン、ポリエチレン、ポリスチレン、アリルグリシジルエーテル重合体、ジビニルベンゼン重合体、メタクリル酸メチル重合体、アクリル酸メチル重合体、ポリ酢酸ビニル、ビスビニルフェニルエタン重合体等が挙げられる。中でも、本実施形態に係る吸着材に含まれる疎水性樹脂としては、上記の疎水性樹脂が好ましい。疎水性樹脂は、1種を単独で含んでもよく、2種以上を任意の比率及び組み合わせで含んでもよい。
 疎水性樹脂の形状は本発明の効果を著しく損なわない限り任意であるが、例えば球状(球形状)、燐片状等が挙げられる。ただし、取り扱いの容易さの観点から、疎水性樹脂の形状は球状であることが好ましい。なお、「球状」とは、真球である必要は無く、例えば卵型、その断面が楕円となる形状等、最も広範な意味での「球」を表すものとする。
 また、疎水性樹脂の形状が球状である場合、その平均直径は本発明の効果を著しく損なわない限り任意であるが、通常は、疎水性樹脂表面に親水性基を結合した後の吸着材の平均直径と同じものになる。従って、疎水性樹脂の平均直径としては、通常は、後述する吸着材の平均直径と同じものである。
[1-2.親水性基]
 本実施形態に係る吸着材は、その表面の一部に親水性基が直接又は間接的に結合したものである。以下、異なる親水性基が結合している吸着材についての5つの実施形態を挙げて、本実施形態に係る吸着材を説明する。
〔第一実施形態に係る吸着材〕
 第一実施形態に係る吸着材は、[1-1.疎水性樹脂]に記載の物性を有すると共に、上記親水性基の溶解度パラメータと上記疎水性樹脂の溶解度パラメータとの差が2.2以上であるものである。親水性基の溶解度パラメータの具体的な値としては本発明の効果を著しく損なわない限り任意であり、第一実施形態に係る吸着材に含まれる疎水性樹脂の溶解度パラメータの値に応じて決定すればよい。ただし、上記のように、疎水性樹脂の溶解度パラメータと親水性基の溶解度パラメータの差は通常2.2以上であるが、好ましくは2.5以上、より好ましくは3以上であり、溶解度パラメータの差が小さすぎる場合、吸着できる物質の種類が限定される可能性があるが、大きすぎる場合には、吸着した物質が溶出されない可能性がある。
 このような親水性基の具体的な種類は、本発明の効果を著しく損なわない限り任意であるが、例えばN-フェニルマレイミド骨格、無水マレイン酸骨格、フマル酸骨格、マレイン酸骨格、トリアリルイソシアヌレート骨格等が挙げられる。中でも、第一実施形態に係る吸着材に含まれる親水性基は上記のものが好ましい。親水性基は、1種が単独で含まれてもよく、2種以上が任意の比率及び組み合わせで含まれてもよい。
 なお、上記の記載において、「骨格」とは、当該「骨格」との文言が付された化合物において、当該化合物が有する少なくとも1個の原子と上記疎水性樹脂とが直接又は間接的に結合している状態のものを言う。例えば、「N-フェニルマレイミド骨格」とは、N-フェニルマレイミドが有する炭素原子、酸素原子若しくは窒素原子のうちの少なくとも1個の原子と疎水性樹脂とが直接又は間接的に結合している状態のものである。以下の記載においても、特に指定しない限り、「骨格」とは同様の意味を表すものとする。
〔第二実施形態に係る吸着材〕
 第二実施形態に係る吸着材は、[1-1.疎水性樹脂]に記載の物性を有すると共に、親水性基の溶解度パラメータが11.5以上であるものである。ただし、親水性基の溶解度パラメータは、好ましくは12以上、より好ましくは13以上、また、その上限は、通常23以下、好ましくは22以下である。溶解度パラメータの値が小さすぎる場合、高極性物質に対する吸着性能が低下する可能性があり、大きすぎる場合、吸着した物質が溶出されない可能性がある。
 このような溶解度パラメータを有する親水性基の具体的な種類は、本発明の効果を著しく損なわない限り任意であるが、上記〔第一実施形態に係る吸着材〕に記載した親水性基と同じものが好ましい。
〔第三実施形態に係る吸着材〕
 第三実施形態に係る吸着材は、[1-1.疎水性樹脂]に記載の物性を有すると共に、親水性基が、エステル結合、ウレタン結合、アミド結合、チオエステル結合、テトラヒドロフラン環、フラン環、カルボキシル基、アミノ基、アルキルアミノ基及びジアルキルアミノ基からなる群より選ばれる1種以上の構造を複数含み、親水性基が、炭素数6以下の炭化水素基を含むものである。
 第三実施形態に係る吸着材が有する親水性基に含まれる上記構造の数は複数であればその具体的な数に制限は無い。また、第三実施形態に係る吸着材が有する親水性基は、特定の炭素数を有する炭化水素基を含むものである。含まれる炭化水素基が有する炭素数は、通常6以下、好ましくは4以下である。炭素数が多すぎる場合、疎水性が大きくなり、高極性物質の吸着性能が低下する可能性がある。
 第三実施形態に係る吸着材に含まれる親水性基において、上記構造と炭化水素基との結合様式に特に制限は無いが、通常は、炭化水素基が上記結合を介して疎水性樹脂と結合するようになっている。従って、このような結合様式を有する親水性基の具体例としては、メチレンビスアクリルアミド骨格、アクリル酸テトラヒドロフルフリル骨格、メタクリル酸テトラヒドロフルフリル骨格、フタル酸ジアリル骨格、イソフタル酸ジビニル骨格、イソフタル酸ジアリル骨格、テレフタル酸ジビニル骨格、テレフタル酸ジアリル骨格、アクリル酸フルフリル骨格、メタクリル酸フルフリル骨格等を含むものであり、中でも、第三実施形態に係る吸着材に含まれる親水性基としては、上記のものが好ましい。これらは1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで用いてもよい。
〔第四実施形態に係る吸着材〕
 第四実施形態に係る吸着材は、[1-1.疎水性樹脂]に記載の物性を有すると共に、親水性基が、イソシアヌル酸エステル骨格、シアヌル酸エステル骨格、ヘキサヒドロトリアジン骨格、マレイミド骨格、イミダゾール骨格からなる群より選ばれる1種以上の骨格を含むものである。
 第四実施形態に係る吸着材に含まれる親水性基が有する骨格のより具体的なものとしては、例えば、N-フェニルマレイミド骨格、イソシアヌル酸トリアリル骨格、シアヌル酸トリアリル骨格、1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジン骨格、N-フェニルマレイミド骨格、1-ビニルイミダゾール骨格等が挙げられる。中でも、第四実施形態に係る吸着材に含まれる親水性基が有する骨格としては、上記のものが好ましい。これらは1種が単独で含まれてもよく、2種以上が任意の比率及び組み合わせで含まれていてもよい。
〔第五実施形態に係る吸着材〕
 第五実施形態に係る吸着材は、[1-1.疎水性樹脂]に記載の物性を有すると共に、親水性基が、(1)酸素原子、窒素原子及び硫黄原子からなる群より選ばれる1種以上のヘテロ原子と、(2)エーテル結合、エステル結合、ウレタン結合、アミド結合、チオエステル結合、カルボキシル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基及びヘテロ環骨格からなる群より選ばれる1種以上の構造と、を含み、該親水性基におけるヘテロ原子の総含有量が、該親水性基が有する原子の全モル数に対して、30モル%以上であるものである。
 第五実施形態に係る吸着材に含まれる親水性基は、酸素原子、窒素原子及び硫黄原子からなる群より選ばれる1種以上のヘテロ原子を含む。これらのヘテロ原子は1種が単独で含まれてもよく、2種以上が任意の比率及び組み合わせで含まれてもよい。中でもヘテロ原子としては、酸素原子及び窒素原子が好ましい。
 また、第五実施形態に係る吸着材に含まれる親水性基は、上記の構造を1種以上含むものであるが、これらの構造には、酸素原子、窒素原子若しくは硫黄原子を含むものも含まれる。従って、第五実施形態に係る吸着材に含まれる親水性基におけるヘテロ原子の総含有量とは、上記(1)のヘテロ原子と上記(2)に含まれるヘテロ原子との総含有量を表すものとする。これらのヘテロ原子の総含有量は、親水性基が有する原子の全モル数に対して30モル%以上であるが、好ましくは35モル%以上、より好ましくは40モル%以上、また、その上限は、通常50モル%以下、好ましくは45モル%以下である。ヘテロ原子の総含有量が少なすぎる場合、高極性物質に対する吸着性能が低下する可能性があり、多すぎる場合は、吸着した物質が溶出されない可能性がある。
 上記の構造を有する親水性基の具体例としては、N,N’-ジメチルアクリルアミド骨格、マレイン酸骨格、フマル酸骨格、メタクリル酸骨格、アクリル酸骨等が挙げられる。中でも、第五実施形態に係る吸着材に含まれる親水性基としては、上記骨格が好ましい。これらの骨格は1種が単独で含まれてもよく、2種以上が任意の比率及び組み合わせで含まれていてもよい。
[1-3.本実施形態に係る吸着材の物性]
 本実施形態に係る吸着材の形状は、本発明の効果を著しく損なわない限り任意であるが、通常は上記の疎水性樹脂と同じ形状を有する。従って、本実施形態に係る吸着材の形状としては球形状であることが好ましい。
 本実施形態に係る吸着材の形状が球形状である場合、吸着材を例えばカラムに充填して使用する際の吸着材の適度な充填密度確保の観点から、その平均直径が、通常0.5μm以上、好ましくは1μm以上、より好ましくは10μm以上、また、その上限は、通常100μm以下、好ましくは90μm以下、より好ましくは80μm以下である。平均直径が短すぎる場合、目的物質を含む溶液をカラムに通液する際に当該溶液の流路で圧力損失が発生し、固相抽出効率が低下する可能性がある。また、平均直径が長すぎる場合、当該溶液の通液過程で吸着材に目的の物質が吸着する前に当該溶液が流出し、やはり固相抽出効率が低下する可能性がある。平均直径は、レーザ回折式粒度分布測定の装置を用いて測定することができる。
 なお、本実施形態に係る吸着材の形状が粒子状のものとして本実施形態に係る吸着材を説明したが、本実施形態に係る吸着材は粉末状(即ち粉体)であってもよい。従って、吸着材が粉末状のもの(即ち親水性基を結合後の吸着材も通常は粉末状になる。)であっても、その表面に親水性基を結合させて、本実施形態に係る吸着材として用いることができる。
[1-4.本実施形態に係る吸着材の用途]
 上記[1-2.親水性基]において説明した本実施形態に係る吸着材(第一実施形態~第五実施形態に係る吸着材)は、任意の物質を吸着させることができる。ここで、本実施形態において「吸着する」とは、例えば親水性相互作用若しくは疎水性相互作用等によって、吸着材と物質とが可逆的な結合により結合した状態を指す。親水性相互作用は、主に水素結合、双極子-双極子相互作用、イオン-双極子間相互作用、双極子-誘起双極子相互作用、ロンドン分散力等の極性構造が関与する分子間力全般を表すものとする。
 本実施形態に係る吸着材が吸着可能な物質としては、特に薬剤が好適である。従って、本実施形態に係る吸着材によれば、本実施形態に係る吸着材は、極性が大きいものから小さいもの(即ち親水性のものから疎水性のもの)まで、様々な極性を有する薬剤を吸着させることができる。例えばオクタノール・水分配係数(logP)に基づいて以下のように定義した場合、高極性薬剤とは、logP値が-2.0~1.5である薬剤を意味する。同様に、中極性薬剤とはlogP値が1.5~3.0、低極性薬剤とはlogP値が3.0以上のものを意味する。なお、「薬剤」とは、薬品や薬物、くすり等を表し、特には、使用目的に合わせて薬物を調製したものを表す。
 本実施形態に係る吸着材によれば、広範な極性を有する物質(溶質)に対して、高効率な吸着及び固相抽出が可能となる。具体的には、例えば、高極性薬剤(テオフィリン(logP=-0.02)等)、中極性溶質分子(フェノバルビタール(logP=1.7)、フェニトイン(logP=2.5)、カルバマゼピン(logP=2.5)、ジアゼパム(logP=2.9)等)、低極性溶質分子(エベロリムス(logP=3.4)、ラパマイシン(logP=3.5)、フタル酸ジブチル(logP=4.7)等)等について、固相抽出を行って回収することができる。
[1-5.本実施形態に係る吸着材の利点]
 従来の吸着材においては、その組成及び表面構造等によって保持できる物質の種類が異なる。即ち、保持が可能であるか否かは、通常は吸着材表面の極性の程度によって決定され、保持することが難しい極性を有する物質を吸着材が吸着しようとする場合、固層抽出時に回収効率が低下し、場合によっては回収が極めて困難になる可能性もある。また、このような物質を吸着材表面に吸着したとしても、吸着後の洗浄過程で吸着物質の流出が起き得るため、洗浄条件及び洗浄回数が制限され、回収後の物質の純度が低下する可能性もある。
 そこで、本発明者らが検討した結果、吸着材表面の分子構造に着目し、疎水性樹脂表面の一部において、従来の吸着材よりも高い極性を有する親水性基を結合させることにより、幅広い極性を有する物質を吸着できる吸着材を提供できることを見出した。即ち、疎水性樹脂の表面に高極性の親水性基を結合させることにより、吸着材表面において高極性の部位を形成し、低極性及び高極性、即ち極性の大きく異なる部位を同時に表面上に有する吸着材を提供できることを見出した。
 そして、吸着材がこのような構造を有することで、高極性構造による親水性相互作用、並びに低極性構造による疎水性相互作用をそれぞれ両立し、物質-吸着材間で強固に吸着し、特に中極性~高極性物質の固相抽出効率を大幅に向上させることができる。また、吸着材に含まれる親水性基の極性が大きいことから、疎水性樹脂表面に結合している親水性基の量が少ない場合であっても、例えば水、極性有機溶媒等の極性を有する溶媒との濡れ性を確保したまま、十分に目的物質を吸着させることができる。従って、本実施形態に係る吸着材によれば、目的物質の高極性構造若しくは低極性構造のいずれに対しても、高効率で吸着することができる両親媒性の吸着材を製造することができる。
[2.吸着材の製造方法]
 本実施形態に係る吸着材は、本発明の効果を著しく損なわない限り、任意の方法で製造することができる。以下、本実施形態に係る吸着材の製造方法を一例を挙げて説明するが、本実施形態に係る吸着材は、以下に記載する製造方法によってのみ製造されるものではない。
 本実施形態に係る吸着材は、例えば、上記[1-1.疎水性樹脂]記載の疎水性樹脂を球形状となるように作製し、作製された球形状の疎水性樹脂の表面に対して[1-2.親水性基]に記載の親水性基を結合させることにより、製造できる。
 疎水性樹脂は、例えば公知のモノマーを公知の条件で重合させることにより作製できる。例えば疎水性樹脂としてポリスチレンを用いる場合、モノマーとしてスチレンを用い、重合開始剤として例えばアゾビスイソブチロニトリル(AIBN)、過酸化ベンゾイル等を用いて所望の分子量を有するまでラジカル重合させることにより、ポリスチレンを作製できる。ラジカル重合を行う際の反応条件は公知の任意の条件とすればよい。また、重合は、ラジカル重合以外により行うこともできる。また、疎水性樹脂としては、市販品を用いてもよい。
 そして、作製した疎水性樹脂を所望の形状に成形すればよい。本実施形態に係る吸着材の形状は、通常、表面に親水性基を結合させる前の疎水性樹脂の形状と同じものになる。従って、通常は、上記[1-3.本実施形態に係る吸着材の物性]において記載した形状と同じものになるように成形すればよい。成形の方法としては、公知の任意の方法を用いることができる。
 本実施形態に係る吸着材の製造方法においては、疎水性樹脂の表面に対して、オゾン処理、プラズマ処理及び酸化剤処理からなる群より選ばれる1種以上の処理を行った後、当該親水性基を有する化合物と当該処理後の当該疎水性樹脂の表面とを接触させる工程を有する。従って、上記の成形した球形状の疎水性樹脂の表面に対して、上記の処理を行うことが好ましい。
 上記処理の具体的な方法としては、本発明の効果を著しく損なわない限り任意である。例えば疎水性樹脂の表面に対してオゾン処理を行う場合、例えばセン特殊光源社製PL21-200を用いて、大気雰囲気下で紫外線(UV)オゾン処理を行うことができる。また、照射する紫外線の強度としては、例えば約3J/cm2とすることができる。また、例えば疎水性樹脂の表面に対してプラズマ処理を行う場合、例えばヤマト科学社製プラズマドライクリーナーPDC210を用いて、酸素プラズマ処理を行うことができる。具体的な方法としては、例えば当該装置においてソフトモードで行い、出力300W、処理時間2分として行うことができる。また、例えば酸化剤処理を行う場合、具体的な酸化剤の種類としては、例えば過マンガン酸カリウム、二クロム酸カリウム等を用いて疎水性樹脂表面の処理を行えばよい。酸化剤の濃度、処理時間は任意に設定できるが、過剰の酸化剤を用いたり、過度に長時間反応させたりすると、後の工程において疎水性樹脂表面の全てに親水性基が結合する可能性がある。従って、表面の酸化度を蛍光X線分析(XPS)等の方法を用いて適宜確認しながら条件を決定することが好ましい。酸化前の疎水性樹脂表面には、炭化水素系樹脂であれば、C-H結合に相当するピークのみが通常は観察される。そして、疎水性樹脂表面を酸化した後には、C-O、C=O結合に由来するピークがそれぞれ観察される。十分に酸化させた表面のC-O結合若しくはC=O結合のピーク強度を基準とし、その強度から酸化度を決定し、疎水性樹脂表面の一部のみが酸化されるように酸化度を調整すればよい。
 なお、上記の処理は、1回のみ行ってもよく、2回以上行ってもよい。また、2回以上上記処理を行う場合、同じ処理を繰り返して行ってもよく、異なる処理を任意に組み合わせて行ってもよい。
 疎水性樹脂の表面に対して上記の処理を行うことにより疎水性樹脂表面が酸化され、反応性の官能基(例えばヒドロキシル基、カルボキシル基等)が生成する。従って、この処理を行った後の疎水性樹脂表面に対して、上記親水性基を有する化合物を接触させることにより、生成した反応性の官能基と、親水性基を有する化合物とが反応し、疎水性樹脂表面に上記の親水性基が結合した、本実施形態に係る吸着材を製造することができる。
 以上のように、予め作製した疎水性樹脂の表面に親水性基を結合させることにより、疎水性モノマーと親水性モノマーとを共重合させる方法よりも、簡便かつ低コストで安定した性能を有する吸着材を製造することができる。
 例えば上記(特許文献4)に記載の疎水性モノマーと親水性モノマーとを共重合させて吸着材を製造する方法においては、例えば水と油とのように、相反する性質を有する化合物同士、即ち、相溶性の低いモノマー同士を重合させている。このような場合には、通常、例えば懸濁重合、乳化重合、エマルション重合等が重合方法として用いられるが、これらの方法は、通常は粒子形状の制御が困難であり、収率も低い。しかしながら、本実施形態に係る吸着材の製造方法においては、疎水性樹脂の表面に対して特定の処理を行うことにより反応性の官能基を生成させ、高極性な親水性基を結合させることができる。
 以下に、実施例及び比較例を示して本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 まず、本発明の第一及び第二の態様である含複素環共重合体吸着材及び両親媒性共重合体吸着材についての実施例及び比較例を示す。
(1)粒径測定
 ポリマー粒子(吸着材)の粒径測定は、日機装(株)製マイクロトラック粒度分布測定(Microtrac FRA、レーザー回折散乱式)を用いて行った。測定範囲0.1~700μmであり、50%中位粒径(粉体の集団の全体積を100%として累積カーブを求め、累積カーブが50%となる点の粒子径)をポリマー粒子の粒径とした。
(2)赤外分光測定
 ポリマー粒子の赤外(IR)分光測定は、(株)パーキンエルマー製フーリエ変換赤外分光計(Spectrum100、減衰全反射法(Attenuated Total Reflection:ATR))を用いて行った。
(3)比表面積及び細孔径測定
 比表面積及び細孔分布測定は、QUANTACHROME製比表面積測定装置(AUTOSORB-1、多点法(40点測定)測定)を用いて行った。測定試料の前処理は120℃/10分(減圧下)で行った。比表面積の測定は、BET(Brunauer,Emmett,Teller)吸着等温式を用い、BETプロットの勾配と切片より算出した。細孔径の測定は、累積細孔容積の変化量より、BJH(Barrett, Joyner, Halenda)法を用いて細孔分布を計算により求め、分布のピーク径を細孔径とした。
(4)元素分析による共重合比の測定
 ポリマー粒子の共重合比は、燃焼法によって炭素(C)、水素(H)、窒素(N)の元素比を定量し、ポリマー粒子の組成比から共重合比を求めた。CHN元素分析は(株)柳本製作所製の元素分析計(MT-5)を用いて行った。
(5)含複素環共重合体吸着材もしくは両親媒性共重合体吸着材の固相抽出プレートへの充填方法
 含複素環共重合体吸着材もしくは両親媒性共重合体吸着材の充填は、次の方法により行った。評価対象の含複素環共重合体吸着材もしくは両親媒性共重合体吸着材2mgをメタノール(100~200μL)中でスラリー状にして、固相抽出プレート(ウォーターズ社製OASIS(登録商標)μ-Elution plate)に充填した。
(6)固相抽出プレートによる溶質吸着評価
 本実施例における固相抽出ターゲットは次に示す溶質とした。高極性溶質分子の混合溶液(バンコマイシン(logP=-1.4、2.5ng/mL)、テオフィリン(logP=-0.02、25ng/mL)、溶媒:水)、中極性溶質分子の混合溶液(フェノバルビタール(logP=1.7、25ng/mL)、フェニトイン(logP=2.5、25ng/mL)、カルバマゼピン(logP=2.5、2.5ng/mL)、ジアゼパム(logP=2.9、2.5ng/mL)、溶媒:20%メタノール水溶液)、及び低極性溶質分子の混合溶液(エベロリムス(logP=3.4、20ng/mL)、ラパマイシン(logP=3.5、20ng/mL)、フタル酸ジブチル(logP=4.7、20ng/mL)、溶媒:50%メタノール水溶液)。
 溶質吸着評価は、次の方法により行った。含複素環共重合体吸着材もしくは両親媒性共重合体吸着材を充填した固相抽出プレートに、メタノール200μL、続いて純水200μLを通液した。次に、溶液100μLをプレートに加え、1分静置後に溶液を吸引し、通液した。次に、純水200μLをプレートに通液し、吸着材を洗浄した。洗浄後、プレートにメタノール100μLを通液し、吸着材に吸着した溶質を回収した。仕込み量に対する当該操作による溶質の回収量を固相抽出の回収率と定義した。
 また、含複素環共重合体吸着材による血清中リン脂質(ホスファチジルコリン(レシチン))吸着量評価は次の方法により行った。含複素環共重合体吸着材を充填した固相抽出プレートに、メタノール200μL、続いて純水200μLを通液した。次に、市販コントロール血清100μLをプレートに加え、1分静置後に溶液を吸引し、通液した。次に純水200μLをプレートに通液し、吸着材を洗浄した。洗浄後、プレートにメタノール100μLを通液し、リゾホスファチジルコリンの質量電荷比(m/z496)、ホスファチジルコリンの質量電荷比(m/z758)に対応するLC-MSの信号強度のピーク高さをホスファチジルコリンの吸着量とした。ここで、血清中のホスファチジルコリンの含有量を正確に同定することができないため、吸着したホスファチジルコリンの絶対量評価を行うことは困難である。本実施例においては同一条件でリン脂質吸着を行ったデータのうちピーク高さの最も大きい信号強度を100%として、ホスファチジルコリンの吸着を信号の相対強度により比較した。
 一部の低極性溶質分子の溶離溶液評価では、減圧乾固した後に20%メタノール水溶液100μLに再溶解し、5μLをLC-MSにて溶質の定量を行った。高極性、中極性、及び低極性溶質分子の溶離溶液は、各溶液から10μLを採り、FIA-MS測定により溶質の定量を行った。各測定について3回実施し、その平均値を測定結果とした。なお、LC-MS測定時には、適宜ターゲット溶質に適合した内部標準を添加した溶液を用いた。
 LC-UV測定は、日立ハイテクノロジーズ製L-2000シリーズ液体クロマトグラフ(L-2100形ポンプ(低圧グラジエント、デガッサ付)、L-2200形オートサンプラ(冷却ユニット付)、L-2400形UV検出器(セミミクロフローセル付)、D-2000形HPLCシステムマネージャ)を用いた。LC部のカラムは、資生堂製Capcell PAK C18 MG(粒径3μm、内径2.0mm×長さ75mm)を用いた。
 LC-MS測定は、日立ハイテクノロジーズ製L-2000シリーズ液体クロマトグラフ(L-2100形ポンプ(低圧グラジエント、デガッサ付)、L-2200形オートサンプラ(冷却ユニット付)、D-2000形HPLCシステムマネージャ)+Applied Biosystems社製3200Qtrap質量分析計を組み合わせて測定した。LC部のカラムは資生堂製Capcell PAK C18 MG(粒径3μm、内径2.0mm×長さ75mm)を用いた。イオン化条件は、エレクトロスプレーイオン化、正イオン測定により行い、質量分析スキャンモードはマススキャン(MS)+プロダクトイオンスキャン(MS/MS)により行った。LC-MSの測定条件は以下の通りである。溶離液:A液(10mM酢酸アンモニウム/アセトニトリル=90%/10%)、B液(アセトニトリル)、C液(イソプロリルアルコール)、グラジエント条件(A液/B液/C液):0min(70%/30%/0%)、10min(0%/100%/0%)、15min(0%/0%/100%)、23min(0%/0%/100%)、23.1min(70%/30%/0%)、30min(70%/30%/0%)、流速:0.2mL/min、試料注入量:5μL、測定時間:30min。
 FIA-MS測定は、日立ハイテクノロジーズ製L-2000シリーズ液体クロマトグラフ(L-2100形ポンプ(低圧グラジエント、デガッサ付)、L-2200形オートサンプラ(冷却ユニット付)、D-2000形HPLCシステムマネージャ)+Applied Biosystems社製3200Qtrap質量分析計を組み合わせて測定した。イオン化条件は、エレクトロスプレーイオン化、正イオン測定により行い、質量分析スキャンモードはマルチプルリアクションモニタリング(MRM)により行った。FIA-MSの測定条件は以下の通りである。溶離液:10mM酢酸アンモニウム/アセトニトリル=90%/10%)、流速:0.1mL/min、試料注入量:10μL、測定時間:2.0min。
(実施例1)ジビニルベンゼン-イソシアヌル酸トリアリル共重合体の調製
 500mLセパラブルフラスコにヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))2.0gと水100mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)7.84g(0.06mol)、イソシアヌル酸トリアリル(TAIC、東京化成工業製)14.95g(0.06mol)、トルエン(和光純薬工業製)11.5g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.22gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度200rpmで重合を行った。攪拌を停止後、重合溶液と樹脂粒子をガラスフィルタでろ過して分離した。樹脂粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、樹脂粒子を得た(収率60.5%、50%平均粒径60.9μm、80%平均粒径87.1μm、共重合比DVB/TAIC=73.9mol%/26.1mol%(元素分析)、比表面積251m/g、平均細孔径360Å)。
(実施例2)ジビニルベンゼン-シアヌル酸トリアリル共重合体の調製(1)
 500mLセパラブルフラスコにヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))2.0gと水100mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)7.8g(0.06mol)、シアヌル酸トリアリル(TACy、東京化成工業製)15.0g(0.06mol)、トルエン(和光純薬工業製)11.5g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.2gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度200rpmで重合を行った。攪拌を停止後、重合溶液と樹脂粒子をガラスフィルタでろ過して分離した。樹脂粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、樹脂粒子を得た(収率46.8%、50%平均粒径39.5μm、80%平均粒径64.5μm、共重合比DVB/TACy=85.5mol%/14.5mol%(元素分析)、比表面積436m/g、平均細孔径658Å)。
(実施例3)ジビニルベンゼン-シアヌル酸トリアリル共重合体の調製(2)
 500mLセパラブルフラスコにヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))6.0gと水200mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)12.5g(0.10mol)、シアヌル酸トリアリル(TACy、東京化成工業製)6.0g(0.02mol)、トルエン(和光純薬工業製)8.0g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.2gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度400rpmで重合を行った。攪拌を停止後、重合溶液と樹脂粒子をガラスフィルタでろ過して分離した。樹脂粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、樹脂粒子を得た(収率75.0%、50%平均粒径70.9μm、80%平均粒径94.9μm、共重合比DVB/TACy=93.9mol%/6.1mol%(元素分析)、比表面積620m/g、平均細孔径116Å)。
(実施例4)ジビニルベンゼン-シアヌル酸トリアリル共重合体の調製(3)
 500mLセパラブルフラスコにヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))6.0gと水200mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)11.0g(0.08mol)、シアヌル酸トリアリル(TACy、東京化成工業製)9.0g(0.04mol)、トルエン(和光純薬工業製)8.0g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.2gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度400rpmで重合を行った。攪拌を停止後、重合溶液と樹脂粒子をガラスフィルタでろ過して分離した。樹脂粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、樹脂粒子を得た(収率53.4%、50%平均粒径61.9μm、80%平均粒径87.6μm、共重合比DVB/TACy=91.4mol%/8.6mol%(元素分析)、比表面積598m/g、平均細孔径102Å)。
(実施例5)ジビニルベンゼン-シアヌル酸トリアリル共重合体の調製(4)
 500mLセパラブルフラスコにヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))8.0gと水200mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)11.0g(0.08mol)、シアヌル酸トリアリル(TACy、東京化成工業製)9.0g(0.04mol)、トルエン(和光純薬工業製)8.0g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.2gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度300rpmで重合を行った。攪拌を停止後、重合溶液と樹脂粒子をガラスフィルタでろ過して分離した。樹脂粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、樹脂粒子を得た(収率58.8%、50%平均粒径77.0μm、80%平均粒径96.3μm、共重合比DVB/TACy=89.5mol%/10.3mol%(元素分析)、比表面積521m/g、平均細孔径95Å)。
(実施例6)ジビニルベンゼン-シアヌル酸トリアリル共重合体の調製(5)
 500mLセパラブルフラスコにヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))8.0gと水200mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)11.0g(0.08mol)、シアヌル酸トリアリル(TACy、東京化成工業製)9.0g(0.04mol)、トルエン(和光純薬工業製)6.0g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.2gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度400rpmで重合を行った。攪拌を停止後、重合溶液と樹脂粒子をガラスフィルタでろ過して分離した。樹脂粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、樹脂粒子を得た(収率66.2%、50%平均粒径72.1μm、80%平均粒径97.1μm、共重合比DVB/TACy=88.8mol%/11.2mol%(元素分析)、比表面積539m/g、平均細孔径102Å)。
(実施例7)ジビニルベンゼン-シアヌル酸トリアリル共重合体の調製(6)
 500mLセパラブルフラスコにヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))6.0gと水200mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)5.5g(0.05mol)、シアヌル酸トリアリル(TACy、東京化成工業製)17.9g(0.07mol)、トルエン(和光純薬工業製)6.0g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.2gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度300rpmで重合を行った。攪拌を停止後、重合溶液と樹脂粒子をガラスフィルタでろ過して分離した。樹脂粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、樹脂粒子を得た(収率62.9%、50%平均粒径44.9μm、80%平均粒径72.8μm、共重合比DVB/TACy=85.5mol%/14.5mol%(元素分析)、比表面積312m/g、平均細孔径361Å)。
(実施例8)ジビニルベンゼン-シアヌル酸トリアリル共重合体の調製(7)
 500mLセパラブルフラスコにヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))8.0gと水200mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)11.0g(0.08mol)、シアヌル酸トリアリル(TACy、東京化成工業製)9.0g(0.04mol)、トルエン(和光純薬工業製)8.0g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.3gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度400rpmで重合を行った。攪拌を停止後、重合溶液と樹脂粒子をガラスフィルタでろ過して分離した。樹脂粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、樹脂粒子を得た(収率76.7%、50%平均粒径53.4μm、80%平均粒径67.3μm、共重合比DVB/TACy=79.3mol%/20.7mol%(元素分析)、比表面積579m/g、平均細孔径96Å)。
(実施例9)ジビニルベンゼン-シアヌル酸トリアリル共重合体の調製(8)
 500mLセパラブルフラスコにヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))6.0gと水200mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)7.8g(0.06mol)、シアヌル酸トリアリル(TACy、東京化成工業製)15.0g(0.06mol)、トルエン(和光純薬工業製)8.0g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.3gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度400rpmで重合を行った。攪拌を停止後、重合溶液と樹脂粒子をガラスフィルタでろ過して分離した。樹脂粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、樹脂粒子を得た(収率76.7%、50%平均粒径54.0μm、80%平均粒径72.3μm、共重合比DVB/TACy=66.5mol%/33.4mol%(元素分析)、比表面積108m/g、平均細孔径28Å)。
(実施例10)含複素環共重合体モノリス状カラムの調製
 ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)12.5g(0.10mol)、シアヌル酸トリアリル(TACy、東京化成工業製)6.0g(0.02mol)、トルエン(和光純薬工業製)10.0g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.3gを混合し、溶液を窒素置換した。固相抽出プレートの充填部と同一形状の鋳型中に20μLモノマー溶液を流し込み、80℃6h窒素気流中にてバルク重合を行った。回収した鋳形物について、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順でモノリス状カラム充填材を浸漬して洗浄した。室温で乾燥後、90℃、15hで減圧乾燥して、モノリス状カラム充填材を得た(共重合比DVB/TACy=87.8mol%/12.2mol%(元素分析))。
(実施例11)ジビニルベンゼン-シアヌル酸トリアリル共重合体の調製(50%平均粒径>80μm)
 500mLセパラブルフラスコにヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))6.0gと水200mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)11.0g(0.08mol)、シアヌル酸トリアリル(TACy、東京化成工業製)9.0g(0.04mol)、トルエン(和光純薬工業製)3.0g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.2gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度400rpmで重合を行った。攪拌を停止後、重合溶液と樹脂粒子をガラスフィルタでろ過して分離した。樹脂粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、樹脂粒子を得た(収率66.7%、50%平均粒径83.6μm、80%平均粒径129.9μm、共重合比DVB/TACy=88.8mol%/11.2mol%(元素分析)、比表面積539m/g、平均細孔径102Å)。
(実施例12)ジビニルベンゼン-シアヌル酸トリアリル共重合体の調製(50%平均粒径<80μm、80%平均粒径>100μm)
 500mLセパラブルフラスコにヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))4.0gと水200mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)12.5g(0.10mol)、シアヌル酸トリアリル(TACy、東京化成工業製)6.0g(0.02mol)、トルエン(和光純薬工業製)4.0g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.3gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度300rpmで重合を行った。攪拌を停止後、重合溶液と樹脂粒子をガラスフィルタでろ過して分離した。樹脂粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、樹脂粒子を得た(収率84.5%、50%平均粒径54.9μm、80%平均粒径103.1μm、共重合比DVB/TACy=86.8mol%/13.2mol%(元素分析)、比表面積412m/g、平均細孔径153Å)。
(比較例)ジビニルベンゼン-N-ビニルピロリドン共重合体
 比較例として、ジビニルベンゼン(DVB)とN-ビニルピロリドン(NVP)の共重合体樹脂を用いた。500mLセパラブルフラスコにヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))2.0gと水100mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)17.5g(0.14mol)、N-ビニルピロリドン(NVP、東京化成工業製)10.2g(0.09mol)、トルエン(和光純薬工業製)24.2g、及びアゾイソブチロニトリル(AIBN、東京化成工業製)0.2gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、70℃、20h、攪拌速度300rpmで重合を行った。攪拌を停止後、重合溶液と樹脂粒子をガラスフィルタでろ過して分離した。樹脂粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、樹脂粒子を得た(収率81.2%、50%平均粒径66.5μm、80%平均粒径78.9μm、共重合比DVB/NVP=81.7mol%/18.7mol%(元素分析)比表面積527m/g、平均細孔径153Å)。
(実施例13)含複素環共重合体吸着材と比較例の樹脂粒子の固相抽出性能比較
 実施例1~2で示した含複素環共重合体吸着材と比較例における樹脂粒子について、LC-MS及びFIA-MSを用いて各溶質(フェノバルビタール、フェニトイン、ラパマイシン、バンコマイシン)に対する固相抽出性能を比較した結果を図1に示した。実施例に記載したいずれの含複素環共重合体吸着材についても、中極性溶質分子であるフェノバルビタール、フェニトインについて、溶質全量の80%以上を吸着保持して固相抽出を行うことができた。また、高極性溶質分子であり、分子量の大きなバンコマイシンに対しても高い溶質回収性能を示した。以上の結果より、本発明の含複素環共重合体吸着材は中~高極性溶質分子及び分子量の大きい溶質の固相抽出にも適していることが明らかとなった。複素環骨格には複数のヘテロ原子を有するため、単数の親水基を持つ場合よりも高効率に溶質の吸着が可能な親水性吸着サイトが形成され、結果として中~高極性溶質分子の固相抽出による回収率が高まったと推定される。また、複素環構造が主鎖に取り込まれることで平面状の吸着サイトが形成されると考えられ、溶質吸着時の立体障害が抑制されることでバンコマイシンのような分子量の大きい分子についても容易に吸着することができたものと推定される。
 一方で、比較例の樹脂粒子からなる吸着材は、特に中~高極性溶質分子に対する吸着性能が低下するため、同様の固相抽出処理を行った場合でも回収率が80%以下となり、回収率に劣る結果となった。また、低極性溶質分子においても、ラパマイシンのような環状両親媒性溶質分子については回収率が低下する傾向が見られた。これは、親水基を含む官能基が側鎖として存在し立体障害となることで、ラパマイシンのような環状両親媒性溶質分子の吸着が阻害され、回収率が低下したものと推定される。本発明のように、親水性吸着サイトとなる複素環構造が主鎖に取り込まれることで、薬剤吸着時の立体障害が抑制され、環状構造を有する溶質についても容易に吸着することができたものと推定される。また、薬剤の吸着に際しては親水性相互作用の形成に加えて、疎水性構造同士の吸着(疎水性相互作用)も重要な性能となる。そのため、親水性相互作用及び疎水性相互作用のバランスの取れた構造、共重合比の含複素環共重合体吸着材を設計することにより、薬剤回収性能の一層の向上を図ることが可能となる。
 上記結果より、親水性相互作用による薬剤-含複素環共重合体間の吸着が起こることで、溶質を高効率に吸着保持することができた。以上の結果より、特定の複素環構造を含む吸着材とすることで、当該溶質についても回収率の向上を図ることができる。
(実施例14)含複素環共重合体吸着材による種々の極性を持つ溶質の固相抽出性能比較
 高極性溶質分子(バンコマイシン(logP=-1.4、2.5ng/mL)、テオフィリン(logP=-0.02、25ng/mL)、溶媒:水)、中極性溶質分子(フェノバルビタール(logP=1.7、25ng/mL)、フェニトイン(logP=2.5、25ng/mL)、カルバマゼピン(logP=2.5、2.5ng/mL)、ジアゼパム(logP=2.9、2.5ng/mL)、溶媒:20%メタノール水溶液)、低極性溶質分子(エベロリムス(logP=3.4、20ng/mL)、ラパマイシン(logP=3.5、20ng/mL)、フタル酸ジブチル(logP=4.7、20ng/mL)、溶媒:50%メタノール水溶液))の各溶質分子について混合溶液を調製し、実施例1及び2で示した含複素環共重合体吸着材を用いて固相抽出を実施し、LC-MS及びFIA-MSを用いて溶質の回収率評価を行った。その結果を図2及び表1にまとめて示す。いずれの実施例においても溶質の極性に関わらず、溶質導入量の80%以上を吸着保持して固相抽出を行うことができた。また、LC-MS及びFIA-MSを用いることで、中極性、低極性溶質分子について、混合溶液とした系においても各溶質を高効率に回収することができ、複数の溶質を含む溶液の分析にも適用可能であることが示された。
Figure JPOXMLDOC01-appb-T000001
 上述の通り、ジビニルベンゼン-イソシアヌル酸トリアリル共重合体(実施例1)よりもジビニルベンゼン-シアヌル酸トリアリル共重合体(実施例2)が特に優れた薬剤回収性能を示すに至った。これは、シアヌル酸トリアリルの複素環主鎖構造の方が薬剤吸着に対して親和性が高いためと考えられる。以下、本発明の代表例としてジビニルベンゼン-シアヌル酸トリアリル共重合体についての実施例について述べる。
 複素環構造自体は薬剤中にも見られる構造であり、薬剤との親和性が高い構造と考えられる。当該複素環の分子構造を制御することで、会合、水素結合、自己組織化等の分子間相互作用を利用した特異的構造形成が可能となり、吸着材の極性構造に加え、構造選択性の付与や分子認識機能への応用についても期待できる。
(実施例15)リン脂質(ホスファチジルコリン)吸着量の評価
 血清や全血成分等の溶質分析では、リン脂質等の不純物成分が含まれる。リン脂質等の不純物は、質量分析の際に測定対象物のイオン化を阻害する(イオンサプレッション)成分である。LC-MS等のクロマトグラフ分離過程を含む装置では測定対象物と不純物成分は分離されるため影響は低くなるが、FIA-MSのようなフローインジェクション方式の分析では、イオンサプレッションによる感度低下の影響が特に大きい。本実施例において、リン脂質等の不純物成分の吸着低減方法について開示する。
 実施例2~9に示したジビニルベンゼン-シアヌル酸トリアリル共重合体について、リン脂質(リゾホスファチジルコリン(LPC)、ホスファチジルコリン(PC))の吸着量評価を行った。その結果を表2に、シアヌル酸トリアリル(TACy)共重合比とLPC及びPCの質量電荷比(m/z758)に対応するLC-MSの信号強度のピーク高さより求めた相対強度との関係を図3にそれぞれ示した。ここで、LPCとPCの相対強度はLC-MSの信号強度のピーク高さが最も高かった実施例9(TACy共重合比=33.4mol%)のピーク高さを100%として、他の共重合体のLPC、PC相対強度を評価した。この結果より、同一条件で処理した血清試料において、複素環主鎖構造の導入量(TACy共重合比)が多くなると、リン脂質(LPC、PC)の相対強度が上昇して固相抽出処理による吸着量が増す傾向を示した。この結果より、血清等に含まれるリン脂質等の極性不純物が含まれる溶液の固相抽出では、含複素環共重合体全体の親水性(あるいは共重合体の極性)を高めることで、極性基を有するリン脂質等の意図しない不純物に対しても吸着性能が高まることを示している。逆に、TACy共重合比の低い条件ほどリン脂質(LPC、PC)の相対強度が低く、吸着が起こりにくくなっていることが示唆される。そのため、不純物吸着を低減した吸着材を得るには、TACy共重合比をできるだけ低く抑えることが望ましいと考えられる。
Figure JPOXMLDOC01-appb-T000002
 一方で、TACy共重合比の低減により、含複素環共重合体吸着材本来の固相抽出性能を棄損する恐れがある。薬剤の高効率吸着における主な効果は、複素環主鎖構造の導入によるものであり、リン脂質吸着の低減に伴って薬剤回収性能の低下が懸念される。当該懸念に関して、実施例3、5及び7のジビニルベンゼン-シアヌル酸トリアリル共重合体(実施例3:TACy共重合比=6.1mol%、実施例5:TACy共重合比=10.3mol%、実施例7:TACy共重合比=14.5mol%)について、実施例13と同様に溶質の固相抽出性能比較を行った。高極性溶質分子(バンコマイシン(logP=-1.4、2.5ng/mL)、テオフィリン(logP=-0.02、25ng/mL)、溶媒:水)、中極性溶質分子(フェノバルビタール(logP=1.7、25ng/mL)、フェニトイン(logP=2.5、25ng/mL)、カルバマゼピン(logP=2.5、2.5ng/mL)、ジアゼパム(logP=2.9、2.5ng/mL)、溶媒:20%メタノール水溶液)、低極性溶質分子(エベロリムス(logP=3.4、20ng/mL)、ラパマイシン(logP=3.5、20ng/mL)、フタル酸ジブチル(logP=4.7、20ng/mL)、溶媒:50%メタノール水溶液))の各溶質分子について混合溶液を調製し、実施例3、5及び7で得られた含複素環共重合体吸着材を用いて固相抽出を実施し、FIA-MSを用いて溶質の回収率評価を行った。その結果を図4及び表3にそれぞれ示した。共重合比が異なる共重合体に対し、いずれの溶質についても80%以上の溶質回収率を示した。本発明の共重合比の範囲においては、TACy共重合比によらず高い薬剤回収性能を維持できることが明らかとなった。特に、TACy導入量の少ない実施例3においては、不純物吸着を抑制しながら高い溶質回収性能を示した。本発明における複素環構造は、複素環内に高効率吸着が可能な親水性吸着サイトを複数含む分子構造となっており、1つの溶質に含まれる極性基に対して複素環構造内の複数の吸着サイトにより吸着保持が可能である。そのため、少量の親水構造においても高効率に溶質親水部との親水性相互作用を示すものと推定される。加えて、複素環主鎖構造として親水構造を導入することで、立体障害等の影響が抑えられ、少量の親水構造導入によっても高効率な溶質吸着を示したものと推定される。
(実施例16)含複素環共重合体モノリス状カラムを用いた固相抽出性能評価
 高極性溶質分子(バンコマイシン(logP=-1.4、2.5ng/mL)、テオフィリン(logP=-0.02、25ng/mL)、溶媒:水)、中極性溶質分子(フェノバルビタール(logP=1.7、25ng/mL)、フェニトイン(logP=2.5、25ng/mL)、カルバマゼピン(logP=2.5、2.5ng/mL)、ジアゼパム(logP=2.9、2.5ng/mL)、溶媒:20%メタノール水溶液)、低極性溶質分子(エベロリムス(logP=3.4、20ng/mL)、ラパマイシン(logP=3.5、20ng/mL)、フタル酸ジブチル(logP=4.7、20ng/mL)、溶媒:50%メタノール水溶液))の各溶質分子について混合溶液を調製し、実施例10に示したジビニルベンゼン-シアヌル酸トリアリル共重合体のモノリス状カラムを用いて固相抽出を実施し、FIA-MSを用いて溶質の回収率評価を行った。その結果を図5及び表3に示す。モノリスカラムについても、粒子状吸着材と同様に溶質導入量の80%以上を吸着保持して固相抽出を行うことができた。
 また、含複素環共重合体を塊状重合、溶液重合、固相重合によりフィルム状の高分子多孔質膜構造体とすることで、例えば薄層クロマトグラフィー等の担体や簡易試験用固相吸着フィルム等への適用が考えられる。本発明の含複素環共重合体は、上記に挙げたように様々な共重合体の形状や形態によって吸着性能を示すことが可能である。
(実施例17)含複素環共重合体吸着材の粒径による固相抽出性能比較
 ジビニルベンゼン-イソシアヌル酸トリアリル共重合体の粒子について、吸着材の粒径、粒径分布と薬剤回収率との関係について、次に示した。
 実施例5、11及び12に示したジビニルベンゼン-シアヌル酸トリアリル共重合体について、溶質を吸着させた溶液(100μL)及び、吸着材の洗浄を目的に添加した純水(200μL)中に含まれる溶質成分の回収率(溶質ロスと定義)を図6に、メタノールで吸着材から溶離、回収した溶質成分の回収量を図7にそれぞれ示した。粒子径の分布が規定の範囲内にある実施例5の含複素環共重合体においては、溶質ロスが見られず、ほとんどの溶質成分がメタノール添加により回収することができた。
 一方、実施例11及び12の含複素環共重合体では、溶質ロスが発生し、これによって薬剤回収率が低下する傾向があることを確認した(表3)。実施例11のように粒径が大きい吸着材粒子では、溶液導入の過程で吸着が起こる前に溶液の流出が起こり、吸着材の有効表面積が低く十分な固相抽出性能を示すことができない場合がある。また、粒径分布が大きく、100μm以上の粒子が多く含まれる実施例12のような粒子においても、固相抽出性能は低下する傾向が見られた。実施例11及び12とも、粒子が400m/g以上の比表面積を有し、多孔質な粒子である。しかし、実施例11及び12は、図8に示すように、粒径が100μm以上の大きい粒子が多数含まれる吸着材である。粒径が100μm以上の大きい粒子が多数含まれる吸着材では、溶液導入時に粒子表面のみ吸着に関与するため、粒子内部にまで溶液が浸透できない恐れがある。このように、吸着材粒子の粒径分布を制御して100μm以上の粒子の含有量を下げることにより、抽出効率の向上を図ることができる。
Figure JPOXMLDOC01-appb-T000003
 吸着に関与する有効表面積の確保、吸着材の適度な充填密度確保のためには、共重合体粒子の50%平均粒径が0.5~100μmの範囲に収まっていることが好ましい。粒径が大きすぎると、吸着材の有効表面積が低く、溶液導入の過程で吸着が起こる前に溶液の流出が起こり、十分な固相抽出性能を示すことができない。
 加えて、実施例12のように50%平均粒径が小さい粒子であっても、粒径分布が広く100μm以上の粒子を多く含むような粒子では、固相抽出性能が低下する場合がある。100μm以上の粒子では、溶液導入時に粒子表面のみが吸着に関与するため、粒子内部にまで溶液が浸透しないことが主要因と推定される。そのため、固相抽出条件について鋭意検討した結果、吸着材粒子の粒径分布を制御して100μm以上の粒子の含有量を下げることにより、抽出効率の一層の向上を図ることができる。具体的には、粒子の50%平均粒径が0.5~80μm、80%平均粒径が0.5~100μmとなる粒子分布条件がより望ましい。当該条件を満たす粒子では、溶液が粒子内部にまで浸透し、吸着に関わる吸着材の有効表面積が高まり、より高効率な溶質吸着が可能となる。
 一方、粒径が小さすぎると流路での圧力損失が大幅に上昇するため、固相抽出効率が損なわれる。そのため、固相抽出に適した範囲に粒径分布を制御する方法としては、本実施例のように調製粒子の粒径が所定範囲内となる重合条件で調製する方法がある。他にも、公知の分級技術(例えば、分級ふるい、湿式分級、乾式分級等)を組み合わせて、より粒径分布を狭い範囲で制御することが可能である。
(実施例18)ジビニルベンゼン-トリアリルイソシアヌレート共重合体の調製
 500mLセパラブルフラスコに、ヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))2.0gと水100mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)7.84g(0.06mol)、トリアリルイソシアヌレート(TAIC、東京化成工業製)14.95g(0.06mol)、トルエン(和光純薬工業製)11.5g、アゾイソブチロニトリル(AIBN、東京化成工業製)0.22gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度200rpmで重合を行った。攪拌を停止後、重合溶液とポリマー粒子をガラスフィルタでろ過して分離した。ポリマー粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、目的の両親媒性共重合体吸着材を得た。収率60.5%、粒径60.9μm、組成比DVB/TAIC=73.9/26.1(mol%、元素分析)。
(実施例19)ジビニルベンゼン-無水マレイン酸共重合体の調製
 500mLセパラブルフラスコに、ヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))2.0gと水100mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)7.84g(0.06mol)、無水マレイン酸(MAn、東京化成工業製)5.94g(0.06mol)、トルエン(和光純薬工業製)17.2g、アゾイソブチロニトリル(AIBN、東京化成工業製)0.14gを混合し、50℃に加熱して完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度200rpmで重合を行った。攪拌を停止後、重合溶液とポリマー粒子をガラスフィルタでろ過して分離した。ポリマー粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、目的の両親媒性共重合体吸着材を得た。収率64.9%、粒径57.9μm、組成比DVB/MAn=84.8/15.2(mol%、元素分析)。
(実施例20)ジビニルベンゼン-イソフタル酸ジアリル共重合体の調製
 500mLセパラブルフラスコに、ヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))2.0gと水100mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)7.84g(0.06mol)、イソフタル酸ジアリル(IPDA、東京化成工業製)14.78g(0.06mol)、トルエン(和光純薬工業製)11.5g、アゾイソブチロニトリル(AIBN、東京化成工業製)0.22gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度200rpmで重合を行った。攪拌を停止後、重合溶液とポリマー粒子をガラスフィルタでろ過して分離した。ポリマー粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、目的の両親媒性共重合体吸着材を得た。収率40.8%、粒径34.2μm、組成比DVB/IPDA=91.3/8.7(mol%、元素分析)。
(実施例21)ジビニルベンゼン-アクリル酸テトラヒドロフルフリル共重合体の調製
 500mLセパラブルフラスコに、ヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))8.0gと水200mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)7.84g(0.06mol)、アクリル酸テトラヒドロフルフリル(THFA、東京化成工業製)9.37g(0.06mol)、トルエン(和光純薬工業製)13.8g、アゾイソブチロニトリル(AIBN、東京化成工業製)0.16gを混合し、50℃に加熱して完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度200rpmで重合を行った。攪拌を停止後、重合溶液とポリマー粒子をガラスフィルタでろ過して分離した。ポリマー粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、目的の両親媒性共重合体吸着材を得た。収率81.9%、粒径42.2μm、組成比DVB/THFA=64.7/35.3(mol%、元素分析)。
(実施例22)ジビニルベンゼン-トリアリルシアヌレート共重合体の調製
 500mLセパラブルフラスコに、ヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))2.0gと水100mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)7.84g(0.06mol)、トリアリルシアヌレート(TACy、東京化成工業製)14.95g(0.06mol)、トルエン(和光純薬工業製)11.5g、アゾイソブチロニトリル(AIBN、東京化成工業製)0.22gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度200rpmで重合を行った。攪拌を停止後、重合溶液とポリマー粒子をガラスフィルタでろ過して分離した。ポリマー粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、目的の両親媒性共重合体吸着材を得た。収率46.8%、粒径39.5μm、組成比DVB/TACy=85.5/14.5(mol%、元素分析)。
(実施例23)ジビニルベンゼン-N,N-ジメチルアクリルアミド共重合体の調製
 500mLセパラブルフラスコに、ヒドロキシプロピルセルロース(HPC、アルドリッチ製、平均分子量~10,000、粘度5cP(2wt%水溶液、20℃))8.0gと水200mLを加えて、完全に溶解するまで攪拌した。次に、ジビニルベンゼン(DVB、アルドリッチ製、80%ジビニルベンゼン+19%エチルビニルベンゼン混合物)7.84g(0.06mol)、N,N-ジメチルアクリルアミド(DMAA、東京化成工業製)5.94g(0.06mol)、トルエン(和光純薬工業製)13.5g、アゾイソブチロニトリル(AIBN、東京化成工業製)0.14gを混合し、完全に溶解後、セパラブルフラスコ中に加えた。セパラブルフラスコに窒素導入管、冷却管を接続し、重合系内を窒素置換しながら攪拌羽根で30分攪拌した。フラスコ内の溶液が均一な分散状態となった後、80℃、6h、攪拌速度300rpmで重合を行った。攪拌を停止後、重合溶液とポリマー粒子をガラスフィルタでろ過して分離した。ポリマー粒子について、界面活性剤を完全に除去するまで純水で洗浄を繰り返し行った後、2-ブタノン(和光純薬工業製)、トルエン(和光純薬工業製)、2-ブタノンの順で繰り返し洗浄を行った。室温で乾燥した後、90℃、15hで減圧乾燥して、目的の両親媒性共重合体吸着材を得た。収率58.6%、粒径78.2μm、組成比DVB/TACy=85.5/14.5(mol%、元素分析)。
(実施例24)両親媒性共重合体吸着材と比較例の吸着材との固相抽出性能比較
 実施例18~23で調製した両親媒性共重合体吸着材と比較例の吸着材について、LC-UV及びFIA-MSを用いて各溶質(フェノバルビタール、フェニトイン、ラパマイシン)に対する固相抽出性能を比較した結果を図9に示す。実施例18~23のいずれの両親媒性共重合体吸着材についても、中極性溶質分子であるフェノバルビタール、フェニトインについて、溶質全量の80%以上を吸着保持して固相抽出を行うことができた。一方で、比較例の吸着材は、特に中~高極性溶質分子に対する吸着性能が低下するため、同様の固相抽出処理を行った場合でも回収率が80%以下となり、回収率に劣る結果となった。また、低極性溶質分子においても、ラパマイシンのような環状両親媒性溶質分子については回収率が低下する傾向が見られた。上記結果より、溶質の構造によっては親水性相互作用による強固な吸着が必須であり、高極性構造を含む本発明の吸着材を用いることによって当該溶質についても回収率を向上し得ることが明らかとなった。
(実施例25)両親媒性共重合体吸着材による種々の極性を持つ溶質の固相抽出性能比較
 高極性溶質分子(テオフィリン(logP=-0.02、25ng/mL)、溶媒:水)、中極性溶質分子(フェノバルビタール(logP=1.7、25ng/mL)、フェニトイン(logP=2.5、25ng/mL)、カルバマゼピン溶媒(logP=2.5、2.5ng/mL)、ジアゼパム(logP=2.9、2.5ng/mL)、溶媒:20%メタノール水溶液)、低極性溶質分子(エベロリムス(logP=3.35、20ng/mL)、ラパマイシン(logP=3.5、20ng/mL)、フタル酸ジブチル(logP=4.7、20ng/mL)、溶媒:50%メタノール水溶液)の各溶質分子について混合溶液を調製し、実施例18~23の両親媒性共重合体吸着材による固相抽出を実施し、LC-MS及びFIA-MSを用いて溶質の回収率評価を行った結果を図10~12及び表4にまとめて示す。実施例18~23のいずれにおいても、溶質の極性に関わらず、溶質導入量の80%以上を吸着保持して固相抽出を行うことができた。固相抽出を行った溶離溶液は、LC-UVと同様の結果を示しており、LC-MSによる溶質分析にも適用可能であることが示された。また、LC-MS及びFIA-MSを用いることで、中極性、及び低極性溶質分子の混合溶液の系においても各溶質を高効率に回収することができ、複数の溶質を含む溶液の分析にも適用可能であることが示された。
Figure JPOXMLDOC01-appb-T000004
 また、免疫抑制剤、抗てんかん剤等の薬剤以外の物質の固相抽出及び定量分析の例として、上記実施例においてフタル酸ジブチルの分析を行うことができた。フタル酸ジブチルに代表されるフタル酸エステル分子は、主にポリ塩化ビニル(PVC)の可塑剤として使用されているが、近年では人体への内分泌攪乱作用が懸念されるようになり、規制の対象となっている。本発明の含複素環共重合体吸着材及び両親媒性共重合体吸着材による固相抽出を用いることで、水溶液、地下水、地表水、土壌抽出物等の環境分析、化粧品や食品、これらの抽出物等の成分分析にも応用することができ、極微量の溶質、例えば、薬物、殺虫剤、除草剤、毒物、生体分子、汚染物質、又はそれらの代謝産物もしくは分解生成物に対しても高い精度で分析を行うことができる。また、溶質の種類や、溶質が単体であるか混合物であるかに関わらず、固相抽出及び定量分析を行うことが可能である。
 以上の結果より、本発明の含複素環共重合体吸着材及び両親媒性共重合体吸着材を用いることで、広範なクロマトグラフィー極性を有する溶質を単離することができ、高効率な固相抽出方法及びその固相抽出方法を用いたシステムの構築を行うことが可能となる。
 次に、本発明の第3の態様である吸着材についての実施例を示すが、これらの実施例に限定されるものではなく、その要旨を逸脱しない範囲内で任意に変更して実施することができる。
 下記実施例24~39及び比較例にて製造した吸着材表面における親水性基の結合は、赤外(IR)分光測定により確認した。IR分光装置としては、パーキンエルマー製フーリエ変換赤外分光計(Spectrum100、減衰全反射法(Attenuated Total Reflection:ATR))を用いた。
(実施例24)
 平均粒径が40μmのポリスチレン(株式会社モリテックス社製3040A、SP値δ(文献値;Polymer Hanbook,John Wiley & Sons)=8.6~10.3)粒子10gをガラス皿に入れ、プラズマドライクリーナーPDC210中で酸素プラズマ処理(ソフトモード)を行った。出力は300W、処理時間は2分とした。次に、プラズマ処理後のポリスチレン粒子とクロログリオキシル酸エチルとをフラスコ内で攪拌した。過剰のクロログリオキシル酸エチルを濾過により除去し、接触後のポリスチレン粒子をアルコールで洗浄し、乾燥させた。接触後のポリスチレン粒子のIR分光測定によりエステル結合由来のピークが観察されたことから、ポリスチレン粒子表面にグリオキシル酸エチルがエステル結合により固定化されたことが確認された。上記式に基づいて計算したグリオキシル酸エチルエステルのSP値δは11.7であった。
(実施例25)
 実施例24と同様の方法にてプラズマ処理したポリスチレン粒子とクロログリオキシル酸メチルとをフラスコ内で攪拌した。過剰のクロログリオキシル酸メチルを濾過により除去し、接触後のポリスチレン粒子をアルコールで洗浄し、乾燥させた。接触後のポリスチレン粒子のIR分光測定によりエステル結合由来のピークが観察されたことから、ポリスチレン粒子表面にグリオキシル酸メチルがエステル結合により固定化されたことが確認された。上記式に基づいて計算したグリオキシル酸メチルエステルのSP値δは12.4であった。
(実施例26)
 実施例24と同様の方法にてプラズマ処理したポリスチレン粒子を塩化チオニルの塩化メチレン溶液に浸漬し、過剰の塩化チオニル溶液を減圧蒸留で留去後、アラントインの塩化メチレン溶液とフラスコ内で攪拌した。過剰のアラントイン/塩化メチレン溶液を濾過により除去し、接触後のポリスチレン粒子をアルコールで洗浄し、乾燥させた。接触後のポリスチレン粒子のIR分光測定によりアミド結合由来のピークが観察されたことから、ポリスチレン粒子表面にアラントインがアミド結合により固定化されたことが確認された。上記式に基づいて計算したアラントインのSP値δは21.1であった。
(実施例27)
 実施例24と同様の方法にてプラズマ処理したポリスチレン粒子を3-ウレイドプロピルトリエトキシシランのメタノール溶液に浸漬し、過剰の3-ウレイドプロピルトリエトキシシラン溶液を濾過により除去し、接触後のポリスチレン粒子をアルコールで洗浄し、乾燥させた。接触後のポリスチレンのIR分光測定によりシラノール結合由来のピークが観察されたことから、接触後のポリスチレン粒子表面に3-ウレイドプロピルがシラノール結合により固定化されたことが確認された。上記式に基づいて計算した3-ウレイドプロピルのSP値δは13.8であった。
(実施例28)
 平均粒子径が10μmのポリメタクリル酸メチル(東洋紡績株式会社製FH-S010、SP値δ(文献値;Polymer Hanbook,John Wiley & Sons)=9.1~9.5)粒子を実施例24と同様の方法で処理し、グリオキシル酸エチルエステルを粒子表面にエステル結合を介して固定化したポリメタクリル酸メチル粒子を作製した。
(実施例29)
 実施例28で用いた平均粒子径が10μmのポリメタクリル酸メチル粒子を実施例25と同様の方法で処理し、グリオキシル酸メチルエステルを粒子表面にエステル結合を介して固定化したポリメタクリル酸メチル粒子を作製した。
(実施例30)
 実施例28で用いた平均粒子径が10μmのポリメタクリル酸メチル粒子を実施例26と同様の方法で処理し、アラントインを粒子表面にアミド結合を介して固定化したポリメタクリル酸メチル粒子を作製した。
(実施例31)
 実施例28で用いた平均粒子径が10μmのポリメタクリル酸メチル粒子を実施例27と同様の方法で処理し、3-ウレイドプロピルを粒子表面にシラノール結合を介して固定化したポリメタクリル酸メチル粒子を作製した。
(実施例32)
 中位粒度15~25μmのポリエチレン(SP値δ(文献値;Polymer Hanbook,John Wiley & Sons)=7.7~8.4)微粉末(住友精化株式会社製フローセンUF-20S)を実施例24と同様の方法で処理し、グリオキシル酸エチルエステルを粒子表面にエステル結合を介して固定化したポリエチレン微粉末を作製した。
(実施例33)
 実施例32で用いた中位粒度15~25μmのポリエチレン微粉末を実施例25と同様の方法で処理し、グリオキシル酸メチルエステルを粒子表面にエステル結合を介して固定化したポリエチレン微粉末を作製した。
(実施例34)
 実施例32で用いた中位粒度15~25μmのポリエチレン微粉末を実施例26と同様の方法で処理し、アラントインを粒子表面にアミド結合を介して固定化したポリエチレン微粉末を作製した。
(実施例35)
 実施例32で用いた中位粒度15~25μmのポリエチレン微粉末を実施例27と同様の方法で処理し、3-ウレイドプロピルを粒子表面にシラノール結合を介して固定化したポリエチレン微粉末を作製した。
(実施例36)
 平均粒径が40μmのポリスチレン(株式会社モリテックス社製3040A、SP値δ(文献値;Polymer Hanbook,John Wiley & Sons)=8.6~10.3)粒子10gをガラス皿に入れ、セン特殊光源社製PL21-200を用い、大気雰囲気下でUVオゾン処理を行った。照射したUVの強度は約3J/cmとした。次に、UVオゾン処理後のポリスチレン粒子とクロログリオキシル酸エチルとをフラスコ内で攪拌した。過剰のクロログリオキシル酸エチルを濾過により除去し、接触後のポリスチレン粒子をアルコールで洗浄し、乾燥させた。接触後のポリスチレンのIR分光測定によりエステル結合由来のピークが観察されたことから、ポリスチレン粒子表面にグリオキシル酸エチルがエステル結合により固定化されたことが確認された。
(実施例37)
 実施例36と同様の方法にてUVオゾン処理したポリスチレン粒子とクロログリオキシル酸メチルとをフラスコ内で攪拌した。過剰のクロログリオキシル酸メチルを濾過により除去し、接触後のポリスチレン粒子をアルコールで洗浄し、乾燥させた。接触後のポリスチレンのIR分光測定によりエステル結合由来のピークが観察されたことから、ポリスチレン粒子表面にグリオキシル酸メチルがエステル結合により固定化されたことが確認された。
(実施例38)
 実施例36と同様の方法にてUVオゾン処理したポリスチレン粒子を塩化チオニルの塩化メチレン溶液に浸漬し、過剰の塩化チオニル溶液を減圧蒸留で留去後、アラントインの塩化メチレン溶液とフラスコ内で攪拌した。過剰のアラントイン/塩化メチレン溶液を濾過により除去し、接触後のポリスチレン粒子をアルコールで洗浄し、乾燥させた。接触後のポリスチレン粒子のIR分光測定によりアミド結合由来のピークが観察されたことから、ポリスチレン粒子表面にアラントインがアミド結合により固定化されたことが確認された。
(実施例39)
 実施例36と同様の方法にてUVオゾン処理したポリスチレン粒子を3-ウレイドプロピルトリエトキシシランのメタノール溶液に浸漬し、過剰の3-ウレイドプロピルトリエトキシシラン溶液を濾過により除去し、接触後のポリスチレン粒子をアルコールで洗浄し、乾燥させた。接触後のポリスチレン粒子のIR分光測定によりシラノール結合由来のピークが観察されたことから、ポリスチレン粒子表面に3-ウレイドプロピルがシラノール結合により固定化されたことが確認された。
 実施例24~39及び上述の比較例にて作製した吸着材を用いて、下記方法に従って薬剤の吸着評価を行った。
〔評価方法〕
(1)吸着材の固相抽出プレートへの充填方法
 製造した吸着材2mgをメタノール(100~200μL)に分散させてスラリー状にして、固相抽出プレート(OASIS μ-Elution plate)に充填した。そして、充填した固相抽出プレートを用いて、下記(2)に記載の方法に従って薬剤吸着評価を行った。
(2)吸着材の薬剤吸着評価
 吸着材に対する吸着物質として、テオフィリン(溶媒:水)、フェノバルビタール、フェニトイン、カルバマゼピン、ジアゼパム(溶媒:20%メタノール水溶液)、エベロリムス、ラパマイシン、フタル酸ジブチル(溶媒:50%メタノール水溶液)を薬剤溶液として用い、下記方法により薬剤の吸着評価を行った。
 上記(1)において吸着材を充填した固相抽出プレートに対して、メタノール200μLを、続いて純水200μLを通液させた。次に、上記薬剤溶液100μLをそれぞれプレートに入れ、1分間静置後に薬剤溶液をプレート下部より吸引し、通液させた。次に純水200μLをプレートに通液させ、吸着材を洗浄した。洗浄後、メタノール100μLを通液し、吸着材に吸着した薬剤を回収した。
 回収した溶液において、テオフィリン、フェノバルビタール、フェニトイン、カルバマゼピン、ジアゼパムが含まれる溶液については、それぞれ10μLを採取し、FIA-MS測定により、回収された薬剤の定量を行った。
 FIA-MSの測定装置、測定条件に関しては上記実施例1~23の場合と同様である。
 回収した溶液において、エベロリムス、ラパマイシン、フタル酸ジブチルが含まれる溶液については、それぞれの溶液を減圧乾固し、生成した固体物を20%メタノール水溶液100μLに再溶解し、そのうちの5μLをLC-UV及びLC-MSにて薬剤の定量を行った。
 LC-UV及びLC-MSの測定装置、及びそれらの測定装置を用いたLC-UV及びLC-MSの測定条件は上記実施例1~23と同様である。
 以上の操作により回収された薬剤の量と、固相抽出プレートに通液させた薬剤の量と比率を回収率と定義した。即ち、回収率は、回収された薬剤の量を通液させた薬剤の量で除し、100をかけて算出される値である。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例24~39のいずれの吸着材を用いた場合においても、高い回収率を示した。特に、フェノバルビタール、エベロリムス、ラパマイシンを用いた場合に、従来の吸着材(比較例)を用いた場合よりも優れた回収率を示し、本実施形態に係る吸着材は薬剤をはじめとする、様々な物質に対して高い吸着性能を有することがわかった。
 なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を削除したり、他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (58)

  1.  環構造中に少なくとも2つ以上のヘテロ原子を含む複素環を有し、かつ重合反応性の官能基を2つ以上有する多官能含複素環モノマーと、当該多官能含複素環モノマーと共重合反応が可能な重合反応性の官能基を1つ以上有するモノマーとを、それぞれ少なくとも1種以上含む共重合体からなり、複素環が主鎖構造を構成する吸着材。
  2.  重合反応性の官能基が、不飽和炭化水素を含む官能基である請求項1に記載の吸着材。
  3.  多官能含複素環モノマーに含まれるヘテロ原子が、窒素、酸素、リン、硫黄、セレン及びテルルからなる群より選ばれる1種以上である請求項1又は2に記載の吸着材。
  4.  多官能含複素環モノマーに含まれる複素環が、五員環又は六員環である請求項1~3のいずれかに記載の吸着材。
  5.  多官能含複素環モノマーに含まれる複素環が、ジアゾール環、トリアゾール環、テトラゾール環、ジアジン環、トリアジン環又はテトラジン環である請求項4に記載の吸着材。
  6.  多官能含複素環モノマーが、シアヌル酸トリアリル又はその誘導体、イソシアヌル酸トリアリル又はその誘導体及びメラミン誘導体からなる群より選ばれる1種以上である請求項4又は5に記載の吸着材。
  7.  多官能含複素環モノマーが、イソシアヌル酸トリアリル、イソシアヌル酸ジアリル、シアヌル酸トリアリル及び1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジンからなる群より選ばれる1種以上である請求項4~6のいずれかに記載の吸着材。
  8.  重合反応性の官能基を1つ以上有するモノマーが、疎水性モノマーである請求項1~7のいずれかに記載の吸着材。
  9.  重合反応性の官能基を1つ以上有するモノマーが、アリルグリシジルエーテル、スチレン、ジビニルベンゼン、メタクリル酸メチル、アクリル酸メチル、酢酸ビニル及びビスビニルフェニルエタンからなる群より選ばれる1種以上である請求項1~8のいずれかに記載の吸着材。
  10.  共重合体が、ランダム共重合体、交互共重合体又はブロック共重合体である請求項1~9のいずれかに記載の吸着材。
  11.  多官能含複素環モノマーの共重合比が、0.5~35mol%である請求項1~10のいずれかに記載の吸着材。
  12.  高極性分子構造を有する高極性モノマーから構成されるモノマー単位、及び溶解度パラメータ(SP値)が10.0以下の低極性モノマーから構成されるモノマー単位をそれぞれ1種類以上含み、両モノマー間のSP値の差が少なくとも2.2である共重合体からなり、溶質の吸着が可能な接触表面を備える吸着材。
  13.  SP値が11.5以上の高極性モノマーから構成されるモノマー単位、及びSP値が10.0以下の低極性モノマーから構成されるモノマー単位をそれぞれ1種類以上含む共重合体からなり、溶質の吸着が可能な接触表面を備える吸着材。
  14.  共重合体のSP値が9.5以上である請求項12又は13に記載の吸着材。
  15.  高極性モノマーが、N-フェニルマレイミド、無水マレイン酸、フマル酸、マレイン酸及びトリアリルイソシアヌレートから選択される請求項12~14のいずれかに記載の吸着材。
  16.  エステル結合、ウレタン結合、アミド結合、チオエステル結合、テトラヒドロフラン環、フラン環、カルボキシル基、アミノ基、アルキルアミノ基及びジアルキルアミノ基から選択される1種類以上の高極性分子構造を複数個有し、かつ該複数個の高極性分子構造間に含まれる炭素原子が4原子以内である高極性モノマーから構成されるモノマー単位、及びSP値が10.0以下の低極性モノマーから構成されるモノマー単位をそれぞれ1種類以上含む共重合体からなり、溶質の吸着が可能な接触表面を備える吸着材。
  17.  高極性モノマーが、メチレンビスアクリルアミド、アクリル酸テトラヒドロフルフリル、メタクリル酸テトラヒドロフルフリル、フタル酸ジアリル、イソフタル酸ジビニル、イソフタル酸ジアリル、テレフタル酸ジビニル、テレフタル酸ジアリル、アクリル酸フルフリル及びメタクリル酸フルフリルから選択される、請求項16に記載の吸着材。
  18.  イソシアヌル酸エステル骨格、シアヌル酸エステル骨格、ヘキサヒドロトリアジン骨格、マレイミド骨格及びイミダゾール骨格から選択される高極性分子構造を有する高極性モノマーから構成されるモノマー単位、及びSP値が10.0以下の低極性モノマーから構成されるモノマー単位をそれぞれ1種類以上含む共重合体からなり、溶質の吸着が可能な接触表面を備える吸着材。
  19.  高極性モノマーが、N-フェニルマレイミド、トリアリルイソシアヌレート、トリアリルシアヌレート、1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジン、N-フェニルマレイミド及び1-ビニルイミダゾールから選択される請求項18に記載の吸着材。
  20.  エーテル結合、エステル結合、ウレタン結合、アミド結合、チオエステル結合、カルボキシル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基及びヘテロ環から選択される1種類以上の高極性分子構造を有する高極性モノマーであって、該高極性モノマー中のヘテロ原子の重量比が30重量%以上である高極性モノマーから構成されるモノマー単位、及びSP値が10.0以下の低極性モノマーから構成されるモノマー単位をそれぞれ1種類以上含む共重合体からなり、溶質の吸着が可能な接触表面を備える吸着材。
  21.  高極性モノマーが、N,N-ジメチルアクリルアミド、マレイン酸、フマル酸、メタクリル酸及びアクリル酸から選択される請求項20に記載の吸着材。
  22.  共重合体を構成する少なくとも1種類のモノマーが、重合可能な不飽和官能基を2個以上含む多官能モノマーである請求項12~21のいずれかに記載の吸着材。
  23.  低極性モノマーが、アリルグリシジルエーテル、スチレン、ジビニルベンゼン、メタクリル酸メチル、アクリル酸メチル、酢酸ビニル及びビスビニルフェニルエタンから選択される請求項12~22のいずれかに記載の吸着材。
  24.  トリアリルイソシアヌレート、無水マレイン酸、イソフタル酸ジアリル、アクリル酸テトラヒドロフルフリル、トリアリルシアヌレート及びN,N-ジメチルアクリルアミドから選択される高極性モノマーから構成されるモノマー単位、及び低極性モノマーとしてジビニルベンゼンから構成されるモノマー単位を含み、溶質の吸着が可能な接触表面を備える吸着材。
  25.  懸濁重合、乳化重合、エマルション重合、スプレードライ法、粉砕又は破砕により調製される共重合体粒子である請求項1~24のいずれかに記載の吸着材。
  26.  塊状の共重合体粒子である請求項25に記載の吸着材。
  27.  球状の共重合体粒子である請求項25に記載の吸着材。
  28.  水及び有機溶媒が内部を透過できる多孔質の共重合体粒子である請求項25~27のいずれかに記載の吸着材。
  29.  共重合体粒子の50%平均粒径が、0.5~100μmである請求項25~28のいずれかに記載の吸着材。
  30.  共重合体粒子の50%平均粒径が0.5~80μmであり、80%平均粒径が0.5~100μmである請求項25~28のいずれかに記載の吸着材。
  31.  塊状重合又は溶液重合により調製されるモノリス状高分子多孔質構造体からなる請求項1~24のいずれかに記載の吸着材。
  32.  塊状重合、溶液重合又は固相重合により調製される高分子多孔質膜構造体からなる請求項1~24のいずれかに記載の吸着材。
  33.  疎水性樹脂を含む吸着材であって、
     該疎水性樹脂の表面の一部に親水性基が直接又は間接的に結合し、
     該疎水性樹脂の溶解度パラメータが10以下であり、
     該親水性基の溶解度パラメータと該疎水性樹脂の溶解度パラメータとの差が2.2以上である吸着材。
  34.  疎水性樹脂を含む吸着材であって、
     該疎水性樹脂の表面の一部に親水性基が直接又は間接的に結合し、
     該疎水性樹脂の溶解度パラメータが10以下であり、
     該親水性基の溶解度パラメータが11.5以上である吸着材。
  35.  親水性基が、N-フェニルマレイミド骨格、無水マレイン酸骨格、フマル酸骨格、マレイン酸骨格及びトリアリルイソシアヌレート骨格からなる群より選ばれる1種以上の骨格を含む請求項33又は34に記載の吸着材。
  36.  疎水性樹脂を含む吸着材であって、
     該疎水性樹脂の表面の一部に親水性基が直接又は間接的に結合し、
     該疎水性樹脂の溶解度パラメータが10以下であり、
     該親水性基が、エステル結合、ウレタン結合、アミド結合、チオエステル結合、テトラヒドロフラン環、フラン環、カルボキシル基、アミノ基、アルキルアミノ基及びジアルキルアミノ基からなる群より選ばれる1種以上の構造を複数含み、
     該親水性基が、炭素数6以下の炭化水素基を含む吸着材。
  37.  親水性基が、メチレンビスアクリルアミド骨格、アクリル酸テトラヒドロフルフリル骨格、メタクリル酸テトラヒドロフルフリル骨格、フタル酸ジアリル骨格、イソフタル酸ジビニル骨格、イソフタル酸ジアリル骨格、テレフタル酸ジビニル骨格、テレフタル酸ジアリル骨格、アクリル酸フルフリル骨格及びメタクリル酸フルフリル骨格からなる群より選ばれる1種以上の骨格を含む請求項36に記載の吸着材。
  38.  疎水性樹脂を含む吸着材であって、
     該疎水性樹脂の表面の一部に親水性基が直接又は間接的に結合し、
     該疎水性樹脂の溶解度パラメータが10以下であり、
     該親水性基が、イソシアヌル酸エステル骨格、シアヌル酸エステル骨格、ヘキサヒドロトリアジン骨格、マレイミド骨格、イミダゾール骨格からなる群より選ばれる1種以上の骨格を含む吸着材。
  39.  親水性基が、N-フェニルマレイミド骨格、イソシアヌル酸トリアリル骨格、シアヌル酸トリアリル骨格、1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジン骨格、N-フェニルマレイミド骨格及び1-ビニルイミダゾール骨格からなる群より選ばれる1種以上の骨格を含む請求項38に記載の吸着材。
  40.  疎水性樹脂を含む吸着材であって、
     該疎水性樹脂の表面の一部に親水性基が直接又は間接的に結合し、
     該疎水性樹脂の溶解度パラメータが10以下であり、
     該親水性基が、
     酸素原子、窒素原子及び硫黄原子からなる群より選ばれる1種以上のヘテロ原子と、
     エーテル結合、エステル結合、ウレタン結合、アミド結合、チオエステル結合、カルボキシル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基及びヘテロ環骨格からなる群より選ばれる1種以上の構造と、
    を含み、
     該親水性基におけるヘテロ原子の総含有量が、該親水性基が有する原子の全モル数に対して、30モル%以上である吸着材。
  41.  親水性基が、N,N’-ジメチルアクリルアミド骨格、マレイン酸骨格、フマル酸骨格、メタクリル酸骨格及びアクリル酸骨格からなる群より選ばれる1種以上の骨格を含む請求項40に記載の吸着材。
  42.  疎水性樹脂が、ポリプロピレン、ポリエチレン、ポリスチレン、アリルグリシジルエーテル重合体、ジビニルベンゼン重合体、メタクリル酸メチル重合体、アクリル酸メチル重合体、ポリ酢酸ビニル及びビスビニルフェニルエタン重合体からなる群より選ばれる1種以上の樹脂を含む請求項33~41のいずれかに記載の吸着材。
  43.  親水性基が疎水性樹脂に対して間接的に結合している場合において、
     該親水性基が、エーテル結合、エステル結合、アミド結合及びシラノール結合からなる群より選ばれる1種以上の結合を介して該疎水性樹脂に結合している請求項33~42のいずれかに記載の吸着材。
  44.  球形状を有する請求項33~43のいずれかに記載の吸着材。
  45.  平均直径が0.5μm以上100μm以下である請求項44に記載の吸着材。
  46.  請求項33~45のいずれかに記載の吸着材の製造方法であって、
     疎水性樹脂の表面に対して、オゾン処理、プラズマ処理及び酸化剤処理からなる群より選ばれる1種以上の処理を行った後、該処理後の疎水性樹脂の表面と親水性基を有する化合物とを接触させる工程を有する吸着材の製造方法。
  47.  請求項1~32のいずれかに記載の吸着材に、非極性溶質分子、低極性溶質分子、中極性溶質分子及び高極性溶質分子からなる群より選ばれる1種以上を溶質とする溶液を接触させ、溶液中に含まれる溶質の1種以上を吸着保持させる工程を含む固相抽出方法。
  48.  溶液が、極性溶媒を含む請求項47に記載の固相抽出方法。
  49.  極性溶媒が、水、又は1種以上の極性有機溶媒と水との混合溶媒である請求項48に記載の固相抽出方法。
  50.  極性溶媒が、メタノール、エタノール、プロパノール、2-プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル、アセトニトリル、テトラヒドロフラン、1,4-ジオキサン、N,N-ジメチルホルムアミド及びジメチルスルホキシドからなる群より選ばれる1種以上を含む請求項48に記載の固相抽出方法。
  51.  吸着材に接触させる溶液が、血漿、血清、血液、尿、髄液、滑液、生体組織抽出物、水溶液、地下水、地表水、土壌抽出物、化粧品、食品物質、又は食品物質の抽出物を含む請求項47~50のいずれかに記載の固相抽出方法。
  52.  固相抽出対象である溶質が、薬品、薬剤、抗菌剤、抗てんかん剤、免疫抑制剤、薬物、殺虫剤、除草剤、毒物、生体分子、汚染物質、代謝薬剤、又はそれらの代謝産物もしくは分解生成物である請求項47~51のいずれかに記載の固相抽出方法。
  53.  生体分子が、タンパク質、ビタミン、ホルモン、ポリペプチド、ポリヌクレオチド、脂質又は炭水化物である請求項52に記載の固相抽出方法。
  54.  端部が開放された容器中に、請求項1~32のいずれかに記載の吸着材を備える固相抽出カートリッジ。
  55.  端部が開放された容器中に、請求項1~32のいずれかに記載の吸着材を備える固相抽出カラム。
  56.  前処理として、請求項54記載の固相抽出カートリッジ又は請求項55に記載の固相抽出カラムによる溶質の固相抽出を行う、液相クロマトグラフィー/質量分析(LC-MS)システム。
  57.  前処理として、請求項54記載の固相抽出カートリッジ又は請求項55に記載の固相抽出カラムによる溶質の固相抽出を行う、液相クロマトグラフィー/紫外分光分析(LC-UV)システム。
  58.  前処理として、請求項54記載の固相抽出カートリッジ又は請求項55に記載の固相抽出カラムによる溶質の固相抽出を行う、フローインジェクション方式による質量分析(FIA-MS)システム。
PCT/JP2011/060370 2010-04-28 2011-04-28 吸着材及びその製造方法 WO2011136329A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11775110A EP2564923A1 (en) 2010-04-28 2011-04-28 Adsorbent and method for producing same
JP2012512906A JPWO2011136329A1 (ja) 2010-04-28 2011-04-28 吸着材及びその製造方法
CN2011800212616A CN102883805A (zh) 2010-04-28 2011-04-28 吸附材料及其制造方法
US13/643,926 US20130048853A1 (en) 2010-04-28 2011-04-28 Adsorbent and Method for Producing Same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010104201 2010-04-28
JP2010-104201 2010-04-28
JP2010-140691 2010-06-21
JP2010140691 2010-06-21
JP2010-270421 2010-12-03
JP2010270421 2010-12-03

Publications (1)

Publication Number Publication Date
WO2011136329A1 true WO2011136329A1 (ja) 2011-11-03

Family

ID=44861623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060370 WO2011136329A1 (ja) 2010-04-28 2011-04-28 吸着材及びその製造方法

Country Status (5)

Country Link
US (1) US20130048853A1 (ja)
EP (1) EP2564923A1 (ja)
JP (1) JPWO2011136329A1 (ja)
CN (1) CN102883805A (ja)
WO (1) WO2011136329A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519933A (zh) * 2011-12-20 2012-06-27 苏州硒谷科技有限公司 富硒食用菌中硒形态的测定方法
JP2015045857A (ja) * 2013-07-31 2015-03-12 キヤノン株式会社 トナー
JP2015523859A (ja) * 2012-05-31 2015-08-20 エイジェンシー フォー サイエンス,テクノロジー アンド リサーチ 固相ウレイドに対する生物学的標的物の選択的結合
CN105758973A (zh) * 2014-12-18 2016-07-13 中粮集团有限公司 葡萄酒中氨基甲酸乙酯的固相支持液液萃取前处理方法
JP2017500408A (ja) * 2013-12-19 2017-01-05 スリーエム イノベイティブ プロパティズ カンパニー ジビニルベンゼン/無水マレイン酸ポリマー材料
WO2017164289A1 (ja) * 2016-03-23 2017-09-28 株式会社ダイセル クロマトグラフィー用の固定相
CN108663471A (zh) * 2018-04-09 2018-10-16 深圳市宇驰检测技术股份有限公司 一种测定河口沉积物中多种内分泌干扰物含量的方法
CN111257460A (zh) * 2020-02-25 2020-06-09 中国水产科学研究院黄海水产研究所 一种贝类中三嗪类除草剂及其代谢产物的检测方法
KR102536496B1 (ko) * 2022-09-30 2023-06-01 서강대학교 산학협력단 공기 중 분사되는 사차 암모늄 염의 농도 측정을 위한 수동 채취기 및 이를 이용한 사차 암모늄 염 농도의 측정 방법
CN116459797A (zh) * 2023-04-07 2023-07-21 中科检测技术服务(广州)股份有限公司 一种复合磁性固相萃取材料及其制备方法和在类固醇激素提取中的应用

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6193004B2 (ja) * 2013-06-14 2017-09-06 株式会社日立ハイテクノロジーズ 吸着材及びそれを用いた分析システム
US10000596B2 (en) 2013-12-19 2018-06-19 3M Innovative Properties Company Hydrolyzed divinylbenzene/maleic anhydride polymeric material
CN103739860B (zh) * 2014-01-13 2015-08-26 湖南师范大学 一种超高交联聚苯乙烯吸附树脂的合成方法
CN105816880A (zh) * 2015-01-09 2016-08-03 于杰 一种医用高分子新材料及其应用
JP6457104B2 (ja) 2015-09-29 2019-01-23 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
CN105289545B (zh) * 2015-11-30 2017-12-01 王琪宇 一种雷帕霉素分离用吸附剂的制备
WO2017160637A1 (en) * 2016-03-14 2017-09-21 3M Innovative Properties Company Composite granules including polymeric sorbent for aldehydes
US10960341B2 (en) * 2016-03-14 2021-03-30 3M Innovative Properties Company Air filters comprising polymeric sorbents for aldehydes
EP3429725B1 (en) 2016-03-14 2021-07-07 3M Innovative Properties Company Air filters comprising polymeric sorbents for reactive gases
CN106478871B (zh) * 2016-08-22 2018-10-23 绍兴市柯桥区科创高新技术开发中心 一种螯合剂的制备方法
CN108169392A (zh) * 2016-12-07 2018-06-15 中国科学院大连化学物理研究所 一种富含氨基的微孔聚合物材料富集糖肽的方法
WO2019023350A1 (en) * 2017-07-26 2019-01-31 Sabic Global Technologies B.V. COMPOSITE SORBENT, DEVICES AND METHODS
CN107383262A (zh) * 2017-07-28 2017-11-24 厦门大学 一种基于多功能单体及交联剂的多孔吸附剂的制备方法
CN108456280B (zh) * 2018-01-19 2020-10-27 暨南大学 一种磷脂类有机聚合物整体材料及其制备方法和应用
CN108484900B (zh) * 2018-05-15 2019-07-12 西京学院 一种具有纳米孔穴的聚离子液体凝胶及方法
CN108530625B (zh) * 2018-05-31 2019-07-12 西京学院 一种具有微米孔穴的两亲性共聚网络的凝胶及方法
CN109126737A (zh) * 2018-06-25 2019-01-04 宁波大学 一种固相萃取材料
WO2020126869A1 (en) * 2018-12-17 2020-06-25 Evonik Operations Gmbh Method for the identification of an incorrectly calibrated or non-calibrated infrared spectrometer
CN111307994B (zh) * 2020-03-19 2022-11-22 丽珠集团新北江制药股份有限公司 一种异噁唑啉类化合物的高效液相色谱分析方法
CN111537628B (zh) * 2020-04-15 2022-04-26 无锡微色谱生物科技有限公司 一种尿液中2-氯地西泮和4-氯地西泮的dpx-gc-ms检测方法
CN112110654B (zh) * 2020-09-25 2022-07-05 常州大学 一种光学增透防雾薄膜的制备方法及应用
CN114433033B (zh) * 2020-11-02 2024-05-07 中国石油化工股份有限公司 一种功能化磁性纳米粒子及其制备方法与应用
CN113030300A (zh) * 2021-02-25 2021-06-25 四川省农业科学院分析测试中心 一种测定农田环境水中兽用抗生素的方法
CN113176365B (zh) * 2021-04-20 2023-01-06 品测(上海)检测科技有限公司 着色剂萃取柱及食品中人工合成着色剂的检测方法
CN113509464B (zh) * 2021-07-16 2023-10-20 华侨大学 一种肠腔内尿酸吸附剂及其应用和制备方法
DE102022123491A1 (de) 2022-09-14 2024-03-14 Volkswagen Aktiengesellschaft Thermisch reversibel vernetzbare Polymere für eine Anwendung als Sorbentmaterialien im Bereich Carbon Capturing
CN115586275B (zh) * 2022-10-17 2024-09-27 中国水产科学研究院东海水产研究所 水产品中甲基睾酮的液相色谱-串联质谱测定方法
CN115920861B (zh) * 2022-12-23 2024-07-12 中美华世通生物医药科技(武汉)股份有限公司 一种吸附剂、其制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186167A (en) * 1981-05-12 1982-11-16 Sekisui Chem Co Ltd Packing agent for liquid chromatography
US5618438A (en) 1994-05-05 1997-04-08 Minnesota Mining And Manufacturing Company Method of isolating an analyte using a solid phase extraction medium
WO1997038774A2 (en) 1996-04-18 1997-10-23 Waters Investments Limited Water-wettable chromatographic media for solid phase extraction
WO1999064480A1 (en) * 1998-06-12 1999-12-16 Waters Investments Limited Novel ion exchange porous resins for solid phase extraction and chromatography
JP2000005598A (ja) 1998-06-25 2000-01-11 Hitachi Chem Co Ltd 疎水性吸着剤の製造法
WO2003102061A1 (en) 2002-06-03 2003-12-11 Varian, Inc. A polymer with superior polar retention for sample pretreatment
WO2010018810A1 (ja) * 2008-08-12 2010-02-18 和光純薬工業株式会社 前処理カラムの充填剤用ポリマー

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583482B2 (ja) * 1978-10-26 1983-01-21 呉羽化学工業株式会社 硬質ポリビニルアルコ−ルの製造法
JPS598177B2 (ja) * 1979-07-20 1984-02-23 呉羽化学工業株式会社 ゲル濾過用ゲル
JPS5742339A (en) * 1980-08-26 1982-03-09 Kureha Chem Ind Co Ltd Crosslinked ion exchanger
JPS5861463A (ja) * 1981-10-07 1983-04-12 Kureha Chem Ind Co Ltd 液体クロマトグラフイ−用担体及び該担体を用いる脂溶性物質の分離精製方法
JP3276456B2 (ja) * 1993-04-28 2002-04-22 旭メディカル株式会社 エンドトキシン及び/又はサイトカインの吸着材及び該吸着材を用いた浄化血液の取得装置
JPH07289633A (ja) * 1994-04-22 1995-11-07 Asahi Medical Co Ltd 除去器及び除去装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186167A (en) * 1981-05-12 1982-11-16 Sekisui Chem Co Ltd Packing agent for liquid chromatography
US5618438A (en) 1994-05-05 1997-04-08 Minnesota Mining And Manufacturing Company Method of isolating an analyte using a solid phase extraction medium
WO1997038774A2 (en) 1996-04-18 1997-10-23 Waters Investments Limited Water-wettable chromatographic media for solid phase extraction
US5882521A (en) 1996-04-18 1999-03-16 Waters Investment Ltd. Water-wettable chromatographic media for solid phase extraction
US6106721A (en) 1996-04-18 2000-08-22 Waters Corporation Water-wettable chromatographic media for solid phase extraction
WO1999064480A1 (en) * 1998-06-12 1999-12-16 Waters Investments Limited Novel ion exchange porous resins for solid phase extraction and chromatography
JP2000005598A (ja) 1998-06-25 2000-01-11 Hitachi Chem Co Ltd 疎水性吸着剤の製造法
WO2003102061A1 (en) 2002-06-03 2003-12-11 Varian, Inc. A polymer with superior polar retention for sample pretreatment
WO2010018810A1 (ja) * 2008-08-12 2010-02-18 和光純薬工業株式会社 前処理カラムの充填剤用ポリマー

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Bakerbond SPE Bibliography", 1995, JTBAKER, INC.
"Polymer Handbook", JOHN WILEY & SONS
E. M. THURMAN; M. S. MILLS: "Solid-Phase Extraction Principles and Practice", 1998, WILEY AND SONS
F. FEDORS: "A Method for Estimating Both the Solubility Parameters and Molar Volumes of Liquids", POLYMER ENGINEERING AND SCIENCE, vol. 14, no. 2, 1974
N. J. K. SIMPSON: "Solid-Phase Extraction: Principles, Techniques and Application", 2000, MARCEL DEKKER
P. MCDONALD; WATERS; MILFORD: "Solid Phase Extraction Applications Guide and Bibliography, sixth edition,", 1995

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519933A (zh) * 2011-12-20 2012-06-27 苏州硒谷科技有限公司 富硒食用菌中硒形态的测定方法
JP2015523859A (ja) * 2012-05-31 2015-08-20 エイジェンシー フォー サイエンス,テクノロジー アンド リサーチ 固相ウレイドに対する生物学的標的物の選択的結合
JP2015045857A (ja) * 2013-07-31 2015-03-12 キヤノン株式会社 トナー
JP2017500408A (ja) * 2013-12-19 2017-01-05 スリーエム イノベイティブ プロパティズ カンパニー ジビニルベンゼン/無水マレイン酸ポリマー材料
CN105758973A (zh) * 2014-12-18 2016-07-13 中粮集团有限公司 葡萄酒中氨基甲酸乙酯的固相支持液液萃取前处理方法
US11040330B2 (en) 2016-03-23 2021-06-22 Daicel Corporation Chromatography stationary phase
WO2017164289A1 (ja) * 2016-03-23 2017-09-28 株式会社ダイセル クロマトグラフィー用の固定相
JPWO2017164289A1 (ja) * 2016-03-23 2019-01-31 株式会社ダイセル クロマトグラフィー用の固定相
CN108663471A (zh) * 2018-04-09 2018-10-16 深圳市宇驰检测技术股份有限公司 一种测定河口沉积物中多种内分泌干扰物含量的方法
CN108663471B (zh) * 2018-04-09 2020-06-30 深圳市宇驰检测技术股份有限公司 一种测定河口沉积物中多种内分泌干扰物含量的方法
CN111257460A (zh) * 2020-02-25 2020-06-09 中国水产科学研究院黄海水产研究所 一种贝类中三嗪类除草剂及其代谢产物的检测方法
KR102536496B1 (ko) * 2022-09-30 2023-06-01 서강대학교 산학협력단 공기 중 분사되는 사차 암모늄 염의 농도 측정을 위한 수동 채취기 및 이를 이용한 사차 암모늄 염 농도의 측정 방법
CN116459797A (zh) * 2023-04-07 2023-07-21 中科检测技术服务(广州)股份有限公司 一种复合磁性固相萃取材料及其制备方法和在类固醇激素提取中的应用

Also Published As

Publication number Publication date
EP2564923A1 (en) 2013-03-06
CN102883805A (zh) 2013-01-16
US20130048853A1 (en) 2013-02-28
JPWO2011136329A1 (ja) 2013-07-22

Similar Documents

Publication Publication Date Title
WO2011136329A1 (ja) 吸着材及びその製造方法
Hu et al. Recent advances and applications of molecularly imprinted polymers in solid‐phase extraction for real sample analysis
Arabi et al. Development of a lower toxic approach based on green synthesis of water-compatible molecularly imprinted nanoparticles for the extraction of hydrochlorothiazide from human urine
Arabi et al. Synthesis and application of molecularly imprinted nanoparticles combined ultrasonic assisted for highly selective solid phase extraction trace amount of celecoxib from human plasma samples using design expert (DXB) software
Shahhoseini et al. A critical evaluation of molecularly imprinted polymer (MIP) coatings in solid phase microextraction devices
Fresco-Cala et al. Potential of nanoparticle-based hybrid monoliths as sorbents in microextraction techniques
Mbhele et al. Synthesis of a molecularly imprinted polymer and its application in selective extraction of fenoprofen from wastewater
Zheng et al. Synthesis and theoretical study of molecularly imprinted monoliths for HPLC
US10024828B2 (en) Adsorbent and analysis method using same
Yu et al. Automated analysis of non-steroidal anti-inflammatory drugs in human plasma and water samples by in-tube solid-phase microextraction coupled to liquid chromatography-mass spectrometry based on a poly (4-vinylpyridine-co-ethylene dimethacrylate) monolith
US20220252553A1 (en) Encapsulated pre-analytic workflows for flow-through devices, liquid chromatography and mass spectrometric analysis
Ye et al. Preparation of highly fluorinated and boron-rich adsorbent for magnetic solid-phase extraction of fluoroquinolones in water and milk samples
Miura et al. Molecularly imprinted polymer for caffeic acid by precipitation polymerization and its application to extraction of caffeic acid and chlorogenic acid from Eucommia ulmodies leaves
Meischl et al. Synthesis and evaluation of a novel molecularly imprinted polymer for the selective isolation of acetylsalicylic acid from aqueous solutions
Azodi‐Deilami et al. Magnetic molecularly imprinted polymer nanoparticles coupled with high performance liquid chromatography for solid‐phase extraction of carvedilol in serum samples
Santos et al. Restricted access molecularly imprinted polymers obtained by bovine serum albumin and/or hydrophilic monomers’ external layers: a comparison related to physical and chemical properties
Huang et al. Hyperbranched mixed-mode anion-exchange polymeric sorbent for highly selective extraction of nine acidic non-steroidal anti-inflammatory drugs from human urine
Nakamura et al. Preparation of molecularly imprinted polymers for warfarin and coumachlor by multi-step swelling and polymerization method and their imprinting effects
Rahmati et al. A biocompatible high surface area ZnO-based molecularly imprinted polymer for the determination of meloxicam in water media and plasma
Nakamura et al. Preparation of molecularly imprinted polymers for strychnine by precipitation polymerization and multistep swelling and polymerization and their application for the selective extraction of strychnine from nux‐vomica extract powder
Bayramoglu et al. Effect of spacer-arm and Cu (II) ions on performance of l-histidine immobilized on poly (GMA/MMA) beads as an affinity ligand for separation and purification of IgG
Candish et al. Poly (ethylene glycol) functionalization of monolithic poly (divinyl benzene) for improved miniaturized solid phase extraction of protein-rich samples
da Silva Anacleto et al. Preparation of an organic–inorganic hybrid molecularly imprinted polymer for effective removal of albendazole sulfoxide enantiomers from aqueous medium
Gu et al. Synthesis of surface nano-molecularly imprinted polymers for sensitive baicalin detection in biological samples
Wan et al. MIPs in aqueous environments

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021261.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775110

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512906

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011775110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13643926

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE