WO2011135811A1 - 色素増感太陽電池および色素増感太陽電池モジュール - Google Patents

色素増感太陽電池および色素増感太陽電池モジュール Download PDF

Info

Publication number
WO2011135811A1
WO2011135811A1 PCT/JP2011/002348 JP2011002348W WO2011135811A1 WO 2011135811 A1 WO2011135811 A1 WO 2011135811A1 JP 2011002348 W JP2011002348 W JP 2011002348W WO 2011135811 A1 WO2011135811 A1 WO 2011135811A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
dye
sensitized solar
conductive metal
solar cell
Prior art date
Application number
PCT/JP2011/002348
Other languages
English (en)
French (fr)
Inventor
佐々木 健了
威吏 徳山
河野 充
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to KR1020127026803A priority Critical patent/KR20130086929A/ko
Priority to EP11774599A priority patent/EP2565980A1/en
Priority to JP2012512655A priority patent/JP5815509B2/ja
Priority to CN201180019669XA priority patent/CN102870274A/zh
Priority to US13/643,823 priority patent/US20130037089A1/en
Publication of WO2011135811A1 publication Critical patent/WO2011135811A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a seal structure of a dye-sensitized solar cell constituent member.
  • the dye-sensitized solar cell is called a wet solar cell or a Gretzel battery, and is characterized in that it has an electrochemical cell structure typified by an iodine solution without using a silicon semiconductor.
  • a porous semiconductor layer such as a titania layer formed by baking titanium dioxide powder or the like on a transparent conductive glass plate (transparent conductive substrate on which a transparent conductive film is laminated) and adsorbing a pigment to the titanium dioxide powder. It has a simple structure in which an iodine solution or the like is disposed as an electrolytic solution (electrolyte) between counter electrodes made of a conductive glass plate (conductive substrate).
  • Dye-sensitized solar cells are attracting attention as low-cost solar cells because they are inexpensive and do not require large-scale equipment for production.
  • Dye-sensitized solar cells are required to be further improved in long-term reliability for practical use, and have been studied from various viewpoints.
  • One major problem is to reliably prevent electrolyte leakage.
  • the problem to be solved is that the conventional technology using a bag-shaped sealing member has a poor sealing structure for a dye-sensitized solar cell component member, particularly a sealing structure for an external connection terminal. It is a point which cannot prevent reliably that it leaks from a solar cell.
  • the dye-sensitized solar cell according to the present invention includes a laminated structure part composed of a porous semiconductor layer adsorbing a dye, a conductor layer serving as a cathode electrode, and a conductive metal layer serving as an anode electrode, One end portion of each of the conductive metal layer and the conductor layer extends from the laminated structure portion, and an extension portion is provided.
  • the laminated structure portion and the extension portion are sealed together with the electrolyte to be sealed by a sealing material, and a part of the extending portion of each of the conductive metal layer and the conductor layer is exposed from the sealing material and is externally exposed. It is a connection terminal.
  • the dye-sensitized solar cell according to the present invention is preferably A conductive metal layer serving as the anode electrode is disposed in contact with the conductive layer side of the porous semiconductor layer;
  • the first resin sheet having a larger planar area than the laminated structure part, having transparency, and having an adhesive layer provided on the porous semiconductor layer side, and having a larger planar area than the laminated structure part,
  • a second resin sheet provided with an adhesive layer is disposed on the conductor layer side with the laminated structure portion and the conductive metal layer and the respective extension portions of the conductor layer interposed therebetween, The extending portions of the conductive metal layer and the conductor layer and the outer peripheral portions of the first and second resin sheets separated from the extending portion are bonded by the first and second resin sheets.
  • the first resin sheet and the second resin sheet are formed of a self-adhesive resin material.
  • the dye-sensitized solar cell according to the present invention is preferably The first resin sheet having a larger planar area than the laminated structure part, having transparency, and having an adhesive layer provided on the porous semiconductor layer side, and having a larger planar area than the laminated structure part, A second resin sheet provided with an adhesive layer is disposed on the conductor layer side with the laminated structure portion and the conductive metal layer and the respective extension portions of the conductor layer interposed therebetween, An opening in which the entire surfaces of the first and second resin sheets are bonded, and an extension portion of each of the conductive metal layer and the conductor layer is provided in one of the first and second resin sheets.
  • the electrolyte is enclosed, the first resin sheet is a transparent substrate on which light is incident, and the second resin sheet is a counter substrate.
  • the first resin sheet and the second resin sheet are formed of a self-adhesive resin material.
  • the dye-sensitized solar cell according to the present invention is preferably A transparent substrate on which light is incident, a conductive substrate provided to face the transparent substrate and serving as a cathode electrode, a porous semiconductor layer adsorbing a dye, and an anode electrode disposed in contact with the porous semiconductor layer Comprising a laminated structure composed of conductive metal layers, and an electrolyte is enclosed, One end of each of the conductive layer of the conductive substrate and the conductive metal layer extends from the laminated structure, and an extended portion is provided.
  • the sealing member is composed of a resin sheet in which an adhesive layer is provided on the entire surface of at least one sheet made of a transparent material, and the resin sheet made of the transparent material is disposed on the transparent substrate. And another resin sheet is disposed under the conductive substrate, and the extending portions of the laminated structure, the conductive layer of the conductive substrate, and the conductive metal layer are disposed between the two resin sheets. The entire surface is bonded.
  • the conductive metal layer is a porous layer disposed in contact with the opposite side of the porous semiconductor layer to the transparent substrate.
  • the dye-sensitized solar cell according to the present invention is preferably characterized in that the extending portion of the conductive metal layer is formed of a non-porous layer.
  • the dye-sensitized solar cell according to the present invention is characterized in that a plurality of the dye-sensitized solar cells are electrically arranged in series or in parallel, and the whole is sealed.
  • the dye-sensitized solar cell according to the present invention has at least an extension part such as a conductor layer of a conductive substrate extending from the laminate structure part or the laminate structure and a periphery of the laminate structure part or the laminate structure such as an electrode. Since the seal is sealed and the extension part is partially exposed by the opening provided in the seal member to be an external connection terminal, the seal structure of the cell constituent member of the dye-sensitized solar cell, in particular, the external connection terminal The seal structure can be ensured, and the possibility that the electrolyte solution leaks from the solar cell can be prevented.
  • the dye-sensitized solar cell module according to the present invention includes a plurality of the above-described dye-sensitized solar cells that are electrically arranged in series or in parallel and sealed as a whole. The effect of can be acquired suitably.
  • FIG. 1 is a schematic sectional side view of a dye-sensitized solar cell according to a first example of the present embodiment.
  • FIG. 2 is a plan view of the dye-sensitized solar cell according to the first example of the present embodiment.
  • FIG. 3 is a schematic sectional side view of a dye-sensitized solar cell according to the third example of the present embodiment.
  • FIG. 4 is a schematic sectional side view of a modification of the dye-sensitized solar cell according to the third example of the present embodiment.
  • FIG. 5 is a diagram for explaining a heat seal structure of a modification of the dye-sensitized solar cell according to the third example of the present embodiment.
  • FIG. 6 is a plan view of a dye-sensitized solar cell module according to a fourth example of the present embodiment.
  • FIG. 7 is a plan view of a dye-sensitized solar cell according to the second example of the present embodiment.
  • the basic principle of the dye-sensitized solar cell according to the present embodiment includes a laminated structure portion including a porous semiconductor layer that adsorbs a dye, a conductor layer that becomes a cathode electrode, and a conductive metal layer that becomes an anode electrode. , One end of each of the conductive metal layer and the conductor layer extends from the laminated structure portion, and an extension portion is provided.
  • the laminated structure portion and the extension portion are sealed together with the electrolyte to be sealed by the sealing material, and the conductive metal layer and a part of the extension portion of each of the conductor layers are exposed from the sealing material to be connected to the external connection terminal. (See, for example, FIG. 1).
  • the dye-sensitized solar cell 10 includes a porous semiconductor layer 12 that has adsorbed a dye, and a conductive metal layer 14 that is disposed in contact with the porous semiconductor layer 12 and serves as an anode electrode. And a laminated structure portion 18 composed of the conductor layer 16 serving as a cathode electrode.
  • reference numeral 20 indicates an electrolyte (electrolytic solution) to be sealed.
  • One end of each of the conductive metal layer 14 and the conductor layer 16 extends from the laminated structure portion 18 to provide extended portions 14a and 16a.
  • the first resin sheet 22 is formed on the upper surface of the laminated structure portion 18 on the porous semiconductor layer 12 side, and the second resin sheet 24 is formed on the lower surface of the laminated structure portion 18 on the conductor layer 16 side.
  • the first resin sheet 22 and the second resin sheet 24 are both made of a self-adhesive resin material or a non-self-adhesive resin material, and have a larger planar area than the laminated structure portion 18.
  • the self-adhesive material is a chemical interaction such as a hydrogen bond, a covalent bond, an intermolecular force, or a mechanical interaction such as an anchor effect, such as a solder resist or a bonding sheet material.
  • a resin material other than the self-adhesive material is referred to herein as a non-self-adhesive resin material. Details of these resin materials will be described later.
  • first resin sheet 22 and the second resin sheet 24 a case where a non-self-adhesive resin material is used as the first resin sheet 22 and the second resin sheet 24 will be described as an example. However, when a self-adhesive material is used, an adhesive layer described below is omitted. There is no change except the point that is done.
  • a non-self-adhesive resin material is used as the first resin sheet 22 and the second resin sheet 24, an adhesive layer is provided on one side of each of the first resin sheet 22 and the second resin sheet 24, and adhesion is performed.
  • the extending portions 14a and 16a are covered together with the laminated structure portion 18 with the surface of the agent layer facing inside.
  • the first resin sheet 22 has transparency. That is, the first resin sheet 22 is transparent or translucent.
  • the second resin sheet 24 may be transparent or not.
  • the display of the adhesive layer provided on the lower surface of the first resin sheet 22 and the upper surface of the second resin sheet 24 is omitted.
  • the entire surfaces of the first and second resin sheets 22 and 24 are adhered and sealed, whereby the laminated structure portion 18 and the extending portions 14a and 16a of the conductive metal layer 14 and the conductor layer 16 are first and It is enclosed in the second resin sheets 22 and 24.
  • the extending portions 14 a and 16 a are partially exposed through openings 26 and 28 provided in the first resin sheet 22 to serve as external connection terminals.
  • the electrolyte is passed through the openings 26 and 28. 20 is less likely to leak.
  • the openings 26 and 28 may be provided in the second resin sheet 24, or one may be provided in the first resin sheet 22 and the other may be provided in the second resin sheet 24.
  • the first resin sheet 22 is a transparent substrate on which light is incident, and the second resin sheet 24 is a counter substrate.
  • the conductive metal layer normally provided on the transparent substrate is omitted, and the conductive metal layer on the conductive layer 16 side of the porous semiconductor layer 12, in other words, on the electrolyte 20 side.
  • the laminated structure portion may have a configuration in which a conductive metal layer is provided on a transparent substrate like a normal battery.
  • the material resin of the first and second resin sheets 22 and 24 is a non-self-adhesive resin material, for example, PP, PE, PS, ABS, PS, PC, PMMA, PVC, PA, POM, PET, PEN PIB, PVB, PA6, polyimide, polyamide, polyolefin, polyester, polyether, cured acrylic resin, cured epoxy resin, cured silicone resin, various engineering plastics, cyclic polymers obtained by metathesis polymerization, and the like.
  • the first and second resin sheets 22 and 24 may be formed of the same material or different materials.
  • the first resin sheet (transparent substrate) 22 in order to improve the durability of the dye adsorbed on the porous semiconductor layer 12, a material that absorbs a light wavelength of 200 nm to 400 nm may be used, or may be attached separately. Alternatively, it can be coated. In addition, an antireflection film can be provided on the outermost surface of the first resin sheet 22 in order to improve the utilization efficiency of light incident on the first resin sheet 22.
  • the material of the adhesive layer provided over part or the entire surface of the first and second resin sheets 22 and 24 is, for example, an EVA resin emulsion adhesive mainly composed of a resin (EVA) copolymerized with ethylene and vinyl acetate.
  • an appropriate adhesive material such as polyolefin, polyester, polyurethane, polyacryl, epoxy, ionomer, disulfide, polyimide, or silicone may be used. Can do.
  • the surface treatment of the resin sheet may be performed for the purpose of strengthening the adhesion of the adhesive layer provided over part or the entire surface of the first and second resin sheets 22 and 24 or for the purpose of efficiently photoelectrically converting incident light.
  • appropriate oxidation treatment such as ozone, oxygen plasma, dichromic acid, permanganic acid, silane coupling agent, silylating agent, silanol, organosilane, titanium coupling agent, titanium alkoxide, etc.
  • the thickness of the adhesive layer is not particularly limited, and can be about 0.5 ⁇ m to 1 mm, for example. It is more preferable that the portions of the first and second resin sheets 22 and 24 that do not contact the porous semiconductor layer 12 are thicker than the contact portions. For example, when the sum of the thicknesses of the first and second resin sheets 22 and 24 in the portion not in contact with the porous semiconductor layer 12 is larger than the total thickness of the portions in contact with each other, Is preferable because it becomes stronger.
  • a self-adhesive resin material that does not require an adhesive is used as the material resin of the first and second resin sheets 22 and 24, polyolefin-based, polyester-based, polyurethane-based, polyacryl-based, epoxy-based, ionomer , Monomer dispersions or prepolymers of various polymers such as disulfide, polyimide, and silicone, and surface treatment such as chemical treatment with acid / alkali, corona treatment, plasma treatment, and mechanical roughening treatment on each of the polymers. What has been done, thermoplastic resins and the like. When these self-adhesive resin materials are used, adhesion is performed by heating, pressurization, light irradiation, or the like.
  • the conductive metal layer 14 may be a metal mesh, a metal layer in which an infinite number of holes are formed in advance, or a porous metal layer formed by thermal spraying or a thin film forming method.
  • the material of the conductive metal layer 14 is not particularly limited, but one or more metal materials selected from the group consisting of Ti, W, Ni, Pt, Ta, Nb, Zr and Au, or these It is preferably a compound or a material coated with these, particularly preferably Ti or a Ti composite material sintered with a sintering aid.
  • the sintering aid may be any appropriate material that is usually employed. For example, a material such as Ni, B 4 C, or Y 2 O 3 can be used, and Ni is particularly preferable. More preferably, the sintering aid has a particle size of 100 nm or less in diameter. Thereby, the conductive metal layer 14 having good corrosion resistance against iodine used as charge transport ions in the electrolyte 20 can be obtained.
  • the conductive metal layer 14 may have a through-hole penetrating the front and back of the layer, but is also isotropic in the direction along the plane of the layer, that is, in all directions in three dimensions. It is preferable to form a through hole that communicates. As a result, the electrolyte 20 passing through the conductive metal layer 14 penetrates uniformly into each part of the porous semiconductor layer 12.
  • the thickness of the conductive metal layer 14 is not particularly limited, but is preferably 0.2 ⁇ m to 600 ⁇ m, and more preferably 0.3 ⁇ m to 100 ⁇ m. When the thickness of the conductive metal layer 14 is less than 0.2 ⁇ m, the electrical resistance of the conductive metal layer 14 may increase. On the other hand, if the thickness of the conductive metal layer 14 exceeds 600 ⁇ m, the flow resistance of the electrolyte 20 that passes through the inside of the conductive metal layer 14 is too large, and the movement of the electrolyte 20 may be hindered.
  • the electrical resistance of the conductive metal layer 14 is preferably 1 ⁇ / ⁇ or less.
  • the specific surface area of the metal porous body which comprises the electroconductive metal layer 14 is 0.1 m ⁇ 2 > / g or more. Thereby, the joining force between the conductive metal layer 14 and the porous semiconductor layer 12 can be further increased.
  • the upper limit value of the specific surface area of the metal porous body is not particularly limited, but for example, about 10 m 2 / g is sufficient.
  • the specific surface area can be measured by a mercury intrusion method.
  • the specific surface area is measured by the mercury intrusion method using a mercury intrusion type pore distribution measuring device (CARLOERBA INSTRUMENTS Pasca1 140 and Pasca1440 measurable range specific surface area O.1 m2 / g to pore distribution 0.0034 to 400 ⁇ m).
  • the press-fitted volume is calculated as a side area according to the cylindrical pore model and integrated and measured. Note that the porosity and the hole diameter described later can be obtained simultaneously by this measurement.
  • the metal porous body preferably has a porosity of 30 to 60% by volume and a pore diameter of 1 ⁇ m to 40 ⁇ m. When the porosity is less than 30% by volume, the diffusion of the electrolyte inside the metal porous body becomes insufficient, and this may impair uniform penetration into the conductive metal layer 14. On the other hand, when the porosity exceeds 60% by volume, the bonding force between the conductive metal layer 14 and the porous semiconductor layer 12 may be impaired.
  • the pore diameter is less than 1 ⁇ m, the diffusion of the electrolyte inside the metal porous body becomes insufficient, and the meshing between the pores of the conductive metal layer 14 and the particles of the porous semiconductor layer 12 is insufficient. As a result, the bonding force between the conductive metal layer 14 and the porous semiconductor layer 12 may be impaired.
  • the pore diameter exceeds 40 ⁇ m, the contact area between the conductive metal layer 14 and the porous semiconductor layer 12 may be reduced, and the bonding force between the conductive metal layer 14 and the porous semiconductor layer 12 may be impaired. is there.
  • the laminated structure 18 may be provided with a porous insulating layer between the conductive metal layer 14 and the electrolyte 20.
  • the conductive metal layer 14 is formed on the porous insulating layer by an appropriate film forming method such as a press method or a sputtering method.
  • the porous semiconductor layer 12 can be obtained by applying the material of the porous semiconductor layer 12 on the upper surface and firing it.
  • the extending portion 14 a can be provided in a structure in which the end portion of the conductive metal layer 14 is extended and pulled out from the laminated structure portion 18.
  • the conductive metal layer 14 is a porous film, if the extending portion 14a is formed of the same material as that of the conductive metal layer 14, there is no possibility that the electrolyte leaks out from the extending portion 14a.
  • the extending portion 14 a is formed of a non-porous material different from the material of the conductive metal layer 14 and has a structure that is electrically connected to the conductive metal layer 14.
  • the extension portion 16a can be provided in a structure in which the end portion of the conductor layer 16 is extended and pulled out from the laminated structure portion 18, and the conductor layer 16 is made of a different material. It is good also as a structure electrically connected to.
  • the conductor layer 16 is a catalyst film or a catalyst film laminated with a conductive film. However, in the case of a structure in which the latter catalyst film is laminated with a conductive film, only the conductive film is extended. It is enough.
  • the conductor layer is not particularly limited.
  • ITO indium film doped with tin
  • FTO fluorine-doped tin oxide film
  • SnO 2 film or the like The conductor layer 16 is further coated with one or more metal materials selected from the group consisting of Ti, W, Ni, Pt, Ta, Nb, Zr, and Au, or a compound thereof, and these metals. It may be a laminate of a conductive material such as carbon material or carbon.
  • the conductor layer provided on a transparent substrate needs to have transparency, it does not need to be a porous layer like the electroconductive metal layer 14, and if it is a porous layer, it will have electroconductivity. May be disturbed.
  • the conductor layer may be formed integrally on the first resin sheet 24 by an appropriate method such as sputtering, vapor deposition, or coating.
  • a conductive film can be formed using the same material as that of the conductive metal layer 14.
  • a catalyst film such as a noble metal such as a platinum film, high surface area carbon, or a catalytic conductive polymer is provided on the surface of the conductor layer 16 facing the electrolyte 20.
  • the conductor layer 16 may be provided with only a catalyst film such as a platinum film by omitting a conductive film such as ITO. In this case, the catalyst film acts as a conductive film.
  • the thickness of the conductor layer 16 is not particularly limited, but is preferably about several tens of nm or more from the viewpoint of obtaining good conductivity.
  • the conductor layer 16 may be a self-supporting film such as a metal foil, mesh, or net, or may be formed on the second resin sheet 24 by an appropriate method such as sputtering, vapor deposition, or coating, and integrated. You may form in.
  • an appropriate metal oxide such as TiO 2 , ZnO, or SnO 2 can be used as a semiconductor material. Of these, TiO 2 is preferable.
  • the thickness of the porous semiconductor layer 12 is not particularly limited, but is preferably 10 ⁇ m or more.
  • the particle diameter of the TiO 2 fine particles to be fired is not particularly limited, but is preferably about 1 nm to 100 nm, for example.
  • the porous semiconductor layer 12 is obtained by firing the above semiconductor material at a temperature of 300 ° C. or higher, preferably 350 ° C. or higher, more preferably 400 ° C. or higher.
  • the temperature is sufficiently lower than the melting point of the material of the porous semiconductor layer 12, preferably 550 ° C. or less.
  • titanium oxide titanium oxide
  • it is preferably fired in a state of anatase crystal having high conductivity of titanium oxide at a temperature that does not shift to a rutile crystal.
  • the porous semiconductor layer 12 has a desired thickness by firing the semiconductor material provided in a thin layer and then repeating the operation of further providing a thin layer and firing.
  • the dye adsorbed on the porous semiconductor layer 12 has absorption at a wavelength of 400 nm to 1200 nm.
  • the adsorption method is not particularly limited.
  • a so-called impregnation method in which a conductive metal layer in which a porous semiconductor layer is formed in a dye solution is immersed and the dye is chemically adsorbed on the surface of the fine particles can be used.
  • the electrolyte (electrolytic solution) 20 contains iodine, lithium ions, ionic liquid, t-butylpyridine, and the like.
  • iodine an oxidation-reduction body composed of a combination of iodide ions and iodine can be used.
  • the redox form contains an appropriate solvent that can dissolve the redox form.
  • a pyridine-based, cholic acid-based, or carboxylic acid-based reverse electron inhibitor may be included.
  • a gelling agent for quasi-solidifying can also be used.
  • the electrolyte (electrolytic solution) 20 may be filled in a space defined between the conductive metal layer 14 and the conductor layer 16, or between the conductive metal layer 14 and the conductor layer 16.
  • a porous spacer may be provided on and impregnated in the porous spacer.
  • the first resin sheet (transparent substrate) 22 and the porous semiconductor layer 12 are provided in close contact with each other, whereby the utilization efficiency of light incident on the first resin sheet 22 can be improved.
  • the conductive metal layer 14 and the conductor layer 16 are arranged so as not to contact with each other, for example, the electrolyte 6 has corrosion resistance and has sufficient pores so as not to prevent the diffusion of the electrolyte ions.
  • an insulating layer such as a glass paper, a glass cloth, a Teflon sheet (Teflon is a registered trademark), a PP sheet, a PE sheet, a SiO 2 film by sputtering, or the like.
  • the distance between the conductive metal layer 14 and the conductor layer 16 is preferably 150 ⁇ m or less.
  • the dye-sensitized solar cell 10 described above can be obtained, for example, by the following manufacturing method.
  • the laminated structure 18 can be obtained by an appropriate method that is usually employed.
  • the conductive metal layer 14 can also be obtained by an appropriate manufacturing method.
  • a metal paste is prepared by mixing a metal fine powder with an appropriate solvent on an appropriate substrate, heated to a firing temperature under an atmospheric condition in which oxygen is not substantially present, and then on the porous semiconductor layer 12 A method of transferring the metal paste fired body to the substrate can be employed. At this time, the whole is fired at the firing temperature of the material of the porous semiconductor layer 12 with the metal paste fired body transferred onto the material of the unfired porous semiconductor layer 20.
  • the conductive metal layer 14 may be laminated on the porous semiconductor layer 12 by firing a thick metal paste and then slicing it to a desired thickness.
  • the conductive metal layer 14 may be a commercially available metal fine powder sintered body sheet, for example, a trade name “Typorus” (manufactured by Osaka Titanium Technologies).
  • the first and second resin sheets 22 and 24 sandwiching the laminated structure portion 18 and the like are, for example, pressed for about 0.5 seconds to 10 minutes at a pressure of 0.05 to 5 MPa, for example, by a laminating method such as a press type. Pressurize, bond and seal.
  • the treatment may be performed by heating to a temperature of about 40 to 200 ° C.
  • the openings 26 and 28 provided in the first and second resin sheets 22 and 24 may be formed in the first and second resin sheets 22 and 24 in advance, and the laminated structure portion 18 and the like are sealed. It may be formed later.
  • an opening communicating with the laminated structure 18 is formed in the second resin sheet 24 in advance or after sealing, and the electrolyte 20 is injected from the opening. Then, a method of sealing the opening can be employed. From the viewpoint of preventing air from entering the electrolyte 20, it is preferable that the laminated structure 18 is evacuated from the opening using a vacuum pump or the like and the electrolyte 20 is injected, and then the opening is sealed.
  • the dye-sensitized solar cell 10 described above can be sealed by a simple method using the first and second resin sheets 22 and 24 serving as substrates without using a special member for sealing.
  • the dye-sensitized solar cell 10 can ensure the seal structure of the dye-sensitized solar cell constituent member, particularly the seal structure of the external connection terminal, and prevent the electrolyte from leaking from the solar cell. can do.
  • the dye-sensitized solar cell according to the second example of the present embodiment is in contact with the porous semiconductor layer that adsorbs the dye, the conductor layer that becomes the cathode electrode, and the conductor layer side of the porous semiconductor layer.
  • the laminated structure portion is composed of a conductive metal layer that is disposed and serves as an anode electrode. One end of each of the conductive metal layer and the conductor layer extends from the laminated structure portion, and an extended portion is provided.
  • the first resin sheet having a large planar area, having transparency, and having an adhesive layer provided on the porous semiconductor layer side, and having a larger planar area than the laminated structure portion, is provided with the adhesive layer.
  • Two resin sheets are disposed on the conductor layer side with the laminated structure portion and the conductive metal layer and the respective extension portions of the conductor layer interposed therebetween, and the conductive metal layer and the respective extension portions of the conductor layer and First and second resin sheets separated from the extension
  • the outer peripheral portion is bonded and sealed by the first and second resin sheets, and the extending portions of the conductive metal layer and the conductive layer are provided on either the first or second resin sheet.
  • the basic configuration of the dye-sensitized solar cell according to the second example of the present embodiment is the same as that of the dye-sensitized solar cell 10.
  • the dye-sensitized solar cell according to the second example of the present embodiment is a so-called three-dimensional structure in which the conductive metal layer serving as the anode electrode of the laminated structure portion is disposed in contact with the conductor layer side of the porous semiconductor layer. The points limited to the electrodes, and as shown in FIG.
  • the extension portions 14a and 16a of the conductive metal layer and the conductor layer, and the first and second resin sheets separated from the extension portions 14a and 16a, respectively. 7 is different from the dye-sensitized solar cell 10 in that only the outer peripheral portion (indicated by arrows A1, A2, and A3 in FIG. 7) is adhered and sealed as a whole by the first and second resin sheets.
  • the dye-sensitized solar cell according to the second example of the present embodiment for example, the locations corresponding to the extending portions and the outer peripheral portions of the first and second resin sheets of the first and second resin sheets.
  • an adhesive is applied to the first and second resin sheets to form an adhesive layer, and then the first and second masks are removed. It can be obtained by sealing using the second resin sheet.
  • the first resin sheet is not adhered to the porous semiconductor layer of the laminated structure portion, so that the first is caused by some cause when handling the dye-sensitized solar cell. Even if tensile stress or the like is applied to the resin sheet, the stress does not act on the porous semiconductor layer as it is, so that it is possible to reliably avoid problems such as cracks in the porous semiconductor layer.
  • each member such as the conductive metal layer of the dye-sensitized solar cell according to the third example of the present embodiment can have the same configuration as that of the dye-sensitized solar cell 10.
  • the overlapping description is omitted.
  • the dye-sensitized solar cell 10a includes a transparent substrate 30 on which light is incident, a conductive substrate 32 provided to face the transparent substrate 30 and serving as a cathode electrode, and a dye.
  • a multilayer structure 36 is provided that includes an adsorbed porous semiconductor layer 12 and a conductive metal layer 34 that is disposed in contact with the porous semiconductor layer 12 and serves as an anode, and the electrolyte 20 is enclosed therein.
  • the conductive substrate 32 includes a substrate 38 and a conductor layer 40 formed on the substrate 38. In FIG. 3, the conductive metal layer 34 is provided on the transparent substrate 30.
  • the conductive metal layer 34 may be formed on the electrolyte 20 side of the porous semiconductor layer 12. This is the same as the case of the dye-sensitized solar cell 10.
  • One end of each of the conductor layer 40 and the conductive metal layer 34 of the conductive substrate 32 extends from the stacked structure 36 to provide extended portions 40b and 34b, and the stacked structure 36 and the conductor of the conductive substrate 32 are provided.
  • the extended portions 40b and 34b of the layer 40 and the conductive metal layer 34 are sealed by a sealing member 42 having transparency. Further, the extended portions 40b and 34b of the conductive layer 40 and the conductive metal layer 34 of the conductive substrate 32 are partly exposed by the openings 44 and 46 provided in the seal member 42 to serve as external connection terminals.
  • the substrate 38 of the transparent substrate 30 and the conductive substrate 32 may be, for example, a glass plate or a resin plate having flexibility (flexible transparent substrate and flexible conductive substrate).
  • the dye-sensitized solar cell 10a can be obtained, for example, by the following manufacturing method.
  • the laminated structure 36 can be obtained by an appropriate method that is usually employed.
  • the laminated structure 36 provided with the extending portions 40b and 34b is set in a mold, and the resin melt (material of the seal member 42) is placed in the mold.
  • the laminated structure 36 and the like are sealed (cast) into the resin by pouring and molding.
  • the openings 44 and 46 can be formed during molding or after molding. Examples of the resin used as the resin melt include an epoxy resin. Note that the openings 44 and 46 and the opening for injecting the electrolyte 20 may be formed at any time after molding or after molding.
  • the dye-sensitized solar cell 10a according to the third example of the present embodiment can surely seal the laminated structure 36 provided with the extending portions 40b and 34b, and thereby the dye-sensitized solar cell.
  • the same effect as the battery 10 can be obtained.
  • the laminated structure 36 is not restricted by the shape.
  • the dye-sensitized solar cell 10b according to the modification shown in FIG. 4 is different from the dye-sensitized solar cell 10a in the configuration of the seal member. That is, the dye-sensitized solar cell 10b is composed of, for example, two or more resin sheets 48a and 48b made of a transparent material, such as polyester and polyamide, provided with an adhesive layer on the entire surface as a sealing member. Is done. As the resin sheets 48a and 48b, those having a sufficiently larger plane area than the laminated structure 36 are used.
  • a resin sheet 48a made of a transparent material is disposed on the transparent substrate 30 with the adhesive layer facing downward, and another resin sheet 48b is disposed under the conductive substrate 30 with the adhesive layer facing upward,
  • the extended portions 40a and 34a of the laminated structure 36 and the conductive layer 40 and the conductive metal layer 34 of the conductive substrate 32 are bonded together between the two resin sheets 48a and 48b.
  • two resin sheets 48a and 48b apart from the laminated structure 36 and the extended portions 40a and 34a of the conductive layer 40 and the conductive metal layer 34 of the conductive substrate 32 respectively. It is more preferable to heat-seal the outer peripheral part (in FIG. 5, the arrow X shows a heat-seal location).
  • the openings 44 and 46 and the opening for injecting the electrolyte 20 may be formed in the resin sheets 48a and 48b in advance, or may be formed after sealing.
  • the dye-sensitized solar cell 10b is sealed (sealed) with two resin sheets, thereby ensuring a seal structure of the dye-sensitized solar cell constituent member, particularly a seal structure of the external connection terminal. It is possible to prevent the electrolyte from leaking from the solar cell.
  • the dye-sensitized solar cell module according to the fourth example of the present embodiment is one in which a plurality of any of the dye-sensitized solar cells 10, 10a, 10b are electrically arranged in series or in parallel. It is. The entire dye-sensitized solar cell module is sealed.
  • the dye-sensitized solar cell module 50 shown in a plan view in FIG. 6 the dye-sensitized solar cells 10 are arranged in a line, and the extending portion 14 a and the extending portion 16 a of the adjacent dye-sensitized solar cells 10 are electrically connected to each other. Connected.
  • the outputs of the plurality of dye-sensitized solar cells 10 arranged in series can be obtained.
  • the adjacent dye-sensitized solar cells 10 are arranged independently, that is, without adjacently connecting the extending portion 14a and the extending portion 16a, and the extraction wiring common to each extending portion 14a.
  • the output of a plurality of dye-sensitized solar cells 10 arranged in parallel can be obtained.
  • Example 1 Print a titania paste (trade name NanoxideD, manufactured by Solaronics) on a porous Ti sheet (trade name: Typorus, manufactured by Osaka Titanium Co., Ltd.) with a thickness of 100 ⁇ m, dry, and air at 400 ° C for 30 minutes. Baked in. On the titania after firing, the operation of further printing and firing the titania paste was repeated a total of 6 times to form a titania layer having a thickness of 17 ⁇ m on one side of the porous Ti sheet. At this time, the porous Ti sheet was formed in a size of 9 mm ⁇ 24 mm so that both end portions protruded 2 mm from the 5 mm ⁇ 20 mm titania layer.
  • a titania paste trade name NanoxideD, manufactured by Solaronics
  • a porous Ti sheet trade name: Typorus, manufactured by Osaka Titanium Co., Ltd.
  • the prepared porous Ti sheet with a titania layer was impregnated with a mixed solvent solution of N719 dye (manufactured by Solaronics) in acetonitrile and t-butyl alcohol for 70 hours, and the dye was adsorbed on the titania surface.
  • N719 dye manufactured by Solaronics
  • the porous Ti sheet with a titania layer after adsorption was washed with a mixed solvent of acetonitrile and t-butyl alcohol.
  • PET resin sheet with EVA adhesive layer opposite substrate
  • 9mm x 24mm ITO vapor deposited PEN resin sheet cathode electrode
  • Pt catalyst layer 20mm x 20mm Ti foil
  • 10mm x 25mm glass paper 10mm x 20mm Ti foil
  • 9 mm ⁇ 24 mm dye-adsorbed porous Ti sheet with titania layer anode electrode
  • EVA resin layer-attached PET resin sheet transparent substrate
  • the Ti foil between the cathode electrode and the glass paper is formed so that the end part contacts the long side of the ITO-deposited PEN resin sheet with the Pt catalyst layer with a width of 2 mm so as to protrude from the glass paper. It was.
  • the Ti foil between the anode electrode and the glass paper is made by bringing the end part into contact with the long side of the porous Ti sheet with the dye-adsorbed titania layer on the side opposite to the extension part of the cathode electrode with a width of 2 mm. It formed so that it might protrude from paper, and it was set as the extension part.
  • Two PET resin sheets were heat-sealed at 100 ° C. using a roller laminate.
  • An opening was formed in the PET resin sheet covering each extension part to expose each extension part, and an external connection terminal was formed. Further, a hole of about 6 mm was provided in one place on the PET resin sheet with an EVA adhesive layer so that a part of the porous Ti sheet was exposed so that the electrolyte solution could be injected later. Next, an electrolyte solution of acetonitrile solvent composed of iodine and LiI was injected from a hole of about 6 mm to obtain a dye-sensitized solar cell.
  • Example 2 Print a titania paste (trade name NanoxideD, manufactured by Solaronics) on a porous Ti sheet (trade name: Typorus, manufactured by Osaka Titanium Co., Ltd.) with a thickness of 100 ⁇ m, dry, and air at 400 ° C for 30 minutes. Baked in. On the titania after firing, the operation of further printing and firing the titania paste was repeated three times in total to form a titania layer having a thickness of 10 ⁇ m on one side of the porous Ti sheet. At this time, the porous Ti sheet was formed in a size of 98 mm ⁇ 96 mm so that only one side protrudes 2 mm from the 96 mm ⁇ 96 mm titania layer.
  • a titania paste trade name NanoxideD, manufactured by Solaronics
  • a porous Ti sheet trade name: Typorus, manufactured by Osaka Titanium Co., Ltd.
  • the prepared porous Ti sheet with a titania layer was impregnated with a mixed solvent solution of N719 dye (manufactured by Solaronics) in acetonitrile and t-butyl alcohol for 70 hours, and the dye was adsorbed on the titania surface.
  • N719 dye manufactured by Solaronics
  • PEN resin sheet with EVA adhesive layer opposite substrate
  • Ti sheet with 98 mm x 96 mm Pt catalyst layer cathode electrode
  • 16 mm x 12.5 mm Ti foil 100 mm x 98 mm glass paper
  • a Ti foil, a 98 mm ⁇ 96 mm dye-adsorbed porous Ti sheet with a titania layer (anode electrode), and an EVA adhesive layer-attached PEN resin sheet (transparent substrate) were laminated in this order to obtain a laminate.
  • the PEN resin sheet with the EVA adhesive layer was formed such that both the counter substrate and the transparent substrate were provided with an EVA adhesive layer on the entire surface of the PEN resin sheet, and an EVA adhesive layer having a width of 2 mm was overlapped on the outer edge of the EVA adhesive layer.
  • the cathode electrode and the Ti foil were formed so as to overlap each other with their end portions being in contact with the short side of the Ti sheet with the Pt catalyst layer with a width of 2 mm.
  • the anode electrode and the Ti foil are in contact with the same side as the extension part of the cathode electrode with a width of 2 mm to the short side of the porous Ti sheet surface side of the porous Ti sheet with the dye adsorbed titania layer. And formed so as to overlap with each other to form an extension part.
  • the laminate was previously kept in a vacuum, and then the laminate was pressure fused at 130 ° C. An opening was formed in advance in the PEN resin sheet covering each extending portion to expose each extending portion, and an external connection terminal was formed.
  • a hole of about 3 mm was provided in the PEN resin sheet with an EVA adhesive layer so as to expose a part of the porous Ti sheet so that the electrolyte solution could be injected later.
  • an electrolyte solution of acetonitrile solvent consisting of iodine and LiI was injected from the hole of about 3 mm to obtain a dye-sensitized solar cell.
  • the photoelectric conversion performance of the obtained dye-sensitized solar cell was measured by measuring the IV curve when irradiating pseudo-sunlight (using a pseudo-sunlight device manufactured by Yamashita Denso Co., Ltd.) with an intensity of 100 mW / cm2 from the dye-adsorbed titania layer side.
  • a dye-sensitized solar cell was produced in the same manner as in Example 1 except that the Ti foil was arranged so as to protrude outward from the seal portion formed by two PET resin sheets with an EVA adhesive layer.
  • the photoelectric conversion efficiency of the obtained dye-sensitized solar cell was 5.0%.
  • Three days after the production of the dye-sensitized solar cell the dye-sensitized solar cell was visually inspected. As a result, air entered and bubbles were generated inside the dye-sensitized solar cell. It seems that the adhesion between the protruding portion of the Ti foil and the resin sheet is insufficient, and air has entered from the gap formed between the two.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 特に外部接続端子のシール構造を確実なものとすることができ、電解液が太陽電池から漏洩するおそれを防止することができる色素増感太陽電池および色素増感太陽電池モジュールを提供する。 色素増感太陽電池10は、色素を吸着した多孔質半導体層12と、アノード極となる導電性金属層14と、カソード極となる導電体層16からなる積層構造部18を備える。積層構造部18から導電性金属層14および導電体層16それぞれの一端部が延出して延出部14a、16aが設けられる。透明基板となる第一の樹脂シート22および対向基板となる第二の樹脂シート24は全面が接着され、シールされる。延出部14a、16aは、第一の樹脂シート22に設けた開口26、28により一部露出して外部接続端子とされる。

Description

色素増感太陽電池および色素増感太陽電池モジュール
 本発明は、色素増感太陽電池構成部材のシール構造に関する。
 色素増感太陽電池は、湿式太陽電池あるいはグレッツェル電池等と呼ばれ、シリコン半導体を用いることなくヨウ素溶液に代表される電気化学的なセル構造を持つ点に特徴がある。具体的には、透明な導電性ガラス板(透明導電膜を積層した透明導電性基板)に二酸化チタン粉末等を焼付け、これに色素を吸着させて形成したチタニア層等の多孔質半導体層と導電性ガラス板(導電性基板)からなる対極の間に電解液(電解質)としてヨウ素溶液等を配置した、簡易な構造を有する。
 色素増感太陽電池は、材料が安価であり、作製に大掛かりな設備を必要としないことから、低コストの太陽電池として注目されている。
 色素増感太陽電池は、実用化に向けて長期信頼性のさらなる向上が求められており、種々の観点から検討がなされている。1つの大きな課題は、電解質の漏洩を確実に防止する点である。
 この点に関し、透明電極基板および対向電極基板の一部を残してその周縁部をヒートシールして袋状とし、非シール部分から電解液を注入した後に、非シール部分を封止する方法が提案されている(特許文献1参照)。この方法によれば、孔を設けずに電解液を注入でき、かつ電解質の漏洩を抑制できるとされている。
 しかし、この場合、電極基板が湾曲して歪みを生じ、また、これにより電極にクラックを生じるおそれがある。また、ヒートシールする際の熱負荷により電極基板が劣化するおそれもある。また、電解質の漏洩を引き起こすおそれもある。
 この不具合を解消するものとして、一対の基材シートの間に、光電極基板と対極基板を積層したものを配置し、一対の基材シートの周縁部を接着する方法が提案されている(特許文献2参照)。この場合、基材シートから光電極基板と対極基板の一部を基材シートの周縁から外部に突出させて外部電極(外部接続端子)とする。
 しかし、この構造では外部電極と基材シートの間の接着が不十分な箇所を生じて、電解液が漏洩するおそれがある。
特開2007-335228号公報 特開2010-80275号公報
 解決しようとする問題点は、従来の袋状のシール部材を用いる技術では、色素増感太陽電池構成部材のシール構造、そのなかでも特に外部接続端子のシール構造が不十分なために、電解液が太陽電池から漏洩するおそれを確実に防止することができない点である。
 本発明に係る色素増感太陽電池は、色素を吸着した多孔質半導体層と、カソード極となる導電体層と、アノード極となる導電性金属層からなる積層構造部を備え、
 該積層構造部から該導電性金属層および該導電体層それぞれの一端部が延出して延出部が設けられ、 
 該積層構造部および該延出部が、封入される電解質とともにシール材料によってシールされるとともに、該導電性金属層および該導電体層それぞれの延出部の一部がシール材料より露出して外部接続端子とされることを特徴とする。
 また、本発明に係る色素増感太陽電池は、好ましくは、
 前記アノード極となる導電性金属層が前記多孔質半導体層の前記導電体層側に接触して配置され、
 前記積層構造部よりも平面面積の大きい、透明性を有する、接着剤層が設けられた第一の樹脂シートが該多孔質半導体層の側に、および該積層構造部よりも平面面積の大きい、接着剤層が設けられた第二の樹脂シートが該導電体層の側に、該積層構造部ならびに該導電性金属層および該導電体層それぞれの延出部を挟んで配置され、
 前記該導電性金属層および該導電体層それぞれの延出部ならびに該延出部から離れた該第一および第二の樹脂シートの外周部が、該第一および第二の樹脂シートよって接着されるとともに、該導電性金属層および該導電体層それぞれの延出部が該第一および第二の樹脂シートのいずれか一方に設けた開口により一部露出して外部接続端子とされ、
 電解質が該導電体層および該導電性金属層の間に封入されるとともに、該第一の樹脂シートが光を入射する透明基板とされ、および該第二の樹脂シートが対向基板とされることを特徴とする。
 また、好ましくは、前記第一の樹脂シートおよび第二の樹脂シートが自己接着性樹脂材料で形成されることを特徴とする。
 また、本発明に係る色素増感太陽電池は、好ましくは、
 前記積層構造部よりも平面面積の大きい、透明性を有する、接着剤層が設けられた第一の樹脂シートが該多孔質半導体層の側に、および該積層構造部よりも平面面積の大きい、接着剤層が設けられた第二の樹脂シートが該導電体層の側に、該積層構造部ならびに該導電性金属層および該導電体層それぞれの延出部を挟んで配置され、
 該第一および第二の樹脂シートの全面が接着されるとともに、該導電性金属層および該導電体層それぞれの延出部が該第一および第二の樹脂シートのいずれか一方に設けた開口により一部露出して外部接続端子とされ、
電解質が封入されるとともに、該第一の樹脂シートが光を入射する透明基板とされ、および該第二の樹脂シートが対向基板とされることを特徴とする。
 また、好ましくは、前記第一の樹脂シートおよび第二の樹脂シートが自己接着性樹脂材料で形成されることを特徴とする。
 また、本発明に係る色素増感太陽電池は、好ましくは、
 光を入射する透明基板と、該透明基板と対向して設けられ、カソード極となる導電性基板と、色素を吸着した多孔質半導体層と、該多孔質半導体層に接触して配置されアノード極となる導電性金属層からなる積層構造体を備え、電解質が封入されてなり、
 該積層構造体から該導電性基板の導電体層および該導電性金属層それぞれの一端部が延出して延出部が設けられ、
 該積層構造体ならびに該導電性基板の導電体層および該導電性金属層それぞれの延出部が透明性を有するシール部材によって全面シールされるとともに、該導電性基板の導電体層および該導電性金属層それぞれの延出部が該シール部材に設けた開口により一部露出して外部接続端子とされることを特徴とする。
 また、好ましくは、前記シール部材が、少なくとも1枚が透明材料からなる2枚の全面に接着剤層が設けられた樹脂シートで構成され、透明材料からなる樹脂シートを前記透明基板の上に配置し、他の樹脂シートを導電性基板の下に配置し、前記積層構造体ならびに前記導電性基板の導電体層および前記導電性金属層それぞれの延出部が該2枚の樹脂シートの間に全面接着されてなることを特徴とする。
 また、好ましくは、前記積層構造体ならびに前記導電性基板の導電体層および前記導電性金属層それぞれの延出部から離れた前記2枚の全面に接着剤層が設けられた樹脂シートの外周部がヒートシールされてなることを特徴とする。
 また、好ましくは、前記導電性金属層が、前記多孔質半導体層の前記透明基板とは反対側に接触して配置される多孔質層であることを特徴とする。
 また、本発明に係る色素増感太陽電池は、好ましくは、前記導電性金属層の前記延出部が非孔質層で形成されてなることを特徴とする。
 また、本発明に係る色素増感太陽電池は、上記の色素増感太陽電池の複数個が電気的に直列にまたは並列に配列され、全体がシールされてなることを特徴とする。
 本発明に係る色素増感太陽電池は、電極等の積層構造部または積層構造体の周辺と、積層構造部または積層構造体から延出する導電性基板の導電体層等の延出部が少なくともシールされるとともに、延出部がシール部材に設けた開口により一部露出して外部接続端子とされるため、色素増感太陽電池のセル構成部材のシール構造、そのなかでも特に外部接続端子のシール構造を確実なものとすることができ、電解液が太陽電池から漏洩するおそれを防止することができる。
 また、本発明に係る色素増感太陽電池モジュールは、上記の色素増感太陽電池の複数個が電気的に直列にまたは並列に配列され、全体がシールされるため、上記の色素増感太陽電池の効果を好適に得ることができる。
図1は本実施の形態の第一の例に係る色素増感太陽電池の概略側断面図である。 図2は本実施の形態の第一の例に係る色素増感太陽電池の平面図である。 図3は本実施の形態の第三の例に係る色素増感太陽電池の概略側断面図である。 図4は本実施の形態の第三の例に係る色素増感太陽電池の変形例の概略側断面図である。 図5は本実施の形態の第三の例に係る色素増感太陽電池の変形例のヒートシール構造を説明するための図である。 図6は本実施の形態の第四の例に係る色素増感太陽電池モジュールの平面図である。 図7は本実施の形態の第二の例に係る色素増感太陽電池の平面図である。
 本発明の実施の形態について、図を参照して、以下に説明する。
 本実施の形態に係る色素増感太陽電池の基本原理は、色素を吸着した多孔質半導体層と、カソード極となる導電体層と、アノード極となる導電性金属層からなる積層構造部を備え、
 積層構造部から導電性金属層および導電体層それぞれの一端部が延出して延出部が設けられ、
 積層構造部および延出部が、封入される電解質とともにシール材料によってシールされるとともに、導電性金属層および該導電体層それぞれの延出部の一部がシール材料より露 出して外部接続端子とされる(例えば図1参照)。
これにより、電極等の電池構成部材(積層構造部、積層構造体)ならびに電極から延出される外部電極(外部接続端子)のシール(封止)性の高いシール構造を実現することができる。
 まず、本実施の形態の第一の例に係る色素増感太陽電池について、図1の概略側断面図および図2の平面図を参照して説明する。
 本実施の形態の第一の例に係る色素増感太陽電池10は、色素を吸着した多孔質半導体層12と、多孔質半導体層12に接触して配置されアノード極となる導電性金属層14と、カソード極となる導電体層16からなる積層構造部18を備える。図1中、参照符号20は封止される電解質(電解液)を示す。
 積層構造部18から導電性金属層14および導電体層16それぞれの一端部が延出して延出部14a、16aが設けられる。
 積層構造部18の多孔質半導体層12の側の上面に第一の樹脂シート22が、および積層構造部18の導電体層16の側の下面に第二の樹脂シート24が、積層構造部18を挟んで設けられる。第一の樹脂シート22および第二の樹脂シート24は、いずれも、自己接着性樹脂材料又は非自己接着性樹脂材料で形成され、積層構造部18よりも平面面積が大きい。ここで、自己接着性材料とは、例えば、ソルダーレジスト、ボンディングシート材料のように、材料自体が水素結合、共有結合、分子間力等の化学的相互作用性やアンカー効果等の機械的相互作用性を有することにより接着性を発現し、接着剤を別に必要としないものをいう。又、自己接着性材料以外の樹脂材料をここでは非自己接着性樹脂材料と呼ぶ。これら樹脂材料の詳細は後で説明する。
 以下、第一の樹脂シート22および第二の樹脂シート24として非自己接着性樹脂材料を用いる場合を例にとって説明するが、自己接着性材料を用いる場合は、以下に説明する接着剤層が省略される点以外は変わりはない。
 第一の樹脂シート22および第二の樹脂シート24として非自己接着性樹脂材料を用いる場合、第一の樹脂シート22および第二の樹脂シート24のそれぞれの片面に接着剤層が設けられ、接着剤層の面を内側にして積層構造部18とともに延出部14a、16aを覆う。第一の樹脂シート22は透明性を有する。すなわち、第一の樹脂シート22は透明または半透明である。これに対して第二の樹脂シート24は透明性の有無を問わない。なお、図1において、第一の樹脂シート22の下面および第二の樹脂シート24の上面に設けられる接着剤層の表示は省略している。
 第一および第二の樹脂シート22、24の全面が接着されてシールされ、これにより、積層構造部18ならびに導電性金属層14および導電体層16それぞれの延出部14a、16aが第一および第二の樹脂シート22、24に封入される。
 延出部14a、16aは、第一の樹脂シート22に設けた開口26、28により一部露出して外部接続端子とされる。このとき、導電性金属層14および導電体層16それぞれの延出部14a、16aは、第一および第二の樹脂シート22、24よって接着されてシールされているため、開口26、28から電解質20が漏出するおそれが小さい。なお、開口26、28は、第二の樹脂シート24に設けてもよく、また、一方を第一の樹脂シート22に、他方を第二の樹脂シート24に設けてもよい。
 第一の樹脂シート22は光を入射する透明基板であり、第二の樹脂シート24は対向基板である。
 なお、図1に示す積層構造部18は、通常透明基板上に設けられる導電性金属層が省略され、多孔質半導体層12の導電体層16の側、言い換えれば電解質20の側に導電性金属層14が設けられる。電解質20を、導電性金属層14を介して多孔質半導体層12に浸透させるために、導電性金属層14は、多孔質層に形成される。これに変えて、積層構造部を、通常の電池のように、透明基板上に導電性金属層を設ける構成としてもよい。
 第一および第二の樹脂シート22、24の材料樹脂は、非自己接着性樹脂材料の場合、例えば、PP、PE、PS、ABS、PS、PC、PMMA、PVC、PA、POM、PET、PEN、PIB、PVB、PA6、ポリイミド、ポリアミド、ポリオレフィン、ポリエステル、ポリエーテル、硬化アクリル樹脂、硬化エポキシ樹脂、硬化シリコーン樹脂、各種エンジニアリングプラスチックス、メタセシス重合で得られる環状ポリマ等が挙げられる。第一および第二の樹脂シート22、24は、同種の材料で形成してもよく、また、異種の材料で形成してもよい。
 第一の樹脂シート(透明基板)22には、多孔質半導体層12に吸着した色素の耐久性を向上させるため、200nm~400nmの光波長を吸収する材料を用いるか、または別途張り合わせるか、もしくはコーティングすることもできる。また、第一の樹脂シート22に入射する光の利用効率を向上させるため、反射防止膜を第一の樹脂シート22の最外面に設けることもできる。
 第一および第二の樹脂シート22、24の一部又は全面にわたって設けられる接着剤層の材料は、例えばエチレンと酢酸ビニルを共重合させた樹脂(EVA)を主成分とするEVA樹脂エマルション接着剤を好適に用いることができるが、これに限らず、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアクリル系、エポキシ系、アイオノマー、ジスルフィド系、ポリイミド系、シリコーン系等の適宜の接着剤材料を用いることができる。
 第一および第二の樹脂シート22、24の一部若しくは全面にわたって設けられる接着剤層の接着を強固にする目的又は入射光を効率良く光電変換する目的で、樹脂シートの表面処理を行なうことができ、例えばオゾン、酸素プラズマ、重クロム酸、過マンガン酸等の適宜の酸化処理、シランカップリング剤、シリル化剤、シラノール、オルガノシラン、チタンカップリング剤、チタンアルコキシド等の適宜のカップリング剤処理、シリカ、アルミナ、ジルコニア、FTO、ITO、ZTO、アルミニウム、チタン、タングステン、白金、カーボン、フッ化マグネシウム、一酸化シリコン、クロム、金、ニッケル、銅、ロジウム、スズ、銀等の適宜のスパッタ成膜又はラミネート処理を用いることができる。
 上記接着剤層の厚みは、特に限定するものではなく、それぞれ、例えば0.5μm~1mm程度とすることができる。第一および第二の樹脂シート22、24の多孔質半導体層12と接しない部分は、接する部分より厚くすることがより好ましい。例えば、多孔質半導体層12と接しない部分における、第一及び第二の樹脂シート22、24の厚みの合計は、接する部分の厚みの合計よりも、積層構造部18の厚み分大きいと、接着がより強固になり好ましい。
 一方、第一および第二の樹脂シート22、24の材料樹脂として、接着剤を必要としない自己接着性樹脂材料を用いる場合、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアクリル系、エポキシ系、アイオノマー、ジスルフィド系、ポリイミド系、シリコーン系等の各種高分子のモノマー分散体又はプレポリマー、前記各高分子に酸・アルカリによる化学処理、コロナ処理、プラズマ処理、機械的粗化処理等の表面処理を行ったもの、熱可塑性樹脂等を挙げることができる。
 これらの自己接着性樹脂材料を用いる場合、接着は、加熱、加圧、光照射等によって行われる。
 導電性金属層14は、金属メッシュ、予め無数の孔を形成した金属層または溶射や薄膜形成法等により形成した多孔質金属層等を用いることができる。
 導電性金属層14の材料は、特に限定するものではないが、Ti、W、Ni、Pt、Ta、Nb、ZrおよびAuからなる群から選ばれる1種または2種以上の金属材料またはこれらの化合物であるか、これらで被覆した材料であることが好ましく、特に好ましくはTiまたは焼結助剤を用いて焼結させたTiの複合材料である。焼結助剤としては通常採用される適宜の材料でよく、例えばNi、BC、Y等の材料を用いることができ、特に好ましくはNiである。焼結助剤は粒子サイズが直径100nm以下であるとさらに好ましい。これにより、電解質20中の電荷輸送イオンとして用いられるヨウ素に対する耐食性の良好な導電性金属層14を得ることができる。
 導電性金属層14は、層の表裏を貫通する貫通孔を有するものであってもよいが、層の平面に沿った方向にも、すなわち三次元的にあらゆる方向に等方性を有するように連通する貫通孔を形成したものであることが好ましい。これにより、導電性金属層14を通過する電解質20が多孔質半導体層12の各部に均一に浸透する。
 等方性の貫通孔を形成した導電性金属層は、多孔質半導体層12と接触する表面部分においても多数の孔が平面的に等方性をもってかつ連通して分布するため、粒子の凝集体である多孔質半導体12との接触面積が大きく、かつ、導電性金属層の表面の孔に多孔質半導体層12の表面の粒子が、いわば噛み合った状態に係合する。これにより、導電性金属層と多孔質半導体層12の接合力が大きくなり、例えば500℃程度の加熱による電気的接合工程においてクラックを生じるおそれが小さい。
 導電性金属層14の厚みは、特に限定するものではないが、0.2μm~600μmとすることが好ましく、0.3μm~100μmであるとさらに好ましい。導電性金属層14の厚みが、0.2μm未満の場合には導電性金属層14の電気抵抗が上昇するおそれがある。一方、導電性金属層14の厚みが、600μmを超えると、導電性金属層14の内部を通過する電解質20の流動抵抗が大きすぎて、電解質20の移動が阻害されるおそれがある。なお、導電性金属層14の電気抵抗は1Ω/□以下であることが好ましい。
 導電性金属層14を構成する金属多孔体の比表面積は0.1m/g以上であることが好ましい。これにより、導電性金属層14と多孔質半導体層12の接合力をより大きくすることができる。
 金属多孔体の比表面積の上限値は特に限定するものではないが、例えば10m/g程度あれば十分である。
 比表面積は、水銀圧入法により測定することができる。水銀圧入法による比表面積の測定は、水銀圧入式細孔分布測定装置(CARLOERBA INSTRUMENTS社製Pasca1 140およびPasca1440 測定可能範囲比表面積O.1m2/g~ 細孔分布0.0034~400μm)を用いて、圧力範囲0.3kPa~400kPa、および0.1MPa~400MPaの範囲で、圧入体積を円筒細孔モデルに従って、側面積として計算し積算して測定する。なお、後述する空孔率および空孔直径はこの測定で同時に得られる。
 金属多孔体は、空孔率が30~60体積%であり、かつ空孔直径が1μm~40μmであることが好ましい。空孔率が30体積%未満であると、金属多孔体内部での電解質の拡散が不十分となり、これにより導電性金属層14への均一な浸透が損なわれるおそれがある。一方、空孔率が60体積%を超えると、導電性金属層14と多孔質半導体層12の接合力が損なわれるおそれがある。また、空孔直径が1μm未満であると、金属多孔体内部での電解質の拡散が不十分となり、また、導電性金属層14の孔と多孔質半導体層12の粒子との噛み合わせが不十分となることで、導電性金属層14と多孔質半導体層12の接合力が損なわれるおそれがある。一方、空孔直径が40μmを超えると、導電性金属層14と多孔質半導体層12の接触面積が小さくなることで、導電性金属層14と多孔質半導体層12の接合力が損なわれるおそれがある。
 積層構造体18は、導電性金属層14と電解質20との間に多孔質絶縁層を設けてもよい。この場合、多孔質絶縁層としてガラス繊維成形体等を用いると、多孔質絶縁層上にプレス法やスパッタ法等の適宜の成膜法で導電性金属層14を形成し、導電性金属層14上に多孔質半導体層12の材料を塗布等して設け、焼成して多孔質半導体層12を得ることができる。
 延出部14aは、導電性金属層14の端部を延長して積層構造部18から引き出した構造に設けることができる。ただし、導電性金属層14は多孔質膜であるため、延出部14aを導電性金属層14と同一材料で形成すると、電解質が延出部14aから外部に漏出するおそれが皆無ではない。このため、延出部14aは、導電性金属層14の材料とは別の非孔質材料で形成し、導電性金属層14と電気的に接続する構造とすることが好ましい。
 延出部16aは、延出部14aと同様に、導電体層16の端部を延長して積層構造部18から引き出した構造に設けることができ、また、異種材料を用いて導電体層16と電気的に接続する構造としてもよい。導電体層16は、後述するように、触媒膜または触媒膜に導電膜を積層したものであるが、後者の触媒膜に導電膜を積層した構成の場合は、導電膜のみを延出すれば十分である。
 一方、通常の電池のように、透明基板上に導電体層(導電性金属層)を設ける場合は、導電体層は特に限定するものではなく、例えば、ITO(スズをドープしたインジウム膜)であってもよく、またFTO(フッ素をドープした酸化スズ膜)であってもよく、あるいはまたSnO膜等であってもよい。導電体層16は、さらにまた、Ti、W、Ni、Pt、Ta、Nb、ZrおよびAuからなる群から選ばれる1種または2種以上の金属材料またはこれらの化合物、さらにこれらの金属を被覆した材料、カーボン等の導電膜を積層したものであってもよい。なお、透明基板上に設けられる導電体層は、透明性を有することが必要であるが、導電性金属層14のような多孔質層である必要は無く、多孔質層であると導電性が阻害されるおそれを生じうる。
 この場合、導電体層(導電性金属層)は、第一の樹脂シート24にスパッタ、蒸着、塗布等適宜の方法で成膜し、一体的に形成してもよい。
 導電体層16は、導電性金属層14と同様の材料で導電膜を形成することができる。導電体層16の電解質20に向けた面には、例えば白金膜等貴金属や高表面積カーボン、触媒的な導電性高分子等の触媒膜を設ける。導電体層16は、ITO等の導電膜を省略して白金膜等の触媒膜のみを設けたものでもよい。この場合、触媒膜が導電膜として作用する。
 導電体層16の厚みは、いずれも特に限定するものではないが、良好な導電性を得る観点からは例えば数十nm程度以上あることが好ましい。
 また、導電体層16は、金属の箔、メッシュ、網等の自立膜であってもよく、また、第二の樹脂シート24にスパッタ、蒸着、塗布等適宜の方法で成膜し、一体的に形成してもよい。
 多孔質半導体層12は、半導体材料として、例えば、TiO、ZnOまたはSnO等の適宜の金属酸化物を用いることができるが、このうちTiOが好ましい。
 多孔質半導体層12は、その厚みを特に限定するものではないが、好ましくは、10μm以上の厚みとする。
 焼成されるTiOの微粒子の粒径は特に限定するものではないが、例えば1nm~100nm程度が好ましい。
 多孔質半導体層12は、上記の半導体材料が300℃以上、好ましくは350℃以上、さらに好ましくは400℃以上の温度で焼成されたものである。一方、焼成温度の上限は特にないが、多孔質半導体層12の材料の融点よりは十分に低い温度とし、好ましくは550℃以下の温度とする。また、多孔質半導体層12の材料としてチタン酸化物(チタニア)を用いる場合、ルチル結晶に移行しない程度の温度で、チタン酸化物の導電性が高いアナターゼ結晶の状態で焼成することが好ましい。
 多孔質半導体層12は、薄層に設けた上記の半導体材料を焼成した後、さらに薄層を設けて焼成する操作を繰り返して所望の厚みとすると、好適である。
 多孔質半導体層12に吸着される色素は、400nm~1200nmの波長に吸収を持つものであり、例えば、ルテニウム色素、フタロシアニン色素、オスミウム系、鉄系および白金系などの金属錯体、シアニン色素、メチン系、マーキュロクロム系、キサンテン系、ポルフィリン系、フタロシアニン系、サブフタロシアニン系、アゾ系、クマリン系などの有機色素を挙げることができる。吸着の方法は特に限定されず、例えば、色素溶液に多孔質半導体層を形成した導電性金属層を浸し微粒子表面に色素を化学吸着させるいわゆる含浸法を用いることができる。
 電解質(電解液)20は、ヨウ素、リチウムイオン、イオン液体、t-ブチルピリジン等を含むものであり、例えばヨウ素の場合、ヨウ化物イオンおよびヨウ素の組み合わせからなる酸化還元体を用いることができる。酸化還元体は、これを溶解可能な適宜の溶媒を含む。その他の添加剤として、ピリジン系、コール酸系、カルボン酸系の逆電子防止剤を含んでもよい。さらに擬固体化するためのゲル化剤を用いることもできる。
 電解質(電解液)20は、導電性金属層14と導電体層16の間に画成される空間に充填したものであってもよく、また、導電性金属層14と導電体層16の間に多孔質スペーサを設け、この多孔質スペーサに含浸したものであってもよい。
 第一の樹脂シート(透明基板)22と多孔質半導体層12は密着して設けられ、これにより、第一の樹脂シート22に入射する光の利用効率を向上させることができる。
 一方、導電性金属層14と導電体層16を接触しないように配置するため、例えば電解質6に対して耐腐食性を有し、かつ、電解質イオンの拡散を妨げないように十分な空孔を有するガラスペーパー、ガラスクロス、テフロンシート(テフロンは登録商標)、PPシート、PEシート、スパッタ法等によるSiO膜等の絶縁層を設けることが好ましい。導電性金属層14と導電体層16の間隔は150μm以下であることが好ましい。
 以上説明した色素増感太陽電池10は、例えば以下の製造方法で得ることができる。
 まず、積層構造部18は、通常採用される適宜の方法で得ることができる。
 この場合、導電性金属層14についても、適宜の製造方法で得ることができる。例えば、適宜の基板のうえに金属微細粉を適宜の溶媒と混合して金属ぺーストを調製し、酸素が実質的に存在しない雰囲気条件で、焼成温度に加熱した後に、多孔質半導体層12上に金属ぺースト焼成体を転写する方法を採用することができる。このとき、未焼成の多孔質半導体層20の材料のうえに金属ぺースト焼成体を転写した状態で全体を多孔質半導体層12の材料の焼成温度で焼成する。また、焼成した多孔質半導体層12の上に金属ぺースト焼成体を転写するときにおいても全体を適宜の温度で再度加熱することが好ましい。また、導電性金属層14として、厚みの厚い金属ぺーストを焼成した後、所望の厚みにスライスしたものを多孔質半導体層12の上に積層しでもよい。
 また、導電性金属層14は、市販の金属微細粉焼結体シート、例えば、商品名タイポラス(大阪チタニウムテクノロジーズ社製)を用いてもよい。
 積層構造部18等を挟んだ第一および第二の樹脂シート22、24を、例えば、プレス式等のラミネート法等により、例えば、0.05~5MPaの圧力で0.5秒~10分間程度加圧して接着し、シールする。このとき、樹脂シートの材料の種類にもよるが、例えば、40~200℃程度の温度に加熱して処理してもよい。
 第一および第二の樹脂シート22、24に設ける開口26、28は、第一および第二の樹脂シート22、24に予め形成しておいてもよく、また、積層構造部18等をシールした後に形成してもよい。
 なお、積層構造部18を形成した後に電解質20を封入するには、第二の樹脂シート24に積層構造部18に連通する開口を、予めあるいはシールした後に形成し、その開口から電解質20を注入した後、開口を封止する方法を採用することができる。電解質20への空気の混入を防ぐ観点からは、開口から真空ポンプ等を用いて積層構造部18を真空にし、電解質20を注入した後、開口を封止することが好ましい。
 以上説明した色素増感太陽電池10は、シール用に格別な部材を用いることなく、基板となる第一および第二の樹脂シート22、24を用いる簡易な方法でシールすることができる。色素増感太陽電池10は、色素増感太陽電池構成部材のシール構造、そのなかでも特に外部接続端子のシール構造を確実なものとすることができ、電解液が太陽電池から漏洩するおそれを防止することができる。
 つぎに、本実施の形態の第二の例に係る色素増感太陽電池について説明する。
 本実施の形態の第二の例に係る色素増感太陽電池は、色素を吸着した多孔質半導体層と、カソード極となる導電体層と、多孔質半導体層の導電体層側に接触して配置されアノード極となる導電性金属層からなる積層構造部を備え、積層構造部から導電性金属層および導電体層それぞれの一端部が延出して延出部が設けられ、積層構造部よりも平面面積の大きい、透明性を有する、接着剤層が設けられた第一の樹脂シートが多孔質半導体層の側に、および積層構造部よりも平面面積の大きい、接着剤層が設けられた第二の樹脂シートが導電体層の側に、積層構造部ならびに導電性金属層および導電体層それぞれの延出部を挟んで配置され、導電性金属層および該導電体層それぞれの延出部ならびに延出部から離れた第一および第二の樹脂シートの外周部が、第一および第二の樹脂シートよって接着されてシールされるとともに、導電性金属層および導電体層それぞれの延出部が第一および第二の樹脂シートのいずれか一方に設けた開口により一部露出して外部接続端子とされ、電解質が導電体層および該導電性金属層の間に封入されるとともに、第一の樹脂シートが光を入射する透明基板とされ、および第二の樹脂シートが対向基板とされる。
 すなわち、本実施の形態の第二の例に係る色素増感太陽電池の基本構成は色素増感太陽電池10と同様である。
 本実施の形態の第二の例に係る色素増感太陽電池は、積層構造部のアノード極となる導電性金属層が多孔質半導体層の導電体層側に接触して配置される、いわゆる立体電極に限られる点、および、図7に示すように、導電性金属層および導電体層それぞれの延出部14a、16aならびに延出部14a、16aから離れた第一および第二の樹脂シートの外周部(図7中、矢印A1、A2、A3で示す。)のみが第一および第二の樹脂シートよって接着されて全体としてシールされる点が、色素増感太陽電池10と異なる。
 本実施の形態の第二の例に係る色素増感太陽電池は、例えば、第一および第二の樹脂シートの、延出部に対応する箇所および第一および第二の樹脂シートの外周部を除いた積層構造部等の箇所に対応する領域をマスクで保護したうえで、第一および第二の樹脂シートに接着剤を塗布して接着剤層を形成し、その後マスクを除去した第一および第二の樹脂シートを用いてシールすることにより得ることができる。
 本実施の形態の第二の例に係る色素増感太陽電池は、第一の樹脂シートが積層構造部の多孔質半導体層に接着されないことにより、色素増感太陽電池取り扱い時になんらかの原因で第一の樹脂シートに引っ張り応力等が加わっても、その応力が多孔質半導体層にそのまま作用することがないため、多孔質半導体層にクラックが生じる等の不具合を確実に避けることができる。
 つぎに、本実施の形態の第三の例に係る色素増感太陽電池について、図3の概略側断面図を参照して説明する。
 なお、特に断らない限り、本実施の形態の第三の例に係る色素増感太陽電池の導電性金属層等の各部材は、色素増感太陽電池10と同様の構成とすることができるため、重複する説明は省略する。
 本実施の形態の第三の例に係る色素増感太陽電池10aは、光を入射する透明基板30と、透明基板30と対向して設けられ、カソード極となる導電性基板32と、色素を吸着した多孔質半導体層12と、多孔質半導体層12に接触して配置されアノード極となる導電性金属層34からなる積層構造体36を備え、電解質20が封入される。導電性基板32は、基板38と基板38上に形成される導電体層40で構成される。
 図3において、導電性金属層34は、透明基板30上に設けられるが、この構成に変えて、導電性金属層34を多孔質半導体層12の電解質20の側に形成してもよいことは、色素増感太陽電池10の場合と同様である。
 積層構造体36から導電性基板32の導電体層40および導電性金属層34それぞれの一端部が延出して延出部40b、34bが設けられ、積層構造体36ならびに導電性基板32の導電体層40および導電性金属層34それぞれの延出部40b、34bが透明性を有するシール部材42によって全面シールされる。また、導電性基板32の導電体層40および導電性金属層34それぞれの延出部40b、34bがシール部材42に設けた開口44、46により一部露出して外部接続端子とされる。
 透明基板30および導電性基板32の基板38は、例えば、ガラス板であってもよく、あるいは屈曲性を有する樹脂板(フレキシブル透明基板およびフレキシブル導電性基板)であってもよい。
 色素増感太陽電池10aは、例えば以下の製造方法で得ることができる。
 まず、積層構造体36は、通常採用される適宜の方法で得ることができる。
 ついで、例えば、トランスファーモールド成形法等の成形技術を用い、延出部40b、34bの設けられた積層構造体36を金型にセットし、樹脂溶融物(シール部材42の材料)を金型に流し込み、加圧成形して、積層構造体36等を樹脂中に封止(鋳込む)する。開口44、46は、成形時、あるいは、成形後に形成することができる。
 樹脂溶融物として用いる樹脂は、例えばエポキシ樹脂を挙げることができる。
 なお、開口44、46および電解質20を注入するための開口は、成形時および成形後のいずれの時期に形成してもよい。
 本実施の形態の第三の例に係る色素増感太陽電池10aは、延出部40b、34bの設けられた積層構造体36を確実に封止することができ、これにより、色素増感太陽電池10と同様の効果を得ることができる。また、このとき、積層構造体36の寸法等の形状に応じた金型を用いることにより、積層構造体36が形状による制約を受けることがない。
 つぎに、本実施の形態の第三の例に係る色素増感太陽電池の変形例について、図4の概略側断面図を参照して説明する。
 図4に示す変形例に係る色素増感太陽電池10bは、シール部材の構成が色素増感太陽電池10aと異なる。
 すなわち、色素増感太陽電池10bは、シール部材として、少なくとも1枚が透明材料からなる2枚の、全面に接着剤層が設けられた例えばポリエステル系やポリアミド系等の樹脂シート48a、48bで構成される。樹脂シート48a、48bは、積層構造体36よりも十分大きな平面面積を有するものを用いる。
 透明材料からなる樹脂シート48aを、接着剤層を下に向けて透明基板30の上に配置し、他の樹脂シート48bを接着剤層を上に向けて導電性基板30の下に配置し、積層構造体36ならびに導電性基板32の導電体層40および導電性金属層34それぞれの延出部40a、34aが2枚の樹脂シート48a、48bの間に全面接着される。このとき、さらに、図5に示すように積層構造体36ならびに導電性基板32の導電体層40および導電性金属層34それぞれの延出部40a、34aから離れた2枚の樹脂シート48a、48bの外周部をヒートシールするとより好ましい(図5中、矢印Xはヒートシール箇所を示す)。
 なお、開口44、46および電解質20を注入するための開口は、樹脂シート48a、48bに予め形成しておいてもよく、また、シール後に形成してもよい。
 色素増感太陽電池10bは、2枚の樹脂シートでシール(封止)することで、色素増感太陽電池構成部材のシール構造、そのなかでも特に外部接続端子のシール構造を確実なものとすることができ、電解液が太陽電池から漏洩するおそれを防止することができる。
 つぎに、本実施の形態の第四の例に係る色素増感太陽電池モジュールについて、図6を参照して説明する。
 本実施の形態の第四の例に係る色素増感太陽電池モジュールは、上記の色素増感太陽電池10、10a、10bのいずれかの複数個が電気的に直列にまたは並列に配列されたものである。色素増感太陽電池モジュールは全体がシールされる。
 図6に平面図を示す色素増感太陽電池モジュール50は、色素増感太陽電池10が一列に配列され、隣り合う色素増感太陽電池10の延出部14aと延出部16aが、それぞれ電気的に接続される。
 色素増感太陽電池10の列の両端の外部接続端子を用いることにより、直列に配列される複数個の色素増感太陽電池10の出力を得ることができる。
 一方、隣り合う色素増感太陽電池10を独立的に、すなわち、隣り合う延出部14aと延出部16aを電気的に接続することなく配置し、それぞれの延出部14aに共通する取り出し配線を設け、また、それぞれの延出部16aに共通する取り出し配線を設けることにより、並列に配列される複数個の色素増感太陽電池10の出力を得ることができる。
 以下、本発明の実施例について説明する。本発明はこの実施例に限定されるものではない。
(実施例1)
 厚み100μmの多孔質Tiシート(商品名タイポラス、大阪チタニウム社製)上の5mm× 20mmの範囲にチタニアペースト(商品名NanoxideD、ソーラロニクス社製)を印刷し、乾燥後、400℃で30分空気中で焼成した。焼成後のチタニア上に、さらにチタニアペーストを印刷、焼成する操作を合計6回繰り返し、多孔質Tiシートの片面に17μmの厚みのチタニア層を形成した。このとき、多孔質Tiシートは、5mm×20mmのチタニア層から両端部がそれぞれ2mmはみ出すように9mm×24mmの大きさに形成した。多孔質Tiシートの細孔径分布等を水銀圧入法で測定したところ、細孔容積=0.159cc/g(空孔率=40.1%)、比表面積=5.6m2/g、平均細孔直径=8μm(細孔容積の60%が4~10μm)であった。
 次にN719色素(ソーラロニクス社製)のアセトニトリルとt-ブチルアルコールの混合溶媒溶液に、作製したチタニア層付き多孔質Tiシートを70時間含浸させ、チタニア表面に色素を吸着した。吸着後のチタニア層付き多孔質Tiシートはアセトニトリルとt-フ゛チルアルコールノ混合溶媒で、洗浄した。
 次に、EVA接着層付きPET樹脂シート(対向基板)、9mm× 24mmのPt触媒層付きITO蒸着PEN樹脂シート(カソード極)、20mm×20mmのTi箔、10mm× 25mmのガラスペーパー、20mm× 20mmのTi箔、9mm×24mmの色素吸着済みチタニア層付き多孔質Tiシート(アノード極)、EVA接着層付きPET樹脂シート(透明基板)の順で積層した。このとき、カソード極とガラスペーパーの間のTi箔は、端部をPt触媒層付きITO蒸着PEN樹脂シートの長辺に対し2mm幅で接触させてガラスペーパーからはみ出すように形成し、延出部とした。また、アノード極とガラスペーパーの間のTi箔は、カソード極の延出部と反対側に、端部を色素吸着済みチタニア層付き多孔質Tiシートの長辺に対し2mm幅で接触させてガラスペーパーからはみ出すように形成し、延出部とした。ローラー式ラミネートを用い、100℃で2枚のPET樹脂シートをヒートシールした。各延出部を覆うPET樹脂シートに開口を形成して各延出部を露出し、外部接続端子を形成した。また、後に電解液が注入できるように約6mm程度の孔を多孔質Tiシートの一部を露出するようにEVA接着層付きPET樹脂シートに1ヶ所設けた。
 次に約6mmの孔からヨウ素、LiIからなるアセトニトリル溶媒の電解液を注入して色素増感太陽電池を得た。
 得られた色素増感太陽電池の光電変換性能を、100mW/cm2の強度の疑似太陽光(山下電装社製擬似太陽光装置使用)を色素吸着チタニア層側から照射したときのIV曲線を測定して調べた。光電変換効率は5.0%であった。色素増感太陽電池作製から3日後と90日後、電解液の漏れが生じていないか目視で調べた。電解液の漏れの形跡はなく、また、空気の侵入も見られなかった。
(実施例2)
 厚み100μmの多孔質Tiシート(商品名タイポラス、大阪チタニウム社製)上の96mm× 96mmの範囲にチタニアペースト(商品名NanoxideD、ソーラロニクス社製)を印刷し、乾燥後、400℃で30分空気中で焼成した。焼成後のチタニア上に、さらにチタニアペーストを印刷、焼成する操作を合計3回繰り返し、多孔質Tiシートの片面に10μmの厚みのチタニア層を形成した。このとき、多孔質Tiシートは、96mm×96mmのチタニア層から1辺のみ2mmはみ出すよう98mm×96mmの大きさに形成した。多孔質Tiシートの細孔径分布等を水銀圧入法で測定したところ、細孔容積=0.159cc/g(空孔率=40.1%)、比表面積=5.6m2/g、平均細孔直径=8μm(細孔容積の60%が4~10μm)であった。
 次にN719色素(ソーラロニクス社製)のアセトニトリルとt-ブチルアルコールの混合溶媒溶液に、作製したチタニア層付き多孔質Tiシートを70時間含浸させ、チタニア表面に色素を吸着した。吸着後のチタニア層付き多孔質Tiシートはアセトニトリルとt-フ゛チルアルコールの混合溶媒で、洗浄した。
 次に、EVA接着層付きPEN樹脂シート(対向基板)、98mm× 96mmのPt触媒層付きTiシート(カソード極)、16mm×12.5mmのTi箔、100mm× 98mmのガラスペーパー、16mm×12.5mmのTi箔、98mm×96mmの色素吸着済みチタニア層付き多孔質Tiシート(アノード極)、EVA接着層付きPEN樹脂シート(透明基板)の順で積層し、積層体を得た。このとき、EVA接着層付きPEN樹脂シートは、対向基板、透明基板ともに、PEN樹脂シート全面にEVA接着層を設け、さらにEVA接着層の外縁部に2mm幅のEVA接着層を重ねるように形成した。このとき、カソード極とTi箔は、端部をPt触媒層付きTiシートの短辺に対し2mm幅で接触させて重なるように形成し、延出部とした。また、アノード極とTi箔は、カソード極の延出部と同一の辺に、端部を色素吸着済みチタニア層付き多孔質Tiシートの多孔質Tiシート面側の短辺に対し2mm幅で接触させて重なるように形成し、延出部とした。真空装置付きのホットプレスを用い、積層体を予め真空に保ったのち130℃で積層体を加圧融着した。予め各延出部を覆うPEN樹脂シートに開口を形成して各延出部を露出し、外部接続端子を形成した。また、後に電解液が注入できるように約3mm程度の孔を多孔質Tiシートの一部を露出するようにEVA接着層付きPEN樹脂シートに1ヶ所設けた。
 次に、上記約3mmの孔からヨウ素、LiIからなるアセトニトリル溶媒の電解液を注入して色素増感太陽電池を得た。
 得られた色素増感太陽電池の光電変換性能を、100mW/cm2の強度の擬似太陽光(山下電装社製擬似太陽光装置使用)を色素吸着チタニア層側から照射したときのIV曲線を測定して調べた。光電変換効率は3.0%であった。色素増感太陽電池作製から90日後、電解液の漏れが生じていないか目視で調べた。電解液の漏れの形跡はなく、また、空気の侵入も見られなかった。
(比較例)
 2枚のEVA接着層付きPET樹脂シートによるシール部から外にTi箔が突出するように配置した他は実施例1と同様の方法で色素増感太陽電池を作製した。
 得られた色素増感太陽電池の光電変換効率は5.0%であった。色素増感太陽電池作製から3日後、色素増感太陽電池を目視点検した結果、空気が侵入して気泡が色素増感太陽電池セル内部に生じていた。Ti箔の突出部分と樹脂シートの間の密着性が不十分で、両者の間に生じた隙間から空気が侵入したものと思われる。
 10、10a、10b 色素増感太陽電池
 12 多孔質半導体層
 14、34 導電性金属層
 14a、16a、34b、40b 延出部
 16、40 導電体層
 18 積層構造部
 20 電解質
 22 第一の樹脂シート
 24 第二の樹脂シート
 26、28、44、46 開口
 30 透明基板
 32 導電性基板
 36 積層構造体
 38 基板
 42 シール部材
 48a、48b 樹脂シート
 50 色素増感太陽電池モジュール

Claims (13)

  1.  色素を吸着した多孔質半導体層と、カソード極となる導電体層と、アノード極となる導電性金属層からなる積層構造部を備え、
     該積層構造部から該導電性金属層および該導電体層それぞれの一端部が延出して延出部が設けられ、 
     該積層構造部および該延出部が、封入される電解質とともにシール材料によってシールされるとともに、該導電性金属層および該導電体層それぞれの延出部の一部がシール材料より露出して外部接続端子とされることを特徴とする色素増感太陽電池。
  2.  前記アノード極となる導電性金属層が前記多孔質半導体層の前記導電体層側に接触して配置され、
     前記積層構造部よりも平面面積の大きい、透明性を有する、接着剤層が設けられた第一の樹脂シートが該多孔質半導体層の側に、および該積層構造部よりも平面面積の大きい、接着剤層が設けられた第二の樹脂シートが該導電体層の側に、該積層構造部ならびに該導電性金属層および該導電体層それぞれの延出部を挟んで配置され、
     前記該導電性金属層および該導電体層それぞれの延出部ならびに該延出部から離れた該第一および第二の樹脂シートの外周部が、該第一および第二の樹脂シートよって接着されるとともに、該導電性金属層および該導電体層それぞれの延出部が該第一および第二の樹脂シートのいずれか一方に設けた開口により一部露出して外部接続端子とされ、
     電解質が該導電体層および該導電性金属層の間に封入されるとともに、該第一の樹脂シートが光を入射する透明基板とされ、および該第二の樹脂シートが対向基板とされることを特徴とする請求項1記載の色素増感太陽電池。
  3.  前記第一の樹脂シートおよび第二の樹脂シートが自己接着性樹脂材料で形成されることを特徴とする請求項2記載の色素増感太陽電池。
  4.  前記積層構造部よりも平面面積の大きい、透明性を有する、接着剤層が設けられた第一の樹脂シートが該多孔質半導体層の側に、および該積層構造部よりも平面面積の大きい、接着剤層が設けられた第二の樹脂シートが該導電体層の側に、該積層構造部ならびに該導電性金属層および該導電体層それぞれの延出部を挟んで配置され、
     該第一および第二の樹脂シートの全面が接着されるとともに、該導電性金属層および該導電体層それぞれの延出部が該第一および第二の樹脂シートのいずれか一方に設けた開口により一部露出して外部接続端子とされ、
    電解質が封入されるとともに、該第一の樹脂シートが光を入射する透明基板とされ、および該第二の樹脂シートが対向基板とされることを特徴とする請求項1記載の色素増感太陽電池。
  5.  前記第一の樹脂シートおよび第二の樹脂シートが自己接着性樹脂材料で形成されることを特徴とする請求項4記載の色素増感太陽電池。
  6.  光を入射する透明基板と、該透明基板と対向して設けられ、カソード極となる導電性基板と、色素を吸着した多孔質半導体層と、該多孔質半導体層に接触して配置されアノード極となる導電性金属層からなる積層構造体を備え、電解質が封入されてなり、
     該積層構造体から該導電性基板の導電体層および該導電性金属層それぞれの一端部が延出して延出部が設けられ、
     該積層構造体ならびに該導電性基板の導電体層および該導電性金属層それぞれの延出部が透明性を有するシール部材によって全面シールされるとともに、該導電性基板の導電体層および該導電性金属層それぞれの延出部が該シール部材に設けた開口により一部露出して外部接続端子とされることを特徴とする請求項1記載の色素増感太陽電池。
  7.  前記シール部材が、少なくとも1枚が透明材料からなる2枚の全面に接着剤層が設けられた樹脂シートで構成され、透明材料からなる樹脂シートを前記透明基板の上に配置し、他の樹脂シートを導電性基板の下に配置し、前記積層構造体ならびに前記導電性基板の導電体層および前記導電性金属層それぞれの延出部が該2枚の樹脂シートの間に全面接着されてなることを特徴とする請求項6記載の色素増感太陽電池。
  8.  前記積層構造体ならびに前記導電性基板の導電体層および前記導電性金属層それぞれの延出部から離れた前記2枚の全面に接着剤層が設けられた樹脂シートの外周部がヒートシールされてなることを特徴とする請求項7記載の色素増感太陽電池。
  9.  前記導電性金属層が、前記多孔質半導体層の前記透明基板とは反対側に接触して配置される多孔質層であることを特徴とする請求項4~8のいずれか1項に記載の色素増感太陽電池。
  10.  前記導電性金属層の前記延出部が非孔質層で形成されてなることを特徴とする請求項9記載の色素増感太陽電池。
  11.  請求項1~8のいずれか1項に記載の色素増感太陽電池の複数個が電気的に直列にまたは並列に配列され、全体がシールされてなることを特徴とする色素増感太陽電池モジュール。
  12.  請求項9に記載の色素増感太陽電池の複数個が電気的に直列にまたは並列に配列され、全体がシールされてなることを特徴とする色素増感太陽電池モジュール。
  13.  前記導電性金属層の前記延出部が非孔質層で形成されてなることを特徴とする請求項12項記載の色素増感太陽電池モジュール。
PCT/JP2011/002348 2010-04-29 2011-04-22 色素増感太陽電池および色素増感太陽電池モジュール WO2011135811A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127026803A KR20130086929A (ko) 2010-04-29 2011-04-22 색소 증감 태양전지 및 색소 증감 태양전지 모듈
EP11774599A EP2565980A1 (en) 2010-04-29 2011-04-22 Dye-sensitized solar cell and dye-sensitized solar cell module
JP2012512655A JP5815509B2 (ja) 2010-04-29 2011-04-22 色素増感太陽電池および色素増感太陽電池モジュール
CN201180019669XA CN102870274A (zh) 2010-04-29 2011-04-22 色素增感型太阳能电池以及色素增感型太阳能电池模块
US13/643,823 US20130037089A1 (en) 2010-04-29 2011-04-22 Dye-sensitized solar cell and dye-sensitized solar cell module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-104652 2010-04-29
JP2010104652 2010-04-29
JP2010112148 2010-05-14
JP2010-112148 2010-05-14

Publications (1)

Publication Number Publication Date
WO2011135811A1 true WO2011135811A1 (ja) 2011-11-03

Family

ID=44861136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002348 WO2011135811A1 (ja) 2010-04-29 2011-04-22 色素増感太陽電池および色素増感太陽電池モジュール

Country Status (7)

Country Link
US (1) US20130037089A1 (ja)
EP (1) EP2565980A1 (ja)
JP (1) JP5815509B2 (ja)
KR (1) KR20130086929A (ja)
CN (1) CN102870274A (ja)
TW (1) TW201218396A (ja)
WO (1) WO2011135811A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200958A (ja) * 2012-03-23 2013-10-03 Nippon Steel & Sumikin Chemical Co Ltd 太陽電池
WO2014157060A1 (ja) * 2013-03-29 2014-10-02 新日鉄住金化学株式会社 太陽電池および色素増感太陽電池の製造方法
KR20140139127A (ko) * 2012-04-04 2014-12-04 엑세거 스웨덴 에이비 복합 기판을 포함하는 염료 감응형 태양 전지
JP2015216394A (ja) * 2015-07-09 2015-12-03 積水化学工業株式会社 電気モジュール製造用部材および電気モジュール
WO2018092741A1 (ja) * 2016-11-15 2018-05-24 株式会社フジクラ 光電変換素子
JP2018098224A (ja) * 2016-12-07 2018-06-21 株式会社リコー 光電変換素子
JP2018098226A (ja) * 2016-12-07 2018-06-21 株式会社リコー 光電変換素子

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2766911B1 (en) * 2011-10-11 2019-02-13 Exeger Sweden AB Method for manufacturing dye-sensitized solar cells and solar cells so produced
KR101488223B1 (ko) * 2013-07-26 2015-01-30 연세대학교 산학협력단 광 흡수 증대 수단이 구비된 염료감응형 태양전지 제조방법 및 그 태양전지
CA3016548A1 (en) 2016-03-04 2017-09-08 Scott R. Hammond Systems and methods for organic semiconductor devices with sputtered contact layers
US20170317305A1 (en) * 2016-04-28 2017-11-02 Solarwindow Technologies, Inc. Systems and methods for transparent organic photovoltaic devices
KR20190027833A (ko) 2016-08-02 2019-03-15 니폰 제온 가부시키가이샤 태양 전지 모듈
CN117812920A (zh) * 2016-12-07 2024-04-02 株式会社理光 光电转换元件
WO2019219538A1 (en) 2018-05-16 2019-11-21 Exeger Operations Ab A photovoltaic device
EP3627527A1 (en) * 2018-09-20 2020-03-25 Exeger Operations AB Photovoltaic device for powering an external device and a method for producing the photovoltaic device
DE102018214778A1 (de) * 2018-08-30 2020-03-05 Siemens Aktiengesellschaft Verfahren zur Fertigung von Leiterbahnen und Elektronikmodul

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243465A (ja) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd 光電変換素子
JP2004119306A (ja) * 2002-09-27 2004-04-15 Hitachi Maxell Ltd 光電変換素子及びその製造方法
JP2007335228A (ja) 2006-06-15 2007-12-27 Toyo Seikan Kaisha Ltd 太陽電池及びその製造法
JP2008186763A (ja) * 2007-01-31 2008-08-14 Fujimori Kogyo Co Ltd 色素増感型太陽電池パネルシート及びその製造方法
WO2009075101A1 (ja) * 2007-12-11 2009-06-18 Nippon Steel Chemical Co., Ltd. 色素増感太陽電池およびその製造方法
JP2010080275A (ja) 2008-09-26 2010-04-08 Dainippon Printing Co Ltd 色素増感型太陽電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243465A (ja) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd 光電変換素子
JP2004119306A (ja) * 2002-09-27 2004-04-15 Hitachi Maxell Ltd 光電変換素子及びその製造方法
JP2007335228A (ja) 2006-06-15 2007-12-27 Toyo Seikan Kaisha Ltd 太陽電池及びその製造法
JP2008186763A (ja) * 2007-01-31 2008-08-14 Fujimori Kogyo Co Ltd 色素増感型太陽電池パネルシート及びその製造方法
WO2009075101A1 (ja) * 2007-12-11 2009-06-18 Nippon Steel Chemical Co., Ltd. 色素増感太陽電池およびその製造方法
JP2010080275A (ja) 2008-09-26 2010-04-08 Dainippon Printing Co Ltd 色素増感型太陽電池

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200958A (ja) * 2012-03-23 2013-10-03 Nippon Steel & Sumikin Chemical Co Ltd 太陽電池
US10249445B2 (en) 2012-04-04 2019-04-02 Exeger Operations Ab Dye-sensitized solar cell including a porous insulation substrate and a method for producing the porous insulation substrate
CN104221108A (zh) * 2012-04-04 2014-12-17 领英瑞典集团 包括复合基材的染料敏化型太阳能电池
JP2015515755A (ja) * 2012-04-04 2015-05-28 エクセジャー スウェーデン エービーExeger Sweden Ab 多孔質絶縁体基板を含む色素増感太陽電池と、この多孔質絶縁体基板の製造方法
KR101675658B1 (ko) 2012-04-04 2016-11-11 엑세거 스웨덴 에이비 복합 기판을 포함하는 염료 감응형 태양 전지
KR20140139127A (ko) * 2012-04-04 2014-12-04 엑세거 스웨덴 에이비 복합 기판을 포함하는 염료 감응형 태양 전지
US10256047B2 (en) 2012-04-04 2019-04-09 Exeger Operations Ab Dye-sensitized solar cell including a porous insulation substrate and a method for producing the porous insulation substrate
CN104221108B (zh) * 2012-04-04 2017-12-15 领英操作系统公司 包括复合基材的染料敏化型太阳能电池
WO2014157060A1 (ja) * 2013-03-29 2014-10-02 新日鉄住金化学株式会社 太陽電池および色素増感太陽電池の製造方法
JP2015216394A (ja) * 2015-07-09 2015-12-03 積水化学工業株式会社 電気モジュール製造用部材および電気モジュール
JP2018081991A (ja) * 2016-11-15 2018-05-24 株式会社フジクラ 光電変換素子
WO2018092741A1 (ja) * 2016-11-15 2018-05-24 株式会社フジクラ 光電変換素子
JP2018098226A (ja) * 2016-12-07 2018-06-21 株式会社リコー 光電変換素子
JP2018098224A (ja) * 2016-12-07 2018-06-21 株式会社リコー 光電変換素子
JP7092969B2 (ja) 2016-12-07 2022-06-29 株式会社リコー 光電変換素子
JP7092970B2 (ja) 2016-12-07 2022-06-29 株式会社リコー 光電変換素子

Also Published As

Publication number Publication date
JPWO2011135811A1 (ja) 2013-07-18
TW201218396A (en) 2012-05-01
KR20130086929A (ko) 2013-08-05
JP5815509B2 (ja) 2015-11-17
US20130037089A1 (en) 2013-02-14
EP2565980A1 (en) 2013-03-06
CN102870274A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5815509B2 (ja) 色素増感太陽電池および色素増感太陽電池モジュール
JP5678345B2 (ja) 色素増感太陽電池およびその製造方法
JP5252488B2 (ja) 半導体電極およびこれを用いた色素増感型光電気化学セル
JP5797555B2 (ja) 色素増感太陽電池
KR20110037938A (ko) 색소 증감형 태양 전지의 제조 방법
JP4277639B2 (ja) 光電変換素子モジュール
JP4606780B2 (ja) 光電変換素子の製造方法
JP2013200958A (ja) 太陽電池
JP2009199782A (ja) 色素増感型太陽電池及びその製造方法
JP2012094321A (ja) 色素増感太陽電池のアノード極の製造方法
JP5498265B2 (ja) 太陽電池の取り出し電極、太陽電池および太陽電池モジュール
JP2007317454A (ja) 色素増感型太陽電池
JP5510771B2 (ja) 色素増感型太陽電池
JP5095148B2 (ja) 作用極用基板及び光電変換素子
JP5032060B2 (ja) 色素増感型太陽電池
WO2013145975A1 (ja) 色素増感太陽電池
JP5485793B2 (ja) 太陽電池モジュールの接続電極および太陽電池モジュール
JP5214680B2 (ja) 光電変換素子およびその製造方法
JP2012174383A (ja) 光電変換装置及びその製造方法
JP5214681B2 (ja) 光電変換素子
WO2014157060A1 (ja) 太陽電池および色素増感太陽電池の製造方法
JP2012094469A (ja) 色素増感太陽電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019669.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774599

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012512655

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127026803

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13643823

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011774599

Country of ref document: EP