WO2011132288A1 - 光電変換素子用電極の製造方法 - Google Patents

光電変換素子用電極の製造方法 Download PDF

Info

Publication number
WO2011132288A1
WO2011132288A1 PCT/JP2010/057145 JP2010057145W WO2011132288A1 WO 2011132288 A1 WO2011132288 A1 WO 2011132288A1 JP 2010057145 W JP2010057145 W JP 2010057145W WO 2011132288 A1 WO2011132288 A1 WO 2011132288A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electrode
photocatalyst film
photoelectric conversion
conversion element
Prior art date
Application number
PCT/JP2010/057145
Other languages
English (en)
French (fr)
Inventor
剛 杉生
井上 鉄也
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to KR1020127030249A priority Critical patent/KR20130060195A/ko
Priority to PCT/JP2010/057145 priority patent/WO2011132288A1/ja
Priority to CN2010800663368A priority patent/CN102859786A/zh
Publication of WO2011132288A1 publication Critical patent/WO2011132288A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • a transparent conductive film and an electrode having a photocatalytic film thereon are disposed on a transparent substrate, and a counter electrode having at least a conductive member is disposed on the counter substrate at a predetermined interval, and an electrolyte is disposed between the electrodes. More specifically, the present invention relates to a method for manufacturing the electrode.
  • a photoelectric conversion element such as a dye-sensitized solar cell is formed by forming a transparent conductive film on a transparent substrate such as a glass plate and forming a photocatalytic film made of a metal oxide such as titanium oxide on the transparent conductive film.
  • An electrode formed by adsorbing a photosensitizing dye such as a ruthenium complex on the film and a counter electrode formed by forming a transparent conductive film on a counter electrode transparent substrate are arranged opposite to each other.
  • the thing which intervened the electrolyte layer which becomes is known (patent document 1).
  • the photocatalyst film made of a metal oxide such as titanium oxide has a problem that if it contains moisture, the adsorption of the photosensitizing dye is inhibited and the photoelectric conversion efficiency is lowered. Therefore, before adsorption of the photosensitizing dye, the photocatalyst film is placed in a chamber containing a dehydrating agent and a desiccant and the atmosphere in the chamber is circulated, or the photocatalyst film is placed in the chamber and the inside of the chamber is depressurized. It has been proposed to increase the adsorptivity of the photosensitizing dye by dehydrating the photocatalyst film by such a method (Patent Document 2).
  • an object of the present invention is to provide a method for producing an electrode for a photoelectric conversion element that can dehydrate the photocatalyst film at a low cost in a short time without requiring a large-scale apparatus.
  • the invention according to claim 1 is an electrode manufacturing method in which a transparent conductive film is formed on a transparent substrate, a photocatalyst film is formed thereon, and a photosensitizing dye is adsorbed on the photocatalyst film. Before the photosensitizing dye is adsorbed, the photocatalyst film is immersed in an alcohol having an azeotropic temperature of 150 ° C. or less with water and then heated to dehydrate the photocatalyst film by azeotropy of water and alcohol. It is the manufacturing method of the electrode for photoelectric conversion elements characterized by the above-mentioned.
  • the invention according to claim 2 is the method for producing an electrode for a photoelectric conversion element according to claim 1, wherein the alcohol is 1-propanol or 1-butanol.
  • the transparent substrate is in the form of a film or sheet, and the photocatalyst film is formed, the photocatalyst film is dehydrated, and the photosensitizing dye is adsorbed onto the photocatalyst film continuously. It is a manufacturing method of the electrode for photoelectric conversion elements of description.
  • the transparent substrate having the photocatalytic film is immersed in an alcohol having an azeotropic temperature of 150 ° C. or lower and then heated before the photosensitizing dye is adsorbed on the photocatalytic film.
  • the photocatalyst film can be dehydrated in a short time at a low cost without requiring a large apparatus such as a chamber as in the prior art.
  • the method for producing the electrode including the dehydration step can be continuously performed by continuously supplying a film or sheet-like transparent substrate.
  • FIG. 3 is a flow sheet schematically showing a method for producing the photoelectric conversion element electrode of Example 1.
  • FIG. 5 is a vertical longitudinal sectional view showing a photoelectric conversion element of Reference Example 1.
  • a transparent conductive film is formed on a transparent substrate, and a photocatalytic film is formed thereon.
  • the transparent substrate a synthetic resin plate, a glass plate or the like is appropriately used, but a thermoplastic resin film such as a PEN (polyethylene naphthalate) film is preferable.
  • the synthetic resin may be polyethylene terephthalate, polyester, polycarbonate, polyolefin, or the like.
  • the thickness of the transparent substrate is preferably several tens of ⁇ m to 1 mm.
  • the transparent conductive film there are various methods for forming the transparent conductive film, such as ionization vapor deposition and CVD, but it is particularly preferable to use sputtering.
  • a metal target in the sputtering method materials of tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), tin oxide (SnO2), indium zinc oxide (IZO), and zinc oxide (ZnO) for transparent conductive films In—Sn alloy, Zn, In—Zn alloy, Sn, Ga—Zn alloy, Al—Zn alloy, and the like are preferably used.
  • the thickness of the transparent conductive film is preferably several tens to several hundreds nm.
  • the metal oxide layer (photocatalytic film) formed on the transparent conductive film is preferably titanium oxide or zinc oxide.
  • the method of forming the photocatalyst film is not particularly limited, but a method of applying a paste-like mixed solution of metal oxide particles having a particle diameter of 20 to 60 ⁇ m dispersed in a solvent such as alcohol onto a transparent conductive film with a squeegee, A method of electrostatically applying a metal oxide sol can be applied.
  • the electrostatic coating device is on the negative side and the transparent conductive film of the transparent electrode that is the object to be coated is on the positive side.
  • the metal oxide sprayed from the spray nozzle of the coating device is charged to the negative side and applied to the surface of the transparent conductive film.
  • metal compound used as a starting material for the metal oxide sol examples include metal alkoxides, metal acetylacetonates, metal carboxylates, and metal inorganic compounds such as metal nitrates, oxychlorides, and chlorides. Can be mentioned.
  • titanium oxide is preferable, and other examples include tin oxide, tungsten oxide, zinc oxide, and niobium oxide.
  • titanium oxide as metal alkoxide, titanium tetramethoxide, titanium ethoxide, titanium isopropoxide, titanium butoxide, etc.
  • metal acetylacetonate as titanium acetylacetonate
  • metal carboxylate Titanium carboxylate, titanium nitrate, titanium oxychloride, titanium tetrachloride and the like.
  • the above metal compounds include water, methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutanol, t-butanol, 1-pentanol, 2-pentanol, 3-pentanol, etc.
  • a solvent, acid or ammonia, and other additives sol-formation and gelation are performed.
  • the metal alkoxide when used, includes the metal oxide particles having a particle size of 20 to 60 nm, and optionally, metal oxide particles having a particle size of 100 to 400 ⁇ m as light scattering particles. Is preferred.
  • the above application or electrostatic application After the above application or electrostatic application, it is dried and / or baked. Drying is preferably performed at room temperature for about 5 to 15 minutes. Firing is preferably performed at 120 to 150 ° C. for about 10 to 30 minutes. The thickness of the photocatalyst film formed by the above method is preferably 5 to 20 ⁇ m.
  • the photocatalyst film is immersed in an alcohol having an azeotropic temperature of 150 ° C. or less with water and then heated to dehydrate the photocatalyst film by azeotropy of water and alcohol.
  • the transparent substrate on which the photocatalytic film is formed is immersed in the alcohol, and then dried and fired to dehydrate the photocatalytic film.
  • the immersion temperature in the alcohol is preferably room temperature, but the alcohol may be heated to such an extent that the transparent substrate is not thermally deformed.
  • the immersion time is preferably about 30 seconds to 10 minutes.
  • the alcohol preferably has an azeotropic point (150 ° C. or less) with water that does not cause thermal deformation even when a synthetic resin or the like is used for the transparent substrate, and more preferably has a large azeotropic amount with water.
  • azeotropic point 150 ° C. or less
  • alcohols shown in Table 1 are used.
  • Drying is preferably performed at room temperature for about 5 to 15 minutes. Firing is preferably performed at 120 to 150 ° C. for about 5 to 10 minutes.
  • the dye is adsorbed on the photocatalytic film.
  • the time from the dehydration to the adsorption of the dye is preferably as short as possible. This is to prevent moisture from being absorbed again into the photocatalyst film and to prevent the temperature of the photocatalyst film from decreasing.
  • the adsorption of the dye is performed, for example, by immersing the photocatalyst film in an immersion liquid containing a photosensitizing dye (30 to 60 minutes) to adsorb the dye on the surface of the photocatalyst film. After immersion, it is preferable to perform drying and further firing.
  • Photosensitizing dyes include, for example, ruthenium complexes and iron complexes having a ligand containing a bipyridine structure, a terpyridine structure, etc., porphyrin-based and phthalocyanine-based metal complexes, and organic dyes such as eosin, rhodamine, merocyanine, and coumarin. It may be. In this way, an electrode having a photocatalytic film formed on a transparent substrate is completed.
  • the photoelectric conversion element to which the electrode is applied is mainly composed of, for example, a transparent electrode provided with a photocatalytic film on which the dye is adsorbed, a counter electrode facing the transparent electrode, and an electrolyte layer disposed between both electrodes.
  • an iodine-based electrolyte for example, an iodine-based electrolyte is used. Specifically, an electrolyte component such as iodine, iodide ion, or tertiary butyl pyridine is dissolved in an organic solvent such as ethylene carbonate or methoxyacetonitrile. Is exemplified.
  • the electrolyte is not limited to an electrolyte and may be a solid electrolyte. Examples of the solid electrolyte include DMPImI (dimethylpropylimidazolium iodide).
  • metal iodides such as LiI, NaI, KI, CsI, and CaI2
  • quaternary ammonium compounds such as tetraalkylammonium iodide
  • iodide such as iodine salt and I2
  • bromide such as bromide
  • bromide of quaternary ammonium compound such as metal bromide such as LiBr, NaBr, KBr, CsBr and CaBr2
  • tetraalkylammonium bromide and Br2 can be used suitably.
  • the counter electrode may be one in which a transparent conductive film is formed on a transparent substrate for a counter electrode, or one in which a sheet of metal such as aluminum, copper, or tin is provided on the same substrate.
  • a counter electrode may be configured by holding a gel-like solid electrolyte on a mesh electrode made of metal (aluminum, copper, tin, etc.) or carbon, and conductive adhesion on one side of the counter electrode substrate.
  • the counter electrode may be configured by forming an agent layer so as to cover the substrate and transferring a separately formed group of brush-like carbon nanotubes to the substrate via the adhesive layer.
  • a photoelectric conversion element for example, an electrode provided with a photocatalyst film on which a dye is adsorbed and a counter electrode are aligned to face each other, and a gap between both electrodes is sealed with a heat-sealing film or a sealing material, and the counter electrode or electrode
  • the electrolyte is injected from holes or gaps provided in advance.
  • both electrodes are overlapped so that the photocatalyst film and the electrolyte layer are sandwiched therebetween, and the peripheral portions thereof are heat bonded. Heating may be performed by a mold, or may be performed by irradiation with an energy beam such as plasma (having a long wavelength), microwave, visible light (600 nm or more), or infrared light.
  • a transparent conductive film for electrodes, a transparent conductive film for counter electrodes, a collector electrode, an electrolyte layer, and a photocatalyst film are arranged at predetermined intervals between a transparent electrode substrate and a transparent substrate for a counter electrode.
  • the connection between the electrode and the counter electrode at this time may be in series or in parallel.
  • the electrolyte layer and the photocatalyst film are separated from each other by the sealing material.
  • a gap is formed between adjacent transparent conductive films for electrodes, transparent conductive films for counter electrodes, and current collecting electrodes, and the transparent conductive films for electrodes adjacent to each other are conductors. Connected by.
  • the transparent conductive film for electrode, the transparent conductive film for counter electrode, and the current collecting electrode are formed such that there is no gap between adjacent ones.
  • Example 1 In FIG. 1, a transparent conductive film (ITO) having a thickness (150) nm was formed on a transparent substrate (polyethylene naphthalate) film (thickness 100 ⁇ m).
  • the transparent substrate (2) with the conductive film is fed out from the roll (1) obtained by winding the transparent substrate with the conductive film, and a paste containing a titanium oxide-containing paste composed of 20 to 50 nm anatase type titanium oxide, ethanol and water is applied ( From 3), it was supplied onto the transparent conductive film of the transparent substrate (2) and applied in a thickness (10) ⁇ m. After coating, the coating film was dried at room temperature for 10 minutes, and further baked at 150 ° C. for 10 minutes with a heater (4) to form a photocatalytic film on the transparent conductive film.
  • the transparent substrate (2) on which the photocatalytic film was formed was immersed in propanol (5) for 10 minutes, dried at room temperature for 10 minutes, and further baked at 150 ° C. for 10 minutes with a heater (6). After dehydrating the photocatalyst film in this way, the photocatalyst film was immersed in an immersion liquid (7) containing the dye (N719) for 45 minutes to adsorb the dye to the photocatalyst film.
  • Comparative Example 1 An electrode was fabricated by operating in the same manner as in Example except that the photocatalyst film was not dehydrated by propanol immersion and firing.
  • the photoelectric conversion element is mainly composed of a transparent electrode provided with a photocatalyst film on which a dye is adsorbed, a counter electrode facing the transparent electrode, and an electrolyte layer disposed between both electrodes.
  • (21) is a transparent substrate
  • (22) is a transparent conductive film formed on the transparent substrate (21)
  • (24) is a counter electrode substrate
  • (25) is provided on the substrate (24).
  • the counter electrode is made of platinum.
  • (26) is a plurality of sealing materials and separators provided between both electrodes, and a plurality of sections are formed between these electrodes.
  • (23) is a photocatalytic film formed on the transparent conductive film (22) in each section, on which a photosensitizing dye is adsorbed. An electrolyte is injected into each compartment.
  • (27) is a plurality of interelectrodes passed to both electrodes
  • (28) is a sealing material for interelectrode protection.
  • Reference example 2 A photoelectric conversion element was configured in the same manner as in Reference Example 1 except that the electrode prepared in Comparative Example 1 was used as the electrode.
  • the present invention relates to a method for producing an electrode for a photoelectric conversion element, and does not require a large-scale apparatus, and can dehydrate a photocatalyst film at a low cost in a short time. It is preferably used as an electrode of a photoelectric conversion element such as a solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 大掛かりな装置を必要とせず、低コストで短時間で光触媒膜を脱水処理することができる光電変換素子用電極の製造方法を提供する。 透明基板2上に透明導電膜を形成し、その上に光触媒膜を形成し、この光触媒膜に光増感色素を吸着させる光電変換素子用電極の製造方法である。光触媒膜への光増感色素の吸着の前に、光触媒膜を有する透明基板2を、水との共沸温度が150℃以下のアルコール5に浸漬し次いで加熱することで、水とアルコールの共沸により光触媒膜を脱水しておく。

Description

光電変換素子用電極の製造方法
 本発明は、透明基板上に透明導電膜とその上に光触媒膜を有する電極と、対極基板上に少なくとも導電部材を有する対極とが所定間隔で対向状に配置され、両電極間に電解質が配置されてなる光電変換素子に関するものであり、より詳しくはその電極の製造方法に関するものである。
 一般に、色素増感型太陽電池などの光電変換素子は、ガラス板などの透明基板上に透明導電膜を形成し、その上に酸化チタンのような金属酸化物からなる光触媒膜を形成し、同膜にルテニウム錯体などの光増感色素を吸着してなる電極と、対極用透明基板上に透明導電膜を形成してなる対極とを対向状に配置し、両電極間にヨウ素系電解質などからなる電解質層を介在させたものが知られている(特許文献1)。
 上記酸化チタンのような金属酸化物からなる光触媒膜は、水分を含むと光増感色素の吸着が阻害され光電変換効率の低下をもたらすという問題がある。このため、光増感色素の吸着前に、光触媒膜を、脱水剤および乾燥剤を入れたチャンバーに配置しチャンバー内の雰囲気を循環させる方法や、光触媒膜をチャンバー内に配置しチャンバー内を減圧するなどの方法により、光触媒膜を脱水処理し光増感色素の吸着性を高めることが提案されている(特許文献2)。
特開2002-93475号公報 特開2005-251591号公報
 しかしながら、上記のような脱水方法を実施するには、チャンバーや減圧装置などの大規模の設備およびそのための多大なコストが必要となる。さらに、脱水剤や乾燥剤による方法では、脱水処理に時間を要し、減圧による方法では脱水自体に要する時間は短縮できるものの、減圧及び減圧状態から大気圧に戻す工程に時間を要する。いずれの方法によっても、脱水処理に時間を要し、かつ光触媒膜を有する基板をチャンバー内に配置しなければならず、そのため大面積の基板の脱水処理や、連続的な脱水処理は困難である。
 そこで、本発明は、大掛かりな装置を必要とせず、低コストで短時間で光触媒膜を脱水処理することができる光電変換素子用電極の製造方法を提供することを課題とする。
 請求項1に係る発明は、透明基板上に透明導電膜を形成し、その上に光触媒膜を形成し、この光触媒膜に光増感色素を吸着させる電極の製造方法であって、光触媒膜への光増感色素の吸着の前に、上記光触媒膜を、水との共沸温度が150℃以下のアルコールに浸漬し次いで加熱することで、水とアルコールの共沸により光触媒膜を脱水しておくことを特徴とする光電変換素子用電極の製造方法である。
 請求項2に係る発明は、アルコールが1-プロパノールまたは1-ブタノールであることを特徴とする請求項1記載の光電変換素子用電極の製造方法である。
 請求項3に係る発明は、透明基板がフィルム又はシート状のものであり、光触媒膜の形成、光触媒膜の脱水、光触媒膜への光増感色素の吸着を連続的に行う請求項1または2記載の光電変換素子用電極の製造方法である。
 請求項1に係る発明では、光触媒膜への光増感色素の吸着の前に、上記光触媒膜を有する透明基板を、水との共沸温度が150℃以下のアルコールに浸漬し次いで加熱するので、従来技術のようにチャンバーなどの大掛かりな装置を必要とせず、低コストで短時間で光触媒膜を脱水処理することができる。
 また、従来技術のように、光触媒膜を、脱水剤および乾燥剤を入れたチャンバーに配置しチャンバー内の雰囲気を循環させたり、光触媒膜をチャンバー内に配置しチャンバー内を減圧する必要がないため、大面積の電極にも対応できるとともに操作を連続的に行うことができる。
 請求項2に係る発明では、浸漬用のアルコールとして1-プロパノールまたは1-ブタノールを用いるので、上記効果に加え、水の共沸量が多く、安全面でも好ましいという効果が奏される。
 請求項3に係る発明では、上記効果に加え、フィルム又はシート状の透明基板を連続的に供給することで、上記脱水工程を含む電極の製造方法を連続的に行うことができる。
実施例1の光電変換素子用電極の製造方法を概略的に示すフローシートである。 参考例1の光電変換素子を示す垂直縦断面図である。
 本発明による光電変換素子用電極の製造方法おいて、まず、透明基板上に透明導電膜を形成し、その上に光触媒膜を形成する。
 透明基板としては、合成樹脂板、ガラス板などが適宜使用されるが、PEN(ポリエチレン・ナフタレート)フィルムなどの熱可塑性樹脂フィルムが好ましい。合成樹脂は、PENの他に、ポリエチレン・テレフタレート、ポリエステル、ポリカーボネート、ポリオレフィンなどであってもよい。透明基板の厚さは好ましくは数十μm~1mmである。
 透明導電膜の形成方法はイオン化蒸着、CVD法などいろいろあり限定されないが、特にスパッタ法により行うことが好ましい。スパッタ法での金属ターゲットとしては、透明導電膜のスズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO2)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)の材料となる、In-Sn合金、Zn、In-Zn合金、Sn、Ga-Zn合金、Al-Zn合金などが好適に使用されるが、非酸化物金属で透明導電膜が形成できるものであれば特に限定はされない。透明導電膜の厚さは好ましくは数十~数百nmである。
 上記透明導電膜上に形成する金属酸化物層(光触媒膜)は、好ましくは酸化チタン、酸化亜鉛である。光触媒膜の形成方法としては、特に限定はされないが、アルコール等の溶媒に分散させた粒径20~60μmの金属酸化物粒子のペースト状混合溶液を透明導電膜上にスキージなどで塗布する方法、金属酸化物ゾルを静電塗布する方法が適用できる。
 金属酸化物ゾルの静電塗布については、静電塗布装置をマイナス側とし被塗物である透明電極の透明導電膜をプラス側として、この間に高電圧を加えて静電界を形成し、静電塗布装置のスプレーノズルから噴霧された金属酸化物をマイナス側に帯電させて透明導電膜表面に塗布する。
 金属酸化物ゾルの出発原料となる金属化合物としては、金属有機化合物では、例えば金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート、金属無機化合物では、例えば金属の硝酸塩、オキシ塩化物、塩化物などが挙げられる。
 上記金属酸化物としては、酸化チタンが好ましく、その他酸化スズ、酸化タングステン、酸化亜鉛、酸化ニオブなどが挙げられる。
 酸化チタンを用いた一例として、金属アルコキシドとしては、チタンテトラメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンブタキシドなど、金属アセチルアセトネートとしては、チタンアセチルアセトネートなど、金属カルボキシレートとしては、チタンカルボキシレートなど、硝酸チタン、オキシ塩化チタン、四塩化チタンなどが挙げられる。
 さらに、上記金属化合物に、水、メタノール、エタノール、1-プロパノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノールなどの溶媒、酸またはアンモニア、その他添加物などを加えることでゾル化、ゲル化を行う。
 上記、金属アルコキシドを用いる場合は、金属アルコキシドに、粒径20~60nmの上記金属酸化物の粒子、さらに必要に応じて光散乱用粒子として粒径100~400μmの金属酸化物の粒子を含んでなるものが好ましい。
 上記塗布または静電塗布後、乾燥および/または焼成される。乾燥は、室温で、5~15分程度行うのが好ましい。焼成は120~150℃で、10~30分程度行うのが好ましい。上記方法により形成された光触媒膜の厚みは、好ましくは5~20μmである。
 次いで、上記光触媒膜を、水との共沸温度が150℃以下のアルコールに浸漬し次いで加熱することで、水とアルコールの共沸により光触媒膜を脱水する。
 好ましい実施形態では、上記光触媒膜が形成された透明基板を、上記アルコールに浸漬した後、乾燥ついで焼成し光触媒膜を脱水する。
 上記アルコールへの浸漬温度は、常温が好ましいが、透明基板が熱変形しない程度にアルコールを加熱しても良い。浸漬時間は、好ましくは30秒~10分程度である。
 アルコールとしては、透明基板に合成樹脂等を用いた場合でも熱変形の起こらない水との共沸点(150℃以下)を有するものが好ましく、水との共沸量が多いものであればさらに好ましい。たとえば、表1に示すアルコールが用いられる。
Figure JPOXMLDOC01-appb-T000001
 また、安全性を考慮すると、1-プロパノール、1-ブタノールがより好ましい。
 乾燥は、室温で、5~15分程度行うのが好ましい。焼成は、120~150℃で、5~10分程度行うのが好ましい。
 上記乾燥および焼成により、光触媒膜に含まれる水分とアルコールが共沸され、光触媒膜が脱水される。また、光触媒膜を高温に維持することで後段の色素の吸着性が高まる。
 次いで、光触媒膜に色素を吸着させる。上記脱水から色素の吸着までの時間はできる限り短くするのが好ましい。これは、再び光触媒膜に水分が吸収されるのを防ぐと共に、光触媒膜の温度が低下するのを防ぐためである。
 色素の吸着は、例えば、光触媒膜を、光増感色素を含む浸漬液に(30~60分)浸して光触媒膜の表面に同色素を吸着させることにより行われる。浸漬後、乾燥さらには焼成を行うことが好ましい。光増感色素は、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体や鉄錯体、ポルフィリン系やフタロシアニン系の金属錯体、さらにはエオシン、ローダミン、メロシアニン、クマリンなどの有機色素などであってよい。このようにして、透明基板上に光触媒膜が形成された電極が完成する。
 上記電極を適用した光電変換素子は、例えば、上記色素を吸着させた光触媒膜を備えた透明電極と、これに対向する対極と、両極間に配された電解質層とから主として構成されている。
電解質としては、例えば、ヨウ素系電解液が使用され、具体的には、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものが例示される。電解質は、電解液からなるものに限定されず、固体電解質であってもよい。固体電解質としては、例えば、DMPImI(ジメチルプロピルイミダゾリウムヨウ化物)が例示され、このほか、LiI、NaI、KI、CsI、CaI2などの金属ヨウ化物、およびテトラアルキルアンモニウムヨーダイドなど4級アンモニウム化合物のヨウ素塩などのヨウ化物とI2とを組み合わせたもの;LiBr、NaBr、KBr、CsBr、CaBr2などの金属臭化物、およびテトラアルキルアンモニウムブロマイドなど4級アンモニウム化合物の臭素塩などの臭化物とBr2とを組み合わせたものなどを適宜使用することができる。
 対極は、対極用透明基板上に透明導電膜が形成されたもの、あるいは同基板上にアルミニウム、銅、スズなどの金属のシートを設けたものであってよい。このほか、金属(アルミニウム、銅、スズなど)またはカーボン製などのメッシュ状電極にゲル状固体電解質を保持させることで対極を構成してもよく、また、対極用基板の片面上に導電性接着剤層を、同基板を覆うように形成し、同接着剤層を介して、別途形成のブラシ状カーボンナノチューブ群を基板に転写することで、対極を構成してもよい。
 光電変換素子を組み立てるには、例えば、色素を吸着させた光触媒膜を備えた電極と対極とを対向状に位置合わせし、両極間を熱融着フィルムやシール材などで密封し、対極または電極などに予め設けておいた孔や隙間から電解質を注入する。また、固体電解質を用いる場合は、両極をこれらの間に光触媒膜および電解質層が挟まれるように重ね合わせ、その周縁部同士を加熱接着する。加熱は、金型によってもよく、プラズマ(波長の長いもの)、マイクロ波、可視光(600nm以上)や赤外線などのエネルギービームを照射することによってもよい。
光電変換素子は、例えば、方形の電極用透明基板と方形の対極用透明基板との間に、電極用透明導電膜、対極用透明導電膜、集電電極、電解質層および光触媒膜が所定間隔で配置されることにより形成され、この際の電極と対極との接続は、直列とされることがあり、並列とされることもある。いずれの場合でも、電解質層および光触媒膜はシール材によって隣り合うもの同士の間が仕切られる。直列接続の場合、電極用透明導電膜、対極用透明導電膜および集電電極は、隣り合うもの同士の間に間隙が形成され、隣り合う電極用透明導電膜と対極用透明導電膜とが導体によって接続される。並列接続の場合、電極用透明導電膜、対極用透明導電膜および集電電極は、隣り合うもの同士の間に隙間がない形状とされる。
実施例1
 図1において、透明基板(ポリエチレン・ナフタレート)フィルム(厚み100μm)の上に透明導電膜(ITO)を厚み(150)nmで形成した。この導電膜付き透明基板を巻き取ってなるロール(1)から導電膜付き透明基板(2)を繰り出し、20~50nmのアナターゼ型酸化チタン、エタノールおよび水からなる酸化チタン含有ペーストをペースト塗布装置(3)から透明基板(2)の透明導電膜上に供給し、厚み(10)μmで塗布した。塗布後、塗膜を室温で10分間乾燥させ、さらに加熱器(4)で150℃で10分間焼成し、透明導電膜上に光触媒膜を形成した。
 その後、光触媒膜が形成された透明基板(2)をプロパノール(5)に10分間浸漬し、室温で10分間乾燥させ、さらに加熱器(6)により150℃で10分間焼成した。こうして光触媒膜の脱水処理後、色素(N719)を含む浸漬液(7)に(45分)間浸漬し、光触媒膜に色素を吸着させた。
 こうして、電極を作製した。
比較例1
 プロパノール浸漬および焼成による光触媒膜の脱水処理を行わなかった以外、実施例と同じ要領で操作を行って、電極を作製した。
参考例1
 図2に、実施例1で作製した透明電極を用いて構成した光電変換素子の例を示す。光電変換素子は、色素を吸着させた光触媒膜を備えた透明電極と、これに対向する対極と、両極間に配される電解質層とから主として構成されている。
 同図において、(21)は透明基板、(22)は透明基板(21)上に形成された透明導電膜、(24)は対極用基板、(25)は同基板(24)に設けられた対極で、白金で構成されている。(26)は両極間に亘って設けられた複数のシール材兼セパレータで、これらによって両極間に複数の区画が形成されている。(23)は各区画において透明導電膜(22)上に形成された光触媒膜で、光増感色素が吸着されている。各区画には電解液が注入されている。(27)は両極に渡された複数の極間電極、(28)は極間電極保護用シール材である。
 上記構成にて100mm角の色素増感太陽電池を作製し、AM1.5、100mW/cm2の標準光源照射により電力変換効率を計測したところ、変換効率η=4.5%と、高効率が得られた。
参考例2
 電極として、比較例1で作製したものを用いた以外、参考例1と同様にして、光電変換素子を構成した。
 上記構成にて100mm角の色素増感太陽電池を作製し、AM1.5、100mW/cm2の標準光源照射により電力変換効率を計測したところ、変換効率ηは1.8%と低い値であった。
 本発明は、光電変換素子用電極の製造方法に関し、大掛かりな装置を必要とせず、低コストで短時間で光触媒膜を脱水処理することができ、このようにして形成された電極は、色素増感太陽電池などの光電変換素子の電極として好適に用いられる。
(1) ロール
(2) 透明基板
(3)  ペースト塗布装置
(4),(6) 加熱器
(5)  プロパノール
(7)  浸漬液

Claims (3)

  1.  透明基板上に透明導電膜を形成し、その上に光触媒膜を形成し、この光触媒膜に光増感色素を吸着させる電極の製造方法であって、光触媒膜への光増感色素の吸着の前に、透明基板の光触媒膜を、水との共沸温度が150℃以下のアルコールに浸漬し次いで加熱することで、水とアルコールの共沸により光触媒膜を脱水しておくことを特徴とする光電変換素子用電極の製造方法。
  2.  アルコールが1-プロパノールまたは1-ブタノールであることを特徴とする請求項1記載の光電変換素子用電極の製造方法。
  3.  基板がフィルム又はシート状のものであり、光触媒膜の形成、光触媒膜の脱水、光触媒膜への光増感色素の吸着を連続的に行う請求項1または2記載の光電変換素子用電極の製造方法。
PCT/JP2010/057145 2010-04-22 2010-04-22 光電変換素子用電極の製造方法 WO2011132288A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127030249A KR20130060195A (ko) 2010-04-22 2010-04-22 광전 변환 소자용 전극의 제조방법
PCT/JP2010/057145 WO2011132288A1 (ja) 2010-04-22 2010-04-22 光電変換素子用電極の製造方法
CN2010800663368A CN102859786A (zh) 2010-04-22 2010-04-22 光电转换元件用电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057145 WO2011132288A1 (ja) 2010-04-22 2010-04-22 光電変換素子用電極の製造方法

Publications (1)

Publication Number Publication Date
WO2011132288A1 true WO2011132288A1 (ja) 2011-10-27

Family

ID=44833844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057145 WO2011132288A1 (ja) 2010-04-22 2010-04-22 光電変換素子用電極の製造方法

Country Status (3)

Country Link
KR (1) KR20130060195A (ja)
CN (1) CN102859786A (ja)
WO (1) WO2011132288A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178929A (ja) * 2012-02-28 2013-09-09 Sekisui Chem Co Ltd 色素増感太陽電池の製造方法及び電解質

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170044082A (ko) * 2014-08-19 2017-04-24 세키스이가가쿠 고교가부시키가이샤 다공질체의 염색 방법, 광 전극 및 광 전기 모듈

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076776A (ja) * 1999-09-09 2001-03-23 Tdk Corp 色素増感型太陽電池
JP2005251591A (ja) * 2004-03-04 2005-09-15 Toyo Seikan Kaisha Ltd 色素増感型太陽電池における負極の製造方法
JP2007242544A (ja) * 2006-03-10 2007-09-20 Sony Corp 光電変換装置及びその製造方法、並びに金属酸化物多孔質層の表面処理液

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100340488C (zh) * 2005-07-12 2007-10-03 武汉大学 一种制备高分散性掺锑氢氧化锡纳米微粉的方法
CN101226966B (zh) * 2008-01-22 2010-07-28 西安交通大学 染料敏化TiO2纳米晶太阳能电池的定制化导电薄膜及其制备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076776A (ja) * 1999-09-09 2001-03-23 Tdk Corp 色素増感型太陽電池
JP2005251591A (ja) * 2004-03-04 2005-09-15 Toyo Seikan Kaisha Ltd 色素増感型太陽電池における負極の製造方法
JP2007242544A (ja) * 2006-03-10 2007-09-20 Sony Corp 光電変換装置及びその製造方法、並びに金属酸化物多孔質層の表面処理液

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178929A (ja) * 2012-02-28 2013-09-09 Sekisui Chem Co Ltd 色素増感太陽電池の製造方法及び電解質

Also Published As

Publication number Publication date
CN102859786A (zh) 2013-01-02
KR20130060195A (ko) 2013-06-07

Similar Documents

Publication Publication Date Title
JP5070704B2 (ja) 光電変換装置
JP4635473B2 (ja) 光電変換素子の製造方法及び半導体電極の製造方法
JP2009099476A (ja) 色素増感光電変換素子およびその製造方法
WO2006095520A1 (ja) 色素増感光電変換素子およびその製造方法ならびに電子装置およびその製造方法ならびに電子機器
JP4963165B2 (ja) 色素増感型太陽電池及び色素増感型太陽電池モジュール
JP2012059599A (ja) カーボン系電極及び電気化学装置
JP2012064485A (ja) 色素増感光電変換装置
US8592243B2 (en) Method for forming buffer layer in dye-sensitized solar cell
JP4678125B2 (ja) 光電変換素子およびその製造方法ならびに電子装置およびその製造方法
WO2011083688A1 (ja) 色素増感太陽電池の製造方法
WO2011132288A1 (ja) 光電変換素子用電極の製造方法
JP5452037B2 (ja) 光電変換素子用電極の製造方法
JP2007242544A (ja) 光電変換装置及びその製造方法、並びに金属酸化物多孔質層の表面処理液
JP5508730B2 (ja) 透明電極上における光触媒膜の形成方法
JP5160045B2 (ja) 光電変換素子
JP5303298B2 (ja) 透明電極上における光触媒膜の形成方法
JP2010205581A (ja) 導電性メッシュを用いた光電変換素子の製造方法
WO2011132286A1 (ja) 透明電極上における光触媒膜の形成方法
KR20120119073A (ko) 염료 감응형 태양 전지의 제조 방법
WO2011132287A1 (ja) 透明電極上における光触媒膜の形成方法
JP5530648B2 (ja) 光電変換素子の製造方法
JP2014063677A (ja) 色素増感太陽電池における光触媒膜の形成方法、並びにその光触媒膜を具備した色素増感太陽電池およびその連続製造装置
WO2014041999A1 (ja) 色素増感太陽電池における光触媒膜の形成方法
KR101600786B1 (ko) 염료감응형 태양전지 서브모듈의 제조방법
JP2012212539A (ja) 色素増感太陽電池における対向電極の製造方法および色素増感太陽電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066336.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127030249

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10850229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP