WO2011129593A2 - 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법 - Google Patents

티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법 Download PDF

Info

Publication number
WO2011129593A2
WO2011129593A2 PCT/KR2011/002584 KR2011002584W WO2011129593A2 WO 2011129593 A2 WO2011129593 A2 WO 2011129593A2 KR 2011002584 W KR2011002584 W KR 2011002584W WO 2011129593 A2 WO2011129593 A2 WO 2011129593A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
transition metal
polypropylene
ketal
acetal
Prior art date
Application number
PCT/KR2011/002584
Other languages
English (en)
French (fr)
Other versions
WO2011129593A3 (ko
Inventor
이분열
박지혜
도승현
김화규
박재영
윤승웅
Original Assignee
호남석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100057102A external-priority patent/KR100986301B1/ko
Priority to PCT/KR2011/002584 priority Critical patent/WO2011129593A2/ko
Priority to EP11769059.4A priority patent/EP2559713B1/en
Priority to KR1020110033626A priority patent/KR101384412B1/ko
Priority to ES11769059.4T priority patent/ES2596718T3/es
Priority to CN201180018695.0A priority patent/CN102834422B/zh
Application filed by 호남석유화학 주식회사 filed Critical 호남석유화학 주식회사
Priority to US13/640,872 priority patent/US8889804B2/en
Priority to JP2013504820A priority patent/JP5546678B2/ja
Priority to KR1020110033625A priority patent/KR101384450B1/ko
Publication of WO2011129593A2 publication Critical patent/WO2011129593A2/ko
Publication of WO2011129593A3 publication Critical patent/WO2011129593A3/ko
Priority to KR1020130128127A priority patent/KR20130135802A/ko
Priority to KR1020130128150A priority patent/KR20130124273A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/74Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals
    • C08F4/76Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals selected from titanium, zirconium, hafnium, vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • the present invention relates to a process for the production of polypropylene using transition metal compounds comprising thiophene-condensed ring cyclopentadienyl ligands.
  • Polypropylene is an isotactic polypropylene (hereinafter referred to as 'iPP'), syndiotactic polypropylene (hereinafter referred to as 'sPP') and atactic polypropylene according to its three-dimensional structure. aPP ').
  • This aPP can be separated during the recovery of the aliphatic solvent as a by-product from the slurry process for producing iPP, or by using a heterogeneous catalyst using a modified titanium chloride ( ⁇ ) and an organoaluminum compound such as diethyl aluminum chloride as a cocatalyst or an activator. Can be prepared.
  • amorphous aPP is no longer generated as a by-product, and even if low crystallinity PP is produced according to the purpose, there is a limit that can be obtained by adding a comonomer.
  • a method of producing aPP having a narrow molecular weight distribution using a metallocene-catalyst system having various structures has recently been proposed, and as a metallocene catalyst system that can be used for such a method, 1) Achiral, unbridged metallocene, and stereorigid C2v Symmetric metallocene catalysts, 2) Ansa metallocene catalyst of the Meso-isomer, 3) ansa-C2 symmetric metallocene catalyst having a bridge at the 2, 2'-position of the indenyl ring, and 4) a catalyst of the monoCp compound.
  • Such aPP has a large change in physical properties depending on molecular weight.
  • aPP having a weight average molecular weight of less than 15,000 has a problem in that its use as a polymer material is limited due to its limited use at room temperature.
  • the polymerization activity for polypropylene is low, and in order to obtain aPP having a high molecular weight, the polymerization should be performed at a relatively low temperature (for example, 20 ° C or less). There is a limit.
  • the present invention is to provide a method for producing polypropylene using a catalyst having excellent catalytic activity and capable of producing a high molecular weight aPP.
  • the present invention is a.
  • M is a Group 4 transition metal
  • Q 1 and Q 2 are each independently halogen, (d-Cao) alkyl, (C 2-
  • C 20 alkenyl, (C 2 -C 20 ) alkynyl, (C 6 -C 20 ) aryl, ( 20 ) alkyl (C 6 -C 20 ) aryl, (C 6 -C 20 ) aryl (Ci-Cao ) Alkyl, (with 20 ) alkylamido, (C 6 -C 20 ) arylamido or (C! -C ⁇ ) alkylidene;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently hydrogen; (-Czo) alkyl with or without acetal, ketal or ether groups; (C 2 -C 20 ) alkenyl with or without acetal, ketal or ether groups; (C Czo) alkyl (C 6 -C 20 ) aryl with or without acetal, ketal or ether groups; (C 6 -C 20 ) aryl (d-o) alkyl with or without acetal, ketal or ether groups; Or (C, -C 20 ) silyl with or without acetal, ketal or ether groups; R 1 and R 2 may be connected to each other to form a ring, and R 3 and R 4 may be connected to each other to form a ring, and two or more of R 5 to R 10 may be connected to each other to form a ring Can do
  • M is titanium (Ti), zirconium (Zr) or hafnium (Hf);
  • Q 1 and Q 2 are each independently methyl or chlorine;
  • R 1 each independently hydrogen or methyl; remind
  • Each is preferably hydrogen.
  • the catalyst is at least one selected from the group consisting of compounds represented by the following formula (6), (7) and formula
  • the compound may further comprise:
  • Each R 61 is independently a halogen radical, (d-
  • a is an integer of 2 or more
  • Each R 71 is independently a halogen radical, a (C, -C 20 ) hydrocarbyl radical or a (C, -C 20 ) hydrocarbyl radical substituted with halogen;
  • L is a neutral or cationic Lewis acid
  • Z is a Group 13 element
  • A are each independently one or more hydrogen atoms are halogen, (d- C 20) hydrocarbyl, (C.-C) alkoxy or (C 6 -C 20) aryloxy radicals of (C 6 -C 20) aryl optionally substituted with Or a (d-Czo) alkyl radical.
  • R 61 of Formula 6 is methyl ethyl, n-butyl or isobutyl; D in Formula 7 is aluminum and R 71 is methyl or isobutyl, or D is boron and R 71 is pentafluorophenyl; [L-H] + in Formula 8 is a dimethylanilinium cation; [Z (A) 4 ]-is [B (C 6 F 5 ) 4 r; [L] + may be [(C 6 H 5 ) 3 C] + .
  • the content of the promoter compound may be 1: 1 100,000 based on the molar ratio of the metal contained in the promoter compound to 1 mol of the transition metal contained in the transition metal compound represented by Chemical Formula 1.
  • the catalyst is a transition metal compound represented by Formula 1 is Si0 2 , A1 2 0 3 , MgO, MgCl 2 , CaCl 2 , Zr0 2 , Ti0 2 , B 2 0 3 , CaO, ZnO, BaO, Th0 2 , Si0 2 -Al 2 0 3 , Si0 2 -MgO, Si0 2 -Ti0 2 , Si0 2 -V 2 0 5 , Si0 2 -Cr0 2 0 3 , Si0 2 -Ti0 2 -MgO, bauxite, zeolite, starch And cyclodextrine may be supported on at least one carrier selected from the group consisting of.
  • the polymerization step may be carried out under a temperature of -50 to 500 ° C and a pressure of 1 to 3000 atm.
  • the polypropylene has a weight average molecular weight of 20,000 to 1,000, 000; The density may be between 0.8 and 0.9 g / ml.
  • the polypropylene may have a stereoregularity (isotactisity, Pentad 1.1, mmmm) of 5 to 20%.
  • the method for producing polypropylene according to the present invention uses a transition metal compound having a new structure as a catalyst, and has a high polymerization activity, thereby providing excellent process efficiency and easily controlling the fine structure of the polymer, thereby having desired physical properties. Polypropylene can be easily produced.
  • the present inventors have formed a condensed ring between an amido ligand and an ortho-phenylene and a pentagonal ring pi-ligand bonded to the ortho-phenylene to the thiophene hetero ring. New ligands fused by In addition, it was confirmed that the transition metal compound including the ligand showed higher catalytic activity than the transition metal compound to which the thiophenhetero ring was not fused, and a polymer having a high molecular weight could be prepared.
  • the transition metal compound containing the ligand of the new structure is used for the production of polypropylene (preferably aPP) : It is possible to easily control the fine structure of the copolymer, to produce a polypropylene having a high molecular weight Confirmed that the present invention, the present invention was completed.
  • the invention is in accordance with one embodiment, In the presence of a catalyst comprising a transition metal compound represented by the formula (1), it provides a method for producing a polypropylene comprising the step of polymerizing propylene:
  • M is a Group 4 transition metal
  • Q 1 and Q 2 are each independently halogen, (c, -C 20) alkyl, (C 2 - C 20) alkenyl, (C 2 -C 20) alkynyl, (C 6 -C 20) aryl, ( CC 20 ) alkyl (C 6 -C 20 ) aryl, (C 6 -C 20 ) aryl (CC 20 ) alkyl, (-CK alkylamido, (C 6 -C 20 ) arylamido or (d-Czo) Alkylidene;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently hydrogen; (C! -C ⁇ ) alkyl with or without acetal, ketal or ether groups; (C 2 -C 20 ) alkenyl with or without acetal, ketal or ether groups; ( 20 ) alkyl (C 6 -C 20 ) aryl with or without acetal, ketal or ether groups; (C 6 -C 20 ) aryl (dC ⁇ ) alkyl with or without acetal, ketal or ether groups; Or with or without acetal, ketal or ether groups
  • R 1 and R 2 may be connected to each other to form a ring, and R 3 and R 4 may be connected to each other to form a ring. Two or more of R 5 to R 10 may be connected to each other to form a ring;
  • R ′′, R 12 and R 13 are each independently hydrogen; (d-Czo) alkyl with or without acetal, ketal or ether groups; (C 2 -C 20 ) with or without acetal, ketal or ether groups alkenyl; acetal, ketal or ether which does not contain or contains a group (C, - C 20) alkyl (C 6 -C 20) aryl, acetal, ketal or ether which does not contain or contains a group (C 6 -C 20) aryl (C, -C 2 o) alkyl; (CC 20 ) silyl with or without acetal, ketal or ether groups; (C, -C 20 ) alkoxy; or (C 6 -C 20 ) aryloxy; 11 and R 12 or R 12 and R 13 may be linked to each other to form a ring First, the catalyst used in the production method of the present invention will be described.
  • the catalyst includes a transition metal compound represented by Chemical Formula 1.
  • the transition metal compound of Formula 1 is activated by a cocatalyst compound to be described later to impart activity to the polymerization of propylene.
  • the transition metal compound represented by Formula 1 is a new compound in which an amido ligand and ortho-phenylene form a condensed ring, and a five-membered ring pi-ligand bonded to the ortho-phenylene is fused by a thiophene hetero ring. Ligands of the structure. Accordingly, the transition metal compound has an advantage of higher propylene synthesis activity than the transition metal compound to which the thiophene hetero ring is not fused.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 each independently include an acetal, ketal or ether group It may be substituted with a substituent, it may be more advantageous to support on the surface of the carrier when substituted with such a substituent.
  • the M is preferably titanium (Ti), zirconium (Zr) or hafnium (Hf).
  • Q 1 and Q 2 are each independently halogen or (d-C 20 ) alkyl, more preferably chlorine or methyl.
  • R 1 , R 2 , R 3 , R 4 and R 5 may be each independently hydrogen or (C o) alkyl, preferably each independently Hydrogen or methyl. More preferably, R 1 , R 2 , R 3 , R 4 and R 5 may be each independently hydrogen or methyl, provided that at least one of R 3 and R 4 is methyl and R 5 may be methyl have.
  • R 6 , R 7 , R 8 , R 9 , R 10 , R n , R ′ 2, and R 13 are each preferably hydrogen.
  • the transition metal compound represented by Chemical Formula 1 is preferably one containing such substituents for electronic and three-dimensional environmental control around the metal. Meanwhile, the transition metal compound represented by Chemical Formula 1 may be obtained from a precursor compound represented by Chemical Formula 2: [Formula 2]
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R s 10 R 11 R 13 are each as defined in Formula 1 above.
  • the precursor compound represented by the formula (2) comprises the steps of (a) reacting a tetrahydroquinoline derivative represented by the formula (3) with alkyllithium and then adding carbon dioxide to prepare a compound represented by the formula (4); And (b) After reacting the compound represented by the formula (4) with alkyllithium : it may be prepared by a method comprising the step of adding a compound represented by the formula (5) and acid treatment:
  • R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 and R 13 are the same as defined in Chemical Formula 1, respectively.
  • R 1 , R 2 , R 3 , R 4, and R 5 may each independently be hydrogen or (d-o) alkyl, and preferably each independently Hydrogen or methyl. More preferably, R 1 , R 2 , R 3 , R 4 and R 5 may be each independently hydrogen or methyl, provided that at least one of R 3 and R 4 is methyl and R 5 may be methyl have.
  • R 6 , R 7 , R 8 , R 9 R 10 , R 11 , R 12, and R 13 are each preferably hydrogen. This ensures the accessibility and reactivity of the starting material, it is advantageous to control the electronic and three-dimensional environment of the transition metal compound of formula (1) to be prepared.
  • the step (a) is a reaction in which the tetrahydroquinoline derivative represented by Chemical Formula 3 is reacted with alkyllithium and then converted into a compound represented by Chemical Formula 4 by adding carbon dioxide, which is according to a method described in known literature. (Tetrahedron Lett. 1985, 26, 5935; Tetrahedronl 986, 42,2571; J. Chem. SC. Perkin Trans. 1989, 16.)
  • step (b) the reaction of alkyllithium to the compound represented by Chemical Formula 4 causes deprotonation reaction to generate an ortho-lithium compound, thereby reacting the compound represented by Chemical Formula 5 and treating the acid. It is possible to obtain a transition metal compound precursor represented by the formula (2).
  • the reaction of generating an ortho-lithium compound by reacting alkyllithium with the compound represented by Chemical Formula 4 can be understood through known literature (Organometallics 2007, 27,6685; Korean Patent Publication No. 2008-0065868), In the present invention, it is possible to obtain a transition metal compound precursor represented by Chemical Formula 2 by reacting the compound represented by Chemical Formula 5 and treating an acid.
  • the compound represented by Chemical Formula 5 may be prepared through various known methods.
  • the following Banungsik 1 shows one example, and can be prepared not only by one-step reaction but also inexpensive starting materials can be used to easily and economically prepare the transition metal compound precursor of the present invention ( J. Organomet. Chem., 2005, 690,4213). ⁇ Reaction 1]
  • various known methods may be used to synthesize the transition metal compound represented by Chemical Formula 1 from the precursor compound represented by Chemical Formula 2 obtained through the above method.
  • the compound represented by Formula 2 and M (NMe 2 4 ) reacting the compound to remove about 2 equivalents of HNME 2 to obtain a transition metal compound represented by Formula 1 wherein Q 1 and Q 2 are NMe 2 simultaneously, and reacting Me 3 SiCl or Me 2 SiCl 2 with NMe
  • the two ligands may be converted into chlorine ligands, while the catalyst used in the preparation method of the present invention may further include a promoter compound.
  • the promoter compound serves to activate the transition metal compound represented by Chemical Formula 1 described above. Therefore, any compound capable of activating the transition metal compound without lowering the activity of the catalyst according to the present invention can be used without limitation in the constitution.
  • the cocatalyst compound is preferably at least one selected from the group consisting of compounds represented by the following formula (6), (7) and (8):
  • a is an integer of 2 or more
  • D is aluminum or boron
  • Each R 71 is independently a halogen radical
  • L is a neutral or cationic Lewis acid
  • Z is a Group 13 element
  • the cocatalyst compound represented by Chemical Formula 6 is not particularly limited as long as it is alkylaluminoxane, preferably methylaluminoxane, ethylaluminoxane, Ethylaluminoxane,
  • cocatalyst compound represented by the formula (7) is trimethylaluminum (Trimethylaluminum),
  • Triethylaluminum Tributylaluminum (Tributylaluminum)
  • Trihexylaluminum Trihexylaluminum
  • Trioctyl aluminum Trioctylaluminum
  • Trialkylaluminum such as tridecylaluminum; Dialkylaluminum alkoxides such as dimethylaluminum methoxide, diethylaluminum methoxide, dibutylaluminum methoxide; Dialkylaluminum alkoxides such as dimethylaluminum chloride, Diethylaluminum chloride, Dibutylaluminum chloride; Alkylaluminum dialkoxides such as methylaluminum dimethoxide, ethylaluminum dimethoxide, butylaluminum dimethoxide; Alkylaluminum dihalides such as methylaluminum dichloride, ethylaluminum dichloride, butylaluminum dichloride; Trialkyl borons such as trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron and tributyl boron; Tris
  • cocatalyst compound represented by Formula 8 is trimethylammonium
  • Pentafluorophenoxycitris (pentafluorophenyl) borate (N ⁇ -dimethylanilinium pentafluorophenoxytris (pentafluorphenyl) borate), ⁇ , ⁇ -diethylanilinium tetrakis (pentafluorophenyl) borate ( ⁇ , ⁇ -diethylanilinium tetrakis ( pentafluorphenyl) borate), ⁇ , ⁇ -dime 3 ⁇ 4 -2,4,6-trimethylanilinium tetrakis (pentafluorophenyl) borate ( ⁇ , ⁇ -dimethyl-2,4,6-trimethylanilinium tetrakis (pentafluorophenyl) borate) Trimethylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate), ⁇ , ⁇ -dimethylammonium tetrakis (2,
  • cocatalyst compound represented by Formula 8 may be di- (i-propyl) ammonium tetrakis (pentafluorophenyl) borate (di- (i-propyl) ammonium tetrakis (pentafluorophenyl) borate), dicyclonucleoammonium
  • Dialkylammoniums such as tetracycloxyxymonmonium tetrakis (pentafluorophenyl) borate; Triphenylphosphonium
  • dialkylsulfoniums such as tetrakis (pentafluorophenyl) borate), bis (2,6-dimethylphenyl) sulfonium tetrakis (pentafluorophenyl) borate (bis (2,6-dimethylphenyl) sulfonium tetrakis (pentafluorophenyl) borate); And trophylium tetrakis (pentafluorophenyl) borate
  • carbonium salts such as (benzene (diazonium) tetrakis (pentafluorophenyl) borate).
  • R 61 is preferably methyl, ethyl, n-butyl or isobutyl;
  • D is aluminum and R 71 is methyl or isobutyl, or D is boron and R 71 is pentafluorophenyl;
  • [L-H] + in Formula 8 is a dimethylanilinium cation, [Z (A) 4 ]-is [B (C 6 F 5 ) 4 ]-, and [L] + is [(C 6 H 5 ) 3 C] + is preferred.
  • the addition amount of the promoter compound may be determined in consideration of the addition amount of the transition metal compound represented by the formula (1) and the amount required to fully activate the transition metal compound.
  • the content of the cocatalyst compound is based on the molar ratio of the metal contained in the cocatalyst compound with respect to 1 mole of the transition metal contained in the transition metal compound represented by Formula 1 above.
  • the promoter compound represented by Chemical Formula 6 is 1: 1-1: 100,000, preferably 1: 5 50,000, more preferably 1: 10-20,000 with respect to the transition metal compound represented by Chemical Formula 1 It can be included as a molar ratio of.
  • the ratio of the transition metal compounds is 1: 1 to 100, preferably 1: 1 to 10, more preferably 1: 1 to 3 It can be included as a molar ratio of.
  • D when D is aluminum, it may vary depending on the amount of water in the polymerization system. However, 1: 1 to 1,000, preferably 1: 1 for the transition metal compounds. ⁇ 500, more preferably may be included in a molar ratio of 1: 1 to 100.
  • the cocatalyst compound represented by Formula 8 may be included in a molar ratio of 1: 1 to 100, preferably 1: 1 to 10, more preferably 1: 1 to 4 with respect to the transition metal compounds.
  • the catalyst used in the production method of the present invention may be a transition metal compound represented by the formula (1), or the transition metal compound and a promoter compound supported on a carrier.
  • the carrier of the inorganic or organic material used in the preparation of the catalyst in the technical field to which the present invention belongs may be used without limitation.
  • the carrier is Si0 2 , A1 2 0 3> MgO, MgCl 2 , CaCl 2 , Zr0 2 , Ti0 2 , B 2 0 3 , CaO, ZnO, BaO, Th0 2 , Si0 2 -Al 2 0 3 , Si0 2 -MgO, Si0 2 -Ti0 2 , Si0 2 -V 2 0 5 , Si0 2 -Cr0 2 0 3 , Si0 2 -Ti0 2 -MgO, bauxite, zeolite, starch It may be cyclodextrine or synthetic polymers.
  • the carrier includes a hydroxyl group on the surface, and may be at least one carrier selected from the group consisting of silica, silica-alumina, and silica-magnesia.
  • the method for supporting the transition metal compound and the cocatalyst compound on such a carrier may include a method of directly supporting the transition metal compound on a dehydrated carrier; A method of supporting the transition metal compound after pretreating the carrier with the promoter compound; A method of post-treatment with a cocatalyst compound after supporting the transition metal compound on the carrier; After reacting the transition metal compound and the cocatalyst compound, a method of adding a carrier and reacting the same may be used.
  • Pentane nucleic acid (Hexane), heptane (octane), Octane (Nonane), Decane (Decane)
  • Aliphatic hydrocarbon solvents such as Undecane and Dodecane
  • Aromatic hydrocarbon solvents such as benzene, monochlorobenzene, dichlorobenzene, trichlorobenzene, and toluene
  • Halogenated aliphatic hydrocarbon solvents such as dichloromethane, trichloromethane, dichloroethane and trichloroethane; Or combinations thereof.
  • the process of supporting the transition metal compound and the cocatalyst compound on the carrier is carried out at a temperature of -70 to 200 ° C, preferably -50 to 150 ° C, more preferably 0 to 100 ° C It is advantageous in terms of the efficiency of the supporting process.
  • the method for producing polypropylene according to the present invention includes the step of polymerizing propylene in the presence of the catalyst described above.
  • the propylene may be used in the art to which the present invention pertains, and thus the configuration thereof is not particularly limited.
  • the polymerization step may be performed in a slurry phase, a liquid phase, a gas phase, or a bulk phase.
  • a solvent or an olefin monomer itself may be used as a medium.
  • solvents usable in the polymerization step include butane, isobutane, pentane, nucleic acid, heptane, octane, nonane, decane and decane.
  • Aliphatic hydrocarbon solvents such as Undecane, Dodecane, Cyclopentane, Methylcyclopentane and Cyclohexane; Benzene, Monochlorobenzene,
  • Aromatic hydrocarbon solvents such as dichlorobenzene, trichlorobenzene, toluene, xylene and chlorobenzene; Halogenated aliphatic hydrocarbons such as dichloromethane, trichloromethane, chloroethane, dichloroethane, trichloroethane, trichloroethane and 1,2-dichloroethane menstruum; Or a combination thereof.
  • the addition amount of the catalyst may be determined within the range in which the polymerization reaction of the monomer can occur in accordance with the slurry phase, liquid phase, gas phase or bulk process, it is not particularly limited.
  • the amount of the catalyst added is based on the concentration of the central metal (M) of the transition metal compound per unit volume (L) of the monomer H 8 mol / L to 1 mol / L, preferably ⁇ 7 mol / L to 10 '1 mol / L, more preferably ⁇ 7 mol / L to ⁇ 2 mol / L.
  • the polymerization step may be carried out in a batch type, semi-continuous type or continuous type reaction.
  • the temperature and pressure conditions of the polymerization step may be determined in consideration of the efficiency of the polymerization reaction according to the type of reaction and the type of reaction to be applied, it is not particularly limited.
  • the polymerization step may be carried out at a temperature of -50 to 500 ° C, preferably 0 to 400 ° C, more preferably 0 to 300 ° C.
  • the polymerization step may be carried out under a pressure of 1 to 3000 atm, preferably 1 to 1000 atm, more preferably 1 to 500 atm.
  • the polypropylene may have a weight average molecular weight (Mw) of 20,000 to 1,000,000, preferably 50,000 to 900,000, and more preferably 50,000 to 800,000.
  • Mw weight average molecular weight
  • the polypropylene has a density of 0.8 to 0.9 g / ml, preferably 0.82 to 0.9 g / ml, more preferably . Preferably 0.82 to 0.89 g / ml.
  • the polypropylene may have a stereoregularity (isotactisity, Pentad II, mmmm) of 5 to 20%, preferably 5 to 18%, and more preferably 5 to 15%.
  • the polypropylene may have a molecular weight distribution (Mw / Mn) of 1 to 10, preferably 1.5 to 8, more preferably 2 to 6.
  • the method for producing a copolymer according to the present invention may be carried out in addition to the above-described steps, further comprising a step that can be conventionally performed in the art before or after the step, and by the above-described steps
  • the manufacturing method of the invention is not limited.
  • preferred embodiments will be presented to aid in understanding the present invention. However, the following examples are only for illustrating the present invention, and the present invention is not limited thereto.
  • each compound has a different kind of substituents, and the type of each substituent is summarized in a table at the bottom of the compound (for example, in the following compound D-2, the position of R a is hydrogen, R b and ⁇ Stands for a compound substituted with a methyl group.) ⁇
  • the Schlemk flask containing 1,2,3,4-tetrahydroquinoline (1.00 g, 7.51 mmol) and diethyl ether (16 mL) solution was immersed in a -78 ° C low temperature bath to lower the temperature, and then stirred n- Butyllithium (3.0 mL, 7.5 mmol, 2.5 M nucleic acid solution) was slowly injected under a nitrogen atmosphere. After stirring for about one hour at -78 ° C, the temperature was slowly raised to room temperature. A light yellow solid precipitated and the butane gas produced was removed through a bubbler. The temperature was lowered back to -78 ° C and then carbon dioxide was injected.
  • Butyllithium (2.5 M nucleic acid solution, 0.2 g, 0.71 mmol) was slowly injected and reacted at ⁇ 30 ° C. for two hours. The reaction was stirred for 3 hours while raising the temperature to room temperature. After lowering to -30 ° C again, methyllithium (1.6 M diethyl ether solution, 0.33 g, 0.71 mmol) was injected, followed by TiCM'DME (DME; dimethoxyethane, 0.10 g, 0.36 mmol). . After stirring for 3 hours while raising the temperature to room temperature, the solvent was removed using a vacuum line. The compound was extracted using pentane. The solvent was removed to give 0.085 g of a brown powder of compound (yield 60%).
  • GPC Gel Permeation Chromatography, device name: PL-GPC220, manufacturer: Agilent
  • DSC Different Scanning Calorimetry, device name: Q200, manufacturer: TA Instruments
  • the inside of the high pressure reaction vessel (internal capacity: 2 L, stainless steel) was replaced with nitrogen at room temperature.
  • the reaction vessel was filled with 900 ml of n-nucleic acid, and about 13.3 ml of methylaluminoxane toluene solution (10 wt. 0 /. Solution of methylaluminoxane in toluene, 20 mmol based on A1, manufactured by Albemarle) was added. g was added and warmed to 70 ° C. Subsequently, a solution (5 ml, 10.0 ⁇ of Ti) in which the transition metal compound E-6 according to Example ii-6 was dissolved in toluene was injected into the reaction vessel, and polymerization was performed for 1 hour.
  • Polypropylene (35.6 g) was obtained under the same conditions and methods as in Example iii-2, except that the polymerization reaction was performed at a polymerization temperature of 180 ° C. for 15 minutes.
  • Example iii-1 The same conditions as in Example iii-1 except that bisdendenylzirconium dichloride (Ind 2 ZrCl 2 , manufactured by Strem) was used instead of the transition metal compound E-6 according to Example ii-6 as a catalyst.
  • Polypropylene (40 g) was obtained by the method.
  • Example iii-1 With the same conditions and methods as in Example iii-1, except that racemic ethylenebisindenylzirconium dichloride (manufactured by Strem) was used instead of the transition metal compound E-6 according to Example ii-6 as a catalyst. Polypropylene (80 g) was obtained. TABLE i

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 새로운 구조의 전이금속 화합물을 포함하는 촉매의 존재 하에 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조방법에 관한 것이다. 본 발명에 따른 폴리프로필렌의 제조방법은 새로운 구조의 전이금속 화합물을 촉매로 사용함에 따라, 중합 활성이 높아 공정 효율이 우수할 뿐만 아니라, 중합체의 미세 구조를 쉽게 제어할 수 있어, 원하는 물성을 갖는 폴리프로필렌을 용이하게 제조할 수 있다.

Description

【명세서 】
【발명의 명칭 】
티오펜ᅳ축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법
【기술분야 】
본 발명은 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용하여 폴리프로필렌을 제조하는 방법에 관한 것이다.
【배경기술 】
폴리프로필렌은 입체 구조에 따라 아이소탁틱 풀리프로필렌 (Isotactic Polypropylene, 이하 'iPP'라 함), 신디오탁틱 폴리프로필렌 (Syndiotactic Polypropylene, 이하 'sPP'라 함 ) 및 아택틱 폴리프로필렌 (Atactic Polypropylene, 이하 'aPP'라 함)으로 분류될 수 있다.
그 중 상기 iPP 와 sPP 는 우수한 기계적 물성과 열적 특성으로 인해, 이에 대한 연구가 진행되어 온 것에 비하여, 상기 aPP 는 무질서한 입체규칙성으로 인한 물성 향상의 한계로 인해 상대적으로 상업적 개발이 활발히 이루어지지 못하고 있다. 이러한 aPP 는 iPP 를 제조하는 슬러리 공정에서 부산물로 지방족 용매의 회수과정에서 분리되거나, 변성 염화티타늄 (ΠΙ)과 공촉매 또는 활성화제로서 디에틸 알루미늄 클로라이드와 같은 유기알루미늄 화합물을 사용한 불균일 촉매를 사용하여 제조될 수 있다. 하지만, 입체규칙도가 개선된 iPP 공정에서는 비결정성의 aPP 가 더 이상 부산물로 생성되지 않으며, 목적에 따라 결정도가 낮은 PP 가 생산되더라도, 공단량체를 추가함으로써 얻을 수 있는 한계가 있다.
한편, 최근 다양한 구조의 메탈로센 - 촉매계를 이용하여 분자량 분포가 좁은 aPP 를 제조하는 방법이 제안되고 있으며, 이러한 방법에 이용될 수 있는 메탈로센 촉매계로는 1) Achiral, unbridged metallocene, stereorigid C2v 대칭성의 메탈로센 촉매, 2) Meso-이성질체의 ansa메탈로센 촉매, 3) 인데닐고리의 2, 2'-위치에 연결다리를 가지는 ansa-C2 대칭성의 메탈로센 촉매, 4) monoCp화합물의 촉매 등을 예로 들 수 있다.
이러한 aPP 는 분자량에 따라 물성이 크게 달라지는데, 예를 들어, 중량평균분자량이 15,000 미만인 aPP 는 상온에서도 끈적한 상태이기 때문에 사용에 한계가 있어 고분자 재료로의 활용도가 떨어지는 문제점이 있다.
그런데, 앞서 예시한 이전의 메탈로센 촉매계를 이용할 경우 폴리프로필렌에 대한 중합활성이 낮고, 높은 분자량을 갖는 aPP 를 얻기 위해서는 비교적 낮은 온도 (예를 들면, 20 °C 이하)에서 중합을 진행해야 하는 한계가 있다.
【발명의 내용】
【해결하려는 과제 】
이에 본 발명은 촉매 활성이 우수하면서도 고분자량의 aPP 를 제조할 수 있는 촉매를 사용하여 폴리프로필렌을 제조하는 방법을 제공하기 위한 것이다.
【과제의 해결 수단】
본 발명은
하기 화학식 1로 표시되는 전이금속 화합물을 포함하는 촉매의 존재 하에, 프로필렌을 증합시키는 단계를 포함하는 폴리프로필렌의 제조방법을 제공한다:
[ 1]
Figure imgf000004_0001
상기 화학식 1에서,
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 할로겐, (d-Cao)알킬, (C2-
C20)알케닐, (C2-C20)알키닐, (C6-C20)아릴, ( 20)알킬 (C6-C20)아릴, (C6-C20)아릴 (Ci-Cao)알킬, (에20)알킬아미도, (C6-C20)아릴아미도 또는 (C!-C^)알킬리덴이고;
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 ( -Czo)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C Czo)알킬 (C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴 (d- o)알킬; 또는 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C,-C20) 실릴이고; 상기 R1과 R2는 서로 연결되어 고리를 형성할 수 있으며, 상기 R3와 R4는 서로 연결되어 고리를 형성할 수 있고, 상기 R5 내지 R10 중에서 2 이상이 서로 연결되어 고리를 형성할 수 있으며; R", R12 및 R13은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (d-Czo)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (d- C20)알킬 (C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴 (d-Czo)알킬 ; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (d-Czo)실릴; (C,-
C20)알콕시; 또는 (C6-C20)아릴옥시이며; 상기 R11과 R12 또는 Ri2Rn은 서로 연결되어 고리를 형성할 수 있다.
이때, 상기 화학식 1로 표시되는 전이금속 화합물에서, 상기 M 은 티타늄 (Ti), 지르코늄 (Zr) 또는 하프늄 (Hf)이고; 상기 Q1 및 Q2 는 각각 독립적으로 메틸 또는 염소이며; 상기 R1, 각각 독립적으로 수소 또는 메틸이고; 상기
R 10 R 11 R 12
각각 수소인 바람직하다.
한편, 상기 촉매는 하기 화학식 6, 화학식 7 및 화학식 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의
화합물을 더 포함할 수 있다:
[화학식 6]
-[Al(R6,)-0]a- 상기 화학식 6에서,
R61은 각각 독립적으로 할로겐 라디칼, (d-
C20)하이드로카르빌 라디칼 또는 할로겐으로 치환된 (C,- C20)하이드로카르빌 라디칼이며;
a는 2 이상의 정수이다;
[화학식 7]
D(R71)3
상기 화학식 7에서,
D는 알루미늄 또는 보론이며; R71은 각각 독립적으로 할로겐 라디칼, (C,- C20)하이드로카르빌 라디칼 또는 할로겐으로 치환된 (C, - C20)하이드로카르빌 라디칼이고;
[화학식 8]
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]- 상기 화학식 8에서,
L은 중성 또는 양이온성 루이스 산이며;
Z는 13족 원소이고;
A 는 각각 독립적으로 1 이상의 수소 원자가 할로겐, (d- C20)하이드로카르빌, (C.-C )알콕시 또는 (C6-C20)아릴옥시 라디칼로 치환된 (C6-C20)아릴 또는 (d-Czo)알킬 라디칼이다.
상기 조촉매 화합물에 있어서, 상기 화학식 6의 R61은 메틸 에틸, n-부틸 또는 이소부틸이고; 상기 화학식 7의 D 는 알루미늄이고 R71은 메틸 또는 이소부틸이고, 또는 D 는 보론이고 R71은 펜타플루오로페닐이며; 상기 화학식 8에서 [L- H] +는 디메틸아닐리늄 양이온이고; [Z(A)4]-는 [B(C6F5)4r이고; [L] +는 [(C6H5)3C]+일 수 있다.
이때, 상기 조촉매 화합물의 함량은 상기 화학식 1로 표시되는 전이금속 화합물에 함유된 전이금속 1몰에 대하여 조촉매 화합물에 함유된 금속의 몰비를 기준으로 1:1 100,000일 수 있다.
또한, 상기 촉매는 화학식 1로 표시되는 전이금속 화합물이 Si02, A1203, MgO, MgCl2, CaCl2, Zr02, Ti02, B203, CaO, ZnO, BaO, Th02, Si02-Al203, Si02-MgO, Si02-Ti02, Si02-V205, Si02 - Cr0203, Si02-Ti02-MgO, 보오크사이트, 제올라이트, starch 및 cyclodextrine 으로 이루어진 군에서 선택되는 1종 이상의 담체에 담지된 것일 수 있다.
한편, 상기 중합 단계는 -50 내지 500 °C의 온도 및 1 내지 3000 기압의 압력 하에서 수행될 수 있다. 또한, 상기 폴리프로필렌은 중량평균분자량이 20,000 내지 1,000, 000이고; 밀도가 0.8 내지 0.9 g/ml일 수 있다.
또한, 상기 폴리프로필렌은 입체규칙도 (isotactisity, Pentad 1.1, mmmm)가 5 내지 20 %일 수 있다.
【발명의 효과】
본 발명에 따른 폴리프로필렌의 제조방법은 새로운 구조의 전이금속 화합물을 촉매로 사용함에 따라, 중합 활성이 높아 공정 효율이 우수할 뿐만 아니라, 중합체의 미세 구조를 쉽게 제어할 수 있어, 원하는 물성을 갖는 폴리프로필렌을 용이하게 제조할 수 있다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 구현예에 따른 폴리프로필렌의 제조방법에 대하여 설명하기로 한다.
본 발명자들은 올레핀 중합용 촉매에 대한 연구를 거듭하는 과정에서, 아미도 리간드와 오르소-페닐렌이 축합 고리를 형성하고 오르소-페닐렌에 결합한 5각 고리 파이- 리간드가 티오펜 헤테로 고리에 의해 융합된 새로운 구조의 리간드를 발견하였다. 또한, 상기 리간드를 포함하는 전이금속 화합물은 티오펜헤테로 고리가 융합되지 않은 전이금속 화합물에 비하여 더 높은 촉매 활성을 나타내고, 분자량이 큰 고분자를 제조할 수 있음을 확인하였다.
특히, 상기 새로운 구조의 리간드를 포함하는 전이금속 화합물을 폴리프로필렌 (바람직하게는, aPP)의 제조에 사용할 경우 : 공중합체의 미세 구조를 쉽게 제어할 수 있어, 분자량이 큰 폴리프로필렌을 제조할 수 있음을 확인하여, 본 발명을 완성하였다. 이와 같은, 본 발명은 일 구현예에 따라, 하기 화학식 1로 표시되는 전이금속 화합물을 포함하는 촉매의 존재 하에, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조방법을 제공한다:
[화학식 1
Figure imgf000008_0001
상기 화학식 1에서,
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 할로겐, (c,-C20)알킬, (C2- C20)알케닐, (C2-C20)알키닐, (C6-C20)아릴, (C C20)알킬 (C6-C20)아릴, (C6-C20)아릴 (C C20)알킬, ( -CK 알킬아미도, (C6-C20)아릴아미도 또는 (d-Czo)알킬리덴이고;
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C!-C^)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 ( 20)알킬 (C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴 (d-C^)알킬; 또는 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는
(C,-C20) 실릴이고; 상기 R1과 R2는 서로 연결되어 고리를 형성할 수 있으며, 상기 R3와 R4는 서로 연결되어 고리를 형성할 수 있고, 상기 R5 내지 R10 중에서 2 이상이 서로 연결되어 고리를 형성할 수 있으며;
R", R12 및 R13은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (d-Czo)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C,- C20)알킬 (C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴 (C,-C2o)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C C20)실릴; (C, - C20)알콕시; 또는 (C6-C20)아릴옥시이며; 상기 R11과 R12 또는 R12와 R13은 서로 연결돠어 고리를 형성할 수 있다. 먼저, 본 발명의 제조방법에 사용되는 상기 촉매에 대하여 설명한다.
상기 촉매는 화학식 1로 표시되는 전이금속 화합물을 포함한다.
상기 화학식 1의 전이금속 화합물은 후술할 조촉매 화합물에 의해 활성화되어 프로필렌의 중합 반응에 활성을 부여하게 된다.
상기 화학식 1로 표시되는 전이금속 화합물은 아미도 리간드와 오르소-페닐렌이 축합 고리를 형성하고, 상기 오르소- 페닐렌에 결합한 5각 고리 파이-리간드가 티오펜 헤테로 고리에 의해 융합된 새로운 구조의 리간드를 포함한다. 그에 따라, 상기 전이금속 화합물은 티오펜 헤테로 고리가 융합되지 않은 전이금속 화합물에 비하여 프로필렌의 증합 활성이 높은 장점이 있다.
본 발명에 따르면, 상기 화학식 1로 표시되는 화합물에 있어서, 상기 R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 및 R13은 각각 독립적으로 아세탈, 케탈 또는 에테르기를 포함하는 치환기로 치환된 것일 수 있는데, 상기와 같은 치환기로 치환될 경우 담체의 표면에 담지시키는데 보다 유리할 수 있다.
또한, 상기 화학식 1로 표시되는 화합물에 있어서, 상기 M 은 티타늄 (Ti), 지르코늄 (Zr) 또는 하프늄 (Hf)인 것이 바람직하다.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 Q1 및 Q2 는 각각 독립적으로 할로겐 또는 (d- C20)알킬인 것이 바람직하고, 보다 바람직하게는 염소 또는 메틸일 수 있다.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 (C o)알킬일 수 있고, 바람직하게는 각각 독립적으로 수소 또는 메틸일 수 있다. 보다 바람직하게는, 상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 메틸일 수 있고, 다만 R3 및 R4 중 적어도 하나는 메틸이고, R5는 메틸일 수 있다.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 R6, R7, R8, R9, R10, Rn, R'2 및 R13 은 각각 수소인 것이 바람직하다.
상기 화학식 1로 표시되는 전이금속 화합물은 상기와 같은 치환기들을 포함하는 것이 금속 주위의 전자적, 입체적 환경 제어를 위해 선호된다. 한편, 상기 화학식 1로 표시되는 전이금속 화합물은 하기 화학식 2로 표시되는 전구체 화합물로부터 얻을 수 있다: [화학식 2]
Figure imgf000011_0001
상기 화학식 2에서, R1, R2, R3, R4, R5, R6, R7, R8, Rs 10 R 11 R13은 각각 상기 화학식 1에서 정의한 바와 같다
여기서, 상기 화학식 2로 표시되는 전구체 화합물은 (a) 하기 화학식 3으로 표시되는 테트라하이드로퀴놀린 유도체를 알킬리튬과 반응시킨 후 이산화탄소를 첨가하여 화학식 4로 표시되는 화합물을 제조하는 단계; 및 (b)
Figure imgf000011_0002
화학식 4로 표시되는 화합물과 알킬리튬을 반응시킨 후: 하기 화학식 5로 표시되는 화합물을 첨가하고 산 처리하는 단계를 포함하는 방법으로 제조될 수 있다:
[화학식 3]
Figure imgf000011_0003
[화학식 4]
Figure imgf000012_0001
상기 화학식 3, 화학식 4 및 화학식 5에서, R1, R2, R3, R4, R5
R6, R7, R8, R9, R10, R11, R12 및 R13은 각각 상기 화학식 1에서 정의한 바와 같다.
다만, 상기 화학식 3, 화학식 4 및 화학식 5에서, 상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 (d- o)알킬일 수 있고, 바람직하게는 각각 독립적으로 수소 또는 메틸일 수 있다. 보다 바람직하게는, 상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 메틸일 수 있고, 다만 R3 및 R4 중 적어도 하나는 메틸이고, R5 는 메틸일 수 있다. 또한, 상기 R6, R7, R8, R9 R10, R11, R12 및 R13 은 각각 수소인 것이 바람직하다. 이를 통해 출발 물질의 접근성 및 반응성을 확보할 수 있고, 제조될 화학식 1의 전이금속 화합물의 전자적 및 입체적 환경을 제어하는데 유리하다. 상기 (a)단계는 상기 화학식 3으로 표시되는 테트라하이드로퀴놀린 유도체를 알킬리튬과 반응시킨 후 이산화탄소를 첨가하여 상기 화학식 4로 표시되는 화합물로 전환하는 반응으로, 이는 공지된 문헌에 기술된 방법에 따라 수행할 수 있다 (Tetrahedron Lett. 1985, 26, 5935; Tetrahedronl986,42,2571; J.Chem.SC.Perkin Trans. 1989,16.)·
또한, 상기 (b)단계에서 상기 화학식 4로 표시되는 화합물에 알킬리튬을 반웅시킴으로써 탈양성자 반웅을 유발하여 오르소 -리튬 화합물을 생성하며 이에 화학식 5로 표시되는 화합물을 반웅시키고 산을 처리함으로써 상기 화학식 2로 표시되는 전이금속 화합물 전구체를 얻을 수 있다.
상기 화학식 4로 표시되는 화합물에 알킬리튬을 반웅시켜 오르소 -리튬 화합물을 생성하는 반응은 공지된 문헌을 통해 파악할 수 있으며 (Organometallics 2007, 27,6685; 대한민국 공개특허 제 2008-0065868호), 본 발명에서는 이에 상기 화학식 5로 표시되는 화합물을 반웅시키고 산을 처리함으로써 상기 화학식 2로 표시되는 전이금속 화합물 전구체를 얻을 수 있다. 여기서, 상기 화학식 5로 표시되는 화합물은 공지된 다양한 방법을 통해 제조될 수 있다. 하기 반웅식 1은 그 중 한 예를 보여주는 것으로, 한 단계의 반웅만으로 제조할 수 있을 뿐만 아니라, 가격이 저렴한 출발물질이 사용되어 본 발명의 전이금속 화합물 전구체를 쉽고 경제적으로 제조할 수 있게 해준다 (J. Organomet. Chem., 2005, 690,4213). ¬반응식 1]
Figure imgf000013_0001
한편, 상기 방법을 통해 얻어진 상기 화학식 2로 표시되는 전구체 화합물로부터 상기 화학식 1로 표시되는 전이금속 화합물을 합성하기 위해서는 공지된 다양한 방법들을 이용할 수 있다. 본 발명의 일 실시예에 따르면, 상기 화학식 2로 표시되는 전구체 화합물에 약 2당량의 알킬리튬을 첨가하여 탈양성자 반웅을 유도함으로써, 사이클로펜타디에닐 음이온과 아마이드 음이온의 다이리튬 화합물을 제조한 후, 여기에 (Q'XQ^MC 를 투입하여 약 2당량의 LiCl를 제거하는 방법으로 제조할 수 있다. 또한, 본 발명의 다른 실시예에 따르면, 상기 화학식 2로 표시되는 화합물과 M(NMe2)4 화합물을 반응시켜 약 2 당량의 HNME2를 제거하여 Q1과 Q2가 동시에 NMe2인 화학식 1로 표시되는 전이금속 화합물을 얻고, 여기에 Me3SiCl 또는 Me2SiCl2를 반웅시켜 NMe2 리간드를 염소 리간드로 바꿀 수 있다. 한편, 본 발명의 제조방법에 사용되는 상기 촉매는 조촉매 화합물을 더욱 포함할 수 있다.
상기 조촉매 화합물은 전술한 화학식 1로 표시되는 전이금속 화합물을 활성화시키는 역할을 한다. 따라서, 본 발명에 따른 촉매의 활성을 저하시키지 않으면서도 상기 전이금속 화합물을 활성화시킬 수 있는 화합물이라면 그 구성에 제한 없이 사용될 수 있다.
다만, 본 발명의 일 구현예에 따르면, 상기 조촉매 화합물은 하기 화학식 6, 화학식 7 및 화학식 8로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하다:
[화학식 6]
-[Al(R6,)-0]a- 상기 화학식 6에서, 은 각각 독립적으로 할로겐 라디칼, (Cr
C20)하이드로카르빌 라디칼 또는 할로겐으로 치환된 (Cr C20)하이드로카르빌 라디칼이며;
a는 2 이상의 정수이다;
[화학식 7]
D(R71)3
상기 화학식 7에서,
D는 알루미늄 또는 보론이며;
R71은 각각 독립적으로 할로겐 라디칼,
C20)하이드로카르빌 라디칼 또는 할로겐으로 치환된
Figure imgf000015_0001
C20)하이드로카르빌 라디칼이고;
[화학식 8]
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]"
상기 화학식 8에서,
L은 중성 또는 양이온성 루이스 산이고;
Z는 13족 원소이고;
A 는 각각 독립적으로 1 이상의 수소 원자가 할로겐, (C C20)하이드로카르빌, (C Czo)알콕시 또는 (C6-C20)아릴옥시 라디칼로 치환된 (C6-C20)아릴 또는 (C^C^)알킬 라디칼이다.
여기서, 상기 화학식 6으로 표시되는 조촉매 화합물은 알킬알루미녹산이라면 그 구성이 특별히 제한되지 않으나, 바람직하게는 메틸알루미녹산 (Methylaluminoxane), 에틸알루미녹산 (Ethylaluminoxane),
부틸알루미녹산 (Butylaluminoxane),
핵실알루미녹산 (Hexylaluminoxane),
옥틸알루미녹산 (Octylaluminoxane),
데실알루미녹산 (Decylaluminoxane) 등일 수 있다.
또한, 상기 화학식 7로 표시되는 조촉매 화합물은 트리메틸알루미늄 (Trimethylaluminum),
트리에틸알루미늄 (Triethylaluminum), 트리부틸알루미늄 (Tributylaluminum),
트리핵실알루미늄 (Trihexylaluminum),
트리옥틸알루미늄 (Trioctylaluminum),
트리데실알루미늄 (Tridecylaluminum) 등의 트리알킬알루미늄; 디메틸알루미늄 메톡사이드 (Dimethylaluminum methoxide), 디에틸알루미늄 메록사이드 (Diethylaluminum methoxide), 디부틸알루미늄 메톡사이드 (Dibutylaluminum methoxide)와 같은 디알킬알루미늄 알콕사이드 (Dialkylaluminum alkoxide); 디메틸알루미늄 클로라이드 (Dimethylaluminum chloride), 디에틸알루미늄 클로라이드 (Diethylaluminum chloride), 디부틸알루미늄 클로라이드 (Dibutylaluminum chloride)와 같은 디알킬알루미늄 할라이드 (Dialkylaluminum alkoxide); 메틸알루미늄 디메록사이드 (Methylaluminum dimethoxide), 에틸알루미늄 디메톡사이드 (Ethylaluminum dimethoxide), 부틸알루미늄 디메록사이드 (Butylaluminum dimethoxide)와 같은 알킬알루미늄 디알콕사이드 (Alkylaluminum dialkoxide); 메틸알루미늄 디클로라이드 (Methylaluminum dichloride), 에틸알루미늄 디클로라이드 (Ethylaluminum dichloride), 부틸알루미늄 디클로라이드 (Butylaluminum dichloride)와 같은 알킬알루미늄 디할라이드 (Alkylaluminum dihalide); 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론과 같은 트리알킬보론; 트리스펜타플루오로페닐보론 등일 수 있다.
또한, 상기 화학식 8로 표시되는 조촉매 화합물은 트리메틸암모늄
테트라키스 (펜타플루오로페닐)보레이트 (Trimethylammonium tetrakis(pentafluorophenyl)borate), 트리에틸암모늄 테트라키스 (펜타플루오로페닐) 보레이트 (Triethylammonium tetrakis(pentafluorophenyl)borate), 트리프로필암모늄 테트라키스 (펜타플루오로페닐)보레이트 (Tripropylammonium tetrakis(pentafluorophenyl)borate), 트리 (n-부틸)암모늄 테트라키스 (펜타플루오로페닐)보레이트 (Ttri(n-butyl)ammonium tetrakis(pentafluorophenyl)borate), 트리 (sec-부틸) 암모늄 테트라키스 (펜타플루오로페닐)보레이트 (Tri(sec-butyl)ammonium tetrakis(pentafluorophenyl)borate), Ν,Ν-디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 (Ν,Ν-dimethylanilinium tetrakis(pentafluorophenyl)borate), Ν,Ν-디데틸아닐리늄 η- 부틸트리스 (펜타플루오로페닐)보레이트 (Ν,Ν-dimethylanilinium η- butyltris(pentafluorophenyl)borate), Ν,Ν-디메틸아닐리늄 벤질트리스 (펜타플루오로페닐)보레이트 (N,N-dimethylanilinium benzyltris(pentafluorophenyl)borate), .Ν,Ν-디메틸아닐리늄 테트라키스 (4-(t-부틸디메틸실릴) -2,3, 5,6- 테트라플루오로페닐)보레이트 (Ν,Ν-dimethylanilinium tetrakis(4-(t- butyldimethylsiiyl)-2,3,5 6-tetrafluorophenyl)borate), Ν,Ν- 디메틸아닐리늄 테트라키스 (4-(t-트리이소프로필실릴) -2,3, 5,6- 테트라플루오로페닐)보레이트 (Ν,Ν-dimethylanilinium tetrakis(4- (triisopropysilyl)-2,3,5,6-tetrafluorophenyl)borate), Ν,Ν- 디메틸아닐리늄
펜타플루오로페녹시트리스 (펜타플루오로페닐)보레이트 (N^- dimethylanilinium pentafluorophenoxytris(pentafluorphenyl)borate), Ν,Ν-디에틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 (Ν,Ν- diethylanilinium tetrakis(pentafluorphenyl)borate), Ν,Ν-디메 ¾ -2,4,6- 트리메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 (Ν,Ν- dimethyl-2,4,6-trimethylanilinium tetrakis(pentafluorophenyl)borate), Ν,Ν-디메틸암모늄 테트라키스 (2,3,5,6- 테트라플루오로페닐)보레이트 (trimethylammonium tetrakis (2,3,4,6- tetrafluorophenyl)borate), Ν,Ν-디에틸암모늄 테트라키스 (2, 3,4,6- 테트라플루오로페닐)보레이트 (triethylammonium tetrakis (2,3,4,6- tetrafluorophenyl)borate), 트리프로필암모늄 테트라키스 (2, 3,4,6- 테트라플루오로페닐)보레이트 (tripropylammonium tetrakis (2,3,4,6- tetrafluorophcnyl)borate), 트리 (n-부틸)암모늄 테트라키스 (2,3,4,6- 테트라플루오로페닐)보레이트 (tri(n-butyl)ammonium tetrakis (2,3,4,6-tetrafluorophenyl)borate), 디메틸 (t-부틸)암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 (dimethyl(t- butyl)ammonium tetrakis (2,3,4,6-tetrafluorophenyl)borate), Ν,Ν- 디메틸아닐리늄 테트라키스 (2,3,4,6- 테트라플루오로페닐 )보레이트 (Ν,Ν-dimethylanilinium tetrakis (2,3,4,6-tetrafluorophenyl)borate), Ν,Ν-디에틸아닐리늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 (Ν,Ν- diethylanilinium tetrakis (2,3,4,6-tetrafluorophenyl)borate), Ν,Ν- 디메틸 2,4, 6-트리메틸아닐리늄 테트라키스 (2,3, 4,6- 테트라플루오로페닐)보레이트 (N,N-dimethyl-2,4,6-trimethylanilinium tetrakis (2,3,4,6-tetrafluorophenyl)borate) 등일 수 있다.
또한, 상기 화학식 8로 표시되는 조촉매 화합물은 디 -(i- 프로필)암모늄 테트라키스 (펜타플루오로페닐)보레이트 (di-(i- propyl)ammonium tetrakis(pentafluorophenyl)borate), 디사이클로핵실암모늄
테트라키스 (펜타플루오로페닐)보레이트 (dicyclohexylammonium tetrakis(pentafluorophenyl)borate)와 같은 디알킬암모늄; 트리페닐포스포늄
테트라키스 (펜타플루오로페닐)보레이트 (Triphenylphosphonium tetrakis(pentafluorophenyl)borate), 트리 (0-를릴포스포늄 테트라키스 (펜타플루오로페닐)보레이트 (tri(o-tolylphosphonium tetrakis(pentafluorophenyl)borate), 트리 (2,6-디메틸페닐)포스포늄 테트라키스 (펜타플루오로페닐)보레이트 (Tri(2,6- dimethylphenyl)phosphonium tetrakis(pentafluorophenyl)borate)와 같은 트리알킬포스포늄; 디페닐옥소늄 테트라키스 (펜타플루오로페닐)보레이트 (diphenyloxonium
tetrakis(pentafluorophenyl)borate), 디 (o-를릴 )옥소늄 테트라키스 (펜타플루오로페닐)보레이트 (di(o-tolyl)oxonium
tetrakis(pentafluororphenyl)borate), 디 (2, 6-디메틸페닐 옥소늄 테트라키스 (펜타플루오로페닐)보레이트 (di(2,6-dimethylphenyl oxonium tetrakis (pentafluorophenyl)borate)와 같은 디알킬옥소늄; 디페닐술포늄
테트라키스 (펜타플루오로페닐 )보레이트 (diphenylsulfonium
tetrakis(pentafluorophenyl)borate), 디 (o-를릴)술포늄 테트라키스 (펜타플루오로페닐)보레이트 (di(o-tolyl)sulfonium
tetrakis(pentafluorophenyl)borate), 비스 (2, 6-디메틸페닐)술포늄 테트라키스 (펜타플루오로페닐)보레이트 (bis(2,6- dimethylphenyl)sulfonium tetrakis(pentafluorophenyl)borate)와 같은 디알킬술포늄; 및 트로필륨 테트라키스 (펜타플루오로페닐)보레이트 (tropylium
tetrakis(pentafluorophenyl)borate), 트리페닐메틸 카르베늄 테트라키스 (펜타플루오로페닐)보레이트 (triphenylmethylcarbenium tetrakis(pentafluorophenyl)borate),
벤젠 (디아조늄)테트라키스 (펜타플루오로페닐)보레이트
(benzene(diazonium) tetrakis(pentafluorophenyl)borate)와 같은 카르보늄염 등일 수 있다.
특히, 본 발명에 따르면, 상기 조촉매 화합물이 보다 우수한 활성화 효과를 나타낼 수 있도록 하기 위하여, 상기 화학식 6에서 R61은 메틸, 에틸, n-부틸 또는 이소부틸인 것이 바람직하고; 상기 화학식 7에서 D 는 알루미늄이고 R71은 메틸 또는 이소부틸이거나, 또는 D 는 보론이고 R71은 펜타플루오로페닐인 것이 바람직하며 ; 상기 화학식 8에서 [L- H] +는 디메틸아닐리늄 양이온이고, [Z(A)4]-는 [B(C6F5)4]-이고, [L] +는 [(C6H5)3C] +인 것이 바람직하다. 한편, 상기 조촉매 화합물의 첨가량은 상기 화학식 1로 표시되는 전이금속 화합물의 첨가량 및 상기 전이금속 화합물을 층분히 활성화시키는데 필요한 양 등올 고려하여 결정할 수 있다. 본 발명에 따르면, 상기 조촉매 화합물의 함량은, 상기 화학식 1로 표시되는 전이금속 화합물에 함유된 전이금속 1몰에 대하여, 조촉매 화합물에 함유된 금속의 몰비를 기준으로
1:1-100,000, 바람직하게는 1:1~10,000, 보다 바람직하게는 1:!〜 5, 000일수 있다.
보다 구체적으로, 상기 화학식 6으로 표시되는 조촉매 화합물은 상기 화학식 1로 표시되는 전이금속 화합물에 대하여 1:1-1:100,000, 바람직하게는 1:5 50,000, 보다 바람직하게는 1:10~20,000의 몰비로 포함될 수 있다.
또한, 상기 화학식 7로 표시되는 조촉매 화합물에서 D 가 보론인 경우에는, 상기 전이금속 화합물들에 대하여 1:1~100, 바람직하게는 1:1~10, 보다 바람직하게는 1:1~3의 몰비로 포함될 수 있다.
그리고, 상기 화학식 7로 표시되는 조촉매 화합물에서 D 가 알루미늄인 경우에는 증합 시스템 내의 물의 양에 따라 달라질 수 있으나, 상기 전이금속 화합물들에 대하여 1:1~1,000, 바람직하게는 1:1~500, 보다 바람직하게는 1:1~100의 몰비로 포함될 수 있다.
또한, 상기 화학식 8로 표시되는 조촉매 화합물은 상기 전이금속 화합물들에 대하여 1:1~100, 바람직하게는 1:1~10, 보다 바람직하게는 1:1~4의 몰비로 포함될 수 있다. 한편, 본 발명의 제조방법에 사용되는 상기 촉매는 상기 화학식 1로 표시되는 전이금속 화합물, 또는 상기 전이금속 화합물과 조촉매 화합물이 담체 상에 담지된 것일 수 있다.
여기서, 상기 담체로는 본 발명이 속하는 기술분야에서 촉매의 제조에 사용되는 무기 또는 유기 소재의 담체가 제한 없이 사용될 수 있다.
다만, 본 발명의 일 실시예에 따르면, 상기 담체는 Si02, A1203> MgO, MgCl2, CaCl2, Zr02, Ti02, B203, CaO, ZnO, BaO, Th02, Si02-Al203, Si02-MgO, Si02-Ti02, Si02-V205, Si02-Cr0203, Si02 - Ti02-MgO, 보오크사이트, 제올라이트, starch, cyclodextrine 또는 합성고분자일 수 있다.
바람직하게는, 상기 담체는 표면에 히드록시기를 포함하는 것으로서 , 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택되는 1종 이상의 담체일 수 있다.
상기와 같은 담체에 상기 전이금속 화합물 및 조촉매 화합물을 담지시키는 방법은 수분이 제거된 (dehydrated) 담체에 상기 전이금속 화합물을 직접 담지시키는 방법 ; 상기 담체를 상기 조촉매 화합물로 전처리한 후 전이금속 화합물을 담지시키는 방법; 상기 담체에 상기 전이금속 화합물을 담지시킨 후 조촉매 화합물로 후처리하는 방법; 상기 전이금속 화합물과 조촉매 화합물을 반웅시킨 후 담체를 첨가하여 반응시키는 방법 등이 사용될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기와 같은 담지 방법에 사용 가능한 용매로는 펜탄 (Pentane), 핵산 (Hexane), 헵탄 (Heptane), 옥탄 (Octane), 노난 (Nonane), 데칸 (Decane), 운데칸 (Undecane), 도데칸 (Dodecane) 등의 지방족 탄화수소계 용매; 벤젠 (Benzene), 모노클로로벤젠 (Monochlorobenzene), 디클로로벤젠 (Dichlorobenzene), 트리클로로벤젠 (Trichlorobenzene), 를루엔 (Toluene) 등의 방향족 탄화수소계 용매; 디클로로메탄 (Dichloromethane), 트리클로로메탄 (Trichloromethane), 디클로로에탄 (Dichloroethane), 트리클로로에탄 (Trichloroethane) 등의 할로겐화 지방족 탄화수소계 용매; 또는 이들의 흔합물을 예로 들 수 있다.
또한, 상기 전이금속 화합물과 조촉매 화합물을 담체 상에 담지시키는 공정은 -70 내지 200 °C, 바람직하게는 -50 내지 150 °C , 보다 바람직하게는 0 내지 100 °C의 온도 하에서 수행되는 것이 담지 공정의 효율면에서 유리하다. 한편, 본 발명에 따른 폴리프로필렌의 제조방법은, 전술한 촉매의 존재 하에, 프로필렌을 중합시키는 단계를 포함한다.
여기서, 상기 프로필렌은 본 발명이 속하는 기술분야에서 통상적인 것이 사용될 수 있으므로, 그 구성을 특별히 한정하지 않는다.
그리고, 상기 중합 단계는 슬러리상 (Slurry Phase), 액상 (Solution Phase), 기상 (Gas Phase) 또는 괴상 (Bulk Phase)에서 실시될 수 있다.
상기 중합 단계가 액상 또는 슬러리상에서 실시될 경우에는 용매 또는 올레핀계 단량체 자체를 매질로 사용할 수 있다.
또한, 상기 중합 단계에 사용 가능한 용매는 부탄 (Butane), 이소부탄 (Isobutane), 펜탄 (Pentane), 핵산 (Hexane), 헵탄 (Heptane), 옥탄 (Octane), 노난 (Nonane ), 데칸 (Decane), 운데칸 (Undecane), 도데칸 (Dodecane), 시클로펜탄 (Cyclopentane), 메틸시클로펜탄 (Methylcyclopentane), 시클로핵산 (Cyclohexane) 등의 지방족 탄화수소계 용매; 벤젠 (Benzene), 모노클로로벤젠 (Monochlorobenzene),
디클로로벤젠 (Dichlorobenzene), 트리클로로벤젠 (Trichlorobenzene), 를루엔 (Toluene), 자일렌 (Xylene), 클로로벤젠 (Chlorobenzene) 등의 방향족 탄화수소계 용매; 디클로로메탄 (Dichloromethane), 트리클로로메탄 (Trichloromethane), 클로로에탄 (Chloroethane), 디클로로에탄 (Dichloroethane), 트리클로로에탄 (Trichloroethane), 1,2-디클로로에탄 (1,2-Dichloroethane) 등의 할로겐화 지방족 탄화수소 용매; 또는 이들의 흔합물일 수 있다.
한편, 상기 중합 단계에서, 상기 촉매의 첨가량은 슬러리상, 액상, 기상 또는 괴상 공정에서 따라 단량체의 중합 반웅이 층분히 일어날 수 있는 범위 내에서 결정될 수 있으므로, 특별히 제한하지 않는다. 다만, 본 발명에 따르면, 상기 촉매의 첨가량은 단량체의 단위 부피 (L)당 상기 전이금속 화합물의 중심금속 (M)의 농도를 기준으로 H 8 mol/L 내지 1 mol/L, 바람직하게는 ΗΓ7 mol/L 내지 10'1 mol/L, 보다 바람직하게는 바람직하게는 ΗΓ7 mol/L 내지 ΗΓ2 mol/L일 수 있다.
또한, 상기 중합 단계는 배치식 (Batch Type), 반연속식 (Semi-continuous Type) 또는 연속식 (Continuous Type) 반응으로 수행할 수 있다.
한편, 상기 중합 단계의 온도 및 압력 조건은 적용하고자 하는 반웅의 종류 및 반웅기의 종류에 따라 중합 반웅의 효율을 고려하여 결정할 수 있으므로, 특별히 제한하지 않는다.
다만, 본 발명에 따르면, 상기 중합 단계는 -50 내지 500 °C, 바람직하게는 0 내지 400 °C, 보다 바람직하게는 0 내지 300 °C의 온도 하에서 수행할 수 있다. 또한, 본 발명에 따르면, 상기 중합 단계는 1 내지 3000 기압, 바람직하게는 1 내지 1000 기압, 보다 바람직하게는 1 내지 500 기압의 압력 하에서 수행할 수 있다.
한편, 본 발명에 따른 폴리프로필렌의 제조방법은 전술한 촉매를 사용함에 따라, 공중합체의 미세 구조를 쉽게 제어할 수 있어, 분자량이 크고 밀도가 낮은 폴리프로필렌을 제조할 수 있다.
즉, 상기 폴리프로필렌은 중량평균분자량 (Mw)이 20,000 내지 1,000,000, 바람직하게는 50,000 내지 900,000, 보다 바람직하게는 50,000 내지 800,000일 수 있다.
또한, 상기 폴리프로필렌은 밀도가 0.8 내지 0.9 g/ml, 바람직하게는 0.82 내지 0.9 g/ml, 보다 바람직.하게는 0.82 내지 0.89 g/ml일 수 있다.
또한, 상기 폴리프로필렌은 입체규칙도 (isotactisity, Pentad I.I, mmmm)가 5 내지 20 %, .바람직하게는 5 내지 18 %, 보다 바람직하게는 5 내지 15 %일 수 있다. 그리고, 상기 폴리프로필렌은 분자량 분포 (Mw/Mn)가 1 내지 10, 바람직하게는 1.5 내지 8, 보다 바람직하게는 2 내지 6일 수 있다.
한편, 본 발명에 따른 공중합체의 제조방법은 전술한 단계 이외에도, 상기 단계의 이전 또는 이후에 당업계에서 통상적으로 수행될 수 있는 단계를 더욱 포함하여 수행될 수 있으며, 상술한 단계들에 의해 본 발명의 제조방법이 한정되는 것은 아니다. 이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
하기 i ) 전구체 화합물의 합성 및 ii) 전이금속 화합물의 합성 과정은 하기 반웅식 2 및 반웅식 3에 따라, 질소 또는 아르곤 등의 비활성 분위기 하에서 진행되었고, 표준 쉴렌크 (Standard Schlenk) 기술과 글러브 박스 (Glove Box) 기술이 이용되었다.
하기 반웅식 2에서 각 화합물은 치환기의 종류를 달리하는 것으로서, 각 치환기의 종류는 해당 화합물의 하단에 표로 정리하였다 (예를 들면, 하기 화합물 D-2는 Ra 의 위치가 수소, Rb 및 ^의 위치가 메틸기로 치환된 화합물을 의미한다.)ᅳ
또한, 하기 반웅식 2에서, 화합물 C(C-1, C-2 및 C-3)는 공지된 방법을 참고하여 합성하였다 (J. Organomet. Chem., 2005, 690, 4213).
[반응식
Figure imgf000025_0002
Figure imgf000025_0003
Figure imgf000025_0001
화랍물 A
i ) 전구체 화합물의 합성
(실시예 i -1: 전구체 화합물 D-1의 합성 )
1,2,3,4-테트라히드로퀴놀린 (1.00 g, 7.51 mmol)과 디에틸에테르 (16 mL) 용액이 들어 있는 쉴렘크 플라스크를 -78 °C 저온조에 담궈 온도를 낮춘 후, 교반하에 n-뷰틸리튬 (3.0 mL, 7.5 mmol, 2.5 M 핵산 용액)을 질소 분위기 하에 천천히 주입하였다. -78°C에서 약 한 시간 교반한 후, 상온으로 천천히 온도를 올렸다. 연한 노란색의 고체가 침전되었고, 생성된 부탄가스는 버블러를 통해 제거하였다. 온도를 다시 -78°C로 낮춘 후 이산화탄소를 주입하였다. 이산화탄소를 주입하자마자 슬러리 상태의 용액이 투명한 균일한 용액이 되었다. -78°C에서 한 시간 교반한 후, -20°C로 온도를 천천히 올려주면서 여분의 이산화탄소를 버블러를 통해 제거하였다. 흰 색의 고체가 다시 침전되었다.
-20°C에서 테트라히드로퓨란 (0.60 g, 8.3 mmol)과 t- 뷰틸리튬 (4.9 mL, 8.3 mmol, 1.7 M 펜탄 용액)을 차례로 질소 분위기 하에서 주입하고 약 두 시간 동안 교반하였다. 이어서 ^손^ -z- } [ [y
«idd '3£'9l '6 ZZ '6Γ8乙
Figure imgf000026_0001
' 8·9Π ' /6U 'ZZ/IZI 'S8'I2l 'S8'6Z1 'θί'ΖΖΙ '09 Π '90 Z
'89·9 '(Ι9·스 ) 1씨 '(09·ΙΠ) ^9·ΙΠ : (9a9D)¾WM D
'UKW (εΗ 'H£ 'ΖΗ0·8 - Γ 'Ρ) 91 1 '(ΖΗ3 'ΗΖ 'ui) 05"ΐ - OL'l '(CHD 'Η£ 's) .8Ί '(¾D 'UZ 'jq) 'Z - ξ9'Ζ '(ΖΗ3 'ΗΖ
'j ) ξί'Ζ - 06 Ζ 'HI 'ΖΗ0"8 = f 'b) 86 PUB 60 '(HN 'HI 's)
08"£ PUB f8'e '(HI 'ΖΗΓ = Γ Ί ·"!) ZL9 '(HI '예 = f 'Ρ) £69 '(ΗΣ: OZ 's) 88 9 '(HI ' Z'L = f 'P "!) LVL pue ZV L δ : (9a9D)¾WM H,
-b [o^ 3 E Ι 1 [a
I t Ti [Y
Figure imgf000026_0002
ίο융 ίο ί 1 i°v 긍^ to Ho ^¾ k lb lo Ita 3f I l {fi ••b ^ lk>-§-¾ 융
-^i¾ 극^ fe 륭 Ϊ 그 ^ ^^륜 toiy ife t ^ lo ir ϊ¾ ts¾¾
Figure imgf000026_0003
·(% et^ 룡 륭튿 ^fe to §ω \p it ^ 름 (I:0S 'A/0 [la융 ᅳ ¾ tc a [o [ta [Y \o ¾ [ ^ir 륭 ^름 οτ to k
Figure imgf000026_0004
Figure imgf000026_0005
름 (Ί«ι 09) i»융^
'Μ Z)^ ^> S ^ 'i 긍 ^ Iv-b bi^ ^ m¾ 륭을
-b^{s ^ 륭을 ^뽕 ^ k l ^ ^곱 름 tro융 ' b^^^욷 s 륭응 [ 름 (Ί Π)튿 ί¾ί¾ΉΓ Γο-ir i i¾ Y llo긍^
••b^륭 ^ΐ ΐ 를 s긍 ^ 긍^ ι¾ί¾ ΐίΓ i W i¾ ki aoz;
4o½ [odouiui 8Γ9 90"I)1-D 튿 ¼ t¾ -fe ¾
l78SZ00/ll0ZaM/X3d e6S6Zl/llO^ OAV 9Z
OS'l '( ) 'HI '«0 Ζ.9Ί '(fHD 'He 's) 98 1 pu¾ '68·Ι '16 1 '( )
'HZ '« Οζ-Ζ - 06·Ζ '3IAIH3M 'ΗΖ '^) 06·Ζ - Ο Ζ '(ΗΚ 'HI 's)
98·ε PUB £ 'ί '(ΗΙ ' ) 0Ζ/9 - 089 '(Η3 'S) 889 '(HI ' i'L = Γ 'Ρ) .6'9 '(HI 'ΖΗΓ스 = f 'Ρ) LVL PUB '꼐 1· L 'Ζί'ί 9 : (9d93)¾醒 H,
" -b ί¾ [¾ [ ts
Figure imgf000027_0001
S3
02
Figure imgf000027_0002
륭 3U! u!nb으 ipXq 이 F t
Figure imgf000027_0003
Figure imgf000027_0004
^dd om '80· '6ΓΗ '90·Π 'ίβ'ΖΖ 'ZViZ '8S t7 51 ' 9t7 ' .Z.-911 'iO'OSl '£9 l '0Ζ/6Π 'ίΠΊΙ '89 EI '062£1 'S I
'80·ε '(9£'SH) 9ς·ςπ '(ε ιπ) 09·ΙΠ : (9a93)¾WM Π
uidd (^HD 'Η£ 'ΖΗ0·8 = f 'Ρ) \Ζ Ι '(ΖΗ3 'HZ '« OS'l
- ςπ '(eHD Ήε 's) ΐ6·ι 'Η Ήε 's jq) Ο '(εΗ0 Ήε 's) 9ΐ
Ή3 'jq) OS - Qfz '(zHD 'ηζ 'jq) 08 - οο·ε '(^WHD 'HI 'ZHO'8 = οτ r 'b J ) SO '(HM 'HI 's) £6'£ pu^ 00 '(HI 'ΖΗΓ ^ = f 'J■") /9 '(HI
'n = f 'p) e6'9 '(HI ' ri = f 'P) iZ'L 9 : (9a9 )¾匪 H,
- i¾ro ^등¾ l^^lo융
[o tt t? i¾ [to(-¾ ^본
Figure imgf000027_0005
^웅
^1:1 s l L TT [y to - W tr¾ ¾WN H,
·(% £S ^^)-b^{a? -¾ 를
-a 륜ᅳ fe ^손^ ^-o ^ i ¾움 ¼ι-ϊ b
Figure imgf000027_0006
륭^ 1 융^ 를 튿^^ F ti ι-3 튿¾ᅥ후 k-Pr
178£Ζ00/110ΖΗΜ/Χ3Λ C6S6Zl/llOZ OAV /ssonos/uMld Ss6/ Onn0zAV
Figure imgf000028_0001
:orS M
π) 8ιΖΓΙ Ζ92r£) ΟΗ 8ΤΠ οΓ£··
8S 0Γ96Γ97, 06/90Π((o£) 5£Π)7.£r- -
Figure imgf000029_0001
뷰틸리튬 (2.5 M 핵산 용액, 0.2 g, 0.71 mmol)을 천천히 주입하고 - 30°C온도에서 두 시간 반웅시켰다. 온도를 상온으로 올리면서 세 시간 더 교반하며 반웅시켰다. 다시 -30°C 온도로 낮춘 후, 메틸리튬 (1.6 M 디에틸에테르 용액, 0.33 g, 0.71 mmol)을 주입하고, 연이어 TiCM'DME (DME; 다이메톡시에탄, 0.10 g, 0.36 mmol)를 넣었다. 온도를 상온으로 올리면서 세 시간 교반한 후에 진공라인을 이용하여 용매를 제거하였다. 펜탄을 이용하여 화합물을 추출했다. 용매를 제거하여 갈색 분말의 화합물 0.085 g을 얻었다 (수율 60 %).
Ή NMR (C6D6) : δ 7.09 (d, J = 7.2Hz, IH), 6.91 (d, J = 7.2Hz,
IH), 6.81 (t, J = 7.2Hz, IH), 6.74 (s, 2H), 4.55 (dt, J = 14, 5.2Hz, IH, NCH2), 4.38 (dt, J = 14, 5.2Hz, IH, NCH2), 2.50 - 2.30 (m, 2H, CH2), 2.20 (s, 3H), 1.68 (s, 3H), 1.68 (quintet, J = 5.2Hz, CH2), 0.72 (s, 3H, TiMe), 0.38 (s, 3H, TiMe) ppm.
13C{'H} NMR (C6D6): 161.46, 142.43, 140.10, 133.03, 130.41,
129.78, 127.57, 127.34, 121.37, 120.54, 120.51, 120.34, 112.52, 58.50, 53.73, 49.11, 27.59, 23.27, 13.19, 13.14 ppm.
(실시예 ii-2: 전이금속 화합물 E-2의 합성)
상기 화합물 D-1 대신 화합물 D-2를 사용한 것을 제외하고 상기 실시예 Π-1과 동일한 조건 및 방법으로 전이금속 화합물 E-
2를 합성하였다 (수율 53 %).
Ή NMR (C6D6):6 7.10 (d, J = 7.2Hz, IH), 6.91 (d, J = 7.2Hz,
IH), 6.81 (t, J = 7.2Hz, IH), 4.58 (dt, J = 14, 5.2Hz, IH, NCH2), 4.42 (dt, J = 14, 5.2Hz, IH, NCH2), 2.50 - 2.38 (m, 2H, CH2), 2.32 (s, 3H),
2.11 (s, 3H), 2.00 (s, 3H), 1.71 (s, 3H), 1.67 (quintet, J = 5.2Hz, CH2),
0.72 (s, 3H, TiMe), 0.38 (s, 3H, TiMe) ppm.
13C{'H} NMR (C6D6): 161.58, 141.36, 138.41, 137.20, 132.96,
129.70, 127.53, 127.39, 126.87, 121.48, 120.37, 120.30, 113.23, 56.50, 53.13, 49.03, 27.64, 23.34, 14.21, 13.40, 12.99, 12.94 ppm. Anal. Calc.
Figure imgf000031_0001
o
sss//uonosMld/ £6s6noz OAV
Figure imgf000032_0001
L 6寸 0SLΗε 0 L5H£ Ζ) 80ΓΊ. fΓΙΙ 3- =. -
/ssonosM/uld S/ Os6n0zAV
Figure imgf000033_0001
1H pΐ)ONt)))T:T H SHI M ίε§ s - εί5)ίέΊ 81() 8Γι968ΙIε ί-··.· i (£39 Η1 f ΓΙ HOd Π · 1JC{'H} NMR (C6D6): 162.78, 147.91, 142.45, 142.03, 136.91, 131.12, 130.70, 130.10, 128.90, 127.17, 123.39, 121.33, 119.87, 54.18, 26.48, 21.74, 17.28, 14.46, 14.28, 13.80, 13.27 ppm. iii) 폴리프로필렌의 제조
하기 모든 중합반응은 외부 공기와 완전히 차단된 고압 반응기 (Autoclave) 내에서 필요량의 용매, 조촉매 화합물, 중합하고자 하는 단량체 등을 주입한 후에 전이금속 화합물을 넣고 진행하였다.
중합 후 생성된 중합체의 분자량과 분자량 분포는
GPC(Gel Permeation Chromatography, 장치명: PL-GPC220, 제조사: Agilent) 분석법으로 측정하였으며, 녹는점은 DSC(Differential Scanning Calorimetry, 장치명: Q200, 제조사: TA Instruments) 분석법으로 측정하였다.
또한, 폴리프로필렌와 입체규칙도 (아이소탁티씨티, isotactisity, Pentad I.I, mmmm)는 제조된 폴리프로필렌을 트리클로로벤젠 (Trichlorobenzen)과 벤젠 -d6(Benzene-d6, C6D6)에 녹인 후 100 °C에서 13C NMR (장치명: Avance 400 Spectrometer, 제조사: Bruker)로 분석하였다.
그리고, 측정된 각 물성은 하기 표 1에 나타내었다.
(실시예 iii-1)
상온에서 고압 반응기 (내부 용량: 2L, 스테인레스 스틸)의 내부를 질소로 치환하였다. 상기 반웅기에 메틸알루미녹산 를루엔 용액 약 4.0 ml (를루엔 중 메틸알루미녹산 10 중량0 /0 용액, A1 기준 6 mmol, 제조사: Albemarle)를 가한 후, 프로필렌 500 g을 가하였고, 70 °C로 승은시켰다. 이어서, 상기 반웅기에 실시예 ii- 6에 따른 전이금속 화합물 E-6을 를루엔에 녹인 용액 (1.5 ml, 3.0 μιηοΙ οΓΠ)을 주입하고, 1 시간 동안 중합을 실시하였다.
상기와 같이 중합반응을 진행한 후 온도를 상온으로 낮춘 다음, 여분의 프로필렌을 제거하고, 중합체를 회수하였다. 얻어진 중합체를 진공 오븐 내에서 80 °C로 가열하면서 4 시간 이상 건조시켜 폴리프로필렌 (137.9 g)를 얻었다.
(실시예 iii-2)
상온에서 고압 반웅기 (내부 용량: 2L, 스테인레스 스틸)의 내부를 질소로 치환하였다. 상기 반웅기에 n-핵산 900 ml 를 채우고, 메틸알루미녹산 를루엔 용액 약 13.3 ml (틀루엔 중 메틸알루미녹산 10 중량0 /。 용액, A1 기준 20 mmol, 제조사: Albemarle)를 가한 후, 프로필렌 100 g 을 가하였고, 70 °C로 승온시켰다. 이어서, 상기 반웅기에 실시예 ii-6에 따른 전이금속 화합물 E-6을 를루엔에 녹인 용액 (5 ml, 10.0 μιηοΐ of Ti)을 주입하고, 1 시간 동안 중합을 실시하였다.
상기와 같이 중합반웅을 진행한 후 온도를 상온으로 낮춘 다음, 여분의 프로필렌을 제거하고, 중합체를 회수하였다. 얻어진 중합체를 진공 오본 내에서 80 °C로 가열하면서 4 시간 이상 건조시켜 폴리프로필렌 (55.5 g)를 얻었다.
(실시예 iii-3)
중합 온도 180 °C에서 15 분 동안 중합 반응을 실시한 것을 제외하고, 실시예 iii-2와 동일한 조건 및 방법으로 폴리프로필렌 (35.6 g)을 얻었다.
(비교예 ίΠ-1)
촉매로 실시예 ii-6에 따른 전이금속 화합물 E-6 대신 비스인데닐지르코늄디클로라이드 (bisindenylzirconium dichloride, Ind2ZrCl2, 제조사: Strem)를 사용한 것을 제외하고, 실시예 iii-1과 동일한 조건 및 방법으로 폴리프로필렌 (40 g)을 얻었다.
(비교예 iii-2)
촉매로 실시예 ii-6에 따른 전이금속 화합물 E-6 대신 라세믹 비스인데닐지르코늄디클로라이드 (racemic ethylenebisindenylzirconium dichloride, 제조사: Strem)를 사용한 것을 제외하고, 실시예 iii-1과 동일한 조건 및 방법으로 폴리프로필렌 (80 g)을 얻었다. [표 i]
Figure imgf000036_0001
(단, 상기 표 1에서 상기 N.O.는 중합체 물성의 특 시편의 제작이 불가능하여 축정할 수 없음을 의미함) 상기 표 1을 통해 알 수 있는 바와 같이, 비교예 iii-1 및 비교예 iii-2과 같이 이전의 전이금속 화합물을 사용한 경우에 비하여, 실시예 iii-1 내지 실시예 Hi-3은 본 발명에 따른 촉매를 사용하여 프로필렌을 단독 중합함에 따라 녹는점이 없고 높은 분자량을 갖는 아택틱 폴리프로필렌을 제조할 수 있음을 확인하였다.

Claims

【특허청구범위 】 【청구항 1】 하기 화학식 1로 표시되는 전이금속 화합물을 포함하는 촉매의 존재 하에, 프로필렌을 중합시키는 단계를 포함하는 폴리프로필렌의 제조방법:
[ 1]
Figure imgf000037_0001
상기 화학식 1에서,
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 할로겐, (C o)알킬, (C2-
C20)알케닐, (C2-C20)알키닐, (C6-C20)아릴, (d- o)알킬 (C6-C20)아릴, (C6-C20)아릴 (d-C )알킬, ( 20)알킬아미도, (C6-C20)아릴아미도 또는 (CH^o)알킬리덴이고;
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 오- 0)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (CH^o)알킬 (C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴 (d-^o)알킬; 또는 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C,-C20) 실릴이고; 상기 R1과 R2는 서로 연결되어 고리를 형성할 수 있으며, 상기 R3와 R4는 서로 연결되어 고리를 형성할 수 있고, 상기 R5 내지 R10 중에서 2 이상이 서로 연결되어 고리를 형성할 수 있으며;
R11, R12 및 R13은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (d-Cso)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (d- C20)알킬 (C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴 (CH^o)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (d-Czo)실릴; (C,- C20)알콕시; 또는 (C6-C20)아릴옥시이며; 상기 R1'과 R12 또는 R12와 R13은 서로 연결되어 고리를 형성할 수 있다.
【청구항 2】
제 1 항에 있어서,
상기 M은 티타늄 (Ti), 지르코늄 (Zr) 또는 하프늄 (Hf)이고; 상기 Q1 및 Q2 는 각각 독립적으로 메틸 또는 염소이며; 상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 메틸이고;
상기 R6, R7, R8, R9, R10, R11, R12 및 R13 은 각각 수소인 폴리프로필렌의 제조방법 .
【청구항 3】
제 2 항에 있어서,
상기 R3 및 R4 중 적어도 하나는 메틸이고, 상기 R5 는 메틸인 폴리프로필렌의 제조방법 .
【청구항 4】
제 1 항에 있어서,
상기 촉매는 하기 화학식 6, 화학식 7 및 화학식 8로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 조촉매 화합물을 더 포함하는 폴리프로필렌의 제조방법 : [화학식 6]
-[Al(R61)-0]a- 상기 화학식 6에서,
R61은 각각 독립적으로 할로겐 라디칼,
C20)하이드로카르빌 라디칼 또는 할로겐으로 치환된
Figure imgf000039_0001
C20)하이드로카르빌 라디칼이며;
a는 2 이상의 정수이다;
[화학식 7]
D(R71)3
상기 화학식 7에서,
D는 알루미늄 또는 보론이며;
R71은 각각 독립적으로 할로겐 라디칼,
C20)하이드로카르빌 라디칼 또는 할로겐으로 치환된
Figure imgf000039_0002
C20)하이드로카르빌 라디칼이고;
[화학식 8]
[L-H] + [Z(A)4]- 또는 [L] + [Z(A)4]
상기 화학식 8에서,
L은 중성 또는 양이온성 루이入 산이며;
Z는 13족 원소이고;
A 는 각각 독립적으로 1 이상의 수소 원자가 할로겐, (d- C20)하이드로카르빌, ( - 20)알콕시 또는 (C6-C20)아릴옥사 라디칼로 치환된 (C6-C20)아릴 또는 (d-C^)알킬 라디칼이다.
【청구항 5】
제 4 항에 있어서,
상기 화학식 6의 R61은 메틸, 에틸, n-부틸 또는 이소부틸이고;
상기 화학식 7의 D 는 알루미늄이고 R71은 메틸 또는 이소부틸이고, 또는 D는 보론이고 R71은 펜타플루오로페닐이며; 상기 화학식 8에서 [L-H] +는 디메틸아닐리늄 양이온이고; [Z(A)4]-는 [B(C6F5)4]-이고; [L] +는 [(C6H5)3C]+인 폴리프로필렌의 제조방법.
【청구항 6】
제 4 항에 있어서,
상기 조촉매 화합물의 함량은 상기 화학식 1로 표시되는 전이금속 화합물에 함유된 전이금속 1몰에 대하여 조촉매 화합물에 함유된 금속의 몰비를 기준으로 1:1~100,000인 폴리프로필렌의 제조방법 .
【청구항 7】
제 1 항에 있어서,
상기 촉매는 화학식 1로 표시되는 전이금속 화합물이 Si02, Al203i MgO, MgCl2, CaCl2, Zr02, Ti02, B203, CaO, ZnO, BaO, Th02, Si02-Al203, Si02-MgO, Si02-Ti02, Si02-V205, Si02-Cr0203, Si02- Ti02-MgO, 보오크사이트, 제올라이트, starch 및 cyclodextrine으로 이루어진 군에서 선택되는 1종 이상의 담체에 담지된 것인 폴리프로필렌의 제조방법 .
【청구항 8】
제 1 항에 있어서,
상기 중합 단계는 -50 내지 500 °C의 온도 및 1 내지 3000 기압의 압력 하에서 수행되는 폴리프로필렌의 제조방법.
【청구항 9】
제 1 항에 있어서,
상기 폴리프로필렌은 중량평균분자량이 20,000 내지 1,000, 000이고; 밀도가 0.8 내지 0.9 g/ml 인 폴리프로필렌의 제조방법.
【청구항 10】
제 1 항에 있어서,
상기 폴리프로필렌은 입체규칙도 (isotactisity, Pentad I.I, mmmm)가 5 내지 20 %인 폴리프로필렌의 제조방법 .
PCT/KR2011/002584 2010-04-12 2011-04-12 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법 WO2011129593A2 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020110033625A KR101384450B1 (ko) 2010-04-12 2011-04-12 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 올레핀-디엔 공중합체의 제조방법
EP11769059.4A EP2559713B1 (en) 2010-04-12 2011-04-12 Method for preparing polypropylene using a transition metal compound containing thiophene-fused cyclopentadienyl ligands
KR1020110033626A KR101384412B1 (ko) 2010-04-12 2011-04-12 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법
ES11769059.4T ES2596718T3 (es) 2010-04-12 2011-04-12 Procedimiento de preparación de polipropileno usando un compuesto de metal de transición que contiene ligandos de ciclopentadienilo condensados con tiofeno
CN201180018695.0A CN102834422B (zh) 2010-04-12 2011-04-12 使用包含噻吩稠合的环戊二烯基配体的过渡金属化合物制备聚丙烯的方法
PCT/KR2011/002584 WO2011129593A2 (ko) 2010-04-12 2011-04-12 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법
US13/640,872 US8889804B2 (en) 2010-04-12 2011-04-12 Method for preparing polypropylene using transition metal compound containing thiophene-fused cyclopentadienyl ligand
JP2013504820A JP5546678B2 (ja) 2010-04-12 2011-04-12 チオフェン−縮合環シクロペンタジエニルリガンドを含む遷移金属化合物を使用したポリプロピレンの製造方法
KR1020130128127A KR20130135802A (ko) 2010-04-12 2013-10-25 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법
KR1020130128150A KR20130124273A (ko) 2010-04-12 2013-10-25 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 올레핀-디엔 공중합체의 제조방법

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2010-0033273 2010-04-12
KR20100033273 2010-04-12
KR1020100057102A KR100986301B1 (ko) 2010-04-12 2010-06-16 테트라하이드로퀴놀린 유도체로부터 유래한 티오펜-축합고리 싸이클로펜타디에닐 4족 금속 화합물 및 이를 이용한 올레핀 중합
KR10-2010-0057102 2010-06-16
PCT/KR2011/002584 WO2011129593A2 (ko) 2010-04-12 2011-04-12 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법

Publications (2)

Publication Number Publication Date
WO2011129593A2 true WO2011129593A2 (ko) 2011-10-20
WO2011129593A3 WO2011129593A3 (ko) 2012-03-29

Family

ID=55442557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002584 WO2011129593A2 (ko) 2010-04-12 2011-04-12 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법

Country Status (7)

Country Link
US (1) US8889804B2 (ko)
EP (1) EP2559713B1 (ko)
JP (1) JP5546678B2 (ko)
KR (4) KR101384412B1 (ko)
CN (1) CN102834422B (ko)
ES (1) ES2596718T3 (ko)
WO (1) WO2011129593A2 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129590A2 (ko) 2010-04-12 2011-10-20 호남석유화학 주식회사 올레핀 중합용 촉매 조성물 및 이를 사용한 폴리올레핀의 제조방법
EP2559714B1 (en) 2010-04-12 2016-08-10 Lotte Chemical Corporation Method for preparing olefin-diene copolymer using transition metal compound including thiophene-condensed ring cyclopentadienyl ligand
US9062025B2 (en) * 2010-04-12 2015-06-23 Lotte Chemical Corporation Supported catalyst for olefin polymerization and preparation method for polyolefin using the same
US9376519B2 (en) 2013-09-26 2016-06-28 Lg Chem, Ltd. Transition metal compound, catalytic composition including the same, and method for preparing polymer using the same
EP2873671B1 (en) 2013-09-26 2018-07-04 LG Chem, Ltd. Transition metal compound, catalyst composition containing same, and method for preparing polymer by using same
KR101603016B1 (ko) 2013-09-26 2016-03-11 주식회사 엘지화학 촉매 조성물 및 이를 포함하는 중합체의 제조방법
KR101689063B1 (ko) 2013-10-16 2016-12-22 주식회사 엘지화학 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
KR101501853B1 (ko) * 2013-11-29 2015-03-12 롯데케미칼 주식회사 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 에틸렌-프로필렌-디엔 삼원중합체의 제조방법
KR101616200B1 (ko) * 2014-10-27 2016-04-27 롯데케미칼 주식회사 저온 내충격성이 우수한 폴리프로필렌 수지 조성물 및 수지 성형품
KR101617099B1 (ko) * 2014-11-05 2016-04-29 롯데케미칼 주식회사 3차원 프린터 필라멘트용 열가소성 수지 조성물
KR101719064B1 (ko) 2014-11-13 2017-03-22 주식회사 엘지화학 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR101686712B1 (ko) * 2014-11-28 2016-12-28 롯데케미칼 주식회사 에틸렌-프로필렌-비닐 노보넨 공중합체의 제조방법 및 이로부터 제조된 에틸렌-프로필렌-비닐 노보넨 공중합체
KR101731177B1 (ko) 2014-12-24 2017-04-27 주식회사 엘지화학 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
KR101910701B1 (ko) * 2015-07-02 2018-10-22 주식회사 엘지화학 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR101917911B1 (ko) 2015-07-02 2018-11-12 주식회사 엘지화학 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR101984820B1 (ko) * 2016-09-27 2019-05-31 롯데케미칼 주식회사 연질성과 투명성이 우수한 의료용 필름
KR20200056800A (ko) * 2018-11-15 2020-05-25 롯데케미칼 주식회사 프로필렌 중합용 담지촉매 및 이를 이용하는 폴리프로필렌 수지의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080065868A (ko) 2007-01-10 2008-07-15 주식회사 엘지화학 전이금속 화합물의 제조 방법, 상기 방법으로 제조된전이금속 화합물 및 상기 전이금속 화합물을 포함하는 촉매조성물

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2194708C2 (ru) 1996-11-15 2002-12-20 Монтелл Текнолоджи Компани Б.В. Металлоцен, лиганд, каталитическая система, способ полимеризации
US6451938B1 (en) 1997-02-25 2002-09-17 Exxon Mobil Chemical Patents Inc. Polymerization catalyst system comprising heterocyclic fused cyclopentadienide ligands
KR100323116B1 (ko) 1997-07-18 2002-11-04 미쓰이 가가쿠 가부시키가이샤 불포화엘라스토머조성물및그의가황고무
KR100354290B1 (ko) 1999-06-22 2002-09-28 주식회사 엘지화학 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합
US6444833B1 (en) 1999-12-15 2002-09-03 Basell Technology Company Bv Metallocene compounds, process for their preparation and their use in catalytic systems for the polymerization of olefins
AU2002344949B2 (en) 2001-06-29 2007-05-24 H. Lundbeck A/S Novel heteroaryl derivatives, their preparation and use
DE10145453A1 (de) * 2001-09-14 2003-06-05 Basell Polyolefine Gmbh Monocyclopentadienylkomplexe mit einem kondensierten Heterocyclus
DE60329691D1 (de) 2002-09-06 2009-11-26 Basell Polyolefine Gmbh Verfahren zur copolymerisation von ethylen
JP4528526B2 (ja) 2003-03-03 2010-08-18 ダウ グローバル テクノロジーズ インコーポレイティド 多環状縮合複素環化合物、金属錯体及び重合方法
EP1788002A4 (en) 2004-08-27 2009-08-19 Mitsui Chemicals Inc OLEFINIC POLYMERIZATION CATALYSTS, PROCESS FOR PRODUCING OLEFIN POLYMERS, OLEFIN COPOLYMERS, NEW TRANSITION METAL COMPOUNDS, AND PROCESSES FOR PRODUCING TRANSITION METAL COMPOUNDS
EP1739103A1 (en) 2005-06-30 2007-01-03 Borealis Technology Oy Catalyst
KR100789242B1 (ko) 2005-07-08 2008-01-02 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR100789241B1 (ko) 2005-07-08 2008-01-02 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR100843603B1 (ko) 2005-12-31 2008-07-03 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR100820542B1 (ko) * 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR100968704B1 (ko) 2006-12-01 2010-07-06 주식회사 엘지화학 페닐렌 브릿지를 가지는 전이 금속 촉매 화합물을 이용한올레핀 중합용 담지촉매, 이의 제조방법, 상기 올레핀중합용 담지촉매를 이용한 올레핀계 중합체의 제조방법, 및이에 의해 제조된 올레핀계 중합체
KR101011497B1 (ko) 2007-01-29 2011-01-31 주식회사 엘지화학 초저밀도 폴리올레핀 공중합체의 제조 방법
JP2008222635A (ja) * 2007-03-13 2008-09-25 Osaka Prefecture Univ 金属錯体化合物、色素および有機電界発光素子
KR101066969B1 (ko) * 2007-05-18 2011-09-22 주식회사 엘지화학 공중합성이 뛰어난 전이금속 촉매를 이용한 올레핀중합체의 제조 방법
KR100906165B1 (ko) 2008-02-12 2009-07-06 주식회사 코오롱 환상올레핀계 고분자 화합물 및 그 제조 방법
KR101130241B1 (ko) 2008-09-19 2012-03-26 김재수 포장박스 자동 공급 장치 및 방법
KR101479591B1 (ko) 2008-11-21 2015-01-08 삼성전자주식회사 이동통신 시스템의 셀 탐색 방법 및 장치
KR100986301B1 (ko) 2010-04-12 2010-10-07 아주대학교산학협력단 테트라하이드로퀴놀린 유도체로부터 유래한 티오펜-축합고리 싸이클로펜타디에닐 4족 금속 화합물 및 이를 이용한 올레핀 중합
US9062025B2 (en) 2010-04-12 2015-06-23 Lotte Chemical Corporation Supported catalyst for olefin polymerization and preparation method for polyolefin using the same
WO2011129590A2 (ko) 2010-04-12 2011-10-20 호남석유화학 주식회사 올레핀 중합용 촉매 조성물 및 이를 사용한 폴리올레핀의 제조방법
EP2559714B1 (en) 2010-04-12 2016-08-10 Lotte Chemical Corporation Method for preparing olefin-diene copolymer using transition metal compound including thiophene-condensed ring cyclopentadienyl ligand

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080065868A (ko) 2007-01-10 2008-07-15 주식회사 엘지화학 전이금속 화합물의 제조 방법, 상기 방법으로 제조된전이금속 화합물 및 상기 전이금속 화합물을 포함하는 촉매조성물

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
J CHEM. SC. PERKIN TRANS., 1989, pages 16
J ORGANOMET. CHEM., vol. 690, 2005, pages 4213
ORGANOMETALLICS, vol. 27, 2007, pages 6685
See also references of EP2559713A2
TETRAHEDRON LETT., vol. 26, 1985, pages 5935
TETRAHEDRON, vol. 42, 1986, pages 2571

Also Published As

Publication number Publication date
EP2559713A4 (en) 2014-01-08
US8889804B2 (en) 2014-11-18
KR101384450B1 (ko) 2014-04-25
JP5546678B2 (ja) 2014-07-09
US20130211021A1 (en) 2013-08-15
CN102834422B (zh) 2015-03-18
KR20130124273A (ko) 2013-11-13
KR101384412B1 (ko) 2014-04-25
EP2559713B1 (en) 2016-08-10
EP2559713A2 (en) 2013-02-20
CN102834422A (zh) 2012-12-19
KR20110114475A (ko) 2011-10-19
KR20110114476A (ko) 2011-10-19
ES2596718T3 (es) 2017-01-11
WO2011129593A3 (ko) 2012-03-29
KR20130135802A (ko) 2013-12-11
JP2013523990A (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
WO2011129593A2 (ko) 티오펜-축합고리 사이클로펜타디에닐 리간드를 포함하는 전이금속 화합물을 사용한 폴리프로필렌의 제조방법
JP5567208B2 (ja) オレフィン重合用触媒組成物およびこれを用いたポリオレフィンの製造方法
JP5567209B2 (ja) オレフィン重合用担持触媒およびこれを用いたポリオレフィンの製造方法
CN102844338B (zh) 用于烯烃聚合的催化剂组合物以及利用该催化剂组合物的聚烯烃的制备方法
JP2017530247A (ja) 混成担持触媒およびこれを用いるオレフィン系重合体の製造方法
JP6440832B2 (ja) メタロセン化合物、メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
JP2015524430A (ja) 新規なメタロセン化合物、これを含む触媒組成物及びこれを用いたオレフィン系重合体の製造方法
KR101617871B1 (ko) 이핵 메탈로센 화합물, 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
KR101785705B1 (ko) 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
KR20190061652A (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 우수한 가공성의 폴리올레핀 제조방법
KR20180064114A (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리프로필렌의 제조 방법
KR100328870B1 (ko) 에틸렌/스티렌 공중합용 메탈로센 촉매 및 그의 제조방법
KR20190041296A (ko) 폴리올레핀 촉매 및 이를 이용한 폴리올레핀 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018695.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11769059

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013504820

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011769059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011769059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13640872

Country of ref document: US