WO2011125449A1 - 窒素化合物半導体発光素子およびその製造方法 - Google Patents

窒素化合物半導体発光素子およびその製造方法 Download PDF

Info

Publication number
WO2011125449A1
WO2011125449A1 PCT/JP2011/056388 JP2011056388W WO2011125449A1 WO 2011125449 A1 WO2011125449 A1 WO 2011125449A1 JP 2011056388 W JP2011056388 W JP 2011056388W WO 2011125449 A1 WO2011125449 A1 WO 2011125449A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
light emitting
compound semiconductor
nitrogen compound
Prior art date
Application number
PCT/JP2011/056388
Other languages
English (en)
French (fr)
Inventor
月原 政志
宏治 川▼崎▲
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to EP11765351.9A priority Critical patent/EP2568512A4/en
Priority to US13/639,971 priority patent/US20130037820A1/en
Priority to KR1020127021947A priority patent/KR101399250B1/ko
Priority to CN201180013599.7A priority patent/CN102792470B/zh
Publication of WO2011125449A1 publication Critical patent/WO2011125449A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier

Definitions

  • the present invention relates to a nitrogen compound semiconductor light emitting device that emits ultraviolet light having an emission peak wavelength of 400 nm or less and a method for manufacturing the same.
  • a buffer layer 82 made of GaN is formed on a substrate 80, an n-type contact layer 84 having a large layer thickness is formed on the buffer layer 82, and an n-type cladding layer is formed on the n-type contact layer 84.
  • 86, and an active layer 88 made of AlGaInN is formed on the n-type cladding layer 86.
  • a p-type contact layer 92a having a large layer thickness is formed on the active layer 88 with a p-type cladding layer 90 interposed therebetween.
  • a p-type contact layer 92b having a small layer thickness is formed.
  • n-electrode 94 a part of the surface of the n-type contact layer 84 is exposed to provide an n-electrode 94, and a p-electrode 96 is formed on the surface of the p-type contact layer 92b.
  • Reference numeral 98 denotes a pad electrode.
  • this type of nitrogen compound semiconductor light-emitting device is manufactured by growing an active layer and another nitrogen compound semiconductor layer by metal organic vapor phase epitaxy. 6, an n-type AlGaN layer constituting the n-type cladding layer 86 is grown, and an AlGaInN layer constituting the quantum well structure of the active layer 88 is directly grown thereon.
  • the growth of the n-type AlGaN layer needs to be performed under a high temperature condition where the substrate temperature is 1000 ° C. or higher, for example, 1100 to 1200 ° C., while the AlGaInN layer constituting the active layer This growth needs to be performed under a low temperature condition where the substrate temperature is less than 1000 ° C. such as 750 to 900 ° C., for example.
  • the uppermost surface layer of the n-type layer In the manufacture of a light-emitting device that emits light having an emission peak wavelength exceeding 400 nm, even if the uppermost surface layer of the lower n-type layer in contact with the active layer is an AlGaN layer, the uppermost surface layer of the n-type layer It is possible to obtain a light emitting device having a light emission intensity characteristic equivalent to the case where is a GaN layer. However, in the manufacture of a light emitting device that emits ultraviolet light having an emission peak wavelength of 400 nm or less, when the uppermost surface layer of the lower n-type layer in contact with the active layer is an AlGaN layer, the crystal quality is equivalent. It was also found that the light emission intensity was extremely low.
  • a nitrogen compound semiconductor light emitting device that emits ultraviolet light having an emission peak wavelength of 400 nm or less, as a material of a constituent layer other than the active layer, there is no absorption of light emitted from the active layer.
  • the uppermost surface layer of the lower n-type layer that is in contact with the active layer is an AlGaN layer, the resulting light-emitting device has a small emission intensity. Become.
  • the present invention has been made based on the above circumstances, and has an n-type layer made of AlGaN, an active layer made of AlGaInN, and a p-type layer, and has an ultraviolet peak wavelength of 400 nm or less.
  • An object of the present invention is to provide a nitrogen compound semiconductor light emitting element that emits light and has high emission intensity.
  • Another object of the present invention is to provide a nitrogen compound semiconductor light emitting device having an n-type layer made of AlGaN, an active layer made of AlGaInN, and a p type layer, and capable of producing a nitrogen compound semiconductor light emitting device having high emission intensity. It is in providing the manufacturing method of.
  • the nitrogen compound semiconductor light emitting device of the present invention is a nitrogen compound semiconductor light emitting device having an n-type layer, an active layer, and a p-type layer.
  • the active layer Al x Ga y In 1- xy N and barrier layers made of (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1, x + y ⁇ 1), Al x Ga y In 1-xy N (0 ⁇ x
  • a nitrogen compound semiconductor layer having an emission peak wavelength of 400 nm or less, comprising a well layer made of ⁇ 1, 0 ⁇ y ⁇ 1, x + y ⁇ 1)
  • the n-type layer includes an n-type AlGaN layer made of n-Al x Ga 1-x N (0 ⁇ x ⁇ 1), and a thickness of 5 nm or more not including Al formed on the n-type AlGaN layer.
  • a protective layer made of GaN.
  • the active layer is formed on the protective layer of the n-type layer.
  • the method for producing a nitrogen compound semiconductor light-emitting device is a method for producing a nitrogen compound semiconductor light-emitting device having an n-type layer, an active layer, and a p-type layer each formed on a substrate by metal organic vapor phase epitaxy.
  • An n-type AlGaN layer made of n-Al x Ga 1-x N (0 ⁇ x ⁇ 1) is grown and formed under a high temperature condition where the substrate temperature is 1000 ° C. or more, and Al is contained on the n-type AlGaN layer.
  • a growth process of an n-type layer including an n-type AlGaN layer made of n-type AlGaN is performed under a high temperature condition, and after the completion, the growth process is temporarily suspended to lower the substrate temperature, and then the low temperature condition
  • the active layer growth process is started, but since a protective layer made of GaN having a thickness of 5 nm or more not containing Al is formed on the n-type AlGaN layer made of AlGaN, the protective layer grows.
  • Ga evaporation in the underlying n-type AlGaN layer is effectively prevented, and the n-type AlGaN layer is free from crystal defects due to Ga evaporation, resulting in the growth of AlGaInN. Since a good active layer without crystal defects can be formed, a nitrogen compound semiconductor with high emission intensity that emits ultraviolet light with an emission peak wavelength of 400 nm or less It is possible to obtain an optical element.
  • FIG. 1 is an explanatory view schematically showing a layer structure of a substrate and a semiconductor layer in one embodiment of the nitrogen compound semiconductor light emitting device of the present invention.
  • the light emitting device includes a first buffer layer 12 (LT-GaN) made of a GaN layer having a layer thickness of, for example, 20 nm grown on the c-plane of the sapphire substrate 10 under a low temperature condition, and the first buffer layer 12 on the first buffer layer 12.
  • a second buffer layer 14 (u-GaN) made of an undoped GaN layer having a thickness of 1 ⁇ m, for example, grown under a high temperature condition.
  • a functional region of the light emitting element is formed on the second buffer layer 14.
  • an n-type AlGaN layer 16 (n-AlGaN) made of an n-type AlGaN layer having a thickness of, for example, 2.3 ⁇ m grown under a high temperature condition is formed.
  • a protective layer 18 (n-GaN) made of an n-type GaN layer having a thickness of, for example, 50 nm grown under a high temperature condition is formed, thereby forming an n-type layer.
  • An active layer 20 is grown on the protective layer 18 made of this n-type GaN layer.
  • the active layer 20 is grown under low temperature conditions, and a well layer made of GaInN with a layer thickness of, for example, 2.5 nm and a barrier layer made of AlGaN with a layer thickness of, for example, 10 nm are alternately stacked in four periods.
  • a quantum well structure is alternately stacked in four periods.
  • a p-type block layer 22 having a layer thickness of, for example, 20 nm is formed on the active layer 20, and a p-type contact layer 24 having a layer thickness of, for example, 100 nm and a layer thickness of, for example, 20 ⁇ m are formed on the p-type block layer 22.
  • a p + -type contact layer 26 is formed. Then, for example, an n-electrode is formed on a surface portion exposed by etching a part of the n-type AlGaN layer 16, and a p-electrode is formed on the surface of the p + -type contact layer 26 to constitute a light emitting device. .
  • each nitrogen compound semiconductor layer is grown and formed by metal organic chemical vapor deposition (MOCVD). Further, in the growth process of each semiconductor layer, vapor phase growth is performed under the conditions of the substrate temperature and the furnace pressure corresponding to the target composition.
  • MOCVD metal organic chemical vapor deposition
  • trimethylaluminum (TMA) is used as an organometallic compound serving as an Al atom supply source
  • TMG trimethylgallium
  • ammonia is used, and as the carrier gas, nitrogen gas and hydrogen gas are used, but not limited thereto.
  • a doping atom for forming an n-type semiconductor layer As a doping atom for forming an n-type semiconductor layer, a group IV atom such as Si is used, and as a compound serving as a Si atom supply source, for example, tetraethylsilane (TESi) or the like can be used.
  • TESi tetraethylsilane
  • Group II atoms such as Mg are used as the dope atoms for forming the p-type semiconductor layer, and biscyclopentadinier magnesium (Cp 2 Mg), for example, is used as the compound serving as the Mg atom supply source. Can be used.
  • the n-type AlGaN layer 16 constituting the n-type layer is grown and formed on the buffer layer as a layer having a composition represented by n-Al x Ga 1-x N (0 ⁇ x ⁇ 1).
  • the n-type AlGaN layer 16 is preferably produced with a composition having a band gap energy larger than the emission wavelength in order to suppress absorption of the emission wavelength.
  • a protective layer 18 made of an n-type GaN layer not containing Al is grown on the n-type AlGaN layer 16, and the n-type AlGaN layer 16 and the protective layer 18 form an n-type layer whose uppermost surface layer is the protective layer 18. And the active layer 20 is grown thereon.
  • the protective layer 18 has a thickness of 5 nm to 100 nm.
  • the thickness of the protective layer 18 is preferably 10 to 80 nm, particularly preferably 30 to 60 nm.
  • the n-type AlGaN layer 16 is made of n-type AlGaN.
  • the composition of the uppermost surface layer cannot be effectively protected.
  • the thickness of the protective layer 18 is excessive, absorption of radiated light by the protective layer 18 is increased, and it is difficult to obtain a light-emitting element having high emission intensity.
  • the substrate temperature in the growth process of the constituent layer made of semiconductor differs depending on the composition of the semiconductor layer to be formed.
  • the substrate temperature is less than 1000 ° C., specifically, as described above.
  • the temperature is set to a low temperature such as 750 to 900 ° C., but an n-type layer (specifically, n-type AlGaN layer 16 and protective layer 18) made of AlGaN and a p-type layer (specifically, p-type block) are used.
  • n-type layer specifically, n-type AlGaN layer 16 and protective layer 18
  • a p-type layer specifically, p-type block
  • Each of the layer 22, the p-type contact layer 24, and the p + -type contact layer 26 needs to have a substrate temperature of 1000 ° C.
  • a high temperature condition such as 1100 to 1200 ° C. .
  • In is contained in the active layer (light emitting layer)
  • In in the active layer diffuses and the characteristics of the active layer are improved.
  • an n-type AlGaN layer 16 and a protective layer 18 are grown on a substrate 10 via a first buffer layer 12 and a second buffer layer 14 to form an n-type layer.
  • An active layer 20 is grown on the n-type layer, and a p-type block layer 22, a p-type contact layer 24, and a p + -type contact layer 26 are grown on the active layer 20 to form a p-type layer. Is done.
  • the protective layer 18 made of GaN containing no Al is similarly formed in 5 to 5 under the high temperature condition. It is grown with a specific layer thickness of 100 nm.
  • the growth process is temporarily interrupted to lower the substrate temperature, and the uppermost surface layer is formed by the protective layer 18 under a low temperature condition where the substrate temperature is less than 1000 ° C.
  • the active layer 20 is grown and formed on the n-type layer.
  • a growth process interruption time which can be referred to as a heat dissipation time, in order to lower the substrate temperature.
  • the length of time depends on the temperature of the substrate under high temperature conditions and the temperature of the substrate under low temperature conditions, but is usually 5 to 10 minutes.
  • the substrate temperature is lowered during the growth process interruption time, and the growth formation of the active layer 20 is performed under the low temperature condition.
  • the protective layer 18 made of GaN not containing Al is formed on the n-type AlGaN layer 16 made of AlGaN constituting the n-type layer. Since the composition does not change even during the growth process interruption time, crystal defects do not occur. Therefore, in the active layer 20 grown on the protective layer 18, crystal defects due to lower crystal defects occur. As a result, a nitrogen compound semiconductor light emitting device having high emission intensity can be obtained.
  • each semiconductor layer was grown and formed by metal organic vapor phase epitaxy as described below to manufacture the light emitting device of the present invention.
  • (1) Substrate cleaning process First, the c-plane sapphire substrate 10 is placed in a processing furnace of a CVD apparatus, and the substrate temperature is raised to 1150 ° C. while supplying hydrogen gas at a flow rate of 10 slm in the processing furnace. Ten cleanings were performed.
  • Second buffer layer forming step In a state where the substrate temperature is 1125 ° C., while supplying nitrogen gas as a carrier gas into the processing furnace at a flow rate of 20 slm and hydrogen gas at a flow rate of 15 slm, ammonia is supplied at a flow rate of 250,000 ⁇ mol / min and TMG is supplied at a flow rate. By supplying at 100 ⁇ mol / min for 30 minutes, an undoped GaN layer having a thickness of 1.5 ⁇ m was grown on the first buffer layer 12 to form a second buffer layer (u-GaN) 14.
  • n-type layer forming step (4-1) n-type AlGaN layer forming step (3) Similar to the second buffer layer forming step, nitrogen gas is supplied as a carrier gas in the processing furnace at a flow rate of 20 slm and hydrogen gas is supplied at a flow rate.
  • the second buffer layer is supplied by supplying trimethylaluminum (TMA) at a flow rate of 5.2 ⁇ mol / min and TESi at a flow rate of 0.013 ⁇ mol / min at a substrate temperature of 1150 ° C. and a furnace pressure of 30 kPa while supplying at 15 slm.
  • TMA trimethylaluminum
  • An n-type AlGaN layer 16 composed of an n-type Al 0.05 Ga 0.95 N layer having a layer thickness of 2.3 ⁇ m was formed on 14.
  • n-type AlGaN layer 16 does not contain Al having a thickness of 50 nm.
  • a protective layer (n-GaN) 18 was formed by growing a type GaN layer, and thus an n type layer was formed.
  • the growth step is interrupted, and then, while supplying nitrogen gas as a carrier gas into the processing furnace at a flow rate of 15 slm and hydrogen gas at a flow rate of 1 slm
  • TMG trimethylindium
  • TMA trimethylindium
  • the active layer 20 in which the units of the well layer and the barrier layer are stacked for four periods is formed by repeating the step of forming
  • the growth process interruption time from the completion of the (4-2) protective layer forming process to the start of the active layer forming process was about 8 minutes.
  • p-type layer forming step (6-1) p-type block layer forming step
  • the substrate temperature is adjusted while supplying nitrogen gas as a carrier gas into the processing furnace at a flow rate of 15 slm and hydrogen gas at a flow rate of 25 slm at a furnace pressure of 100 kPa.
  • the active layer 20 is supplied by supplying TMG at a flow rate of 100 ⁇ mol / min, TMA at a flow rate of 24 ⁇ mol / min, and biscyclopentadinyl magnesium (Cp 2 Mg) at a flow rate of 0.1 ⁇ mol / min for 20 seconds.
  • a p-type block layer 22 was formed by growing a p-type Al 0.2 Ga 0.8 N layer having a thickness of 20 nm thereon.
  • Post-processing step (7-1) Activation annealing step After the step (6) was completed, activation annealing was performed in the atmosphere at a temperature of 700 ° C. for 15 minutes.
  • Electrode Formation Step A part of the n-type AlGaN layer 16 of the n-type layer is etched by photolithography and an inductively coupled plasma processing apparatus (ICP) with respect to the light emitting element material subjected to the activation annealing process.
  • An n pad portion is formed by exposing, and after depositing 5 nm of nickel and 5 nm of gold on each of the n pad portion and the p pad portion set on the surface of the p + -type contact layer 26, the temperature is 500 in the atmosphere. Annealing was performed at 5 ° C.
  • light emitting element 1 Al was vapor-deposited on each of the n pad portion and the p pad portion to form an n electrode and a p electrode, thereby manufacturing a light emitting device having an emission peak wavelength in the 370 nm band. This is referred to as “light emitting element 1”.
  • Example 1 Comparative Example 1
  • the active layer Except that the forming step was executed, the semiconductor layers were grown and formed in the same manner as in Example 1, thereby having the layer structure shown in FIG. 2 and the light emission for comparison having the emission peak wavelength in the 370 nm band.
  • a device was manufactured. This is referred to as “light emitting element 1a”.
  • Example 1 (3) the second buffer layer forming step, (4-1) the n-type AlGaN layer forming step and (4-2) the protective layer forming step are not performed.
  • the buffer layer formation step while supplying nitrogen gas as a carrier gas into the processing furnace at a flow rate of 20 slm and hydrogen gas at a flow rate of 15 slm in a state where the substrate temperature is 1125 ° C., ammonia is supplied at a flow rate of 250,000 ⁇ mol / min and TMG is supplied at a flow rate of 100 ⁇ mol / min.
  • n-type GaN having a layer thickness of 2.3 ⁇ m is grown on the second buffer layer 14 to form the n-type GaN layer 28, After the growth process interruption time of about 8 minutes, the same as in Example 1 except that the same (5) active layer formation process as in Example 1 was performed.
  • TESi tetraethylsilane
  • each semiconductor layer is formed has a layer configuration shown in FIG. 3, the emission peak wavelength light-emitting element was manufactured for comparison in the 370nm band. This is referred to as “light emitting element 1b”.
  • Evaluation experiment (1) Output evaluation was performed on each of the light-emitting element 1 according to Example 1, the light-emitting element 1a according to Comparative Example 1, and the light-emitting element 1b according to Comparative Example 1. That is, each light-emitting element is mounted on a TO-18 stem package, and a photodiode having sensitivity in the 360 to 370 nm band and sensitivity correction is arranged at a distance of 5 mm opposite to the light-receiving element.
  • the output value of the light receiving element when a current of 20 mA was supplied to each light emitting element was measured, the results were as shown in Table 1.
  • each semiconductor layer was grown and formed by metal organic vapor phase epitaxy as described below to manufacture the light emitting device of the present invention.
  • the c-plane sapphire substrate 10 is placed in a processing furnace of a CVD apparatus, and the substrate temperature is raised to 1150 ° C. while supplying hydrogen gas at a flow rate of 10 slm in the processing furnace. Ten cleanings were performed.
  • Second buffer layer forming step After the completion of the above (2) first buffer layer forming step, the supply of TMA is stopped, and the substrate temperature is raised to 1300 ° C., and ammonia is flowed into the processing furnace. By supplying 22000 ⁇ mol / min and TMA at a flow rate of 50 ⁇ mol / min for 80 minutes, an AlN layer having a thickness of 1 ⁇ m was grown on the first buffer layer 32 to form a second buffer layer (AlN-2) 34.
  • the furnace pressure is set to 30 kPa, and nitrogen gas is introduced into the processing furnace as a carrier gas.
  • TMG was flowed at 100 ⁇ mol / min
  • TMA was flowed at 18 ⁇ mol / min
  • ammonia was flowed at 250,000 ⁇ mol / min
  • TESi was flowed at 0.013 ⁇ mol / min.
  • the n-type AlGaN layer 16 made of an n-type Al 0.15 Ga 0.85 N layer having a layer thickness of 3 ⁇ m was formed on the second buffer layer.
  • n-type AlGaN layer 16 does not contain Al having a thickness of 50 nm.
  • a protective layer (n-GaN) 18 was formed by growing a type GaN layer, and thus an n type layer was formed.
  • Active layer forming step While supplying nitrogen gas as a carrier gas into the processing furnace at a flow rate of 16 slm, TMG is supplied at a flow rate of 10 ⁇ mol / min and TMA is supplied at a flow rate of 0.02 ⁇ mol in a state where the furnace pressure is 100 kPa and the substrate temperature is 840 ° C.
  • TMI at a flow rate of 35 ⁇ mol / min for 50 seconds to form a well layer having a composition of Al 0.02 Ga 0.95 In 0.03 N with a thickness of 2 nm
  • TMG at a flow rate of 10 ⁇ mol / min
  • TMA at a flow rate
  • p-type layer forming step (6-1) p-type block layer forming step While supplying nitrogen gas as a carrier gas into the processing furnace at a flow rate of 15 slm and hydrogen gas at a flow rate of 25 slm at a furnace pressure of 60 kPa, the substrate temperature is adjusted. At 1050 ° C., TMG is supplied at a flow rate of 100 ⁇ mol / min, TMA is supplied at a flow rate of 36 ⁇ mol / min, and Cp 2 Mg is supplied at a flow rate of 0.26 ⁇ mol / min for 20 seconds.
  • the p-type block layer 22 was formed by growing an Al 0.3 Ga 0.7 N layer.
  • (6-3) p + -type contact layer forming step Further, by changing the flow rate of Cp 2 Mg to 0.2 ⁇ mol / min and continuing the growth for 20 seconds, a p-type contact layer having a thickness of 20 nm is formed on the p-type contact layer 24. A p + type contact layer 26 made of + type Al 0.15 Ga 0.85 N was formed.
  • Post-processing step (7-1) Activation annealing step After the step (6) was completed, activation annealing was performed in the atmosphere at a temperature of 700 ° C. for 15 minutes.
  • Electrode Formation Step A part of the n-type AlGaN layer 16 of the n-type layer is etched by photolithography and an inductively coupled plasma processing apparatus (ICP) with respect to the light emitting element material subjected to the activation annealing process.
  • An n pad portion is formed by exposing, and after depositing 5 nm of nickel and 5 nm of gold on each of the n pad portion and the p pad portion set on the surface of the p + -type contact layer 26, the temperature is 500 in the atmosphere. Annealing was performed at a temperature of 5 ° C.
  • Example 2 In Example 2 above, after (4-1) the n-type AlGaN layer forming step, (4-2) without performing the protective layer forming step, after the growth process interruption time of about 7 minutes, (5) active A comparative light-emitting element 2a having the layer configuration shown in FIG. 5 was manufactured by growing each semiconductor layer in the same manner as in Example 2 except that the layer formation step was performed.
  • Evaluation experiment (2) Each of the light emitting element 2 according to Example 2 and the light emitting element 2a according to Comparative Example 2 was subjected to output evaluation in the same manner as in the evaluation experiment (1). And when the output value of the light receiving element was measured about the light of wavelength 360nm when a current of 20 mA was supplied to each light emitting element, the result was as shown in Table 2.
  • the protective layer is formed as compared with the light-emitting element 2a according to Comparative Example 2, and thus a very large light emission intensity can be obtained. Understood.
  • first buffer layer L-GaN
  • Second buffer layer u-GaN
  • n-type AlGaN layer 18 protective layer (n-GaN)
  • active layer 22
  • p-type block layer 24
  • p-type contact layer 26
  • p + -type contact layer 28
  • n-type GaN layer 32
  • first buffer layer (AlN-1) 34
  • Second buffer layer (AlN-2) 80
  • substrate 82
  • buffer layer 84 n-type contact layer 86
  • n-type cladding layer active layer 90
  • p-type cladding layer 92a p-type contact layer 92b
  • p-type contact layer 94
  • n-electrode 96
  • electrode 98 pad electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

AlGaNよりなるn型層、AlGaInNよりなる活性層、およびp型層を有し、発光ピーク波長が400nm以下の紫外光を放射する、発光強度の大きい窒素化合物半導体発光素子およびその製造方法を提供する。 本発明は、n型層、活性層、およびp型層を有する窒素化合物半導体発光素子において、活性層が、AlGaInNよりなる、発光ピーク波長が400nm以下の窒素化合物半導体層からなり、n型層は、AlGaNよりなるn型AlGaN層と、Alを含まない5nm以上のGaN保護層とを有してなり、保護層の上に活性層が形成されている。製造方法は、基板温度が1000℃以上の高温でn型AlGaN層を成長し、その上にAlを含まない5nm以上のGaN保護層を成長し、成長工程を中断して基板温度を低下させ、基板温度が1000℃未満の低温で、保護層の上に活性層を形成する工程とを有する。

Description

窒素化合物半導体発光素子およびその製造方法
 本発明は、発光ピーク波長が400nm以下の紫外光を放射する窒素化合物半導体発光素子およびその製造方法に関する。
 従来、発光ピーク波長が400nm以下の紫外光を放射する窒素化合物半導体よりなる発光素子(LED)としては、例えば、図6に示す構成を有するものが知られている(特許文献1)。
 この発光素子は、基板80上にGaNよりなるバッファ層82が形成され、このバッファ層82上に層厚の大きいn型コンタクト層84が形成され、このn型コンタクト層84上にn型クラッド層86が形成され、このn型クラッド層86上に、AlGaInNよりなる活性層88が形成され、この活性層88上に、p型クラッド層90を介して、層厚の大きいp型コンタクト層92aおよび層厚の小さいp型コンタクト層92bが形成されており、更に、n型コンタクト層84の一部の表面が露出されてn電極94が設けられると共に、p型コンタクト層92bの表面にp電極96が設けられて構成されている。98はパッド電極である。
 一般に、発光ピーク波長が400nm以下の紫外光を放射する窒素化合物半導体発光素子においては、活性層を構成する層として、AlGaInNにおけるInの組成割合を低下させた層を形成することが必要であるが、このような組成変調が行われる結果、得られる発光素子は、発光効率が低下したものとなることが広く知られている。これは、Inの組成割合が減少することにより、Inの組成割合が多いときには生ずるInの組成変調効果が弱くなるために電子、正孔の閉じ込めが弱くなり、電子、正孔が転位にトラップされやすくなるため、非発光再結合の確率が上昇するからである。
 一方、波長400nm以下の紫外光を放射する発光素子においては、GaNよりなる構成層が形成されていると、GaNによる光吸収や、電子および正孔のリーク(電子や正孔が、発光層を通り越してn型層およびp型層に抜けてしまう現象)が生ずることから、構成層の結晶構造をAlを含むAlGaNとすることが有利であることが知られている。このような理由から、図6の発光素子においては、自己吸収を低減するために、バッファ層82および発光層である活性層88以外の構成層、すなわちn型コンタクト層84、n型クラッド層86、p型クラッド層90およびp型コンタクト層92a,92bが、いずれもAlGaN系材質によって形成されている。
 而して、この種の窒素化合物半導体発光素子は、活性層および他の窒素化合物半導体層を有機金属気相成長法によって成長させることにより、製造される。そして、図6の発光素子の製造においては、n型クラッド層86を構成するn型のAlGaN層を成長させてその上に直接、活性層88の量子井戸構造を構成するAlGaInN層を成長させることとなるが、当該n型のAlGaN層の成長は、基板温度が例えば1100~1200℃のような1000℃以上となる高温条件で行われることが必要であり、一方、活性層を構成するAlGaInN層の成長は、基板温度が例えば750~900℃のような1000℃未満の低温条件で行われることが必要である。
 発光ピーク波長が400nmを超える光を放射する発光素子の製造においては、活性層が接する下層のn型層の最上表面層がAlGaN層である場合であっても、当該n型層の最上表面層がGaN層である場合と同等の発光強度特性を有する発光素子を得ることができる。しかし、発光ピーク波長が400nm以下の紫外光を放射する発光素子の製造においては、活性層が接する下層のn型層の最上表面層がAlGaN層である場合には、結晶品質が同等であっても、著しく発光強度が低いものとなることが判明した。
 すなわち、発光ピーク波長が400nm以下の紫外光を放射する窒素化合物半導体発光素子を製造する場合には、活性層以外の構成層の材質として、活性層から放射される光の吸収がない点でAlGaNを用いることが有利なはずであるが、実際には、活性層が接する下層のn型層の最上表面層がAlGaN層である場合には、得られる発光素子は、発光強度が却って小さいものとなる。
 このような現象が生ずる原因は、n型層の成長は高温条件で行われることが必要である一方、活性層の成長は低温条件で行われることが必要であって、両成長工程を連続して行うことができないからである。すなわち、実際には、高温条件でのn型層の成長工程の終了後に低温条件での活性層の成長工程を開始する間に、成長工程を一時中断して基板温度を低下させる成長工程中断時間を設けることが実際上不可避である。しかし、この成長工程中断時間の間に、n型層の最上表面を形成するAlGaN層中のGaが蒸発飛散して結晶格子不整合による結晶欠陥が生じ、その結晶欠陥がその上に成長形成される活性層のAlGaInNの結晶に引き継がれる結果、形成される活性層に不可避的に結晶欠陥が生じてしまうことが原因であると考えられている(非特許文献1参照)。
特許第3614070号公報
第54回応用物理学関係連合講演会 講演予稿集 No.1 29p-ZN-4 「AlGaN系ヘテロ界面形成時における成長中断の影響」
 本発明は、以上のような事情に基づいてなされたものであって、AlGaNよりなるn型層、AlGaInNよりなる活性層、およびp型層を有してなり、発光ピーク波長が400nm以下の紫外光を放射する、発光強度の大きい窒素化合物半導体発光素子を提供することを目的とする。
 本発明の他の目的は、AlGaNよりなるn型層、AlGaInNよりなる活性層およびp型層を有してなり、発光強度の大きい窒素化合物半導体発光素子を製造することのできる窒素化合物半導体発光素子の製造方法を提供することにある。
 本発明の窒素化合物半導体発光素子は、n型層、活性層およびp型層を有する窒素化合物半導体発光素子において、
 前記活性層が、Alx Gay In1-x-y N(0≦x≦1、0≦y≦1、x+y≦1)よりなる障壁層と、Alx Gay In1-x-y N(0≦x<1、0≦y<1、x+y<1)よりなる井戸層とを具えた、発光ピーク波長が400nm以下の窒素化合物半導体層からなり、
 前記n型層は、n-Alx Ga1-x N(0<x≦1)よりなるn型AlGaN層と、このn型AlGaN層の上に形成された、Alを含まない厚さ5nm以上のGaNよりなる保護層とを有してなり、
 前記n型層の保護層の上に前記活性層が形成されていることを特徴とする。
 本発明の窒素化合物半導体発光素子の製造方法は、基板上に、各々有機金属気相成長法により形成されたn型層、活性層およびp型層を有する窒素化合物半導体発光素子の製造方法において、
 基板温度が1000℃以上となる高温条件において、n-Alx Ga1-x N(0<x≦1)よりなるn型AlGaN層を成長形成すると共に当該n型AlGaN層の上にAlを含まない厚さ5nm以上のGaNよりなる保護層を成長形成することによりn型層を形成するn型層形成工程と、
 その後、成長工程を中断して基板温度を低下させ、基板温度が1000℃未満となる低温条件において、前記n型層の保護層の上に、Alx Gay In1-x-y N(0≦x≦1、0≦y≦1、x+y≦1)よりなる障壁層と、Alx Gay In1-x-y N(0≦x<1、0≦y<1、x+y<1)よりなる井戸層を成長形成することにより、活性層を形成する活性層形成工程と
を有することを特徴とする。
 本発明によれば、高温条件でn型AlGaNよりなるn型AlGaN層を含むn型層の成長工程を行い、その終了後に、成長工程を一時中断して基板温度を低下させ、その後に低温条件で活性層の成長工程が開始されるが、AlGaNよりなるn型AlGaN層の上に、Alを含まない厚さ5nm以上のGaNよりなる保護層が形成されているため、当該保護層により、成長工程中断時間の間に、下層であるn型AlGaN層におけるGaの蒸発飛散が有効に防止されて当該n型AlGaN層がGaの蒸発飛散による結晶欠陥のないものとなり、その結果、AlGaInNの成長により、結晶欠陥のない良好な活性層を形成することができるので、発光ピーク波長が400nm以下の紫外光を放射する、発光強度の大きい窒素化合物半導体発光素子を得ることができる。
本発明の窒素化合物半導体発光素子の一実施例における基板と半導体層の層構成を示す説明図である。 図1の窒素化合物半導体発光素子と比較されるべき発光素子(比較例1)の層構成を示す説明図である。 図1の窒素化合物半導体発光素子と対照されるべき発光素子(対照例1)の層構成を示す説明図である。 本発明の窒素化合物半導体発光素子の他の実施例における基板と半導体層の層構成を示す説明図である。 図4の窒素化合物半導体発光素子と比較されるべき発光素子(比較例2)の層構成を示す説明図である。 従来の窒素化合物半導体発光素子の一例における構成を示す説明図である。
 以下、本発明の窒素化合物半導体発光素子およびその製造方法の実施の形態について説明する。
 図1は、本発明の窒素化合物半導体発光素子の一実施例における基板と半導体層の層構成を模式的に示す説明図である。
 この発光素子は、サファイア基板10のc面上に、低温条件で成長させた層厚が例えば20nmのGaN層よりなる第1バッファ層12(LT-GaN)と、この第1バッファ層12上に、高温条件で成長させた層厚が例えば1μmのアンドープGaN層よりなる第2バッファ層14(u-GaN)とを有する。この第2バッファ層14上に、発光素子の機能領域が形成されている。
 この第2バッファ層14上の機能領域においては、高温条件で成長させた層厚が例えば2.3μmのn型AlGaN層よりなるn型AlGaN層16(n-AlGaN)が形成され、このn型AlGaN層16の上に、高温条件で成長させた層厚が例えば50nmのn型GaN層よりなる保護層18(n-GaN)が形成され、これによりn型層が構成されている。
 このn型GaN層よりなる保護層18上に、活性層20が成長形成されている。図示の例の活性層20は、各々低温条件で成長された、層厚が例えば2.5nmのGaInNよりなる井戸層と層厚が例えば10nmのAlGaNよりなる障壁層とが交互に4周期積層されてなる量子井戸構造を有する。
 活性層20上には、層厚が例えば20nmのp型ブロック層22が形成されており、このp型ブロック層22上に、層厚が例えば100nmのp型コンタクト層24および層厚が例えば20μmのp+ 型コンタクト層26が形成されている。
 そして、例えば、n型AlGaN層16の一部をエッチングして露出した表面部分にn電極が形成されると共に、p+ 型コンタクト層26の表面にp電極が形成されて発光素子が構成される。
 本発明の窒素化合物半導体発光素子の製造方法において、各窒素化合物半導体の層は、有機金属気相成長法(MOCVD)によって成長形成される。
 また、各半導体層の成長工程においては、目的とする組成に応じた基板温度および炉内圧力となる条件下で気相成長が行われる。
 有機金属気相成長法においては、Al原子供給源となる有機金属化合物としてはトリメチルアルミニウム(TMA)が、Ga原子供給源となる有機金属化合物としてはトリメチルガリウム(TMG)が、N原子供給源となる化合物としてはアンモニアが用いられ、キャリアガスとしては、窒素ガスおよび水素ガスが用いられるが、これらに限定されるものではない。
 n型の半導体層を形成するためのドープ原子としては、SiなどのIV族原子が用いられ、Si原子供給源となる化合物としては例えばテトラエチルシラン(TESi)などを用いることができる。また、不純物がドープされない場合のAlx Gay In1-x-y N(0≦x≦1、0≦y≦1、x+y≦1)半導体はアンドープの状態においてもn型を示す。
 一方、p型の半導体層を形成するためのドープ原子としては、MgなどのII族原子が用いられ、Mg原子供給源となる化合物としては例えばビスシクロペンタディニエルマグネシウム(Cp2 Mg)などを用いることができる。
 活性層20は、Alx Gay In1-x-y N(0≦x≦1、0≦y≦1、x+y≦1)よりなる障壁層と、Alx Gay In1-x-y N(0≦x<1、0≦y<1、x+y<1)よりなる井戸層とが交互に位置する積層体単位を例えば2~10周期成長形成することにより構成され、発光ピーク波長が400nm以下の紫外光を放射するものである。障壁層は、井戸内に電子、正孔を閉じ込めるため、井戸層よりもバンドギャップエネルギーを大きくするように組成を調整する必要がある。井戸層について好ましい組成は、xの値が0~0.99、yの値が0~0.99である。この活性層20の成長工程では、基板温度が1000℃未満となる低温条件とされることが必要である。
 n型層を構成するn型AlGaN層16は、n-Alx Ga1-x N(0<x≦1)で示される組成を有する層としてバッファ層上に成長形成される。このn型AlGaN層16は、発光波長の吸収を抑えるために発光波長よりも大きなバンドギャップエネルギーとなる組成で作製されることが好ましい。このn型AlGaN層16上に、Alを含まないn型GaN層よりなる保護層18が成長形成され、n型AlGaN層16と保護層18により、最上表面層が保護層18であるn型層が形成され、その上に活性層20が成長形成される。
 本発明において、保護層18は、層厚が5nm~100nmのものとされる。好ましい保護層18の厚さは10~80nmであり、特に好ましくは30~60nmである。保護層18の層厚が過小の場合には、n型AlGaN層16の表面全面を十分に被覆することができずにその一部が露出する結果、当該n型AlGaN層16のn型AlGaNによる最上表面層の組成を有効に保護することができないおそれがある。一方、保護層18の層厚が過大であると、当該保護層18による放射光の吸収が大きくなるため、高い発光強度を有する発光素子を得ることが困難となる。
 半導体よりなる構成層の成長工程における基板温度は、形成される半導体層の組成によって異なり、AlGaInNよりなる活性層20の成長工程では、既述のように基板温度が1000℃未満、具体的には例えば750~900℃のような低温条件とされるが、AlGaNよりなるn型層(具体的には、n型AlGaN層16および保護層18)並びにp型層(具体的には、p型ブロック層22、p型コンタクト層24およびp+ 型コンタクト層26)は、いずれも、基板温度が1000℃以上、具体的には例えば1100~1200℃のような高温条件とされることが必要である。
 なお、p型層の成長については、活性層(発光層)にInが含まれることから、高温下で長時間の成長を行った場合に活性層内のInが拡散して活性層の特性を低下させることがあり、そのようなInの拡散を抑えるために1000℃以下の温度で成長を行うことも可能である。
 本発明の窒素化合物半導体発光素子の製造方法においては、基板10上に第1バッファ層12および第2バッファ層14を介して、n型AlGaN層16および保護層18が成長されてn型層が形成され、このn型層上に活性層20が成長され、この活性層20上に、p型ブロック層22、p型コンタクト層24およびp+ 型コンタクト層26が成長されてp型層が形成される。
 具体的には、基板温度が1000℃以上となる高温条件においてAlGaNよりなるn型AlGaN層16が成長形成された後に、同様に高温条件において、Alを含まないGaNよりなる保護層18が5~100nmという特定の層厚で成長形成される。そして、保護層18の成長形成が終了した後、成長工程を一時中断して基板温度を低下させ、基板温度が1000℃未満の低温条件で、上記保護層18によって最上表面層が形成されているn型層に対して、活性層20の成長形成が行われる。
 高温条件での成長工程から低温条件での成長工程に移行する際には、基板の温度を低下させるために、放熱時間ともいうべき成長工程中断時間を設けることが不可避であり、この成長工程中断時間の長さは、高温条件下での基板の温度および低温条件下での基板の温度によっても異なるが、通常、5~10分間である。
 以上のように、実際の窒素化合物半導体発光素子の製造において、高温条件でのn型層の成長形成の後に、成長工程中断時間において基板温度を低下させ、低温条件で活性層20の成長形成が行われるが、本発明によれば、n型層を構成するAlGaNよりなるn型AlGaN層16の上に、Alを含まないGaNよりなる保護層18が形成されており、この保護層18は、成長工程中断時間においてもその組成が変化しないために結晶欠陥が生ずることがなく、そのために、当該保護層18上に成長形成される活性層20において、下層の結晶欠陥に起因する結晶欠陥が生ずることが抑止され、その結果、高い発光強度を有する窒素化合物半導体発光素子を得ることができる。
実施例1
 この実施例では、図1の層構成に従い、下記のように有機金属気相成長法により各半導体層を成長形成して、本発明の発光素子を製造した。
(1)基板クリーニング工程
 先ず、CVD装置の処理炉内にc面サファイア基板10を配置し、処理炉内に水素ガスを流量10slmで供給しながら、基板温度を1150℃に昇温することにより基板10のクリーニングを行った。
(2)第1バッファ層形成工程
 次いで、炉内圧力100kPa、基板温度500℃の状態で、処理炉内にキャリアガスとして窒素ガスを流量5slmおよび水素ガスを流量5slmで供給しながら、アンモニアを流量250000μmol/minおよびトリメチルガリウム(TMG)を流量50μmol/minで70秒間供給することにより、基板10の表面に層厚20nmのGaN層を成長させて第1バッファ層(LT-GaN)12を形成した。
(3)第2バッファ層形成工程
 基板温度1125℃の状態で、処理炉内にキャリアガスとして窒素ガスを流量20slmおよび水素ガスを流量15slmで供給しながら、アンモニアを流量250000μmol/minおよびTMGを流量100μmol/minで30分間供給することにより、第1バッファ層12上に層厚1.5μmのアンドープのGaN層を成長させて第2バッファ層(u-GaN)14を形成した。
(4)n型層形成工程
(4-1)n型AlGaN層形成工程
 上記(3)第2バッファ層形成工程と同様に、処理炉内にキャリアガスとして窒素ガスを流量20slmおよび水素ガスを流量15slmで供給しながら、基板温度1150℃、炉内圧力30kPaの状態で、トリメチルアルミニウム(TMA)を流量5.2μmol/min、TESiを流量0.013μmol/minで供給することにより、第2バッファ層14上に層厚2.3μmのn型Al0.05Ga0.95N層よりなるn型AlGaN層16を形成した。
(4-2)保護層形成工程
 そして、TMAの供給を停止したこと以外はそのままの条件で成長工程を55秒間継続することにより、n型AlGaN層16上に層厚50nmのAlを含まないn型GaN層を成長させて保護層(n-GaN)18を形成し、もってn型層を形成した。
(5)活性層形成工程
 上記(4-2)保護層形成工程の後、成長工程を中断し、その後、処理炉内にキャリアガスとして窒素ガスを流量15slmおよび水素ガスを流量1slmで供給しながら、炉内圧力100kPa、基板温度820℃の状態で、TMGを流量10μmol/min、トリメチルインジウム(TMI)を流量12μmol/minで60秒間供給することにより、層厚2.5nmのGa0.95In0.05Nの組成を有する井戸層を形成する工程と、TMGを流量10μmol/min、TMAを流量0.9μmol/minで300秒間供給することにより、層厚10nmのAl0.08Ga0.92Nの組成を有する障壁層を形成する工程とを繰り返すことにより、井戸層と障壁層の単位が4周期積層されてなる活性層20を形成した。
 上記(4-2)保護層形成工程が終了した時点から、当該活性層の形成工程が開始されるまでの成長工程中断時間は約8分間であった。
(6)p型層形成工程
(6-1)p型ブロック層形成工程
 炉内圧力100kPaで処理炉内にキャリアガスとして窒素ガスを流量15slmおよび水素ガスを流量25slmで供給しながら、基板温度を1025℃にし、その状態でTMGを流量100μmol/min、TMAを流量24μmol/min、ビスシクロペンタディニエルマグネシウム(Cp2 Mg)を流量0.1μmol/minで20秒間供給することにより、活性層20上に層厚20nmのp型Al0.2 Ga0.8 N層を成長させてp型ブロック層22を形成した。
(6-2)p型コンタクト層形成工程
 続いて、TMAの流量を12μmol/minに変更して成長を100秒間継続することにより、p型ブロック層22上に層厚100nmのp型Al0.10Ga0.90Nよりなるp型コンタクト層24を形成した。
(6-3)p+ 型コンタクト層形成工程
 更に、Cp2 Mgの流量を0.2μmol/minに変更して成長を20秒間継続することにより、p型コンタクト層24上に層厚20nmのp+ 型Al0.1 Ga0.9 Nよりなるp+ 型コンタクト層26を形成した。
(7)後処理工程
(7-1)活性化アニール工程
 上記(6)の工程が終了した後、大気中、温度700℃で15分間活性化アニールを行った。
(7-2)電極形成工程
 活性化アニール処理された発光素子材料に対し、フォトリソグラフィと誘導結合型プラズマ処理装置(ICP)により、n型層のn型AlGaN層16の一部をエッチングして露出させることによりnパッド部を形成し、当該nパッド部およびp+ 型コンタクト層26の表面に設定されたpパッド部の各々に、ニッケル5nmおよび金5nmを積層した後、大気中において温度500℃で5分間アニールを行い、nパッド部およびpパッド部の各々にAlを蒸着してn電極およびp電極を形成することにより、発光ピーク波長が370nm帯にある発光素子を製造した。これを「発光素子1」とする。
比較例1
 上記の実施例1において、(4-1)n型AlGaN層形成工程の終了後、(4-2)保護層形成工程を行わず、約8分間の成長工程中断時間の後に(5)活性層形成工程を実行したこと以外は、実施例1と同様にして、各半導体層を成長形成することにより、図2に示される層構成を有し、発光ピーク波長が370nm帯にある比較用の発光素子を製造した。これを「発光素子1a」とする。
対照例1
 上記の実施例1において、(3)第2バッファ層形成工程に続いて、(4-1)n型AlGaN層形成工程および(4-2)保護層形成工程を行わず、(3)第2バッファ層形成工程と同様に基板温度1125℃の状態で処理炉内にキャリアガスとして窒素ガスを流量20slmおよび水素ガスを流量15slmで供給しながら、アンモニアを流量250000μmol/min、TMGを流量100μmol/minおよびテトラエチルシラン(TESi)を流量0.013μmol/minで40分間供給することにより、第2バッファ層14上に層厚2.3μmのn型GaNを成長させてn型GaN層28を形成し、約8分間の成長工程中断時間の後に、実施例1と同様の(5)活性層形成工程を実行したこと以外は実施例1と同様にして各半導体層を成長形成することにより、図3に示される層構成を有し、発光ピーク波長が370nm帯にある比較用の発光素子を製造した。これを「発光素子1b」とする。
評価実験(1)
 上記実施例1に係る発光素子1、比較例1に係る発光素子1aおよび対照例1に係る発光素子1bの各々について、出力評価を行った。すなわち、各発光素子をTO-18ステムパッケージに実装し、これに対向して離間距離5mmの位置に、360~370nm帯に感度を有し、感度補正を行ったフォトダイオードを配置して受光素子とし、各発光素子に20mAの電流を供給したときの受光素子の出力値を測定したところ、結果は表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1に係る発光素子1によれば、比較例1に係る発光素子1aに比して、保護層が形成されることにより、非常に大きい発光強度が得られることが理解される。
実施例2
 この実施例では、図4の層構成に従い、下記のように有機金属気相成長法により各半導体層を成長形成して、本発明の発光素子を製造した。
(1)基板クリーニング工程
 先ず、CVD装置の処理炉内にc面サファイア基板10を配置し、処理炉内に水素ガスを流量10slmで供給しながら、基板温度を1150℃に昇温することにより基板10のクリーニングを行った。
(2)第1バッファ層形成工程
 次いで、炉内圧力10kPa、基板温度950℃の状態で、処理炉内にキャリアガスとして窒素ガスを流量8slmおよび水素ガスを流量8slmで供給しながら、アンモニアを流量13920μmol/minおよびTMAを流量8.7μmol/minで700秒間供給することにより、基板10の表面に層厚50nmのAlN層を成長させて第1バッファ層(AlN-1)32を形成した。
(3)第2バッファ層形成工程
 上記(2)第1バッファ層形成工程の終了後、TMAの供給を停止し、更に基板温度を1300℃に昇温した状態で、処理炉内にアンモニアを流量22000μmol/minおよびTMAを流量50μmol/minで80分間供給することにより、第1バッファ層32上に層厚1μmのAlN層を成長させて第2バッファ層(AlN-2)34を形成した。
(4)n型層形成工程
(4-1)n型AlGaN層形成工程
 上記(3)第2バッファ層形成工程の終了後、炉内圧力を30kPaとし、処理炉内にキャリアガスとして窒素ガスを流量15slmおよび水素ガスを流量12slmで供給しながら、基板温度1165℃の状態で、TMGを流量100μmol/min、TMAを流量18μmol/min、アンモニアを流量250000μmol/min、TESiを流量0.013μmol/minで50分間供給することにより、第2バッファ層34上に層厚3μmのn型Al0.15Ga0.85N層よりなるn型AlGaN層16を形成した。
(4-2)保護層形成工程
 そして、TMAの供給を停止したこと以外はそのままの条件で成長工程を55秒間継続することにより、n型AlGaN層16上に層厚50nmのAlを含まないn型GaN層を成長させて保護層(n-GaN)18を形成し、もってn型層を形成した。
(5)活性層形成工程
 処理炉内にキャリアガスとして窒素ガスを流量16slmで供給しながら、炉内圧力100kPa、基板温度840℃の状態で、TMGを流量10μmol/min、TMAを流量0.02μmol/min、TMIを流量35μmol/minで50秒間供給することにより、層厚2nmのAl0.02Ga0.95In0.03Nの組成を有する井戸層を形成する工程と、TMGを流量10μmol/min、TMAを流量1.5μmol/minで300秒間供給することにより、層厚10nmのAl0.14Ga0.86Nの組成を有する障壁層を形成する工程とを繰り返すことにより、井戸層と障壁層の単位が4周期積層されてなる活性層20を形成した。
 上記(4)のn型層の形成工程が終了した時点から、当該活性層の形成工程が開始されるまでの成長工程中断時間は約7分間であった。
(6)p型層形成工程
(6-1)p型ブロック層形成工程
 炉内圧力60kPaで処理炉内にキャリアガスとして窒素ガスを流量15slmおよび水素ガスを流量25slmで供給しながら、基板温度を1050℃にし、その状態でTMGを流量100μmol/min、TMAを流量36μmol/min、Cp2 Mgを流量0.26μmol/minで20秒間供給することにより、活性層20上に層厚20nmのp型Al0.3 Ga0.7 N層を成長させてp型ブロック層22を形成した。
(6-2)p型コンタクト層形成工程
 続いて、TMAの流量を18μmol/minに変更して成長を100秒間継続することにより、p型ブロック層22上に層厚100nmのp型Al0.15Ga0.85Nよりなるp型コンタクト層24を形成した。
(6-3)p+ 型コンタクト層形成工程
 更に、Cp2 Mgの流量を0.2μmol/minに変更して成長を20秒間継続することにより、p型コンタクト層24上に層厚20nmのp+ 型Al0.15Ga0.85Nよりなるp+ 型コンタクト層26を形成した。
(7)後処理工程
(7-1)活性化アニール工程
 上記(6)の工程が終了した後、大気中、温度700℃で15分間活性化アニールを行った。
(7-2)電極形成工程
 活性化アニール処理された発光素子材料に対し、フォトリソグラフィと誘導結合型プラズマ処理装置(ICP)により、n型層のn型AlGaN層16の一部をエッチングして露出させることによりnパッド部を形成し、当該nパッド部およびp+ 型コンタクト層26の表面に設定されたpパッド部の各々に、ニッケル5nmおよび金5nmを積層した後、大気中において温度500℃で5分間アニールを行い、nパッド部およびpパッド部の各々にAlを蒸着してn電極およびp電極を形成することにより、発光ピーク波長が360nm帯にある発光素子を製造した。これを「発光素子2」とする。
比較例2
 上記の実施例2において、(4-1)n型AlGaN層形成工程の終了後、(4-2)保護層形成工程を行わずに、約7分間の成長工程中断時間の後に(5)活性層形成工程を実行したこと以外は、実施例2と同様にして、各半導体層を成長形成することにより、図5に示される層構成を有する比較用の発光素子2aを製造した。
評価実験(2)
 上記実施例2に係る発光素子2および比較例2に係る発光素子2aの各々について、評価実験(1)と同様にして出力評価を行った。そして、各発光素子に20mAの電流を供給したときの波長360nmの光について受光素子の出力値を測定したところ、結果は表2に示すとおりであった。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、実施例2に係る発光素子2によれば、比較例2に係る発光素子2aに比して、保護層が形成されることにより、非常に大きい発光強度が得られることが理解される。
10 c面サファイア基板
12 第1バッファ層(LT-GaN)
14 第2バッファ層(u-GaN)
16 n型AlGaN層
18 保護層(n-GaN)
20 活性層
22 p型ブロック層
24 p型コンタクト層
26 p+ 型コンタクト層
28 n型GaN層
32 第1バッファ層(AlN-1)
34 第2バッファ層(AlN-2)
80 基板
82 バッファ層
84 n型コンタクト層
86 n型クラッド層
88 活性層
90 p型クラッド層
92a p型コンタクト層
92b p型コンタクト層
94 n電極
96 p電極
98 パッド電極
 

Claims (2)

  1.  n型層、活性層およびp型層を有する窒素化合物半導体発光素子において、
     前記活性層が、Alx Gay In1-x-y N(0≦x≦1、0≦y≦1、x+y≦1)よりなる障壁層と、Alx Gay In1-x-y N(0≦x<1、0≦y<1、x+y<1)よりなる井戸層とを具えた、発光ピーク波長が400nm以下の窒素化合物半導体層からなり、
     前記n型層は、n-Alx Ga1-x N(0<x≦1)よりなるn型AlGaN層と、このn型AlGaN層の上に形成された、Alを含まない厚さ5nm以上のGaNよりなる保護層とを有してなり、
     前記n型層の保護層の上に前記活性層が形成されていることを特徴とする窒素化合物半導体発光素子。
  2.  基板上に、各々有機金属気相成長法により形成されたn型層、活性層およびp型層を有する窒素化合物半導体発光素子の製造方法において、
     基板温度が1000℃以上となる高温条件において、n-Alx Ga1-x N(0<x≦1)よりなるn型AlGaN層を成長形成すると共に当該n型AlGaN層の上にAlを含まない厚さ5nm以上のGaNよりなる保護層を成長形成することによりn型層を形成するn型層形成工程と、
     その後、成長工程を中断して基板温度を低下させ、基板温度が1000℃未満となる低温条件において、前記n型層の保護層の上に、Alx Gay In1-x-y N(0≦x≦1、0≦y≦1、x+y≦1)よりなる障壁層と、Alx Gay In1-x-y N(0≦x<1、0≦y<1、x+y<1)よりなる井戸層を成長形成することにより、活性層を形成する活性層形成工程と
    を有することを特徴とする窒素化合物半導体発光素子の製造方法。
     
PCT/JP2011/056388 2010-04-09 2011-03-17 窒素化合物半導体発光素子およびその製造方法 WO2011125449A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11765351.9A EP2568512A4 (en) 2010-04-09 2011-03-17 LIGHT-EMITTING ELEMENT WITH A NITROGEN COMPOSITE SEMICONDUCTOR AND METHOD OF MANUFACTURING THEREOF
US13/639,971 US20130037820A1 (en) 2010-04-09 2011-03-17 Nitrogen compound semiconductor light emitting element and manufacturing method thereof
KR1020127021947A KR101399250B1 (ko) 2010-04-09 2011-03-17 질소 화합물 반도체 발광 소자 및 그 제조 방법
CN201180013599.7A CN102792470B (zh) 2010-04-09 2011-03-17 氮化合物半导体发光元件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010090003A JP5549338B2 (ja) 2010-04-09 2010-04-09 紫外光放射用窒素化合物半導体ledおよびその製造方法
JP2010-090003 2010-04-09

Publications (1)

Publication Number Publication Date
WO2011125449A1 true WO2011125449A1 (ja) 2011-10-13

Family

ID=44762409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056388 WO2011125449A1 (ja) 2010-04-09 2011-03-17 窒素化合物半導体発光素子およびその製造方法

Country Status (6)

Country Link
US (1) US20130037820A1 (ja)
EP (1) EP2568512A4 (ja)
JP (1) JP5549338B2 (ja)
KR (1) KR101399250B1 (ja)
CN (1) CN102792470B (ja)
WO (1) WO2011125449A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519500A1 (de) * 2017-01-03 2018-07-15 Univ Linz Lichtemittierendes Halbleiterelement

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733752B1 (en) 2011-07-12 2016-10-05 Marubun Corporation Light emitting element and method for manufacturing the same
CN104247052B (zh) * 2012-03-06 2017-05-03 天空公司 具有减少导光效果的低折射率材料层的发光二极管
JP5765865B2 (ja) 2013-07-17 2015-08-19 丸文株式会社 半導体発光素子及びフォトニック結晶周期構造のパラメータ計算方法
JP5861947B2 (ja) * 2014-02-05 2016-02-16 ウシオ電機株式会社 半導体発光素子及びその製造方法
KR101648079B1 (ko) * 2014-03-06 2016-08-12 마루분 가부시키가이샤 심자외 led 및 그 제조 방법
KR20190085170A (ko) * 2014-06-13 2019-07-17 우시오덴키 가부시키가이샤 질화물 반도체 발광 소자
JP2016039326A (ja) * 2014-08-08 2016-03-22 ウシオ電機株式会社 窒化物半導体発光素子
TWI577046B (zh) * 2014-12-23 2017-04-01 錼創科技股份有限公司 半導體發光元件及其製作方法
CN107210336B (zh) 2015-01-16 2019-05-10 丸文株式会社 深紫外led及其制造方法
JP5953447B1 (ja) * 2015-02-05 2016-07-20 Dowaエレクトロニクス株式会社 Iii族窒化物半導体発光素子およびその製造方法
EP3346509B1 (en) 2015-09-03 2021-06-30 Marubun Corporation Deep-ultraviolet led and method for manufacturing same
JP2017050439A (ja) * 2015-09-03 2017-03-09 豊田合成株式会社 紫外発光素子およびその製造方法
US9806227B2 (en) 2015-09-17 2017-10-31 Crystal Is, Inc. Ultraviolet light-emitting devices incorporating graded layers and compositional offsets
CN107534072B (zh) 2016-03-30 2019-04-19 丸文株式会社 深紫外led及其制造方法
JP6438542B1 (ja) * 2017-07-27 2018-12-12 日機装株式会社 半導体発光素子
WO2019146737A1 (ja) 2018-01-26 2019-08-01 丸文株式会社 深紫外led及びその製造方法
JP2020021798A (ja) * 2018-07-31 2020-02-06 日機装株式会社 窒化物半導体発光素子及びその製造方法
JP7140978B2 (ja) * 2019-05-27 2022-09-22 日亜化学工業株式会社 窒化物半導体発光素子の製造方法
JP2023184298A (ja) * 2022-06-17 2023-12-28 スタンレー電気株式会社 垂直共振器型発光素子及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044573A (ja) * 1999-08-03 2001-02-16 Sanyo Electric Co Ltd 窒化物系半導体素子及び窒化物系発光素子
JP2003289156A (ja) * 2002-03-28 2003-10-10 Stanley Electric Co Ltd 窒化ガリウム系半導体結晶の成長方法及び化合物半導体発光素子
JP2003309071A (ja) * 2002-04-15 2003-10-31 Mitsubishi Cable Ind Ltd GaN系半導体結晶基材
JP3614070B2 (ja) 2000-01-17 2005-01-26 日亜化学工業株式会社 窒化物半導体発光ダイオード
JP2009200337A (ja) * 2008-02-22 2009-09-03 Sumitomo Electric Ind Ltd Iii族窒化物発光素子、及びiii族窒化物系半導体発光素子を作製する方法
JP2009224397A (ja) * 2008-03-13 2009-10-01 Sharp Corp 発光装置およびこれを利用した照明装置、表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017741A (ja) * 2001-03-21 2003-01-17 Furukawa Electric Co Ltd:The GaN系発光素子
US6833564B2 (en) * 2001-11-02 2004-12-21 Lumileds Lighting U.S., Llc Indium gallium nitride separate confinement heterostructure light emitting devices
US7005685B2 (en) * 2002-02-28 2006-02-28 Shiro Sakai Gallium-nitride-based compound semiconductor device
GB2407700A (en) * 2003-10-28 2005-05-04 Sharp Kk MBE growth of nitride semiconductor lasers
GB2407701A (en) * 2003-10-28 2005-05-04 Sharp Kk Manufacture of a semiconductor light-emitting device
JP5191843B2 (ja) * 2008-09-09 2013-05-08 株式会社東芝 半導体発光素子及びウェーハ
JP2010258096A (ja) * 2009-04-22 2010-11-11 Panasonic Electric Works Co Ltd 窒化物半導体発光素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044573A (ja) * 1999-08-03 2001-02-16 Sanyo Electric Co Ltd 窒化物系半導体素子及び窒化物系発光素子
JP3614070B2 (ja) 2000-01-17 2005-01-26 日亜化学工業株式会社 窒化物半導体発光ダイオード
JP2003289156A (ja) * 2002-03-28 2003-10-10 Stanley Electric Co Ltd 窒化ガリウム系半導体結晶の成長方法及び化合物半導体発光素子
JP2003309071A (ja) * 2002-04-15 2003-10-31 Mitsubishi Cable Ind Ltd GaN系半導体結晶基材
JP2009200337A (ja) * 2008-02-22 2009-09-03 Sumitomo Electric Ind Ltd Iii族窒化物発光素子、及びiii族窒化物系半導体発光素子を作製する方法
JP2009224397A (ja) * 2008-03-13 2009-10-01 Sharp Corp 発光装置およびこれを利用した照明装置、表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519500A1 (de) * 2017-01-03 2018-07-15 Univ Linz Lichtemittierendes Halbleiterelement
AT519500B1 (de) * 2017-01-03 2019-03-15 Univ Linz Lichtemittierendes Halbleiterelement

Also Published As

Publication number Publication date
US20130037820A1 (en) 2013-02-14
JP2011222728A (ja) 2011-11-04
EP2568512A4 (en) 2015-12-09
CN102792470A (zh) 2012-11-21
KR20120117892A (ko) 2012-10-24
JP5549338B2 (ja) 2014-07-16
KR101399250B1 (ko) 2014-05-27
CN102792470B (zh) 2015-07-29
EP2568512A1 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5549338B2 (ja) 紫外光放射用窒素化合物半導体ledおよびその製造方法
KR101646064B1 (ko) 질화물 반도체 발광 소자의 제조 방법, 웨이퍼, 질화물 반도체 발광 소자
EP2164115A1 (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
US7629619B2 (en) Group III nitride-based compound semiconductor light-emitting device and method for producing the same
US7456034B2 (en) Nitride semiconductor device and method for fabricating the same
JP4617922B2 (ja) 半導体装置の製造方法
WO2004008551A1 (ja) 窒化ガリウム系化合物半導体装置
JP2010080955A (ja) 半導体装置
TWI416760B (zh) 三族氮化物系化合物半導體發光元件及其製造方法
JP2007134507A (ja) 半導体発光素子、および半導体発光素子を作製する方法
JP4424680B2 (ja) 3族窒化物半導体の積層構造、及びその製造方法、並びに、半導体発光素子、及びその製造方法
JP2010199236A (ja) 発光素子の製造方法および発光素子
JP2006210692A (ja) 3族窒化物系化合物半導体発光素子
JP5234814B2 (ja) 窒化物半導体発光素子の製造方法
JP4940670B2 (ja) 窒化物半導体発光素子を作製する方法
JPH0832113A (ja) p型GaN系半導体の製造方法
WO2018163824A1 (ja) 半導体発光素子および半導体発光素子の製造方法
JP2008311579A (ja) 窒化物半導体発光素子の製造方法
JP2008288532A (ja) 窒化物系半導体装置
JP4284944B2 (ja) 窒化ガリウム系半導体レーザ素子の製造方法
JP2019033284A (ja) 半導体発光素子および半導体発光素子の製造方法
JP3753369B2 (ja) 窒化物系半導体発光素子
JP2006140530A (ja) p型窒化物半導体の製造方法
JP2006344930A (ja) Iii族窒化物半導体素子の製造方法
JP2008227103A (ja) GaN系半導体発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013599.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127021947

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011765351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011765351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13639971

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE