WO2011122667A1 - 希土類焼結磁石、その製造方法、モーター、及び自動車 - Google Patents

希土類焼結磁石、その製造方法、モーター、及び自動車 Download PDF

Info

Publication number
WO2011122667A1
WO2011122667A1 PCT/JP2011/058046 JP2011058046W WO2011122667A1 WO 2011122667 A1 WO2011122667 A1 WO 2011122667A1 JP 2011058046 W JP2011058046 W JP 2011058046W WO 2011122667 A1 WO2011122667 A1 WO 2011122667A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
sintered magnet
magnet
earth sintered
mass
Prior art date
Application number
PCT/JP2011/058046
Other languages
English (en)
French (fr)
Inventor
文崇 馬場
田中 哲
信 岩崎
石坂 力
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2012508363A priority Critical patent/JP5392400B2/ja
Priority to CN201180017476.0A priority patent/CN103098151B/zh
Priority to EP11762891.7A priority patent/EP2555207B1/en
Priority to US13/637,247 priority patent/US9350203B2/en
Publication of WO2011122667A1 publication Critical patent/WO2011122667A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles

Definitions

  • the present invention relates to a rare earth sintered magnet, a manufacturing method thereof, a motor, and an automobile.
  • a rare earth sintered magnet having a composition of RTB (R is a rare earth element, T is a metal element such as Fe) is a magnet having excellent magnetic properties, and aims to further improve its magnetic properties.
  • RTB is a rare earth element
  • T is a metal element such as Fe
  • Patent Document 1 residual magnetic flux density (Br) and coercive force (HcJ) are used as indices representing the magnetic characteristics of a magnet, and it can be said that a magnet having a high balance between these values has excellent magnetic characteristics.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a rare earth magnet having excellent Br and HcJ, and a motor and an automobile using the same.
  • a rare earth sintered magnet of the present invention comprises a main phase particle group of an RTB rare earth magnet having a core and a shell covering the core, and the thickness of the shell is 500 nm or less.
  • R includes a light rare earth element and a heavy rare earth element, and a Zr compound is present in the grain boundary phase and / or shell of the main phase particle group.
  • the main phase particle group means a plurality of main phase particles. Further, a portion where the ratio of heavy rare earth element to light rare earth element (heavy rare earth element / light rare earth element) is more than twice the ratio in the main phase particle center (core) is defined as a shell.
  • the rare earth sintered magnet of the present invention can achieve both Br and HcJ at a high level as compared with the prior art.
  • a Ga compound further exists in the grain boundary phase of the main phase particle group. Thereby, the magnetic characteristics of the magnet can be further improved.
  • the oxygen element content is preferably 2500 ppm or less, and the carbon element content is preferably 500 ppm or more and 1500 ppm or less. Thereby, the magnetic characteristics of the magnet can be further improved.
  • the B element content is preferably 0.85 mass% or more and 0.98 mass% or less. Thereby, the magnetic characteristics of the magnet can be further improved.
  • the total content of rare earth elements (R) is preferably 29.0 mass% or more and 33.0 mass% or less. Thereby, the magnetic characteristics of the magnet can be further improved.
  • the Zr element content is preferably 0.05% by mass or more and 0.5% by mass or less. Thereby, a residual magnetic flux density and a coercive force can be improved more.
  • the motor of the present invention includes the rare earth sintered magnet of the present invention.
  • the rare earth sintered magnet of the present invention has a high residual magnetic flux density, when the volume and shape of the rare earth sintered magnet of the present invention are the same as those of the conventional RTB-based rare earth sintered magnet, the rare earth sintered magnet of the present invention is used.
  • the number of magnetic fluxes of the magnetized magnet is increased compared to the conventional case. Therefore, according to the motor provided with the rare earth sintered magnet of the present invention, the energy conversion efficiency is improved as compared with the conventional one.
  • the rare earth sintered magnet of the present invention Even if the volume of the rare earth sintered magnet of the present invention is smaller than that of the conventional RTB rare earth sintered magnet, the rare earth sintered magnet of the present invention having a high residual magnetic flux density is equivalent to the conventional magnet. Have several magnetic fluxes. That is, the rare earth sintered magnet of the present invention can be reduced in size without reducing the number of magnetic fluxes as compared with the conventional magnet. As a result, according to the present invention, the yoke volume and the amount of windings are reduced in accordance with the size reduction of the rare earth sintered magnet, so that the motor can be reduced in size and weight.
  • the automobile of the present invention includes the motor of the present invention. That is, the automobile of the present invention is driven by the motor of the present invention.
  • the automobile is, for example, an electric vehicle, a hybrid vehicle, or a fuel cell vehicle driven by the motor of the present invention.
  • the automobile of the present invention is driven by the motor of the present invention, which has higher energy conversion efficiency than before, its fuel efficiency is improved.
  • the motor can be reduced in size and weight, so that the automobile itself can be reduced in size and weight. As a result, the fuel efficiency of the automobile is improved.
  • the method for producing a rare earth sintered magnet of the present invention includes a first step of attaching a slurry containing a heavy rare earth compound containing a heavy rare earth element, a binder and a solvent to a sintered body of an RTB rare earth magnet containing Zr. And a second step of heat-treating the sintered body to which the slurry is adhered.
  • a rare earth sintered magnet having excellent Br and HcJ can be produced.
  • the present invention it is possible to provide a rare earth sintered magnet having excellent Br and HcJ, and a motor and an automobile using the rare earth sintered magnet.
  • FIG. 1 is a schematic cross-sectional view of a rare earth sintered magnet according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a magnet manufacturing process according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an internal structure of a motor according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of an automobile according to an embodiment of the present invention.
  • FIGS. 5A and 5B are diagrams showing the results of line analysis using STEM-EDS for the base material and the rare earth sintered magnet, respectively.
  • FIG. 1 shows an analysis of a rare earth sintered magnet (hereinafter, also simply referred to as “magnet”) manufactured in the example using an energy dispersive X-ray spectrometer (STEM-EDS) provided in a scanning transmission electron microscope.
  • STEM-EDS energy dispersive X-ray spectrometer
  • 3 is a schematic cross-sectional view of a rare earth sintered magnet according to an embodiment of the present invention created based on the results.
  • the rare earth sintered magnet 10 includes a plurality of main phase particles 2 and a grain boundary phase 7 existing at the grain boundary of the group 2 of main phase particles.
  • the main phase particle 2 includes a core 4 and a shell 6 that covers the core 4. Further, the Zr compound 8 is present in the grain boundary phase 7 and / or the shell 6.
  • the main phase particle 2 is composed of an RTB rare earth magnet (for example, R 2 T 14 B).
  • the rare earth element R includes a light rare earth element and a heavy rare earth element.
  • the light rare earth element may be at least one selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, and Eu.
  • the heavy rare earth element may be at least one selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the metal element T contains Fe and Co.
  • the portion where the ratio of heavy rare earth element to light rare earth element (heavy rare earth element / light rare earth element) is at least twice the ratio in the central part (core) of the main phase particle is defined as the shell. .
  • the thickness of the shell 6 is 500 nm or less, more preferably 300 nm or less.
  • the particle size of the main phase particles 2 (crystal particles) is preferably 3.0 to 6.5 ⁇ m.
  • a heavy rare earth element such as Dy or Tb may be added as R to the RTB-based rare earth magnet.
  • the addition of heavy rare earth elements increases the anisotropic magnetic field, makes it difficult for reversal nuclei to occur, and increases the coercive force.
  • the saturation magnetization (saturation magnetic flux density) of the RTB rare earth magnet decreases and the residual magnetic flux density also decreases.
  • a structure having a core that mainly contributes to the residual magnetic flux density characteristics and a shell that contributes to the coercive force is effective.
  • the Zr compound 8 may be any compound containing Zr, and specific examples include Nd—Zr—Cu compounds and Zr—B compounds. Note that the Zr compound may be present in the shell.
  • the presence of the Zr compound 8 in the grain boundary phase 7 and / or the shell 6 suppresses the diffusion of the heavy rare earth element into the main phase particles, which is a residual magnetic flux. It is thought that it contributes to the improvement of density and coercive force. That is, by suppressing the diffusion of the heavy rare earth element into the core 4, Br does not decrease, and the heavy rare earth element is concentrated in the shell 6, resulting in a high coercive force.
  • the Zr content in the rare earth sintered magnet is preferably 0.05% by mass or more and 0.5% by mass or less, and more preferably 0.08% by mass or more and 0.2% by mass or less.
  • the presence of the Zr compound 8 in the grain boundary phase 7 is confirmed by observing Zr precipitates near the grain boundary with STEM-EDS.
  • the content of oxygen element in the sintered body is preferably 3000 ppm by mass or less, and more preferably 1000 ppm or less.
  • the amount of oxygen is large, the oxide in the sintered body tends to prevent diffusion of heavy rare earth elements, and the shell 6 tends not to be formed.
  • As a method for reducing the oxygen content in the sintered body it is possible to maintain the raw material alloy in an atmosphere having a low oxygen concentration from hydrogen storage and pulverization to sintering. However, even if the oxygen content in the sintered body is outside the above range, the magnet of this embodiment can be created.
  • the carbon element content in the sintered body is preferably 500 ppm or more and 1500 ppm or less, and more preferably 700 ppm or more and 1200 ppm or less.
  • the smaller the amount of carbon the fewer impurities in the resulting sintered magnet, and the magnetic properties of the sintered magnet are improved.
  • the amount of carbon is large, the oxide in the sintered body tends to prevent the diffusion of heavy rare earth elements, and the shell 6 tends not to be formed.
  • the amount of carbon is small, it becomes difficult to orient at the time of magnetic field molding described later. Since the carbon element is mainly added by a lubricant at the time of molding, it can be controlled by its amount.
  • the Ga compound may be a compound containing Ga, and R 6 Fe 13 Ga is given as a specific example.
  • the grain boundary contains this Ga compound, the melting point of the grain boundary is lowered, and when the heavy rare earth compound is diffused into the sintered body, the diffusion is promoted.
  • the rare earth sintered magnet of the present embodiment further includes other elements such as Ni, Mn, Al, Cu, Nb, Ti, W, Mo, V, Ga, Zn, Si, O, and C as necessary.
  • R 29.0-33.0% by mass
  • B 0.85 to 0.98 mass% Al: 0.03 to 0.25% by mass
  • Cu 0.01 to 0.15% by mass
  • Zr 0.03 to 0.25% by mass
  • Co 3% by mass or less (excluding 0% by mass)
  • C 500 ppm to 1500 ppm
  • Fe remainder It can have the composition which consists of.
  • the residual magnetic flux density in the rare earth sintered magnet of the present invention is preferably 1,35 or more.
  • the coercive force of the rare earth sintered magnet of the present invention is preferably 1600 or more.
  • FIG. 2 is a flowchart showing a magnet manufacturing process according to an embodiment of the present invention.
  • an alloy is prepared which can obtain an RTB-based rare earth sintered magnet containing Zr having a desired composition (step S11).
  • a simple substance, an alloy, a compound, or the like containing an element such as a metal corresponding to the composition of the rare earth sintered magnet is dissolved in an inert gas atmosphere such as vacuum or argon, and then a casting method is used.
  • An alloy having a desired composition is manufactured by performing an alloy manufacturing process such as strip casting.
  • a preferred multi-alloy method is a method using a main phase alloy containing mainly Nd 2 Fe 14 B as a main phase and a grain boundary phase alloy containing R as a main grain boundary phase. In this case, when Zr is added from the grain boundary phase alloy, Zr is likely to segregate in the vicinity of the grain boundary of the main phase, and the effect of controlling the diffusion of the heavy rare earth element into the main phase particles is easily obtained.
  • the obtained alloy is coarsely pulverized to obtain particles having a particle size of about several hundred ⁇ m (step S12).
  • the coarse pulverization of the alloy is performed by using a coarse pulverizer such as a jaw crusher, a brown mill, a stamp mill, or the like. It can be performed by causing pulverization (hydrogen occlusion pulverization).
  • the raw material powder of a rare earth sintered magnet having a particle size of preferably about 1 to 10 ⁇ m, more preferably about 3 to 6 ⁇ m (hereinafter referred to as the following) Simply “raw powder”).
  • Fine pulverization is performed by further pulverizing the coarsely pulverized powder using a fine pulverizer such as a jet mill, a ball mill, a vibration mill, and a wet attritor while appropriately adjusting conditions such as pulverization time. To do.
  • a plurality of alloys When a plurality of alloys are used, they can be used in combination. Mixing may be performed before coarse pulverization, before fine pulverization, or after fine pulverization.
  • the raw material powder obtained as described above is formed into a desired shape (step S14).
  • the molding is performed while applying a magnetic field, thereby causing the raw material powder to have a predetermined orientation.
  • the molding can be performed, for example, by press molding.
  • the raw material powder can be formed into a predetermined shape by filling the raw material powder into the mold cavity and then pressing the filled powder between the upper punch and the lower punch.
  • the shape of the molded body obtained by molding is not particularly limited, and can be changed according to a desired magnet shape such as a columnar shape, a flat plate shape, or a ring shape.
  • the pressing at the time of molding is preferably performed at 50 to 200 MPa.
  • the applied magnetic field is preferably 950 to 1600 kA / m.
  • wet forming in which a slurry in which the raw material powder is dispersed in a solvent such as oil is formed can be applied.
  • the molded body is fired by performing a process of heating in a vacuum or in the presence of an inert gas at 1010 to 1110 ° C. for 2 to 6 hours (step S15).
  • the raw material powder undergoes liquid phase sintering, and a sintered body (magnet sintered body) in which the volume ratio of the main phase is improved is obtained.
  • the sintered body it is preferable to process the surface of the sintered body with an acid solution, for example, after appropriately processing the sintered body into a desired size and shape (step S16).
  • an acid solution used for the surface treatment a mixed solution of an aqueous solution such as nitric acid or hydrochloric acid and an alcohol is suitable. This surface treatment can be performed, for example, by immersing the sintered body in an acid solution or spraying the acid solution on the sintered body.
  • surface treatment it is possible to remove dirt and oxide layers attached to the sintered body to obtain a clean surface, and adhesion and diffusion of a heavy rare earth compound described later are advantageous.
  • surface treatment may be performed while applying ultrasonic waves to the acid solution.
  • a slurry containing a heavy rare earth compound containing a heavy rare earth element, a binder, and a solvent is attached to the surface of the sintered body that has been subjected to the surface treatment (step S17) (corresponding to the first step).
  • the heavy rare earth element contained in the heavy rare earth compound is preferably Dy or Tb from the viewpoint of obtaining a rare earth sintered magnet having a high coercive force.
  • Examples of heavy rare earth compounds include hydrides, oxides, halides, and hydroxides of heavy rare earth elements. Of these heavy rare earth compounds, DyH 2 , DyF 3 or TbH 2 is preferred.
  • oxidation of the magnet surface can be prevented by including a binder in the slurry.
  • the heavy rare earth compound is preferably used as a powdered heavy rare earth powder.
  • the heavy rare earth compound is produced by a method of dry pulverizing a heavy rare earth compound or heavy rare earth metal produced by a usual method, or a method of mixing with an organic solvent and wet pulverizing using a ball mill or the like. be able to.
  • the average particle size of the heavy rare earth powder is preferably 100 nm to 50 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m. If the particle size of the heavy rare earth compound is less than 100 nm, the amount of the heavy rare earth compound diffused into the sintered body by the heat treatment becomes excessively large, and the resulting rare earth sintered magnet may have insufficient Br. On the other hand, if it exceeds 50 ⁇ m, diffusion of the heavy rare earth compound into the sintered body becomes difficult to occur, and the effect of improving HcJ may not be sufficiently obtained. In particular, when the average particle size of the heavy rare earth compound is 5 ⁇ m or less, adhesion of the heavy rare earth compound to the sintered body is advantageous, and a higher HcJ improvement effect tends to be obtained.
  • binder examples include acrylic resin, urethane resin, butyral resin, natural resin, and cellulose resin.
  • the solvent is preferably one that can be uniformly dispersed without dissolving the heavy rare earth compound, and is preferably an organic solvent. Specific examples thereof include aldehyde, alcohol, ketone and the like. An organic solvent having a relative dielectric constant of 10 or more at normal temperature is more preferable. Since the organic solvent having a relative dielectric constant of 10 or more has good wettability of the heavy rare earth powder, the dispersibility of the heavy rare earth powder can be more satisfactorily maintained by using such an organic solvent. It is also possible to use these organic solvents mixed with each other.
  • Examples of the method of attaching the slurry to the sintered body include a coating method. More specifically, a method of immersing the sintered body in the slurry, putting the sintered body in the slurry, and stirring with a predetermined medium. The method and the method of dripping a slurry to a sintered compact are mentioned.
  • the content of the heavy rare earth compound in the slurry is preferably 10 to 60% by mass, and more preferably 40 to 50% by mass. If the content of the heavy rare earth compound in the slurry is too small or too large, the heavy rare earth compound tends to be difficult to uniformly adhere to the sintered body, and it may be difficult to obtain a sufficient squareness ratio. Moreover, when there are too many, the surface of a sintered compact may become rough and formation of plating etc. for improving the corrosion resistance of the magnet obtained may become difficult.
  • the binder content in the slurry is preferably 0.5 to 15% by mass based on the weight of the heavy rare earth compound. If the binder content is too low, the anti-oxidation effect on the magnet surface tends to be reduced, and if the binder content is too high, the magnetic properties of the sintered body are reduced compared to the above range. To do.
  • other components that may be contained in the slurry include a dispersant for preventing aggregation of particles of the heavy rare earth compound.
  • the amount of such heavy rare earth compound deposited is within a certain range from the viewpoint of obtaining particularly good magnetic property improvement effect.
  • the adhesion amount (adhesion rate:%) of the heavy rare earth compound to the mass of the rare earth sintered magnet (total mass of the sintered body and the heavy rare earth compound) is preferably 0.1 to 3% by mass.
  • the content is more preferably 0.1 to 2% by mass, and further preferably 0.2 to 1% by mass.
  • step S18 the sintered body to which the heavy rare earth compound is adhered is subjected to heat treatment (step S18) (corresponding to the second step).
  • the heat treatment can be performed in, for example, a two-stage process. In this case, it is preferable to perform the heat treatment at about 800 to 1000 ° C. for 10 minutes to 10 hours in the first stage and to perform the heat treatment at about 500 to 600 ° C. for 1 to 4 hours in the second stage.
  • the heavy rare earth compound is mainly diffused in the first stage, and the second-stage heat treatment becomes a so-called aging treatment and contributes to the improvement of magnetic properties (particularly HcJ).
  • the heat treatment is not necessarily performed in two stages, and may be performed so that at least diffusion of the heavy rare earth compound occurs.
  • the heat treatment causes diffusion of the heavy rare earth compound from the surface to the inside of the sintered body.
  • the heavy rare earth compound mainly follows the boundary of the main phase particles constituting the sintered body and the grain boundary phase. It is thought to spread.
  • heavy rare earth elements derived from heavy rare earth compounds are unevenly distributed in the outer edge region and grain boundary phase of the main phase particles.
  • the sintered body in which the heavy rare earth compound is diffused is cut into a desired size or subjected to a surface treatment as necessary to obtain a desired rare earth sintered magnet.
  • the obtained rare earth sintered magnet may further be provided with a protective layer for preventing deterioration of a plated layer, an oxide layer, a resin layer, or the like on the surface.
  • FIG. 3 is an explanatory diagram showing an example of the internal structure of the motor of this embodiment.
  • the motor 100 of the present embodiment is a permanent magnet synchronous motor (IPM motor), and includes a cylindrical rotor 20 and a stator 30 disposed outside the rotor 20.
  • the rotor 20 is housed in a cylindrical rotor core 22, a plurality of magnet housing portions 24 that house the rare earth sintered magnet 10 at predetermined intervals along the outer peripheral surface of the cylindrical rotor core 22, and the magnet housing portion 24.
  • the rare earth sintered magnets 10 adjacent to each other in the circumferential direction of the rotor 20 are accommodated in the magnet accommodating portion 24 so that the positions of the N pole and the S pole are opposite to each other. Thereby, the rare earth sintered magnets 10 adjacent along the circumferential direction generate lines of magnetic force in opposite directions along the radial direction of the rotor 20.
  • the stator 30 has a plurality of coil portions 32 provided at predetermined intervals along the outer peripheral surface of the rotor 20.
  • the coil portion 32 and the rare earth sintered magnet 10 are disposed so as to face each other.
  • the stator 30 applies torque to the rotor 20 by electromagnetic action, and the rotor 20 rotates in the circumferential direction.
  • the IPM motor 100 includes the rare earth sintered magnet 10 according to the above embodiment in the rotor 20.
  • the rare earth sintered magnet 10 has an excellent magnetic property and a plating film that does not easily peel off. For this reason, the IPM motor 100 is excellent in reliability.
  • the IPM motor 100 can maintain a high output for a longer period than before.
  • the IPM motor 100 can be manufactured by an ordinary method using ordinary motor parts except for the rare earth sintered magnet 10.
  • the motor of the present invention is not limited to an IPM motor in the case of a permanent magnet synchronous motor, and may be an SPM motor.
  • a permanent magnet DC motor In addition to the permanent magnet synchronous motor, a permanent magnet DC motor, a linear synchronous motor, a voice coil motor, and a vibration motor may be used.
  • FIG. 4 is a conceptual diagram showing a power generation mechanism, a power storage mechanism, and a drive mechanism of an automobile according to the present embodiment.
  • the structure of the automobile according to the present embodiment is not limited to that shown in FIG.
  • the automobile 50 according to the present embodiment includes the motor 100, the wheels 48, the storage battery 44, the generator 42, and the engine 40 of the present embodiment.
  • the mechanical energy generated by the engine 40 is converted into electric energy by the generator 42.
  • This electrical energy is stored in the storage battery 44.
  • the stored electrical energy is converted into mechanical energy by the motor 100.
  • the mechanical energy from the motor 100 rotates the wheels 48 and drives the automobile 50.
  • Example 1 First, raw metal materials for rare earth sintered magnets were prepared, and using these, the composition shown in Table 1 (composition: 29 wt% Nd-2 wt% Dy-0.5 wt% Co-0.2 wt% Al-0.07) was obtained by strip casting.
  • the raw material alloy was prepared so that (wt% Cu-0.2wt% Zr-0.95wt% B-bal.Fe) was obtained.
  • hydrogen crushing treatment was performed in which dehydrogenation was performed at 600 ° C. for 1 hour in an Ar atmosphere.
  • the powder after hydrogen pulverization was further finely pulverized to obtain a raw material powder having an average particle diameter (D50) of 4.0 ⁇ m (crystal particle diameter: 4.2 ⁇ m).
  • the raw material powder was filled in a mold placed in an electromagnet and molded in a magnetic field to produce a molded body.
  • the raw material powder was pressurized at 120 MPa while applying a magnetic field of 1200 kA / m to the raw material powder.
  • the molded body was sintered in vacuum at 1050 ° C. for 4 hours, and then rapidly cooled to obtain a sintered body.
  • each process from a hydrogen crushing process to sintering was performed in the atmosphere whose oxygen concentration is less than 100 ppm.
  • the sintered body was processed into 5 mm (magnetic anisotropy direction) ⁇ 15 mm ⁇ 10 mm.
  • the sintered body after processing was subjected to two stages of heat treatment to obtain a substrate 1.
  • the sintered body was heated at 900 ° C. for 6 hours in an Ar atmosphere.
  • the sintered body was heated at 540 ° C. for 2 hours in an Ar atmosphere.
  • Example 1 Furthermore, apart from the base material 1, after applying a slurry containing DyH 2 , a binder, and a polar solvent to the entire surface by the dipping method on the processed sintered body, the same two-stage heat treatment as described above is performed, The rare earth sintered magnet of Example 1 was produced. In the application, the total weight of DyH 2 and the binder with respect to the application area was set to 5 mg / cm 2 .
  • Examples 2 to 11, Comparative Examples 1 to 12 The rare earth sintered magnets of Examples 2 to 11 and Comparative Examples 1 to 12 were prepared in the same manner as in Example 1 except that the composition and crystal grain size in the rare earth sintered magnet were changed as shown in Tables 1 to 3. Produced.
  • the oxygen content and the nitrogen content were measured with a metal oxygen and nitrogen analyzer. Specifically, the sample was gasified with a graphite crucible (oxygen is CO, nitrogen is N 2 ), CO is detected with a non-dispersive infrared detector, and N 2 is detected with a heat conduction detector.
  • the carbon content was measured with a carbon-in-metal analyzer. Specifically, the sample was gasified (CO, CO 2 ) with a high-frequency induction heating furnace and detected with a non-dispersive infrared detector.
  • FIG. 5A is a diagram showing the analysis results for the base material
  • FIG. 5B is a diagram showing the analysis results for the rare earth sintered magnet.
  • Nd the heavy rare earth element with respect to the light rare earth element
  • the ratio (Dy / Nd) of the element (Dy) is more than twice the ratio in the main phase particle central portion (core), and there is no shell portion.
  • the concentration of Nd increases rapidly in the vicinity of the grain boundary phase, and Dy / Nd is mainly present in the vicinity of the grain boundary phase of the main phase particles.
  • the part shown with the double arrow in FIG.5 (b) corresponds to a shell part.
  • the rare earth sintered magnets of Examples 1 to 13 are excellent in residual magnetic flux density and coercive force.
  • the rare earth sintered magnets of Comparative Examples 1 to 12 are inferior in at least one of residual magnetic flux density and coercive force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 コア4と、コア4を被覆するシェル6とを有するR-T-B系希土類磁石の主相粒子2群を備え、シェル6の厚みが500nm以下であり、Rは軽希土類元素及び重希土類元素を含み、主相粒子2群の粒界相7及び/又はシェル6にZr化合物8が存在する希土類焼結磁石10、希土類焼結磁石10を備えるモーター、及び該モーターを備える自動車。

Description

希土類焼結磁石、その製造方法、モーター、及び自動車
 本発明は、希土類焼結磁石、その製造方法、モーター、及び自動車に関する。
 R-T-B(Rは希土類元素、TはFe等の金属元素)系の組成を有する希土類焼結磁石は、優れた磁気特性を有する磁石であり、その磁気特性の更なる向上を目指して多くの検討がなされている(例えば、特許文献1)。磁石の磁気特性を表す指標としては、一般に、残留磁束密度(Br)及び保磁力(HcJ)が用いられ、これらの値がバランスよく高い磁石は優れた磁気特性を有するということができる。
国際公開第2009/4994号パンフレット
 近年、希土類磁石の用途は多岐にわたっており、従来に比して高い磁気特性が求められる場合が増えてきている。そのような状況下、BrやHcJといった磁気特性を少しでも向上することができれば、工業的には極めて有用である。
 そこで、本発明はこのような事情に鑑みてなされたものであり、優れたBr及びHcJを有する希土類磁石、並びにこれを用いたモーター及び自動車を提供することを目的とする。
 上記目的を達成するため、本発明の希土類焼結磁石は、コアと、コアを被覆するシェルとを有するR-T-B系希土類磁石の主相粒子群を備え、シェルの厚みが500nm以下であり、Rは軽希土類元素及び重希土類元素を含み、主相粒子群の粒界相及び/又はシェルにZr化合物が存在することを特徴とする。なお、主相粒子群とは、複数の主相粒子を意味する。また、軽希土類元素に対する重希土類元素の割合(重希土類元素/軽希土類元素)が、主相粒子中心部(コア)における割合の2倍以上となっている部分をシェルと規定する。
 上記本発明の希土類焼結磁石は、従来に比してBr及びHcJを高いレベルで両立することができる。
 上記主相粒子群の粒界相にGa化合物がさらに存在することが好ましい。これにより、磁石の磁気特性をさらに向上させることができる。
 上記希土類焼結磁石において、酸素元素の含有割合は2500ppm以下であり、かつ炭素元素の含有割合が500ppm以上1500ppm以下であることが好ましい。これにより、磁石の磁気特性をさらに向上させることができる。
 上記希土類焼結磁石において、B元素の含有割合は0.85質量%以上0.98質量%以下であることが好ましい。これにより、磁石の磁気特性をさらに向上させることができる。
 上記希土類焼結磁石において、希土類元素(R)の含有割合の合計は29.0質量%以上33.0質量%以下であることが好ましい。これにより、磁石の磁気特性をさらに向上させることができる。
 上記希土類焼結磁石において、Zr元素の含有割合は0.05質量%以上0.5質量%以下であることが好ましい。これにより、残留磁束密度及び保磁力をより向上させることができる。
 本発明のモーターは、上記本発明の希土類焼結磁石を備える。
 本発明の希土類焼結磁石の残留磁束密度は高いので、本発明の希土類焼結磁石の体積及び形状が従来のR-T-B系希土類焼結磁石と同じである場合、本発明の希土類焼結磁石の磁束数は従来よりも増加する。したがって、本発明の希土類焼結磁石を備えるモーターによれば、従来よりもエネルギー変換効率が向上する。
 本発明の希土類焼結磁石の体積が従来のR-T-B系希土類焼結磁石よりも小さい場合であっても、残留磁束密度が高い本発明の希土類焼結磁石は従来の磁石と同等の数の磁束を有する。つまり、本発明の希土類焼結磁石は、従来の磁石と比べて磁束数を減らすことなく小型化できる。その結果、本発明によれば、ヨーク体積及び巻線の量も希土類焼結磁石の小型化に応じて減るため、モーターの小型化及び軽量化が可能となる。
 本発明の自動車は、上記本発明のモーターを備える。すなわち、本発明の自動車は、本発明のモーターによって駆動される。なお、本発明において、自動車とは、例えば、本発明のモーターによって駆動される電気自動車、ハイブリッド自動車、又は燃料電池車である。
 本発明の自動車は、従来よりもエネルギー変換効率が高い本発明のモーターによって駆動されるため、その燃費が向上する。また、本発明の自動車では、上記のように、モーターの小型化及び軽量化が可能であるため、自動車自体の小型化及び軽量化も可能となる。その結果、自動車の燃費が向上する。
 本発明の希土類焼結磁石の製造方法は、Zrを含むR-T-B系希土類磁石の焼結体に、重希土類元素を含む重希土類化合物、バインダ及び溶媒を含むスラリーを付着させる第1工程と、スラリーが付着した焼結体を熱処理する第2工程とを有することを特徴とする。
 上記本発明の製造方法によれば、優れたBr及びHcJを有する希土類焼結磁石を製造することができる。
 本発明によれば、優れたBr及びHcJを有する希土類焼結磁石、並びにこれを用いたモーター及び自動車を提供することができる。
図1は、本発明の一実施形態に係る希土類焼結磁石の模式断面図である。 図2は、本発明の一実施形態に係る磁石の製造工程を示すフローチャートである。 図3は、本発明の一実施形態に係るモーターの内部構造を示す図である。 図4は、本発明の一実施形態に係る自動車の概念図である。 図5(a),(b)は、それぞれ基材及び希土類焼結磁石について、STEM-EDSを用いてライン分析を行った結果を示す図である。
 以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。
(希土類焼結磁石)
 図1は、実施例で作製した希土類焼結磁石(以下、単に「磁石」ともいう。)について、走査透過電子顕微鏡が備えるエネルギー分散型X線分光器(STEM-EDS)を用いて分析を行った結果に基づいて作成した、本発明の一実施形態に係る希土類焼結磁石の模式断面図である。
 希土類焼結磁石10は、複数の主相粒子2と、主相粒子2群の粒界に存在する粒界相7とを含む。主相粒子2は、コア4と、コア4を被覆するシェル6とからなる。また、粒界相7及び/又はシェル6にはZr化合物8が存在する。
 主相粒子2は、R-T-B系希土類磁石(例えば、R14B)から構成される。希土類元素Rは、軽希土類元素及び重希土類元素を含む。軽希土類元素は、La,Ce,Pr,Nd,Pm,Sm及びEuからなる群より選ばれる少なくとも一種であればよい。重希土類元素は、Gd,Tb,Dy,Ho,Er,Tm,Yb及びLuからなる群より選ばれる少なくとも一種であればよい。金属元素Tは、Fe及びCoを含む。
 本実施形態においては、軽希土類元素に対する重希土類元素の割合(重希土類元素/軽希土類元素)が、主相粒子中心部(コア)における割合の2倍以上となっている部分をシェルと規定する。
 シェル6の厚さは500nm以下であり、より好ましくは300nm以下である。また、主相粒子2(結晶粒子)の粒径は、好ましくは3.0~6.5μmである。
 R-T-B系希土類磁石の保磁力を向上させるためには、一般的にR-T-B系希土類磁石にRとしてDyやTb等の重希土類元素を添加すればよい。重希土類元素の添加によって、異方性磁界が大きくなり、磁化反転の核が発生し難くなり、保磁力が高くなる。しかし、重希土類元素の添加量が多すぎると、R-T-B系希土類磁石の飽和磁化(飽和磁束密度)が小さくなり、残留磁束密度も小さくなる。したがって、R-T-B系希土類磁石では、残留磁束密度と保磁力を両立させるために、主に残留磁束密度特性に寄与するコアと、保磁力に寄与するシェルを有した構造が有効である。
 Zr化合物8は、Zrを含む化合物であればよく、Nd-Zr-Cu化合物、Zr-B化合物が具体例として挙げられる。なお、Zr化合物はシェル中に存在していてもよい。本実施形態の希土類焼結磁石においては、Zr化合物8が粒界相7及び/又はシェル6に存在することによって、主相粒子内部への重希土類元素の拡散が抑制されることが、残留磁束密度及び保磁力の向上に貢献しているものと考えられる。つまりコア4への重希土類元素の拡散が抑制されることで、Brが低下せず、シェル6に重希土類元素が濃縮されるため、高保磁力になる。希土類焼結磁石におけるZrの含有量は0.05質量%以上0.5質量%以下であることが好ましく、0.08質量%以上0.2質量%以下であることがより好ましい。
 なお、粒界相7にZr化合物8が存在することは、STEM-EDSで粒界付近のZr析出物を観察することにより確認される。
 焼結体における酸素元素の含有量は3000質量ppm以下であることが好ましく、1000ppm以下であることがより好ましい。酸素量が少ないほど、得られる焼結磁石中の不純物が少なくなり、焼結磁石の磁気特性が向上する。酸素量が多い場合、焼結体中の酸化物が、重希土類元素の拡散の妨げ、シェル6が形成され難い傾向がある。焼結体における酸素の含有量を低減する方法としては、水素吸蔵粉砕から焼結までの間、原料合金を酸素濃度が低い雰囲気下に維持することが挙げられる。ただし、焼結体における酸素の含有量が上記の範囲外であっても、本実施形態の磁石の作成は可能である。
 焼結体における炭素元素の含有量は500ppm以上1500ppm以下であることが好ましく、700ppm以上1200ppm以下であることがより好ましい。炭素量が少ないほど、得られる焼結磁石中の不純物が少なくなり、焼結磁石の磁気特性が向上する。炭素量が多い場合、焼結体中の酸化物が、重希土類元素の拡散の妨げ、シェル6が形成され難い傾向がある。炭素量が少ないと後述の磁場成形時に配向しにくくなる。炭素元素は主に成形時の潤滑剤により添加されるため、その量により制御できる。
 主相粒子2群の粒界相にはGa化合物がさらに存在することが好ましい。Ga化合物は、Gaを含む化合物であればよく、RFe13Gaが具体例として挙げられる。上記粒界がこのGa化合物を含むことにより、粒界の融点が低下し、重希土類化合物を焼結体の内部に拡散させたときに、その拡散が促進される。
 本実施形態の希土類焼結磁石は、必要に応じて、Ni、Mn、Al、Cu、Nb、Ti、W、Mo、V、Ga、Zn、Si、O、C等の他の元素をさらに含んでもよく、例えば
R:29.0~33.0質量%、
B:0.85~0.98質量%、
Al:0.03~0.25質量%、
Cu:0.01~0.15質量%、
Zr:0.03~0.25質量%、
Co:3質量%以下(ただし、0質量%を含まず。)、
Ga:0~0.35質量%、
O:2500ppm以下、
C:500ppm~1500ppm、
Fe:残部、
からなる組成を有するものとすることができる。
 本発明の希土類焼結磁石における残留磁束密度は1,35以上であることが好ましい。また、本発明の希土類焼結磁石における保磁力は1600以上であることが好ましい。
(希土類焼結磁石の製造方法)
 図2は、本発明の一実施形態に係る磁石の製造工程を示すフローチャートである。
 本実施形態の希土類焼結磁石の製造においては、まず、所望の組成を有する、Zrを含むR-T-B系希土類焼結磁石が得られるような合金を準備する(ステップS11)。この工程では、例えば、希土類焼結磁石の組成に対応する金属等の元素を含む単体、合金や化合物等を、真空又はアルゴン等の不活性ガス雰囲気下で溶解した後、これを用いて鋳造法やストリップキャスト法等の合金製造プロセスを行うことによって所望の組成を有する合金を作製する。
 使用する合金の数により、1種類の合金から作製するシングル合金法と複数の合金から作製するマルチ合金法がある。マルチ合金法でも合金組成設計により様々な種類がある。好ましいマルチ合金法としては、主に主相であるNdFe14Bを含む主相合金と、主に粒界相であるRを含む粒界相合金を使用する方法である。この場合Zrは粒界相合金から添加すると、Zrが主相の粒界付近に偏析しやすく、上述した主相粒子内への重希土類元素の拡散を制御する効果が得やすい。
 次に、得られた合金を粗粉砕して、数百μm程度の粒径を有する粒子とする(ステップS12)。合金の粗粉砕は、例えば、ジョークラッシャー、ブラウンミル、スタンプミル等の粗粉砕機を用いるか、又は、合金に水素を吸蔵させた後、異なる相間の水素吸蔵量の相違に基づく自己崩壊的な粉砕を生じさせる(水素吸蔵粉砕)ことによって行うことができる。
 続いて、粗粉砕により得られた粉末をさらに微粉砕することで(ステップS13)、好ましくは1~10μm、より好ましくは3~6μm程度の粒径を有する希土類焼結磁石の原料粉末(以下、単に「原料粉末」という)を得る。微粉砕は、粗粉砕された粉末に対し、粉砕時間等の条件を適宜調整しながら、ジェットミル、ボールミル、振動ミル、湿式アトライター等の微粉砕機を用いて更なる粉砕を行うことによって実施する。
 合金を複数用いる場合には、これらを混合して用いることができる。混合は、粗粉砕前、微粉砕前、微粉砕後のどの段階であってもよい。
 次に、上述のようにして得られた原料粉末を、目的の形状に成形する(ステップS14)。成形は、磁場を印加しながら行い、これにより原料粉末に所定の配向を生じさせる。成形は、例えば、プレス成形により行うことができる。具体的には、原料粉末を金型キャビティ内に充填した後、充填された粉末を上パンチと下パンチとの間で挟むようにして加圧することによって、原料粉末を所定形状に成形することができる。成形によって得られる成形体の形状は特に制限されず、柱状、平板状、リング状等、所望とする磁石の形状に応じて変更することができる。成形時の加圧は、50~200MPaで行うことが好ましい。また、印加する磁場は、950~1600kA/mとすることが好ましい。なお、成形方法としては、上記のように原料粉末をそのまま成形する乾式成形の他、原料粉末を油等の溶媒に分散させたスラリーを成形する湿式成形を適用することもできる。
 次いで、成形体に対して、例えば、真空中又は不活性ガスの存在下、1010~1110℃、2~6時間で加熱する処理を行うことにより焼成を行う(ステップS15)。これにより、原料粉末が液相焼結を生じ、主相の体積比率が向上した焼結体(磁石の焼結体)が得られる。
 焼結体に対しては、適宜所望の大きさや形状に加工した後、例えば焼結体の表面を酸溶液によって処理する表面処理を行う(ステップS16)ことが好ましい。表面処理に用いる酸溶液としては、硝酸、塩酸等の水溶液と、アルコールとの混合溶液が好適である。この表面処理は、例えば、焼結体を酸溶液に浸漬したり、焼結体に酸溶液を噴霧したりすることによって行うことができる。
 かかる表面処理によって、焼結体に付着していた汚れや酸化層等を除去して清浄な表面を得ることができ、後述する重希土類化合物の付着及び拡散が有利となる。汚れや酸化層等の除去をさらに良好に行う観点からは、酸溶液に超音波を印加しながら表面処理を行ってもよい。
 その後、表面処理が施された焼結体の表面に、重希土類元素を含む重希土類化合物、バインダ及び溶媒を含むスラリーを付着させる(ステップS17)(上記第1工程に相当)。重希土類化合物に含まれる重希土類元素としては、保磁力の高い希土類焼結磁石を得る観点から、Dy又はTbが好ましい。重希土類化合物としては、例えば重希土類元素の水素化物、酸化物、ハロゲン化物、水酸化物が挙げられる。これらの重希土類化合物のうち、DyH、DyF又はTbHが好ましい。特に、スラリーにバインダが含まれることにより、磁石表面の酸化を防止することができる。
 重希土類化合物は、粉末状の重希土類粉末として用いることが好ましい。重希土類化合物は、通常の方法によって製造した重希土類化合物や重希土類金属を、ジェットミルを用いて乾式粉砕する方法、又は有機溶媒と混合し、ボールミル等を用いて湿式粉砕する方法等によって製造することができる。
 重希土類粉末の平均粒径は、好ましくは100nm~50μmであり、より好ましくは1μm~5μmである。重希土類化合物の粒径が100nm未満であると、熱処理により焼結体に拡散される重希土類化合物の量が過度に多くなり、得られる希土類焼結磁石のBrが不十分となるおそれがある。一方、50μmを超えると、焼結体中への重希土類化合物の拡散が生じ難くなって、HcJの向上効果が十分に得られなくなる場合がある。また特に、重希土類化合物の平均粒径が5μm以下であると、焼結体への重希土類化合物の付着が有利となり、より高いHcJの向上効果が得られる傾向にある。
 バインダとしては、例えばアクリル樹脂、ウレタン樹脂、ブチラール樹脂、天然樹脂、セルロース樹脂が挙げられる。
 溶媒としては、重希土類化合物を溶解させずに均一に分散させ得るものが好ましく、好ましくは有機溶媒である。その具体例としては、アルデヒド、アルコール、ケトン等が挙げられる。また、常温における比誘電率が10以上の有機溶媒がより好ましい。比誘電率が10以上の有機溶媒は、重希土類粉末のぬれ性が良好であるため、このような有機溶媒を用いることによって、重希土類粉末の分散性を一層良好に維持することができる。また、これらの有機溶媒を相互に混合して使用することも可能である。
 焼結体にスラリーを付着させる方法としては、例えば塗布法が挙げられ、より具体的には焼結体をスラリー中に浸漬させる方法、スラリー中に焼結体を入れ、所定のメディアとともに攪拌する方法、焼結体にスラリーを滴下する方法が挙げられる。
 スラリー中の重希土類化合物の含有量は、10~60質量%であると好ましく、40~50質量%であるとより好ましい。スラリー中の重希土類化合物の含有量が少なすぎたり、多すぎたりすると、焼結体に重希土類化合物が均一に付着し難くなる傾向にあり、十分な角形比が得られ難くなるおそれがある。また、多すぎる場合、焼結体の表面が荒れてしまい、得られる磁石の耐食性を向上させるためのめっき等の形成が困難となる場合もある。
 スラリー中のバインダの含有量は、重希土類化合物の重量に対して、0.5~15質量%であると好ましい。バインダの含有量が少なすぎると、磁石表面の酸化防止効果が低下する傾向にあり、またバインダの含有量が多すぎると、焼結体の磁気特性が上記範囲内にある場合と比較して低下する。
 なお、スラリー中には、必要に応じて他の成分をさらに含有させてもよい。スラリーに含有させてもよい他の成分としては、例えば、重希土類化合物の粒子の凝集を防ぐための分散剤等が挙げられる。
 上記のような方法により、焼結体に重希土類化合物(スラリー)が付着するが、特に良好な磁気特性の向上効果を得る観点からは、かかる重希土類化合物の付着量は、一定の範囲内であることが好ましい。具体的には、希土類焼結磁石の質量(焼結体と重希土類化合物との合計質量)に対する重希土類化合物の付着量(付着率;%)で、0.1~3質量%であると好ましく、0.1~2質量%であるとより好ましく、0.2~1質量%であるとさらに好ましい。
 続いて、重希土類化合物が付着した焼結体に対し、熱処理を施す(ステップS18)(上記第2工程に相当)。これにより、焼結体の表面に付着した重希土類化合物が焼結体の内部に拡散する。熱処理は、例えば2段階の工程で行うことができる。この場合、1段階目では800~1000℃程度で10分~10時間の熱処理を行い、2段階目では500~600℃程度で1~4時間の熱処理を行うことが好ましい。このような2段階の熱処理では、例えば、1段階目で主に重希土類化合物の拡散が生じ、2段階目の熱処理はいわゆる時効処理となって磁気特性の向上(特にHcJ)に寄与する。なお、熱処理は必ずしも2段階で行う必要はなく、少なくとも重希土類化合物の拡散が生じるように行えばよい。
 熱処理により、焼結体の表面から内部への重希土類化合物の拡散が生じるが、この際、重希土類化合物は主に焼結体を構成している主相粒子の境界及び粒界相に沿って拡散すると考えられる。その結果、得られる磁石においては、重希土類化合物に由来する重希土類元素が主相粒子の外縁領域や粒界相に偏在するようになる。
 その後、重希土類化合物を拡散させた焼結体を、必要に応じて所望のサイズに切断したり、表面処理を施したりすることによって、目的とする希土類焼結磁石が得られる。なお、得られた希土類焼結磁石には、その表面上にめっき層、酸化層又は樹脂層等の劣化を防止するための保護層がさらに設けられてもよい。
(モーター)
 図3は、本実施形態のモーターの内部構造の一例を示す説明図である。本実施形態のモーター100は、永久磁石同期モーター(IPMモーター)であり、円筒状のロータ20と該ロータ20の外側に配置されるステータ30とを備えている。ロータ20は、円筒状のロータコア22と、円筒状のロータコア22の外周面に沿って所定の間隔で希土類焼結磁石10を収容する複数の磁石収容部24と、磁石収容部24に収容された複数の希土類焼結磁石10とを有する。
 ロータ20の円周方向に沿って隣り合う希土類焼結磁石10は、N極とS極の位置が互いに逆になるように磁石収容部24に収容されている。これによって、円周方向に沿って隣り合う希土類焼結磁石10は、ロータ20の径方向に沿って互いに逆の方向の磁力線を発生する。
 ステータ30は、ロータ20の外周面に沿って、所定の間隔で設けられた複数のコイル部32を有している。このコイル部32と希土類焼結磁石10とは互いに対向するように配置されている。ステータ30は、電磁気的作用によってロータ20にトルクを与え、ロータ20は円周方向に回転する。
 IPMモーター100は、ロータ20に、上記実施形態に係る希土類焼結磁石10を備える。希土類焼結磁石10は、優れた磁気特性を有するとともに、容易に剥離しないめっき膜を有する。このため、IPMモーター100は信頼性に優れる。IPMモーター100は、従来よりも長い期間にわたって高出力を維持することができる。IPMモーター100は、希土類焼結磁石10以外の点について、通常のモーター部品を用いて通常の方法によって製造することができる。
 本発明のモーターは、永久磁石同期モーターの場合IPMモーターに限定されるものではなくSPMモーターであってもよい。また、永久磁石同期モーターの他に永久磁石直流モーター、リニア同期モーター、ボイスコイルモーター、振動モーターであってもよい。
(自動車)
 図4は、本実施形態の自動車の発電機構、蓄電機構及び駆動機構を示す概念図である、ただし、本実施形態の自動車の構造は、図4に示すものに限定されない。図4に示すように、本実施形態に係る自動車50は、上記本実施形態のモーター100、車輪48、蓄電池44、発電機42及びエンジン40を備える。
 エンジン40で発生した機械的エネルギーは、発電機42によって電気エネルギーに変換される。この電気エネルギーは蓄電池44に蓄電される。蓄電された電気エネルギーは、モーター100によって機械的エネルギーに変換される。モーター100からの機械的エネルギーによって、車輪48が回転し、自動車50が駆動される。
(実施例1)
 まず、希土類焼結磁石の原料金属を準備し、これらを用いてストリップキャスティング法により、表1に示される組成(組成:29wt%Nd-2wt%Dy-0.5wt%Co-0.2wt%Al-0.07wt%Cu-0.2wt%Zr-0.95wt%B-bal.Fe)が得られるように原料合金を作製した。次に、得られた合金に水素を吸蔵させた後、Ar雰囲気で600℃、1時間の脱水素を行う水素破砕処理を行った。
 続いて、水素粉砕後の粉末をさらに微粉砕して、平均粒径(D50)が4.0μm(結晶粒径:4.2μm)の原料粉末を得た。
 この原料粉末を、電磁石中に配置された金型内に充填し、磁場中で成形して成形体を作製した。成形では、原料粉末に1200kA/mの磁場を印加しながら、原料粉末を120MPaで加圧した。
 成形体を、真空中、1050℃で4時間焼結した後、急冷して焼結体を得た。なお、水素破砕処理から焼結までの各工程を、酸素濃度が100ppm未満である雰囲気下で行った。
 焼結体を5mm(磁気異方化方向)×15mm×10mmに加工した。加工後の焼結体に2段階の熱処理を施し、基材1を得た。1段階目の熱処理では、焼結体をAr雰囲気において900℃で6時間加熱した。2段階目の熱処理では、焼結体をAr雰囲気において540℃で2時間加熱した。
 さらに、基材1とは別に、上記の加工後の焼結体にDyH、バインダ、及び極性溶媒を含むスラリーをディップ法で全面に塗布した後に、上記と同様の2段階の熱処理を施し、実施例1の希土類焼結磁石を作製した。なお、塗布の際には、塗布面積に対するDyHとバインダの総重量が5mg/cmとなるようにした。
(実施例2~11、比較例1~12)
 希土類焼結磁石における組成及び結晶粒径を、表1~3に示すように変更したこと以外は実施例1と同様にして、実施例2~11及び比較例1~12の希土類焼結磁石を作製した。
(実施例12)
 まず、希土類焼結磁石の原料金属を準備し、これらを用いてストリップキャスティング法により、主相合金12A(組成:30.5wt%Nd-0.2wt%Al-0.21wt%Zr-1.00wt%B-bal.Fe)と粒界相合金12B(組成:40wt%Dy-10wt%Co-0.2wt%Al-1.4wt%Cu-bal.Fe)が得られるように原料合金を作製した。次に、得られた合金を12A:12B=95:5の重量割合で混合した後、実施例1と同様にして磁石を作製した。混合後の合金の組成は29wt%Nd-2.0wt%Dy-0.5wt%Co-0.2wt%Al-0.07wt%Cu-0.2wt%Zr-0.95wt%B-bal.Feであった。
(実施例13)
 まず、希土類焼結磁石の原料金属を準備し、これらを用いてストリップキャスティング法により、主相合金13A(組成:30.5wt%Nd-0.2wt%Al-1.00wt%B-bal.Fe)と粒界相合金13B(組成:40wt%Dy-10wt%Co-0.2wt%Al-1.4wt%Cu-4.0wt%Zr-bal.Fe)が得られるように原料合金を作製した。次に、得られた合金を13A:13B=95:5の重量割合で混合した後、実施例1と同様にして磁石を作製した。混合後の合金の組成は29wt%Nd-2wt%Dy-0.5wt%Co-0.2wt%Al-0.07wt%Cu-0.2wt%Zr-0.95wt%B-bal.Feであった。
[基材及び希土類焼結磁石の特性評価]
 実施例及び比較例で得られた基材及び希土類焼結磁石についての特性を下記の方法により測定した。その結果を表1~3に示す。
(残留磁束密度及び保磁力)
 実施例及び比較例で得られた基材及び希土類焼結磁石を用いて得られた測定用サンプルの磁気特性を、BHトレーサーによりそれぞれ測定した。得られた結果から、各測定用サンプルの残留磁束密度(Br)、保磁力(HcJ)及び角型比(Hk/HcJ)をそれぞれ求めた。
(焼結体中の窒素及び酸素含有量の測定)
 含有酸素量、含有窒素量の測定は、金属中酸素、窒素分析装置にて行った。具体的には、試料を黒鉛るつぼでガス化(酸素はCO、窒素はN)し、非分散赤外線検出器にてCOを、熱伝導検出器にてNを検出した。
(焼結体中の含有炭素量の測定)
 含有炭素量の測定は、金属中炭素分析装置にて行った。具体的には、試料を高周波誘導加熱炉でガス化(CO、CO)し、非分散赤外線検出器にて検出した。
(焼結体中のGa量、希土類元素の含有割合の合計(TRE)の測定)
 蛍光X線を用いて組成分析を行った。
(焼結体中のB量の測定)
 ICP-AESによりB量分析を行った。
(STEM-EDSを用いたライン分析)
 実施例で得られた基材及び希土類焼結磁石について、走査透過電子顕微鏡が備えるエネルギー分散型X線分光器(STEM-EDS)を用いてライン分析を行った。図5(a)は基材についての分析結果を示す図であり、図5(b)は希土類焼結磁石についての分析結果を示す図である。
 図5(a)から明らかであるように、基材については粒界相付近でNdの濃度が急激に増えているものの、主相粒子の粒界相近傍に軽希土類元素(Nd)に対する重希土類元素(Dy)の割合(Dy/Nd)が、主相粒子中心部(コア)における割合の2倍以上となっている部分はなく、シェル部が存在しない。一方、図5(b)から明らかであるように、希土類焼結磁石については粒界相付近でNdの濃度が急激に増えており、主相粒子の粒界相近傍にDy/Ndが、主相粒子中心部における割合の2倍以上となっている部分があり、シェル部が存在している。なお、図5(b)中の両矢印で示されている部分がシェル部に相当する。
(シェルの厚みの測定)
 STEM-EDSを用い、主相粒子の中心付近を5点と粒界近傍のライン分析を行った。中心付近5点の重希土類元素と軽希土類元素の分析結果の強度比の平均値と粒界近傍のライン分析の各点の強度比の値を比較して、中心の平均値の2倍以上の値の部分をシェル部分とし、厚みを測定した。なお、主相粒子の中心付近の強度比の平均値は0.06であった。
(Zr析出物の数の測定)
 STEM-EDSを用い、実施例およびで得られた基材について、主相粒子断面の粒界から1μm内のZr析出物の数[個]を測定した。表中の値は5つの主相粒子についてZr析出物の数を測定した平均値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3から明らかであるように、実施例1~13の希土類焼結磁石は残留磁束密度及び保磁力に優れる。これに対し、比較例1~12の希土類焼結磁石は残留磁束密度及び保磁力の少なくとも一方が劣る。
 2…主相粒子、4…コア、6…シェル、7…粒界相、8…Zr化合物、10…希土類焼結磁石、20…ロータ、22…ロータコア、30…ステータ、32…コイル部、40…エンジン、42…発電機、44…蓄電池、48…車輪、50…自動車、100…IPMモーター。

Claims (9)

  1.  コアと、前記コアを被覆するシェルと、を有するR-T-B系希土類磁石の主相粒子群を備え、
     前記シェルの厚みは500nm以下であり、
     前記Rは軽希土類元素及び重希土類元素を含み、
     前記主相粒子群の粒界相及び/又は前記シェルにZr化合物が存在する希土類焼結磁石。
  2.  前記主相粒子群の粒界相にGa化合物がさらに存在する、請求項1に記載の希土類焼結磁石。
  3.  前記希土類焼結磁石における酸素元素の含有割合が2500ppm以下であり、かつ炭素元素の含有割合が500ppm以上1500ppm以下である、請求項1又は2に記載の希土類焼結磁石。
  4.  前記希土類焼結磁石におけるB元素の含有割合が0.85質量%以上0.98質量%以下である、請求項1~3のいずれか一項に記載の希土類焼結磁石。
  5.  前記希土類焼結磁石における希土類元素Rの含有割合の合計が29.0質量%以上33.0質量%以下である、請求項1~4のいずれか一項に記載の希土類焼結磁石。
  6.  前記希土類焼結磁石におけるZr元素の含有割合が0.05質量%以上0.5質量%以下である、請求項1~5のいずれか一項に記載の希土類焼結磁石。
  7.  請求項1~6のいずれか一項に記載の希土類焼結磁石を備えるモーター。
  8.  請求項7に記載のモーターを備える自動車。
  9.  Zrを含むR-T-B系希土類磁石の焼結体に、重希土類元素を含む重希土類化合物、バインダ及び溶媒を含むスラリーを付着させる第1工程と、
     前記スラリーが付着した前記焼結体を熱処理する第2工程とを有し、
     前記Rは軽希土類元素及び重希土類元素を含む、希土類焼結磁石の製造方法。
PCT/JP2011/058046 2010-03-30 2011-03-30 希土類焼結磁石、その製造方法、モーター、及び自動車 WO2011122667A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012508363A JP5392400B2 (ja) 2010-03-30 2011-03-30 希土類焼結磁石、その製造方法、モーター、及び自動車
CN201180017476.0A CN103098151B (zh) 2010-03-30 2011-03-30 稀土类烧结磁铁以及其制造方法、马达以及汽车
EP11762891.7A EP2555207B1 (en) 2010-03-30 2011-03-30 Rare earth sintered magnet, method for producing the same, motor, and automobile
US13/637,247 US9350203B2 (en) 2010-03-30 2011-03-30 Rare earth sintered magnet, method for producing the same, motor, and automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-078699 2010-03-30
JP2010078699 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122667A1 true WO2011122667A1 (ja) 2011-10-06

Family

ID=44712361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058046 WO2011122667A1 (ja) 2010-03-30 2011-03-30 希土類焼結磁石、その製造方法、モーター、及び自動車

Country Status (5)

Country Link
US (1) US9350203B2 (ja)
EP (1) EP2555207B1 (ja)
JP (1) JP5392400B2 (ja)
CN (1) CN103098151B (ja)
WO (1) WO2011122667A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146781A1 (ja) * 2012-03-30 2013-10-03 インターメタリックス株式会社 NdFeB系焼結磁石
JP2014027268A (ja) * 2012-06-22 2014-02-06 Tdk Corp 焼結磁石
WO2014148356A1 (ja) * 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB系焼結磁石製造方法及びRFeB系焼結磁石
WO2014148353A1 (ja) * 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB系磁石製造方法、RFeB系磁石及び粒界拡散処理用塗布物
US20140283649A1 (en) * 2011-10-28 2014-09-25 Tdk Corporation R-t-b based sintered magnet
WO2014148355A1 (ja) * 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB系焼結磁石製造方法及びRFeB系焼結磁石
US20140292453A1 (en) * 2013-03-28 2014-10-02 Tdk Corporation Rare earth based magnet
JP2015023242A (ja) * 2013-07-23 2015-02-02 Tdk株式会社 希土類磁石、電動機、及び電動機を備える装置
JP2015109446A (ja) * 2014-12-05 2015-06-11 株式会社東芝 モータおよび発電機
JP2015111675A (ja) * 2014-12-05 2015-06-18 株式会社東芝 永久磁石
EP2806438A4 (en) * 2012-01-19 2016-04-20 Hitachi Metals Ltd METHOD FOR PRODUCING A SINTERED R-T-B MAGNET
JP2017147427A (ja) * 2015-03-31 2017-08-24 信越化学工業株式会社 R−Fe−B系焼結磁石及びその製造方法
KR20180025198A (ko) * 2016-08-31 2018-03-08 얀타이 정하이 마그네틱 머티리얼 컴퍼니 리미티드 R-Fe-B류 소결 자성체 제조방법
CN111383808A (zh) * 2018-12-27 2020-07-07 京磁材料科技股份有限公司 高剩磁高矫顽力钕铁硼磁体的制备方法
WO2022188550A1 (zh) * 2021-03-10 2022-09-15 福建省长汀金龙稀土有限公司 主辅合金系钕铁硼磁体材料及其制备方法
JP2023509225A (ja) * 2020-06-11 2023-03-07 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド 重希土類合金、ネオジム鉄ホウ素永久磁石材料、原料及び製造方法
US11636962B2 (en) 2020-03-26 2023-04-25 Tdk Corporation R-T-B based permanent magnet
US11742119B2 (en) 2020-03-26 2023-08-29 Tdk Corporation R-T-B based permanent magnet

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130153088A1 (en) * 2011-12-15 2013-06-20 Vacuumschmelze Gmbh & Co. Kg Method for producing a rare earth-based magnet
FR2985085B1 (fr) * 2011-12-23 2014-02-21 Alstom Technology Ltd Actionneur electromagnetique a aimants permanents et interrupteur-sectionneur mecanique actionne par un tel actionneur
DE112014003688T5 (de) * 2013-08-09 2016-04-28 Tdk Corporation Sintermagnet auf R-T-B-Basis und Motor
CN106233402B (zh) * 2014-04-16 2018-11-09 安达满纳米奇精密宝石有限公司 SmCo系稀土类烧结磁铁
CN105469973B (zh) 2014-12-19 2017-07-18 北京中科三环高技术股份有限公司 一种r‑t‑b永磁体的制备方法
CN105845301B (zh) * 2015-08-13 2019-01-25 北京中科三环高技术股份有限公司 稀土永磁体及稀土永磁体的制备方法
CN105070498B (zh) * 2015-08-28 2016-12-07 包头天和磁材技术有限责任公司 提高磁体矫顽力的方法
US10672546B2 (en) * 2016-02-26 2020-06-02 Tdk Corporation R-T-B based permanent magnet
CN106328367B (zh) * 2016-08-31 2017-11-24 烟台正海磁性材料股份有限公司 一种R‑Fe‑B系烧结磁体的制备方法
EP3522185B1 (en) * 2016-09-29 2021-07-28 Hitachi Metals, Ltd. Method of producing r-t-b sintered magnet
US10672544B2 (en) * 2016-12-06 2020-06-02 Tdk Corporation R-T-B based permanent magnet
CN108154987B (zh) * 2016-12-06 2020-09-01 Tdk株式会社 R-t-b系永久磁铁
CN109412298B (zh) * 2018-05-14 2022-04-05 滨州学院 一种永磁电机
JP7196468B2 (ja) * 2018-08-29 2022-12-27 大同特殊鋼株式会社 R-t-b系焼結磁石
CN110444386B (zh) * 2019-08-16 2021-09-03 包头天和磁材科技股份有限公司 烧结体、烧结永磁体及其制备方法
CN111223624B (zh) * 2020-02-26 2022-08-23 福建省长汀金龙稀土有限公司 一种钕铁硼磁体材料、原料组合物及制备方法和应用
CN111223625B (zh) * 2020-02-26 2022-08-16 福建省长汀金龙稀土有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN111312464B (zh) * 2020-02-29 2021-10-29 厦门钨业股份有限公司 一种稀土永磁材料及其制备方法和应用
CN111243810B (zh) * 2020-02-29 2021-08-06 厦门钨业股份有限公司 一种稀土永磁材料及其制备方法和应用
JP7463791B2 (ja) * 2020-03-23 2024-04-09 Tdk株式会社 R-t-b系希土類焼結磁石およびr-t-b系希土類焼結磁石の製造方法
CN115083708A (zh) * 2021-03-10 2022-09-20 福建省长汀金龙稀土有限公司 一种钕铁硼磁体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100847A (ja) * 2005-11-14 2006-04-13 Tdk Corp R−t−b系希土類永久磁石
JP2007305878A (ja) * 2006-05-12 2007-11-22 Ulvac Japan Ltd 永久磁石及び永久磁石の製造方法
WO2008120784A1 (ja) * 2007-03-30 2008-10-09 Tdk Corporation 磁石の製造方法
WO2009004994A1 (ja) 2007-06-29 2009-01-08 Tdk Corporation 希土類磁石
WO2009057592A1 (ja) * 2007-10-31 2009-05-07 Ulvac, Inc. 永久磁石の製造方法及び永久磁石
JP2009302119A (ja) * 2008-06-10 2009-12-24 Hitachi Chem Co Ltd 希土類磁石用処理液及びそれを用いた希土類磁石

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311788B2 (en) 2002-09-30 2007-12-25 Tdk Corporation R-T-B system rare earth permanent magnet
US7199690B2 (en) 2003-03-27 2007-04-03 Tdk Corporation R-T-B system rare earth permanent magnet
US7618497B2 (en) 2003-06-30 2009-11-17 Tdk Corporation R-T-B based rare earth permanent magnet and method for production thereof
US8012269B2 (en) * 2004-12-27 2011-09-06 Shin-Etsu Chemical Co., Ltd. Nd-Fe-B rare earth permanent magnet material
EP1860668B1 (en) * 2005-03-14 2015-01-14 TDK Corporation R-t-b based sintered magnet
TWI413136B (zh) 2005-03-23 2013-10-21 Shinetsu Chemical Co 稀土族永久磁體
JP4702546B2 (ja) 2005-03-23 2011-06-15 信越化学工業株式会社 希土類永久磁石
US8038807B2 (en) 2006-01-31 2011-10-18 Hitachi Metals, Ltd. R-Fe-B rare-earth sintered magnet and process for producing the same
KR101336744B1 (ko) 2006-03-03 2013-12-04 히다찌긴조꾸가부시끼가이사 R­Fe­B계 희토류 소결 자석 및 그 제조 방법
JP4677942B2 (ja) * 2006-03-31 2011-04-27 日立金属株式会社 R−Fe−B系希土類焼結磁石の製造方法
JP4742966B2 (ja) 2006-04-19 2011-08-10 日立金属株式会社 R−Fe−B系希土類焼結磁石の製造方法
EP2071597B1 (en) 2006-09-15 2016-12-28 Intermetallics Co., Ltd. METHOD FOR PRODUCING SINTERED NdFeB MAGNET
BRPI0813821B1 (pt) * 2007-07-02 2018-08-07 Hitachi Metals, Ltd. IMÃ SINTERIZADO DE TERRAS-RARAS À BASE DE R-Fe-B, E MÉTODO PARA SUA PRODUÇÃO
EP2178096B1 (en) 2007-07-27 2015-12-23 Hitachi Metals, Ltd. R-Fe-B RARE EARTH SINTERED MAGNET

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100847A (ja) * 2005-11-14 2006-04-13 Tdk Corp R−t−b系希土類永久磁石
JP2007305878A (ja) * 2006-05-12 2007-11-22 Ulvac Japan Ltd 永久磁石及び永久磁石の製造方法
WO2008120784A1 (ja) * 2007-03-30 2008-10-09 Tdk Corporation 磁石の製造方法
WO2009004994A1 (ja) 2007-06-29 2009-01-08 Tdk Corporation 希土類磁石
WO2009057592A1 (ja) * 2007-10-31 2009-05-07 Ulvac, Inc. 永久磁石の製造方法及び永久磁石
JP2009302119A (ja) * 2008-06-10 2009-12-24 Hitachi Chem Co Ltd 希土類磁石用処理液及びそれを用いた希土類磁石

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9548148B2 (en) * 2011-10-28 2017-01-17 Tdk Corporation R-T-B based sintered magnet
US20140283649A1 (en) * 2011-10-28 2014-09-25 Tdk Corporation R-t-b based sintered magnet
US9478332B2 (en) 2012-01-19 2016-10-25 Hitachi Metals, Ltd. Method for producing R-T-B sintered magnet
EP2806438A4 (en) * 2012-01-19 2016-04-20 Hitachi Metals Ltd METHOD FOR PRODUCING A SINTERED R-T-B MAGNET
WO2013146781A1 (ja) * 2012-03-30 2013-10-03 インターメタリックス株式会社 NdFeB系焼結磁石
CN104221100B (zh) * 2012-03-30 2018-03-16 因太金属株式会社 NdFeB系烧结磁体
CN104221100A (zh) * 2012-03-30 2014-12-17 因太金属株式会社 NdFeB系烧结磁体
JP2014027268A (ja) * 2012-06-22 2014-02-06 Tdk Corp 焼結磁石
WO2014148355A1 (ja) * 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB系焼結磁石製造方法及びRFeB系焼結磁石
US10475561B2 (en) 2013-03-18 2019-11-12 Intermetallics Co., Ltd. RFeB system magnet production method, RFeB system magnet, and coating material for grain boundary diffusion treatment
CN105051844A (zh) * 2013-03-18 2015-11-11 因太金属株式会社 RFeB系烧结磁铁制造方法和RFeB系烧结磁铁
US20160273091A1 (en) 2013-03-18 2016-09-22 Intermetallics Co., Ltd. RFeB SYSTEM SINTERED MAGNET PRODUCTION METHOD AND RFeB SYSTEM SINTERED MAGNET
WO2014148353A1 (ja) * 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB系磁石製造方法、RFeB系磁石及び粒界拡散処理用塗布物
WO2014148356A1 (ja) * 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB系焼結磁石製造方法及びRFeB系焼結磁石
JPWO2014148356A1 (ja) * 2013-03-18 2017-02-16 インターメタリックス株式会社 RFeB系焼結磁石製造方法及びRFeB系焼結磁石
JPWO2014148355A1 (ja) * 2013-03-18 2017-02-16 インターメタリックス株式会社 RFeB系焼結磁石製造方法及びRFeB系焼結磁石
JPWO2014148353A1 (ja) * 2013-03-18 2017-02-16 インターメタリックス株式会社 RFeB系磁石製造方法、RFeB系磁石及び粒界拡散処理用塗布物
KR101735988B1 (ko) * 2013-03-18 2017-05-15 인터메탈릭스 가부시키가이샤 RFeB계 소결자석 제조 방법 및 RFeB계 소결자석
US10546672B2 (en) * 2013-03-28 2020-01-28 Tdk Corporation Rare earth based magnet
US20140292453A1 (en) * 2013-03-28 2014-10-02 Tdk Corporation Rare earth based magnet
JP2015023242A (ja) * 2013-07-23 2015-02-02 Tdk株式会社 希土類磁石、電動機、及び電動機を備える装置
JP2015111675A (ja) * 2014-12-05 2015-06-18 株式会社東芝 永久磁石
JP2015109446A (ja) * 2014-12-05 2015-06-11 株式会社東芝 モータおよび発電機
JP2017147427A (ja) * 2015-03-31 2017-08-24 信越化学工業株式会社 R−Fe−B系焼結磁石及びその製造方法
KR20180025198A (ko) * 2016-08-31 2018-03-08 얀타이 정하이 마그네틱 머티리얼 컴퍼니 리미티드 R-Fe-B류 소결 자성체 제조방법
JP2018082146A (ja) * 2016-08-31 2018-05-24 ▲煙▼台正海磁性材料股▲ふん▼有限公司 R‐Fe‐B系焼結磁石を製造する方法
KR101906068B1 (ko) * 2016-08-31 2018-11-30 얀타이 정하이 마그네틱 머티리얼 컴퍼니 리미티드 R-Fe-B류 소결 자성체 제조방법
CN111383808A (zh) * 2018-12-27 2020-07-07 京磁材料科技股份有限公司 高剩磁高矫顽力钕铁硼磁体的制备方法
US11636962B2 (en) 2020-03-26 2023-04-25 Tdk Corporation R-T-B based permanent magnet
US11742119B2 (en) 2020-03-26 2023-08-29 Tdk Corporation R-T-B based permanent magnet
JP2023509225A (ja) * 2020-06-11 2023-03-07 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド 重希土類合金、ネオジム鉄ホウ素永久磁石材料、原料及び製造方法
JP7418598B2 (ja) 2020-06-11 2024-01-19 フージャン チャンティン ゴールデン ドラゴン レア-アース カンパニー リミテッド 重希土類合金、ネオジム鉄ホウ素永久磁石材料、原料及び製造方法
WO2022188550A1 (zh) * 2021-03-10 2022-09-15 福建省长汀金龙稀土有限公司 主辅合金系钕铁硼磁体材料及其制备方法

Also Published As

Publication number Publication date
US20130026870A1 (en) 2013-01-31
CN103098151B (zh) 2016-01-20
JPWO2011122667A1 (ja) 2013-07-08
US9350203B2 (en) 2016-05-24
JP5392400B2 (ja) 2014-01-22
EP2555207A1 (en) 2013-02-06
EP2555207B1 (en) 2017-11-01
EP2555207A4 (en) 2015-12-16
CN103098151A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5392400B2 (ja) 希土類焼結磁石、その製造方法、モーター、及び自動車
JP5206834B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
WO2011122638A1 (ja) 焼結磁石、モーター、自動車、及び焼結磁石の製造方法
JP5455056B2 (ja) 希土類永久磁石材料の製造方法
JP5429002B2 (ja) 焼結磁石、モーター及び自動車
JP6414653B1 (ja) R−t−b系焼結磁石の製造方法
JP3960966B2 (ja) 耐熱性希土類磁石の製造方法
JP4677942B2 (ja) R−Fe−B系希土類焼結磁石の製造方法
JP2011211056A (ja) 希土類焼結磁石、モーター及び自動車
WO2010082492A1 (ja) R-t-b系焼結磁石の製造方法
JP2018504769A (ja) R−t−b永久磁石の製造方法
JP5552868B2 (ja) 焼結磁石、モーター及び自動車
WO2011122577A1 (ja) 希土類焼結磁石及びその製造方法、並びにモータ及び自動車
JP2011211071A (ja) 焼結磁石、モーター、自動車、及び焼結磁石の製造方法
JP2009289994A (ja) 磁石の製造方法
JP6500387B2 (ja) 高保磁力磁石の製造方法
JP6860808B2 (ja) R−t−b系焼結磁石の製造方法
JP6642184B2 (ja) R−t−b系焼結磁石
JP6624455B2 (ja) R−t−b系焼結磁石の製造方法
JP6508447B1 (ja) R−t−b系焼結磁石の製造方法
JP5885907B2 (ja) 希土類焼結磁石及びその製造方法、並びにモータ及び自動車
JP2022147793A (ja) R-t-b系焼結磁石の製造方法
JP2022152420A (ja) R-t-b系永久磁石、および、その製造方法。
JP2021153146A (ja) R−t−b系焼結磁石の製造方法
JPH1083907A (ja) 修飾永久磁石原料粉末及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017476.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508363

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13637247

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011762891

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011762891

Country of ref document: EP