WO2011122658A1 - 水処理装置 - Google Patents

水処理装置 Download PDF

Info

Publication number
WO2011122658A1
WO2011122658A1 PCT/JP2011/058003 JP2011058003W WO2011122658A1 WO 2011122658 A1 WO2011122658 A1 WO 2011122658A1 JP 2011058003 W JP2011058003 W JP 2011058003W WO 2011122658 A1 WO2011122658 A1 WO 2011122658A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
tank
mixing
treatment
Prior art date
Application number
PCT/JP2011/058003
Other languages
English (en)
French (fr)
Inventor
佐藤 茂
佳亮 小船
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020127021943A priority Critical patent/KR20130012009A/ko
Priority to US13/577,921 priority patent/US20120305468A1/en
Priority to JP2012508359A priority patent/JP5843071B2/ja
Priority to SG2012055380A priority patent/SG182742A1/en
Priority to CN201180011536.8A priority patent/CN102781847B/zh
Publication of WO2011122658A1 publication Critical patent/WO2011122658A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/28Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
    • B01D21/286Means for gentle agitation for enhancing flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • B01D21/08Settling tanks with single outlets for the separated liquid provided with flocculating compartments
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/12Prevention of foaming

Definitions

  • the present invention adds a flocculant to water to be treated such as industrial water, city water, well water, river water, lake water, and factory wastewater, and then agglomerates for solid-liquid separation treatment such as filtration or membrane separation treatment. It relates to a water treatment device.
  • an agglomerate is coarsened by using an open type, that is, an agglomeration tank in which the water to be treated is open to the atmosphere.
  • liquid supply means such as a pump is required when supplying the water to be treated to the apparatus for processing, and the floc is destroyed by this pump or the like, so that clear treated water is difficult to obtain.
  • Patent Document 4 describes a sealing type agglomeration process in which water to be treated is held in a state where the water to be treated is not opened to the atmosphere.
  • a device for stirring in an open type agglomeration tank having a stirrer is provided, and a flock may be broken by a pump or the like.
  • an object of the present invention is to provide a water treatment apparatus that performs solid-liquid separation treatment after agglomeration treatment and can reliably obtain clear treated water.
  • the aspect of the present invention that solves the above-mentioned problems is a mixing treatment means having a mixing tank that forms flocs by mixing the flocculant added to the treatment water and the treatment water, and is discharged from the mixing treatment means.
  • a cylindrical agglomeration tank in which the water to be treated is introduced and the treated water is not released to the atmosphere, and the water to be treated is tangential from the lower part of the agglomeration tank so that a swirling flow is generated.
  • a coagulation treatment means having a treated water introduction port to be introduced into the coagulation tank, and an untreated water discharge port provided at an upper part of the coagulation tank to discharge the treatment water from the upper part of the coagulation tank, and discharged from the coagulation treatment means.
  • a solid-liquid separation processing unit for introducing the water to be treated into a solid-liquid separation process.
  • the treated water discharge port may be provided so as to discharge the treated water in a tangential direction from the upper part of the coagulation tank.
  • the solid-liquid separation processing means is a filtration processing means in which a filtration body having a string-like turbidity trapping portion is filled in a filtration tank so that the porosity of the filtration portion when water passes is 50 to 95%. It is preferable that
  • the mixing treatment means keeps the treated water in a state that is not released to the atmosphere.
  • the treated water is introduced from the mixing treatment means to the aggregating treatment means in a state where the treated water is not opened to the atmosphere, and the treated water is sent. It is preferable that the liquid feeding means for liquid is provided in the preceding stage of the mixing treatment means.
  • a swirling flow is generated in a mixing treatment means for mixing flocculant and treated water to form flocs such as turbidity, and a cylindrical flocculating tank that keeps the treated water that has been mixed and treated not to be released to the atmosphere.
  • a water treatment apparatus having a coagulation treatment means for introducing flocs into the flocs and a solid-liquid separation treatment means for introducing the coagulated water to be treated in a state that is not released to the atmosphere and performing a solid-liquid separation treatment.
  • the coarse floc formed by the treatment means can be transferred to the subsequent solid-liquid separation treatment means without using a liquid feed means such as a pump, and the destruction of the coarse floc can be suppressed, so that clear treated water is obtained. It becomes a water treatment device that can.
  • the water treatment apparatus of the present invention is a water treatment apparatus that performs a solid-liquid separation process such as a precipitation process, a pressure flotation process, a filtration process, and a membrane separation process after adding a flocculant to the water to be treated and performing a coagulation process.
  • a solid-liquid separation process such as a precipitation process, a pressure flotation process, a filtration process, and a membrane separation process after adding a flocculant to the water to be treated and performing a coagulation process.
  • water to be treated examples include water containing a humic acid / fulvic acid organic substance, a biological metabolite such as sugar produced by algae, or a synthetic chemical substance such as a surfactant, specifically, industrial water. , City water, well water, river water, lake water, factory wastewater (particularly, biologically treated water obtained by biologically treating wastewater from a factory) and the like.
  • the humic substance refers to a corrosive substance generated by the decomposition of plants and the like into microorganisms, and includes humic acid, and the water containing the humic substance is derived from humic substance and / or humic substance. It has a soluble COD component, suspended matter and chromaticity component.
  • FIGS. 1 to 3 are examples of the water treatment apparatus of the present invention.
  • 1 is a schematic system diagram of the water treatment apparatus
  • FIG. 2 is a top view (FIG. 2 (a)) and a side view (FIG. 2 (b)) of the aggregating treatment means of the water treatment apparatus
  • FIG. 3 is a water treatment. It is a mixing processing means and an agglomeration processing means which the apparatus has.
  • the water treatment apparatus 1 of the present invention includes a mixing treatment means 3 having a mixing tank that mixes a flocculant added to water to be treated (raw water) and the water to be treated to form a floc.
  • the coagulation treatment means 4 into which the water to be treated discharged from the mixing treatment means 3 is introduced, and the solid-liquid separation treatment means 5 for subjecting the water to be treated discharged from the coagulation treatment means 4 to solid-liquid separation treatment.
  • a flocculant introducing means 6 for adding a flocculant to the water to be treated is provided in the preceding stage of the mixing treatment means 3.
  • the flocculant is not limited, and flocs (aggregates) are formed by coagulation or aggregation of suspended substances (turbidity), colloidal components, soluble COD (chemical oxygen demand) components, etc. contained in the water to be treated.
  • inorganic flocculants such as aluminum salts and iron salts such as polyaluminum chloride (PAC), polymer flocculants, and aquagel C which is a cationic polymer gel made of MT Aquapolymer, and so on.
  • PAC polyaluminum chloride
  • aquagel C which is a cationic polymer gel made of MT Aquapolymer, and so on.
  • particles made of a cationic polymer that is substantially insoluble in water and these can be used alone or in combination.
  • a pump P1 is provided in front of the mixing treatment means 3 as a liquid feeding means for feeding the water to be treated. Further, a pump is provided between the mixing treatment means 3 and the aggregation treatment means 4. P2 is provided. And from the coagulation process means 4 to the solid-liquid separation process means 5, it connects with piping as shown by the arrow of FIG. 1 so that to-be-processed water may be passed in the state which is not open
  • the state in which the pressure is not released to the atmosphere means a state in which the pressure supplied by the pump 2 or the like provided in the previous stage of the aggregating treatment means 4 (pressure for supplying the water to be treated) can be maintained, that is, almost no pressure is supplied to the atmosphere. It means that it is a sealed type that does not escape.
  • the aggregating treatment means 4 divides the water to be treated in the agglomerating tank 11 so as to generate a swirling flow as indicated by an arrow and a cylindrical agglomerating tank 11 into which the water to be treated is introduced.
  • a treated water introduction port 12 for introducing the treated water into the coagulation tank 11 in the tangential direction from the lower part and a treated water discharge port 13 for discharging the treated water from the upper part of the coagulating tank 11 in the tangential direction. Since the to-be-treated water inlet 12 is provided in the lower part of the coagulation tank 11 and the to-be-treated water discharge port 13 is provided in the upper part of the coagulation tank 11, the generated swirl flow is an upward flow.
  • the agglomeration tank 11 has a shape in which the top and bottom surfaces of a hollow cylinder are covered with a lid, and the introduced treated water is kept in a state where it is not released to the atmosphere, that is, a sealed type. .
  • the aggregating treatment means 4 has a treated water discharge port 13 for discharging the treated water from the upper part of the agglomeration tank 11 in the tangential direction. 13 should just be what is provided in the upper part of the coagulation tank 11, and can discharge to-be-processed water from the upper part of the coagulation tank 11. For example, as shown in FIG.
  • Aggregation processing means 4B having 4A is a top view of the aggregation processing means 4A
  • FIG. 4B is a side view of the aggregation processing means 4A
  • FIG. 4C is a schematic diagram of the aggregation processing means 4A
  • FIG. 4D is an aggregation processing.
  • 4B is a top view of the means 4B
  • FIG. 4E is a side view of the aggregation processing means 4B
  • FIG. 4F is a schematic diagram of the aggregation processing means 4B.
  • the radius of the to-be-treated water introduction port 12 is within +2 m above, and the center position of the cross section in the water flow direction of the to-be-treated water discharge port 13 is within +2 m of the radius of the to-be-treated water discharge port 13 from the ceiling of the coagulation tank And it is sufficient.
  • the amount of water to be treated, the residence time, and the G value are not particularly limited.
  • the amount of water to be treated has an initial flow rate (flow velocity at the treated water inlet): 0.5 to 2.0 [m / S], residence time: 0.1 to 10 minutes, preferably 2 to 5 minutes, and agglomeration tank average G value: 20 to 200 [1 / s].
  • the mixing treatment means 3 is a mixing tank 16 in which, for example, treated water is introduced and the upper part is opened, and the flocculant and the treated water are mixed by stirring the treated water.
  • the solid-liquid separation processing means 5 is not particularly limited as long as it can perform solid-liquid separation processing for removing flocs such as turbidity, such as precipitation processing, pressurized flotation processing, filtration processing, membrane separation processing, and the like.
  • the filtration device 20 has a string-like (fibrous) filter body that captures flocs formed of turbidity and the like contained in the water to be treated and a flocculant.
  • the pH is adjusted with caustic soda, slaked lime or sulfuric acid when adding the flocculant to the water to be treated, and finally the suspension is flocked with an organic polymer flocculant. You can do that. Moreover, you may use an organic coagulant together as needed.
  • the membrane separation treatment include microfiltration membranes (MF membranes), ultrafiltration membranes (UF membranes), nanofiltration membranes (NF membranes), and reverse osmosis membranes (RO membranes).
  • the flocculant is introduced into the pipe through which the water to be treated (raw water) stored in the raw water tank 2 flows by the flocculant introducing means 6, and the flocculant is introduced into the water to be treated. Added. And the to-be-processed water to which the flocculant was added is introduce
  • the to-be-processed water stored by the temporary storage tank 18 is liquid-fed by the pump P2, and from the to-be-processed water inlet 12 provided in the tangential direction at the lower part of the aggregation tank 11 of the aggregation processing means 4, a coagulation tank 11 is introduced into the lower part.
  • a swirling flow as shown by the arrow in FIG.
  • the flocs formed by the mixing treatment means 3 are relatively gently stirred and coarsened, reach the treated water discharge port 13 while rising, and are discharged from the treated water discharge port 13. .
  • the process for coarsening the flocs is called agglomeration process.
  • the agglomeration tank 11 is not provided with other members such as a partition plate, an inner tube, and a stirrer inside, so that the swirling flow of the water to be treated is inhibited. Absent. Therefore, it is possible to prevent the floc from colliding with the member and miniaturizing it, and the floc can be satisfactorily coarsened. And since the aggregation tank 11 is not provided with any members inside, of course, maintenance is easy, and manufacturing costs and operating costs can be suppressed.
  • the water flow in the downward flow causes a short path, so the agglomeration efficiency is deteriorated, and if the water flows in the horizontal direction, the flow of water becomes uneven and the floc may be destroyed.
  • the agglomeration tank 11 has a cylindrical shape whose upper surface and bottom surface are covered with a lid, the introduced water to be treated is not open to the atmosphere, and the pressure of the pump P2 is the treated water discharge port 13. It is also maintained in the treated water discharged from the water.
  • the treated water discharged from the treated water discharge port 13 after being agglomerated is passed through a pipe connecting the treated water discharge port 13 and the solid-liquid separation processing means 5.
  • the pressure of the pump P ⁇ b> 2 is also maintained in the water to be treated discharged from the treated water discharge port 13.
  • a pipe is provided so that the water to be treated is passed from the flocculation processing means 4 to the solid-liquid separation processing means 5 without being released to the atmosphere, that is, the treated water discharge port of the flocculation processing means 4. 13 and the inlet for introducing the water to be treated into the solid-liquid separation processing means 5 are connected by a pipe.
  • the water to be treated is solid even without providing a liquid feeding means such as a pump for passing the water to be treated in the solid-liquid separation treatment means 5 between the aggregation treatment means 4 and the solid-liquid separation treatment means 5.
  • the liquid is fed to the liquid separation processing means 5. Therefore, since the breakage of the floc coarsened by the liquid feeding means such as a pump can be prevented, the floc can be satisfactorily removed by the solid-liquid separation processing means 5, and clear treated water is obtained with certainty. be able to.
  • the aggregation treatment when it is necessary to provide a liquid feeding means such as a pump for passing water to be treated to the solid-liquid separation processing means 5 between the aggregation processing means 4 and the solid-liquid separation processing means 5, for example, the aggregation treatment
  • a liquid feeding means such as a pump for passing water to be treated to the solid-liquid separation processing means 5 between the aggregation processing means 4 and the solid-liquid separation processing means 5, for example, the aggregation treatment
  • the water treatment device in which the upper part of the coagulation tank of the means is open and the water to be treated is open to the atmosphere, or the water to be treated is open to the atmosphere between the coagulation treatment means and the solid-liquid separation treatment means In such a water treatment apparatus that allows water to flow, the use of the liquid feeding means such as the pump destroys the flocs that have been coarsened by the coagulation treatment, thereby miniaturizing the flocs.
  • the water treatment apparatus 1 in which the water to be treated is not released to the atmosphere is sent between the coagulation treatment means 4 itself and the coagulation treatment means 4 and the solid-liquid separation treatment means 5.
  • the mixing treatment means 3 also keeps the treated water in a state that is not released to the atmosphere, and the water treatment introduced from the mixing treatment means 3 to the aggregating treatment means 4 in a state where the treated water is not opened to the atmosphere. It is good also as an apparatus.
  • a flocculant introduction means 6 for adding a flocculant to the water to be treated is provided in the preceding stage of the mixing treatment means 3A.
  • the same devices as those in FIGS. 1 to 3 are denoted by the same reference numerals, and the description of the same devices and the like is omitted.
  • the mixing treatment means 3 ⁇ / b> A has two line mixers connected in series, and the water to be treated is held in a state where it is not released to the atmosphere.
  • the number of line mixers is not limited.
  • the mixing processing means 3A, the aggregating processing means 4 and the solid-liquid separation processing means are sequentially connected by piping, and from the mixing processing means 3A to the solid-liquid separation processing means via the aggregating processing means 4, The water is passed through without being released to the atmosphere.
  • the liquid feeding means is provided in the preceding stage of the mixing processing means 3A. Only the pump P1 is sufficient. Therefore, the cost and maintenance by providing a plurality of pumps can be reduced.
  • a line mixer is preferable from the viewpoint of a small installation area, for example, line mixing in which piping is extended and residence time is extended may be used.
  • the flocculant is added to the water to be treated before being introduced into the mixing treatment means 3, but the flocculant is added to the mixing treatment means 3 into which the water to be treated is introduced, that is, the mixing tank 16. You may make it do.
  • a plurality of mixing tanks and line mixers may be provided, and different types of flocculants may be added to each mixing tank and line mixer.
  • a water treatment apparatus configured to add a different type of flocculant to each line mixer, that is, to pass water through the line mixer each time a different type of flocculant is added will be described with reference to FIG.
  • raw water tank 2 in which treated water (raw water) is stored mixing treatment means 3B, mixed treatment means 3B ′ into which treated water discharged from mixing treatment means 3B is introduced, It has a coagulation treatment means 4 into which the water to be treated discharged from the mixing treatment means 3B ′ is introduced, and a solid-liquid separation treatment means 5 for subjecting the water to be treated discharged from the aggregation treatment means 4 to a solid-liquid separation treatment.
  • an inorganic flocculant introduction means 6A for adding an inorganic flocculant to the water to be treated is provided in the previous stage of the mixing treatment means 3B, and a polymer flocculant is added to the water to be treated in the previous stage of the mixing treatment means 3B ′.
  • Polymer flocculant introduction means 6B is provided.
  • the pH adjuster introduction means 7 which introduces a pH adjuster into to-be-processed water is provided in the upstream of the mixing process means 3B.
  • the mixing treatment means 3B and the mixing treatment means 3B ′ have the same structure in which three line mixers are connected in series, and the water to be treated is held in a state where it is not released to the atmosphere. is there.
  • the number of line mixers is not limited.
  • the mixing processing means 3B, the mixing processing means 3B ′, the aggregating processing means 4 and the solid-liquid separation processing means 5 are sequentially connected by a pipe, and the mixing processing means 3B passes through the mixing processing means 3B ′ and the aggregating processing means 4.
  • the water to be treated is passed through to the solid-liquid separation treatment means 5 without being released to the atmosphere.
  • the liquid feeding means is provided in the preceding stage of the mixing processing means 3B. Only the pump P1 is sufficient. Therefore, the cost and maintenance by providing a plurality of pumps can be reduced.
  • the polymer flocculant which is a different kind of flocculant is added and treated by the mixing treatment means 3B ′.
  • a floc is formed by a soluble COD component or the like, and a larger floc is formed by this floc and the polymer flocculant, and is coarsened by a swirling flow.
  • a water treatment apparatus comprised so that it may flow in order to a line mixer and the coagulation process means 4 whenever a different kind of coagulant
  • the raw water tank 2 in which the treated water (raw water) is stored, the mixing treatment means 3B, and the treated water discharged from the mixing treatment means 3B are introduced.
  • Coagulation treatment means 4 mixing treatment means 3 B ′ into which treated water discharged from the aggregation treatment means 4 is introduced, and aggregation treatment means 4 ′ into which treated water discharged from the mixing treatment means 3 B ′ is introduced.
  • solid-liquid separation processing means 5 for performing solid-liquid separation processing on the water to be treated discharged from the aggregation processing means 4 ′.
  • the aggregation processing means 4 and the aggregation processing means 4 ′ have the same structure.
  • an inorganic flocculant introduction means 6A for adding an inorganic flocculant to the water to be treated is provided in the previous stage of the mixing treatment means 3B, and a polymer flocculant is added to the water to be treated in the previous stage of the mixing treatment means 3B ′.
  • Polymer flocculant introduction means 6B is provided.
  • the pH adjuster introduction means 7 which introduces a pH adjuster into to-be-processed water is provided in the upstream of the mixing process means 3B.
  • the same devices as those in FIGS. 1 to 6 are denoted by the same reference numerals, and the description of the same devices and the like is omitted.
  • the mixing treatment means 3B and the mixing treatment means 3B ′ have the same structure in which three line mixers are connected in series, and the water to be treated is held in a state where it is not released to the atmosphere. is there.
  • the number of line mixers is not limited.
  • the mixing processing unit 3B, the aggregation processing unit 4, the mixing processing unit 3B ′, the aggregation processing unit 4 ′, and the solid-liquid separation processing unit 5 are sequentially connected by a pipe, and from the mixing processing unit 3B, the aggregation processing unit 4, The water to be treated is passed through the mixed treatment means 3B ′ and the aggregation treatment means 4 ′ to the solid-liquid separation treatment means 5 without being released to the atmosphere.
  • the liquid feeding means is provided in the preceding stage of the mixing processing means 3B. Only the pump P1 is sufficient. Therefore, the cost and maintenance by providing a plurality of pumps can be reduced. Moreover, the water to be treated to which the inorganic flocculant has been added is sequentially treated by the mixing treatment means 3B and the flocculant treatment means 4, and then the water to be treated to which the polymer flocculant which is a different type of flocculant is added is sequentially mixed.
  • flocs are formed by the inorganic flocculant, turbidity, soluble COD components, etc., and are coarsened by the swirling flow.
  • a larger floc is formed with the molecular flocculant and coarsened by the swirling flow.
  • the solid-liquid separation process means 5 is a filtration process means, and has a fibrous filter body.
  • a filtration body having a string-like (fibrous) turbidity trapping portion is filled in a filtration tank so that the porosity of the filtration portion when water passes is 50 to 95%.
  • a specific example of such a filtration means is a filtration device shown in FIG. 8 is a cross-sectional view showing the configuration of the filtration device, and FIG. 9 is an enlarged view of the main part of FIG.
  • the filtration device 20 includes a cylindrical filtration tank 21 through which water to be treated is passed, and a filter body 22 that captures turbidity in the water to be treated.
  • the filter body 22 includes a core member 23 connected to both ends of the filtration tank 21 in the water flow direction, and a string-like turbidity capturing unit 24.
  • a circular plate 26 made of resin or the like provided with a plurality of holes to allow water to be treated containing flocs formed of turbidity or the like to flow freely is provided at both ends of the filtration tank 21 in the water flow direction.
  • the both ends of the core member 23 are fixed to the center of each plate 26.
  • the turbidity capturing part 24 is provided so that a part of the turbidity capturing part 24 is knitted and fixed to the core member 23 and a so-called loop-shaped part that is not fixed spreads radially toward the inner wall surface of the filtration tank 21.
  • the filter body 22 spreads over the entire filtration tank 21.
  • the string-like turbidity catching portion 24 is a loop of a long rectangle (tape), and as shown in the enlarged view of the string-like turbidity catching portion 24 in FIG.
  • a plurality of slits 25 that do not reach are provided. By providing the slit 25 in this manner, the trapping effect of turbidity and the like is improved.
  • the filter body 22 is placed in the filtration tank 21 so that the porosity of the filtration part when the water to be treated is passed is 50 to 95%, preferably 60 to 90%, more preferably 50 to 80%. Filled.
  • the porosity is a value obtained from the following formula.
  • the filtration unit is a region where turbidity or the like of the water to be treated is captured by the filter body 22, that is, the inner wall surface of the filtration tank 21 is used as a side surface and both ends of the filter body 22 in the water passage direction when passing water are thick.
  • the layer filled with the turbidity trapping portion 24 of the filter body 22 as both ends in the direction refers to a portion excluding the portion that does not contribute to filtration (the portion of the core material 23 in FIG. 8).
  • a filtration part uses the inner wall surface of the filtration tank 21 as a side surface, and the turbidity of the filter body 22 makes the water flow direction both ends of the filter body 22 at the time of water flow the both ends of the thickness direction.
  • Porosity (%) [(volume of filtration part ⁇ volume of turbidity trapping part) / volume of filtration part] ⁇ 100
  • the water to be treated passes between the string-like turbid traps 24 and between the slits 25 provided in the turbid trap 24, and in that case Turbidity and the like contained in the treated water are trapped by the string-like turbidity capturing unit 24 and the slit 25, and the treated water from which the turbidity has been removed is discharged from the filtration tank 21.
  • the filter body 22 is filled so that the porosity of the filtration part at the time of water flow is 50 to 95%, the water flow is not hindered and traps such as turbidity are also good.
  • the water to be treated introduced into the filtration device 20 is well turbid in the filtration device 20 because the coarse flocs formed by turbidity and the flocculant are prevented from being destroyed. The quality etc. can be trapped.
  • the filter body 22 by filling the filter body 22 so that the porosity of the filtration part during water passage is 50 to 95%, water passage is not hindered and trapping of turbidity and the like is improved.
  • occlusion of the apparatus 20 can be suppressed and there exists an effect that clear treated water is obtained. If the porosity is higher than 95%, the water flow becomes good and it becomes easy to filter at high speed, but the turbidity of the treated water becomes remarkably high, and if it is lower than 50%, the trap of turbidity is good. However, the water flow is insufficient, and the filtration device and the membrane separation processing means provided in the latter stage as necessary are clogged, and the differential pressure increase rate is remarkably increased.
  • the filtration operation is performed at a high speed of 100 m / h or more, or the water to be treated is treated with high turbidity (for example, 20 degrees or more), the turbidity of the treated water is increased, or the apparatus is blocked.
  • the filtration device 20 filled with the filter body 22 so that the porosity is 50 to 95% even if the water to be treated has high speed operation or high turbidity, Clogging can be suppressed and clear treated water can be obtained.
  • blockage can be suppressed and clear treated water can be obtained.
  • the turbidity trapping part 24 is filled up to the vicinity of both ends of the filtration tank 21 in the water flow direction. It is preferable to fill up to the vicinity of the inner wall surface.
  • the volume of the filtration part does not fluctuate between passing water to be treated and other states such as backwashing or stopping filtration, which will be described later, and the volume fluctuation rate of the filtration part is 30%. Hereinafter, it is preferably 10% or less. By setting it as such a range, a filtration apparatus can be made compact.
  • the size of the filtration tank 21 is, for example, a cylindrical shape, the diameter can be 100 to 1000 mm and the height can be 200 to 1000 mm.
  • the filter tank 21 is filled with a plurality of filter bodies 21 or the turbidity trapping portion 24 of the filter body 22 is enlarged, for example. What is necessary is just to make it the porosity of the filtration part at the time of water to be 50 to 95%.
  • the core material 23 and the suspended matter capturing part 24 synthetic resins such as polypropylene, polyester, and nylon can be cited.
  • the core material 23 may be provided with strength by knitting synthetic fibers such as polypropylene, polyester, and nylon in the manufacturing process.
  • the filter body 22 which spreads radially by twisting the metal after arranging the turbidity catching parts 24 evenly after using the wire made of a metal coated with SUS or resin that is not corroded like a torsion brush. It is good. By improving the strength of the core member 23 in this manner, the core member 23 is not bent, and the end of the filter body 22 can be easily fixed, so that the replacement work of the filter body 22 is facilitated.
  • the thickness is 0.05 to 2 mm
  • the width is 1 to 50 mm
  • the distance may be about 10 to 500 mm, preferably about 0.3 to 2 mm in thickness, 1 to 20 mm in width, and about 50 to 200 mm in length.
  • the cylindrical filtration tank 21 in FIG. 8 it does not need to be a cylinder shape,
  • transmit water, ie, what is necessary is just hollow,
  • the shape which provided the cavity in the prism may be sufficient.
  • the both ends of the core material 23 were fixed to the plate 26, it is not limited to this, For example, you may make it fix only one end of a core material.
  • the end portion of the core member 23 can be fixed.
  • a rod-shaped member may be disposed on the end surface of the filtration tank 21 and the end portion of the core member 23 may be fixed.
  • each turbidity trapping part 24 is provided to protrude from the core member 23, but the present invention is not limited to this.
  • One end of each turbidity trapping part may be fixed to the core material.
  • acquisition part 24 was made into square, there is no limitation in particular, For example, circular shape may be sufficient.
  • the length of each turbidity trapping part may be the same or different.
  • the material of the turbidity capturing part 24 is one type, but it may be two or more types.
  • acquisition part may be plural or single, and does not need to provide.
  • the core material 23 may not be provided, and the filter body 22 including only the turbidity trapping part may be used.
  • the filter body 22 is preferably present in the filtration tank 21 substantially uniformly, It is preferable to fix the capturing part at a predetermined position of the filtration tank.
  • Such a mixing process, agglomeration process, and solid-liquid separation process provide clear treated water, but may further have a deionization process such as an ion exchange process. Thereby, pure water or ultrapure water can be obtained. Moreover, you may further perform the refinement
  • Example 1 As water to be treated (raw water), industrial water (turbidity of 5 to 7 degrees) was treated with a water treatment apparatus shown in FIG.
  • the water treatment apparatus used will be specifically described in detail. It has a mixing treatment means 3A in which two line mixers are connected, a coagulation treatment means 4 shown in FIG. 2, and a filtration device 20 shown in FIG.
  • a water treatment apparatus in which a pump P1 is provided only in the front stage of the mixing treatment means 3A, and the mixing treatment means 3A and the coagulation treatment means 4 are held in a state where the water to be treated is not released to the atmosphere.
  • the treatment means 3A, the flocculation treatment means 4 and the filtration device 20 are sequentially connected by piping, and the water to be treated is not released to the atmosphere from the mixing treatment means 3A through the flocculation treatment means 4 to the filtration device 20.
  • the water is passed through.
  • the conditions for each processing means are described below.
  • ⁇ Mixing treatment means Poly-aluminum chloride in front of the first line mixer in the direction of water flow of the water to be treated is made by mixing two series 1 / 2-N50-171-1 line mixers manufactured by Noritake Company in series. (PAC: 10 wt% as Al 2 O 3 ) is added at 60 mg / L to the water to be treated, and the residence time from the first line mixer outlet to the second line mixer inlet is about 10 seconds, Immediately before the second line mixer, 4 mg / L of amphoteric polymer flocculant (Kurita Kogyo Co., Ltd., Krivest E851) was added to the water to be treated.
  • PAC 10 wt% as Al 2 O 3
  • Filter tank size acrylic cylindrical column having a diameter of 200 mm and a height of 500 mm
  • Filter body Filter body 22 comprising a core material 23 and a string-like turbidity capturing part 24.
  • the core material has a volume of 250 mL, and the thickness of each turbidity trap 24 is 0.5 mm, the width is 2 mm, and the length (the distance from the core material when the water to be treated is passed) is 100 mm.
  • the porosity of the filtration part water volume obtained by subtracting the volume of the core material 23 from the volume inside the filtration tank 21) at the time of passing water is 60%. And the both ends of the core material 23 of the filter body 22 are being fixed by the plate arrange
  • LV 250m / h
  • the coagulation treatment means has a coagulation tank and a stirrer, and the water to be treated is held open to the atmosphere, and the treatment water is fed between the coagulation treatment means and the filtration device.
  • the same operation as in Example 1 was performed except that a pump was provided.
  • the residence time of the aggregation treatment means of Comparative Example 1 is 10 minutes, and the stirring speed is 30 rpm.
  • Example 1 and Comparative Example 1 have substantially the same floc diameter in the coagulation tank, but the treated water discharged from the filtration device is significantly clearer in Example 1. It was.
  • Example 1 flocs were coarsened in the coagulation tank, and the coarsened flocs were introduced into the filtration device without being destroyed by a pump or the like, so that very clear water was obtained as compared with Comparative Example 1. It is presumed that On the other hand, in Comparative Example 1 in which it was necessary to provide a pump for feeding the liquid between the flocculation tank and the filtration device, the water to be treated introduced into the filtration device was destroyed and the floc was broken to become fine. It is presumed that they could not be captured.
  • the reference example which shows the effect of the filtration apparatus 20 below is shown.
  • industrial water with a turbidity of 20 degrees was treated at LV 200 m / h for 1 week using a water treatment device 30 shown in FIG.
  • the water treatment apparatus 30 introduces an inorganic flocculant into the reaction tank 31 from a reaction tank 31 into which water to be treated (raw water) is introduced and an inorganic flocculant tank 32 in which the inorganic flocculant is held.
  • An inorganic flocculant introduction means 33 comprising a pump or the like, a chemical introduction means 35 comprising a pump or the like for introducing a chemical from the chemical tank 34 holding the polymer flocculant into the reaction tank 31, and a stirrer 36 in the reaction tank 31. 8 and the filtration device 20 of FIG. 8 into which the water to be treated which has been subjected to agglomeration treatment by stirring is introduced.
  • the filter body used for the filtration apparatus 20 consists of the core material 23 and the string-like turbidity capture
  • the core material 23 has a volume of 250 mL, and the thickness of each turbidity trap 24 is 0.5 mm, width 2 mm, and length (distance from the core material when the water to be treated is passed) is 100 mm. It is knitted into a core material in a loop shape, and changes the knitting density of the turbidity trapping portion 24 to change the filtration portion during passage of water (subtracting the volume of the core material 23 from the volume inside the filtration tank 21 ) Were produced, and water treatment was carried out using each filter.
  • the filter bodies were 30, 40, 50, 60, 70, 80, 90, 95, and 98%.
  • the volume change rate of the filtration part was approximately 0% when the treated water was passed and at other times.
  • the size of the filtration tank 21 is 200 mm in diameter and 500 mm in height.
  • Clivest E851 (manufactured by Kurita Kogyo) was added.
  • Table 2 shows the results of measuring the turbidity of the treated water discharged from the filtration device (treated water turbidity) and the differential pressure increase rate (differential pressure increase rate) of the filtration device.
  • the turbidity of the treated water was determined by a transmitted light measurement method using a kaolin standard solution, and the differential pressure increase rate of the filtration device was determined by the pressure difference between the inlet and the outlet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

被処理水に添加された凝集剤と被処理水とを混合してフロックを形成する混合槽を有する混合処理手段と、前記混合処理手段から排出される被処理水が導入されると共に被処理水が大気に開放されない状態に保たれる円筒形状の凝集槽、旋回流が発生するように被処理水を前記凝集槽の下部から接線方向に前記凝集槽に導入する被処理水導入口、及び、前記凝集槽の上部に設けられ被処理水を前記凝集槽の上部から排出する被処理水排出口を有する凝集処理手段と、前記凝集処理手段から排出される被処理水が大気に開放されない状態で前記凝集処理手段から導入され、被処理水を固液分離処理する固液分離処理手段と、を有する水処理装置とする。

Description

水処理装置
 本発明は、工業用水、市水、井水、河川水、湖沼水、工場廃水などの被処理水に凝集剤を添加して凝集処理した後に濾過処理や膜分離処理等の固液分離処理する水処理装置に関する。
 工業用水、市水、井水、河川水、湖沼水、工場廃水などの被処理水を処理する方法として、例えば被処理水に無機凝集剤及びアニオン性等の高分子凝集剤を添加して被処理水に含まれる濁質等を吸着や凝結等する凝集処理をした後、砂ろ過、加圧浮上処理や、繊維状の濾過体(濾材)等を用いた濾過処理、膜分離処理により濁質を除去する固液分離処理を行う方法がある(特許文献1~3参照)。
 しかしながら、凝集処理においては、凝集物(フロック)の粗大化には、一般的に開放型、すなわち被処理水が大気に開放されている状態の凝集槽が用いられており、後段の固液分離処理を行う装置へ被処理水を送液する際にポンプ等の送液手段が必要であり、このポンプ等によりフロックが破壊されてしまい、清澄な処理水が得難いという問題がある。
 なお、特許文献4には被処理水を大気に開放されていない状態で保持する密閉型の凝集処理が記載されているが、この特許文献4では、凝集処理手段の後段には、基本的に撹拌機を有する開放型の凝集槽で撹拌する装置が設けられており、ポンプ等によりフロックの破壊が生じる場合がある。
特開2003-265907号公報 特開2004-89766号公報 特開2007-229658号公報 特開2004-160353号公報
 本発明は上述した事情に鑑み、凝集処理した後に固液分離処理する水処理装置であって確実に清澄な処理水を得ることができる水処理装置を提供することを目的とする。
 上記課題を解決する本発明の態様は、被処理水に添加された凝集剤と被処理水とを混合してフロックを形成する混合槽を有する混合処理手段と、前記混合処理手段から排出される被処理水が導入されると共に被処理水が大気に開放されない状態に保たれる円筒形状の凝集槽、旋回流が発生するように被処理水を前記凝集槽の下部から接線方向に前記凝集槽に導入する被処理水導入口、及び、前記凝集槽の上部に設けられ被処理水を前記凝集槽の上部から排出する被処理水排出口を有する凝集処理手段と、前記凝集処理手段から排出される被処理水が大気に開放されない状態で前記凝集処理手段から導入され、被処理水を固液分離処理する固液分離処理手段と、を有することを特徴とする水処理装置にある。
 また、前記被処理水排出口は、被処理水を前記凝集槽の上部から接線方向に排出するように設けられていてもよい。
 そして、前記固液分離処理手段が、紐状の濁質捕捉部を有する濾過体が通水時の濾過部の空隙率が50~95%になるように濾過槽に充填されている濾過処理手段であることが好ましい。
 さらに、前記混合処理手段は被処理水を大気に開放されない状態に保つものであり、被処理水が大気に開放されない状態で前記混合処理手段から前記凝集処理手段に導入され、被処理水を送液する送液手段が前記混合処理手段の前段に設けられていることが好ましい。
 凝集剤と被処理水とを混合して濁質等のフロックを形成する混合処理手段と、混合処理した被処理水を大気に開放されない状態に保つ円筒形状の凝集槽に旋回流が発生するように導入しフロックを粗大化する凝集処理手段と、凝集処理した被処理水を大気に開放されない状態で導入し固液分離処理する固液分離処理手段とを有する水処理装置とすることにより、凝集処理手段で形成した粗大フロックを、ポンプ等の送液手段を用いずに後段の固液分離処理手段に移送することが可能となり、粗大フロックの破壊を抑制できるため、清澄な処理水を得ることができる水処理装置となる。
水処理装置例の概略系統図である。 凝集処理手段の構成を示す上面図及び側面図である。 混合処理手段及び凝集処理手段の模式図である。 凝集処理手段の他の構成例を示す上面図、側面図及び模式図である。 水処理装置の模式図である。 他の水処理装置の模式図である。 他の水処理装置の模式図である。 濾過装置の構成を示す断面図である。 濾過装置の要部拡大図である。 濾過装置の濁質捕捉部の一例を示す図である。 水処理装置の概略系統図である。
 本発明の水処理装置は、被処理水に凝集剤を添加して凝集処理した後に、沈殿処理、加圧浮上処理、濾過処理や膜分離処理等の固液分離処理する水処理装置である。
 被処理水としては、例えば、フミン酸・フルボ酸系有機物、藻類等が生産する糖などの生物代謝物、又は、界面活性剤等の合成化学物質などを含む水、具体的には、工業用水、市水、井水、河川水、湖沼水、工場廃水(特に、工場からの廃水を生物処理した生物処理水)などが挙げられるが、これらに限定されるものではない。なお、フミン質とは、植物などが微生物に分解されることにより生じる腐食物質をいい、フミン酸等を含むものであり、フミン質を含有する水は、フミン質および/またはフミン質に由来する溶解性COD成分、懸濁物質や色度成分を有する。
 本発明の水処理装置の一例である図1~図3を用いて、本発明の水処理装置について詳細に説明する。なお、図1は水処理装置の概略系統図、図2は水処理装置が有する凝集処理手段の上面図(図2(a))及び側面図(図2(b))、図3は水処理装置が有する混合処理手段及び凝集処理手段である。
 図1に示すように、本発明の水処理装置1は、被処理水(原水)に添加された凝集剤と被処理水とを混合してフロックを形成する混合槽を有する混合処理手段3と、混合処理手段3から排出される被処理水が導入される凝集処理手段4と、凝集処理手段4から排出される被処理水を固液分離処理する固液分離処理手段5とを有する。また、混合処理手段3の前段には凝集剤を被処理水に添加する凝集剤導入手段6が設けられている。なお、凝集剤に限定はなく、被処理水中に含まれる懸濁物質(濁質)、コロイド成分、溶解性COD(化学的酸素要求量)成分等を凝結や凝集等してフロック(凝集物)を形成することができればよく、例えば、ポリ塩化アルミニウム(PAC)等のアルミニウム塩や鉄塩などの無機凝集剤、高分子凝集剤、MTアクアポリマー製カチオンポリマーゲルであるアコジェルC等の水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子等が挙げられ、これらを単独及び併用して用いることができる。
 また、図1に示すように、被処理水を送液する送液手段として、混合処理手段3の前段にポンプP1が設けられ、さらに、混合処理手段3と凝集処理手段4との間にポンプP2が設けられている。そして、凝集処理手段4から固液分離処理手段5へは、被処理水が大気に開放されない状態で通水されるように、図1の矢印で示すように配管で繋がれている。ここで、大気に開放されない状態とは、凝集処理手段4の前段に設けたポンプ2等の送圧(被処理水を送液するための圧力)を維持できる状態、すなわち、送圧がほとんど大気に逃げない密閉型であることを意味する。
 そして、凝集処理手段4は、図2に示すように、被処理水が導入される円筒形状の凝集槽11と、矢印で示すような旋回流が発生するように被処理水を凝集槽11の下部から接線方向に凝集槽11に導入する被処理水導入口12と、被処理水を凝集槽11の上部から接線方向に排出する被処理水排出口13とを有する。被処理水導入口12が凝集槽11の下部に設けられ、被処理水排出口13が凝集槽11の上部に設けられているため、発生する旋回流は上向流である。また、凝集槽11は、内部が中空の円筒の上面及び底面が蓋で覆われている形状であり、導入された被処理水が大気に開放されない状態に保たれるもの、すなわち密閉型である。なお、図1~図3においては、凝集処理手段4として、被処理水を凝集槽11の上部から接線方向に排出する被処理水排出口13を有するものを記載したが、被処理水排出口13は、凝集槽11の上部に設けられ凝集槽11の上部から被処理水を排出できるものであればよい。例えば、図4に示すように、凝集槽11の接線方向ではない上部側面に被処理水排出口13を有する凝集処理手段4Aでもよく、また、凝集槽11の頂上部に被処理水排出口13を有する凝集処理手段4Bでもよい。図4(a)は凝集処理手段4Aの上面図、図4(b)は凝集処理手段4Aの側面図、図4(c)は凝集処理手段4Aの模式図、図4(d)は凝集処理手段4Bの上面図、図4(e)は凝集処理手段4Bの側面図、図4(f)は凝集処理手段4Bの模式図である。
 なお、凝集槽11の大きさに特に限定はないが、内径は上限で2m程度で、内径:高さ=1~5:3~10程度とすればよい。また、被処理水導入口12や被処理水排出口13を設ける位置にも特に限定はないが、例えば、被処理水導入口12の通水方向断面の中心位置が、凝集槽11の底から上方に被処理水導入口12の半径+2m以内、また、被処理水排出口13の通水方向断面の中心位置が、凝集槽11の天井部から下方に被処理水排出口13の半径+2m以内とすればよい。さらに、被処理水の通水量や滞留時間、G値も特に限定はないが、例えば、被処理水の通水量は初期流速(被処理水導入口流速):0.5~2.0[m/s]、滞留時間:0.1~10分好ましくは2~5分、凝集槽平均G値:20~200[1/s]とすればよい。
 また、混合処理手段3は、図3に示すように、例えば被処理水が導入され上部が開放されている混合槽16と、被処理水を撹拌して凝集剤と被処理水を混合する急速の撹拌機17と、混合処理した被処理水を一時的に貯留する一時貯留槽18とを有する。
 そして、固液分離処理手段5は、沈殿処理、加圧浮上処理、濾過処理や、膜分離処理等、濁質等のフロックを除去する固液分離処理を行えるものであれば特に限定はないが、本実施形態においては、詳しくは後述するが、被処理水に含まれる濁質等と凝集剤とで形成されたフロックを捕捉する紐状(繊維状)の濾過体を有する濾過装置20である。なお、沈殿処理や加圧浮上処理は、凝集剤を被処理水に添加する時に、カセイソーダ、消石灰や硫酸などでpH調整を行い、最後に有機系高分子凝集剤にて懸濁物をフロック化することで行える。また必要に応じて有機凝結剤を併用してもよい。また、膜分離処理としては、精密濾過膜(MF膜)、限外濾過膜(UF膜)、ナノ濾過膜(NF膜)、又は、逆浸透膜(RO膜)等が挙げられる。
 このような水処理装置1では、まず、原水槽2に貯留された被処理水(原水)が通水する配管に、凝集剤が凝集剤導入手段6により導入され、被処理水に凝集剤が添加される。そして、凝集剤が添加された被処理水は、混合処理手段3の混合槽16に導入され、撹拌機17により比較的急速に撹拌されて、被処理水と凝集剤が混合される。これにより、被処理水中に含まれる濁質等と凝集剤とでフロックが形成される。次いで、フロックが形成された被処理水は一時貯留槽18に貯留される。そして、一時貯留槽18に貯留された被処理水は、ポンプP2により送液されて、凝集処理手段4の凝集槽11の下部に接線方向に設けられた被処理水導入口12から、凝集槽11の下部へ導入される。このように、凝集槽11の下部に接線方向に設けられた被処理水導入口12から被処理水を導入すると、図2(a)の矢印で示すような旋回流が発生する。この旋回流により上記混合処理手段3で形成されたフロックが比較的緩やかに撹拌されて粗大化し、そして、上昇しながら被処理水排出口13まで達し、該被処理水排出口13から排出される。このフロックを粗大化させる処理を、凝集処理と呼ぶ。ここで、本実施形態においては、凝集槽11は内部に仕切り板、内管や撹拌機など、他の部材が設けられていないものであるので、この被処理水の旋回流を阻害するものがない。したがって、フロックが部材に衝突等して微細化することを防ぐことができ、良好にフロックを粗大化することができる。そして、凝集槽11は内部に何も部材が設けられていないため、勿論、メンテナンスも容易であり、また、製作コストや運転コストを抑制することができる。なお、下向流での通水ではショートパスしてしまうので凝集効率が悪くなり、また、水平方向に通水すると水の流れが不均一になってフロックが破壊されてしまう場合があるが、本実施形態のように、上向流とすると、水面が凝集槽11全体で均一に上昇するため攪拌が安定し、効率よくフロックの粗大化を行なうことができる。また、凝集槽11は上面及び底面が蓋で覆われている円筒形状であるため、導入された被処理水は大気に開放されない状態であり、ポンプP2の送圧は、被処理水排出口13から排出される被処理水においても、維持されているものである。
 そして、凝集処理されて被処理水排出口13から排出された被処理水は、被処理水排出口13と固液分離処理手段5とを繋ぐ配管に通水される。ここで、上述したように、ポンプP2の送圧は、被処理水排出口13から排出される被処理水においても維持されている。また、凝集処理手段4から固液分離処理手段5へは被処理水が大気に開放されない状態で通水されるように配管が設けられている、すなわち、凝集処理手段4の被処理水排出口13と、固液分離処理手段5に被処理水を導入する入口とは配管で繋がれている。したがって、凝集処理手段4及び固液分離処理手段5の間に、固液分離処理手段5に被処理水を通水するためのポンプ等の送液手段を設けなくても、被処理水は固液分離処理手段5へ送液されることになる。したがって、ポンプ等の送液手段により粗大化させたフロックの破壊を防止することができるため、固液分離処理手段5により、フロックを良好に除去することができ、確実に清澄な処理水を得ることができる。
 一方、凝集処理手段4及び固液分離処理手段5の間に、固液分離処理手段5に被処理水を通水するためのポンプ等の送液手段を設ける必要がある場合、例えば、凝集処理手段の凝集槽の上部が開放されており被処理水が大気に開放された状態の水処理装置や、被処理水が凝集処理手段から固液分離処理手段までの間に大気に開放された状態となるように通水される水処理装置では、このポンプ等の送液手段の使用により、凝集処理により粗大化させたフロックを破壊して微細化等しまう。そして、このようにフロックが破壊されると、後段の固液分離処理手段により、フロックを良好に除去できなくなり、清澄な処理水を得難くなる。また、凝集処理の後にさらに撹拌機等で比較的急速に撹拌する装置を有すると、フロックを破壊してしまい、同様に清澄な処理水を得難くなる。
 なお、図1に示した例では、凝集処理手段4自体と、凝集処理手段4及び固液分離処理手段5との間の送液を、被処理水が大気に開放されていない水処理装置1としたが、さらに、混合処理手段3も被処理水を大気に開放されない状態に保つものとし、被処理水が大気に開放されない状態で混合処理手段3から凝集処理手段4に導入される水処理装置としてもよい。
 具体的には、図5に示すように、被処理水(原水)が貯留された原水槽2と、混合処理手段3Aと、混合処理手段3Aから排出される被処理水が導入される凝集処理手段4と、凝集処理手段4から排出される被処理水を固液分離処理する固液分離処理手段(図示無し)とを有する。また、混合処理手段3Aの前段には凝集剤を被処理水に添加する凝集剤導入手段6が設けられている。なお、図1~図3と同じ装置には同じ番号を付してあり、同じ装置等の説明は省略する。
 図5に示す水処理装置では、混合処理手段3Aはラインミキサーを2つ直列に連結したものであり、被処理水が大気に開放されない状態で保持されるものである。勿論、ラインミキサーの数に限定はない。また、混合処理手段3A、凝集処理手段4及び固液分離処理手段は順に配管で繋がれており、混合処理手段3Aから凝集処理手段4を経由して固液分離処理手段に至るまで、被処理水が大気に開放されない状態で通水されるものである。したがって、混合処理手段3Aから固液分離処理手段まで、混合処理手段3Aの前段に設けられたポンプP1の送圧が維持されるため、送液手段は、混合処理手段3Aの前段に設けられたポンプP1のみでよい。よって、ポンプを複数設けることによるコストやメンテナンスを削減することができる。なお、設置面積の小ささの観点からラインミキサーが好ましいが、例えば、配管を延長し滞留時間を長くしたライン混合でもよい。
 そして、上述した例では、混合処理手段3に導入する前の被処理水に凝集剤を添加するようにしたが、被処理水を導入した混合処理手段3、すなわち混合槽16に凝集剤を添加するようにしてもよい。また、混合槽やラインミキサーを複数設け、各混合槽やラインミキサー毎に異なる種類の凝集剤を添加するようにしてもよい。ラインミキサー毎に異なる種類の凝集剤を添加する、すなわち、異なる種類の凝集剤を添加する毎にラインミキサーに通水する構成とした水処理装置について、図6を用いて説明する。
 図6に示すように、被処理水(原水)が貯留された原水槽2と、混合処理手段3Bと、混合処理手段3Bから排出される被処理水が導入される混合処理手段3B´と、混合処理手段3B´から排出される被処理水が導入される凝集処理手段4と、凝集処理手段4から排出される被処理水を固液分離処理する固液分離処理手段5とを有する。また、混合処理手段3Bの前段には無機凝集剤を被処理水に添加する無機凝集剤導入手段6Aが設けられ、混合処理手段3B´の前段には高分子凝集剤を被処理水に添加する高分子凝集剤導入手段6Bが設けられている。そして、混合処理手段3Bの上流側には、pH調整剤を被処理水に導入するpH調整剤導入手段7が設けられている。なお、図1~図5と同じ装置には同じ番号を付してあり、同じ装置等の説明は省略する。
 図6に示す水処理装置では、混合処理手段3B及び混合処理手段3B´はラインミキサーをそれぞれ3つ直列に連結した同一構造であり、被処理水が大気に開放されない状態で保持されるものである。勿論、ラインミキサーの数に限定はない。また、混合処理手段3B及び混合処理手段3B´、凝集処理手段4及び固液分離処理手段5は順に配管で繋がれており、混合処理手段3Bから混合処理手段3B´及び凝集処理手段4を経由して固液分離処理手段5に至るまで、被処理水が大気に開放されない状態で通水されるものである。したがって、混合処理手段3Bから固液分離処理手段5まで、混合処理手段3Bの前段に設けられたポンプP1の送圧が維持されるため、送液手段は、混合処理手段3Bの前段に設けられたポンプP1のみでよい。よって、ポンプを複数設けることによるコストやメンテナンスを削減することができる。また、無機凝集剤を添加して混合処理手段3Bで処理した後に、異なる種類の凝集剤である高分子凝集剤を添加して混合処理手段3B´で処理するため、無機凝集剤と濁質、溶解性COD成分等でフロックが形成され、且つ、このフロックと高分子凝集剤とでさらに大きなフロックが形成され旋回流により粗大化される。
 また、異なる種類の凝集剤を添加する毎にラインミキサー及び凝集処理手段4に順に通水する構成とした水処理装置としてもよい。このような水処理装置は、図7に示すように、被処理水(原水)が貯留された原水槽2と、混合処理手段3Bと、混合処理手段3Bから排出される被処理水が導入される凝集処理手段4と、凝集処理手段4から排出される被処理水が導入される混合処理手段3B´と、混合処理手段3B´から排出される被処理水が導入される凝集処理手段4´と、凝集処理手段4´から排出される被処理水を固液分離処理する固液分離処理手段5とを有する。図7においては、凝集処理手段4と凝集処理手段4´とは同一構造のものである。また、混合処理手段3Bの前段には無機凝集剤を被処理水に添加する無機凝集剤導入手段6Aが設けられ、混合処理手段3B´の前段には高分子凝集剤を被処理水に添加する高分子凝集剤導入手段6Bが設けられている。そして、混合処理手段3Bの上流側には、pH調整剤を被処理水に導入するpH調整剤導入手段7が設けられている。なお、図1~図6と同じ装置には同じ番号を付してあり、同じ装置等の説明は省略する。
 図7に示す水処理装置では、混合処理手段3B及び混合処理手段3B´はラインミキサーをそれぞれ3つ直列に連結した同一構造であり、被処理水が大気に開放されない状態で保持されるものである。勿論、ラインミキサーの数に限定はない。また、混合処理手段3B、凝集処理手段4、混合処理手段3B´、凝集処理手段4´及び固液分離処理手段5は順に配管で繋がれており、混合処理手段3Bから、凝集処理手段4、混合処理手段3B´及び凝集処理手段4´を経由して固液分離処理手段5に至るまで、被処理水が大気に開放されない状態で通水されるものである。したがって、混合処理手段3Bから固液分離処理手段5まで、混合処理手段3Bの前段に設けられたポンプP1の送圧が維持されるため、送液手段は、混合処理手段3Bの前段に設けられたポンプP1のみでよい。よって、ポンプを複数設けることによるコストやメンテナンスを削減することができる。また、無機凝集剤が添加された被処理水が順に混合処理手段3B及び凝集処理手段4で処理され、その後、異なる種類の凝集剤である高分子凝集剤が添加された被処理水が順に混合処理手段3B´及び凝集処理手段4´で処理されるため、無機凝集剤と濁質、溶解性COD成分等でフロックが形成され旋回流により粗大化され、且つ、この粗大化されたフロックと高分子凝集剤とでさらに大きなフロックが形成され旋回流により粗大化される。
 そして、本実施形態においては、固液分離処理手段5は濾過処理手段であり、繊維状の濾過体を有するものである。例えば、紐状(繊維状)の濁質捕捉部を有する濾過体が通水時の濾過部の空隙率が50~95%になるように濾過槽に充填されていることが好ましい。このような濾過処理手段の具体例としては、図8に示す濾過装置が挙げられる。なお、図8は濾過装置の構成を示す断面図であり、図9は図8の要部拡大図である。
 図8に示すように、濾過装置20は、被処理水が通水される筒状の濾過槽21と、通水される被処理水中の濁質を捕捉する濾過体22とを有する。該濾過体22は、濾過槽21の通水方向の両端に接続される芯材23と、紐状の濁質捕捉部24とからなる。そして、濾過槽21の通水方向両端には、濁質等で形成されたフロックを含有する被処理水が自由に通水できる程度の穴が複数設けられた樹脂製等の円形のプレート26が設けられ、各プレート26の中心に芯材23の両端が固定されている。また、濁質捕捉部24は、芯材23に一部が編みこまれて固定されると共に固定されていないいわゆるループ状の部分は濾過槽21の内壁面に向かって放射状に広がるように設けられており、濾過槽21全体に濾過体22が広がっている。このため、濁質捕捉部24は通水方向と交差するので、濁質捕捉部24によって被処理水に含まれる濁質等が捕捉できる。なお、紐状の濁質捕捉部24は長い矩形(テープ)をループ状にしたものであり、図9の紐状の濁質捕捉部24の拡大図に示すように、長手方向の端部まで達しないスリット25が複数設けられている。このようにスリット25を設けることにより、濁質等の捕捉効果が向上する。
 ここで、濾過体22は、被処理水の通水時の濾過部の空隙率が50~95%、好ましくは60~90%、さらに好ましくは、50~80%になるように濾過槽21に充填されている。空隙率は下記式から求められる値である。そして、濾過部とは、被処理水の濁質等が濾過体22に捕捉される領域、すなわち、濾過槽21の内壁面を側面とし通水時の濾過体22の通水方向両端を厚さ方向の両端として濾過体22の濁質捕捉部24が充填されている層の内、濾過に寄与しない部分(図8においては芯材23の部分)を排除した部分をいう。なお、濾過に寄与しない部分が無い場合は、濾過部は、濾過槽21の内壁面を側面とし通水時の濾過体22の通水方向両端を厚さ方向の両端として濾過体22の濁質捕捉部24が充填されている層をいう。「濾過部の体積-濁質捕捉部の体積」は、例えば図8のように、濾過操作時(被処理水通水時)に濾過体22が圧密せず、濾過槽21内に充填された状態のまま濾過操作時の濾過部が形成される例では、被処理水で満たした濾過槽21に濾過体22を入れた際に溢れた被処理水の量から芯材23の体積を減ずることで容易に求めることができる。なお、図8においては、濾過体22の両端がそれぞれ濾過槽21の通水方向両端に固定されており、濾過体22は被処理水の通水時に濾過槽21全体に広がっているため、濾過槽21の内部全体から芯材23の部分を減じた部分が濾過部である。
[式1]
 空隙率(%)=[(濾過部の体積-濁質捕捉部の体積)/濾過部の体積]×100
 このような濾過装置20に被処理水を通水すると、被処理水は各紐状の濁質捕捉部24の間や濁質捕捉部24に設けられたスリット25の間を通り、その際被処理水に含まれる濁質等が紐状の濁質捕捉部24やスリット25にトラップされ、濁質が除去された被処理水が濾過槽21から排出される。そして、通水時の濾過部の空隙率が50~95%になるように濾過体22が充填されているため、通水が妨げられず且つ濁質等のトラップも良好である。特に、本発明においては、濾過装置20に導入される被処理水は、濁質等と凝集剤とで形成され粗大化されたフロックの破壊が防止されているため、濾過装置20で良好に濁質等をトラップすることができる。
 このように、通水時の濾過部の空隙率が50~95%になるように濾過体22を充填することにより、通水が妨げられず且つ濁質等のトラップが良好になるため、濾過装置20の閉塞が抑制でき、清澄な処理水が得られるという効果を奏する。空隙率が95%よりも高いと通水が良好になり高速で濾過し易くなるが処理水の濁度が顕著に高くなってしまい、また、50%よりも低いと濁質のトラップは良好であるが通水が不十分で濾過装置や必要に応じて後段に設ける膜分離処理手段に閉塞が生じ、差圧上昇速度が顕著に高くなってしまう。特に、例えば100m/h以上の高速で濾過運転をしたり、濁度が高い(例えば20度以上)被処理水を処理すると、得られる処理水の濁度が高くなるという問題や、装置が閉塞してしまうという問題が生じやすいが、空隙率が50~95%になるように濾過体22を充填した濾過装置20とすることによって、高速運転や濁度の高い被処理水であっても、閉塞が抑制できまた清澄な処理水が得られる。勿論、低速で処理したり、濁度が低い被処理水を処理する場合であっても、閉塞が抑制できまた清澄な処理水が得られる。なお、空隙率は均一であることが好ましいため、濁質捕捉部24が濾過槽21の通水方向両端の近傍まで充填されていることが好ましく、また、濁質捕捉部24が濾過槽21の内壁面の近傍まで充填されていることが好ましい。また、濾過部の体積は、被処理水の通水時と、後述する逆洗時や濾過停止時などのその他の状態とで、体積変動しないことが好ましく、濾過部の体積変動率は30%以下、好ましくは10%以下であることが好ましい。このような範囲とすることで、濾過装置をコンパクトにすることができる。
 そして、図8の濾過装置においては、濾過槽21の大きさは、例えば筒状であれば、直径100~1000mm、高さ200~1000mmとすることができる。なお、濾過槽21の大きさが濾過体22に比べて大きい場合は、複数の濾過体22を濾過槽21に充填したり、濾過体22の濁質捕捉部24を大きくする等して、通水時の濾過部の空隙率が50~95%になるようにすればよい。
 また、芯材23や濁質捕捉部24の材質としては、ポリプロピレン、ポリエステル、ナイロンなどの合成樹脂が挙げられる。ここで、芯材23は、ポリプロピレン、ポリエステル、ナイロンなどの合成繊維を製造過程で編み上げることで強度を持たせてもよい。また、ねじりブラシの様に腐食されないSUSや樹脂で被覆された金属による針金を芯材23とし、濁質捕捉部24を均等に並べた後、金属を捩ることで、放射状に広げた濾過体22としてもよい。このように芯材23の強度を向上させることで、芯材23が屈曲することがなくなると共に、濾過体22端部の固定が容易となるので、濾過体22の交換作業が容易になる。
 芯材23や濁質捕捉部24の大きさに特に限定はないが、例えば、厚さ0.05~2mm、幅1~50mm、長さ(被処理水を通水した際の芯材からの距離)10~500mm程度、好ましくは、厚さ0.3~2mm、幅1~20mm、長さ50~200mm程度とすることができる。
 なお、図8では、筒状の濾過槽21としたが、筒状でなくてもよく、通水できる形状、すなわち、中空であればよく、例えば角柱に空洞を設けた形状でもよい。また、上述した例では、プレート26に芯材23の両端を固定したが、これに限定されず、例えば芯材の一端のみを固定するようにしてもよい。さらに、プレート26は用いなくとも、芯材23の端部が固定できればよく、例えば濾過槽21の端面に棒状部材を配置し、芯材23の端部を固定するようにしてもよい。
 また、図8では、ループ状の濁質捕捉部24を芯材23に突設するようにしたが、これに限定されず、例えば、図10に示すように、短冊状の複数の濁質捕捉部とし各濁質捕捉部の一端を芯材に固定するようにしてもよい。また、図8では、濁質捕捉部24の断面形状を四角形になるようにしたが、特に限定はなく、例えば円形状でもよい。なお、各濁質捕捉部の長さは同一でも異なっていてもよい。さらに、上述した例では、濁質捕捉部24の材質は一種類としたが、二種以上としてもよい。また、濁質捕捉部に設けるスリットは、複数でも単数でもよく、設けなくてもよい。そして、芯材23がなくてもよく、濁質捕捉部のみで構成される濾過体22としてもよいが、濾過体22は濾過槽21に略均一に存在していることが好ましいので、濁質捕捉部を濾過槽の所定位置に固定することが好ましい。
 このような混合処理、凝集処理及び固液分離処理により、清澄な処理水が得られるが、イオン交換処理等の脱イオン処理をさらに有していてもよい。これにより、純水や超純水を得ることができる。また、脱炭酸処理や、活性炭処理等、被処理水の精製処理をさらに行ってもよい。
 また、必要に応じて、pH調整剤、凝結剤、殺菌剤、消臭剤、消泡剤、防食剤などを添加してもよい。さらに、必要に応じて、紫外線照射、オゾン処理、生物処理などを併用してもよい。
 以下、実施例及び比較例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。
 (実施例1)
 被処理水(原水)として、工業用水(濁度5~7度)を、図5に示す水処理装置で処理した。用いた水処理装置について具体的に詳述すると、ラインミキサーを2個連結した混合処理手段3A、図2に示す凝集処理手段4及び図8に示す濾過装置20を順に有し、送液手段として混合処理手段3Aの前段のみにポンプP1が設けられている水処理装置であって、混合処理手段3A及び凝集処理手段4は被処理水が大気に開放されない状態で保持されるものであり、混合処理手段3A、凝集処理手段4及び濾過装置20は順に配管で繋がれており、混合処理手段3Aから凝集処理手段4を経由して濾過装置20に至るまで、被処理水が大気に開放されない状態で通水されるものである。なお、以下に各処理手段の条件を記載する。
<混合処理手段>
 ノリタケカンパニー製の型式1/2-N50-171-1のラインミキサーを2個直列に連接したものを混合処理手段とし、被処理水の通水方向の1番目のラインミキサーの前でポリ塩化アルミニウム(PAC:10重量%as Al)を被処理水に対して60mg/L添加しこの1番目のラインミキサー出口から2番目のラインミキサー入口までの滞留時間を10秒程度とし、また、2番目のラインミキサー直前で両性高分子凝集剤(栗田工業株式会社製、クリベストE851)を被処理水に対して4mg/L添加した。
<凝集処理手段>
 凝集槽の大きさ:内径100mm×高さ510mm
 被処理水導入口の位置:通水方向断面の中心位置が凝集槽の底から上方に半径+20mm
 被処理水排出口の位置:通水方向断面の中心位置が凝集槽の天井部(上面)から下方に半径+20mm
 被処理水の通水量:初期流速(被処理水導入口流速)1.33[m/s]
 被処理水の滞留時間:1分
 撹拌速度(旋回流の回転速度):20~30rpm
 凝集槽平均G値:121.07[1/s]
<濾過装置>
 濾過槽の大きさ:直径200mm、高さ500mmのアクリル製の筒状カラム
 濾過体:芯材23及び紐状の濁質捕捉部24からなる濾過体22。芯材は体積250mLで、各濁質捕捉部24の厚さは0.5mm、幅2mm、長さ(被処理水を通水した際の芯材からの距離)100mmとなるようループ状に編みこんだものであり、通水時の濾過部(濾過槽21内部の体積から芯材23の体積を引いたもの)の空隙率は60%である。そして、濾過体22の芯材23の両端が、上下に配置されたプレートによって固定されている。
 LV=250m/h
 凝集槽でのフロック径と、濾過装置入口及び出口の濁度を測定した。結果を表1に示す。(濾過装置入口濁度-濾過装置出口濁度)/濾過装置入口濁度×100として求めた濁度減少率、濾過装置に通水を開始してからの時間(「通水後経過時間」と記載。)も表1に示す。なお、濁度はホルマジン標準液を用いた透過散乱測定方式により求めた。
 (比較例1)
 凝集処理手段を、凝集槽と撹拌機を有し被処理水が大気に開放された状態で保持されるものとし、凝集処理手段と濾過装置との間に、被処理水を送液するためのポンプを設けた以外は、実施例1と同様の操作を行った。なお、比較例1の凝集処理手段の滞留時間は10分、撹拌速度は30rpmである。
Figure JPOXMLDOC01-appb-T000001
 この結果、表1に示すように、実施例1と比較例1は凝集槽でのフロック径はほぼ同等であるが、濾過装置から排出される処理水は実施例1のほうが顕著に清澄であった。実施例1では、凝集槽でフロックが粗大化され、この粗大化されたフロックがポンプ等により破壊されること無く濾過装置に導入されたため、比較例1と比較して非常に清澄な水が得られたと推測される。一方、凝集槽と濾過装置との間に送液するためにポンプを設ける必要があった比較例1では、濾過装置に導入される被処理水はフロックが破壊され、微細なものとなり濾過装置で捕捉できなかったと推測される。
 以下に濾過装置20の効果を示す参考例を示す。
 (濾過装置の空隙率と差圧上昇及び処理水濁度の関係)
 被処理水(原水)として、濁度20度の工業用水を図11に示す水処理装置30を用いて、LV200m/hで1週間処理した。水処理装置30は、図11に示すように、被処理水(原水)が導入される反応槽31と、無機凝集剤が保持される無機凝集剤槽32から反応槽31に無機凝集剤を導入するポンプ等からなる無機凝集剤導入手段33と、高分子凝集剤が保持される薬品槽34から反応槽31に薬品を導入するポンプ等からなる薬品導入手段35と、反応槽31で撹拌機36で撹拌することにより凝集処理した被処理水が導入される図8の濾過装置20とを具備するものである。また、濾過装置20に用いた濾過体は、図8に示すように芯材23及び紐状の濁質捕捉部24からなり、濾過槽21の通水方向両端のプレート26にそれぞれ両端が固定されている。そして、芯材23は体積250mLで、各濁質捕捉部24の厚さは、0.5mm、幅2mm、長さ(被処理水を通水した際の芯材からの距離)100mmとなるようループ状に芯材に編みこんだものであり、濁質捕捉部24の編込み密度を変化させて、通水時の濾過部(濾過槽21内部の体積から芯材23の体積を引いたもの)の空隙率が、30、40、50、60、70、80、90、95、98%の濾過体を作製し、各濾過体を用いて水処理した。なお、芯材は両端で固定しているため、被処理水通水時とその他の時とでは濾過部の体積変化率はほぼ0%であった。また、濾過槽21の大きさは、直径200mm、高さ500mmである。また、凝集剤として、被処理水に対して30mg/Lのポリ塩化アルミニウム(PAC:10重量% as Al)及び被処理水に対して0.7mg/Lの両性の高分子凝集剤クリベストE851(栗田工業製)を添加した。濾過装置から排出された処理水の濁度(処理水濁度)及び濾過装置の差圧上昇速度(差圧上昇速度)を測定した結果を表2に示す。なお、処理水の濁度はカオリン標準液を用いた透過光測定方法により求め、濾過装置の差圧上昇速度は入口と出口の圧力差で求めた。
 この結果、濾過体を通水時の濾過部の空隙率が50~95%になるように充填した濾過装置では、50~95%の範囲外のものに比べて顕著に差圧上昇速度及び処理水濁度が低く、清澄な処理水が得られ、また閉塞が抑制できることが分かった。
Figure JPOXMLDOC01-appb-T000002
 1 水処理装置、 2 原水槽、 3 混合処理手段、 4 凝集処理手段、 5 固液分離手段、 6 凝集剤導入手段、 7 pH調整剤導入手段、 11 凝集槽、 12 被処理水導入口、 13 被処理水排出口、 16 混合槽、 17 撹拌機、 20 濾過装置、 21 濾過槽、 22 濾過体、 23 芯材、 24 濁質捕捉部、 26 プレート

Claims (4)

  1.  被処理水に添加された凝集剤と被処理水とを混合してフロックを形成する混合槽を有する混合処理手段と、
     前記混合処理手段から排出される被処理水が導入されると共に被処理水が大気に開放されない状態に保たれる円筒形状の凝集槽、旋回流が発生するように被処理水を前記凝集槽の下部から接線方向に前記凝集槽に導入する被処理水導入口、及び、前記凝集槽の上部に設けられ被処理水を前記凝集槽の上部から排出する被処理水排出口を有する凝集処理手段と、
     前記凝集処理手段から排出される被処理水が大気に開放されない状態で前記凝集処理手段から導入され、被処理水を固液分離処理する固液分離処理手段と、を有することを特徴とする水処理装置。
  2.  前記被処理水排出口は、被処理水を前記凝集槽の上部から接線方向に排出するように設けられていることを特徴とする請求項1に記載の水処理装置。
  3.  前記固液分離処理手段が、紐状の濁質捕捉部を有する濾過体が通水時の濾過部の空隙率が50~95%になるように濾過槽に充填されている濾過処理手段であることを特徴とする請求項1または2に記載の水処理装置。
  4.  前記混合処理手段は被処理水を大気に開放されない状態に保つものであり、被処理水が大気に開放されない状態で前記混合処理手段から前記凝集処理手段に導入され、被処理水を送液する送液手段が前記混合処理手段の前段に設けられていることを特徴とする請求項1~3のいずれかに記載の水処理装置。
PCT/JP2011/058003 2010-03-30 2011-03-30 水処理装置 WO2011122658A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127021943A KR20130012009A (ko) 2010-03-30 2011-03-30 수처리 장치
US13/577,921 US20120305468A1 (en) 2010-03-30 2011-03-30 Water treatment apparatus
JP2012508359A JP5843071B2 (ja) 2010-03-30 2011-03-30 水処理装置
SG2012055380A SG182742A1 (en) 2010-03-30 2011-03-30 Water treatment apparatus
CN201180011536.8A CN102781847B (zh) 2010-03-30 2011-03-30 水处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-079591 2010-03-30
JP2010079591 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122658A1 true WO2011122658A1 (ja) 2011-10-06

Family

ID=44712352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058003 WO2011122658A1 (ja) 2010-03-30 2011-03-30 水処理装置

Country Status (7)

Country Link
US (1) US20120305468A1 (ja)
JP (1) JP5843071B2 (ja)
KR (1) KR20130012009A (ja)
CN (1) CN102781847B (ja)
SG (1) SG182742A1 (ja)
TW (1) TWI508766B (ja)
WO (1) WO2011122658A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016078021A (ja) * 2014-10-15 2016-05-16 アクアサービス株式会社 水質浄化方法および水質浄化システム
JP2017080653A (ja) * 2015-10-23 2017-05-18 トヨタ紡織株式会社 水中不純物分離器及びこれを備える冷却水循環システム
JP2018126689A (ja) * 2017-02-08 2018-08-16 株式会社東芝 水処理システムおよび水処理方法
JP2018192453A (ja) * 2017-05-22 2018-12-06 オルガノ株式会社 膜ろ過装置および膜ろ過方法
EP3708248A4 (en) * 2017-11-08 2020-09-16 LG Chem, Ltd. APPARATUS AND METHOD FOR MANUFACTURING POLYMER LATEX RESIN POWDER
JP7050201B1 (ja) 2021-06-11 2022-04-07 株式会社クボタ 異種液体混合装置および水処理設備

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920409B2 (ja) * 2014-06-18 2016-05-18 栗田工業株式会社 凝集モニタリング装置、凝集モニタリング方法および凝集システム
CN104147953B (zh) * 2014-08-27 2016-08-17 苏州清然环保科技有限公司 混合装置
CA2980702A1 (en) * 2016-09-26 2018-03-26 Wilmac, Inc. DBA Boretec Equipment Portable liquid recovery system with optional preliminary processor and feed
JP6602334B2 (ja) * 2017-03-30 2019-11-06 栗田工業株式会社 規定濃度水の供給方法及び装置
CA3112909C (en) * 2018-09-23 2024-06-04 Marvin NASH Method of processing by-product water for optimal beneficial use
CN111348774B (zh) * 2020-03-11 2022-03-15 昆明弘承食品科技有限公司 一种速溶食品加工萃取用污水处理工艺及装置
CN113354134B (zh) * 2021-05-06 2022-05-31 江苏横河集团有限公司 一种工业自动控制仪表系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079948A (ja) * 1973-11-16 1975-06-28
JPS5197246A (ja) * 1975-01-21 1976-08-26
JPS57132541A (en) * 1981-02-09 1982-08-16 Kurita Water Ind Ltd Flocculation reactor
JPS63315110A (ja) * 1987-06-15 1988-12-22 Japan Organo Co Ltd 高速濾過器
JPH02277507A (ja) * 1988-12-29 1990-11-14 Fuji Electric Co Ltd 汚水の凝集装置、管状凝集器及び処理設備並びに凝集剤の注入方法
JPH06292807A (ja) * 1993-04-09 1994-10-21 Taisei Corp 濾過機内蔵型シックナ
JPH11244870A (ja) * 1998-03-05 1999-09-14 Nkk Corp 汚水の凝集沈澱処理装置およびその洗浄方法
JPH11262602A (ja) * 1998-03-18 1999-09-28 Japan Organo Co Ltd 長繊維束を用いたろ過塔
JP2004089766A (ja) * 2002-08-29 2004-03-25 Ebara Corp 懸濁水の上向流ろ過方法及び装置
JP2008168215A (ja) * 2007-01-12 2008-07-24 Ishigaki Co Ltd 二段式凝集混和槽

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617125B2 (ja) * 1973-06-30 1981-04-21
GB9317026D0 (en) * 1993-08-16 1993-09-29 Clean Water Company The Limite Method and apparatus for treating liquids
US5904855A (en) * 1997-02-27 1999-05-18 David H. Manz Closed chemically enhanced treatment system
JP4649791B2 (ja) * 2001-07-19 2011-03-16 日本錬水株式会社 濾過装置
JP3779634B2 (ja) * 2002-03-18 2006-05-31 オルガノ株式会社 長繊維ろ過装置
JP4726181B2 (ja) * 2004-07-09 2011-07-20 オルガノ株式会社 濾過装置
JP2007301453A (ja) * 2006-05-10 2007-11-22 Nippon Rensui Co Ltd 塩水の精製方法
FR2910822B1 (fr) * 2006-12-29 2009-02-27 Otv Sa Procede et installation de traitement d'eau par floculation lestee et decantation
JP5005619B2 (ja) * 2008-06-18 2012-08-22 佐藤工業株式会社 濾過材の再生利用法
WO2010053051A1 (ja) * 2008-11-04 2010-05-14 栗田工業株式会社 ろ過装置及び水処理装置
GB0906841D0 (en) * 2009-04-21 2009-06-03 Aljohani Mohammed S Nanofiltration process
JP2011206750A (ja) * 2010-03-30 2011-10-20 Kurita Water Ind Ltd 水処理方法及び水処理装置
JP5561473B2 (ja) * 2010-03-31 2014-07-30 栗田工業株式会社 濾過装置及び水処理装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079948A (ja) * 1973-11-16 1975-06-28
JPS5197246A (ja) * 1975-01-21 1976-08-26
JPS57132541A (en) * 1981-02-09 1982-08-16 Kurita Water Ind Ltd Flocculation reactor
JPS63315110A (ja) * 1987-06-15 1988-12-22 Japan Organo Co Ltd 高速濾過器
JPH02277507A (ja) * 1988-12-29 1990-11-14 Fuji Electric Co Ltd 汚水の凝集装置、管状凝集器及び処理設備並びに凝集剤の注入方法
JPH06292807A (ja) * 1993-04-09 1994-10-21 Taisei Corp 濾過機内蔵型シックナ
JPH11244870A (ja) * 1998-03-05 1999-09-14 Nkk Corp 汚水の凝集沈澱処理装置およびその洗浄方法
JPH11262602A (ja) * 1998-03-18 1999-09-28 Japan Organo Co Ltd 長繊維束を用いたろ過塔
JP2004089766A (ja) * 2002-08-29 2004-03-25 Ebara Corp 懸濁水の上向流ろ過方法及び装置
JP2008168215A (ja) * 2007-01-12 2008-07-24 Ishigaki Co Ltd 二段式凝集混和槽

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016078021A (ja) * 2014-10-15 2016-05-16 アクアサービス株式会社 水質浄化方法および水質浄化システム
JP2017080653A (ja) * 2015-10-23 2017-05-18 トヨタ紡織株式会社 水中不純物分離器及びこれを備える冷却水循環システム
JP2018126689A (ja) * 2017-02-08 2018-08-16 株式会社東芝 水処理システムおよび水処理方法
JP2018192453A (ja) * 2017-05-22 2018-12-06 オルガノ株式会社 膜ろ過装置および膜ろ過方法
EP3708248A4 (en) * 2017-11-08 2020-09-16 LG Chem, Ltd. APPARATUS AND METHOD FOR MANUFACTURING POLYMER LATEX RESIN POWDER
EP3708248A1 (en) * 2017-11-08 2020-09-16 LG Chem, Ltd. Apparatus and method for preparing polymer latex resin powder
JP2021501065A (ja) * 2017-11-08 2021-01-14 エルジー・ケム・リミテッド 高分子ラテックス樹脂粉体の製造装置及び製造方法
JP7050201B1 (ja) 2021-06-11 2022-04-07 株式会社クボタ 異種液体混合装置および水処理設備
JP2022189209A (ja) * 2021-06-11 2022-12-22 株式会社クボタ 異種液体混合装置および水処理設備

Also Published As

Publication number Publication date
TW201143868A (en) 2011-12-16
TWI508766B (zh) 2015-11-21
JP5843071B2 (ja) 2016-01-13
JPWO2011122658A1 (ja) 2013-07-08
SG182742A1 (en) 2012-08-30
CN102781847B (zh) 2014-08-27
US20120305468A1 (en) 2012-12-06
CN102781847A (zh) 2012-11-14
KR20130012009A (ko) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5843071B2 (ja) 水処理装置
JP5257591B2 (ja) 水処理方法
JP2011230038A (ja) 水処理装置
JP5142660B2 (ja) 排水回収装置
JP2010036180A5 (ja)
JP4071364B2 (ja) 逆浸透膜分離装置の前処理装置
KR101469891B1 (ko) 지표수·지하수 워터블랜딩 수처리시스템 및 방법
KR101282985B1 (ko) 여과 장치 및 수처리 장치
JP6662558B2 (ja) 水処理方法および水処理装置
JP5818148B2 (ja) 槽外設置型膜分離活性汚泥法および活性汚泥処理装置
JP6687056B2 (ja) 水処理方法及び水処理装置
KR20170075085A (ko) 막여과 정수 시스템 및 이를 이용한 망간 저감방법
JP2011206750A (ja) 水処理方法及び水処理装置
JP2011056411A (ja) 被処理水の淡水化システムおよび淡水化方法
Zhao et al. Effectiveness of pulse dosing of submicron super-fine powdered activated carbon in preventing transmembrane pressure rise in outside-in-type tubular and inside-out-type monolithic ceramic membrane microfiltrations
JP3438508B2 (ja) 高度水処理方法およびその装置
JP2002346347A (ja) ろ過装置及び方法
JP2010207752A (ja) 水処理装置および水処理方法
JP6833645B2 (ja) 水処理方法及び水処理装置
JP2000024692A (ja) 硫酸イオン含有排水の処理装置
JP2014046235A (ja) 造水方法
JP2004313923A (ja) 膜分離活性汚泥法を用いた処理システム
WO2012111369A1 (ja) 凝集処理装置及び凝集処理方法
JPH09285779A (ja) 浸漬型膜濾過装置を用いた水処理設備の運転方法
KR101602224B1 (ko) 밀폐관로형 응집부가 구비된 막여과 정수시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011536.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762882

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508359

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13577921

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127021943

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762882

Country of ref document: EP

Kind code of ref document: A1