WO2011122081A1 - 冷凍保存用発泡性複合樹脂粒子 - Google Patents

冷凍保存用発泡性複合樹脂粒子 Download PDF

Info

Publication number
WO2011122081A1
WO2011122081A1 PCT/JP2011/051231 JP2011051231W WO2011122081A1 WO 2011122081 A1 WO2011122081 A1 WO 2011122081A1 JP 2011051231 W JP2011051231 W JP 2011051231W WO 2011122081 A1 WO2011122081 A1 WO 2011122081A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
composite resin
weight
particles
polyethylene
Prior art date
Application number
PCT/JP2011/051231
Other languages
English (en)
French (fr)
Inventor
恭孝 筒井
正彦 小澤
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to CN201180017565.5A priority Critical patent/CN102858860B/zh
Priority to JP2012508118A priority patent/JP5667164B2/ja
Priority to DE112011101173.3T priority patent/DE112011101173B4/de
Priority to US13/637,663 priority patent/US8933137B2/en
Publication of WO2011122081A1 publication Critical patent/WO2011122081A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • B29K2025/06PS, i.e. polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene

Definitions

  • the present invention relates to a foamable composite resin particle for cryopreservation, a production method thereof, a storage method thereof, a cryopreservable foamable composite resin particle, and a foamed molded article. More specifically, the present invention relates to foamable composite resin particles for cryopreservation in which pentane is contained in composite resin particles of polyolefin resin and polystyrene resin, and moisture is adhered to the surface of the composite resin particles, a method for producing the same, The present invention relates to a storage method, a frozen storage foamable composite resin particle, and a foam molded article.
  • expandable particles also simply referred to as expandable composite resin particles
  • a composite resin of polyolefin resin and polystyrene resin impregnate composite resin particles (also simply referred to as resin particles) with a volatile foaming agent. It is obtained by.
  • moisture is contained in the foamable composite resin particles (for example, Japanese Patent Publication No. 6-104746: Patent Document 1 and Japanese Patent Publication No. 7- 91405 gazette: see Patent Document 2)).
  • the water content of the expandable composite resin particles described in Patent Documents 1 and 2 is 0.5 to 1.5% by weight, and the volatile foaming agent used in the examples is butane.
  • the foamable composite resin particles containing pentane are frozen, they can be sealed without using pressure-resistant containers (bag-shaped ones)
  • the foaming ability of the foamable composite resin particles can be secured to some extent.
  • the frozen expandable composite resin particles are taken out from the sealable container before preliminary foaming.
  • the dissipation of the blowing agent will begin at this point.
  • the foamable composite resin particles need to have a predetermined foaming capacity until they are taken out of the container and subjected to preliminary foaming.
  • the amount of expandable composite resin particles capable of maintaining the foaming capacity is one packaging unit.
  • one packaging unit should be 20 kg. Can do.
  • the production efficiency decreases and the cost of the packaging material increases.
  • the efficiency when storing and transporting many packaging units is reduced, and a great number of work steps are required for filling the foamable composite resin particles and for opening the foamed foam. Therefore, a small amount of one packaging unit is not economical. Therefore, in order to enlarge one packaging unit as much as possible, it is desired to suppress the dissipation of the foaming agent from the expandable composite resin particles in the open state (in other words, to increase the foaming capacity retention time). Yes.
  • a composite resin particle of a polyolefin resin and a polystyrene resin, 7.5 to 11% by weight of a volatile foaming agent containing pentane contained in the composite resin particle, and the composite resin there is provided an expandable composite resin particle for cryopreservation having 0.5 to 1.5% by weight of adhering moisture adhering to the surface of the particle.
  • molding is then provided. Furthermore, according to the present invention, there is provided a method for producing the above-mentioned foamable composite resin particles for cryopreservation, Foaming for freezing storage comprising the steps of impregnating the composite resin particles with the volatile foaming agent containing the pentane, and adjusting the amount of moisture adhering to the surface by humidifying or dehydrating the composite resin particles after impregnation. A method for producing conductive composite resin particles is provided.
  • the expandable composite resin particles for cryopreservation can be stored in a container set at ⁇ 5 ° C. or lower until subjected to the preliminary foaming step.
  • a storage method is provided.
  • a composite resin particle of a polyolefin resin and a polystyrene resin, 7.5 to 11% by weight of a volatile foaming agent containing pentane contained in the composite resin particle, and the composite There are provided frozen-preserving foamable composite resin particles having a moisture content of 0.5 to 1.5% by weight attached to the surface of the resin particles and stored in a container set at ⁇ 5 ° C. or lower.
  • the foaming ability after cryopreservation is maintained while maintaining good workability at the time of prefoaming by the predetermined amount of moisture adhering to the surface and the amount of volatile foaming agent.
  • the holding time can be extended.
  • the composite resin particle is a particle containing 100 parts by weight of a polyethylene resin or polypropylene resin as a polyolefin resin and 110 to 900 parts by weight of a polystyrene resin, while maintaining good workability at the time of pre-foaming. It is possible to provide foamable composite resin particles capable of extending the foaming capacity retention time after freezing storage and giving a foamed molded article having improved crack resistance.
  • the composite resin particles are particles containing 100 parts by weight of a polyethylene resin or polypropylene resin as a polyolefin resin and 110 to 730 parts by weight of a polystyrene resin, the workability at the time of pre-foaming is kept good. It is possible to provide foamable composite resin particles capable of extending the foaming capacity retention time after freezing storage and giving a foamed molded article having improved crack resistance. Furthermore, when the foamable composite resin particles for cryopreservation further have an internal moisture of 0.05 to 0.5% by weight, the foaming capacity retention time after freezing storage can be maintained while maintaining good workability during prefoaming. It is possible to provide foamable composite resin particles that can be extended and that can provide a foamed molded product in which bubble dispersion is suppressed.
  • the cell size in the pre-foamed particles can be adjusted to a more optimal range while maintaining good workability during pre-foaming.
  • An expandable composite resin particle capable of providing a foamed molded article having a high level of cracking properties can be provided.
  • the foamable composite resin particles for freezing storage further have a moisturizing agent of 0.01 to 0.1% by weight attached to the surface, the workability at the time of preliminary foaming is kept good, and after freezing storage It becomes possible to further extend the foaming capacity retention time.
  • the moisturizing agent is polyethylene glycol having a weight average molecular weight of 100 to 600, it is possible to further extend the foaming capacity retention time after freezing while maintaining good workability during preliminary foaming. Furthermore, according to the manufacturing method of the expandable composite resin particle for cryopreservation of this invention, the expandable composite resin particle for cryopreservation which has the said effect can be manufactured simply. Moreover, according to the storage method of the foamable composite resin particles for freezing storage of the present invention, the foamable composite resin particles for freezing storage having the above effects can be stored easily. Furthermore, the expandable composite resin particles for cryopreservation of the present invention have good workability at the time of preliminary foaming and have a long foaming capacity retention time after freezing storage.
  • the foamable composite resin particles are generally dried after the production thereof, and the water adhering to the surface is dried.
  • the reason for this is that when the expandable composite resin particles are stored in a frozen state, the water adhering to the surface binds the particles together, and an operation of releasing the binding before preliminary foaming is required. For this reason, it has been preferable that moisture is not present as much as possible.
  • the inventors of the present invention have found that if the amount of moisture adhering to the surface is in a specific range, the particles can be prevented from binding to each other, and the foaming capacity retention time can be unexpectedly extended, leading to the present invention.
  • the foamable composite resin particles for cryopreservation of the present invention are a predetermined range of amounts of moisture adhering to the surface of the composite resin particles of polyolefin resin and polystyrene resin,
  • the composite resin particles have a volatile foaming agent (hereinafter also simply referred to as a foaming agent) having a content in a predetermined range.
  • a foaming agent having a content in a predetermined range.
  • the amount of water adhering to the surface of the expandable composite resin particles is in the range of 0.5 to 1.5% by weight.
  • a preferable water content is 0.6 to 1.2% by weight.
  • the water content can be set to 0.7 wt%, 0.8 wt%, 0.9 wt%, 1.0 wt%, or 1.1 wt%.
  • the amount of water adhering to the surface can be calculated by measuring the total amount of water and the amount of water inside the particles by the Karl Fischer method and subtracting the latter from the former. A detailed calculation method is described in the column of Examples.
  • the adjustment of the amount of water is not particularly limited, and examples thereof include known humidification methods (for example, spraying method, immersion method, etc.) or dehydration methods (for example, heating method, centrifugal separation method, reduced pressure holding method, etc.).
  • the impregnation with the foaming agent is performed in a wet manner, it can be adjusted by applying it to a centrifuge for 1 minute or more.
  • it carries out by a dry type it can adjust by adding the water
  • the content of the foaming agent contained in the expandable composite resin particles is in the range of 7.5 to 11% by weight. When the content of the foaming agent is less than 7.5% by weight, the foamability of the foamable composite resin particles may be lowered. When foamability is reduced, it becomes difficult to obtain low-bulk-density pre-expanded particles having a high bulk ratio, and the foam-molded product obtained by molding the pre-expanded particles in a mold has a lower fusion rate and is resistant to cracking. May decrease.
  • a more preferable foaming agent content is in the range of 8.5 to 10.0% by weight. For example, set to a foaming agent content of 8.7 wt%, 8.9 wt%, 9.1 wt%, 9.3 wt%, 9.5 wt%, 9.7 wt% or 9.9 wt% it can.
  • the blowing agent preferably contains pentane as a main component (for example, 50% by weight or more).
  • pentane means chain pentane, and can be selected from, for example, i-pentane, n-pentane, and a mixture of both pentanes.
  • pentane containing i-pentane and n-pentane in a ratio of 20:80 to 100: 0.
  • the blowing agent other than pentane include hydrocarbons such as propane, n-butane, isobutane, cyclopentane, and hexane.
  • the foamable composite resin particles containing a predetermined amount of foaming agent are obtained by impregnating the composite resin particles with a foaming agent in an aqueous medium (wet impregnation method) or by impregnation in the absence of a medium (dry impregnation method). Is obtained.
  • the expandable composite resin particles preferably have an internal moisture of 0.05 to 0.5% by weight.
  • the amount of internal moisture is less than 0.05% by weight, bubbles on the surface and inside of the pre-expanded particles tend to be fine and bubble variation tends to increase.
  • it exceeds 0.5% by weight the surface and internal bubbles of the pre-foamed particles become very coarse, and the appearance of the foamed molded product may be deteriorated.
  • a preferable water content is 0.1 to 0.45% by weight.
  • the water content can be set to 0.15% by weight, 0.2% by weight, 0.25% by weight, 0.3% by weight or 0.35% by weight.
  • the method for adjusting the internal moisture content is not particularly limited and can be adjusted by a known method.
  • a method in which the composite resin particles before impregnation with the foaming agent are brought into contact with moisture or a particle is dried or
  • a method in which the foamable composite resin particles are brought into contact with moisture or the particles are dried are dried.
  • a method of simultaneously performing the previous two methods the method (iii) is preferable because the amount of moisture adhering to the surface is adjusted by a method of bringing moisture into contact with the expandable composite resin particles.
  • the method (ii) “contacting expandable composite resin particles with moisture” includes the case where the foaming agent is impregnated in an aqueous medium.
  • the composite resin particles in the method (iii) for example, when the internal water content is small, the composite resin particles are dispersed in an aqueous medium, and this medium is kept at 110 to 140 ° C. for 2 to 5 hours under sealing. Internal moisture can be imparted to the composite resin particles. In addition, it is preferable to add a dispersant to the aqueous medium. When the amount of internal moisture is large, the moisture can be reduced by drying the composite resin particles with a dryer. For example, in the case of a batch-type air dryer, the air can be reduced to a predetermined amount by flowing air at 10 to 70 ° C., more preferably 20 to 60 ° C. for 0.5 to 3 hours.
  • the amount of internal moisture may be adjusted by placing the composite resin particles in a constant temperature and humidity controlled atmosphere for a certain period of time.
  • the internal moisture content of the composite resin particles is preferably adjusted in the range of 0.05 to 0.5% by weight. For example, 0.1 wt%, 0.15 wt%, 0.2 wt%, 0.25 wt%, 0.3 wt%, 0.35 wt%, 0.4 wt% or 0.45 wt% Can be set to moisture content.
  • a pneumatic temperature is preferably 10 to 70 ° C., more preferably 20 to 60 ° C., preferably at a flow rate of 5 to 30 m / sec, more preferably 10 to 20 m / sec.
  • a predetermined amount of internal moisture can be simply obtained. Can be adjusted to the amount.
  • the internal moisture content When the pneumatic temperature is less than 10 ° C., the internal moisture content may exceed 0.5% by weight, and when the pneumatic temperature exceeds 70 ° C., the internal moisture content may be less than 0.05% by weight.
  • the flow rate when the flow rate is less than 5 m / sec, it may be difficult to transport the composite resin particles in the vertical direction, or the internal moisture content may be less than 0.05% by weight.
  • the flow rate exceeds 30 m / sec, it is not inconvenient, but it is not economical because the blower needs to be large, or the internal water content may exceed 0.5% by weight.
  • composite resin particles whose internal moisture is adjusted to a predetermined amount are impregnated with a predetermined amount of pentane by a wet impregnation method or a dry impregnation method to obtain expandable composite resin particles containing a predetermined amount of pentane.
  • a wet impregnation method or a dry impregnation method to obtain expandable composite resin particles containing a predetermined amount of pentane.
  • a humectant may be attached to the surface of the expandable composite resin particles.
  • a humectant By attaching the humectant, it is possible to prevent the evaporation of water attached to the surface of the foamable composite resin particles for a longer period.
  • the amount of the moisturizing agent is less than 0.01% by weight, the effect of preventing the evaporation of moisture may not be sufficient. If the amount is more than 0.1% by weight, the foamable composite resin particles may become sticky, resulting in inconvenience on the work surface during foaming.
  • a more preferable amount of humectant is 0.02 to 0.08% by weight.
  • the humectant amount can be set to 0.03%, 0.04%, 0.05%, 0.06%, or 0.07% by weight.
  • the humectant is not particularly limited as long as it does not adversely affect foaming.
  • polyethylene glycol, polyoxyethylene alkylphenol ether, stearic acid monoglyceride and the like can be mentioned. Of these, polyethylene glycol having a weight average molecular weight of 100 to 600 is preferred.
  • Polyolefin resin The polyolefin resin is not particularly limited, and known resins can be used.
  • the polyolefin resin may be cross-linked.
  • polyethylene resins such as branched low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, and cross-linked products of these polymers
  • polypropylene resins such as propylene homopolymer, ethylene-propylene random copolymer, propylene-1-butene copolymer, and ethylene-propylene-butene random copolymer.
  • the low density is preferably 0.91 ⁇ 0.94g / cm 3, more preferably 0.91 ⁇ 0.93g / cm 3.
  • the high density is preferably 0.95 to 0.97 g / cm 3 , and more preferably 0.95 to 0.96 g / cm 3 .
  • the medium density is an intermediate density between these low density and high density.
  • the polystyrene resin is a copolymer of polystyrene or another monomer having styrene as a main component and copolymerizable with styrene.
  • the main component means that styrene accounts for 70% by weight or more of the total monomers.
  • examples of other monomers include ⁇ -methylstyrene, p-methylstyrene, acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid, alkyl acrylate ester, alkyl methacrylate ester, divinylbenzene, polyethylene glycol dimethacrylate, and the like.
  • alkyl means alkyl having 1 to 8 carbon atoms.
  • the polystyrene resin is preferably contained in the foamable composite resin particles in the range of 110 to 900 parts by weight with respect to 100 parts by weight of the polyolefin resin particles.
  • the ratio of both resins substantially corresponds to the ratio of both corresponding monomers for producing expandable composite resin particles.
  • the crack resistance of a foaming molding may fall.
  • the amount is less than 110 parts by weight, the cracking resistance is greatly improved, but the dissipation of the foaming agent from the surface of the expandable composite resin particles tends to be accelerated.
  • a more preferred content of the polystyrene resin is 110 to 730 parts by weight, a still more preferred content is 120 to 560 parts by weight, and a particularly preferred content is 140 to 450 parts by weight.
  • the composite resin of polyolefin resin and polystyrene resin means a mixed resin of polyolefin resin and polystyrene resin.
  • the mixed resin a resin obtained by simply mixing both resins can be used, but a polyolefin-modified styrene resin described below is preferable.
  • a more preferable mixed resin is a polyethylene-modified styrene resin.
  • the polyolefin-modified styrene resin particles (also referred to as modified resin particles) can be obtained by adding a styrene monomer to an aqueous medium in which the polyolefin resin particles are dispersed and held for polymerization. A method for producing the modified resin particles will be described below.
  • the polyolefin resin particles can be obtained by a known method. For example, after the polyolefin resin is melt-extruded using an extruder, granulation is performed by underwater cutting, strand cutting, or the like.
  • the shape of the polyolefin-based resin particles include a true spherical shape, an elliptical spherical shape (egg shape), a cylindrical shape, a prismatic shape, a pellet shape, and a granular shape.
  • the polyolefin resin particles are also referred to as micropellets.
  • the polyolefin resin particles may contain a radical scavenger.
  • the radical scavenger may be added to the polyolefin resin particles in advance, or may be added simultaneously with melt extrusion.
  • a compound having an action of scavenging radicals such as a polymerization inhibitor (including a polymerization inhibitor), a chain transfer agent, an antioxidant, a hindered amine light stabilizer, and the like, which is difficult to dissolve in water, is preferable. .
  • Polymerization inhibitors include t-butylhydroquinone, paramethoxyphenol, 2,4-dinitrophenol, t-butylcatechol, sec-propylcatechol, N-methyl-N-nitrosoaniline, N-nitrosophenylhydroxylamine, triphenyl Phosphite, tris (nonylphenyl phosphite), triethyl phosphite, tris (2-ethylhexyl) phosphite, tridecyl phosphite, tris (tridecyl) phosphite, diphenylmono (2-ethylhexyl) phosphite, diphenyl monodecyl phosphite Phyto, diphenyl mono (tridecyl) phosphite, dilauryl hydrogen phosphite, tetraphenyl dipropylene glycol diphosphite,
  • chain transfer agents examples include ⁇ -mercaptopropionic acid 2-ethylhexyl ester, dipentaerythritol hexakis (3-mercaptopropionate), tris [(3-mercaptopropionyloxy) -ethyl] isocyanurate, and the like. Is done.
  • Antioxidants include 2,6-di-t-butyl-4-methylphenol (BHT), n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, pentaerythris Lithyl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, 3,9-bis [2- ⁇ 3- (3-t- Butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, distearyl pentae Thritol dip
  • hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1 , 2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate.
  • the amount of the radical scavenger used is preferably 0.005 to 0.5 parts by weight with respect to 100 parts by weight of the polyolefin resin particles.
  • Polyolefin resin particles include talc, calcium silicate, calcium stearate, foamed nucleating agents such as synthetic or naturally produced silicon dioxide, ethylene bis stearamide, methacrylic ester copolymers, hexabromocyclododecane, etc.
  • a flame retardant such as triallyl isocyanurate hexabromide, a colorant such as carbon black, iron oxide, and graphite may be included.
  • the micropellets are dispersed in an aqueous medium in a polymerization vessel, and polymerization is performed while impregnating the styrenic monomer into the micropellets.
  • the aqueous medium include water and a mixed medium of water and a water-soluble solvent (for example, alcohol).
  • a water-soluble solvent for example, alcohol.
  • the styrenic monomer any of styrene and substituted styrene (substituent includes lower alkyl, halogen atom (especially chlorine atom) and the like) can be used.
  • the substituted styrene include chlorostyrenes, vinyltoluenes such as p-methylstyrene, and ⁇ -methylstyrene.
  • styrene is generally preferred.
  • the styrene monomer is a mixture of styrene and substituted styrene, a small amount of other monomers copolymerizable with styrene (for example, acrylonitrile, alkyl methacrylate (about 1 to 8 carbon atoms in the alkyl portion), maleic acid, etc.
  • mono to dialkyl alkyl group having about 1 to 4 carbon atoms
  • divinylbenzene ethylene glycol mono to diacrylic acid or methacrylic acid ester
  • maleic anhydride N-phenylmaleimide and the like
  • styrene preferably occupies a dominant amount (for example, 50% by weight or more).
  • a solvent such as toluene, xylene, cyclohexane, ethyl acetate, dioctyl phthalate, or tetrachloroethylene may be added to the styrene monomer.
  • the amount of the styrene monomer used is 110 to 900 parts by weight with respect to 100 parts by weight of the polyolefin resin particles. More preferred is 110 to 730 parts by weight, still more preferred is 120 to 560 parts by weight, and particularly preferred is 140 to 450 parts by weight.
  • the amount of the styrene monomer used exceeds 730 parts by weight, the polystyrene resin particles may be generated without being impregnated with the polyolefin resin particles.
  • not only the crack resistance of the foamed molded product is lowered, but also the chemical resistance may be lowered.
  • the ability to hold the foaming agent of the foamable composite resin particles may be lowered. If it falls, it will become difficult to make it highly foamed.
  • the rigidity of the foamed molded product may be reduced.
  • the impregnation of the polyolefin resin particles with the styrene monomer may be performed while polymerizing, or may be performed before the polymerization is started. Of these, it is preferable to carry out the polymerization.
  • polymerization is performed after impregnation, polymerization of the styrene monomer near the surface of the polyolefin resin particles is likely to occur, and the styrene monomer not impregnated in the polyolefin resin particles is polymerized alone. In some cases, a large amount of fine particle polystyrene resin particles are generated.
  • the polyolefin resin particles in the case of calculating the content are particles composed of a polyolefin resin, an impregnated styrene monomer, and an impregnated polystyrene resin that has already been impregnated. Means.
  • the styrenic monomer can be continuously or intermittently added to the aqueous medium in the polymerization vessel. In particular, it is preferable to gradually add the styrenic monomer into the aqueous medium.
  • An oil-soluble radical polymerization initiator can be used for the polymerization of the styrene monomer.
  • this polymerization initiator a polymerization initiator generally used for the polymerization of styrene monomers can be used.
  • benzoyl peroxide lauroyl peroxide, t-butyl peroxy octoate, t-hexyl peroxy octoate, t-butyl peroxy benzoate, t-amyl peroxy benzoate, t-butyl peroxybivalate, t- Butyl peroxyisopropyl carbonate, t-hexyl peroxyisopropyl carbonate, t-butyl peroxy-3,3,5-trimethylcyclohexanoate, di-t-butylperoxyhexahydroterephthalate, 2,2-di-t- Examples thereof include organic peroxides such as butyl peroxybutane, di-t-hexyl peroxide and dicumyl peroxide, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. These oil-soluble radical polymerization initiators may be used alone or in combination.
  • Various methods can be used as a method of adding the polymerization initiator to the aqueous medium in the polymerization vessel.
  • a method in which a polymerization initiator is dissolved and contained in a styrene monomer in a container different from the polymerization container, and the styrene monomer is supplied into the polymerization container.
  • B A solution is prepared by dissolving the polymerization initiator in a part of a styrene monomer, a solvent such as isoparaffin, or a plasticizer.
  • a method of simultaneously supplying this solution and a predetermined amount of styrenic monomer into the polymerization vessel (C) A dispersion in which a polymerization initiator is dispersed in an aqueous medium is prepared. Examples thereof include a method of supplying the dispersion and the styrene monomer into a polymerization vessel.
  • the proportion of the polymerization initiator used is usually preferably 0.02 to 2.0% by weight of the total amount of styrene monomer used.
  • the water-soluble radical polymerization inhibitor not only suppresses the polymerization of the styrene monomer on the surface of the polyolefin resin particles, but also prevents the styrene monomer floating in the aqueous medium from being polymerized alone. This is because the generation of fine particles can be reduced.
  • the amount of the water-soluble radical polymerization inhibitor used is preferably 0.001 to 0.04 parts by weight with respect to 100 parts by weight of water in the aqueous medium.
  • examples of such a dispersant include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinyl pyrrolidone, carboxymethyl cellulose, and methyl cellulose, magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, calcium carbonate, and magnesium phosphate. And inorganic dispersants such as magnesium carbonate and magnesium oxide. Of these, inorganic dispersants are preferred.
  • a surfactant in combination.
  • examples of such a surfactant include sodium dodecylbenzene sulfonate and sodium ⁇ -olefin sulfonate.
  • the shape and structure of the polymerization vessel are not particularly limited as long as they are conventionally used for suspension polymerization of styrene monomers. Further, there is no particular limitation on the shape of the stirring blade, and specifically, a paddle blade such as a V-type paddle blade, a fiddler blade, an inclined paddle blade, a flat paddle blade, a pull margin blade, a turbine blade, a fan turbine blade, etc. Examples include a turbine blade and a propeller blade such as a marine propeller blade. Of these stirring blades, paddle blades are preferred.
  • the stirring blade may be a single-stage blade or a multi-stage blade.
  • a baffle may be provided in the polymerization container.
  • the temperature of the aqueous medium when the styrene monomer is polymerized in the micropellet is not particularly limited, but is preferably in the range of ⁇ 30 to + 20 ° C. of the melting point of the polyolefin resin to be used. More specifically, 70 to 140 ° C. is preferable, and 80 to 130 ° C. is more preferable.
  • the temperature of the aqueous medium may be a constant temperature from the start to the end of the polymerization of the styrenic monomer, or may be increased stepwise. When increasing the temperature of the aqueous medium, it is preferable to increase it at a rate of temperature rise of 0.1 to 2 ° C./min.
  • the crosslinking may be performed in advance before impregnating the styrene monomer, or while impregnating and polymerizing the styrene monomer in the micropellet. Or after impregnating and polymerizing the styrenic monomer in the micropellet.
  • crosslinking agent used for crosslinking the polyolefin resin examples include 2,2-di-t-butylperoxybutane, dicumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxy. An organic peroxide such as hexane may be mentioned.
  • a crosslinking agent may be individual or may be used together 2 or more types. The amount of the crosslinking agent used is usually preferably 0.05 to 1.0 part by weight with respect to 100 parts by weight of the polyolefin resin particles (micropellets).
  • Examples of the method of adding the crosslinking agent include a method of directly adding to the polyolefin resin particles, a method of adding the crosslinking agent after dissolving it in a solvent, a plasticizer or a styrene monomer, and a method of dispersing the crosslinking agent in water.
  • the method of adding above etc. are mentioned.
  • the method of adding after dissolving a crosslinking agent in a styrene-type monomer is preferable. Modified resin particles are obtained by the above method.
  • the expandable composite resin particles are stored frozen until subjected to pre-expansion.
  • This frozen storage is preferably, for example, storage in a container at a temperature of ⁇ 5 ° C. or lower, and more preferably storage in a container at a temperature of ⁇ 15 ° C. or lower.
  • the shape and material of the container are not particularly limited as long as it can maintain the set temperature for a long time.
  • the foamable composite resin particles are preferably subdivided into amounts corresponding to the capacity of the preliminary foaming machine and stored frozen.
  • the cryopreservation foamable composite resin particle includes a volatile foaming agent mainly composed of 7.5 to 11% by weight of pentane in a composite resin particle of a polyolefin resin and a polystyrene resin, and the surface of the composite resin particle Particles stored in a container having a water content of 0.5 to 1.5% by weight adhering to and set to -5 ° C. or lower.
  • a more preferable foaming agent content is in the range of 8.5 to 10.0% by weight.
  • a preferable water content is 0.6 to 1.2% by weight.
  • the water content can be set to 0.7 wt%, 0.8 wt%, 0.9 wt%, 1.0 wt%, or 1.1 wt%.
  • the cryopreservation foamable composite resin particles have a reduction amount of less than 10% of the amount of water attached to the surface constituting the cryopreservation foamable composite resin particles and less than 10% of the amount of water attached to the surface constituting the cryopreservation foamable composite resin particle.
  • the particles are suppressed from being bound to each other, the workability at the time of preliminary foaming is good. Moreover, since the said particle
  • the foamable composite resin particles can be pre-foamed by heating with a heating medium such as water vapor and pre-foaming to a predetermined bulk density as necessary.
  • a heating medium such as water vapor and pre-foaming to a predetermined bulk density as necessary.
  • pre-expanding can be performed with good workability.
  • the pre-expanded particles preferably have a bulk multiple of 5 to 70 times (bulk density 0.014 to 0.2 g / cm 3 ). A more preferable bulk magnification is 10 to 60 times.
  • the closed cell ratio of the pre-expanded particles is lowered, and the strength of the foamed molded product obtained by foaming the pre-expanded particles may be lowered.
  • the weight of the foamed molded product obtained by foaming the pre-foamed particles may increase.
  • pre-expanded particles are filled in a mold of a molding machine, heated and subjected to secondary foaming, and the pre-expanded particles are fused and integrated to obtain a foam-molded article having a desired shape.
  • the molding machine there can be used an EPS molding machine or the like used when producing a foam molded body from polystyrene resin pre-foamed particles.
  • the obtained foamed molded product can be used for applications such as cushioning materials (cushion materials) for home appliances, electronic parts, various industrial materials, food containers and the like. It can also be suitably used as an impact energy absorbing material such as a vehicle bumper core material and a door interior cushioning material.
  • the average particle diameter is a value expressed by D50. Specifically, sieve opening 4.00 mm, opening 3.35 mm, opening 2.80 mm, opening 2.36 mm, opening 2.00 mm, opening 1.70 mm, opening 1.40 mm, opening 1.18 mm, opening 1.00 mm, opening 0.85 mm, opening 0.71 mm, opening 0.60 mm, opening 0.50 mm, opening 0.425 mm, opening 0.355 mm, opening 0.
  • Particle size with a cumulative weight of 50% based on the cumulative weight distribution curve obtained by classification using a JIS standard sieve with 300 mm, 0.250 mm mesh, 0.212 mm mesh, and 0.180 mm mesh (Median diameter) is referred to as the average particle diameter in this example.
  • the total moisture content of the expandable composite resin particles that is, the total amount of the internal moisture content and the surface adhesion moisture content is measured.
  • about 0.5 g of a particle is precisely weighed with a balance capable of weighing particles to 0.1 mg.
  • Total moisture generated from the precisely weighed particles using a trace moisture analyzer (AQ-2100 manufactured by Hiranuma Sangyo Co., Ltd.) and an automatic heating water vaporizer (EV-2010 manufactured by Hiranuma Sangyo Co., Ltd.) in a heating furnace method at 150 ° C. Is measured by the Karl Fischer titration method.
  • Measurement conditions Measurement environment: room temperature 23 ⁇ 2 °C, humidity 40 ⁇ 10% Vaporization temperature: 150 ° C Carrier gas (flow rate): Nitrogen (100 mL / min) Number of tests: 3 Sample amount: About 0.5g The blank moisture content is the total amount of moisture in the air in the sample container and moisture adhering to the side of the container.
  • the internal moisture content of the expandable composite resin particles is measured.
  • 5 g of foamable composite resin particles were immersed in 200 ml of methanol (manufactured by Wako Pure Chemical Industries, Ltd., for organic synthesis, pure content 99.8%, moisture 50 ppm or less), and stirred for about 1 minute to adhere to surface moisture. Remove. Thereafter, the particles and methanol are separated by a vacuum filtration device and air-dried for 5 minutes. About 0.5 g of the obtained particles is precisely weighed with a balance capable of weighing to 0.1 mg.
  • ⁇ Foaming agent content> Weigh out 5 to 20 mg of expandable composite resin particles to make a measurement sample.
  • This measurement sample is set in a pyrolysis furnace (PYR-1A manufactured by Shimadzu Corporation) maintained at 180 to 200 ° C., and after sealing the measurement sample, it is heated for 120 seconds to release the blowing agent component.
  • a chart of the blowing agent component is obtained from the released blowing agent component using a gas chromatograph (manufactured by Shimadzu Corporation: GC-14B, detector: FID). Based on the calibration curve of the foaming agent component that has been measured in advance, the foaming agent content (gas content: wt%) in the foamable composite resin particles is calculated from the obtained chart.
  • ⁇ Moisturizing agent adhesion> The sample solution for measuring the amount of surface moisturizer attached was precisely weighed 10 g in a 100 ml glass bottle, 40 mL of HPLC methanol was measured with a whole pipette, and the supernatant was stirred for 30 minutes with a stirring stirrer bar. (Combination) Use the liquid filtered with 0.2 ⁇ m chromatodisc.
  • the measurement conditions are Column: TSKgel ODS-80TS QA 4.6 * 150 manufactured by TOSOH Column temperature: 40 ° C Mobile phase: HPLC methanol flow rate: 0.7 mL / min Pump temperature: room temperature Injection volume: 50 ⁇ L Detection: Evaporative light scattering.
  • a calibration curve is drawn in advance using a moisturizing agent (in the examples, standard polyethylene glycol for calibration curve (trade name PEG # 300) manufactured by NOF Corporation is used).
  • a moisturizing agent in the examples, standard polyethylene glycol for calibration curve (trade name PEG # 300) manufactured by NOF Corporation is used.
  • the amount of the humectant adhering to the sample surface is calculated from the humectant concentration in the measurement sample solution obtained from the calibration curve.
  • the polyolefin-based resin is a polyethylene-based resin
  • the weight (a) of about 2 g of expandable composite resin particles is precisely weighed to the second decimal place, and this is 0.07 MPa steam for a predetermined time (2 Heat for 3 minutes or 3 minutes).
  • the obtained pre-expanded particles are placed in a 500 cm 3 graduated cylinder with a minimum memory unit of 5 cm 3 , and this is a circular resin plate slightly smaller than the diameter of the graduated cylinder, with a width of about 1.5 cm and a length at the center.
  • the volume (b) of the pre-expanded particles is read, and the bulk factor of the pre-expanded particles is obtained by the formula (b) / (a).
  • This bulk multiple is defined as the foamability of the foamable composite resin particles in a predetermined heating time. If the foamability at this time is 40 times or more, it is judged that the foamable composite resin particles have sufficient foaming ability in actual use (judgment: ⁇ ), and if the foamability is less than 40 times, the foamable composite resin particles. Is determined not to have sufficient foaming capacity to withstand actual use (judgment: x).
  • the difference in foamability between the two is 7.5 times or less, it is judged that the foamable composite resin particles maintain a very good foaming ability in actual use (judgment: ⁇ ), and further the foamability of both If the difference is more than 7.5 times and not more than 10 times, it is judged that the foamable composite resin particles maintain sufficient foaming ability in actual use (judgment: ⁇ ), and the difference in foamability between the two is 10 When exceeding twice, it is determined that the foamable composite resin particles have not maintained the foaming capacity for a period of time enough to withstand actual use (judgment: x).
  • the polyolefin resin is a polypropylene resin (Examples 11 to 13) Except for changing the heating with water vapor to a pressure of 0.15 MPa for 2 minutes, it is the same as the case of (1) above.
  • ⁇ Evaluation of frozen state About 1000 g of the foamable composite resin particles stored in a frozen state is placed on a sieve screen of a JIS standard sieve having a sieve opening of 2.80 mm. Next, the operation of moving the sieve in the horizontal direction by about 15 cm and then returning it to the original position is one reciprocation, and the foamable composite resin particles are classified by reciprocating the sieve 10 times for about 10 seconds. If no foamable composite resin particles remain on the sieve screen, it is determined that the foamable composite resin particles are not bound to each other by freezing (judgment: ⁇ ⁇ ), and the foamable composite resin particles remain on the sieve mesh.
  • ⁇ Method for producing pre-expanded particles After storing in a freezer (set to ⁇ 25 ° C.) for 168 hours, left in an environment of room temperature 25 ° C. and humidity 50% for 1 hour, and then pre-foamed under the following conditions. 500 to 2000 g of expandable resin particles are charged into a normal pressure pre-foaming machine (internal volume 50 L) preheated with steam, and air is supplied while introducing steam to a setting of about 0.02 MPa while stirring, and about 2 Foam to a predetermined bulk density (bulk multiple) in ⁇ 3 minutes.
  • a normal pressure pre-foaming machine internal volume 50 L
  • air is supplied while introducing steam to a setting of about 0.02 MPa while stirring, and about 2 Foam to a predetermined bulk density (bulk multiple) in ⁇ 3 minutes.
  • ⁇ Bulk density and bulk multiple of pre-expanded particles The weight (a) of about 5 g of pre-expanded particles is weighed at the second decimal place. Next, weighed pre-expanded particles are placed in a 500 cm 3 graduated cylinder with a minimum memory unit of 5 cm 3 . The pre-expanded particles are applied with a pressing tool, which is a round resin plate slightly smaller than the diameter of the graduated cylinder, and a rod-shaped resin plate having a width of about 1.5 cm and a length of about 30 cm is fixed upright at the center. .
  • a pressing tool which is a round resin plate slightly smaller than the diameter of the graduated cylinder, and a rod-shaped resin plate having a width of about 1.5 cm and a length of about 30 cm is fixed upright at the center.
  • the volume (b) of the pre-expanded particles is read, and the bulk density (g / cm 3 ) of the pre-expanded particles is obtained by the formulas (a) / (b).
  • the bulk multiple is the reciprocal of the bulk density, that is, the formula (b) / (a).
  • the average cell diameter of the pre-expanded particles is measured as follows. Pre-expanded to 30 times or 50 times the bulk magnification, and arbitrarily collect 30 pre-expanded particles. Each is divided into two parts from the surface through the center with a razor, and the cross section of the divided part is magnified 15 to 30 times (in some cases 200 times) with a scanning electron microscope (S-3000N manufactured by Hitachi, Ltd.). . Print the captured images one by one on A4 paper, draw two straight lines passing through the center so as to be orthogonal, and measure the length of the straight lines and the number of bubbles on the straight lines (also measure the bubbles in contact with the straight lines) ).
  • the average chord length (t) of the bubbles is calculated by the following formula.
  • Bubble diameter d t / 0.616
  • the arithmetic mean of those be an average bubble diameter.
  • ⁇ Falling ball impact value of foam molding> The falling ball impact strength is measured in accordance with the method described in JIS K7211: 1976 “General Rules of Hard Plastic Drop Weight Impact Test Method”.
  • a foam-molded product is obtained from the expandable composite resin particles so that the bulk ratio is 40 times.
  • the obtained foamed molded product is dried at a temperature of 50 ° C. for 1 day, and then a 40 mm ⁇ 215 mm ⁇ 20 mm (thickness) test piece (six surfaces are not covered) is cut out from the foamed molded product.
  • both ends of the test piece are fixed with clamps so that the distance between the fulcrums is 150 mm, and a rigid ball having a weight of 321 g is dropped from a predetermined height to the center of the test piece to check whether the test piece is broken or not.
  • the test piece was tested by changing the falling height (test height) of the hard sphere at 5 cm intervals from the lowest height at which all five specimens were destroyed to the highest height at which all were not destroyed, and the falling ball impact value (cm), ie 50%
  • the fracture height is calculated by the following formula.
  • H50 Hi + d [ ⁇ (i ⁇ ni) /N ⁇ 0.5]
  • the symbols in the formula mean the following.
  • H50 50% fracture height (cm)
  • Hi Test height (cm) when the height level (i) is 0, and the height at which the test piece is expected to break
  • d Height interval (cm) when the test height is raised or lowered
  • ni Number of test pieces destroyed (or not destroyed) at each level, whichever data is used (if the number is the same, either may be used)
  • ⁇ 0.5 Use a negative number when using destroyed data, and use a positive number when using non-destructed data. Evaluate the falling ball impact value using the following criteria. It shows that the impact resistance of a foaming molding is so large that a falling ball impact value is large.
  • PE polyethylene resin
  • PS polystyrene resin
  • EVA Ethylene / vinyl acetate copolymer resin particles
  • the styrene monomer was used in an amount of 233 parts by weight based on 100 parts by weight of the ethylene / vinyl acetate copolymer resin particles.
  • the foamable composite resin particles are left in an environment of room temperature 25 ° C. and humidity 50% in a state filled in a 2 L aluminum sealed container for 1 hour, and then the above prefoaming conditions are satisfied.
  • the foamed composite resin particles were pre-foamed aiming at a bulk multiple of 50 times to obtain pre-expanded particles having a bulk multiple of 50 times.
  • the obtained pre-expanded particles were evaluated by the above-described bubble variation evaluation method for pre-expanded particles. The evaluation results are shown in Table 4.
  • Example 2 The production of polyethylene-modified styrene resin particles and the adjustment of the internal water content were the same as in Example 1 a) and b), and the impregnation with the blowing agent was pentane containing 97% or more of i-pentane (gas type a: ESK Except for using 260 g of the product name Isopentane manufactured by Sangyo Co., Ltd., in the same manner as in c) of Example 1, d) of Example 1 except that the dehydration time was adjusted to 5 minutes. Similarly, storage and pre-foaming of the expandable composite resin particles were performed in the same manner as e) and f) of Example 1. Various evaluation results are shown in Table 1.
  • Example 3 a) Production of polyethylene modified styrene resin particles of polyethylene resin (PE) / polystyrene resin (PS) 40/60 Extruded ethylene / vinyl acetate copolymer resin particles (manufactured by Nippon Polyethylene Co., Ltd., LV-115) The mixture was heated and mixed in a machine and granulated into pellets by an underwater cutting method (the ethylene / vinyl acetate copolymer resin particles were adjusted to 80 mg per 100 grains). 14 kg of the ethylene / vinyl acetate copolymer resin particles were placed in a 100 L autoclave with a stirrer.
  • PE polyethylene resin
  • PS polystyrene resin
  • the styrene monomer was used in an amount of 150 parts by weight with respect to 100 parts by weight of the ethylene / vinyl acetate copolymer resin particles.
  • the internal moisture content was adjusted in the same manner as b) of Example 1 except that the moisture content was dried by flowing air for 30 minutes.
  • the polyethylene-modified styrenic resin particles thus obtained had an internal moisture content of 0.381% by weight.
  • the impregnation of the foaming agent was performed in Example 1c, except that the temperature of the aqueous medium was 50 ° C. and 280 g of pentane containing 97% or more of i-pentane (product type isopentane, product name Isopentane) was used.
  • Example 4 a) Production of polyethylene modified styrene resin particles of polyethylene resin (PE) / polystyrene resin (PS) 20/80 Linear low density polyethylene resin particles (LLDPE, NF-444A manufactured by Nippon Polyethylene) are extruded. The mixture was heated and mixed in a machine and granulated into pellets by an underwater cutting method (linear low density polyethylene resin particles were adjusted to 40 mg per 100 grains). 7.0 kg of this linear low density polyethylene resin particle was put into a 100 L autoclave with a stirrer.
  • PE polyethylene resin
  • PS polystyrene resin
  • LLDPE Linear low density polyethylene resin particles
  • the temperature was maintained at 110 ° C. for 1 hour, and then the temperature was raised to 140 ° C. and maintained for 3 hours to complete the polymerization. Then, it cooled to normal temperature and took out the polyethylene modification styrene-type resin particle (average particle diameter of 1.33 mm).
  • the styrene monomer was used in an amount of 400 parts by weight with respect to 100 parts by weight of the linear low density polyethylene.
  • the internal moisture content was adjusted in the same manner as b) of Example 1 except that the moisture content was dried by flowing air for 60 minutes.
  • the polyethylene-modified styrenic resin particles thus obtained had an internal moisture content of 0.178% by weight.
  • the impregnation with the foaming agent was carried out in the same manner as in Example 1 c) except that the temperature of the aqueous medium was set at 70 ° C.
  • the foamable composite resin particles were stored and pre-foamed in the same manner as in e) and f) of Example 1.
  • Various evaluation results are shown in Table 1.
  • Example 5 Production of polyethylene-modified styrene-based resin particles and adjustment of the internal water content were performed in the same manner as in a) and b) of Example 4. c) and d) Impregnation of foaming agent (dry impregnation) and adjustment of moisture content on the surface 15 kg of polyethylene-modified styrene resin particles obtained as described above, 4.5 g of polyoxyethylene laurylamine, polyethylene glycol (day 7.5 g of oil brand name PEG # 300) and 150 g of pure water were placed in a pressure-resistant rotary mixer having an internal volume of 50 L, rotated, held for 10 minutes, and then heated to 70 ° C.
  • a pressure-resistant rotary mixer having an internal volume of 50 L
  • the foamable composite resin particles were stored in an environment at room temperature of 25 ° C. and humidity of 50%, and the change with time in foaming ability was evaluated. The evaluation results are shown in Table 1. Storage and preliminary foaming of the expandable composite resin particles were performed in the same manner as in e) and f) of Example 1. Various evaluation results are shown in Table 1.
  • Example 6 Production of polyethylene-modified styrene resin particles and adjustment of the internal water content are the same as in Example 4 a) and b), and impregnation of the foaming agent (dry impregnation) and adjustment of the surface adhering water content are 300 g of pure water.
  • N-pentane / i-pentane 75/25 to 85/15 pentane (gas type b: Cosmo Oil Co., Ltd., product name: pentane), except that 1800 g was used, as in c) and d) of Example 5.
  • storage and pre-foaming of the expandable composite resin particles were performed in the same manner as in e) and f) of Example 1.
  • Various evaluation results are shown in Table 1.
  • Example 7 The production of polyethylene-modified styrene resin particles and the adjustment of the internal water content were the same as in Example 4 a) and b), and the foaming agent impregnation (dry impregnation) and the surface adhering water content were adjusted with polyethylene glycol (day The storage and pre-expansion of the expandable composite resin particles were carried out in the same manner as in e) and f of Example 1 except that the oil brand name PEG # 300) was not used. ). Various evaluation results are shown in Table 1.
  • Example 8 The production of the polyethylene-modified styrene resin particles was carried out in the same manner as in a) of Example 1, and the internal moisture content was adjusted in the same manner as in b) of Example 1 except that it was dried by flowing air for 5 hours.
  • the polyethylene-modified styrenic resin particles thus obtained had an internal moisture content of 0.018% by weight.
  • the impregnation of the foaming agent was carried out in the same manner as in Example 1 c) except that 280 g of pentane (gas type a: manufactured by ESK Sangyo Co., Ltd., product name: isopentane) containing 97% or more of i-pentane was used. Adjustment, storage of expandable composite resin particles and preliminary foaming were carried out in the same manner as in d), e) and f) of Example 1.
  • Various evaluation results are shown in Tables 1 and 4.
  • Example 9 a) Production of polyethylene modified styrene resin particles of polyethylene resin (PE) / polystyrene resin (PS) 20/80 High density polyethylene resin particles (HDPE, manufactured by Tosoh Corporation, product name 09S53B) are used in an extruder. The mixture was heated and mixed and granulated into pellets by an underwater cutting method (high density polyethylene resin particles were adjusted to 20 mg per 100 grains). 7.7 kg of the high density polyethylene resin particles were placed in a 100 L autoclave with a stirrer.
  • PE polyethylene resin
  • PS polystyrene resin
  • the foamable composite resin particles are left in an environment of room temperature 25 ° C. and humidity 50% in a state filled in a 2 L aluminum sealed container for 1 hour, and then the above prefoaming conditions are satisfied.
  • the foamed composite resin particles were pre-foamed aiming at a bulk multiple of 50 times to obtain pre-expanded particles having a bulk multiple of 50 times.
  • Various evaluation results are shown in Table 1.
  • Example 10 a) Production of polyethylene modified styrene resin particles of polyethylene resin (PE) / polystyrene resin (PS) 30/70 High density polyethylene resin particles (product name 09S53B, manufactured by Tosoh Corporation) are mixed by heating in an extruder. Then, the pellets were granulated by an underwater cutting method (high density polyethylene resin particles were adjusted to 20 mg per 100 grains). 10.5 kg of the high-density polyethylene resin particles were placed in a 100 L autoclave with a stirrer.
  • PE polyethylene resin
  • PS polystyrene resin
  • the foamable composite resin particles are left in an environment of room temperature 25 ° C. and humidity 50% in a state filled in a 2 L aluminum sealed container for 1 hour, and then the above prefoaming conditions are satisfied.
  • the foamed composite resin particles were pre-foamed aiming at a bulk multiple of 50 times to obtain pre-expanded particles having a bulk multiple of 50 times.
  • Various evaluation results are shown in Table 1.
  • Example 11 a) Production of polypropylene-modified styrene resin particles of polypropylene resin (PP) / polystyrene resin (PS) 40/60 Polypropylene resin particles (manufactured by Prime Polymer, product name F-744NP) are heated with an extruder. The mixture was mixed and granulated into pellets by an underwater cutting method (polypropylene resin particles were adjusted to 60 mg per 100 grains). 14.0 kg of the polypropylene resin particles were placed in a 100 L autoclave equipped with a stirrer.
  • PP polypropylene resin
  • PS polystyrene resin
  • the styrene monomer was used in an amount of 150 parts by weight with respect to 100 parts by weight of the polypropylene resin particles.
  • the foamable composite resin particles are left in an environment of room temperature 25 ° C. and humidity 50% in a state of being filled in a 2 L aluminum sealed container, and then subjected to the following pre-foaming conditions.
  • the foamable composite resin particles were prefoamed aiming at a bulk magnification of 40 times to obtain prefoamed particles having a bulk magnification of 40 times.
  • the pre-expanded particles were specifically obtained by foaming under the following high pressure. That is, 500 to 1000 g of expandable composite resin particles were charged into a high-pressure pre-foaming machine (PSX40 manufactured by Kasahara Kogyo Co., Ltd., volume 45 L) preheated with steam.
  • PSX40 high-pressure pre-foaming machine
  • Example 12 a) Production of polypropylene modified styrene resin particles of polypropylene resin (PP) / polystyrene resin (PS) 30/70 Polypropylene resin particles (manufactured by Prime Polymer, product name F-744NP) are heated with an extruder. The mixture was mixed and granulated into pellets by an underwater cutting method (polypropylene resin particles were adjusted to 60 mg per 100 grains). 10.5 kg of the polypropylene resin particles were placed in a 100 L autoclave equipped with a stirrer.
  • PP polypropylene resin
  • PS polystyrene resin
  • the styrene monomer was used in an amount of 233 parts by weight with respect to 100 parts by weight of the polypropylene resin particles.
  • Example 11 The internal moisture content was adjusted in the same manner as b) of Example 11 except that the moisture content was dried by flowing air for 30 minutes.
  • the polypropylene modified styrene resin particles thus obtained had an internal moisture content of 0.370% by weight.
  • the impregnation with the foaming agent was performed in Example 11c) except that the temperature of the aqueous medium was 50 ° C., and 340 g of pentane containing 97% or more of i-pentane (product type isopentane, product name Isopentane) was used.
  • Example 13 a) Production of carbon-containing polypropylene-modified styrene resin particles of carbon-containing polypropylene resin (PP) / polystyrene resin (PS) 40/60 Polypropylene resin particles (manufactured by Prime Polymer, product name F-744NP) 26. 7 kg and a masterbatch containing 45% by weight of furnace black (trade name “PP-RM10H381”, manufactured by Dainichi Seika Kogyo Co., Ltd.) 3.34 kg are mixed, and this mixture is heated and mixed in an extruder and subjected to an underwater cutting method. Granulated pelletized (carbon-containing polypropylene resin particles were adjusted to 80 mg per 100 particles).
  • Impregnation of foaming agent dry impregnation
  • adjustment of moisture content on the surface 15 kg of carbon-containing polypropylene-modified styrene resin particles obtained as described above 4.5 g of polyoxyethylene laurylamine, polyethylene glycol 7.5 g (trade name PEG # 300, manufactured by NOF Corporation) and 150 g of pure water were placed in a pressure-resistant rotary mixer having an internal volume of 50 L, rotated, held for 10 minutes, and then heated to 70 ° C.
  • Example 14 a) Production of polyethylene modified styrene resin particles of polyethylene resin (PE) / polystyrene resin (PS) 50/50 Extruded ethylene / vinyl acetate copolymer resin particles (manufactured by Nippon Polyethylene, LV-115) The mixture was heated and mixed in a machine and granulated into pellets by an underwater cutting method (the ethylene / vinyl acetate copolymer resin particles were adjusted to 130 mg per 100 particles). 15 kg of the ethylene / vinyl acetate copolymer resin particles were placed in a 100 L autoclave with a stirrer.
  • PE polyethylene resin
  • PS polystyrene resin
  • the styrene monomer was used in an amount of 100 parts by weight with respect to 100 parts by weight of the ethylene / vinyl acetate copolymer resin particles.
  • the internal moisture content was adjusted in the same manner as b) of Example 1 except that the moisture content was dried by flowing air for 60 minutes.
  • the polyethylene-modified styrenic resin particles thus obtained had an internal moisture content of 0.273% by weight.
  • the impregnation of the foaming agent was performed in Example 1c except that the temperature of the aqueous medium was 70 ° C. and 340 g of pentane containing 97% or more of i-pentane (product type isopentane, product name Isopentane) was used.
  • Example 15 a) Production of polyethylene modified styrene resin particles of polyethylene resin (PE) / polystyrene resin (PS) 10/90 Linear low density polyethylene resin particles (NF-444A manufactured by Nippon Polyethylene Co., Ltd.) were used as an extruder. The mixture was heated and mixed, and granulated into pellets by an underwater cutting method (linear low density polyethylene resin particles were adjusted to 40 mg per 100 grains). 3.5 kg of this linear low density polyethylene resin particle was put into a 100 L autoclave with a stirrer.
  • PE polyethylene resin
  • PS polystyrene resin
  • NF-444A manufactured by Nippon Polyethylene Co., Ltd.
  • the internal moisture content was adjusted in the same manner as b) of Example 1 except that the moisture content was dried by flowing air for 60 minutes.
  • the polyethylene-modified styrenic resin particles thus obtained had an internal moisture content of 0.161% by weight.
  • the impregnation of the foaming agent was carried out in the same manner as in Example 1 except that the temperature of the aqueous medium was set to 70 ° C.
  • Example 16 The production of polyethylene-modified styrene resin particles and the adjustment of the internal water content are the same as in a) and b) of Example 1, and the impregnation with the foaming agent is pentane containing 97% or more of i-pentane (gas type a: SK)
  • the adjustment, storage and pre-foaming of the surface adhering composite resin particles were carried out in the same manner as in c) of Example 1 except that 220 g of a product name, isopentane, manufactured by Sangyo Co., Ltd. was used. , E) and f).
  • Example 17 The production of polyethylene-modified styrene resin particles and the adjustment of the internal water content are the same as those in a) and b) of Example 1, and the impregnation with the foaming agent is pentane containing 97% or more of i-pentane (gas type a: SK)
  • the adjustment, storage and pre-foaming of the surface adhering composite resin particles were carried out in the same manner as in c) of Example 1 except that 300 g of the product name “Isopentane” manufactured by Sangyo Co., Ltd. was used. , E) and f).
  • Tables 2 and 4 Various evaluation results are shown in Tables 2 and 4.
  • Example 18 a) Production of polyethylene modified styrene resin particles of polyethylene resin (PE) / polystyrene resin (PS) 30/70 Extruded ethylene / vinyl acetate copolymer resin particles (Nippon Polyethylene Co., Ltd., LV-115) The mixture was heated and mixed in a machine and granulated into pellets by an underwater cutting method (the ethylene / vinyl acetate copolymer resin particles were adjusted to 80 mg per 100 grains). 10.5 kg of the ethylene / vinyl acetate copolymer resin particles were placed in a 100 L autoclave equipped with a stirrer.
  • PE polyethylene resin
  • PS polystyrene resin
  • styrene monomer (6.025 kg) in which 175 g of butyl acrylate, 39.2 g of benzoyl peroxide as a polymerization initiator, 4.9 g of t-butyl peroxybenzoate, and 98.7 g of dicumyl peroxide as a crosslinking agent were dissolved was added. It was added dropwise over time.
  • 13.45 kg of styrene monomer in which 350 g of butyl acrylate and 175 g of ethylenebisstearic acid amide were dissolved was added dropwise over 2 hours. After completion of the dropwise addition, the temperature was maintained at 90 ° C. for 1 hour, then heated to 143 ° C. and maintained at that temperature for 2 hours to complete the polymerization. Then, it cooled to normal temperature and took out the polyethylene modification styrene resin particle (average particle diameter of 1.60 mm).
  • the styrene monomer was used in an amount of 233 parts by weight based on 100 parts by weight of the ethylene / vinyl acetate copolymer resin particles. Adjustment of the internal moisture content of the polyethylene-modified styrene resin particles, impregnation with a foaming agent (wet impregnation method), adjustment of the moisture content on the surface, storage, and preliminary foaming are b), c), d) and e of Example 1. ) And f). Various evaluation results are shown in Table 2.
  • Example 19 a) Production of polyethylene modified styrene resin particles of polyethylene resin (PE) / polystyrene resin (PS) 20/80 Linear low density polyethylene resin particles (NF-444A manufactured by Nippon Polyethylene Co., Ltd.) were used as an extruder. The mixture was heated and mixed, and granulated into pellets by an underwater cutting method (linear low density polyethylene resin particles were adjusted to 40 mg per 100 grains). 7.0 kg of this linear low density polyethylene resin particle was put into a 100 L autoclave with a stirrer.
  • PE polyethylene resin
  • PS polystyrene resin
  • NF-444A manufactured by Nippon Polyethylene Co., Ltd.
  • the styrene monomer was used in an amount of 400 parts by weight with respect to 100 parts by weight of the linear low density polyethylene. Adjustment of the internal moisture content of the polyethylene-modified styrene resin particles, impregnation with a foaming agent (wet impregnation method), adjustment of the moisture content on the surface, storage, and preliminary foaming are b), c), d), e of Example 4. ) And f). Various evaluation results are shown in Table 2.
  • Comparative Example 1 The production of polyethylene-modified styrene resin particles and the adjustment of the internal water content are the same as in a) and b) of Example 1, and the impregnation with the foaming agent is pentane containing 97% or more of i-pentane (gas type a: SK) Except for using 260 g of a product name (isopentane, manufactured by Sangyo Co., Ltd.), the amount of water adhering to the surface was adjusted for 5 minutes using a basket-type centrifuge, and then cylindrical at room temperature.
  • the storage and pre-foaming of the expandable composite resin particles are the same as those in e) and f) of Example 1 except that drying is performed by flowing air for 10 minutes in a dryer. I went there.
  • Table 3 The evaluation results are shown in Table 3.
  • Comparative Example 2 Manufacture of polyethylene-modified styrene resin particles and adjustment of internal water content are the same as in Example 3 a) and b), and impregnation of foaming agent (dry impregnation) and adjustment of surface adhering water content use pure water.
  • Various evaluation results are shown in Table 3.
  • Comparative Example 4 Manufacture of polyethylene-modified styrene resin particles and adjustment of internal water content are the same as in Example 4 a) and b), and impregnation of foaming agent (dry impregnation) and adjustment of surface adhering water content use pure water. Except for not doing so, the foamable composite resin particles were stored and prefoamed in the same manner as in e) and f) of Example 1 in the same manner as in Example 5 c) and d). Various evaluation results are shown in Table 3.
  • butane gas species c: Cosmo Oil Co., Ltd., product name Cosmobutane Silver
  • the amount of moisture adhering to the surface, storage of foamable composite resin particles, and reserve Foaming was performed in the same manner as in d)
  • e) and f) of Example 1 Various evaluation results are shown in Table 3.
  • Comparative Example 6 The production of polyethylene-modified styrene resin particles and the adjustment of the internal water content were the same as in Example 4 a) and b). Except for the use, the foamable composite resin particles were stored and pre-foamed in the same manner as in e) and f) of Example 1 in the same manner as in Example 5 c) and d). Various evaluation results are shown in Table 3.
  • Comparative Example 7 The production of polyethylene-modified styrene resin particles and the adjustment of the internal water content are the same as in a) and b) of Example 1, and the impregnation with the blowing agent is pentane containing 97% or more of i-pentane (gas type a: ESK The adjustment, storage and pre-foaming of the surface adhering composite resin particles were carried out in the same manner as in Example 1 c) except that 180 g of the product name “Isopentane” manufactured by Sangyo Co., Ltd. was used. , E) and f). Various evaluation results are shown in Table 3.
  • the unit of the charged gas amount is wt% / resin particles
  • the unit of the contained gas amount is wt%
  • the unit of various moisture amounts is wt%
  • the unit of the moisturizing agent adhesion amount is wt%
  • the unit of heating time is min
  • the unit of multiple and multiple difference is double.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂粒子と、前記複合樹脂粒子中に含まれたペンタンを含有する揮発性発泡剤7.5~11重量%と、前記複合樹脂粒子の表面に付着した付着水分0.5~1.5重量%とを有する冷凍保存用発泡性複合樹脂粒子。

Description

[規則37.2に基づきISAが決定した発明の名称] 冷凍保存用発泡性複合樹脂粒子
 本発明は、冷凍保存用発泡性複合樹脂粒子、その製造方法、その保存方法、冷凍保存発泡性複合樹脂粒子及び発泡成形体に関する。更に詳しくは、本発明は、ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂粒子中にペンタンを含み、複合樹脂粒子表面に水分を付着させた冷凍保存用発泡性複合樹脂粒子、その製造方法、その保存方法、冷凍保存発泡性複合樹脂粒子及び発泡成形体に関する。
 一般に、ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂の発泡性粒子(単に、発泡性複合樹脂粒子ともいう)は、複合樹脂粒子(単に、樹脂粒子ともいう)に揮発性発泡剤を含浸させることで得られる。また、発泡成形体の成形性等を改善するために、発泡性複合樹脂粒子中に水分を含ませることが知られている(例えば特公平6-104746号公報:特許文献1や特公平7-91405号公報:特許文献2)を参照)。
 特許文献1及び2に記載の発泡性複合樹脂粒子の水分含量は0.5~1.5重量%で、実施例で使用されている揮発性発泡剤はブタンである。
特公平6-104746号公報 特公平7-91405号公報
 近年、発泡性複合樹脂粒子の製造場所と、得られた発泡性複合樹脂粒子を発泡加工する場所とが異なる場合が多々ある。異なる場合は、発泡性複合樹脂粒子を輸送する必要があるが、易揮発性発泡剤として通常用いられるブタン含有の発泡性複合樹脂粒子を輸送する為には、ブタンの抜けを極力抑えて発泡性複合樹脂粒子の発泡能力を維持した状態で輸送する必要がある。一般的に用いられる輸送手段は冷凍輸送である。ブタン含有の発泡性複合樹脂粒子の場合は、例えば-15℃程度で冷凍保存し、十分に冷やした後に冷凍輸送したとしても、その後の常温での予備発泡を考えると安全性の観点から耐加圧性の容器を使用する必要がある。そのため、発泡性複合樹脂粒子を大量に輸送できず、輸送自体にコストがかかるという問題があった。
 一方、発泡剤として常温で液体であるペンタンを用いた場合、そのペンタン含有の発泡性複合樹脂粒子を冷凍すれば、耐加圧性の容器を使用しなくても密閉可能な容器(袋形状のものも含む)で発泡性複合樹脂粒子の発泡能力はある程度確保できる。
 ところで、冷凍された発泡性複合樹脂粒子は、予備発泡前に、密閉可能な容器から取り出されることになる。発泡剤の逸散はこの時点から始まることになる。発泡性複合樹脂粒子は、容器から取り出されて、予備発泡に付されるまでの間、所定の発泡能力を保持している必要がある。発泡能力を保持可能な発泡性複合樹脂粒子の量が一包装単位となる。
 具体的には、予備発泡1回当り発泡性複合樹脂粒子を10kg使用し、予備発泡時間が5分であるとした場合、発泡能力保持時間が10分であれば一包装単位を20kgとすることができる。一包装単位が少量になると、生産効率が低下し、かつ包装資材の費用が増大する。また、多くの包装単位を保管、輸送する時の効率が低下すると共に、発泡性複合樹脂粒子の充填作業や発泡時の開封作業に多大な作業工数が発生する。そのため、少量の一包装単位は経済的ではない。よって、可能な限り一包装単位を大きくするために、開放下での発泡性複合樹脂粒子からの発泡剤の逸散を抑制すること(言い換えると、発泡能力保持時間を延ばすこと)が望まれている。
 かくして本発明によれば、ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂粒子と、前記複合樹脂粒子中に含まれたペンタンを含有する揮発性発泡剤7.5~11重量%と、前記複合樹脂粒子の表面に付着した付着水分0.5~1.5重量%とを有する冷凍保存用発泡性複合樹脂粒子が提供される。
 また、本発明によれば、上記冷凍保存用発泡性複合樹脂粒子を予備発泡させ、次いで型内成形して得られた発泡成形体が提供される。
 更に、本発明によれば、上記冷凍保存用発泡性複合樹脂粒子の製造方法であって、
 前記複合樹脂粒子に前記ペンタンを含有する揮発性発泡剤を含浸させる工程と、含浸後の複合樹脂粒子を加湿又は脱水することで表面の付着水分の量を調整する工程とを有する冷凍保存用発泡性複合樹脂粒子の製造方法が提供される。
 また、本発明によれば、上記冷凍保存用発泡性複合樹脂粒子を、予備発泡工程に付すまで、-5℃以下に設定された容器内で保存することからなる冷凍保存用発泡性複合樹脂粒子の保存方法が提供される。
 更に、本発明によれば、ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂粒子と、前記複合樹脂粒子中に含まれたペンタンを含有する揮発性発泡剤7.5~11重量%と、前記複合樹脂粒子の表面に付着した付着水分0.5~1.5重量%とを有し、-5℃以下に設定された容器内で保存された冷凍保存発泡性複合樹脂粒子が提供される。
 本発明の冷凍保存用発泡性複合樹脂粒子によれば、所定の表面付着水分量と揮発性発泡剤量であることにより、予備発泡時の作業性を良好に保ちつつ、冷凍保存後の発泡能力保持時間を延ばすことが可能となる。
 更に、複合樹脂粒子が、ポリオレフィン系樹脂としてのポリエチレン系樹脂又はポリプロピレン系樹脂100重量部とポリスチレン系樹脂110~900重量部とを含む粒子である場合、予備発泡時の作業性を良好に保ちつつ、冷凍保存後の発泡能力保持時間を延ばすことが可能となると共に、耐割れ性が向上した発泡成形体を与えうる発泡性複合樹脂粒子を提供できる。
 また、複合樹脂粒子が、ポリオレフィン系樹脂としてのポリエチレン系樹脂又はポリプロピレン系樹脂100重量部とポリスチレン系樹脂110~730重量部とを含む粒子である場合、予備発泡時の作業性を良好に保ちつつ、冷凍保存後の発泡能力保持時間を延ばすことが可能となると共に、耐割れ性が向上した発泡成形体を与えうる発泡性複合樹脂粒子を提供できる。
 更に、冷凍保存用発泡性複合樹脂粒子が、0.05~0.5重量%の内部水分を更に有する場合、予備発泡時の作業性を良好に保ちつつ、冷凍保存後の発泡能力保持時間を延ばすことが可能となると共に、気泡バラツキが抑制された発泡成形体を与えうる発泡性複合樹脂粒子を提供できる。
 また、ペンタンが、8.5~10.0重量%含まれる場合、予備発泡時の作業性を良好に保ちつつ、予備発泡粒子中の気泡サイズをより最適な範囲に調整できることにより成形性と耐割れ性が高次元で両立した発泡成形体を与えうる発泡性複合樹脂粒子を提供できる。
 更に、冷凍保存用発泡性複合樹脂粒子が、その表面に付着した、0.01~0.1重量%の保湿剤を更に有する場合、予備発泡時の作業性を良好に保ちつつ、冷凍保存後の発泡能力保持時間をより延ばすことが可能となる。
 また、保湿剤が、100~600の重量平均分子量のポリエチレングリコールである場合、予備発泡時の作業性を良好に保ちつつ、冷凍保存後の発泡能力保持時間をより延ばすことが可能となる。
 更に、本発明の冷凍保存用発泡性複合樹脂粒子の製造方法によれば、上記効果を有する冷凍保存用発泡性複合樹脂粒子を簡便に製造できる。
 また、本発明の冷凍保存用発泡性複合樹脂粒子の保存方法によれば、上記効果を有する冷凍保存用発泡性複合樹脂粒子を簡便に保存できる。
 更に、本発明の冷凍保存用発泡性複合樹脂粒子は、予備発泡時の作業性が良好であり、冷凍保存後の発泡能力保持時間の長い粒子である。
 発泡性複合樹脂粒子は、それを製造後、その表面に付着した水分を乾燥させることが一般的であった。その理由は、発泡性複合樹脂粒子を冷凍保存する場合、表面に付着した水分が粒子同士を結着させ、予備発泡前に結着を解く作業が必要となるからである。そのため、極力水分を存在させないことが好ましいとされてきた。本発明の発明者等は、表面の付着水分の量が特定の範囲であれば、粒子同士の結着を防止できるとともに、意外にも発泡能力保持時間を延長できることを見い出し本発明に至った。
 本発明の冷凍保存用発泡性複合樹脂粒子(以下、単に発泡性複合樹脂粒子ともいう)は、ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂粒子の表面に所定の範囲の量の付着水分と、複合樹脂粒子中に所定の範囲の含有量の揮発性発泡剤(以下、単に発泡剤ともいう)を有する。
 (表面付着水分量)
 発泡性複合樹脂粒子の表面に付着する水分量は、0.5~1.5重量%の範囲である。0.5重量%未満の場合、発泡性複合樹脂粒子からの発泡剤の逸散の抑制効果が十分でなく発泡能力保持時間を延ばすことができない。1.5重量%を超える場合、冷凍保管後、発泡する際に、発泡性複合樹脂粒子同士が強固に結着しており、発泡性複合樹脂粒子の発泡機への吸引が困難になる等の作業面に非常な不都合が生じる。好ましい水分量は、0.6~1.2重量%である。例えば、0.7重量%、0.8重量%、0.9重量%、1.0重量%又は1.1重量%の水分量に設定できる。表面に付着する水分量は、カールフィッシャー法により全水分量と粒子内部の水分量を測定し、前者から後者を減算することで算出できる。詳細な算出方法は、実施例の欄に記載する。
 水分量の調整は、特に限定されず、公知の加湿法(例えば、噴霧法、浸漬法等)又は脱水法(例えば、加熱法、遠心分離法、減圧保持法等)が挙げられる。具体的には、発泡剤の含浸を湿式で行った場合は、遠心分離機に1分以上かけることで調整できる。また、乾式で行った場合は、発泡剤含浸時に所望の水分量に対応する水分を加えることで調整できる。
 (揮発性発泡剤含有量)
 発泡性複合樹脂粒子に含まれる発泡剤の含有量は、7.5~11重量%の範囲である。発泡剤の含有量が7.5重量%未満であると、発泡性複合樹脂粒子の発泡性が低下することがある。発泡性が低下すると、嵩倍数の高い低嵩密度の予備発泡粒子が得られ難くなると共に、この予備発泡粒子を型内成形して得られる発泡成形体は融着率が低下し、耐割れ性が低下することがある。一方、11.0重量%を超えると、予備発泡粒子中の気泡サイズが過大となり易く、成形性の低下や、得られる発泡成形体の圧縮、曲げ等の強度特性の低下が発生することがある。より好ましい発泡剤の含有量は、8.5~10.0重量%の範囲である。例えば、8.7重量%、8.9重量%、9.1重量%、9.3重量%、9.5重量%、9.7重量%又は9.9重量%の発泡剤含有量に設定できる。
 発泡剤は、ペンタンを主成分(例えば、50重量%以上)として含んでいることが好ましい。ここでペンタンは、鎖状ペンタンを意味し、例えば、i-ペンタン、n-ペンタン、及び両ペンタンの混合物から選択できる。特に、i-ペンタンとn-ペンタンとを20:80~100:0の比で含むペンタンを使用することが好ましい。ペンタン以外の他の発泡剤としては、プロパン、n-ブタン、イソブタン、シクロペンタン、ヘキサン等の炭化水素が挙げられる。
 所定量の発泡剤を含む発泡性複合樹脂粒子は、複合樹脂粒子に発泡剤を、水性媒体中で含浸させる方法(湿式含浸法)か、又は媒体非存在下で含浸させる方法(乾式含浸法)により得られる。
 (内部水分量)
 発泡性複合樹脂粒子は、0.05~0.5重量%の内部水分を有していることが好ましい。0.05重量%を下回る内部水分量では、予備発泡粒子の表面及び内部の気泡が微細になり、気泡バラツキが大きくなる傾向がある。0.5重量%を超えると、予備発泡粒子の表面及び内部の気泡が非常に粗大になり、発泡成形体の外観が悪くなることがある。好ましい水分量は0.1~0.45重量%である。例えば、0.15重量%、0.2重量%、0.25重量%、0.3重量%又は0.35重量%の水分量に設定できる。
 内部水分量を調整する方法としては、特に限定されず、公知の方法で調整できる。例えば、(i)発泡剤を含浸させる前の複合樹脂粒子と水分とを接触させるか又は粒子を乾燥させる方法、(ii)発泡性複合樹脂粒子と水分とを接触させるか又は粒子を乾燥させる方法、(iii)前2方法を同時に行う方法等が挙げられる。これら方法の内、表面付着水分量の調整が発泡性複合樹脂粒子に水分を接触させる方法で行われることから、方法(iii)が好ましい。なお、方法(ii)の「発泡性複合樹脂粒子と水分とを接触させる」には、発泡剤の含浸を水性媒体中で行う場合も含まれる。
 方法(iii)中の複合樹脂粒子において、例えば、内部水分量が少ない場合は、複合樹脂粒子を水性媒体に分散させ、密閉下、この媒体を110~140℃で2~5時間保持することで、複合樹脂粒子に内部水分を付与できる。なお、水性媒体には分散剤を添加しておくことが好ましい。内部水分量が多い場合は、乾燥機で複合樹脂粒子を乾燥させて水分を減らすことができる。例えば、バッチ式の気流乾燥機の場合、好ましくは10~70℃、より好ましくは20~60℃の空気を0.5~3時間流すことで所定量の水分に減らすことができる。また、複合樹脂粒子に多量の水分を含有させた後に、乾燥機で乾燥させることで内部水分量を調整してもよい。また、温度、湿度が一定に制御された雰囲気中に複合樹脂粒子を一定時間置いて内部水分量を調整してもよい。なお、複合樹脂粒子の内部水分量は、0.05~0.5重量%の範囲に調整されていることが好ましい。例えば、0.1重量%、0.15重量%、0.2重量%、0.25重量%、0.3重量%、0.35重量%、0.4重量%又は0.45重量%の水分量に設定できる。
 更に、複合樹脂粒子を大量に生産する場合においては、複合樹脂粒子を、空気輸送する際に、その空気輸送時の空気温度(ニューマ温度という)と流速とを調整することにより、所定量の内部水分を含む複合樹脂粒子が得られる。例えば、ニューマ温度を好ましくは10~70℃、より好ましくは20~60℃で、好ましくは流速5~30m/秒、より好ましくは10~20m/秒で輸送することにより簡便に所定量の内部水分量に調整できる。ニューマ温度が10℃未満のとき、内部水分量が0.5重量%を超えることがあり、ニューマ温度が70℃を超えるとき、内部水分量が0.05重量%未満となることがある。一方、流速が5m/秒未満のとき、垂直方向への複合樹脂粒子の輸送が困難となるか、あるいは内部水分量が0.05重量%未満となることがある。流速が30m/秒を超えるとき、不都合ではないがブロワーを大型にする必要があり経済的ではないか、あるいは内部水分量が0.5重量%を超えることがある。
 このようにして、内部水分を所定量に調整した複合樹脂粒子に湿式含浸法か、又は乾式含浸法により所定量のペンタンを含浸させて所定量のペンタンを含有した発泡性複合樹脂粒子を得ることができる。ここで、表面付着水分量の調整が、発泡剤含浸時又は含浸後に行われるため、その際に内部水分量も変化することがある。そのため、方法(iii)では、表面付着水分量と内部水分量の調整を同時に行うことが好ましい。
 (保湿剤)
 発泡性複合樹脂粒子の表面には、更に0.01~0.1重量%の保湿剤を付着させてもよい。保湿剤を付着させることで、発泡性複合樹脂粒子の表面に付着させた水分の蒸発をより長期間防止できる。保湿剤の付着量が0.01重量%未満の場合、水分の蒸発の防止効果が十分でないことがある。0.1重量%より多い場合、発泡性複合樹脂粒子がべとつくことにより発泡時の作業面に不都合が生じることがある。より好ましい保湿剤の付着量は、0.02~0.08重量%である。例えば、0.03重量%、0.04重量%、0.05重量%、0.06重量%又は0.07重量%の保湿剤量に設定できる。
 保湿剤としては、発泡に悪影響を与えない限り特に限定されない。例えば、ポリエチレングリコール、ポリオキシエチレンアルキルフェノールエーテル、ステアリン酸モノグリセリド等が挙げられる。この内、100~600の重量平均分子量のポリエチレングリコールが好ましい。
 (複合樹脂粒子)
  (1)ポリオレフィン系樹脂
 ポリオレフィン系樹脂としては、特に限定されず、公知の樹脂が使用できる。また、ポリオレフィン系樹脂は、架橋していてもよい。例えば、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-メチルメタクリレート共重合体、これら重合体の架橋体等のポリエチレン系樹脂、プロピレン単独重合体、エチレン-プロピレンランダム共重合体、プロピレン-1-ブテン共重合体、エチレン-プロピレン-ブテンランダム共重合体等のポリプロピレン系樹脂が挙げられる。上記例示中、低密度は、0.91~0.94g/cm3であることが好ましく、0.91~0.93g/cm3であることがより好ましい。高密度は、0.95~0.97g/cm3であることが好ましく、0.95~0.96g/cm3であることがより好ましい。中密度はこれら低密度と高密度の中間の密度である。
  (2)ポリスチレン系樹脂
 ポリスチレン系樹脂としては、ポリスチレン、もしくはスチレンを主成分とし、スチレンと共重合可能な他のモノマーとの共重合体である。主成分とはスチレンが全モノマーの70重量%以上を占めることを意味する。他のモノマーとしては、α-メチルスチレン、p-メチルスチレン、アクリロニトリル、メタクリロニトリル、アクリル酸、メタクリル酸、アクリル酸アルキルエステル、メタクリル酸アルキルエステル、ジビニルベンゼン、ポリエチレングリコールジメタクリレート等が例示される。例示中、アルキルとは、炭素数1~8のアルキルを意味する。
  (3)ポリスチレン系樹脂とポリオレフィン系樹脂との割合
 ポリスチレン系樹脂は、発泡性複合樹脂粒子中に、ポリオレフィン系樹脂粒子100重量部に対して110~900重量部の範囲で含まれることが好ましい。なお、両樹脂の割合は、発泡性複合樹脂粒子を製造するための対応する両モノマーの割合にほぼ対応している。
 ポリスチレン系樹脂の含有量が900重量部より多いと、発泡成形体の耐割れ性が低下することがある。一方、110重量部より少ないと、耐割れ性は大幅に向上するが、発泡性複合樹脂粒子の表面からの発泡剤の逸散が速くなる傾向がある。そのため、発泡剤の保持性が低下することによって発泡性複合樹脂粒子のビーズライフが短くなることがある。より好ましいポリスチレン系樹脂の含有量は110~730重量部、更に好ましい含有量は120~560重量部、特に好ましい含有量は140~450重量部である。
  (4)複合樹脂粒子の製造方法
 ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂とは、ポリオレフィン系樹脂とポリスチレン系樹脂との混合樹脂を意味する。混合樹脂は、両樹脂を単純に混合した樹脂も使用できるが、以下で説明するポリオレフィン改質スチレン系樹脂が好ましい。より好ましい混合樹脂は、ポリエチレン改質スチレン系樹脂である。
 ポリオレフィン改質スチレン系樹脂の粒子(改質樹脂粒子ともいう)は、ポリオレフィン系樹脂粒子が分散保持された水性媒体中にスチレン系モノマーを加えて重合させることで得られる。改質樹脂粒子の製造方法を以下で説明する。
 ポリオレフィン系樹脂粒子は、公知の方法で得ることができる。例えば、押出機を使用してポリオレフィン系樹脂を溶融押出した後、水中カット、ストランドカット等により造粒する方法が挙げられる。ポリオレフィン系樹脂粒子の形状としては、真球状、楕円球状(卵状)、円柱状、角柱状、ペレット状又はグラニュラー状が挙げられる。以下では、ポリオレフィン系樹脂粒子をマイクロペレットとも記す。
 ポリオレフィン系樹脂粒子には、ラジカル捕捉剤が含まれていてもよい。ラジカル捕捉剤は、予めポリオレフィン系樹脂粒子に添加しておくか、もしくは溶融押出と同時に添加してもよい。ラジカル捕捉剤としては、重合禁止剤(重合抑制剤を含む)、連鎖移動剤、酸化防止剤、ヒンダードアミン系光安定剤等のラジカルを捕捉する作用を有する化合物で、水に溶解し難いものが好ましい。
 重合禁止剤としは、t-ブチルハイドロキノン、パラメトキシフェノール、2,4-ジニトロフェノール、t-ブチルカテコール、sec-プロピルカテコール、N-メチル-N-ニトロソアニリン、N-ニトロソフェニルヒドロキシルアミン、トリフェニルフォスファイト、トリス(ノニルフェニルフォスファイト)、トリエチルフォスファイト、トリス(2-エチルヘキシル)フォスファイト、トリデシルフォスファイト、トリス(トリデシル)フォスファイト、ジフェニルモノ(2-エチルヘキシル)フォスファイト、ジフェニルモノデシルフォスファイト、ジフェニルモノ(トリデシル)フォスファイト、ジラウリルハイドロゲンフォスファイト、テトラフェニルジプロピレングリコールジフォスファイト、テトラフェニルテトラ(トリデシル)ペンタエリスリトールテトラフォスファイト等のフェノール系重合禁止剤、ニトロソ系重合禁止剤、芳香族アミン系重合禁止剤、亜リン酸エステル系重合禁止剤、チオエーテル系重合禁止剤等が例示される。
 また、連鎖移動剤としては、β-メルカプトプロピオン酸2-エチルヘキシルエステル、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、トリス[(3-メルカプトプロピオニロキシ)-エチル]イソシアヌレート等が例示される。
 酸化防止剤としては、2,6-ジ-t-ブチル-4-メチルフェノール(BHT)、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、3,9-ビス〔2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ〔5・5〕ウンデカン、ジステアリルペンタエリスリトールジフォスファイト、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジフォスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレンジフォスフォナイト、ビス(2-t-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイト、2,4,8,10-テトラ-t-ブチル-6-[3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン、フェニル-1-ナフチルアミン、オクチル化ジフェニルアミン、4,4-ビス(α,α-ジメチルベンジル)ジフェニルアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン等のフェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤等が例示できる。
 ヒンダードアミン系光安定剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート等が例示できる。
 ラジカル捕捉剤の使用量としては、ポリオレフィン系樹脂粒子100重量部に対して0.005~0.5重量部であることが好ましい。
 ポリオレフィン系樹脂粒子は、他に、タルク、珪酸カルシウム、ステアリン酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の発泡核剤、ヘキサブロモシクロドデカン、トリアリルイソシアヌレート6臭素化物等の難燃剤、カーボンブラック、酸化鉄、グラファイト等の着色剤等を含んでいてもよい。
 次に、マイクロペレットを重合容器内の水性媒体中に分散させ、スチレン系モノマーをマイクロペレットに含浸させながら重合させる。
 水性媒体としては、水、水と水溶性溶媒(例えば、アルコール)との混合媒体が挙げられる。
 スチレン系モノマーは、スチレン及び置換スチレン(置換基には、低級アルキル、ハロゲン原子(特に塩素原子)等が含まれる)のいずれも使用できる。置換スチレンとしては、例えば、クロルスチレン類、p-メチルスチレン等のビニルトルエン類、α-メチルスチレン等が挙げられる。この内、スチレンが一般に好ましい。また、スチレン系モノマーは、スチレンと、置換スチレンとの混合物、スチレンと共重合可能な少量の他のモノマー(例えば、アクリロニトリル、メタクリル酸アルキルエステル(アルキル部分の炭素数1~8程度)、マレイン酸モノないしジアルキル(アルキル部分の炭素数1~4程度)、ジビニルベンゼン、エチレングリコールのモノないしジアクリル酸ないしメタクリル酸エステル、無水マレイン酸、N-フェニルマレイミド等)との混合物が使用できる。これら混合物中、スチレンが優位量(例えば、50重量%以上)を占めることが好ましい。
 なお、スチレン系モノマーには、トルエン、キシレン、シクロヘキサン、酢酸エチル、フタル酸ジオクチル、テトラクロルエチレン等の溶剤(可塑剤)を添加してもよい。
 スチレン系モノマーの使用量は、ポリオレフィン系樹脂粒子100重量部に対して110~900重量部である。より好ましくは110~730重量部、更に好ましくは120~560重量部、特に好ましくは140~450重量部である。
 スチレン系モノマーの使用量が730重量部を超えると、ポリオレフィン系樹脂粒子に含浸されずに、ポリスチレン系樹脂単独の粒子が発生することがある。加えて、発泡成形体の耐割れ性が低下するだけでなく、耐薬品性も低下することがある。一方、110重量部未満であると、発泡性複合樹脂粒子の発泡剤を保持する能力が低下する場合がある。低下すると、高発泡化が困難となる。また、発泡成形体の剛性も低下することがある。
 ポリオレフィン系樹脂粒子へのスチレン系モノマーの含浸は、重合させつつ行ってもよく、重合を開始する前に行ってもよい。この内、重合させつつ行うことが好ましい。なお、含浸させた後に重合を行う場合、ポリオレフィン系樹脂粒子の表面近傍でのスチレン系モノマーの重合が起こり易く、また、ポリオレフィン系樹脂粒子中に含浸されなかったスチレン系モノマーが単独で重合して、多量の微粒子状のポリスチレン系樹脂粒子が生成する場合がある。
 重合させつつ含浸を行う場合、上記含有量を算出する場合のポリオレフィン系樹脂粒子とは、ポリオレフィン系樹脂と含浸されたスチレン系モノマー、更に含浸されて既に重合したポリスチレン系樹脂とから構成された粒子を意味する。
 含有量を0~35重量%に維持するために、スチレン系モノマーを重合容器内の水性媒体に連続的にあるいは断続的に添加できる。特に、スチレン系モノマーを水性媒体中に徐々に添加していくのが好ましい。
 スチレン系モノマーの重合には、油溶性のラジカル重合開始剤を使用できる。この重合開始剤としては、スチレン系モノマーの重合に汎用されている重合開始剤を使用できる。例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t-ブチルパーオキシオクトエート、t-ヘキシルパーオキシオクトエート、t-ブチルパーオキシベンゾエート、t-アミルパーオキシベンゾエート、t-ブチルパーオキシビバレート、t-ブチルパーオキシイソプロピルカーボネート、t-ヘキシルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサノエート、ジ-t-ブチルパーオキシヘキサハイドロテレフタレート、2,2-ジ-t-ブチルパーオキシブタン、ジ-t-ヘキシルパーオキサイド、ジクミルパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。なお、これら油溶性のラジカル重合開始剤は、単独で用いられても併用されてもよい。
 重合開始剤を重合容器内の水性媒体に添加する方法としては、種々の方法が挙げられる。例えば、
(a)重合容器とは別の容器内でスチレン系モノマーに重合開始剤を溶解して含有させ、このスチレン系モノマーを重合容器内に供給する方法、
(b)重合開始剤をスチレン系モノマーの一部、イソパラフィン等の溶剤又は可塑剤に溶解させて溶液を作製する。この溶液と、所定量のスチレン系モノマーとを重合容器内に同時に供給する方法、
(c)重合開始剤を水性媒体に分散させた分散液を作製する。この分散液とスチレン系モノマーとを重合容器内に供給する方法
等が挙げられる。
 上記重合開始剤の使用割合は、通常スチレン系モノマーの使用総量の0.02~2.0重量%であることが好ましい。
 水性媒体中には、水溶性のラジカル重合禁止剤を溶解させておくことが好ましい。水溶性のラジカル重合禁止剤はポリオレフィン系樹脂粒子表面におけるスチレン系モノマーの重合を抑制するだけでなく、水性媒体中に浮遊するスチレン系モノマーが単独で重合するのを防止して、ポリスチレン系樹脂の微粒子の生成を減らすことができるからである。
 上記水溶性のラジカル重合禁止剤の使用量としては、水性媒体の水100重量部に対して0.001~0.04重量部が好ましい。
 なお、上記水性媒体中に分散剤を添加しておくことが好ましい。このような分散剤としては、例えば、部分ケン化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロース等の有機系分散剤、ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウム等の無機系分散剤が挙げられる。この内、無機系分散剤が好ましい。
 無機系分散剤を用いる場合には、界面活性剤を併用することが好ましい。このような界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ソーダ、α-オレフィンスルホン酸ソーダ等が挙げられる。
 重合容器の形状及び構造としては、従来からスチレン系モノマーの懸濁重合に用いられているものであれば、特に限定されない。
 また、攪拌翼の形状についても特に限定はなく、具体的には、V型パドル翼、ファードラー翼、傾斜パドル翼、平パドル翼、プルマージン翼等のパドル翼、タービン翼、ファンタービン翼等のタービン翼、マリンプロペラ翼のようなプロペラ翼等が挙げられる。これら攪拌翼の内では、パドル翼が好ましい。攪拌翼は、単段翼であっても多段翼であってもよい。重合容器に邪魔板(バッフル)を設けてもよい。
 また、スチレン系モノマーをマイクロペレット中にて重合させる際の水性媒体の温度は、特に限定されないが、使用するポリオレフィン系樹脂の融点の-30~+20℃の範囲であることが好ましい。より具体的には、70~140℃が好ましく、80~130℃がより好ましい。更に、水性媒体の温度は、スチレン系モノマーの重合開始から終了までの間、一定温度であってもよいし、段階的に上昇させてもよい。水性媒体の温度を上昇させる場合には、0.1~2℃/分の昇温速度で上昇させることが好ましい。
 更に、架橋したポリオレフィン系樹脂からなる粒子を使用する場合、架橋は、スチレン系モノマーを含浸させる前に予め行っておいてもよいし、マイクロペレット中にスチレン系モノマーを含浸、重合させている間に行ってもよいし、マイクロペレット中にスチレン系モノマーを含浸、重合させた後に行ってもよい。
 ポリオレフィン系樹脂の架橋に用いられる架橋剤としては、例えば、2,2-ジ-t-ブチルパーオキシブタン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキサン等の有機過酸化物が挙げられる。なお、架橋剤は、単独でも二種以上併用してもよい。また、架橋剤の使用量は、通常、ポリオレフィン系樹脂粒子(マイクロペレット)100重量部に対して0.05~1.0重量部が好ましい。
 架橋剤を添加する方法としては、例えば、ポリオレフィン系樹脂粒子に直接添加する方法、溶剤、可塑剤又はスチレン系モノマーに架橋剤を溶解させた上で添加する方法、架橋剤を水に分散させた上で添加する方法等が挙げられる。この内、スチレン系モノマーに架橋剤を溶解させた上で添加する方法が好ましい。
 上記方法により改質樹脂粒子が得られる。
 (発泡性複合樹脂粒子の保存方法)
 発泡性複合樹脂粒子は、予備発泡に付されるまで、冷凍保存される。この冷凍保存は、例えば、-5℃以下の温度下での容器内での保存であることが好ましく、-15℃以下の温度下での容器内での保存であることがより好ましい。容器は、設定された温度を長期間保持できさえすれば、その形状や材質は特に限定されない。発泡性複合樹脂粒子は、発泡能力保持時間を延ばすために、予備発泡機の容量に応じた量に小分けされて、冷凍保存されていることが好ましい。
 (冷凍保存発泡性複合樹脂粒子)
 冷凍保存発泡性複合樹脂粒子は、ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂粒子中に7.5~11重量%のペンタンを主成分とする揮発性発泡剤を含み、前記複合樹脂粒子の表面に付着した0.5~1.5重量%の水分を有し、-5℃以下に設定された容器内で保存された粒子である。
 より好ましい発泡剤の含有量は、8.5~10.0重量%の範囲である。例えば、8.7重量%、8.9重量%、9.1重量%、9.3重量%、9.5重量%、9.7重量%又は9.9重量%の発泡剤含有量に設定できる。
 好ましい水分量は、0.6~1.2重量%である。例えば、0.7重量%、0.8重量%、0.9重量%、1.0重量%又は1.1重量%の水分量に設定できる。なお、冷凍保存発泡性複合樹脂粒子は、それを構成する表面に付着する水分の量が、冷凍保存用発泡性複合樹脂粒子を構成する表面に付着する水分の量の10%未満の減少幅となるように、冷凍保存されていることが好ましい。
 上記粒子は、粒子同士の結着が抑制されているため、予備発泡時の作業性が良好である。また、上記粒子は、発泡剤の抜けが抑制されているため、発泡能力保持時間が長く保たれている。
 (発泡成形体)
 発泡性複合樹脂粒子は、必要に応じて、水蒸気等の加熱媒体を用いて加熱して所定の嵩密度に予備発泡させることで、予備発泡粒子を得ることができる。
 本発明では、冷凍による発泡性複合樹脂粒子同士の結着が抑制されているため、作業性よく予備発泡可能である。
 予備発泡粒子は、嵩倍数5~70倍(嵩密度0.014~0.2g/cm3)を有していることが好ましい。より好ましい嵩倍数は10~60倍である。嵩倍数が70倍より大きいと、予備発泡粒子の独立気泡率が低下して、予備発泡粒子を発泡させて得られる発泡成形体の強度が低下することがある。一方、5倍より小さいと、予備発泡粒子を発泡させて得られる発泡成形体の重量が増加することがある。
 次に、予備発泡粒子を成形機の型内に充填し、加熱して二次発泡させ、予備発泡粒子同士を融着一体化させることによって所望形状を有する発泡成形体を得ることができる。上記成形機としては、ポリスチレン系樹脂予備発泡粒子から発泡成形体を製造する際に用いられるEPS成形機等を用いることができる。
 (発泡成形体の用途)
 得られた発泡成形体は、家電製品等の緩衝材(クッション材)、電子部品、各種工業資材、食品等の搬送容器等の用途に用いることができる。車輌用バンパーの芯材、ドア内装緩衝材等の衝撃エネルギー吸収材として好適に用いることもできる。
 以下、実施例を挙げて更に説明するが、本発明はこれら実施例によって限定されるものではない。
 <平均粒子径>
 平均粒子径とはD50で表現される値である。具体的には、ふるい目開き4.00mm、目開き3.35mm、目開き2.80mm、目開き2.36mm、目開き2.00mm、目開き1.70mm、目開き1.40mm、目開き1.18mm、目開き1.00mm、目開き0.85mm、目開き0.71mm、目開き0.60mm、目開き0.50mm、目開き0.425mm、目開き0.355mm、目開き0.300mm、目開き0.250mm、目開き0.212mm、目開き0.180mmのJIS標準ふるいで分級し、その結果から得られた累積重量分布曲線を元にして累積重量が50%となる粒子径(メディアン径)を本実施例における平均粒子径と称する。
 <複合樹脂粒子の内部水分量>
 複合樹脂粒子5gを200mlのメタノール(和光純薬社製、有機合成用、純分99.8%、水分50ppm以下)中に浸漬し、約1分間攪拌して表面の付着水分を除去する。その後、真空濾過装置にて複合樹脂粒子とメタノールを分離し、5分間風乾させる。得られた複合樹脂粒子を0.1mgまで秤量可能な秤で約0.5g精秤する。精秤した粒子から、微量水分測定装置(平沼産業社製AQ-2100)と自動加熱水分気化装置(平沼産業社製EV-2010)を使用し、150℃の加熱炉法で発生した全水分量をカールフィッシャー滴定法により測定する。測定値を内部水分量とする。
 測定条件
測定環境:室温23±2℃、湿度40±10%
気化温度:150℃
キャリアガス(流量):窒素(100mL/min)
試験数:3
試料量:約0.5g
ブランク水分量は、試料容器中の空気の水分と容器側面付着水分の合計量とする。
 <発泡性複合樹脂粒子の水分量>
 まず、発泡性複合樹脂粒子の全水分量、即ち内部水分量と表面付着水分量の合計量を測定する。方法は、粒子を0.1mgまで秤量可能な秤で約0.5g精秤する。精秤した粒子から、微量水分測定装置(平沼産業社製AQ-2100)と自動加熱水分気化装置(平沼産業社製EV-2010)を使用し、150℃の加熱炉法で発生した全水分量をカールフィッシャー滴定法にて測定する。
 測定条件
測定環境:室温23±2℃、湿度40±10%
気化温度:150℃
キャリアガス(流量):窒素(100mL/min)
試験数:3
試料量:約0.5g
ブランク水分量は、試料容器中の空気の水分と容器側面付着水分の合計量とする。
 次に、発泡性複合樹脂粒子の内部水分量を測定する。方法は、発泡性複合樹脂粒子5gを200mlのメタノール(和光純薬社製、有機合成用、純分99.8%、水分50ppm以下)中に浸漬し、約1分間撹拌して表面の付着水分を除去する。その後、真空濾過装置にて粒子とメタノールを分離し、5分間風乾させる。得られた粒子を0.1mgまで秤量可能な秤で約0.5g精秤する。精秤した粒子から、微量水分測定装置(平沼産業社製AQ-2100)と自動加熱水分気化装置(平沼産業社製EV-2010)を使用し、150℃の加熱炉法で発生した全水分量をカールフィッシャー滴定法にて測定する。
 測定条件
測定環境:室温23±2℃、湿度40±10%
気化温度:150℃
キャリアガス(流量):窒素(100mL/min)
試験数:3
試料量:約0.5g
ブランク水分量は、試料容器中の空気の水分と容器側面付着水分の合計量とする。
 測定した全水分量から内部水分量を差し引いた値を、表面付着水分量とする。
 <発泡剤含有量>
 発泡性複合樹脂粒子を5~20mg精秤し測定試料とする。この測定試料を180~200℃に保持された熱分解炉(島津製作所社製PYR-1A)にセットし測定試料を密閉後、120秒間に亘って加熱して発泡剤成分を放出させる。この放出された発泡剤成分をガスクロマトグラフ(島津製作所社製:GC-14B、検出器:FID)を用いて発泡剤成分のチャートを得る。予め測定しておいた、発泡剤成分の検量線に基づいて、得られたチャートから発泡性複合樹脂粒子中の発泡剤含有量(含有ガス量:重量%)を算出する。
 <保湿剤付着量>
 表面保湿剤付着量測定用試料液は、試料10gを100mlガラス瓶に精秤してHPLC用メタノールをホールピペットで40mL計量し、注加スターラーバーで30分撹拌後の上澄み液を水系/非水系(兼用)0.2μmクロマトディスクで濾過した液を使用する。
 測定条件は、
カラム:TOSOH製 TSKgel ODS-80TS QA 4.6*150
カラム温度:40℃
移動相:HPLC用メタノール
流量:0.7mL/min
ポンプ温度:室温
注入量:50μL
検出:蒸発光散乱
とする。また、予め保湿剤を用いて検量線を引いておく(実施例では、日油社製の検量線用標準ポリエチレングリコール(商品名PEG♯300)を使用する)。
 検量線より得られた測定用試料液中の保湿剤濃度から試料表面に付着する保湿剤量を算出する。また、保湿剤の濃度測定使用検出器は、蒸発光散乱検出器(Altech製 ELSD-2000)を使用し、装置条件はDrift Tube temp.:60℃、GAS Flow:1.6mL/min、GAIN=1(impactor=off)である。
 <発泡性評価>
(1)ポリオレフィン系樹脂が、ポリエチレン系樹脂の場合
 約2gの発泡性複合樹脂粒子の重量(a)を小数点以下2位まで精秤し、これを0.07MPaの水蒸気にて所定の時間(2分又は3分)加熱する。得られた予備発泡粒子を最小メモリ単位が5cm3である500cm3メスシリンダーに入れ、これにメスシリンダーの口径よりやや小さい円形の樹脂板であって、その中心に幅約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具をあてて、予備発泡粒子の体積(b)を読み取り、式(b)/(a)により予備発泡粒子の嵩倍数を求める。この嵩倍数を所定の加熱時間での発泡性複合樹脂粒子の発泡性とする。
 この時の発泡性が40倍以上であれば発泡性複合樹脂粒子が実使用上十分な発泡能力を保持していると判断し(判定:○)、40倍未満であれば発泡性複合樹脂粒子が実使用に耐えるだけの発泡能力を保持していないと判断する(判定:×)。
 両者の発泡性の差が7.5倍以下であれば発泡性複合樹脂粒子が実使用上非常に良好な発泡能力を維持していると判断し(判定:◎)、更に両者の発泡性の差が7.5倍を超え10倍以下であれば、発泡性複合樹脂粒子が実使用上十分な発泡能力を維持していると判断し(判定:○)、両者の発泡性の差が10倍を超えるときは発泡性複合樹脂粒子が実使用に耐えるだけの期間発泡能力を維持していないと判断する(判定:×)。
(2)ポリオレフィン系樹脂が、ポリプロピレン系樹脂の場合(実施例11~13)
 水蒸気での加熱を0.15MPaの圧力で2分間に変更すること以外は、上記(1)の場合と同様とする。
 <凍結状態評価>
 冷凍保存した発泡性複合樹脂粒子約1000gを、ふるい目開き2.80mmのJIS標準ふるいのふるい網上に載せる。次いで、ふるいを水平方向に約15cm移動させた後に元の位置まで戻す動作を1往復として、約10秒間を目途にふるいを10往復させて発泡性複合樹脂粒子を分級する。ふるい網上に発泡性複合樹脂粒子が残留していなければ発泡性複合樹脂粒子同士が凍結により結着していないと判断し(判定:◎)、更にふるい網上の発泡性複合樹脂粒子の残留量が50g未満であれば実使用上不都合が生じないと判断し(判定:○)、発泡性複合樹脂粒子が50gを超えて残留していれば発泡性複合樹脂粒子同士の凍結による結着が多く、実使用上作業面で非常な不都合が生じると判断する(判定:×)。
 <予備発泡粒子の製造方法>
 冷凍庫(-25℃に設定)に168時間保管した後、室温25℃、湿度50%の環境下に1時間放置した後、以下の条件で予備発泡させる。
 スチームで予熱した常圧予備発泡機(機内容積50L)に発泡性樹脂粒子を500~2000g投入し、攪拌しながら約0.02MPaの設定までスチームを導入しつつ、空気も供給して、約2~3分間で所定の嵩密度(嵩倍数)まで発泡させる。
 <予備発泡粒子の嵩密度及び嵩倍数>
 約5gの予備発泡粒子の重量(a)を小数以下2位で秤量する。次に、最小メモリ単位が5cm3である500cm3メスシリンダーに秤量した予備発泡粒子を入れる。この予備発泡粒子に、メスシリンダーの口径よりやや小さい円形の樹脂板であって、その中心に巾約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具をあてる。この状態で、予備発泡粒子の体積(b)を読み取り、式(a)/(b)により予備発泡粒子の嵩密度(g/cm3)を求める。なお、嵩倍数は嵩密度の逆数、すなわち式(b)/(a)とする。
 <予備発泡粒子の気泡バラツキ評価方法>
 ASTM D2842-69の試験方法に準拠し、以下のように予備発泡粒子の平均気泡径を測定する。
 嵩倍数30倍又は50倍に予備発泡し、この予備発泡粒子を任意に30個採取する。それぞれ剃刀により表面から中心を通って2分割し、2分割した切片の断面を走査型電子顕微鏡(日立製作所社製S-3000N)で15~30倍(場合により200倍)に拡大して撮影する。
 撮影した画像をA4用紙上に1画像ずつ印刷し、中心を通る直線2本を直交するように引き、この直線の長さと直線上の気泡数を計測する(直線に接している気泡も計測する)。
 上記の結果から下記式により気泡の平均弦長(t)を算出する。但し、任意の直線はできる限り気泡が接点でのみ接しないようにする(接してしまう場合は気泡数に含める)。
   平均弦長t=線長/(気泡数×写真の倍率)
 そして、次式により気泡径を算出する。
   気泡径d=t/0.616
 更に、それらの算術平均を平均気泡径とする。
平均気泡径D(mm)=(気泡径n=1+気泡径n=2+・・・+気泡径n=30)/30
 次に、平均気泡径(D)と気泡径のバラツキを表す標準偏差(s)との比(U)(U=s/D)を算出し、これを気泡バラツキ度合とする。
 <発泡成形体の落球衝撃値>
 JIS K7211:1976「硬質プラスチックの落錘衝撃試験方法通則」に記載の方法に準拠して落球衝撃強度を測定する。
 発泡性複合樹脂粒子から嵩倍数が40倍となるように、発泡成形体を得る。得られた発泡成形体を温度50℃で1日間乾燥した後、この発泡成形体から40mm×215mm×20mm(厚さ)の試験片(6面とも表皮なし)を切り出す。
 次いで、支点間の間隔が150mmになるように試験片の両端をクランプで固定し、重さ321gの剛球を所定の高さから試験片の中央部に落下させて、試験片の破壊の有無を観察する。
 試験片5個が全数破壊する最低の高さから全数破壊しない最高の高さまで5cm間隔で剛球の落下高さ(試験高さ)を変えて試験して、落球衝撃値(cm)、すなわち50%破壊高さを次の計算式により算出する。
  H50=Hi+d[Σ(i・ni)/N±0.5]
 式中の記号は次のことを意味する。
  H50 :50%破壊高さ(cm)
  Hi  :高さ水準(i)が0のときの試験高さ(cm)であり、試験片が破壊することが予測される高さ
  d   :試験高さを上下させるときの高さ間隔(cm)
  i   :Hiのときを0とし,1つずつ増減する高さ水準(i=…-3、-2、-1、0、1、2、3…)
  ni  :各水準において破壊した(または破壊しなかった)試験片の数で、いずれか多いほうのデータを使用(同数の場合はどちらを使用してもよい)
  N   :破壊した(または破壊しなかった)試験片の総数(N=Σni)で、いずれか多いほうのデータを使用(同数の場合はどちらを使用してもよい)
  ±0.5:破壊したデータを使用するときは負の数、破壊しなかったデータを使用するときは正の数を採用
 得られた落球衝撃値を次の基準で評価する。落球衝撃値が大きいほど発泡成形体の耐衝撃性が大きいことを示す。
 実施例1
 a)ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=30/70のポリエチレン改質スチレン系樹脂粒子の製造
 エチレン・酢酸ビニル共重合体樹脂粒子(EVA、日本ポリエチレン社製、LV-115)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(エチレン・酢酸ビニル共重合体樹脂粒子は100粒あたり80mgに調整した)。このエチレン・酢酸ビニル共重合体樹脂粒子10.5kgを攪拌機付100Lオートクレーブに入れた。この後、水性媒体としての純水45kg、ピロリン酸マグネシウム315g、ドデシルベンゼンスルホン酸ソーダ1.6gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド5.4gを溶解させたスチレンモノマー4.5kgを30分かけて滴下した。滴下後、30分60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後130℃に昇温し、この温度で1時間45分攪拌を続けた。その後、90℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ11.4gを加えた。この後、重合開始剤としてベンゾイルパーオキサイド39.2g、t-ブチルパーオキシベンゾエート4.9gと架橋剤としてのジクミルパーオキサイド98.7gを溶解したスチレンモノマー6.2kgを2時間かけて滴下した。次いで、エチレンビスステアリン酸アミド175gを溶解したスチレンモノマー13.8kgを2時間かけて滴下した。滴下終了後、90℃で1時間保持し、次いで、143℃に昇温し、その温度で2時間保持して重合を完結させた。その後、常温まで冷却し、ポリエチレン改質スチレン系樹脂粒子(平均粒子径1.61mm)を取り出した。
 なお、スチレンモノマーは、エチレン・酢酸ビニル共重合体樹脂粒子100重量部に対して、233重量部使用した。
 b)内部水分量の調整
 上記の様にして得られたポリエチレン改質スチレン系樹脂粒子をバスケット型遠心分離機で脱水し、脱水したポリエチレン改質スチレン系樹脂粒子を常温で円筒型乾燥機にて45分間空気を流すことで乾燥した。このようにして得たポリエチレン改質スチレン系樹脂粒子は0.288重量%の内部水分量を有した。
 c)発泡剤の含浸(湿式含浸法)
上記の様にして得られたポリエチレン改質スチレン系樹脂粒子2kgを撹拌機付5Lオートクレーブに入れた。この後、水性媒体として純水2kg、ドデシルベンゼンスルホン酸ソーダ2g、ポリオキシエチレンラウリルアミン0.6gを加え、撹拌して水性媒体中に懸濁させ、10分間保持後、60℃に昇温した。次いで、i-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)240gを加えた。その後、この温度で3時間撹拌を続けた。その後、常温まで冷却し、粒子を取出した。
 d)表面付着水分量の調整
 上記の様にして得られた発泡性複合樹脂粒子をバスケット型遠心分離機にて1分間脱水することで表1に示す表面付着水分量に調整した(同時に、発泡性複合樹脂粒子の内部水分量も調整した)。発泡性複合樹脂粒子に重量平均分子量300のポリエチレングリコール(日油社製、商品名PEG♯300)を0.05重量%添加し、均一に混合した。
 発泡性複合樹脂粒子を室温25℃、湿度50%の環境下に保管し、発泡能力の経時変化を評価した。評価結果を表1に示す。
 e)保管
 発泡性複合樹脂粒子約1000gを2Lアルミ製密閉容器に充填し、-25℃に設定した冷凍庫で168時間保存した。
 冷凍保存した発泡性複合樹脂粒子を開封し、前記の凍結状態評価方法により評価した。評価結果を表1に示す。
 f)予備発泡
 上記の様に保管後、2Lアルミ性密閉容器に充填した状態で発泡性複合樹脂粒子を室温25℃、湿度50%の環境下に1時間放置した後、前記の予備発泡条件下、発泡性複合樹脂粒子を嵩倍数50倍を狙って予備発泡させることで、嵩倍数50倍の予備発泡粒子を得た。
 得られた予備発泡粒子を前記の予備発泡粒子の気泡バラツキ評価方法により評価した。評価結果を表4に示す。
 実施例2
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整は実施例1のa)、b)と同様にして、発泡剤の含浸はi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)を260g用いたこと以外は実施例1のc)と同様にして、表面付着水分量の調整は脱水時間を5分間としたこと以外は実施例1のd)と同様にして、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のe)及びf)と同様にして行った。
 各種評価結果を表1に示す。
 実施例3
 a)ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=40/60のポリエチレン改質スチレン系樹脂粒子の製造
 エチレン・酢酸ビニル共重合体樹脂粒子(日本ポリエチレン社製、LV-115)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(エチレン・酢酸ビニル共重合体樹脂粒子は100粒あたり80mgに調整した)。このエチレン・酢酸ビニル共重合体樹脂粒子14kgを攪拌機付100Lオートクレーブに入れた。この後、水性媒体としての純水45kg、ピロリン酸マグネシウム315g、ドデシルベンゼンスルホン酸ソーダ1.6gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド7.2gを溶解させたスチレンモノマー6.0kgを30分かけて滴下した。滴下後、30分60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後130℃に昇温し、この温度で2時間攪拌を続けた。その後、90℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ11.4gを加えた。この後、重合開始剤としてベンゾイルパーオキサイド39.9g、t-ブチルパーオキシベンゾエート3.2gと架橋剤としてのジクミルパーオキサイド102.2gを溶解したスチレンモノマー5kgを1.5時間かけて滴下した。次いで、エチレンビスステアリン酸アミド105gを溶解したスチレンモノマー10kgを1.5時間かけて滴下した。滴下終了後、90℃で1時間保持し、次いで、143℃に昇温し、その温度で2.5時間保持して重合を完結させた。その後、常温まで冷却し、ポリエチレン改質スチレン系樹脂粒子(平均粒子径1.55mm)を取り出した。
 なお、スチレンモノマーは、エチレン・酢酸ビニル共重合体樹脂粒子100重量部に対して、150重量部使用した。
 内部水分量の調整は30分間空気を流すことで乾燥したこと以外は実施例1のb)と同様にした。このようにして得たポリエチレン改質スチレン系樹脂粒子は0.381重量%の内部水分量を有した。発泡剤の含浸は水性媒体の温度を50℃とし、i-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)を280g用いたこと以外は実施例1のc)と同様にして、表面付着水分量の調整、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のd)、e)及びf)と同様にして行った。
 各種評価結果を表1に示す。
 実施例4
 a)ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=20/80のポリエチレン改質スチレン系樹脂粒子の製造
 直鎖状低密度ポリエチレン樹脂粒子(LLDPE、日本ポリエチレン社製NF-444A)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(直鎖状低密度ポリエチレン樹脂粒子は100粒あたり40mgに調整した)。この直鎖状低密度ポリエチレン樹脂粒子7.0kgを攪拌機付100Lオートクレーブに入れた。この後、水性媒体として純水40kg、ピロリン酸マグネシウム315g、ドデシルベンゼンスルホン酸ソーダ1.6gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド8.75gを溶解させたスチレンモノマー3.5kgを30分滴下した。滴下後30分保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後135℃に昇温し、この温度で2時間攪拌を続けた。
 その後、110℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ11.4gを加えた。この後、重合開始剤としてt-ブチルパーオキシベンゾエート98gを溶解したスチレンモノマー24.5kgを4時間かけて滴下した。次いで、エチレンビスステアリン酸アミド350g、ドデシルベンゼンスルホン酸ソーダ3g、純水5kgの分散液を30分間滴下した。
 滴下終了後、110℃で1時間保持した後に140℃に昇温し3時間保持して重合を完結した。その後、常温まで冷却し、ポリエチレン改質スチレン系樹脂粒子(平均粒子径1.33mm)を取り出した。
 なお、スチレンモノマーは、直鎖状低密度ポリエチレン100重量部に対して400重量部使用した。
 内部水分量の調整は60分間空気を流すことで乾燥したこと以外は実施例1のb)と同様にした。このようにして得たポリエチレン改質スチレン系樹脂粒子は0.178重量%の内部水分量を有した。発泡剤の含浸は水性媒体の温度を70℃としたこと以外は実施例1のc)と同様にして、表面付着水分量の調整は脱水時間を5分間としたこと以外は実施例1のd)と同様にして、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のe)及びf)と同様にして行った。
 各種評価結果を表1に示す。
 実施例5
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整は実施例4のa)、b)と同様にして行った。
 c)及びd)発泡剤の含浸(乾式含浸)及び表面付着水分量の調整
 上記の様にして得られたポリエチレン改質スチレン系樹脂粒子15kgとポリオキシエチレンラウリルアミン4.5g、ポリエチレングリコール(日油社製商品名PEG♯300)7.5g、純水150gを内容積50Lの耐圧回転混合機に入れ、回転させ、10分間保持後、70℃に昇温した。次いで、この温度で回転させながらi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)を1800g加えた。この温度で3時間回転を続けることで、発泡剤の含浸と表面付着水分量の調整を行った。その後、常温まで冷却し、粒子を取出した。
 この発泡性複合樹脂粒子を室温25℃、湿度50%の環境下に保管し、発泡能力の経時変化を評価した。評価結果を表1に示す。
 発泡性複合樹脂粒子の保管及び予備発泡は実施例1のe)及びf)と同様にして行った。
 各種評価結果を表1に示す。
 実施例6
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整は実施例4のa)、b)と同様にして、発泡剤の含浸(乾式含浸)及び表面付着水分量の調整は純水300gとし、n-ペンタン/i-ペンタン=75/25~85/15のペンタン(ガス種b:コスモ石油社製、製品名ペンタン)を1800g用いたこと以外は実施例5のc)及びd)と同様にして、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のe)及びf)と同様にして行った。
 各種評価結果を表1に示す。
 実施例7
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整は実施例4のa)、b)と同様にして、発泡剤の含浸(乾式含浸)及び表面付着水分量の調整はポリエチレングリコール(日油社製商品名PEG♯300)を使用しなかったこと以外は実施例6のc)及びd)と同様にして、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のe)及びf)と同様にして行った。
 各種評価結果を表1に示す。
 実施例8
 ポリエチレン改質スチレン系樹脂粒子の製造は実施例1のa)と同様にして、内部水分量の調整は5時間空気を流すことで乾燥したこと以外は実施例1のb)と同様にした。このようにして得たポリエチレン改質スチレン系樹脂粒子は0.018重量%の内部水分量を有した。発泡剤の含浸はi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)を280g用いたこと以外は実施例1のc)と同様にして、表面付着水分量の調整、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のd)、e)及びf)と同様にして行った。
 各種評価結果を表1及び表4に示す。
 実施例9
 a)ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=20/80のポリエチレン改質スチレン系樹脂粒子の製造
 高密度ポリエチレン樹脂粒子(HDPE、東ソー社製、製品名09S53B)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(高密度ポリエチレン樹脂粒子は100粒あたり20mgに調整した)。この高密度ポリエチレン樹脂粒子7.7kgを攪拌機付100Lオートクレーブに入れた。この後、水性媒体としての純水45kg、ピロリン酸マグネシウム315g、ドデシルベンゼンスルホン酸ソーダ6.0gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド5.0gを溶解させたスチレンモノマー2.5kgを30分かけて滴下した。滴下後、30分60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後130℃に昇温し、この温度で2時間00分攪拌を続けた。その後、120℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ42.2gを加えた。この後、重合開始剤としてジクミルパーオキサイド82.0gを溶解したスチレンモノマー19.4kgを4時間かけて滴下した。次いで、エチレンビスステアリン酸アミド262.5gを溶解したスチレンモノマー4.9kgを1時間かけて滴下した。滴下終了後、120℃で1時間保持し、次いで、140℃に昇温し、その温度で3時間保持して重合を完結させた。その後、常温まで冷却し、ポリエチレン改質スチレン系樹脂粒子(平均粒子径1.22mm)を取り出した。
 なお、スチレンモノマーは、高密度ポリエチレン樹脂粒子100重量部に対して、400重量部使用した。
 b)内部水分量の調整
 上記の様にして得られたポリエチレン改質スチレン系樹脂粒子をバスケット型遠心分離機で脱水し、脱水したポリエチレン改質スチレン系樹脂粒子を常温で円筒型乾燥機にて30分間空気を流すことで乾燥した。このようにして得たポリエチレン改質スチレン系樹脂粒子は0.486重量%の内部水分量を有した。
 c)発泡剤の含浸(湿式含浸法)
上記の様にして得られたポリエチレン改質スチレン系樹脂粒子2kgを撹拌機付5Lオートクレーブに入れた。この後、水性媒体として純水2kg、ドデシルベンゼンスルホン酸ソーダ2g、ポリオキシエチレンラウリルアミン0.6gを加え、撹拌して水性媒体中に懸濁させ、10分間保持後、70℃に昇温した。次いで、i-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)340gを加えた。その後、この温度で3時間撹拌を続けた。その後、常温まで冷却し、粒子を取出した。
 d)表面付着水分量の調整
 上記の様にして得られた発泡性複合樹脂粒子をバスケット型遠心分離機にて1分間脱水することで表1に示す表面付着水分量に調整した(同時に、発泡性複合樹脂粒子の内部水分量も調整した)。発泡性複合樹脂粒子に重量平均分子量300のポリエチレングリコール(日油社製、商品名PEG♯300)を0.05重量%添加し、均一に混合した。
 発泡性複合樹脂粒子を室温25℃、湿度50%の環境下に保管し、発泡能力の経時変化を評価した。評価結果を表1に示す。
 e)保管
 発泡性複合樹脂粒子約1000gを2Lアルミ製密閉容器に充填し、-25℃に設定した冷凍庫で168時間保存した。
 冷凍保存した発泡性複合樹脂粒子を開封し、前記の凍結状態評価方法により評価した。評価結果を表1に示す。
 f)予備発泡
 上記の様に保管後、2Lアルミ性密閉容器に充填した状態で発泡性複合樹脂粒子を室温25℃、湿度50%の環境下に1時間放置した後、前記の予備発泡条件下、発泡性複合樹脂粒子を嵩倍数50倍を狙って予備発泡させることで、嵩倍数50倍の予備発泡粒子を得た。
 各種評価結果を表1に示す。
 実施例10
 a)ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=30/70のポリエチレン改質スチレン系樹脂粒子の製造
 高密度ポリエチレン樹脂粒子(東ソー社製、製品名09S53B)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(高密度ポリエチレン樹脂粒子は100粒あたり20mgに調整した)。この高密度ポリエチレン樹脂粒子10.5kgを攪拌機付100Lオートクレーブに入れた。この後、水性媒体としての純水45kg、ピロリン酸マグネシウム315g、ドデシルベンゼンスルホン酸ソーダ6.0gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド7.0gを溶解させたスチレンモノマー3.5kgを30分かけて滴下した。滴下後、30分60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後130℃に昇温し、この温度で2時間00分攪拌を続けた。その後、120℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ42.2gを加えた。この後、重合開始剤としてジクミルパーオキサイド73.5gを溶解したスチレンモノマー15.8kgを3時間30分かけて滴下した。次いで、エチレンビスステアリン酸アミド262.5gを溶解したスチレンモノマー4.5kgを1時間かけて滴下した。滴下終了後、120℃で1時間保持し、次いで、140℃に昇温し、その温度で3時間保持して重合を完結させた。その後、常温まで冷却し、ポリエチレン改質スチレン系樹脂粒子(平均粒子径1.05mm)を取り出した。
 なお、スチレンモノマーは、高密度ポリエチレン樹脂粒子100重量部に対して、233重量部使用した。
 b)内部水分量の調整
 上記の様にして得られたポリエチレン改質スチレン系樹脂粒子をバスケット型遠心分離機で脱水し、脱水したポリエチレン改質スチレン系樹脂粒子を常温で円筒型乾燥機にて30分間空気を流すことで乾燥した。このようにして得たポリエチレン改質スチレン系樹脂粒子は0.281重量%の内部水分量を有した。
 c)発泡剤の含浸(湿式含浸法)
上記の様にして得られたポリエチレン改質スチレン系樹脂粒子2kgを撹拌機付5Lオートクレーブに入れた。この後、水性媒体として純水2kg、ドデシルベンゼンスルホン酸ソーダ2g、ポリオキシエチレンラウリルアミン0.6gを加え、撹拌して水性媒体中に懸濁させ、10分間保持後、70℃に昇温した。次いで、i-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)340gを加えた。その後、この温度で3時間撹拌を続けた。その後、常温まで冷却し、粒子を取出した。
 d)表面付着水分量の調整
 上記の様にして得られた発泡性複合樹脂粒子をバスケット型遠心分離機にて1分間脱水することで表1に示す表面付着水分量に調整した(同時に、発泡性複合樹脂粒子の内部水分量も調整した)。発泡性複合樹脂粒子に重量平均分子量300のポリエチレングリコール(日油社製、商品名PEG♯300)を0.05重量%添加し、均一に混合した。
 発泡性複合樹脂粒子を室温25℃、湿度50%の環境下に保管し、発泡能力の経時変化を評価した。評価結果を表1に示す。
 e)保管
 発泡性複合樹脂粒子約1000gを2Lアルミ製密閉容器に充填し、-25℃に設定した冷凍庫で168時間保存した。
 冷凍保存した発泡性複合樹脂粒子を開封し、前記の凍結状態評価方法により評価した。評価結果を表1に示す。
 f)予備発泡
 上記の様に保管後、2Lアルミ性密閉容器に充填した状態で発泡性複合樹脂粒子を室温25℃、湿度50%の環境下に1時間放置した後、前記の予備発泡条件下、発泡性複合樹脂粒子を嵩倍数50倍を狙って予備発泡させることで、嵩倍数50倍の予備発泡粒子を得た。
 各種評価結果を表1に示す。
 実施例11
 a)ポリプロピレン系樹脂(PP)/ポリスチレン系樹脂(PS)=40/60のポリプロピレン改質スチレン系樹脂粒子の製造
 ポリプロピレン樹脂粒子(プライムポリマー社製、製品名F-744NP)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(ポリプロピレン樹脂粒子は100粒あたり60mgに調整した)。このポリプロピレン樹脂粒子14.0kgを攪拌機付100Lオートクレーブに入れた。この後、水性媒体としての純水41kg、ピロリン酸マグネシウム400g、ドデシルベンゼンスルホン酸ソーダ4.0gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド14gを溶解させたスチレンモノマー7.0kgを30分かけて滴下した。滴下後、30分60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後140℃に昇温し、この温度で2時間攪拌を続けた。その後、125℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ56gを加えた。この後、重合開始剤としてジクミルパーオキサイド63gを溶解したスチレンモノマー14kgを4時間30分かけて滴下した。次いで、エチレンビスステアリン酸アミド315g、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ4.0gを分散させた純水4kgを30分かけて滴下した。滴下終了後、125℃で1時間保持し、次いで、140℃に昇温し、その温度で3時間保持して重合を完結させた。その後、常温まで冷却し、ポリプロピレン改質スチレン系樹脂粒子(平均粒子径1.37mm)を取り出した。
 なお、スチレンモノマーは、ポリプロピレン樹脂粒子100重量部に対して、150重量部使用した。
 b)内部水分量の調整
 上記の様にして得られたポリプロピレン改質スチレン系樹脂粒子をバスケット型遠心分離機で脱水し、脱水したポリプロピレン改質スチレン系樹脂粒子を常温で円筒型乾燥機にて45分間空気を流すことで乾燥した。このようにして得たポリプロピレン改質スチレン系樹脂粒子は0.223重量%の内部水分量を有した。
 c)発泡剤の含浸(湿式含浸法)
上記の様にして得られたポリプロピレン改質スチレン系樹脂粒子2kgを撹拌機付5Lオートクレーブに入れた。この後、水性媒体として純水2kg、ドデシルベンゼンスルホン酸ソーダ2g、ポリオキシエチレンラウリルアミン0.6gを加え、撹拌して水性媒体中に懸濁させ、10分間保持後、60℃に昇温した。次いで、i-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)340gを加えた。その後、この温度で3時間撹拌を続けた。その後、常温まで冷却し、粒子を取出した。
 d)表面付着水分量の調整
 上記の様にして得られた発泡性複合樹脂粒子をバスケット型遠心分離機にて1分間脱水することで表1に示す表面付着水分量に調整した(同時に、発泡性複合樹脂粒子の内部水分量も調整した)。発泡性複合樹脂粒子に重量平均分子量300のポリエチレングリコール(日油社製、商品名PEG♯300)を0.05重量%添加し、均一に混合した。
 発泡性複合樹脂粒子を室温25℃、湿度50%の環境下に保管し、発泡能力の経時変化を評価した。評価結果を表2に示す。
 e)保管
 発泡性複合樹脂粒子約1000gを2Lアルミ製密閉容器に充填し、-25℃に設定した冷凍庫で168時間保存した。
 冷凍保存した発泡性複合樹脂粒子を開封し、前記の凍結状態評価方法により評価した。評価結果を表2に示す。
 f)予備発泡
 上記の様に保管後、2Lアルミ性密閉容器に充填した状態で発泡性複合樹脂粒子を室温25℃、湿度50%の環境下に1時間放置した後、以下の予備発泡条件下、発泡性複合樹脂粒子を嵩倍数40倍を狙って予備発泡させることで、嵩倍数40倍の予備発泡粒子を得た。
 なお、予備発泡粒子は、具体的には次の高圧下での発泡により得た。即ち、スチームで予熱した高圧予備発泡機(笠原工業社製PSX40、器内容積45L)に発泡性複合樹脂粒子500~1000gを投入した。投入した粒子を攪拌しながらゲージ圧力約0.05MPaの設定までスチームを導入し、約2~3分間で所定の嵩密度(嵩倍数)まで発泡させることで、予備発泡粒子を得た。
 各種評価結果を表2に示す。
 実施例12
 a)ポリプロピレン系樹脂(PP)/ポリスチレン系樹脂(PS)=30/70のポリプロピレン改質スチレン系樹脂粒子の製造
 ポリプロピレン樹脂粒子(プライムポリマー社製、製品名F-744NP)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(ポリプロピレン樹脂粒子は100粒あたり60mgに調整した)。このポリプロピレン樹脂粒子10.5kgを攪拌機付100Lオートクレーブに入れた。この後、水性媒体としての純水41kg、ピロリン酸マグネシウム400g、ドデシルベンゼンスルホン酸ソーダ4.0gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド10gを溶解させたスチレンモノマー5.0kgを30分かけて滴下した。滴下後、30分60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後140℃に昇温し、この温度で2時間攪拌を続けた。その後、125℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ56gを加えた。この後、重合開始剤としてジクミルパーオキサイド73.5gを溶解したスチレンモノマー19.5kgを6時間かけて滴下した。次いで、エチレンビスステアリン酸アミド350g、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ4.0gを分散させた純水4kgを30分かけて滴下した。滴下終了後、125℃で1時間保持し、次いで、140℃に昇温し、その温度で3時間保持して重合を完結させた。その後、常温まで冷却し、ポリプロピレン改質スチレン系樹脂粒子(平均粒子径1.41mm)を取り出した。
 なお、スチレンモノマーは、ポリプロピレン樹脂粒子100重量部に対して、233重量部使用した。
 内部水分量の調整は30分間空気を流すことで乾燥したこと以外は実施例11のb)と同様にした。このようにして得たポリプロピレン改質スチレン系樹脂粒子は0.370重量%の内部水分量を有した。発泡剤の含浸は水性媒体の温度を50℃とし、i-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)を340g用いたこと以外は実施例11のc)と同様にして、表面付着水分量の調整、発泡性複合樹脂粒子の保管及び予備発泡は実施例11のd)、e)及びf)と同様にして行った。
 各種評価結果を表2に示す。
 実施例13
 a)カーボン含有ポリプロピレン系樹脂(PP)/ポリスチレン系樹脂(PS)=40/60のカーボン含有ポリプロピレン改質スチレン系樹脂粒子の製造
 ポリプロピレン樹脂粒子(プライムポリマー社製、製品名F-744NP)26.7kgと、ファーネスブラック45重量%含有マスターバッチ(大日精化工業社製、商品名「PP-RM10H381」)3.34kgとを混合し、この混合物を押出機にて加熱混合して水中カット方式により造粒ペレット化した(カーボン含有ポリプロピレン樹脂粒子は100粒あたり80mgに調整した)。このカーボン含有ポリプロピレン樹脂粒子14kgを攪拌機付100Lオートクレーブに入れた。この後、水性媒体としての純水41kg、ピロリン酸マグネシウム400g、ドデシルベンゼンスルホン酸ソーダ4gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド14gを溶解させたスチレンモノマー7.0kgを30分かけて滴下した。滴下後、30分60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後140℃に昇温し、この温度で2時間攪拌を続けた。その後、125℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ56gを加えた。この後、重合開始剤としてジクミルパーオキサイド63gを溶解したスチレンモノマー14kgを4時間かけて滴下した。次いで、エチレンビスステアリン酸アミド280g、ピロリン酸マグネシウム20g、ドデシルベンゼンスルホン酸ソーダ4.0gを分散させた純水4kgを30分かけて滴下した。滴下終了後、125℃で1時間保持し、次いで、140℃に昇温し、その温度で3時間保持して重合を完結させた。その後、常温まで冷却し、ポリプロピレン改質スチレン系樹脂粒子(平均粒子径1.48mm)を取り出した。
 なお、スチレンモノマーは、カーボン含有ポリプロピレン樹脂粒子100重量部に対して、150重量部使用した。
 b)内部水分量の調整
 上記の様にして得られたカーボン含有ポリプロピレン改質スチレン系樹脂粒子をバスケット型遠心分離機で脱水し、脱水したカーボン含有ポリプロピレン改質スチレン系樹脂粒子を常温で円筒型乾燥機にて45分間空気を流すことで乾燥した。このようにして得たカーボン含有ポリプロピレン改質スチレン系樹脂粒子は0.298重量%の内部水分量を有した。
 c)及びd)発泡剤の含浸(乾式含浸)及び表面付着水分量の調整
 上記の様にして得られたカーボン含有ポリプロピレン改質スチレン系樹脂粒子15kgとポリオキシエチレンラウリルアミン4.5g、ポリエチレングリコール(日油社製商品名PEG♯300)7.5g、純水150gを内容積50Lの耐圧回転混合機に入れ、回転させ、10分間保持後、70℃に昇温した。次いで、この温度で回転させながらi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)を2550g加えた。この温度で3時間回転を続けることで、発泡剤の含浸と表面付着水分量の調整を行った。その後、常温まで冷却し、粒子を取出した。
 この発泡性複合樹脂粒子を室温25℃、湿度50%の環境下に保管し、発泡能力の経時変化を評価した。評価結果を表2に示す。
 発泡性複合樹脂粒子の保管は、実施例1のe)と同様にして行った。予備発泡は実施例11のf)と同様にして行った。
 各種評価結果を表2に示す。
 実施例14
 a)ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=50/50のポリエチレン改質スチレン系樹脂粒子の製造
 エチレン・酢酸ビニル共重合体樹脂粒子(日本ポリエチレン社製、LV-115)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(エチレン・酢酸ビニル共重合体樹脂粒子は100粒あたり130mgに調整した)。このエチレン・酢酸ビニル共重合体樹脂粒子15kgを攪拌機付100Lオートクレーブに入れた。この後、水性媒体としての純水50kg、ピロリン酸マグネシウム270g、ドデシルベンゼンスルホン酸ソーダ1.25gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド7.8gを溶解させたスチレンモノマー6.5kgを30分かけて滴下した。滴下後、30分60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後130℃に昇温し、この温度で2時間攪拌を続けた。その後、90℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ10.75gを加えた。この後、重合開始剤としてベンゾイルパーオキサイド30g、t-ブチルパーオキシベンゾエート3gと架橋剤としてのジクミルパーオキサイド135gを溶解したスチレンモノマー2.8kgを1時間かけて滴下した。次いで、エチレンビスステアリン酸アミド90gを溶解したスチレンモノマー5.7kgを1時間かけて滴下した。滴下終了後、90℃で1時間保持し、次いで、143℃に昇温し、その温度で2.5時間保持して重合を完結させた。その後、常温まで冷却し、ポリエチレン改質スチレン系樹脂粒子(平均粒子径1.75mm)を取り出した。
 なお、スチレンモノマーは、エチレン・酢酸ビニル共重合体樹脂粒子100重量部に対して、100重量部使用した。
 内部水分量の調整は60分間空気を流すことで乾燥したこと以外は実施例1のb)と同様にした。このようにして得たポリエチレン改質スチレン系樹脂粒子は0.273重量%の内部水分量を有した。発泡剤の含浸は水性媒体の温度を70℃とし、i-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)を340g用いたこと以外は実施例1のc)と同様にして、表面付着水分量の調整、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のd)、e)及びf)と同様にして行った。
 各種評価結果を表2に示す。
 実施例15
 a)ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=10/90のポリエチレン改質スチレン系樹脂粒子の製造
 直鎖状低密度ポリエチレン樹脂粒子(日本ポリエチレン社製NF-444A)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(直鎖状低密度ポリエチレン樹脂粒子は100粒あたり40mgに調整した)。この直鎖状低密度ポリエチレン樹脂粒子3.5kgを攪拌機付100Lオートクレーブに入れた。この後、水性媒体として純水40kg、ピロリン酸マグネシウム315g、ドデシルベンゼンスルホン酸ソーダ1.6gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド3gを溶解させたスチレンモノマー1.5kgを30分滴下した。滴下後30分保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後135℃に昇温し、この温度で2時間攪拌を続けた。
 その後、110℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ11.4gを加えた。この後、重合開始剤としてt-ブチルパーオキシベンゾエート110gを溶解したスチレンモノマー30kgを6時間かけて滴下した。次いで、エチレンビスステアリン酸アミド350g、ドデシルベンゼンスルホン酸ソーダ3g、純水5kgの分散液を30分間滴下した。
 滴下終了後、110℃で1時間保持した後に140℃に昇温し3時間保持して重合を完結した。その後、常温まで冷却し、ポリエチレン改質スチレン系樹脂粒子(平均粒子径1.53mm)を取り出した。
 なお、スチレンモノマーは、直鎖状低密度ポリエチレン100重量部に対して900重量部使用した。
 内部水分量の調整は60分間空気を流すことで乾燥したこと以外は実施例1のb)と同様にした。このようにして得たポリエチレン改質スチレン系樹脂粒子は0.161重量%の内部水分量を有した。発泡剤の含浸は水性媒体の温度を70℃とし、i-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)を300g用いたこと以外は実施例1のc)と同様にして、表面付着水分量の調整は脱水時間を5分間としたこと以外は実施例1のd)と同様にして、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のe)及びf)と同様にして行った。
 各種評価結果を表2に示す。
 実施例16
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整は実施例1のa)、b)と同様にして、発泡剤の含浸はi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)を220g用いたこと以外は実施例1のc)と同様にして、発泡性複合樹脂粒子の表面付着水分量の調整,保管及び予備発泡は実施例1のd)、e)及びf)と同様にして行った。
 各種評価結果を表2及び4に示す。
 実施例17
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整は実施例1のa)、b)と同様にして、発泡剤の含浸はi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)を300g用いたこと以外は実施例1のc)と同様にして、発泡性複合樹脂粒子の表面付着水分量の調整,保管及び予備発泡は実施例1のd)、e)及びf)と同様にして行った。
 各種評価結果を表2及び4に示す。
 実施例18
 a)ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=30/70のポリエチレン改質スチレン系樹脂粒子の製造
 エチレン・酢酸ビニル共重合体樹脂粒子(日本ポリエチレン社製、LV-115)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(エチレン・酢酸ビニル共重合体樹脂粒子は100粒あたり80mgに調整した)。このエチレン・酢酸ビニル共重合体樹脂粒子10.5kgを攪拌機付100Lオートクレーブに入れた。この後、水性媒体としての純水45kg、ピロリン酸マグネシウム315g、ドデシルベンゼンスルホン酸ソーダ1.6gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド5.4gを溶解させたスチレンモノマー4.5kgを30分かけて滴下した。滴下後、30分60℃に保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後130℃に昇温し、この温度で1時間45分攪拌を続けた。その後、90℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ11.4gを加えた。この後、アクリル酸ブチル175g、重合開始剤としてベンゾイルパーオキサイド39.2g、t-ブチルパーオキシベンゾエート4.9gと架橋剤としてのジクミルパーオキサイド98.7gを溶解したスチレンモノマー6.025kgを2時間かけて滴下した。次いで、アクリル酸ブチル350g、エチレンビスステアリン酸アミド175gを溶解したスチレンモノマー13.45kgを2時間かけて滴下した。滴下終了後、90℃で1時間保持し、次いで、143℃に昇温し、その温度で2時間保持して重合を完結させた。その後、常温まで冷却し、ポリエチレン改質スチレン系樹脂粒子(平均粒子径1.60mm)を取り出した。
 なお、スチレン系モノマーは、エチレン・酢酸ビニル共重合体樹脂粒子100重量部に対して、233重量部使用した。
ポリエチレン改質スチレン系樹脂粒子の内部水分量の調整、発泡剤の含浸(湿式含浸法)、表面付着水分量の調整、保管、予備発泡は実施例1のb)、c)、d)、e)、f)と同様にして行った。
 各種評価結果を表2に示す。
 実施例19
 a)ポリエチレン系樹脂(PE)/ポリスチレン系樹脂(PS)=20/80のポリエチレン改質スチレン系樹脂粒子の製造
 直鎖状低密度ポリエチレン樹脂粒子(日本ポリエチレン社製NF-444A)を押出機にて加熱混合して水中カット方式により造粒ペレット化した(直鎖状低密度ポリエチレン樹脂粒子は100粒あたり40mgに調整した)。この直鎖状低密度ポリエチレン樹脂粒子7.0kgを攪拌機付100Lオートクレーブに入れた。この後、水性媒体として純水40kg、ピロリン酸マグネシウム315g、ドデシルベンゼンスルホン酸ソーダ1.6gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温した。
 次いで、この懸濁液中にジクミルパーオキサイド8.75gを溶解させたスチレンモノマー3.5kgを30分滴下した。滴下後30分保持し、ポリエチレン系樹脂粒子にスチレンモノマーを吸収させた。吸収後135℃に昇温し、この温度で2時間攪拌を続けた。
 その後、110℃の温度に下げ、この懸濁液中に、ドデシルベンゼンスルホン酸ソーダ11.4gを加えた。この後、アクリル酸ブチル700g、重合開始剤としてt-ブチルパーオキシベンゾエート98gを溶解したスチレンモノマー23.8kgを4時間かけて滴下した。次いで、エチレンビスステアリン酸アミド350g、ドデシルベンゼンスルホン酸ソーダ3g、純水5kgの分散液を30分間滴下した。
 滴下終了後、110℃で1時間保持した後に140℃に昇温し3時間保持して重合を完結した。その後、常温まで冷却し、ポリエチレン改質スチレン系樹脂粒子(平均粒子径1.32mm)を取り出した。
 なお、スチレン系モノマーは、直鎖状低密度ポリエチレン100重量部に対して、400重量部使用した。
ポリエチレン改質スチレン系樹脂粒子の内部水分量の調整、発泡剤の含浸(湿式含浸法)、表面付着水分量の調整、保管、予備発泡は実施例4のb)、c)、d)、e)、f)と同様にして行った。
 各種評価結果を表2に示す。
 比較例1
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整は実施例1のa)、b)と同様にして、発泡剤の含浸はi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)を260g用いたこと以外は実施例1のc)と同様にして、表面付着水分量の調整はバスケット型遠心分離機にて5分間脱水した後、常温で円筒型乾燥機にて10分間空気を流すことで乾燥させたこと以外は実施例1のd)と同様にして、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のe)及びf)と同様にして行った。
 各種評価結果を表3に示す。
 比較例2
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整は実施例3のa)、b)と同様にして、発泡剤の含浸(乾式含浸)及び表面付着水分量の調整は純水を使用しなかったこと、耐圧回転混合機を50℃に昇温し、この温度で回転させながらn-ペンタン/i-ペンタン=75/25~85/15のペンタン(ガス種b:コスモ石油社製、製品名ペンタン)2250gを加えたこと以外は実施例5のc)及びd)と同様にして、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のe)及びf)と同様にして行った。
 各種評価結果を表3に示す。
 比較例3
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整、及び発泡剤の含浸は実施例4のa)、b)、及びc)と同様にして行った。表面付着水分量の調整は水きりのみとし、脱水しないこと以外は実施例1のd)と同様にして、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のe)及びf)と同様にして行った。
 各種評価結果を表3に示す。
 比較例4
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整は実施例4のa)、b)と同様にして、発泡剤の含浸(乾式含浸)及び表面付着水分量の調整は純水を使用しなかったこと以外は実施例5のc)及びd)と同様にして、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のe)及びf)と同様にして行った。
 各種評価結果を表3に示す。
 比較例5
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整は実施例4のa)、b)と同様にして、発泡剤の含浸はn-ブタン/i-ブタン=60/40~70/30のブタン(ガス種c:コスモ石油社製、製品名コスモブタンシルバー)とすること以外は実施例4のc)と同様にして、表面付着水分量の調整、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のd)、e)及びf)と同様にして行った。
 各種評価結果を表3に示す。
 比較例6
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整は実施例4のa)、b)と同様にして、発泡剤の含浸(乾式含浸)及び表面付着水分量の調整は純水を750g用いたこと以外は実施例5のc)及びd)と同様にして、発泡性複合樹脂粒子の保管及び予備発泡は実施例1のe)及びf)と同様にして行った。
 各種評価結果を表3に示す。
 比較例7
 ポリエチレン改質スチレン系樹脂粒子の製造、内部水分量の調整は実施例1のa)、b)と同様にして、発泡剤の含浸はi-ペンタンを97%以上含むペンタン(ガス種a:エスケイ産業社製、製品名イソペンタン)を180g用いたこと以外は実施例1のc)と同様にして、発泡性複合樹脂粒子の表面付着水分量の調整,保管及び予備発泡は実施例1のd)、e)及びf)と同様にして行った。
 各種評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表中、ガス種aはエスケイ産業社製,製品名イソペンタン(i-ペンタン97%以上)、ガス種bはコスモ石油社製,製品名ペンタン(n-ペンタン/i-ペンタン=75/25~85/15)、ガス種cはコスモ石油社製,製品名コスモブタンシルバー(n-ブタン/i-ブタン=60/40=70/30)である。
 また、仕込みガス量の単位はwt%/樹脂粒子、含有ガス量の単位はwt%、各種水分量の単位はwt%、保湿剤付着量の単位はwt%、加熱時間の単位は分、嵩倍数及び倍数差の単位は倍である。
Figure JPOXMLDOC01-appb-T000004
 実施例1~19と比較例1~4及び比較例6~7とから、表面付着水分量が0.5~1.5重量でかつ発泡剤の含有量が7.5~11.0重量%の発泡性複合樹脂粒子は冷凍保存後3時間を経てもその品質がほとんど変わらないことが分かる。
 更に、実施例1~19と比較例5とから、発泡剤としてはブタンよりもペンタンの方が優れていることが分かる。
 また、表4に示すように、実施例1、8、16及び17から、内部水分量が0.05~0.5重量%の範囲であれば、気泡バラツキをより抑制できることが分かる。

Claims (11)

  1.  ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂粒子と、前記複合樹脂粒子中に含まれたペンタンを含有する揮発性発泡剤7.5~11重量%と、前記複合樹脂粒子の表面に付着した付着水分0.5~1.5重量%とを有する冷凍保存用発泡性複合樹脂粒子。
  2.  前記複合樹脂粒子が、ポリオレフィン系樹脂としてのポリエチレン系樹脂又はポリプロピレン系樹脂100重量部とポリスチレン系樹脂110~900重量部とを含む粒子である請求項1に記載の冷凍保存用発泡性複合樹脂粒子。
  3.  前記複合樹脂粒子が、ポリオレフィン系樹脂としてのポリエチレン系樹脂又はポリプロピレン系樹脂100重量部とポリスチレン系樹脂110~730重量部とを含む粒子である請求項1に記載の冷凍保存用発泡性複合樹脂粒子。
  4.  前記冷凍保存用発泡性複合樹脂粒子が、0.05~0.5重量%の内部水分を更に有する請求項1に記載の冷凍保存用発泡性複合樹脂粒子。
  5.  前記揮発性発泡剤がペンタンであり、ペンタンが8.5~10.0重量%含まれる請求項1に記載の冷凍保存用発泡性複合樹脂粒子。
  6.  前記冷凍保存用発泡性複合樹脂粒子が、その表面に付着した、0.01~0.1重量%の保湿剤を更に含有する請求項1に記載の冷凍保存用発泡性複合樹脂粒子。
  7.  前記保湿剤が、100~600の重量平均分子量のポリエチレングリコールである請求項6に記載の冷凍保存用発泡性複合樹脂粒子。
  8.  請求項1に記載の冷凍保存用発泡性複合樹脂粒子を予備発泡させ、次いで型内成形して得られた発泡成形体。
  9.  請求項1に記載の冷凍保存用発泡性複合樹脂粒子の製造方法であって、
     前記複合樹脂粒子に前記ペンタンを含有する揮発性発泡剤を含浸させる工程と、含浸後の複合樹脂粒子を加湿又は脱水することで表面の付着水分の量を調整する工程とを有する冷凍保存用発泡性複合樹脂粒子の製造方法。
  10.  請求項1に記載の冷凍保存用発泡性複合樹脂粒子を、予備発泡工程に付すまで、-5℃以下に設定された容器内で保存することからなる冷凍保存用発泡性複合樹脂粒子の保存方法。
  11.  ポリオレフィン系樹脂とポリスチレン系樹脂との複合樹脂粒子と、前記複合樹脂粒子中に含まれたペンタンを含有する揮発性発泡剤7.5~11重量%と、前記複合樹脂粒子の表面に付着した付着水分0.5~1.5重量%とを有し、-5℃以下に設定された容器内で保存された冷凍保存発泡性複合樹脂粒子。
PCT/JP2011/051231 2010-03-30 2011-01-24 冷凍保存用発泡性複合樹脂粒子 WO2011122081A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180017565.5A CN102858860B (zh) 2010-03-30 2011-01-24 冷冻保存用发泡性复合树脂颗粒
JP2012508118A JP5667164B2 (ja) 2010-03-30 2011-01-24 冷凍保存用発泡性複合樹脂粒子、その製造方法、その保存方法及び冷凍保存発泡性複合樹脂粒子
DE112011101173.3T DE112011101173B4 (de) 2010-03-30 2011-01-24 Expandierbare Verbund-Harzteilchen für die Gefrierlagerung, Verfahren zur Herstellung dieser, expandierter Formgegenstand, Verfahren zum Lagern von expandierbaren Verbund-Harzteilchen und gefriergelagerte expandierbare Verbund-Harzteilchen
US13/637,663 US8933137B2 (en) 2010-03-30 2011-01-24 Foamable composite resin particle for frozen storage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-078761 2010-03-30
JP2010078761 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122081A1 true WO2011122081A1 (ja) 2011-10-06

Family

ID=44711834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051231 WO2011122081A1 (ja) 2010-03-30 2011-01-24 冷凍保存用発泡性複合樹脂粒子

Country Status (6)

Country Link
US (1) US8933137B2 (ja)
JP (1) JP5667164B2 (ja)
CN (1) CN102858860B (ja)
DE (1) DE112011101173B4 (ja)
TW (1) TWI502009B (ja)
WO (1) WO2011122081A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157538A1 (ja) * 2013-03-28 2014-10-02 積水化成品工業株式会社 複合樹脂発泡成形体
JP2014196444A (ja) * 2013-03-29 2014-10-16 積水化成品工業株式会社 ポリスチレン系複合樹脂粒子とその製造方法、発泡性粒子、発泡粒子及び発泡成形体
JP2015189921A (ja) * 2014-03-28 2015-11-02 積水化成品工業株式会社 複合樹脂粒子とその製造方法、発泡性複合樹脂粒子、予備発泡複合樹脂粒子、及び複合樹脂発泡成形体

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980144A4 (en) * 2013-03-29 2016-12-14 Sekisui Plastics PROCESS FOR PRODUCING EXPANDED PARTICLES, APPARATUS FOR PRODUCING EXPANDED PARTICLES, AND EXPANDED PARTICLES
JP6185872B2 (ja) * 2014-03-28 2017-08-23 積水化成品工業株式会社 高密度ポリエチレン系樹脂粒子、複合樹脂粒子、発泡粒子及び発泡成形体
CN105175794A (zh) * 2015-09-30 2015-12-23 华南理工大学 一种淀粉基发泡包装材料前驱体、淀粉基发泡包装材料及制备方法
JPWO2018061263A1 (ja) * 2016-09-27 2019-07-18 積水化成品工業株式会社 発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品
US10668664B1 (en) * 2018-11-09 2020-06-02 Thermwood Corporation Systems and methods for printing components using additive manufacturing
CN109762197B (zh) * 2018-12-17 2020-10-30 晋江国盛新材料科技有限公司 一种etpu发泡体的改进型成型方法
CN113306039B (zh) * 2021-06-01 2022-03-22 中山大学 一种聚酯发泡珠粒及其半连续制备方法与水蒸气成型方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171746A (ja) * 1985-01-26 1986-08-02 Sekisui Plastics Co Ltd カ−ボンブラツク含有黒色発泡性ポリスチレン系樹脂を保管する方法
JPS6211740A (ja) * 1985-07-09 1987-01-20 Kanegafuchi Chem Ind Co Ltd 発泡性スチレン系樹脂粒子の製造方法
JP2008133449A (ja) * 2006-10-26 2008-06-12 Sekisui Plastics Co Ltd 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728044A1 (de) * 1987-08-22 1989-03-02 Huels Chemische Werke Ag Verfahren zur herstellung von styrolpolymerisaten mit enger korngroessenverteilung
JP2760361B2 (ja) * 1990-05-28 1998-05-28 積水化成品工業株式会社 発泡性スチレン改質ポリオレフィン系樹脂粒子の製造方法
JP2769660B2 (ja) 1992-09-21 1998-06-25 三菱電機株式会社 Pll回路
DE4305697A1 (de) * 1993-02-25 1994-09-01 Basf Ag Perlförmige, expandierbare Styrolpolymerisate mit verringertem Innenwassergehalt und Verfahren zu ihrer Herstellung
JP3444507B2 (ja) 1993-09-28 2003-09-08 株式会社小松製作所 方向制御弁
RU2328510C2 (ru) * 2003-02-04 2008-07-10 Нова Кемикалз Инк. Кроющая композиция для частиц из термопластичной смолы, предназначенных для формования пенопластовых контейнеров
JP4017538B2 (ja) 2003-02-14 2007-12-05 積水化成品工業株式会社 スチレン系樹脂発泡性粒子とその製造方法及びスチレン系樹脂発泡成形体
TWI361201B (en) 2006-10-26 2012-04-01 Sekisui Plastics Formable polystyrene resin particles and production process thereof, pre-foamed particles and foam molded product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171746A (ja) * 1985-01-26 1986-08-02 Sekisui Plastics Co Ltd カ−ボンブラツク含有黒色発泡性ポリスチレン系樹脂を保管する方法
JPS6211740A (ja) * 1985-07-09 1987-01-20 Kanegafuchi Chem Ind Co Ltd 発泡性スチレン系樹脂粒子の製造方法
JP2008133449A (ja) * 2006-10-26 2008-06-12 Sekisui Plastics Co Ltd 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157538A1 (ja) * 2013-03-28 2014-10-02 積水化成品工業株式会社 複合樹脂発泡成形体
JPWO2014157538A1 (ja) * 2013-03-28 2017-02-16 積水化成品工業株式会社 複合樹脂発泡成形体
JP2014196444A (ja) * 2013-03-29 2014-10-16 積水化成品工業株式会社 ポリスチレン系複合樹脂粒子とその製造方法、発泡性粒子、発泡粒子及び発泡成形体
JP2015189921A (ja) * 2014-03-28 2015-11-02 積水化成品工業株式会社 複合樹脂粒子とその製造方法、発泡性複合樹脂粒子、予備発泡複合樹脂粒子、及び複合樹脂発泡成形体

Also Published As

Publication number Publication date
TW201139541A (en) 2011-11-16
US20130065977A1 (en) 2013-03-14
DE112011101173T5 (de) 2013-01-10
DE112011101173B4 (de) 2022-01-05
JPWO2011122081A1 (ja) 2013-07-08
CN102858860B (zh) 2015-09-16
TWI502009B (zh) 2015-10-01
CN102858860A (zh) 2013-01-02
JP5667164B2 (ja) 2015-02-12
US8933137B2 (en) 2015-01-13

Similar Documents

Publication Publication Date Title
JP5667164B2 (ja) 冷凍保存用発泡性複合樹脂粒子、その製造方法、その保存方法及び冷凍保存発泡性複合樹脂粒子
JP5192420B2 (ja) 長期保存用発泡性複合樹脂粒子、その予備発泡粒子及び発泡成形体
JP5528429B2 (ja) 複合樹脂粒子中の揮発性有機化合物の低減方法
JP5548621B2 (ja) 予備発泡粒子、その製造方法及び発泡成形体
WO2016152243A1 (ja) 発泡性複合樹脂粒子含有スラリーとその充填用容器、発泡粒子および発泡成形体
JP2013123851A (ja) 複合樹脂粒子中の臭気の低減方法、複合樹脂粒子、発泡性粒子、予備発泡粒子、発泡成形体及び自動車内装材
JP5346571B2 (ja) 予備発泡粒子の製造方法
JP5528428B2 (ja) 複合樹脂粒子中の臭気の低減方法
JP2011068821A (ja) 発泡性複合樹脂粒子、予備発泡粒子、それらの製造方法及び発泡成形体
JP5401083B2 (ja) 予備発泡粒子、その製造方法及び発泡成形体
JP2009263639A (ja) 発泡性スチレン改質ポリオレフィン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体
JP6081266B2 (ja) 発泡成形体
JP6698566B2 (ja) 発泡粒子の製造方法及び発泡成形体の製造方法
JP5216843B2 (ja) 長期保存用発泡性複合樹脂粒子、その予備発泡粒子及び発泡成形体
WO2014157643A1 (ja) 発泡粒子の製造方法、発泡粒子の製造装置及び発泡粒子
JP5358237B2 (ja) 発泡性複合樹脂粒子及びその湿式製造方法
JP2016180091A (ja) 発泡性複合樹脂粒子含有スラリーとその充填用容器、発泡粒子および発泡成形体
JP2010222530A (ja) 発泡性複合樹脂粒子、その乾式製造方法、予備発泡粒子及び発泡成形体
JP2012184355A (ja) 予備発泡粒子および発泡成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017565.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508118

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120111011733

Country of ref document: DE

Ref document number: 112011101173

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13637663

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11762322

Country of ref document: EP

Kind code of ref document: A1