WO2011118960A2 - 나노입자 제조방법 - Google Patents

나노입자 제조방법 Download PDF

Info

Publication number
WO2011118960A2
WO2011118960A2 PCT/KR2011/001956 KR2011001956W WO2011118960A2 WO 2011118960 A2 WO2011118960 A2 WO 2011118960A2 KR 2011001956 W KR2011001956 W KR 2011001956W WO 2011118960 A2 WO2011118960 A2 WO 2011118960A2
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
active substance
water
surfactant
particles
Prior art date
Application number
PCT/KR2011/001956
Other languages
English (en)
French (fr)
Other versions
WO2011118960A3 (ko
Inventor
김갑식
박주원
Original Assignee
(주)바이오시네틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오시네틱스 filed Critical (주)바이오시네틱스
Priority to AU2011230144A priority Critical patent/AU2011230144B2/en
Priority to EP11759709.6A priority patent/EP2551237A4/en
Priority to CN201180015605.2A priority patent/CN102858682B/zh
Priority to CA2793241A priority patent/CA2793241C/en
Priority to JP2013501184A priority patent/JP5793179B2/ja
Priority to US13/635,717 priority patent/US8828445B2/en
Publication of WO2011118960A2 publication Critical patent/WO2011118960A2/ko
Publication of WO2011118960A3 publication Critical patent/WO2011118960A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills

Definitions

  • the present invention relates to a method for producing nanoparticles of active material particles, and more particularly, as a flocculant; Biocompatible polymers and / or surfactants; And homogeneously mixing the active substance in the presence of water, drying it, and then pulverizing the dried mixture, or nanoparticles of the saccharides with biocompatible polymers and / or surfactants as anticoagulants, which are then homogenized with the active substance.
  • the present invention relates to a method for preparing the active material into nanoparticle powder by mixing and grinding.
  • the size of the therapeutic agent particles as nanoparticles has the following advantages.
  • the release rate of the therapeutic agent is a very important factor in the formulation of the sustained release therapeutic agent. If the particle size of the therapeutic agent is nanoparticles, the release rate of the therapeutic agent becomes more predictable as the size becomes relatively uniform, which is more effective. Therapeutic agents can be prepared.
  • US Patent No. 5,202,129 discloses a method for preparing microparticles of poorly soluble drugs by mixing 2.5 times or more of low molecular sugar or sugar-alcohol with poorly soluble drugs and dry grinding them.
  • this method uses a large amount of sugar, there is a problem that in order to apply to the actual medicine, the powdered mixture is dispersed in water, filtered to remove the sugar and dried again.
  • nanoparticles can be prepared by pulverizing cyclodextrin and drug together using a rod mill.
  • the amount of cyclodextrin used is about twice as molar ratio as the active substance, that is, about 4 times as weight ratio, and the humidity is required to be about the degree of hydration of all used cyclodextrins, even if the humidity is too high or too low Claimed not good.
  • U. S. Patent No. 5,145, 684 discloses a method for producing particles of several hundred nanometers in size by grinding poorly soluble drugs using wet milling in the presence of a surfactant.
  • the drug must be made into particles having a size of 100 micrometers or less using conventional grinding methods.
  • the time required to produce the particle size in the targeted range depends on the mechanical device used, which takes five days or more, using a ball mill. Using a high shear media mill can be made within one day.
  • the nanoparticles obtained in this method are liquid, they must be spray dried or lyophilized to produce a powder.
  • U.S. Patent No. 5,302,401 describes an anti-agglomeration agent during lyophilization.
  • US Pat. No. 6,592,903 B2 describes stabilizers, surfactants and anti-agglomeration agents in spray drying.
  • US 2003/0185869 A1 describes an example in which wet milling is applied to various poorly soluble drugs using lysozyme as an interfacial stabilizer.
  • the interfacial stabilizer is a protein, there are many restrictions on drying, and therefore only the preparation of the liquid form is described.
  • Another traditional method is a recrystallization method in which microparticles of the active material are made by changing the environment of a solution in which the active material is dissolved to precipitate or crystallize the solute.
  • This recrystallization method There are two main methods of this recrystallization method: one is to dissolve the therapeutic agent in a suitable solvent, and then lower the temperature to change the solubility of the therapeutic agent to precipitate the particles, and the other is to use antisolvent in the solvent in which the therapeutic agent is dissolved. ) To lower the solvent so that the particles are precipitated.
  • these recrystallization methods require the use of organic solvents, which are mostly harmful to the human body, and also frequently precipitate the particles together during the drying in the wet state after filtering the precipitated particles.
  • the particle size may not be constant.
  • U.S. Patent No. 2003/0104068 A1 describes a method of preparing a fine powder by dissolving a polymer in an organic solvent, dissolving or dispersing a protein drug therein, rapidly cooling to an ultra-low temperature, and solidifying it by lyophilization.
  • the protein drug may be denatured by contact with the organic solvent, and also there are many problems in the economics of the process because it undergoes rapid cooling and lyophilization.
  • US 2004/0067251 A1 discloses a method for preparing microparticles by dissolving an active substance in an organic solvent and spraying it in an aqueous solution in which a surfactant is dissolved.
  • this method not only organic solvents are used but also the prepared particles are present in an aqueous solution. Therefore, in order to prepare powders, the water used as a solvent must be dried. During the drying process, the particles are aggregated and redispersed. The particles are difficult to redisperse into nanoscale particles.
  • Supercritical fluids are fluids that exist at temperatures and pressures above the critical temperature and pressure, and carbon dioxide is generally used.
  • a rapid expansion of supercritical solution is known (Tom et al. (1991) Biotechnol.Prog. 7 (5) .
  • the target solute is first dissolved in the supercritical fluid, and then the supercritical fluid solution is rapidly injected through the nozzle in a relatively low pressure environment.
  • the density of the supercritical fluid is then drastically lowered, with the result that the dissolving ability of the supercritical fluid to the solute rapidly drops, so that the solutes are formed into very small particles or crystals.
  • GAS gas-antisolvent recrystallization
  • US Pat. No. 6,630,121 describes a method of obtaining fine powder by nebulization of a solution in which an active substance is dissolved into fine particles using a supercritical fluid and drying it using a dry gas. This method can be used regardless of the solubility of the active substance in the supercritical fluid.
  • WO 02/38127 A2 describes a method of coating the resulting micromaterial with an additive such as a polymer while making the active material into a micromaterial using a Solution Enhanced Dispersion by Supercritical fluids (SEDS) method.
  • SEDS Solution Enhanced Dispersion by Supercritical fluids
  • U. S. Patent No. 6,596, 206 B2 describes a technique for dissolving an active substance in an organic solvent, applying ultrasonic waves to the solution to spray the supercritical fluid in the form of microparticles, and to make the active substance into microparticles. have.
  • the present invention is to solve the problems of the prior art as described above, in particular to overcome the limitations of difficult to produce particles having a size of less than micro units in the existing dry grinding, and also by using a large amount of water in the existing wet grinding Due to the problem of not only solving the problem that the particles grow in size during the water removal process after the crushing process but also increase the size, nanoparticles can be easily produced with high efficiency even for the active substance dissolved in water to some extent. To provide.
  • an antiagglutinating agent Biocompatible polymers and / or surfactants; And uniformly mixing the active substance in the presence of water, drying it, and then pulverizing the dried mixture, thereby providing a method for preparing nanoparticle powder of the active substance.
  • Nanoparticle powder production method of the present invention may be preferably carried out through the following steps:
  • step (2) adding biocompatible polymers and / or surfactants to the aqueous saccharide solution obtained in step (1) and mixing them uniformly
  • step (3) adding the active substance to the mixture obtained in step (2) and kneading uniformly, and then drying it
  • the active substance is a substance exhibiting physiological activity in, for example, pharmaceuticals, functional foods, cosmetics, etc., preferably an organic compound, an organometallic compound, a natural extract, It is at least one selected from the group consisting of peptides, proteins and polysaccharides, and there is no particular limitation on the properties at room temperature, such as a solid phase or a liquid phase, and an electrical form such as neutral or ionic.
  • nanoparticle is a particle having an average particle diameter of at least 90% of 5 ⁇ m or less, preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, still more preferably 0.5 ⁇ m or less. Means.
  • the saccharide used as the anti-agglomeration agent in the present invention includes a monosaccharide compound, a disaccharide compound, a polysaccharide compound, and a sugar alcohol, and in particular, glucose, lactose, mannitol, sucrose, xylitol, chitosan, starch fiber and the like.
  • Biocompatible polymers and / or surfactants that can be used in the present invention are used in pharmaceutical foods and cosmetics, there is no limitation of ionic, nonionic, and the like, and there is no limitation in the properties of liquid, wax or solid phase at room temperature. .
  • biocompatible polymers and surfactants usable in the present invention there are no particular limitations on the biocompatible polymers and surfactants usable in the present invention, and known biocompatible polymers and surfactants known to be usable for nanoparticulation of active materials, or nanoparticles of active materials, even if novel Anything that can be used for is applicable to the present invention.
  • biocompatible polymers include gelatin, casein, dextran, gum acacia, tragacanth, polyethylene glycols, carboxymethylcellulose ), Hydroxypropyl cellulose, hydroxypropyl methylcellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose phthalate , Noncrystalline cellulose, polyvinyl alcohol, polyvinypyrrolidone, poloxamers, eudragit ®, lysozyme, albumin, etc.
  • the surfactant include cetyl pyridini chloride (cetyl pyridini um chloride, phospholipids, fatty acids, benzalkonium chloride calcium stearate, glycerin esters of fatty acid, fatty alcohols, seto Macrocallo, polyoxyethylene alkyl ethers, sorbitan esters, polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters, dodecyl trimethyl ammonium bromide, polyoxyethylene stearate, sodium lauryl sulfate, sucrose fatty acid ester PEG-cholesterol (PEG) -cholesterol) PEG-vitamin E (PEG-vitamin E) etc. are mentioned. These may be used alone or in combination. However, the present invention is not limited to the above specific examples.
  • the sugar to be used as the anti-agglomerating agent is used 0.5 to 5 parts by weight based on 1 part by weight of the active substance to be added in a later step.
  • the saccharide is placed in a reactor and 0.5 ml to 10 ml is added to a small amount of water, such as 1 g of saccharide, to the extent that the saccharide is completely dissolved.
  • 0.5 g of water for 1 g of sucrose, 5 ml of water for 1 g of lactose, 1 ml of water for 1 g of glucose, 5.5 ml of water for 1 g of mannitol, 1.5 ml of water for 1 g of xylitol and 0.8 ml of water for 1 g of xylose are used. do. Water is added to the sugars, and then heated to 40-70 ° C to completely dissolve the sugars.
  • the biocompatible polymer and / or surfactant is used in 0.01 to 10 parts by weight per 1 part by weight of the active material.
  • 0.01 to 10 parts by weight of a biocompatible polymer and / or surfactant is added to 1 part by weight of the active substance to be added in the subsequent step to the saccharide aqueous solution obtained as described above, and is uniformly dissolved or mixed at 40 to 70 ° C.
  • it is mixed uniformly using a kneader or the like.
  • the kneader any type that can be uniformly mixed can be used regardless of its shape, such as a roller type or a female type.
  • the mixture of the saccharide-biocompatible polymer and / or the surfactant-active material thus obtained is dried so that the moisture content is 0.1-15 wt%, more preferably 0.5-7 wt%, relative to the weight of solids other than water. There is no particular restriction on the dry form.
  • the moisture content in the dried result can have a significant effect on the efficiency of subsequent milling processes, depending on the type of active material.
  • the melting point of the active material is high, it is advantageous in the grinding process to increase the water content.
  • the melting point of the active material is low, it is advantageous in the grinding process to lower the water content.
  • the content of moisture is too high (for example, more than 15% by weight), the viscosity of the mixture to be pulverized becomes low so that the shear force cannot be transmitted at the time of pulverization and thus the pulverization efficiency into nanoparticles can be lowered.
  • the grinder will be subjected to too high torque, making it difficult to smoothly grind, and in the case of roll mills, it may be difficult to achieve uniform grinding. Due to these problems, it may be necessary to check the water content of the mixture after drying and add water and granulate if water is needed before the grinding process. In addition, the presence of this additional moisture can absorb much of the heat generated during the grinding process and also reduce wear and tear of the grinding equipment, thereby reducing the problem of contamination.
  • the dried mixture is subjected to grinding, preferably repeated or continuous grinding.
  • This grinding process is a process in which the mixture components, in particular, the active material and the biocompatible polymer and / or surfactant are aggregated by compression and then pulverized by shear force, wherein the saccharides used as the anti-agglomeration agent Repetitive grinding is made easier, thereby making it possible to produce nanoparticles of the active material more efficiently.
  • the apparatus used in such a crushing process can be used without limitation as long as the equipment capable of simultaneously pressing and crushing. In particular, if a continuous grinding process is performed using an extruder, a roll mill, a rod mill, etc., nano-level particles may be more efficiently produced.
  • the grinding process is generally carried out at 90 ° C. or lower, preferably 60 ° C. or lower, more preferably 40 ° C. or lower, even more preferably 30 ° C. or lower.
  • the anti-agglomerate saccharide is nanoparticles together with the biocompatible polymer and / or the surfactant, and then it is uniformly mixed with the active substance, and the mixture is ground to obtain the active substance.
  • Nanoparticle powders can be prepared.
  • the process of mixing and pulverizing the active material after the nanoparticles of the anti-agglomerate sugars with the biocompatible polymer and / or the surfactant is as described above.
  • the sugars are nanoparticles with biocompatible polymers and / or surfactants, and then uniformly mixed with the active substance with a small amount of water, so that the moisture content of the resulting mixture is adjusted to 0.1-15% by weight relative to the solids weight. It may be.
  • Such anti-agglomerate nanoparticle mixtures can be prepared, for example, using the methods described in Korean Patent Laid-Open Nos. 2005-0054819, 2007-0107879 and 2007-0107841.
  • the biocompatible polymer and / or surfactant is emulsified by adding an aqueous solution in which a flocculant is dissolved while performing high-speed stirring using a homo-mixer to dissolve the solution heated by heating to 70 ° C. with a solid lipid.
  • the time point at which the emulsification is made means a time point at which a mixed solution of a uniform form without phase separation of the oil phase and the aqueous solution layer of the solid lipid is formed.
  • the solid solvent (also referred to as 'solid lipid') is maintained at room temperature, that is, at a temperature of 30 ° C. or lower, and the melting point is relatively low at 30 to 150 ° C., preferably 30 to 90 ° C., and is supercritical. It refers to a compound having a high solubility in the fluid, for example, those shown in Korean Patent Publication No. 2005-0054819.
  • C10-C22 saturated fatty acid, its ester compound, and its alcohol compound Mono- or di-glyceride compounds having a saturated fatty acid group having 10 to 22 carbon atoms; Hydrocarbons having 16 or more carbon atoms; Fatty acid reduction compounds of triglyceride compounds having 10 to 22 carbon atoms; Linear or branched diol compounds having 6 to 22 carbon atoms, preferably 6 to 10 carbon atoms such as 1,6-hexanediol; And one or more selected from the group consisting of a mixture thereof.
  • the present invention due to the presence of saccharides having a fine particle size of several tens of micrometers or less when pulverizing the active material-containing particles, it overcomes the limitation that it was difficult to produce particles having a size of micro units or less in conventional dry grinding.
  • By using a large amount of water in the conventional wet grinding it is possible to solve the problem that the particles grow and grow in size during the water removal process after the grinding process, and also nanoparticles for the active substance dissolved in water to some extent. Can be easily produced with excellent efficiency.
  • Example 1 is a particle size analysis graph of the phytosterol nanoparticles prepared in Example 1.
  • Figure 2 is a graph of the particle size analysis of the coenzyme Q10 nanoparticles prepared in Example 2.
  • Figure 3 is a particle size analysis graph of the octacosanol nanoparticles prepared in Example 3.
  • Figure 4 is a particle size analysis graph of the phytosterol nanoparticles prepared in Example 5.
  • Example 5 is a particle size analysis graph of the coenzyme Q10 nanoparticles prepared in Example 6.
  • Example 6 is a particle size analysis graph of the fenofibrate nanoparticles prepared in Example 9.
  • Example 7 is a particle size analysis graph of the itraconazole nanoparticles prepared in Example 10.
  • Example 8 is a particle size analysis graph of the megestrol acetate nanoparticles prepared in Example 11.
  • FIG. 9 is a graph of particle size analysis of naproxen nanoparticles prepared in Example 12.
  • FIG. 10 is a graph of particle size analysis of delipromate nanoparticles prepared in Example 13.
  • FIG. 10 is a graph of particle size analysis of delipromate nanoparticles prepared in Example 13.
  • Example 11 is a particle size analysis graph of the coenzyme Q10 nanoparticles prepared in Example 15.
  • sucrose was added to 15 ml of water and stirred for 2 hours at room temperature to completely dissolve.
  • 6 g of sucrose fatty acid ester and 1.5 g of polysorbate (80) were added as a surfactant and stirred at 60 ° C. for 20 minutes to give a uniform solution.
  • a mixture was prepared.
  • 30 g of vegetable sterol was added to the mixture as an active substance and stirred at room temperature for 1 hour to obtain a mixture in the form of dough. The mixture was dried under reduced pressure to give 65 g of dry powder.
  • sucrose 40 g was added to 30 ml of water, and stirred slowly at room temperature for 2 hours to completely dissolve. 10 g of sucrose fatty acid ester and 0.5 g of polysorbate (80) were added as a surfactant, followed by stirring at 60 ° C. for 20 minutes. One mixture was prepared. 10 g of coenzyme Q10 was added to the mixture as an active substance, stirred at 60 ° C. for 20 minutes, and then kneaded at room temperature for 30 minutes to obtain a mixture in the form of a dough. The mixture was dried under a reduced pressure at room temperature to give 63 g of a dry powder (water content: about 5%).
  • the dried powder was pulverized 20 times at room temperature using a roll mill and then dried under reduced pressure to obtain 59 g of nanonized coenzyme Q10.
  • the powder was stirred for 30 minutes at 60 ⁇ 70 °C and stirred for 1 hour at room temperature and then analyzed the particle size using Horiba LA950.
  • the analysis results are as follows (unit: micrometer), and the particle size analysis graph is shown in FIG. 2.
  • sucrose 12 g was added to 9 ml of water and stirred for 2 hours at room temperature to completely dissolve.
  • 3 g of sucrose fatty acid ester and 0.15 g of polysorbate (80) were added as a surfactant and stirred at 60 ° C. for 20 minutes.
  • One mixture was prepared.
  • 3 g of octacosanol was added to the mixture as an active substance, stirred at 80 to 85 ° C. for 20 minutes, and then kneaded at room temperature for 30 minutes to obtain a mixture in the form of a dough.
  • the mixture was dried under reduced pressure at room temperature to give 18.4 g of dry powder.
  • sucrose 20 g was added to 15 ml of water, and the mixture was slowly stirred at room temperature for 2 hours to completely dissolve.
  • 5 g of sucrose fatty acid ester and 0.5 g of polysorbate (80) were added as a surfactant, followed by stirring at 60 ° C for 1 hour.
  • One mixture was prepared. 10 g of tyrosine was added to the mixture as an active substance and stirred at 60 ° C for 1 hour to obtain a mixture in the form of a dough.
  • the mixture was dried under a reduced pressure at room temperature to give 34 g of dry powder.
  • 2.5 ml of water was added to the dried powder to granulate, and the milling process was performed 20 times at room temperature using a roll mill to obtain 33 g of nanotyrosine.
  • sucrose was added to 15 ml of water and stirred for 2 hours at room temperature to completely dissolve.
  • 15 g of polyglycerin fatty acid ester and 1.5 g of sucrose fatty acid ester were added as a surfactant, followed by stirring at 60 ° C. for 20 minutes to give a uniform mixture.
  • 30 g of vegetable sterol was added to the mixture as an active substance and stirred at room temperature for 1 hour to obtain a mixture in the form of dough. The mixture was dried under reduced pressure to give 76 g of a dry powder.
  • sucrose was added to 30 ml of water, and the mixture was slowly dissolved at room temperature for 2 hours to completely dissolve.
  • 20 g of polyglycerol fatty acid ester (HLB 12) and 1 g of polyglycerol fatty acid ester (HLB 14) were added as a surfactant.
  • 20 g of coenzyme Q10 was added to the mixture as an active substance, stirred at 60 ° C. for 20 minutes, and then kneaded at room temperature for 30 minutes to obtain a mixture in the form of a dough.
  • the mixture was dried under a reduced pressure at room temperature to give 85 g of a dry powder (water content: about 5%).
  • the dried powder was pulverized 20 times at room temperature using a roll mill and then dried under reduced pressure to obtain 78 g of nanonized coenzyme Q10.
  • the powder was stirred at room temperature for 10 minutes, and stirred at 38-43 ° C. for 30 minutes, and then analyzed for particle size using Horiba LA950.
  • the analysis results are as follows (unit: micrometer), and the particle size analysis graph is shown in FIG. 5.
  • sucrose 40 g was added to 30 ml of water and stirred for 2 hours at room temperature to completely dissolve.
  • 10 g of sucrose fatty acid ester and 0.5 g of polysorbate (80) were added as a surfactant and stirred at 60 ° C. for 1 hour.
  • One mixture was prepared.
  • 10 g of calcium carbonate was added to the mixture as an active substance and stirred at 60 ° C. for 1 hour to obtain a mixture in the form of a dough.
  • the mixture was dried under reduced pressure at room temperature to give 60 g of a dry powder. After granulation was performed by adding 2.5 ml of water to the dry powder, a grind process was performed 20 times at room temperature using a roll mill to obtain 58 g of nanoscale calcium carbonate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Preparation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

본 발명은 나노수준의 활성물질 입자 제조방법에 관한 것으로서, 보다 상세하게는, 분쇄공정을 통해 활성물질 함유 나노입자를 간단하게 우수한 효율로 제조할 수 있는 방법에 관한 것이다.

Description

나노입자 제조방법
본 발명은 나노수준의 활성물질 입자 제조방법에 관한 것으로서, 보다 상세하게는, 응집방지제로서 당류; 생체적합고분자 및/또는 계면활성제; 및 활성 물질을 물의 존재 하에 균일하게 혼합하고, 이를 건조한 뒤, 건조된 혼합물을 분쇄하거나, 또는 응집방지제로서 당류를 생체적합고분자 및/또는 계면활성제와 함께 나노입자화한 후, 이를 활성 물질과 균일하게 혼합하고 분쇄하여 활성물질을 나노입자 분말로 제조하는 방법에 관한 것이다.
매우 작고 일정한 크기를 유지하는 입자를 빠르고 효과적으로 제조하는 기술은 여러 산업 분야에서 요구되고 있다. 일정한 크기를 유지하는 작은 입자들은 많은 장점들을 지니고 있으며, 그 중에서도 특히, 흐름성이 좋고 입자간 상호작용에 있어서 편차가 거의 없다는 점은 산업적으로 매우 유용한 장점이 된다. 예를 들면, 의약산업에 있어서 치료제 입자의 크기는 분해속도, 생물학적 능력, 제형(formulation) 등에 있어서 매우 중요한 요소가 되는 바, 치료제 입자간 상호작용에 있어서 편차가 적어질수록 치료제의 전체적인 안정성은 좋아지게 된다.
의약품에 있어서, 치료제 입자의 크기를 나노입자로 하면 다음과 같은 장점들이 있다. 먼저, 경구투여시 장내에서의 흡수율이 작은 약물에 있어서, 입자의 크기가 큰 경우보다 더 많이 흡수될 수 있어, 결과적으로 치료제의 생물학적 효율을 증가시킬 수 있다. 또한, 경구투여만이 가능했던 약물을 흡입형으로 환자에게 투여할 수 있게 되는 것과 같이, 치료제 제형의 형태를 다양하게 할 수 있다. 또한, 치료제의 방출속도는 서방형 치료제의 제형에 있어서 매우 중요한 요소인 바, 치료제 입자의 크기를 나노입자로 하면, 그 크기가 상대적으로 균일해짐에 따라 치료제의 방출속도가 예측가능 해져서, 보다 효과적인 치료제를 제조할 수 있게 된다.
상기한 바와 같이, 균일한 나노입자는 여러가지 장점들을 가지기 때문에, 활성물질을 나노입자로 제조하기 위한 다양한 시도들이 지금까지 이어져 왔다. 전통적으로는, 비교적 큰 입자를 상대적으로 작게 하기 위한 압착(crushing), 빻기(grinding), 제분(milling) 등의 기계적인 방법들이 이용되어 왔다. 근래 제약산업에서는, 에어-젯 분쇄기(air-jet mill)를 이용하여 대량의 치료약을 의약학적 이용에 적당한 크기의 범위로 분쇄하는 방법이 일반적으로 사용되고 있다. 그러나 미합중국특허 제5,534,270호 및 Lachman, et al., The Theory and Practice of Industrial Pharmacy, Chapter 2, "Milling", p.45, (1986)에 따르면 이러한 기존의 기계적 방법에 의할 경우 입자의 크기를 작게 하는 데에는 수십 마이크로미터 정도로 한계가 있다는 것이 일반적 견해이다.
Vandym N. Mochalin 등은 Pharmaceutical Research, Vol. 26, No. 6, 1365~1370. June 2009에서 볼밀을 이용하여 Fenofibrate를 7배의 염화나트륨과 혼합한 후 Attritor Mill로 건식분쇄하는 공정을 이용하여 나노단위의 Fenofibrate을 얻었다고 보고하였다. 여기서 염화나트륨은 그 자체가 매우 딱딱한 물질로서 볼밀에 의해 분쇄되면서 다시 grind media로 작용을 하면서 동시에 분쇄된 fenofibrate의 재응집을 막는 역할도 한다. 또한 Hirokawa, Takashi. 등은 국제특허 WO 2008/126797에서 염화나트륨과 폴리올화합물을 활성물질과 혼합하여 grinding media없이 wet-milling공정을 수행함으로써 나노단위의 활성물질을 얻는 공정을 제시하였다. 이들 공정에서는 많은 양의 염화나트륨을 사용함으로써, 얻어진 나노입자들을 의약품으로 사용하기위해서는 염화나트륨을 제거하는 공정이 필연적으로 수행되어져야만 하는 문제가 있다.
미합중국특허 5,202,129호에서는 난용성 의약품에 2.5배 이상의 저분자의 당 또는 당-알코올을 혼합하고 이를 건식분쇄하여 난용성 의약품의 미세입자를 제조하는 방법에 대하여 기술하고 있다. 그러나 이 방법에서는 많은 양의 당을 사용함으로, 실제 의약품에 적용하기 위해서는 분쇄된 혼합물을 물에 분산한 후 여과하여 당을 제거하고 이를 다시 건조하여야만 하는 문제점이 있다.
한편 Keiji Yamamoto등은 Chem. Pharm. Bull. 55(3)359-363 (2007)에서 로드밀(Rod mill)을 이용하여 사이클로덱스트린과 약물을 함께 분쇄함으로써 나노입자를 제조할 수 있다고 주장하였다. 이때는 사용되는 사이클로덱스트린의 양은 활성물질 대비 몰비로서 2배정도 즉 무게비로서는 4배정도에 해당되며, 또한 이때 습도는 사용되는 사이클로덱스트린이 모두 수화되는 정도의 습도가 필요하며, 그 습도가 너무 높거나, 낮아도 좋지않다고 주장하였다.
미합중국특허 제5,145,684호에는 계면활성제의 존재 하에서 습식제분(wet milling)을 이용하여 난용성 약물을 분쇄하여 수백 나노미터 크기의 입자를 제조하는 방법이 개시되어 있다. 이 기술을 사용하기 위해서는, 약물을 전통적인 분쇄방법을 이용하여 100 마이크로미터 이하의 크기를 갖는 입자로 제조한 후 사용하여야 한다. 이 경우에 있어서, 입자의 크기를 목표로 하는 범위로 제조하기 위해서 소요되는 시간은 사용되는 기계적 장치에 따라 달라지는데, 볼 밀(ball mill)을 사용하면 5일 또는 그 이상의 시간이 소요되나, 고전단 매질 밀(high shear media mill)을 사용하면 1일 이내에 제조할 수 있다. 그러나 이 방법에서 얻어진 나노입자는 액상이므로, 분말로 제조하기 위해서는 스프레이 드라이(spray dry) 또는 동결건조의 공정을 거쳐야 한다. 그러나, 이들 공정을 거치는 동안 입자들간의 상호 응집이 발생하기 때문에, 얻어진 분말을 다시 액체 내에 분산하였을 때 실질적인 나노미터 크기의 입자로 분산되기가 어렵다. 이러한 문제를 해결하기 위해서, 미합중국특허 제5,302,401호에서는 동결건조시의 응집방지제에 대하여 기술하고 있다. 또한 미합중국특허 제 6,592,903호 B2에서는 안정제, 계면활성제 그리고 스프레이 드라이 시의 응집방지제에 대하여 기술하고 있다. 그리고 미합중국특허 2003/0185869호 A1에서는 계면안정제로서 리소자임(lysozyme)을 사용하여 여러 난용성 약물에 대하여 습식제분(wet milling)법을 적용한 예를 기술하고 있다. 그러나 이 경우, 계면안정제가 단백질이므로, 건조에 많은 제약이 있으며, 따라서 액상형태의 제조에 대하여만 기술하고 있다.
미합중국 공개특허 2002/0168402에서는 피스톤 갭 호모게니제이션을 이용한 나노입자제조에 관한 방법을 기술하고 있다. 그러나 피스톤 갭 호모게니제이션을 이용하기위해서는 제트밀 또는 햄머밀 등을 이용하여 입자를 일정한 크기로 분쇄하는 전처리 공정을 수행하여야만 한다. 또한 이 공정은 용액의 점도가 높으면 안되므로 활성물질의 농도가 낮은 상태에서 공정을 수행하여야 하는 문제가 있다.
또 다른 전통적인 방법으로는, 활성물질이 녹아 있는 용액의 환경을 변화시켜 용질을 침전 또는 결정화시키므로써 활성물질의 미세입자를 만드는 재결정 방법이 있다. 이 재결정 방법에는 크게 두가지 방식이 있는데, 그 하나는 치료제를 적당한 용매에 녹인 다음, 온도를 낮추어 치료제의 용해도를 변화시켜 입자를 석출시키는 방식이고, 다른 하나는 치료제가 녹아 있는 용매에 반용매(antisolvent)를 첨가하여 용매의 용해력을 낮추므로써 입자를 석출시키는 방식이다. 그러나 이러한 재결정 방법은, 대부분 인체에 유해한 유기용매의 사용을 필요로 하게 되고, 또한, 석출된 입자를 여과한 후 젖은 상태에서 건조하는 동안 입자들끼리 서로 뭉쳐지는 현상이 자주 발생하여, 최종적으로 얻어진 입자의 크기가 일정하지 않을 수도 있다.
미합중국특허 제 2003/0104068 A1호에서는 고분자를 유기용매에 녹이고 여기에 단백질 약물을 녹이거나 분산시킨 후, 초 저온으로 급속냉각하여 고형화 시키고, 이를 동결건조하여 미세 분말을 제조하는 방법을 기술하고 있다. 그러나 이 경우 단백질 약물이 유기용매와의 접촉에 의해서 변성의 우려가 있으며, 또한 급속 냉각 및 동결건조의 공정을 거치므로써 공정의 경제성에도 많은 문제점이 있다.
또한, 유화를 이용하여 입자의 크기를 작게 하는 방법들이 있다. 이 방법은 화장품 분야에서 많이 사용되는 방법으로서, 난용성 물질을 열을 가하여 녹이거나 또는 유기용매를 이용하여 녹인 다음, 이를 계면활성제가 녹아있는 수용액에 첨가하면서 고속교반을 하거나, 초음파를 이용하여 분산함으로써 미세입자를 제조하는 방법이다. 그러나, 이 경우에, 미세 입자를 분말로 제조하기 위해서는 물을 제거하여야 하는데, 이 과정에서 다양한 제약이 따르게 된다. 또한, 유기용매를 사용하여 난용성 물질을 녹일 경우, 인체에 유해한 유기용매의 잔존에 대한 우려가 항상 존재한다.
미합중국특허 제2004/0067251 A1호는 활성물질을 유기용매에 녹이고, 이를 계면활성제가 녹아 있는 수용액에 분사하므로써 미세입자를 제조하는 방법을 개시하고 있다. 이 방법에서는 유기용매를 사용할 뿐만 아니라, 제조된 입자는 수용액상에 존재하기 때문에, 분말로 제조하기 위해서는 용매로 사용된 수분을 건조하여야 하는데, 수분을 건조하는 동안에 입자들간의 응집이 발생하여 재분산시에 입자들이 나노수준 크기의 입자로 재분산되기 어렵다.
근래에 와서는, 초임계유체를 이용하여 비결정형질 또는 나노입자를 제조하고자 하는 시도들이 많이 있어 왔다. 초임계유체는 임계온도와 임계압력보다 높은 온도와 압력하에 존재하는 유체이며, 일반적으로는 이산화탄소가 많이 사용된다. 초임계유체를 이용하여 나노입자를 제조하고자 하는 방법 중의 하나로서 초임계 용액 급속팽창법(rapid expansion of supercritical solution, 이하 RESS)이 알려져 있다(Tom et al. (1991) Biotechnol. Prog. 7(5):403-411.; 미합중국특허 제6,316,030 B1호; 미합중국특허 제6,352,737 B1호, 미합중국특허 제6,368,620 B2호). 이 방법에 따르면, 대상 용질을 초임계유체에 먼저 녹인 후, 그 초임계유체 용액을 비교적 낮은 압력환경으로 노즐을 통하여 급격하게 분사하게 된다. 그러면 초임계유체의 밀도가 급격하게 낮아지게 되고, 그 결과 용질에 대한 초임계유체의 용해력이 급속하게 떨어져서, 용질들이 매우 작은 입자 또는 결정으로 생성되게 된다.
초임계유체를 이용하는 다른 방법으로는 기체-반용매 재결정법(gas-antisolvent recrystallization, 이하 GAS)이 있다(Debenedetti et al. (1993) J. Control. Release 24:27-44; WO 00/37169). 이 방법에 따르면, 전통적인 유기용매에 치료약을 녹인 용액을 만들고, 이 용액을 반용매 역할을 하는 초임계유체 속으로 노즐을 통하여 분사하게 된다. 그러면 용액과 초임계유체가 서로 접촉하게 되어 급속한 부피확장이 발생하고, 그 결과 용매의 밀도 및 용해력이 떨어져서 초 과포화상태가 발생하게 되어, 용질이 핵 또는 입자를 형성하게 된다.
또한 초임계유체를 이용하여 활성물질이 녹아 있는 용액을 미세입자로 분무(nebulization)하고, 건조 가스를 이용하여 이를 건조하므로써 미세분말을 얻는 방법을 미합중국특허 제 6,630,121호에서 기술하고 있다. 이 방법은 활성물질의 초임계유체에 대한 용해도와는 무관하게 사용할 수 있는 기술이다. 한편 WO 02/38127 A2호에서는 SEDS(Solution Enhanced Dispersion by Supercritical fluids)방법을 이용하여 활성물질을 미세물질로 만들면서, 생성된 미세물질을 고분자와 같은 첨가물로 코팅하는 방법에 대하여 기술하고 있다. 또 미합중국특허 제 6,596,206 B2호에서는 유기용매에 활성물질을 녹이고, 이 용액에 초음파를 가하여 용액이 미세입자의 형태로 초임계유체에 분무되게 함으로써 활성물질이 미세입자로 제조되게 하는 기술에 대하여 기술하고 있다.
그러나, 이러한 초임계유체를 이용한 종래 기술들은 생산 배치마다의 균일성의 문제 및 상업적인 생산에 문제들이 발생한다. 이와 같은 종래 초임계 유체 활용 기술들의 문제점을 해결하고자 고체상 지질 등을 용매로서 사용하고, 초임계유체를 이용하여 활성물질의 나노분말을 제조하는 방법이 한국특허공개공보 제2005-0054819호, 2007-0107879호 그리고 2007-0107841호에서 제안된 바 있다.
본 발명은 상기와 같은 종래기술들의 문제점을 해결하고자 하는 것으로서, 특히 기존 건식분쇄에서 마이크로단위 이하의 크기를 가지는 입자를 제조하기 어려웠던 한계를 극복하고, 또한 기존 습식분쇄에서 많은 양의 물을 사용함으로 인해 분쇄공정 후 수분제거 공정과정에서 입자가 성장하여 그 크기가 커지게 되는 문제를 해결할 수 있을 뿐 아니라, 어느 정도 물에 용해되는 활성물질에 대해서도 나노입자를 간단하게 우수한 효율로 제조할 수 있는 방법을 제공하는 것이다.
본 발명에 따르면, 응집방지제로서 당류; 생체적합고분자 및/또는 계면활성제; 및 활성 물질을 물의 존재 하에 균일하게 혼합하고, 이를 건조한 뒤, 건조된 혼합물을 분쇄하는 것을 특징으로 하는, 활성물질의 나노입자 분말 제조방법이 제공된다.
본 발명의 나노입자 분말 제조방법은, 이에 한정되는 것은 아니나, 예컨대 다음과 같은 단계들을 거쳐 바람직하게 수행될 수 있다:
(1) 응집방지제로서 물에 녹는 당류를, 이를 용해시키기 위한 최소한의 물을 이용하여 녹이는 단계
(2) 상기 (1)단계에서 얻어진 당류 수용액에 생체적합고분자 및/또는 계면활성제를 첨가하고 균일하게 혼합하는 단계
(3) 상기 (2)단계에서 얻어진 혼합물에 활성 물질을 첨가하고 균일하게 반죽한 뒤, 이를 건조하는 단계
(4) 상기 (3)단계에서 얻어진 건조된 혼합물을 다양한 밀링기기를 이용하여 연속적으로 밀링하는 단계
본 발명의 나노입자의 제조방법에 있어서, 상기 활성물질은 예를 들면 의약품, 기능성 식품, 화장품 등에 있어서 생리활성을 나타내는 물질로서, 바람직하게는 생리활성을 나타내는 유기화합물, 유기금속 화합물, 천연 추출물, 펩타이드, 단백질 및 다당류로 이루어진 군으로부터 선택된 하나 이상인 것이며, 고체상 또는 액체상 등의 상온에서의 성상 및 중성 또는 이온성 등의 전기적 형태에 대한 특별한 제한은 없다.
본 명세서에 있어서, 용어 "나노입자"란, 그 90% 이상이 5㎛ 이하, 바람직하게는 2㎛ 이하, 보다 바람직하게는 1㎛ 이하, 더욱 더 바람직하게는 0.5㎛ 이하의 평균입경을 가지는 입자를 의미한다.
본 발명에 있어서 응집방지제로 사용되는 당류란, 단당류 화합물, 이당류 화합물, 다당류 화합물 및 당 알코올을 포함하며, 특히 포도당, 락토스, 만니톨, 슈크로즈, 자일리톨, 키토산, 녹말 섬유질 등을 포함하는 개념이다.
본 발명에 있어서 사용가능한 생체적합고분자 및/또는 계면활성제는 의약품 식품 및 화장품에 사용되는 것으로, 이온성, 비이온성 등의 제한이 없으며, 또한 상온에서 액상, 왁스 또는 고체상 등 그 성상에 제한이 없다.
본 발명에 있어서 사용가능한 생체적합고분자 및 계면활성제에는 특별한 제한이 없으며, 활성물질의 나노입자화를 위해 사용가능한 것으로 알려진 공지의 생체적합고분자 및 계면활성제, 또는 신규한 것이라 하더라도 활성물질의 나노입자화를 위해 사용가능한 것이라면 무엇이라도 본 발명에 적용될 수 있다. 생체적합고분자의 구체적인 예로는 젤라틴(gelatin), 카제인(casein), 덱스트란(dextran), 아라비아고무(gum acacia), 트래거캔스 고무(tragacanth), 폴리에틸렌 글리콜(polyethylene glycols), 카복시메틸 셀룰로오즈(carboxymethylcellulose), 하이드록시 프로필 셀룰로오즈(hydroxypropylcellulose), 하이드록시프로필 메틸셀룰로오즈(hydroxypropyl methylcellulose), 메틸세룰로오즈(methyl cellulose), 하이드록시에틸셀룰로오즈(hydroxyethyl cellulose), 하이드록시프로필 메틸셀룰로오즈 프탈레이트 (hydroxypropyl methyl cellulose phthalate), 비결정질 셀룰로오즈(noncrystalline cellulose), 폴리비닐알코올(polyvinyl alcohol), 폴리비닐 피롤리돈(polyvinypyrrolidone), 플록사머(poloxamers), 유드라짓(eudragit ®), 라이소자임(lysozyme), 알부민(albumin) 등을 들 수 있고, 계면활성제의 구체적인 예로는 세틸 피리디움 클로라이드(cetyl pyridinium chloride), 인지질(phospholipids), 지방산(fatty acid), 벤잘코니움 클로라이드 (benzalkonium chloride) 칼슘스테아레이트 (calcium stearate), 글리세린 지방산 에스터(glycerin esters of fatty acid), 지방산 알코올(fatty alcohol), 세토마크로콜(cetomacrogol), 폴리옥시에틸렌 알킬 에테르(polyoxyethylene alkyl ethers), 소르비탄 에스테르(sorbitan esters), 폴리옥시에틸렌 캐스터 오일 유도체(polyoxyethylene castor oil derivatives), 폴리옥시에틸렌 소르비탄 지방산 에스테르(polyoxyethylene sorbitan fatty acid esters), 도데실 트리메틸 암모니움 브로마이드(dodecyl trimethyl ammonium bromide), 폴리옥시에틸렌 스테아레이트(polyoxyethylene stearate), 소디움 라우릴 설페이트(sodium lauryl sulfate), 자당지방산 에스테르(sucrose fatty acid ester) PEG-콜레스테롤(PEG-cholesterol) PEG-비타민 E (PEG-vitamin E) 등을 들 수 있다. 이들을 단독으로 또는 혼합되어 사용가능하다. 그러나 상기한 구체적인 예들로 제한되는 것은 결코 아니다.
본 발명의 일 구체예에 따르면, 응집방지제로 사용될 당류는 이후의 단계에서 첨가될 활성물질 1중량부에 대하여 0.5~5중량부가 사용된다. 당류를 반응기에 넣고 이 당류가 완전히 용해될 정도만큼의 소량의 물, 예컨대, 당류 1g에 대해 0.5ml 내지 10ml를 가한다. 보다 구체적으로는, 슈크로즈 1g에 물 0.5 ml, 락토스 1g에 물 5 ml, 포도당 1g에 물 1 ml, 만니톨 1g에 물 5.5 ml, 자일리톨 1g에 물 1.5 ml 그리고 자일로스 1g에 물 0.8ml가 사용된다. 당류에 물을 첨가한 후 40~70℃로 가온하여 당을 완전히 용해시킨다.
본 발명의 일 구체예에 따르면, 생체적합고분자 및/또는 계면활성제는 활성물질 1중량부당 0.01~10중량부가 사용된다. 예컨대 상기와 같이 하여 얻어진 당류 수용액에 이후의 단계에서 첨가될 활성물질 1중량부당 생체적합고분자 및/또는 계면활성제를 0.01~10중량부를 첨가하고, 40~70℃에서 균일하게 용해 또는 혼합한다. 그리고 여기에 활성물질을 첨가한 뒤, 반죽기 등을 이용하여 균일하게 혼합한다. 반죽기로는 롤러형, 암형 등 그 형태에 관계없이 균일하게 혼합할 수 있는 어떠한 것이라도 사용가능하다.
이렇게 얻어진 당류-생체적합고분자 및/또는 계면활성제-활성 물질의 혼합물을 건조하여 수분의 함량이 물 이외의 고형분 무게 대비 0.1~15중량%, 보다 바람직하게는 0.5~7중량% 정도가 되게 한다. 건조 형태에 특별한 제약은 없다.
건조된 결과물 내의 수분 함량은, 활성물질의 종류에 따라 이후의 분쇄공정의 효율에 중요한 영향을 미칠 수 있다. 일반적으로 활성물질의 녹는점이 높으면 수분의 함량을 높이는 것이 분쇄공정에서 유리하며, 활성물질의 녹는점이 낮으면 수분의 함량을 낮게 하는 것이 분쇄공정에서 유리하다. 그러나 수분의 함량이 너무 높으면 (예컨대 15 중량% 초과) 분쇄될 혼합물의 점도가 낮아져서 분쇄시에 전단력이 재대로 전달되지 못하고, 따라서 나노입자로의 분쇄효율이 낮아질 수 있다. 수분의 함량이 너무 낮으면 (예컨대 0.1중량% 미만) 분쇄기에 너무 높은 토크가 걸려서 원활한 분쇄가 어렵고, 롤밀의 경우 균일한 분쇄가 어려울 수 있다. 이러한 문제점들로 인해 건조후 혼합물의 수분함량을 체크하고 분쇄 공정 전에 수분의 보충이 필요할 경우 물을 첨가하고 그레뉼레이션하는 공정이 필요할 수도 있다. 또한 이렇게 추가로 첨가된 수분의 존재는 분쇄과정에서 발생하는 많은 열을 흡수할 수 있고, 또한 분쇄장비의 마모를 줄여서 그로 인해 발생할 수 있는 오염의 문제를 줄일 수 있다.
건조된 혼합물은 분쇄과정, 바람직하게는 반복적 또는 연속적인 분쇄 과정을 거친다. 이 분쇄과정은 혼합물 구성성분들, 그 중에서도 특히 활성물질과 생체적합고분자 및/또는 계면활성제를 압착에 의해 응집시켰다가 전단력에 의해 분쇄하는 과정으로, 이 때 응집방지제로 사용된 당류들이 활성물질의 반복적 분쇄를 보다 용이하게 하고, 그에 따라 활성물질의 나노입자를 보다 효율적으로 제조할 수 있도록 한다. 이러한 분쇄공정에 사용되는 기기는 압착과 분쇄를 동시에 수행할 수 있는 장비이면 제한없이 사용가능하다. 특히 압출기(extruder), 롤밀(Roll Mill) 및 로드밀 등을 이용하여 연속 분쇄공정을 수행하면 보다 효율적으로 나노수준의 입자를 제조할 수 있다.
분쇄공정은 일반적으로 90℃ 이하, 바람직하게는 60℃ 이하, 보다 바람직하게는 40℃ 이하, 보다 더 바람직하게는 30℃ 이하에서 수행한다. 낮은 온도에서 분쇄공정을 수행함으로 인해 열에 의한 활성물질의 변형을 막을 수 있을 뿐만 아니라, 결정형 입자의 경우 결정성을 유지할 수 있고, 또한 생성된 입자들이 재응집되는 것을 막는 데에도 효과적이다.
한편, 본 발명의 다른 구체예에 따르면, 먼저 응집방지제 당류를 생체적합고분자 및/또는 계면활성제와 함께 나노입자화한 후, 이를 활성 물질과 균일하게 혼합하고, 그 혼합물을 분쇄하여, 활성물질의 나노입자 분말을 제조할 수 있다. 여기서 응집방지제 당류를 생체적합고분자 및/또는 계면활성제와 함께 나노입자화한 이후의 활성물질과의 혼합 및 분쇄공정은 앞서 설명한 바와 같다. 또한, 당류를 생체적합고분자 및/또는 계면활성제와 함께 나노입자화한 후, 이를 소량의 물과 함께 활성 물질과 균일하게 혼합하여, 결과 혼합물의 수분 함량이 고형분 무게 대비 0.1~15중량%로 조정될 수도 있다.
이러한 응집방지제 나노입자 혼합물은 예컨대 한국특허공개공보 제2005-0054819호, 2007-0107879호 그리고 2007-0107841호에 기재된 방법을 이용하여 제조될 수 있다. 구체적으로는, 생체적합고분자 및/또는 계면활성제를 고체상 지질과 함께 70℃로 가열하여 녹인 용액에, 호모믹서(Homo-mixer)를 이용하여 고속교반을 하면서 응집방지제를 녹인 수용액을 첨가하여 유화한다. 유화가 이루어진 시점이란, 고체상 지질의 오일상과 수용액층의 상분리가 없는 균일한 형태의 혼합용액이 이루어진 시점을 의미한다. 유화가 충분히 이루어지면 서서히 냉각하여 50 ℃ 이하에서 냉각판 또는 SUS 트레이에 부어 굳히고 감압건조공정을 이용하여 수분을 제거한 후 초임계유체를 이용하여 고형지질을 제거함으로써 응집방지제를 나노화할 수 있다.
상기에서 고체상 용매(‘고체상 지질’이라고도 한다)란, 실온, 즉, 30℃ 이하의 온도에서 고체상을 유지하고, 녹는점이 30~150℃, 바람직하게는 30~90℃로 비교적 낮으며, 초임계유체에 대한 용해도가 큰 화합물을 의미하며, 그 예로는 한국특허공개공보 제2005-0054819호에 제시된 것들을 들 수 있다. 구체적으로는, 탄소수 10~22의 포화 지방산 및 그 에스테르 화합물 및 그 알코올 화합물; 탄소수 10~22의 포화지방산기를 갖는 모노- 또는 디-글리세라이드 화합물; 탄소수 16 이상의 탄화수소; 탄소수 10~22의 트리글리세라이드 화합물의 지방산 환원 화합물; 1,6-헥산디올과 같은 탄소수 6~22, 바람직하게는 탄소수 6~10의 선형 또는 분지형 디올 화합물; 및 이들의 혼합물로 이루어진 군으로부터 선택된 하나 이상인 것이 사용될 수 있다.
본 발명에 따르면, 활성물질 함유 입자의 분쇄시 입자 크기를 수십마이크로미터 이하로 미세하게 한 당류의 존재로 인하여 기존 건식분쇄에서 마이크로단위 이하의 크기를 가지는 입자를 제조하기 어려웠던 한계를 극복하고, 또한 기존 습식분쇄에서 많은 양의 물을 사용함으로 인해 분쇄공정 후 수분제거 공정과정에서 입자가 성장하여 그 크기가 커지게 되는 문제를 해결할 수 있을 뿐 아니라, 어느 정도 물에 용해되는 활성물질에 대해서도 나노입자를 간단하게 우수한 효율로 제조할 수 있다.
도 1은 실시예 1에서 제조된 식물성스테롤 나노입자의 입도 분석 그래프이다.
도 2는 실시예 2에서 제조된 코엔자임Q10 나노입자의 입도 분석 그래프이다.
도 3은 실시예 3에서 제조된 옥타코사놀 나노입자의 입도 분석 그래프이다.
도 4는 실시예 5에서 제조된 식물성스테롤 나노입자의 입도 분석 그래프이다.
도 5는 실시예 6에서 제조된 코엔자임Q10 나노입자의 입도 분석 그래프이다.
도 6은 실시예 9에서 제조된 페노피브레이트 나노입자의 입도 분석 그래프이다.
도 7은 실시예 10에서 제조된 이트라코나졸 나노입자의 입도 분석 그래프이다.
도 8은 실시예 11에서 제조된 메게스트롤 아세테이트 나노입자의 입도 분석 그래프이다.
도 9는 실시예 12에서 제조된 나프록센 나노입자의 입도 분석 그래프이다.
도 10은 실시예 13에서 제조된 탈리프루메이트 나노입자의 입도 분석 그래프이다.
도 11은 실시예 15에서 제조된 코엔자임Q10 나노입자의 입도 분석 그래프이다.
이하 실시예들을 통하여 본 발명을 상세히 설명하나, 이에 의해 본 발명이 한정되는 것은 아니다.
실시예 1
슈크로즈 30 g을 물 15 ml에 넣고 상온에서 2시간동안 서서히 교반하여 완전히 녹이고, 계면활성제로서 자당지방산에스터 6 g과 폴리소르베이트 (80) 1.5 g을 첨가하여 20분간 60℃에서 교반하여 균일한 혼합물을 제조하였다. 이 혼합물에 활성물질로서 식물성스테롤 30 g을 첨가하고 상온에서 1시간동안 교반하여 반죽형태의 혼합물을 얻었다. 이 혼합물을 감압건조하여 건조분말 65 g을 수득하였다. 이 건조분말에 2.5 ml의 물을 첨가하여 그레뉼레이션을 한 후, 롤밀을 이용하여 상온에서 분쇄공정을 30회 수행한 후 감압 건조하여 나노화된 식물성스테롤 63 g을 수득하였다. 이 분말을 60~70℃에서 30분간 교반하고 상온에서 1시간 교반한 후 Horiba LA950을 이용하여 입도를 분석하였다. 분석결과는 다음과 같으며(단위: 마이크로미터), 입도분석 그래프를 도 1에 나타내었다.
Figure PCTKR2011001956-appb-I000001
실시예 2
슈크로즈 40 g을 물 30 ml에 넣고 상온에서 2시간동안 서서히 교반하여 완전히 녹이고, 계면활성제로서 자당지방산에스터 10 g과 폴리소르베이트 (80) 0.5 g을 첨가하여 20분 동안 60℃에서 교반하여 균일한 혼합물을 제조하였다. 이 혼합물에 활성물질로서 코엔자임Q10 10 g을 첨가하고 60℃에서 20분 동안 교반한 후, 상온에서 30분간 반죽하여 반죽형태의 혼합물을 얻었다. 이 혼합물을 상온에서 감압건조하여 건조분말 63 g (수분함량: 약 5%)을 수득하였다. 이 건조분말을 롤밀을 이용하여 상온에서 분쇄공정을 20회 수행한 후 감압 건조하여 나노화된 코엔자임Q10 59 g을 수득하였다. 이 분말을 60~70℃에서 30분간 교반하고 상온에서 1시간 교반한 후 Horiba LA950을 이용하여 입도를 분석하였다. 분석결과는 다음과 같으며(단위: 마이크로미터), 입도분석 그래프를 도 2에 나타내었다.
Figure PCTKR2011001956-appb-I000002
실시예 3
슈크로즈 12 g을 물 9 ml에 넣고 상온에서 2시간동안 서서히 교반하여 완전히 녹이고, 계면활성제로서 자당지방산에스터 3 g과 폴리소르베이트 (80) 0.15 g을 첨가하여 20분 동안 60℃에서 교반하여 균일한 혼합물을 제조하였다. 이 혼합물에 활성물질로서 옥타코사놀 3 g을 첨가하고 80~85℃에서 20분 동안 교반한 후, 상온에서 30분간 반죽하여 반죽형태의 혼합물을 얻었다. 이 혼합물을 상온에서 감압건조하여 건조분말 18.4 g을 수득하였다. 이 건조분말에 1 ml의 물을 첨가하여 그레뉼레이션을 한 후 롤밀을 이용하여 상온에서 분쇄공정을 30회 수행하여 나노화된 옥타코사놀 17.3 g을 수득하고, Horiba LA950을 이용하여 입도를 분석하였다. 분석결과는 다음과 같으며(단위: 마이크로미터), 입도분석 그래프를 도 3에 나타내었다.
Figure PCTKR2011001956-appb-I000003
실시예 4
슈크로즈 20 g을 물 15 ml에 넣고 상온에서 2시간동안 서서히 교반하여 완전히 녹이고, 계면활성제로서 자당지방산에스터 5 g과 폴리소르베이트 (80) 0.5 g을 첨가하여 1시간동안 60℃에서 교반하여 균일한 혼합물을 제조하였다. 이 혼합물에 활성물질로서 타이로신 10 g을 첨가하고 60℃에서 1시간동안 교반하여 반죽형태의 혼합물을 얻었다. 이 혼합물을 상온에서 감압건조하여 건조분말 34 g을 수득하였다. 이 건조분말에 2.5 ml의 물을 첨가하여 그레뉼레이션을 한 후 롤밀을 이용하여 상온에서 분쇄공정을 20회 수행하여 나노화된 타이로신 33 g을 수득하였다.
실시예 5
슈크로즈 30 g을 물 15 ml에 넣고 상온에서 2시간동안 서서히 교반하여 완전히 녹이고, 계면활성제로서 폴리그리세린지방산에스터 15 g과 자당지방산에스터 1.5 g을 첨가하여 20분간 60℃에서 교반하여 균일한 혼합물을 제조하였다. 이 혼합물에 활성물질로서 식물성스테롤 30 g을 첨가하고 상온에서 1시간동안 교반하여 반죽형태의 혼합물을 얻었다. 이 혼합물을 감압건조하여 건조분말 76 g을 수득하였다. 이 건조분말에 2.5 ml의 물을 첨가하여 그레뉼레이션을 한 후 롤밀을 이용하여 상온에서 분쇄공정을 30회 수행한 후 감압 건조하여 나노화된 식물성스테롤 73 g을 수득하였다. 이 분말을 상온에서 30분간 교반 후 70℃이상에서 30분간 교반하여 분산하고 그 용액을 Horiba LA950을 이용하여 입도를 분석하였다. 분석결과는 다음과 같으며(단위: 마이크로미터), 입도분석 그래프를 도 4에 나타내었다.
Figure PCTKR2011001956-appb-I000004
실시예 6
슈크로즈 40 g을 물 30 ml에 넣고 상온에서 2시간동안 서서히 교반하여 완전히 녹이고, 계면활성제로서 폴리글리세롤지방산에스터(HLB 12) 20 g과 폴리글리세린지방산에스터 (HLB 14) 1 g을 첨가하여 20분 동안 60℃에서 교반하여 균일한 혼합물을 제조하였다. 이 혼합물에 활성물질로서 코엔자임Q10 20 g을 첨가하고 60℃에서 20분 동안 교반한 후, 상온에서 30분간 반죽하여 반죽형태의 혼합물을 얻었다. 이 혼합물을 상온에서 감압건조하여 건조분말 85 g (수분함량: 약 5%)을 수득하였다. 이 건조분말을 롤밀을 이용하여 상온에서 분쇄공정을 20회 수행한 후 감압 건조하여 나노화된 코엔자임Q10 78 g을 수득하였다. 이 분말을 상온에서 10분간 교반하고, 38~43℃에서 30분간 교반한 후 Horiba LA950을 이용하여 입도를 분석하였다. 분석결과는 다음과 같으며(단위: 마이크로미터), 입도분석 그래프를 도 5에 나타내었다.
Figure PCTKR2011001956-appb-I000005
실시예 7
슈크로즈 40 g을 물 30 ml에 넣고 상온에서 2시간동안 서서히 교반하여 완전히 녹이고, 계면활성제로서 자당지방산에스터 10 g과 폴리소르베이트 (80) 0.5 g을 첨가하여 1시간동안 60℃에서 교반하여 균일한 혼합물을 제조하였다. 이 혼합물에 활성물질로서 칼슘카보네이트 10 g을 첨가하고 60℃에서 1시간동안 교반하여 반죽형태의 혼합물을 얻었다. 이 혼합물을 상온에서 감압건조하여 건조분말 60 g을 수득하였다. 이 건조분말에 2.5 ml의 물을 첨가하여 그레뉼레이션을 한 후 롤밀을 이용하여 상온에서 분쇄공정을 20회 수행하여 나노화된 칼슘카보네이트를 58 g을 수득하였다.
실시예 8
미리스틸 알코올 180 g과 플록사머 (188) 3 g을 혼합한 후 70℃로 가열하여 완전히 녹인 용액을, 락토오스 18 g을 증류수 180 g에 완전히 녹인 용액에 서서히 첨가하면서 호모믹서(Tokushu Kika, Mark II)로 4000 rpm으로 혼합한 후 50 ℃로 냉각하고, 이 용액을 상온의 스테인레스 트레이에 부어 굳힌 후 감압 건조하였다. 건조된 분말 195 g을 초임계추출기에 넣고 20℃이하 70~90기압에서 미리스틸 알코올을 추출제거하여 나노화된 락토오스 20 g을 수득하였다.
실시예 9
실시예 8에서 제조한 나노화된 락토오스와 플록사머(188)의 혼합물 10.5 g, 페노피브레이트(fenofibrate) 5 g 그리고 증류수 0.5 ml을 가정용 믹서를 이용하여 균일하게 혼합한 후, 이 혼합물을 롤밀을 이용하여 상온에서 분쇄공정을 30회 수행한 후 감압 건조하여 나노화된 페노피브레이트(fenofibrate) 15 g을 수득하였다. 이 분말을 상온에서 10분간 교반하고 1분간 초음파처리를 한 후 Horiba LA950을 이용하여 입도를 분석하였다. 분석결과는 다음과 같으며(단위: 마이크로미터), 입도분석 그래프를 도 6에 나타내었다.
Figure PCTKR2011001956-appb-I000006
실시예 10
실시예 8에서 제조한 나노화된 락토오스와 플록사머(188)의 혼합물 10.5 g, 이트라코나졸(Itraconazole) 5 g 그리고 증류수 0.5 ml을 가정용 믹서를 이용하여 균일하게 혼합한 후, 이 혼합물을 롤밀을 이용하여 상온에서 분쇄공정을 30회 수행한 후 감압 건조하여 나노화된 이트라코나졸 15 g을 수득하였다. 이 분말을 상온에서 10분간 교반하고 3분간 초음파처리를 한 후 Horiba LA950을 이용하여 입도를 분석하였다. 분석결과는 다음과 같으며(단위: 마이크로미터), 입도분석 그래프를 도 7에 나타내었다.
Figure PCTKR2011001956-appb-I000007
실시예 11
실시예 8에서 제조한 나노화된 락토오스와 플록사머(188)의 혼합물 10.5 g, 메게스트롤 아세테이트(Megestrol acetate) 5 g 그리고 증류수 0.5 ml을 가정용 믹서를 이용하여 균일하게 혼합한 후, 이 혼합물을 롤밀을 이용하여 상온에서 분쇄공정을 30회 수행한 후 감압 건조하여 나노화된 메게스트롤 아세테이트 15 g을 수득하였다. 이 분말을 상온에서 10분간 교반하고 3분간 초음파처리를 한 후 Horiba LA950을 이용하여 입도를 분석하였다. 분석결과는 다음과 같으며(단위: 마이크로미터), 입도분석 그래프를 도 8에 나타내었다.
Figure PCTKR2011001956-appb-I000008
실시예 12
실시예 8에서 제조한 나노화된 락토오스와 플록사머(188)의 혼합물 10.5 g, 나프록센(Naproxen) 5 g 그리고 증류수 0.5 ml을 가정용 믹서를 이용하여 균일하게 혼합한 후, 이 혼합물을 롤밀을 이용하여 상온에서 분쇄공정을 30회 수행한 후 감압 건조하여 나노화된 나프록센 15 g을 수득하였다. 이 분말을 상온에서 10분간 교반하고 3분간 초음파처리를 한 후 Horiba LA950을 이용하여 입도를 분석하였다. 분석결과는 다음과 같으며(단위: 마이크로미터), 입도분석 그래프를 도 9에 나타내었다.
Figure PCTKR2011001956-appb-I000009
실시예 13
실시예 8에서 제조한 나노화된 락토오스와 플록사머(188)의 혼합물 10.5 g, 탈리프루메이트(Talniflunate) 5 g 그리고 증류수 0.5 ml을 가정용 믹서를 이용하여 균일하게 혼합한 후, 이 혼합물을 롤밀을 이용하여 상온에서 분쇄공정을 30회 수행한 후 감압 건조하여 나노화된 탈리프루메이트 15 g을 수득하였다. 이 분말을 상온에서 10분간 교반하고 3분간 초음파처리를 한 후 Horiba LA950을 이용하여 입도를 분석하였다. 분석결과는 다음과 같으며(단위: 마이크로미터), 입도분석 그래프를 도 10에 나타내었다.
Figure PCTKR2011001956-appb-I000010
실시예 14
라우릭 산 90 g과 폴리그리세린지방산에스터 3 g을 혼합한 후 70℃로 가열하여 완전히 녹인용액을, 만니톨 12 g을 증류수 60 g에 완전히 녹인 용액에 서서히 첨가하면서 호모믹서(Tokushu Kika, Mark II)로 4000 rpm으로 혼합한 후 50 ℃로 냉각하고, 이 용액을 상온의 스테인레스 트레이에 부어 굳힌 후 감압 건조하였다. 건조된 분말 100 g을 초임계추출기에 넣고 15℃이하 60~80기압에서 라우릭산을 추출제거하여, 나노화된 만니톨 14g을 수득하였다.
실시예 15
실시예 14에서 제조한 나노화된 만니톨과 폴리그리세린지방산에스터의 혼합물 10 g, 코엔자임Q10 2 g 그리고 증류수 0.3 ml을 가정용 믹서를 이용하여 균일하게 혼합한 후, 이 혼합물을 롤밀을 이용하여 상온에서 분쇄공정을 30회 수행한 후 감압 건조하여 나노화된 코엔자임Q10 14 g을 수득하였다. 이 분말을 상온에서 10분간 교반하고 3분간 초음파처리를 한 후 Horiba LA950을 이용하여 입도를 분석하였다. 분석결과는 다음과 같으며(단위: 마이크로미터), 입도분석 그래프를 도 11에 나타내었다.
Figure PCTKR2011001956-appb-I000011

Claims (11)

  1. 응집방지제로서 당류; 생체적합고분자 및/또는 계면활성제; 및 활성 물질을 물의 존재 하에 균일하게 혼합하고, 이를 건조한 뒤, 건조된 혼합물을 분쇄하는 것을 특징으로 하는, 활성물질의 나노입자 분말 제조방법.
  2. 응집방지제로서 당류를 생체적합고분자 및/또는 계면활성제와 함께 나노입자화한 후, 이를 활성 물질과 균일하게 혼합하고 분쇄하는 것을 특징으로 하는, 활성물질의 나노입자 분말 제조방법.
  3. 제1항 또는 제2항에 있어서, 활성물질이 생리활성을 나타내는 유기화합물, 유기금속 화합물, 천연 추출물, 펩타이드, 단백질 및 다당류로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 방법.
  4. 제1항 또는 제2항에 있어서, 응집방지제로서 당류가 단당류 화합물, 이당류 화합물, 다당류 화합물 및 당 알코올로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 방법.
  5. 제1항 또는 제2항에 있어서, 생체적합고분자가 젤라틴, 카제인, 덱스트란, 아라비아고무, 트래거캔스 고무, 폴리에틸렌 글리콜, 카복시메틸 셀룰로오즈, 하이드록시 프로필 셀룰로오즈, 하이드록시프로필 메틸셀룰로오즈, 메틸셀룰로오즈, 하이드록시에틸셀룰로오즈, 하이드록시프로필 메틸셀룰로오즈 프탈레이트, 비결정질 셀룰로오즈, 폴리비닐알코올, 폴리비닐 피롤리돈, 플록사머, 유드라짓, 라이소자임 및 알부민으로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 방법.
  6. 제1항 또는 제2항에 있어서, 계면활성제가 세틸 피리디움 클로라이드, 인지질, 지방산, 벤잘코니움 클로라이드 칼슘스테아레이트, 글리세린 지방산 에스터, 지방산 알코올, 세토마크로콜, 폴리옥시에틸렌 알킬 에테르, 소르비탄 에스테르, 폴리옥시에틸렌 캐스터 오일 유도체, 폴리옥시에틸렌 소르비탄 지방산 에스테르, 도데실 트리메틸 암모니움 브로마이드, 폴리옥시에틸렌 스테아레이트, 소디움 라우릴 설페이트, 자당지방산 에스테르, PEG-콜레스테롤 및 PEG-비타민 E로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 방법.
  7. 제1항에 있어서, 당류, 생체적합고분자 및/또는 계면활성제, 및 활성 물질의 혼합물 제조시 사용되는 물의 양이 당류 1g에 대해 0.5ml 내지 10ml인 것을 특징으로 하는 방법.
  8. 제1항에 있어서, 당류, 생체적합고분자 및/또는 계면활성제, 및 활성 물질의 혼합물의 건조 후 수분 함량이 물 이외의 고형분 무게 대비 0.1~15중량%인 것을 특징으로 하는 방법.
  9. 제2항에 있어서, 당류를 생체적합고분자 및/또는 계면활성제와 함께 나노입자화한 후, 그 결과물을 활성 물질과 균일하게 혼합한 혼합물의 수분 함량이 고형분 무게 대비 0.1~15중량%로 조정된 것을 특징으로 하는 방법.
  10. 제1항 또는 제2항에 있어서, 당류, 생체적합고분자 및/또는 계면활성제, 및 활성 물질의 혼합물을, 그 건조후 분쇄전에 물의 존재 하에 그레뉼레이션하는 것을 특징으로 하는 방법.
  11. 제1항 또는 제2항에 있어서, 분쇄는 압출기, 롤밀 또는 로드밀을 이용한 연속 분쇄공정에 의해 수행되는 것을 특징으로 하는 방법.
PCT/KR2011/001956 2010-03-22 2011-03-22 나노입자 제조방법 WO2011118960A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2011230144A AU2011230144B2 (en) 2010-03-22 2011-03-22 Method for preparing nano-particles
EP11759709.6A EP2551237A4 (en) 2010-03-22 2011-03-22 PROCESS FOR THE PREPARATION OF NANOPARTICLES
CN201180015605.2A CN102858682B (zh) 2010-03-22 2011-03-22 纳米颗粒制备方法
CA2793241A CA2793241C (en) 2010-03-22 2011-03-22 Method for preparing nano-particles
JP2013501184A JP5793179B2 (ja) 2010-03-22 2011-03-22 ナノ粒子の製造方法
US13/635,717 US8828445B2 (en) 2010-03-22 2011-03-22 Method for preparing nano-particles utilizing a saccharide anti-coagulant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100025486 2010-03-22
KR10-2010-0025486 2010-03-22

Publications (2)

Publication Number Publication Date
WO2011118960A2 true WO2011118960A2 (ko) 2011-09-29
WO2011118960A3 WO2011118960A3 (ko) 2012-01-26

Family

ID=44673746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001956 WO2011118960A2 (ko) 2010-03-22 2011-03-22 나노입자 제조방법

Country Status (8)

Country Link
US (1) US8828445B2 (ko)
EP (1) EP2551237A4 (ko)
JP (1) JP5793179B2 (ko)
KR (1) KR101834940B1 (ko)
CN (1) CN102858682B (ko)
AU (1) AU2011230144B2 (ko)
CA (1) CA2793241C (ko)
WO (1) WO2011118960A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168437A1 (ja) * 2012-05-11 2013-11-14 株式会社アクティバスファーマ 有機化合物ナノ粉体、その製造方法ならびに懸濁液
US10806770B2 (en) 2014-10-31 2020-10-20 Monash University Powder formulation

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8684466B2 (en) 2011-01-21 2014-04-01 Michael Blair Modular knock-down upholstered furniture
US9763514B2 (en) 2011-01-21 2017-09-19 Michael Blair Knock-down furniture
KR101794032B1 (ko) 2011-09-21 2017-11-07 (주)바이오시네틱스 나노입자 제조방법
KR102239352B1 (ko) 2013-09-27 2021-04-13 대우조선해양 주식회사 원유저장탱크 레벨 및 밀도측정장치, 이의 밀폐시스템
WO2015137289A1 (ja) * 2014-03-10 2015-09-17 国立大学法人 東京大学 水分散性非晶質粒子及びその調製方法
KR101865712B1 (ko) * 2016-11-17 2018-06-08 주식회사 프롬바이오 나노입자화를 통해 분산력 및 수용화력이 높아진 매스틱 검 수용액 제조방법
KR20180118519A (ko) * 2017-04-21 2018-10-31 (주)바이오시네틱스 지질을 밀링 공정의 윤활제로 이용하는 활성물질 나노입자의 제조 방법
CN108409821A (zh) * 2018-03-19 2018-08-17 青岛国海生物制药有限公司 一种醋酸甲地孕酮纳米结晶的制备方法及醋酸甲地孕酮
JP2020152673A (ja) * 2019-03-20 2020-09-24 株式会社リコー ナノ粒子及びナノ粒子の製造方法、並びに医薬
CN109965167B (zh) * 2019-04-15 2022-02-15 江南大学 一种二十八烷醇运动饮料及其制备方法
CN114470508B (zh) * 2022-01-26 2023-07-21 中原工学院 一种具有药物缓释作用的理疗盐枕材料、制备方法和应用

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145684A (en) 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5202129A (en) 1989-08-04 1993-04-13 Tanabe Seiyaku Co., Ltd. Process for micronizing slightly-soluble drug
US5302401A (en) 1992-12-09 1994-04-12 Sterling Winthrop Inc. Method to reduce particle size growth during lyophilization
US5534270A (en) 1995-02-09 1996-07-09 Nanosystems Llc Method of preparing stable drug nanoparticles
WO2000037169A1 (en) 1998-12-21 2000-06-29 Smithkline Beecham Plc Process and apparatus for producing particles using a supercritical fluid
US6316030B1 (en) 1998-10-14 2001-11-13 Cognis Deutschland Gmbh Use of nanoscale sterols and sterol esters
US6352737B1 (en) 1999-06-25 2002-03-05 Cognis Deutschland Gmbh Use of nanoscale sterols and sterol esters
US6368620B2 (en) 1999-06-11 2002-04-09 Abbott Laboratories Formulations comprising lipid-regulating agents
WO2002038127A2 (en) 2000-11-09 2002-05-16 Nektar Therapeutics Uk Limited Particle formation methods and their products
US20020168402A1 (en) 2000-12-22 2002-11-14 Kipp James E. Microprecipitation method for preparing submicron suspensions
US20030104068A1 (en) 2000-01-14 2003-06-05 Brown University Research Foundation Micronized freeze-dried particles
US6592903B2 (en) 2000-09-21 2003-07-15 Elan Pharma International Ltd. Nanoparticulate dispersions comprising a synergistic combination of a polymeric surface stabilizer and dioctyl sodium sulfosuccinate
US6596206B2 (en) 2001-03-30 2003-07-22 Picoliter Inc. Generation of pharmaceutical agent particles using focused acoustic energy
US20030185869A1 (en) 2002-02-04 2003-10-02 Elan Pharma International Ltd. Nanoparticulate compositions having lysozyme as a surface stabilizer
US6630121B1 (en) 1999-06-09 2003-10-07 The Regents Of The University Of Colorado Supercritical fluid-assisted nebulization and bubble drying
US20040067251A1 (en) 2000-11-03 2004-04-08 Dow Chemical Company Preparation of drug particles using evaporation precipitation into aqueous solutions
KR20050054819A (ko) 2003-12-05 2005-06-10 김갑식 고체상 지질을 용매로 이용한 나노수준의 또는 비결정질입자의 제조 방법
KR20070107879A (ko) 2006-05-04 2007-11-08 김갑식 저온 및 저압 하에서 초임계유체를 이용한 나노수준의활성물질 입자 제조방법
KR20070107841A (ko) 2006-05-04 2007-11-08 김갑식 디올 화합물을 이용한 나노수준의 활성물질 입자 제조 방법
WO2008126797A1 (ja) 2007-04-06 2008-10-23 Activus Pharma Co., Ltd. 微粉砕化有機化合物粒子の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612053A (en) * 1995-04-07 1997-03-18 Edward Mendell Co., Inc. Controlled release insufflation carrier for medicaments
US20070092563A1 (en) * 1996-10-01 2007-04-26 Abraxis Bioscience, Inc. Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
EP1117384A1 (en) 1998-10-01 2001-07-25 Elan Pharma International Limited Controlled release nanoparticulate compositions
DE19932157A1 (de) * 1999-07-13 2001-01-18 Pharmasol Gmbh Verfahren zur schonenden Herstellung von hochfeinen Mikropartikeln und Nanopartikeln
GB0305941D0 (en) 2003-03-14 2003-04-23 Camurus Ab Composition
WO2006028074A1 (ja) * 2004-09-07 2006-03-16 Mitsubishi Chemical Corporation 微粒子化された物質の製造方法および微粒子化された物質
KR100810736B1 (ko) 2006-08-21 2008-03-07 광주과학기술원 다당류-기능화 나노입자 및 수화젤 담체를 포함하는복합체, 이를 포함하는 서방형 약물전달 제제, 뼈충진제 및이들의 제조방법
WO2007070843A2 (en) * 2005-12-15 2007-06-21 Acusphere, Inc. Processes for making particle-based pharmaceutical formulations for oral administration
SG150075A1 (en) * 2006-08-11 2009-03-30 Panacea Biotec Ltd Particles for delivery of active ingredients, process of making and compositions thereof
CN101322692B (zh) * 2008-07-22 2010-09-29 海南本创医药科技有限公司 注射用盐酸克林霉素纳米粒制剂

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202129A (en) 1989-08-04 1993-04-13 Tanabe Seiyaku Co., Ltd. Process for micronizing slightly-soluble drug
US5145684A (en) 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5302401A (en) 1992-12-09 1994-04-12 Sterling Winthrop Inc. Method to reduce particle size growth during lyophilization
US5534270A (en) 1995-02-09 1996-07-09 Nanosystems Llc Method of preparing stable drug nanoparticles
US6316030B1 (en) 1998-10-14 2001-11-13 Cognis Deutschland Gmbh Use of nanoscale sterols and sterol esters
WO2000037169A1 (en) 1998-12-21 2000-06-29 Smithkline Beecham Plc Process and apparatus for producing particles using a supercritical fluid
US6630121B1 (en) 1999-06-09 2003-10-07 The Regents Of The University Of Colorado Supercritical fluid-assisted nebulization and bubble drying
US6368620B2 (en) 1999-06-11 2002-04-09 Abbott Laboratories Formulations comprising lipid-regulating agents
US6352737B1 (en) 1999-06-25 2002-03-05 Cognis Deutschland Gmbh Use of nanoscale sterols and sterol esters
US20030104068A1 (en) 2000-01-14 2003-06-05 Brown University Research Foundation Micronized freeze-dried particles
US6592903B2 (en) 2000-09-21 2003-07-15 Elan Pharma International Ltd. Nanoparticulate dispersions comprising a synergistic combination of a polymeric surface stabilizer and dioctyl sodium sulfosuccinate
US20040067251A1 (en) 2000-11-03 2004-04-08 Dow Chemical Company Preparation of drug particles using evaporation precipitation into aqueous solutions
WO2002038127A2 (en) 2000-11-09 2002-05-16 Nektar Therapeutics Uk Limited Particle formation methods and their products
US20020168402A1 (en) 2000-12-22 2002-11-14 Kipp James E. Microprecipitation method for preparing submicron suspensions
US6596206B2 (en) 2001-03-30 2003-07-22 Picoliter Inc. Generation of pharmaceutical agent particles using focused acoustic energy
US20030185869A1 (en) 2002-02-04 2003-10-02 Elan Pharma International Ltd. Nanoparticulate compositions having lysozyme as a surface stabilizer
KR20050054819A (ko) 2003-12-05 2005-06-10 김갑식 고체상 지질을 용매로 이용한 나노수준의 또는 비결정질입자의 제조 방법
KR20070107879A (ko) 2006-05-04 2007-11-08 김갑식 저온 및 저압 하에서 초임계유체를 이용한 나노수준의활성물질 입자 제조방법
KR20070107841A (ko) 2006-05-04 2007-11-08 김갑식 디올 화합물을 이용한 나노수준의 활성물질 입자 제조 방법
WO2008126797A1 (ja) 2007-04-06 2008-10-23 Activus Pharma Co., Ltd. 微粉砕化有機化合物粒子の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEM, PHARM, BULL., vol. 55, no. 3, 2007, pages 359 - 363
DEBENEDETTI ET AL., J CONTROL. RELEASE, vol. 24, 1993, pages 27 - 44
LACHMAN ET AL.: "The Theory and Practice of Industrial Pharmacy", 1986, pages: 45
TOM ET AL., BIOTECHNOL. PROG, vol. 7, no. 5, 1991, pages 403 - 411
VANDYM N. MOCAHLIN ET AL., PHARMACEUTICAL RESERCH, vol. 26, no. 6, June 2009 (2009-06-01), pages 1365 - 1370

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168437A1 (ja) * 2012-05-11 2013-11-14 株式会社アクティバスファーマ 有機化合物ナノ粉体、その製造方法ならびに懸濁液
CN104203217A (zh) * 2012-05-11 2014-12-10 株式会社活效制药 有机化合物纳米粉体及其制造方法、以及悬浮液
JPWO2013168437A1 (ja) * 2012-05-11 2016-01-07 株式会社アクティバスファーマ 有機化合物ナノ粉体、その製造方法ならびに懸濁液
US9278071B2 (en) 2012-05-11 2016-03-08 Activus Pharma Co., Ltd. Organic compound nano-powder, method for producing the same and suspension
RU2613109C2 (ru) * 2012-05-11 2017-03-15 Активус Фарма Ко., Лтд. Нанопорошки органических соединений, способы их получения и их суспензии
TWI579004B (zh) * 2012-05-11 2017-04-21 活效製藥股份有限公司 有機化合物奈米粉末、其製造方法及懸浮液
KR101772263B1 (ko) * 2012-05-11 2017-08-28 액티버스 파마 컴퍼니 리미티드 유기 화합물 나노분체, 그 제조 방법 및 현탁액
US10806770B2 (en) 2014-10-31 2020-10-20 Monash University Powder formulation

Also Published As

Publication number Publication date
CN102858682B (zh) 2014-07-16
US8828445B2 (en) 2014-09-09
US20130005643A1 (en) 2013-01-03
EP2551237A2 (en) 2013-01-30
JP5793179B2 (ja) 2015-10-14
AU2011230144B2 (en) 2015-01-22
CA2793241A1 (en) 2011-09-29
KR101834940B1 (ko) 2018-03-06
CN102858682A (zh) 2013-01-02
WO2011118960A3 (ko) 2012-01-26
CA2793241C (en) 2020-07-14
JP2013522358A (ja) 2013-06-13
EP2551237A4 (en) 2014-01-22
AU2011230144A1 (en) 2012-10-18
KR20110106247A (ko) 2011-09-28

Similar Documents

Publication Publication Date Title
WO2011118960A2 (ko) 나노입자 제조방법
Yang et al. Investigation of a nanosuspension stabilized by Soluplus® to improve bioavailability
EP1689669B1 (en) Method for preparing nano-scale or amorphous particle using solid fat as a solvent
EP1423096A1 (en) A process for preparing crystalline drug particles by means of precipitation
CN104398477A (zh) 一种松萝酸纳米混悬液及其制备方法和用途
CA2651346C (en) Method for preparing nano-scale particle of active material
WO2018194283A1 (ko) 지질을 밀링 공정의 윤활제로 이용하는 활성물질 나노입자의 제조 방법
WO2013042978A1 (ko) 나노입자 제조방법
KR101342121B1 (ko) 저온 및 저압 하에서 초임계유체를 이용한 나노수준의활성물질 입자 제조방법
AU2013206706B2 (en) Method for preparing nano-scale particle of active material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015605.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759709

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2793241

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011759709

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13635717

Country of ref document: US

Ref document number: 8044/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2013501184

Country of ref document: JP

Ref document number: 2011230144

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011230144

Country of ref document: AU

Date of ref document: 20110322

Kind code of ref document: A