WO2015137289A1 - 水分散性非晶質粒子及びその調製方法 - Google Patents

水分散性非晶質粒子及びその調製方法 Download PDF

Info

Publication number
WO2015137289A1
WO2015137289A1 PCT/JP2015/056879 JP2015056879W WO2015137289A1 WO 2015137289 A1 WO2015137289 A1 WO 2015137289A1 JP 2015056879 W JP2015056879 W JP 2015056879W WO 2015137289 A1 WO2015137289 A1 WO 2015137289A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
amorphous particles
organic solution
amorphous
organic
Prior art date
Application number
PCT/JP2015/056879
Other languages
English (en)
French (fr)
Inventor
栄一 中村
幸治 原野
直人 稲越
超 劉
Original Assignee
国立大学法人 東京大学
東和薬品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 東和薬品株式会社 filed Critical 国立大学法人 東京大学
Priority to US15/124,001 priority Critical patent/US20170014352A1/en
Priority to JP2016507739A priority patent/JPWO2015137289A1/ja
Priority to KR1020167024244A priority patent/KR20160133434A/ko
Priority to EP15760926.4A priority patent/EP3118276A4/en
Priority to CN201580012908.7A priority patent/CN106068319A/zh
Publication of WO2015137289A1 publication Critical patent/WO2015137289A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/10Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in stationary drums or troughs, provided with kneading or mixing appliances
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5325Aromatic phosphine oxides or thioxides (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane

Definitions

  • the present invention relates to water-dispersible amorphous particles and a method for preparing the same.
  • Sub-micrometer size particles have a wide range of applicability in the fields of pharmaceutical manufacturing, printing technology and organic electronic devices.
  • Non-Patent Documents 1 to 3 Sub-micrometer-sized inorganic particles, semiconductor particles, and polymer particles can be easily prepared and have been extensively studied.
  • the present inventors have introduced an organic compound in which an organic compound is dissolved and water by introducing one liquid into the other liquid and mixing the organic solution and water.
  • the inventors have found that submicrometer-sized spherical amorphous particles containing can be prepared with good reproducibility, and have led to the present invention.
  • the method of the present invention it is possible to easily and accurately prepare submicrometer-sized spherical amorphous particles containing a low-molecular organic compound.
  • the obtained particles have a wide range of applicability in the fields of pharmaceutical production, printing, and organic electronic devices.
  • the amorphous particles of the present invention can exhibit excellent effects in the following respects.
  • active ingredients of pharmaceutical products tend to have a complex structure and increase fat solubility with the aim of improving activity, and as a result, solubility in water often becomes a problem.
  • the particles of the present invention are amorphous particles, the solubility can be improved as compared with crystal particles of the same compound.
  • the amorphous particles of the present invention have a small particle size, they can contribute to the improvement of the solubility of the active ingredient.
  • the amorphous particles of the present invention are effective for use as an inhalation preparation. If a specific example is given, the application to the dry powder inhalation formulation which is an administration form used for a bronchial asthma therapeutic agent etc. can be considered. In order to exert the medicinal effect of the preparation, it is necessary to make the active ingredient small enough to reach the deep lung. As a method for refining the active ingredient, pulverization with a hammer mill, a jet mill or the like is widely used, but there is a limit to the refining by this method.
  • the amorphous particles of the present invention can be an ideal inhalation formulation.
  • the active ingredient preferably has a homogeneous spherical shape, but it has been difficult to obtain such particles.
  • technologies such as bitterness masking technology as a response to the bitterness of active ingredients and enteric coating technology for dissolving and absorbing in the intestine instead of the stomach are widely used in formulation.
  • a spherical shape that is as uniform as possible is desirable instead of a needle shape or a plate shape.
  • Homogeneous spherical particles have a small specific surface area compared to needle-like particles and plate-like particles, and can be uniformly coated with a small masking substrate, so that both the quality and productivity of the preparation itself can be improved. Furthermore, also from the viewpoint of countermeasures against tableting troubles, the risk of tableting troubles can be suppressed by reducing the specific surface area by making the active ingredient spherical, and suppressing adhesion to the wrinkle surface during tableting. Since the amorphous particles of the present invention are spherical, the above effects can be expected.
  • the scanning electron microscope (SEM) image of what spin-coated the aqueous dispersion of the amorphous particle obtained in Example 1 on indium tin oxide (ITO) is shown.
  • the SEM image of what spin-coated the aqueous dispersion of the amorphous particle obtained in Example 2 on indium tin oxide (ITO) is shown.
  • the change of the particle size of the amorphous particle accompanying the change of the THF solution concentration is shown.
  • Fig. 4 shows the change in the particle size of amorphous particles depending on the change in injection rate when a THF solution of PhH is injected into water.
  • the time-dependent change of the particle diameter of the amorphous particle in a dispersion liquid is shown.
  • the analysis result by the dynamic light scattering (DLS) method of the aqueous dispersion of the amorphous particle obtained in Example 9 is shown.
  • the SEM image of the freeze-dried body of the amorphous particle obtained in Example 9 is shown.
  • the powder X-ray-diffraction result of the freeze-dried body of the amorphous particle obtained in Example 9 is shown.
  • the SEM image of what spin-coated the aqueous dispersion of the amorphous particle obtained in Example 10 on indium tin oxide (ITO) is shown.
  • the SEM image of the freeze-dried body of the amorphous particle obtained in Example 10 is shown.
  • the powder X-ray-diffraction result of the freeze-dried body of the amorphous particle obtained in Example 10 is shown.
  • the analysis result by the DLS method of the dispersion liquid of the amorphous particle obtained in Example 11 is shown.
  • the SEM image of the freeze-dried body of the amorphous particle obtained in Example 11 is shown.
  • the analysis result by the DLS method of the dispersion liquid of the amorphous particle obtained in Example 12 is shown.
  • the SEM image of the freeze-dried body of the amorphous particle obtained in Example 12 is shown.
  • the powder X-ray-diffraction result of the freeze-dried body of the amorphous particle obtained in Example 12 is shown.
  • FIG. 2 is a schematic diagram of the reaction of Example 1.
  • FIG. 2 is a schematic diagram of a reaction apparatus of Example 11.
  • FIG. 1 shows a Y-shaped microreactor having two liquid supply paths and a combined flow path where the two liquid supply paths merge.
  • One embodiment of the present invention is a spherical water-dispersible amorphous particle having a particle size of 10 nm to 990 nm and a PDI of 0.01 to 0.5, and includes an organic compound having a molecular weight of 50 to 1500.
  • Amorphous particles are also referred to as “amorphous particles of the present invention”.
  • submicrometer means 1 nm or more and less than 1 ⁇ m.
  • particles having a particle size of a submicrometer size are also referred to as “Submicron Particles” or “SMPs”.
  • SMPs The amorphous particles of the present invention are also referred to as “SMPs of the present invention” below.
  • amorphous particles are amorphous particles that are not in a crystalline state. Whether or not it is an amorphous particle is not particularly limited, for example, by showing no diffraction peak in powder X-ray diffraction, or by scanning electron microscope observation or by limited-field electron diffraction using a transmission electron microscope It is determined.
  • the “particle size” is an average particle size, and is defined as a particle size (z average) measured using a dynamic light scattering (DLS) method.
  • the particle size thus measured is also called the hydrodynamic diameter.
  • the particle size of the amorphous particles of the present invention is 10 nm to 990 nm, preferably 30 nm to 500 nm.
  • polydispersity index is an index for evaluating the width of the particle size distribution, and is in the range of 0 to 1.
  • a value of 0 represents an ideal suspension with no diameter distribution.
  • a distribution having a PDI value of 0.1 or less is called monodisperse, while a dispersion having a value between 0.1 and 0.3 is considered to have a narrow diameter distribution.
  • a dispersion with a PDI greater than 0.5 is considered polydisperse.
  • the polydispersity index is calculated from the values obtained using the Dynamic Light Scattering (DLS) method.
  • DLS Dynamic Light Scattering
  • the polydispersity index (PDI) of the amorphous particles of the present invention is 0.01 to 0.5, preferably 0.01 to 0.2.
  • the amorphous particles of the present invention contain an organic compound having a molecular weight of 50 to 1500, preferably 200 to 800, or substantially consist of the organic compound, or consist of the organic compound.
  • impurities that can be mixed during the preparation of the amorphous particles of the present invention may be contained in the amorphous particles.
  • the organic compound that is a component of the amorphous particles of the present invention includes a free form (that is, a form that does not form a complex with other compounds) and a salt thereof (the free form compound is a biofunctional substance or a medicine). In some cases, it may be in the form of a pharmaceutically acceptable salt thereof, or a solvate thereof, or a mixture thereof.
  • the “salt” is not particularly limited.
  • a salt with an inorganic acid such as sulfuric acid, hydrochloric acid, hydrobromic acid, phosphoric acid, nitric acid, acetic acid, oxalic acid, lactic acid, tartaric acid, fumaric acid, Maleic acid, citric acid, benzenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, benzoic acid, camphorsulfonic acid, ethanesulfonic acid, glucoheptonic acid, gluconic acid, glutamic acid, glycolic acid, malic acid, malonic acid, mandelic acid , Salts with organic acids such as galactaric acid and naphthalene-2-sulfonic acid, salts with one or more metal ions such as lithium ion, sodium ion, potassium ion, calcium ion, magnesium ion, zinc ion and aluminum ion
  • pharmaceutically acceptable salt refers to a salt of a free compound that is pharmaceutically acceptable and has a desired pharmacological activity. As long as such conditions are satisfied, the pharmaceutically acceptable salt may be any of the above-mentioned salts, for example.
  • solvate refers to a molecular complex of a free compound or salt compound and one or more solvent molecules. Although it does not specifically limit as a solvate, For example, a hydrate, alcohol solvate (For example, methanol solvate, ethanol solvate, propanol solvate, isopropanol solvate) etc. are mentioned.
  • the amorphous particles of the present invention are spherical.
  • spherical means that the average sphericity is usually 0.80 or more, preferably 0.85 or more, more preferably 0.90 or more, and particularly preferably 0.95 or more.
  • sphericity is one of the indices indicating the degree of sphericity of a particle. The value of a sphere is 1.0, and the closer the sphericity is to 1.0, the more similar the shape of the particle is to a sphere. To do.
  • 4 ⁇ S / L 2 is used as the sphericity.
  • the sphericity can be calculated by performing image analysis processing using image analysis software (for example, WinROOF (Mitani Corporation)).
  • image analysis software for example, WinROOF (Mitani Corporation)
  • “average sphericity” is obtained by calculating the sphericity of 100 particles randomly selected from a sample, and taking the average value as the average sphericity.
  • the amorphous particles of the present invention are water dispersible.
  • water dispersibility means that the compound forms an emulsion, microemulsion or suspension in water at room temperature.
  • the distribution coefficient “logP” means the concentration ratio of the target substance in the 1-octanol layer and the aqueous layer when the target substance is added to a mixed solution of 1-octanol and water and equilibrium is reached. Is expressed as a common logarithm, and is a general parameter indicating the hydrophobicity of a substance. Compounds with a high log P value exhibit higher hydrophobicity. On the other hand, a compound having a low logP value exhibits higher hydrophilicity.
  • the log P of the organic compound in the present specification is an actual measurement value described in a publicly known document. For fullerene derivatives and polycyclic aromatic hydrocarbons, ACD / ChemSketch version 14.01 (Advanced Chemistry Development, Inc.) is used. Calculated value.
  • the organic compound used in the amorphous particles of the present invention is not particularly limited, but is preferably an organic compound having a certain degree of hydrophobicity.
  • logP is preferably 2.0 or more, and more preferably 4.0 or more.
  • the solubility of the organic compound used in the amorphous particles of the present invention in water is preferably 0.3 mg / mL or less at 25 ° C.
  • the organic compound used in this invention is not specifically limited, For example, it is the following compounds.
  • Fullerene derivatives such as C8H, DPPF, PC 61 BM, PC 71 BM, PCBNB, PhH, SIMEF2, and F1H shown below.
  • a compound such as formoterol, lansoprazole, cholesterol, simvastatin, telmisartan, or a pharmaceutically acceptable salt thereof (eg, formoterol fumarate), or a solvate thereof (eg, a hydrate or an alcohol solvate) ).
  • the amorphous particles of the present invention may exist as a dispersion in a mixed liquid of water and an organic solvent, or may exist as an aqueous dispersion. Or it may exist as a dry body (for example, freeze-dried body).
  • One aspect of the present invention is a method for preparing amorphous particles of the present invention, comprising the following steps: (1) An organic solution is prepared by dissolving an organic compound in a water-miscible organic solvent; (2) It relates to the above preparation method, comprising introducing one liquid of the organic solution and water into the other liquid and mixing the organic solution and water to prepare a dispersion of the amorphous particles. .
  • the preparation method is also referred to as “the method of the present invention” below.
  • an organic compound is dissolved in a water-miscible organic solvent to prepare an organic solution of the organic compound.
  • the organic solvent is not particularly limited as long as it is miscible with water.
  • lower alcohols straight-chain or branched monovalent, divalent or trivalent alcohols having 1 to 6 carbon atoms such as methanol, ethanol, etc.
  • Propanol isopropanol, butanol, isobutanol, tert-butanol, ethylene glycol, propylene glycol, glycerin, diethylene glycol, diethylene glycol monoethyl ether), tetrahydrofuran, acetone, N, N-dimethylformamide, dimethyl sulfoxide, or a mixed solvent thereof is there.
  • the boiling point is lower than that of water, more preferably methanol and tetrahydrofuran.
  • concentration of the organic compound in the organic solution is not particularly limited, but is preferably 0.1 ⁇ M to 100 mM, more preferably 0.1 mM to 100 mM, and particularly preferably 1 mM to 10 mM.
  • the organic compound used in this step may be a solvate (for example, hydrate or alcohol solvate) of the organic compound constituting the amorphous particles prepared by the method of the present invention.
  • an organic solution of an organic compound and water are mixed to prepare a dispersion of amorphous particles.
  • the mixing step is performed by introducing one of the organic solution and water into the other.
  • “Introduction” in the above mixing process is the start stage of the mixing process in which the organic solution and water are finally mixed.
  • injection the case where one of the organic solution and the water is introduced into the other.
  • “Introduction” includes the case where one liquid and the other liquid are brought into contact with each other at the interface in order to mix the organic solution and water.
  • “Introduction” does not include dropping one of the organic solution and water onto the liquid surface of the other solution.
  • flow may be caused to flow by, for example, stirring the liquid in the reaction vessel, or may be caused to flow by sending the liquid into the reaction tube.
  • the pH of water used in the method of the present invention may be any of acidic, neutral and alkaline as long as the stability of the organic compound as a substrate is not impaired.
  • the volume ratio of the organic solution to water used in the method of the present invention is not particularly limited, but is preferably 1: 1 to 1: 100, more preferably 1: 2 to 1:10.
  • the mixing temperature in the mixing step can be arbitrarily determined in the range from the freezing point to the boiling point of the solvent used, but is preferably 1 to 40 ° C, and preferably 15 to 30 ° C.
  • One embodiment of the mixing step is performed by injecting the organic solution into water while stirring the water.
  • the injection method is not particularly limited, for example, a syringe is used and the tip of the syringe needle is placed in the solution.
  • the injection rate of the organic solution is preferably kept constant. More preferably, the organic solution is injected at a time at a constant injection rate.
  • the injection rate of the organic solution is preferably 0.01X to 10X mL / min, more preferably 0.1X to 5X mL / min with respect to X mL of water.
  • the range of X is not particularly limited, but is preferably 1.0 ⁇ X ⁇ 4.0 ⁇ 10 6 .
  • the stirring speed is preferably 100 rpm to 1000 rpm, more preferably 300 rpm to 500 rpm.
  • Another embodiment of the mixing step is performed by injecting water into the organic solution while stirring the organic solution.
  • the injection method is not particularly limited, and for example, a syringe is used to inject the tip of the syringe needle into the organic solution.
  • the water injection rate is preferably kept constant. More preferably, the water is injected at a time at a constant injection rate.
  • the water injection rate is preferably 0.01 Y to 10 Y mL / min, more preferably 0.1 Y to 5 Y mL / min, with respect to the Y mL organic solution.
  • the range of Y is not particularly limited, but preferably 1.0 ⁇ Y ⁇ 1.0 ⁇ 10 6 .
  • the stirring speed is preferably 100 rpm to 1000 rpm, more preferably 300 rpm to 500 rpm.
  • Another embodiment of the mixing step is performed by bringing the organic solution and water into contact with each other at the interface while flowing the organic solution and water.
  • the organic solution and water preferably form a laminar flow.
  • the laminar flow is a laminar flow whose Reynolds number is generally 2300 or less. This embodiment is preferably performed using a microreactor.
  • a microreactor (microflow reactor) is usually defined as a device that has a microchannel (microchannel) having an equivalent diameter of several mm or less, preferably smaller than 1000 ⁇ m, and performs a reaction in the microchannel.
  • the equivalent diameter is the diameter when the cross section of the flow path is converted into a circle.
  • both the size and flow velocity are small, and the flow is dominated by laminar flow. While the fluids that perform the reaction flow in a laminar state in the flow path, they react while diffusing only by the spontaneous behavior of the molecules.
  • Microreactors are not only mixed by spontaneous diffusion of molecules without special mixing mechanism, but also using small flow reactors or static micromixers (static micromixers) Some can carry out the reaction in a steady state.
  • the static micromixer is an apparatus typified by a mixer having a fine flow path for mixing, as described in, for example, WO96 / 30113, and ““ microreactor ” "Chapter 3, W. Ehrfeld, V. Hessel, H. Lowe, published by Wiley-VCH”.
  • the microreactor itself used in the present invention can be selected from known ones, commercially available products, or those newly designed and prototyped for the intended reaction.
  • Commercially available microreactors include, for example, a microreactor having an interdigital channel structure, a single mixer and a caterpillar mixer manufactured by Institute, Fleet, Microtechnique Mainz (IMM); a microglass reactor manufactured by Microglass; CPC Cytos manufactured by Systems; Key Chem mixer manufactured by YMC; YM-1, YM-2 mixer manufactured by Yamatake Corporation; mixing tee and tee manufactured by Shimadzu GLC (T-shaped connector, Y-shaped connector); manufactured by Micro Chemical Co., Ltd.
  • Examples include IMT chip reactors; Toray Engineering development products, micro-high mixers, center collision type mixers (KM type), and the like, all of which can be used in the present invention.
  • FIG. 21 shows an example in which the mixing step is performed using a Y-shaped microreactor.
  • the liquid to be mixed is passed through the liquid supply paths 1a and 1b.
  • the laminar flows of both liquids come into contact with each other at their interface and are finally mixed by molecular diffusion.
  • the feeding speed of the organic solution and water can be arbitrarily determined as long as the performance of the experimental apparatus used is not exceeded. Moreover, they may be the same or different.
  • the feeding speed of the organic solution and water is the same or different, and is preferably 0.01 to 50 mL / min.
  • the prepared organic solvent / aqueous dispersion of amorphous particles can be stirred at 1 to 60 ° C. to increase the particle size of the amorphous particles over time. This is presumably because Ostwald ripening progresses when the remaining organic solvent induces monomer dissociation from the particles as a good solvent.
  • An organic solvent may optionally be added.
  • the volume amount of the organic solvent contained in the dispersion is preferably 10% to 40% with respect to the volume of the entire dispersion.
  • the increase in the particle size of the amorphous particles can be stopped by evaporating and removing the organic solvent. In this way, it is possible to easily adjust the particle size of the amorphous particles.
  • the aqueous dispersion of amorphous particles may be prepared by evaporating and distilling off the organic solvent in the dispersion of amorphous particles prepared by the method of the present invention.
  • the organic solvent is removed by evaporation, for example, by using a rotary evaporator under reduced pressure.
  • a dried product of the amorphous particles can be prepared as necessary.
  • the method is not particularly limited as long as the amorphous particles can maintain the amorphous form and the spherical shape, and the solvent is distilled off at normal pressure or reduced pressure, reduced pressure drying, freeze drying, spin coating method, drop casting method. A commonly used method can be used. Preferably it is freeze-dried.
  • the dried body of amorphous particles prepared by the method of the present invention is one embodiment of the present invention, and the drying method is, for example, the above.
  • the amorphous particles prepared by the method of the present invention are extremely stable, for example, can maintain their dispersed state and their spherical shape in water for at least several months.
  • Measurement using the DLS method was performed using a laser light scattering device (Zetasizer Nano ZS manufactured by Malvern).
  • a scanning electron microscope (SEM) image was obtained using Magellan 400L manufactured by FEI.
  • Powder X-ray diffraction was performed using Rigaku SmartLab.
  • the freeze-dryer used was FDU-1200 manufactured by EEYLA.
  • Example 1 Preparation of water-dispersible amorphous particles containing PhH (phenylpentaadduct fullerene (Ph 5 C 60 H)) as a constituent component PhH (28 mg) was dissolved in 50 mL of THF at room temperature to prepare a 500 ⁇ M solution of PhH. 5 mL of ultrapure water and a magnetic stirring bar were placed in a glass flat bottom vial and stirred at a speed of 400 rpm. 5 mL of the THF solution was taken in a gas tight syringe and attached to a syringe pump so that the tip of the syringe needle was placed in the center of the solution.
  • PhH phenylpentaadduct fullerene
  • the obtained aqueous dispersion was adjusted to 5 mL by adding water, and the particle diameter (hydrodynamic diameter) measured using a laser light scattering apparatus was 44 nm.
  • the PDI was 0.09.
  • the dispersion was spin-coated on indium tin oxide (ITO) and observed with SEM to obtain an image of spherical amorphous particles shown in FIG.
  • the dispersion was transferred to an eggplant flask and then frozen, and freeze-dried (pressure reduction: 10 Pa) using a freeze dryer to obtain 0.67 mg of a red solid.
  • the obtained solid was confirmed to be amorphous by powder X-ray diffraction.
  • Example 2 In Example 1, it carried out similarly to Example 1 except having changed the operation which inject
  • the particle size (hydrodynamic diameter) of the obtained amorphous particles was measured and found to be 96 nm.
  • the PDI was 0.04.
  • the obtained aqueous dispersion was spin-coated on indium tin oxide (ITO) and observed with an SEM to obtain an image of spherical amorphous particles shown in FIG.
  • solid was obtained by freeze-drying the aqueous dispersion. The obtained solid was confirmed to be amorphous by powder X-ray diffraction.
  • Example 3 The same procedure as in Example 1 was performed except that the concentration of the PhH in THF in Example 1 was 100 ⁇ M, 20 ⁇ M, 4 ⁇ M, and 0.8 ⁇ M.
  • FIG. 3 shows changes in the particle size of the amorphous particles accompanying changes in the THF solution concentration. An increase in the particle size of the amorphous particles was confirmed as the THF solution concentration increased.
  • Example 4 The same procedure as in Example 2 was performed except that the concentration of the PhH in THF in Example 2 was changed to 100 ⁇ M, 20 ⁇ M, 4 ⁇ M, and 0.8 ⁇ M.
  • FIG. 3 shows changes in the particle size of the amorphous particles accompanying changes in the THF solution concentration. An increase in the particle size of the amorphous particles was confirmed as the THF solution concentration increased.
  • Example 5 The same procedure as in Example 1 was performed except that the injection rate of the THF solution in Example 1 was 0.5 mL / min, 1 mL / min, 2.5 mL / min, 4 mL / min, 5 mL / min, 10 mL / min. .
  • FIG. 4 shows the change in the particle size of the amorphous particles accompanying the change in the injection rate. It was confirmed that the injection rate of the THF solution increased and the particle size of the amorphous particles decreased.
  • Example 6 The same procedure as in Example 1 was performed except that the compounds listed in Table 1 below were used instead of PhH in Example 1, and the concentration of the THF solution of the compound was changed to 100 ⁇ M. In any case, it was possible to prepare water-dispersible spherical amorphous particles. Table 1 shows the particle diameter and PDI value of the obtained amorphous particles.
  • Example 7 The same procedure as in Example 2 was performed except that the compounds listed in Table 2 below were used instead of PhH in Example 2 and the concentration of the THF solution of the compound was changed to 100 ⁇ M. In any case, water-dispersible amorphous particles could be prepared satisfactorily. Table 2 shows the particle size and PDI value of the obtained amorphous particles.
  • amorphous particles could be obtained by applying the method of the present invention even when pentacene, which was known to be a compound that crystallizes easily, was used.
  • Example 8 Adjustment of the particle size of water-dispersible amorphous particles by adding THF 30% by volume of water in the aqueous dispersion of amorphous particles prepared in Example 1 containing PhH as a constituent component Of THF was injected. After injection of THF, the particle size of the amorphous particles increased with time (FIG. 5).
  • Example 10 Preparation of amorphous particles containing lansoprazole as a constituent component
  • a magnetic stirrer 400 rpm
  • Table 3 shows the analysis results of the amorphous particle powders obtained in Example 9 and Example 10 by the DLS method.
  • Example 11 Preparation of amorphous particles containing formoterol fumarate as a constituent using a microreactor Formoterol fumarate hydrate was dissolved in THF to prepare a 0.5 mM solution (solution A). On the other hand, purified water was prepared, and this was designated as B solution. Using two syringe pumps, liquid A at a flow rate of 0.01 mL / min, liquid B at a flow rate of 0.04 mL / min, channel diameter of 0.5 mm (width) x 0.1 mm (depth), mixing unit was passed through a stainless steel micromixer (Y-shaped) (Key Chem mixer KC-MY-SUS type manufactured by YMC) for 1 minute at room temperature and mixed.
  • Y-shaped Key Chem mixer KC-MY-SUS type manufactured by YMC
  • FIG. 1 Liquid A is passed from the liquid supply path 1a, liquid B is passed from the liquid supply path 1b, the laminar flows of both liquids are brought into interface contact with each other in the combined flow path 2, and finally mixed by molecular diffusion. It was.
  • this mixed solution was analyzed by the DLS method, the particle size distribution of FIG. 12 was obtained (particle size 141 nm, PDI 0.124).
  • the mixture was concentrated under reduced pressure using a rotary evaporator, and the concentrated solution was lyophilized to obtain amorphous particles containing formoterol fumarate as a constituent component as a white powder.
  • a sample in which a part of this powder was fixed to an aluminum pin stub using a carbon double-sided tape was prepared and observed with an SEM to obtain an image of spherical particles shown in FIG.
  • Example 12 Preparation of amorphous particles containing formoterol fumarate as a constituent component Formoterol fumarate hydrate was dissolved in THF-methanol 9: 1 (v / v) to prepare a 2.5 mM solution.
  • THF-methanol 9: 1 (v / v) was prepared a 2.5 mM solution.
  • a magnetic stirrer 400 rpm
  • 40 mL of purified water was continuously injected at room temperature over 1 minute and mixed.
  • the stirring was stopped and analysis was performed by the DLS method, the particle size distribution (particle size 145 nm, PDI 0.052) of FIG. 14 was obtained.
  • the concentrated liquid obtained by concentrating this liquid under reduced pressure using a rotary evaporator was lyophilized to obtain amorphous particles containing formoterol fumarate as a constituent component as a white powder.
  • a sample in which a part of this powder was fixed to an aluminum pin stub using a carbon double-sided tape was prepared and observed with an SEM to obtain an image of spherical particles shown in FIG.
  • the powder X-ray diffraction of this powder was measured, it was shown by the diffraction pattern shown in FIG. 16 that it was amorphous.
  • Example 13 Preparation of Amorphous Particles Containing Formoterol Fumarate as a Constituent Formoterol fumarate was dissolved in methanol to prepare a 5 mM solution, and 1 mL of this solution was placed in a 5 mL glass bottle. 4 mL of purified water was continuously poured into the glass bottle over 10 minutes at room temperature while vigorously stirring (400 rpm) with a magnetic stirrer. When the stirring was stopped and analysis was performed by the DLS method, the particle size distribution (particle size 120 nm, PDI 0.183) of FIG. 17 was obtained.
  • the concentrated liquid obtained by concentrating this liquid under reduced pressure using a rotary evaporator was lyophilized to obtain amorphous particles containing formoterol fumarate as a constituent component as a white powder.
  • a sample in which a part of the powder was fixed to an aluminum pin stub using a carbon double-sided tape was prepared and observed with an SEM to obtain an image of spherical particles shown in FIG.
  • the powder X-ray diffraction of this powder was measured, it was shown by the diffraction pattern shown in FIG. 19 that it was amorphous.
  • the present invention it is possible to prepare submicrometer-sized spherical amorphous particles containing a low molecular organic compound easily and with good reproducibility.
  • the obtained particles have various applicability in the fields of pharmaceutical production, printing, and organic electronic devices.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pain & Pain Management (AREA)
  • Pulmonology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Otolaryngology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Colloid Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Glanulating (AREA)

Abstract

 本発明は、粒径が10nm~990nmであり、PDIが0.01~0.5である、球形の水分散性非晶質粒子であって、分子量50~1500の有機化合物を含む、前記非晶質粒子、及びその調製方法に関する。

Description

水分散性非晶質粒子及びその調製方法
 本発明は、水分散性非晶質粒子及びその調製方法に関する。
 サブマイクロメートルサイズの粒子は、医薬品製造分野、印刷技術分野及び有機電子デバイス分野などにおいて、幅広い応用可能性を有する。
 サブマイクロメートルサイズの無機粒子、半導体粒子及びポリマー粒子は容易に調製することができ、広く研究されてきた(非特許文献1~3)。
Xu, L. G. et al., Chem Soc. Rev. 2013, 42, 3114 Sakaino, H. et al., J. Am. Chem. Soc. 2012, 134, 15684 Kuehne, A. J. C. et al., Nat. Commun. 2012, 3, 1088
 しかし、低分子有機化合物を構成成分として含むサブマイクロメートルサイズの球形非晶質粒子の調製について実際に報告された例はない。
 したがって本発明は、低分子有機化合物を含むサブマイクロメートルサイズの球形非晶質粒子、およびその調製方法の提供を課題とする。
 本発明者らは上記課題に鑑み、鋭意検討した結果、有機化合物を溶解した有機溶液及び水のうち一方の液を他方の液に導入して有機溶液と水とを混合することで、有機化合物を含むサブマイクロメートルサイズの球形非晶質粒子を再現性良く調製できることを見出し、本発明に至った。
 すなわち本発明は、以下の態様を有する。
[1]
 粒径が10nm~990nmであり、PDIが0.01~0.5である、球形の水分散性非晶質粒子であって、分子量50~1500の有機化合物を含む、前記非晶質粒子。
[2]
 前記有機化合物のlogPが2.0以上である、[1]に記載の非晶質粒子。
[3]
 前記有機化合物の水に対する溶解度が25℃において0.3mg/mL以下である、[1]又は[2]に記載の非晶質粒子。
[4]
 前記有機化合物が、ホルモテロール、ランソプラゾール、コレステロール、シンバスタチン及びテルミサルタン、並びに薬学的に許容されるそれらの塩、並びにそれらの溶媒和物からなる群から選択される、[1]~[3]のいずれか1つに記載の非晶質粒子。
[5]
 乾燥体である、[1]~[4]のいずれか1つに記載の非晶質粒子。
[6]
 [1]~[5]のいずれか1つに記載の非晶質粒子の調製方法であって、以下のステップ:
(1)水混和性有機溶媒に有機化合物を溶解して有機溶液を調製し;
(2)前記有機溶液及び水のうち一方の液を他方の液に導入して前記有機溶液と水とを混合し、前記非晶質粒子の分散液を調製すること
を含む、前記調製方法。
[7]
 前記(1)で調製された有機溶液中の有機化合物の濃度が0.1μM~1000mMである、[6]に記載の方法。
[8]
 前記(2)における有機溶液と水との混合が、前記有機溶液を水中に、水を撹拌しながら注入することによって行われる、[6]又は[7]に記載の方法。
[9]
 前記有機溶液の注入速度が、X mLの水に対して0.01X mL/分~10X mL/分である、[8]に記載の方法。
[10]
 前記(2)における有機溶液と水との混合が、水を前記有機溶液中に、前記有機溶液を撹拌しながら注入することによって行われる、[6]又は[7]に記載の方法。
[11]
 水の注入速度が、Y mLの有機溶液に対して0.01Y mL/分~10Y mL/分である、[10]に記載の方法。
[12]
 前記(2)における有機溶液と水との混合が、前記有機溶液および水を流動させながら、両者を接触させることによって行われる、[6]又は[7]に記載の方法。
[13]
 前記(2)における有機溶液と水との混合がマイクロリアクターを用いて行われる、[12]に記載の方法。
[14]
 前記(2)で調製された非晶質粒子の分散液を1~60℃で撹拌し、それにより前記非晶質粒子の粒径を増大させることをさらに含む、[6]~[13]のいずれか1つに記載の方法。
[15]
 前記(2)で調製された非晶質粒子の分散液中の有機溶媒を蒸発留去して、前記非晶質粒子の水分散液を調製することをさらに含む、[6]~[14]のいずれか1つに記載の方法。
[16]
 非晶質粒子の分散液から前記非晶質粒子の乾燥体を調製することをさらに含む、[6]~[15]のいずれか1つに記載の方法。
 本発明の方法によれば、低分子有機化合物を含むサブマイクロメートルサイズの球形非晶質粒子を簡便にかつ再現性良く調製することが可能である。得られた粒子は医薬品製造分野、印刷分野及び有機電子デバイス分野などにおいて幅広い応用可能性を有する。
 特に医薬分野において、本発明の非晶質粒子は以下の点で優れた効果を発揮し得る。
(1)溶解性の向上効果
 近年医薬品の活性成分は活性の向上を目指して構造が複雑化して脂溶性が高まる傾向にあり、その結果として水への溶解性が課題となる場合が多い。本発明の粒子は非晶質粒子であるため、同一化合物の結晶粒子よりも溶解性を向上させることが可能である。
(2)サブマイクロメートルサイズであることに起因する効果
 本発明の非晶質粒子は粒子径が小さいため、活性成分の溶解性の改善に寄与し得る。また、本発明の非晶質粒子は吸入製剤としての使用に効果的である。具体例を挙げれば、気管支喘息治療薬などに用いられる投与形態であるドライパウダー吸入製剤への応用が考えられる。当該製剤の薬効を発揮するためには、活性成分を肺深部まで到達できる程度に小さくする必要がある。活性成分を微細化する方法としてはハンマーミルやジェットミルなどによる粉砕が汎用されているが、この方法による微細化には限界がある。本発明の非晶質粒子は、理想的な吸入製剤となり得る。
(3)球形粒子であることに起因する効果
 製造工程での操作性の観点から、活性成分の粒子形は均質な球形が望ましいが、そのような粒子を得ることは困難であった。また、活性成分の苦味への対応としての苦味マスキング技術や、胃ではなく腸で溶解・吸収させる腸溶性コーティング技術などの技術が製剤化において汎用されている。この際にコーティングする粒子の粒子形としては、針状や板状でなくできるだけ均質な球形が望ましい。均質な球形粒子は、針状粒子や板状粒子と比べて比表面積が小さく、少ないマスキング基材で均質にコーティングできることから、製剤自体の品質と生産性の両面を向上させることができる。さらに打錠障害対策の観点からも、活性成分を球形とすることで比表面積を小さくして打錠時の杵表面への付着を抑えることで、打錠障害のリスクを抑制することができる。本発明の非晶質粒子は球形であることから、上記のような効果が期待できる。
実施例1で得られた非晶質粒子の水分散液を酸化インジウムスズ(ITO)上にスピンコートしたものの走査電子顕微鏡(SEM)画像を示す。 実施例2で得られた非晶質粒子の水分散液を酸化インジウムスズ(ITO)上にスピンコートしたもののSEM画像を示す。 THF溶液濃度の変化に伴う非晶質粒子の粒径の変化を示す。 PhHのTHF溶液を水中に注入するときの注入速度の変化に依存する、非晶質粒子の粒径の変化を示す。 分散液中における非晶質粒子の粒径の経時変化を示す。 実施例9で得られた非晶質粒子の水分散液の動的光散乱(DLS)法による分析結果を示す。 実施例9で得られた非晶質粒子の凍結乾燥体のSEM画像を示す。 実施例9で得られた非晶質粒子の凍結乾燥体の粉末X線回折結果を示す。 実施例10で得られた非晶質粒子の水分散液を酸化インジウムスズ(ITO)上にスピンコートしたもののSEM画像を示す。 実施例10で得られた非晶質粒子の凍結乾燥体のSEM画像を示す。 実施例10で得られた非晶質粒子の凍結乾燥体の粉末X線回折結果を示す。 実施例11で得られた非晶質粒子の分散液のDLS法による分析結果を示す。 実施例11で得られた非晶質粒子の凍結乾燥体のSEM画像を示す。 実施例12で得られた非晶質粒子の分散液のDLS法による分析結果を示す。 実施例12で得られた非晶質粒子の凍結乾燥体のSEM画像を示す。 実施例12で得られた非晶質粒子の凍結乾燥体の粉末X線回折結果を示す。 実施例13で得られた非晶質粒子の分散液のDLS法による分析結果を示す。 実施例13で得られた非晶質粒子の凍結乾燥体のSEM画像を示す。 実施例13で得られた非晶質粒子の凍結乾燥体の粉末X線回折結果を示す。 実施例1の反応の模式図である。 実施例11の反応装置の模式図である。2個の液体供給路と、その2個の液体供給路が合流する合流路とを備えたY字型マイクロリアクターを示す。
 本発明の一態様は、粒径が10nm~990nmであり、PDIが0.01~0.5である、球形の水分散性非晶質粒子であって、分子量50~1500の有機化合物を含む、非晶質粒子である。当該非晶質粒子を、以下で「本発明の非晶質粒子」とも呼ぶ。
 本明細書において「サブマイクロメートル」とは、1nm以上であり、かつ1μm未満であることを意味する。本明細書において、サブマイクロメートルサイズの粒径を有する粒子を「サブマイクロメートル粒子(Submicron Particles)」又は「SMPs」とも呼ぶ。また、本発明の非晶質粒子を、以下で「本発明のSMPs」とも呼ぶ。
 本明細書において「非晶質粒子」は、結晶状態にない無定形の粒子のことである。非晶質粒子であるか否かは、特に限定されないが、例えば粉末X線回折において回折ピークを示さないことで、又は、走査電子顕微鏡観察によって、又は透過電子顕微鏡を用いた制限視野電子回折によって決定される。
 本明細書において「粒径」は平均粒径であり、動的光散乱(Dynamic Light Scattering: DLS)法を使用して測定された粒径(z平均)として定義される。これにより測定された粒径は、流体力学直径とも呼ばれる。
 本発明の非晶質粒子の粒径は、10nm~990nmであり、好ましくは30nm~500nmである。
 本明細書において「多分散指数(Polydispersity Index:PDI)」とは、粒径分布の幅を評価するための指数であり、0から1の範囲である。0の値は、径の分布がない理想的な懸濁液を表す。0.1以下のPDI値を有する分布は単分散と呼ばれ、一方、0.1から0.3の間の値を有する分散体は、狭い径分布を有すると考えられる。0.5より大きいPDIを有する分散体は、多分散性であると考えられる。多分散指数は、動的光散乱(Dynamic Light Scattering: DLS)法を使用して得られた値から計算される。
 本発明の非晶質粒子の多分散指数(Polydispersity Index:PDI)は、0.01~0.5であり、好ましくは0.01~0.2である。
 本発明の非晶質粒子は、分子量50~1500の、好ましくは分子量200~800の有機化合物を含むか、又は、実質的に当該有機化合物からなるか、又は、当該有機化合物からなる。なお、当該有機化合物からなる場合には、例えば本発明の非晶質粒子の調製時に混入し得る不純物が、当該非晶質粒子中に含まれても良い。
 本発明の非晶質粒子の構成成分である有機化合物は、遊離体(すなわち、それ以外の化合物と複合体を形成していない形態)、その塩(遊離体化合物が生体機能物質や医薬である場合には、好ましくは薬学的に許容されるその塩)、又はそれらの溶媒和物のいずれの形態であってもよく、あるいはそれらの混合物であってもよい。
 本明細書において「塩」とは、特に限定されないが、例えば、硫酸、塩酸、臭化水素酸、リン酸、硝酸などの無機酸との塩、酢酸、シュウ酸、乳酸、酒石酸、フマル酸、マレイン酸、クエン酸、ベンゼンスルホン酸、メタンスルホン酸、p-トルエンスルホン酸、安息香酸、カンファースルホン酸、エタンスルホン酸、グルコヘプトン酸、グルコン酸、グルタミン酸、グリコール酸、リンゴ酸、マロン酸、マンデル酸、ガラクタル酸、ナフタレン-2-スルホン酸などの有機酸との塩、リチウムイオン、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、亜鉛イオン、アルミニウムイオンなどの1種または複数の金属イオンとの塩、アンモニア、アルギニン、リシン、ピペラジン、コリン、ジエチルアミン、4-フェニルシクロヘキシルアミン、2-アミノエタノール、ベンザチンなどのアミンとの塩が挙げられる。本明細書において「薬学的に許容される塩」とは、薬学的に許容され、かつ所望の薬理学的活性を有する、遊離体化合物の塩である。そのような条件を満たす限り、薬学的に許容される塩は例えば上記のいずれの塩であってもよい。
 本明細書において「溶媒和物」とは、遊離体化合物又は塩化合物と1又は複数の溶媒分子との分子複合体のことである。溶媒和物としては特に限定されないが、例えば水和物、アルコール溶媒和物(例えば、メタノール溶媒和物、エタノール溶媒和物、プロパノール溶媒和物、イソプロパノール溶媒和物)などが挙げられる。
 本発明の非晶質粒子は球形である。本明細書において「球形」とは、平均球形度が通常0.80以上、好ましくは0.85以上、より好ましくは0.90以上、特に好ましくは0.95以上であることを示す。ここで「球形度」とは、粒子の球形の度合いを示す指標の1つであり、真球のときを1.0とし、球形度が1.0に近いほど粒子の形状は真球に類似する。具体的な計測方法としては、粒子の二次元画像を撮影し、画像解析処理を行い粒子の周囲長Lと面積Sを算出した後、φ=4πΣS/L2で表されるφを球形度として算出する。例えば、電子顕微鏡を用いて粒子画像を撮影した後、画像解析ソフト(例えばWinROOF(三谷商事株式会社))を用いて画像解析処理を行うことによって、球形度を算出することができる。本明細書における「平均球形度」は、試料から無作為に選んだ100個の粒子について球形度を求め、その平均値を平均球形度とした。
 本発明の非晶質粒子は水分散性である。本明細書において「水分散性」とは、化合物が常温の水中でエマルジョン、ミクロエマルジョンまたは懸濁液を形成することを意味する。
 本明細書中、分配係数「logP」とは、目的物質を1-オクタノールと水との混合溶液に添加し、平衡に達した時の1-オクタノール層と水層とにおける当該目的物質の濃度比を常用対数で表示したものであり、物質の疎水性を示すパラメータとして一般的である。logPの値が高い化合物は、より高い疎水性を示す。一方、logPの値が低い化合物は、より高い親水性を示す。なお、本明細書における有機化合物のlogPは公知文献に記載された実測値であるが、フラーレン誘導体及び多環芳香族炭化水素については、ACD/ChemSketch version 14.01 (Advanced Chemistry Development, Inc.) を用いて計算された計算値である。
 本発明の非晶質粒子において使用される有機化合物は特に限定されないが、好ましくはある程度の疎水性を有する有機化合物である。例えば、logPが2.0以上であることが好ましく、4.0以上であることがより好ましい。
 本発明の非晶質粒子において使用される有機化合物の水に対する溶解度は、好ましくは25℃において0.3mg/mL以下である。
 本発明において使用される有機化合物は、特に限定されないが、例えば、以下の化合物である。
(1)以下に示すC8H、DPPF、PC61BM、PC71BM、PCBNB、PhH、SIMEF2、F1Hなどのフラーレン誘導体。
Figure JPOXMLDOC01-appb-C000001
(2)ペンタセン、ピレン、ピレンカルボン酸(PyCOOH)などの多環芳香族炭化水素。
Figure JPOXMLDOC01-appb-C000002
(3)ホルモテロール、ランソプラゾール、コレステロール、シンバスタチン、テルミサルタンなどの化合物、又は薬学的に許容されるそれらの塩(例えばホルモテロールフマル酸塩)、又はそれらの溶媒和物(例えば水和物又はアルコール溶媒和物)。
Figure JPOXMLDOC01-appb-C000003
 本発明の非晶質粒子は、水と有機溶媒との混合液中の分散体として存在してもよいし、または水分散体として存在してもよい。あるいは乾燥体(例えば凍結乾燥体)として存在してもよい。
 本発明の一態様は、本発明の非晶質粒子の調製方法であって、以下のステップ:
(1)水混和性有機溶媒に有機化合物を溶解して有機溶液を調製し;
(2)前記有機溶液及び水のうち一方の液を他方の液に導入して前記有機溶液と水とを混合し、前記非晶質粒子の分散液を調製すること
を含む、前記調製方法に関する。ここで当該調製方法を、以下で「本発明の方法」とも呼ぶ。
 本発明の方法の第一ステップにおいて、水混和性有機溶媒に有機化合物を溶解して有機化合物の有機溶液を調製する。当該有機溶媒は水混和性であれば特に限定されないが、例えば低級アルコール類(直鎖または分岐鎖の炭素原子数1~6個の1価、2価又は3価アルコールであり、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、tert-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、ジエチレングリコール、ジエチレングリコールモノエチルエーテル)、テトラヒドロフラン、アセトン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、又はこれらの混合溶媒である。好ましくはその沸点が水より低いものであり、より好ましくはメタノールおよびテトラヒドロフランである。有機溶液中の有機化合物濃度は特に限定されないが、0.1μM~100mMが好ましく、0.1mM~100mMがより好ましく、1mM~10mMが特に好ましい。本ステップで使用される有機化合物は、本発明の方法で調製される非晶質粒子を構成する有機化合物の溶媒和物(例えば水和物又はアルコール溶媒和物)であってもよい。
 本発明の方法の第二ステップにおいて、有機化合物の有機溶液と水とを混合して、非晶質粒子の分散液を調製する。混合工程は、前記有機溶液及び水のうち一方の液を他方の液に導入することにより行う。
 上記混合工程における「導入」は、最終的に有機溶液と水との混合がなされる、混合工程の開始段階である。本明細書において、有機溶液及び水のうち一方の液を他方の液中に導入する場合を、特に「注入」と呼ぶ。「導入」には、有機溶液と水を混合するために、一方の液と他方の液とをそれらの界面で接触させる場合も含まれる。なお「導入」には、有機溶液及び水のうち一方の液を他方の液の液面上に滴下することは含まれない。
 有機溶液及び水のうち一方の液を他方の液に導入する場合、他方の液を流動させながら行うことが好ましい。あるいは、両方の液を流動させながら行うことも好ましい。ここで「流動」は、例えば反応容器中で液を撹拌することによって流動させてもよく、又は反応管中に液を送液することによって流動させてもよい。
 本発明の方法において使用される水のpHは、基質である有機化合物の安定性が損なわれない限り、酸性、中性およびアルカリ性のいずれであってもよい。
 本発明の方法において使用される有機溶液と水との体積比(有機溶液:水)は、特に限定されないが、1:1~1:100が好ましく、1:2~1:10がより好ましい。
 上記混合工程における混合温度は、用いる溶媒の凝固点から沸点の範囲で任意に定めることができるが、好ましくは1~40℃であり、好ましくは15~30℃である。
 上記混合工程の一実施形態は、有機溶液を水中に、水を撹拌しながら注入することによって行われる。注入方法は特に限定されないが、例えばシリンジを用いて、シリンジ針の先端を溶液中に設置して行われる。有機溶液の注入速度は、好ましくは一定に保たれる。より好ましくは、有機溶液は一定の注入速度で一度に注入される。有機溶液の注入速度は、X mLの水に対して0.01X~10X mL/分が好ましく、0.1X~5X mL/分がより好ましい。ここでXの範囲は特に限定されないが、1.0≦X≦4.0×106であることが好ましい。撹拌速度は100rpm~1000rpmが好ましく、300rpm~500rpmがより好ましい。
 上記混合工程の別の実施形態は、水を有機溶液中に、有機溶液を撹拌しながら注入することによって行われる。注入方法は特に限定されないが、例えばシリンジを用いて、シリンジ針の先端を有機溶液中に設置して注入する。水の注入速度は、好ましくは一定に保たれる。より好ましくは、水は一定の注入速度で一度に注入される。水の注入速度は、Y mLの有機溶液に対して0.01Y ~10Y mL/分が好ましく、0.1Y~5Y mL/分がより好ましい。ここでYの範囲は特に限定されないが、1.0≦Y≦1.0×106であることが好ましい。撹拌速度は100rpm~1000rpmが好ましく、300rpm~500rpmがより好ましい。
 上記混合工程の別の実施形態は、有機溶液および水を流動させながら、両者をそれらの界面で接触させることによって行われる。このとき、有機溶液および水は、好ましくは層流を形成している。ここで層流とは、レイノルズ数が一般に2300以下である層状の流れのことである。本実施形態は、好ましくはマイクロリアクターを用いて行われる。
 ここで、マイクロリアクター(マイクロフローリアクター)とは、通常数mm以下、好ましくは1000μmより小さな等価直径の微小流路(マイクロチャンネル)を有し、その微小流路内で反応を行う装置として定義される。等価直径とは流路断面を円形に換算した場合の直径である。微小流路がマイクロスケールであるマイクロリアクターの世界においては、寸法及び流速の何れも小さく、層流支配の流れとなる。反応を行う流体同士は流路内を層流状態となって流れながら、分子の自発的挙動だけで拡散しながら反応を行う。
 マイクロリアクターには、特段の混合機構を有さずに分子の自発的挙動による拡散のみによって混合されるものだけでなく、小型流動反応器、または静的マイクロミキサー(スタティックマイクロミキサー)を使用して定常状態で反応を実施できるものもある。ここで、静的マイクロミキサーとは、例えばWO96/30113号に記載されているような、混合のための微細な流路を有しているミキサーに代表される装置であり、また「“マイクロリアクターズ”第3章、W.Ehrfeld、V.Hessel、H.Lowe著、Wiley-VCH社刊」に記載されている混合機(ミキサー)である。
 本発明で用いるマイクロリアクター自体は、既知のものや市販品、目的とする反応のために新規に設計し試作されたものから選択して使用することができる。市販されているマイクロリアクターとしては、例えばインターディジタルチャンネル構造体を備えるマイクロリアクター、インスティチュート・フュール・マイクロテクニック・マインツ(IMM)社製シングルミキサーおよびキャタピラーミキサー;ミクログラス社製ミクログラスリアクター;CPCシステムス社製サイトス;ワイエムシィ社製KeyChemミキサー;山武社製YM-1、YM-2型ミキサー;島津GLC社製ミキシングティーおよびティー(T字型コネクタ、Y字型コネクタ);マイクロ化学技研社製IMTチップリアクター;東レエンジニアリング開発品マイクロ・ハイ・ミキサー;中心衝突型ミキサー(K-M型)等が挙げられ、いずれも本発明に使用することができる。
 上記混合工程を、Y字型のマイクロリアクターを用いて行った一例を図21に示す。液体供給路1aおよび1bから混合されるべき液を通液する。合流路2にて両液の層流がそれらの界面で接触して合流し、分子拡散により最終的に混合がなされる。
 上記混合工程をマイクロリアクターを用いて行う場合、有機溶液および水の送液速度は、用いる実験装置の性能を超えない限り任意に定めることができる。また、それぞれ同一であっても異なっても良い。有機溶液および水の送液速度は、それぞれ同一又は異なる速度であって、0.01~50mL/分であることが好ましい。
 本発明の方法において、調製された非晶質粒子の有機溶媒・水分散液を1~60℃で撹拌し、時間経過と共に非晶質粒子の粒径を増大させることができる。これは、残留している有機溶媒が良溶媒として粒子からのモノマー解離を誘起することで、オストワルド熟成が進行するためと考えられる。有機溶媒は、場合により追加されても良い。分散液に含まれる有機溶媒の体積量は、分散液全体の体積量に対して、好ましくは10%~40%である。この非晶質粒子の粒径の増大は、有機溶媒を蒸発除去することにより停止することができる。このようにして、非晶質粒子の粒径を容易に調節することが可能である。
 本発明の方法で調製された非晶質粒子の分散液中の有機溶媒を蒸発留去して、非晶質粒子の水分散液を調製してもよい。有機溶媒の蒸発除去は、例えば減圧下、ロータリーエバポレーターを使用することによって行われる。
 本発明の方法によって調製された非晶質粒子の分散液から、必要に応じて当該非晶質粒子の乾燥体を調製することができる。その方法としては、当該非晶質粒子がその非晶質形態及び球形状を維持できる限り特に制限はなく、常圧あるいは減圧による溶媒留去、減圧乾燥、凍結乾燥、スピンコート法、ドロップキャスト法など、一般的に用いられる方法を使用することができる。好ましくは凍結乾燥である。本発明の方法により調製された非晶質粒子の乾燥体は本発明の一態様であり、その乾燥法は例えば上記のものである。
 本発明の方法で調製される非晶質粒子は極めて安定である、例えば、水中で少なくとも数か月間、それらの分散状態及びそれらの球形状を維持することができる。
 また、本発明の方法を適用することで、結晶性の高い有機化合物(例えばペンタセン)からであっても、非晶質形態の有機粒子を調製することが可能である。
 以下に示す実施例及び比較例を参照して本発明をさらに詳しく説明するが、本発明の範囲は、これらの実施例によって限定されるものでないことは言うまでもない。
 実施例で用いた各種試薬は、特に記載の無い限り市販品を使用した。フラーレン誘導体であるPhH、C8H、DPPF、SIMEF2及びF1Hは、文献(M. Sawamura, et al. J. Am. Chem. Soc., 1996, 118, 12850-12851; H. Isobe, et al. Org. Lett., 2005, 7, 5633-5635; T. Homma, et al. J. Am. Chem. Soc., 2011, 133, 6364-6370; H. Tanaka, et al. Adv. Mater. 2012, 24, 3521-3525)に従って調製された。
 DLS法を用いた測定は、レーザー光散乱装置(Malvern社製ゼータサイザーナノZS)を用いて行った。走査電子顕微鏡(SEM)画像は、FEI社製Magellan 400Lを用いて得た。粉末X線回折は、リガク社製SmartLabを用いて行った。凍結乾燥機は、EYELA社製FDU-1200を用いた。
[実施例1]
 PhH(フェニルペンタアダクトフラーレン(Ph560H))を構成成分として含む水分散性非晶質粒子の製造
 PhH28mgを室温下において50mLのTHFに溶解してPhHの500μM溶液を調製した。ガラス製平底バイアルに5mLの超純水および磁気撹拌子を入れ、400rpmの速度で撹拌した。ガスタイトシリンジに5mLのTHF溶液をとり、シリンジポンプに装着し、シリンジ針の先端が溶液の中央にくるように設置した。撹拌を続けながら1.2mLのPhHのTHF溶液を1分間かけて注入した。撹拌を止めたのち、得られた溶液をナス型フラスコに移し、速やかにロータリーエバポレーター(減圧度:70Torr)を用いてTHFを留去することで非晶質粒子の水分散液を得た。なお、当該実施例の模式図を図20に示す。
 得られた水分散液は水を加え5mL定量とし、レーザー光散乱装置を用いて測定された粒径(流体力学直径)は44nmであった。PDIは0.09であった。分散液を酸化インジウムスズ(ITO)上にスピンコートしSEM観察して、図1に示す球形非晶質粒子の画像を得た。分散液をナスフラスコに移したのち凍結し、凍結乾燥機にて凍結乾燥(減圧度:10Pa)を行うことにより0.67mgの赤色固体を得た。得られた固体は粉末X線回折を行うことにより非晶質性を示すことを確認した。
[実施例2]
 実施例1において、超純水に対してPhHのTHF溶液を注入する操作をPhHのTHF溶液に対して超純水を注入する操作に変更した以外は、実施例1と同様に行った。すなわち、ガラス製平底バイアルに1.2mLのPhHのTHF溶液および磁気撹拌子を入れ、400rpmの速度で撹拌した。ガスタイトシリンジに10mLの超純水をとり、シリンジポンプに装着し、シリンジ針の先端が溶液の中央にくるように設置した。撹拌を続けながら5mLの超純水を1分間かけて注入した。
 実施例1と同様に、得られた非晶質粒子の粒径(流体力学直径)を測定し、96nmであった。PDIは0.04であった。また、得られた水分散液を酸化インジウムスズ(ITO)上にスピンコートしSEM観察して、図2に示す球形非晶質粒子の画像を得た。また、水分散液を凍結乾燥することにより、固体を得た。得られた固体は粉末X線回折を行うことにより非晶質性を示すことを確認した。
[実施例3]
 実施例1におけるPhHのTHF溶液の濃度を100μM、20μM、4μM、0.8μMとした以外は実施例1と同様に行った。THF溶液濃度の変化に伴う非晶質粒子の粒径の変化を図3に示す。THF溶液濃度が増大すると共に、非晶質粒子の粒径の増大が確認された。
[実施例4]
 実施例2におけるPhHのTHF溶液の濃度を100μM、20μM、4μM、0.8μMとした以外は実施例2と同様に行った。THF溶液濃度の変化に伴う非晶質粒子の粒径の変化を図3に示す。THF溶液濃度が増大すると共に、非晶質粒子の粒径の増大が確認された。
[実施例5]
 実施例1におけるTHF溶液の注入速度を、0.5mL/分、1mL/分、2.5mL/分、4mL/分、5mL/分、10mL/分とした以外は実施例1と同様に行った。注入速度の変化に伴う非晶質粒子の粒径の変化を図4に示す。THF溶液の注入速度が増大すると共に、非晶質粒子の粒径の縮小が確認された。
[実施例6]
 実施例1におけるPhHの代わりに以下の表1に列記した化合物を使用し、当該化合物のTHF溶液の濃度を100μMとした以外は実施例1と同様に行った。いずれの場合も良好に水分散性の球形非晶質粒子を調製することができた。得られた非晶質粒子の粒径及びPDIの値を表1に示す。
Figure JPOXMLDOC01-appb-T000004
[実施例7]
 実施例2におけるPhHの代わりに、以下の表2に列記した化合物を使用し、当該化合物のTHF溶液の濃度を100μMとした以外は実施例2と同様に行った。いずれの場合も良好に水分散性非晶質粒子を調製することができた。得られた非晶質粒子の粒径及びPDIの値を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 興味深いことに、容易に結晶化する化合物であることが知られていたペンタセンを使用した場合であっても、本願発明の方法を適用することによって非晶質粒子を得ることができた。
[実施例8]
 THFの追加による、水分散性非晶質粒子の粒径調節
 実施例1で調製された、PhHを構成成分として含む非晶質粒子の水分散液中に、水に対して30%の体積量のTHFを注入した。THFの注入後、時間経過と共に非晶質粒子の粒径が増大した(図5)。
[実施例9]
 ホルモテロールフマル酸塩を構成成分として含む非晶質粒子の調製
 ホルモテロールフマル酸塩水和物(分子量840.9、logP=2.0、水に対する溶解度:25℃において0.17mg/mL)をTHFに溶解して1mMの溶液を調製し、この溶液10mLを容量50mLのガラス瓶に入れた。ガラス瓶中の溶液をマグネチックスターラーで激しく撹拌(400rpm)しながら、室温で精製水40mLを1分間かけて当該ガラス瓶中に連続的に注入した。撹拌を停止し、混合液をロータリーエバポレーターで減圧濃縮して得た液をDLS法で分析したところ、図6の粒子径分布を得た。この濃縮液を凍結乾燥して、白色粉体としてホルモテロールフマル酸塩を構成成分として含む非晶質粒子を得た。得られた粉体の一部を、カーボン製両面テープを用いてアルミ製ピンスタブに固定したサンプルを調製し、SEMで観察して、図7に示す球状粒子の画像を得た。さらにこの粉体の粉末X線回折を測定したところ、図8に示す回折パターンによって非晶質であることが示された。
[実施例10]
 ランソプラゾールを構成成分として含む非晶質粒子の調製
 ランソプラゾール(分子量369.3、logP=2.58、水に対する溶解度:25℃において0.1mg/mL未満)をTHFに溶解して1mMの溶液を調製し、この溶液1.25mLを容量10mLのガラス瓶に入れた。ガラス瓶中の溶液をマグネチックスターラーで激しく撹拌(400rpm)しながら、室温で精製水10mLを1分間かけて連続的に当該ガラス瓶中に注入した。撹拌を停止し、混合液をロータリーエバポレーターで減圧濃縮して得た液をDLS法で分析した。また、この濃縮液を酸化インジウムスズ(ITO)上にスピンコートしSEM観察して、図9に示す球形非晶質粒子の画像を得た。この液を凍結乾燥して、白色粉体としてランソプラゾールを構成成分として含む非晶質粒子を得た。この粉体の一部を、カーボン製両面テープを用いてアルミ製ピンスタブに固定したサンプルを調製し、SEMで観察して、図10に示す球状粒子の画像を得た。さらにこの粉体の粉末X線回折を測定したところ、図11に示す回折パターンによって非晶質であることが示された。
 実施例9および実施例10で得た非晶質粒子粉体のDLS法による分析結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000006
[実施例11]
 マイクロリアクターを用いた、ホルモテロールフマル酸塩を構成成分として含む非晶質粒子の調製
 ホルモテロールフマル酸塩水和物をTHFに溶解し、0.5mMの溶液を調製した(A液)。一方、精製水を用意し、これをB液とした。2台のシリンジポンプを用いて、A液を流速0.01mL/分で、B液を流速0.04mL/分で、チャネル径が0.5mm(幅)x0.1mm(深さ)、ミキシング部の容量が1.4μLのステンレス製マイクロミキサー(Y字型)(ワイエムシィ社製KeyChemミキサー KC-M-Y-SUS型)に室温で1分間通液して混合した。なお、本実施例における反応装置の模式図を図21に示す。液体供給路1aからA液を通液し、液体供給路1bからB液を通液し、合流路2にて両液の層流が界面接触して合流し、分子拡散により最終的に混合された。この混合液をDLS法で分析したところ、図12の粒度分布を得た(粒径141nm、PDI0.124)。続いてロータリーエバポレーターで減圧濃縮し、濃縮液を凍結乾燥して白色粉体としてホルモテロールフマル酸塩を構成成分として含む非晶質粒子を得た。この粉体の一部を、カーボン製両面テープを用いてアルミ製ピンスタブに固定したサンプルを調製し、SEMで観察して、図13に示す球状粒子の画像を得た。
[実施例12]
 ホルモテロールフマル酸塩を構成成分として含む非晶質粒子の調製
 ホルモテロールフマル酸塩水和物を、THF-メタノール9:1(v/v)に溶解して2.5mMの溶液を調製し、この溶液10mLを容量50mLのガラス瓶に入れた。ガラス瓶中の溶液をマグネチックスターラーで激しく撹拌(400rpm)しながら、室温で精製水40mLを1分間かけて連続的に注入して混合した。撹拌を停止し、DLS法で分析したところ、図14の粒子径分布(粒径145nm、PDI0.052)を得た。この液をロータリーエバポレーターで減圧濃縮して得た濃縮液を凍結乾燥して、白色粉体としてホルモテロールフマル酸塩を構成成分として含む非晶質粒子を得た。この粉体の一部を、カーボン製両面テープを用いてアルミ製ピンスタブに固定したサンプルを調製し、SEMで観察して、図15に示す球状粒子の画像を得た。さらにこの粉体の粉末X線回折を測定したところ、図16に示す回折パターンによって非晶質であることが示された。
[実施例13]
 ホルモテロールフマル酸塩を構成成分として含む非晶質粒子の調製
 ホルモテロールフマル酸塩を、メタノールに溶解し5mMの溶液を調製して、この液1mLを容量5mLのガラス瓶に入れた。ここにマグネチックスターラーで激しく撹拌(400rpm)しながら、室温で精製水4mLを10分間かけて連続的に当該ガラス瓶中に注入した。撹拌を停止し、DLS法で分析したところ、図17の粒子径分布(粒径120nm、PDI0.183)を得た。この液をロータリーエバポレーターで減圧濃縮して得た濃縮液を凍結乾燥して、白色粉体としてホルモテロールフマル酸塩を構成成分として含む非晶質粒子を得た。この粉体の一部を、カーボン製両面テープを用いてアルミ製ピンスタブに固定したサンプルを調製し、SEMで観察して、図18に示す球状粒子の画像を得た。さらにこの粉体の粉末X線回折を測定したところ、図19に示す回折パターンによって非晶質であることが示された。
[比較例1]
 有機化合物のTHF溶液の水ヘの注入方法の変更による効果
 実施例1において、PhHのTHF溶液を水表面上に滴下すると、PhHの結晶粒子が形成された。結晶であるか否かは、粉末X線回折を行うことにより決定した。
 本発明によれば、低分子有機化合物を含むサブマイクロメートルサイズの球形非晶質粒子を簡便にかつ再現性良く調製することが可能である。得られた粒子は、医薬品製造分野、印刷分野及び有機電子デバイス分野などにおいて様々な応用可能性を有する。
 1a  液体供給路
 1b  液体供給路
 2  合流路
 3  マイクロリアクター

Claims (16)

  1.  粒径が10nm~990nmであり、PDIが0.01~0.5である、球形の水分散性非晶質粒子であって、分子量50~1500の有機化合物を含む、前記非晶質粒子。
  2.  前記有機化合物のlogPが2.0以上である、請求項1に記載の非晶質粒子。
  3.  前記有機化合物の水に対する溶解度が25℃において0.3mg/mL以下である、請求項1又は2に記載の非晶質粒子。
  4.  前記有機化合物が、ホルモテロール、ランソプラゾール、コレステロール、シンバスタチン及びテルミサルタン、並びに薬学的に許容されるそれらの塩、並びにそれらの溶媒和物からなる群から選択される、請求項1~3のいずれか1項に記載の非晶質粒子。
  5.  乾燥体である、請求項1~4のいずれか1項に記載の非晶質粒子。
  6.  請求項1~5のいずれか1項に記載の非晶質粒子の調製方法であって、以下のステップ:
    (1)水混和性有機溶媒に有機化合物を溶解して有機溶液を調製し;
    (2)前記有機溶液及び水のうち一方の液を他方の液に導入して前記有機溶液と水とを混合し、前記非晶質粒子の分散液を調製すること
    を含む、前記調製方法。
  7.  前記(1)で調製された有機溶液中の有機化合物の濃度が0.1μM~1000mMである、請求項6に記載の方法。
  8.  前記(2)における有機溶液と水との混合が、前記有機溶液を水中に、水を撹拌しながら注入することによって行われる、請求項6又は7に記載の方法。
  9.  前記有機溶液の注入速度が、X mLの水に対して0.01X mL/分~10X mL/分である、請求項8に記載の方法。
  10.  前記(2)における有機溶液と水との混合が、水を前記有機溶液中に、前記有機溶液を撹拌しながら注入することによって行われる、請求項6又は7に記載の方法。
  11.  水の注入速度が、Y mLの有機溶液に対して0.01Y mL/分~10Y mL/分である、請求項10に記載の方法。
  12.  前記(2)における有機溶液と水との混合が、前記有機溶液および水を流動させながら、両者をそれらの界面で接触させることによって行われる、請求項6又は7に記載の方法。
  13.  前記(2)における有機溶液と水との混合がマイクロリアクターを用いて行われる、請求項12に記載の方法。
  14.  前記(2)で調製された非晶質粒子の分散液を1~60℃で撹拌し、それにより前記非晶質粒子の粒径を増大させることをさらに含む、請求項6~13のいずれか1項に記載の方法。
  15.  前記(2)で調製された非晶質粒子の分散液中の有機溶媒を蒸発留去して、前記非晶質粒子の水分散液を調製することをさらに含む、請求項6~14のいずれか1項に記載の方法。
  16.  非晶質粒子の分散液から前記非晶質粒子の乾燥体を調製することをさらに含む、請求項6~15のいずれか1項に記載の方法。
PCT/JP2015/056879 2014-03-10 2015-03-09 水分散性非晶質粒子及びその調製方法 WO2015137289A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/124,001 US20170014352A1 (en) 2014-03-10 2015-03-09 Water-dispersible amorphous particles and method for preparing same
JP2016507739A JPWO2015137289A1 (ja) 2014-03-10 2015-03-09 水分散性非晶質粒子及びその調製方法
KR1020167024244A KR20160133434A (ko) 2014-03-10 2015-03-09 수분산성 비정질 입자 및 그 조제 방법
EP15760926.4A EP3118276A4 (en) 2014-03-10 2015-03-09 Water-dispersible amorphous particles and method for preparing same
CN201580012908.7A CN106068319A (zh) 2014-03-10 2015-03-09 水分散性非晶质粒子及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461950282P 2014-03-10 2014-03-10
US61/950282 2014-03-10

Publications (1)

Publication Number Publication Date
WO2015137289A1 true WO2015137289A1 (ja) 2015-09-17

Family

ID=54071733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056879 WO2015137289A1 (ja) 2014-03-10 2015-03-09 水分散性非晶質粒子及びその調製方法

Country Status (6)

Country Link
US (1) US20170014352A1 (ja)
EP (1) EP3118276A4 (ja)
JP (1) JPWO2015137289A1 (ja)
KR (1) KR20160133434A (ja)
CN (1) CN106068319A (ja)
WO (1) WO2015137289A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106565405B (zh) * 2016-11-09 2019-06-25 天津大学 粒径可控的水化纳米碗烯制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227032A (ja) * 1984-05-21 1987-02-05 ステリライゼイシヨン・テクニカル・サ−ヴイスイズ・インコ−ポレイテツド 固体の水不溶性有機化合物の均一な寸法の粒子を製造する方法
JP2003500202A (ja) * 1999-05-26 2003-01-07 シエーリング アクチエンゲゼルシャフト マイクロミキサによって形態学的に均一なマイクロ粒子およびナノ粒子を製造する方法
JP2005177746A (ja) * 2003-11-28 2005-07-07 Mitsubishi Chemicals Corp 有機化合物微粒子の製造方法
JP2006504511A (ja) * 2002-07-18 2006-02-09 アストラゼネカ・アクチエボラーグ 結晶性ナノ−微粒子分散液の調製方法
JP2007008924A (ja) * 2005-05-31 2007-01-18 Kao Corp 有機化合物微粒子の製造方法及びそれにより製造された有機化合物微粒子、並びに、その粒径制御方法
JP2008117827A (ja) * 2006-11-01 2008-05-22 Canon Inc 発光素子
JP2008168197A (ja) * 2007-01-10 2008-07-24 Kao Corp 有機化合物微粒子の製造方法
JP2011522787A (ja) * 2008-04-28 2011-08-04 ナンジェネックス ナノテクノロジー インコーポレイテッド 連続流モードでナノ粒子の製造を行う計装とプロセス
JP2012144045A (ja) * 2010-12-22 2012-08-02 Nbc Meshtec Inc 吸熱性部材
JP2012530124A (ja) * 2009-06-19 2012-11-29 ナノフォーム ハンガリー リミテッド ナノ粒子のテルミサルタン組成物及びその調製方法
JP2013522358A (ja) * 2010-03-22 2013-06-13 バイオ−シネクティクス インク. ナノ粒子の製造方法
WO2013168437A1 (ja) * 2012-05-11 2013-11-14 株式会社アクティバスファーマ 有機化合物ナノ粉体、その製造方法ならびに懸濁液

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH694686A5 (it) * 2000-03-04 2005-06-15 Eco2 Sa Prodotto di micronizzazione di sostanze farmaceutiche.
CN1960708A (zh) * 2003-07-22 2007-05-09 巴克斯特国际公司 低分子量有机分子的小球颗粒及其制备方法和应用
AU2004258971A1 (en) * 2003-07-22 2005-02-03 Baxter Healthcare S.A. Small spherical particles of low molecular weight organic molecules and methods of preparation and use thereof
US20110268775A1 (en) * 2009-01-06 2011-11-03 Pharmanova, Inc. Nanoparticle pharmaceutical formulations

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227032A (ja) * 1984-05-21 1987-02-05 ステリライゼイシヨン・テクニカル・サ−ヴイスイズ・インコ−ポレイテツド 固体の水不溶性有機化合物の均一な寸法の粒子を製造する方法
JP2003500202A (ja) * 1999-05-26 2003-01-07 シエーリング アクチエンゲゼルシャフト マイクロミキサによって形態学的に均一なマイクロ粒子およびナノ粒子を製造する方法
JP2006504511A (ja) * 2002-07-18 2006-02-09 アストラゼネカ・アクチエボラーグ 結晶性ナノ−微粒子分散液の調製方法
JP2005177746A (ja) * 2003-11-28 2005-07-07 Mitsubishi Chemicals Corp 有機化合物微粒子の製造方法
JP2007008924A (ja) * 2005-05-31 2007-01-18 Kao Corp 有機化合物微粒子の製造方法及びそれにより製造された有機化合物微粒子、並びに、その粒径制御方法
JP2008117827A (ja) * 2006-11-01 2008-05-22 Canon Inc 発光素子
JP2008168197A (ja) * 2007-01-10 2008-07-24 Kao Corp 有機化合物微粒子の製造方法
JP2011522787A (ja) * 2008-04-28 2011-08-04 ナンジェネックス ナノテクノロジー インコーポレイテッド 連続流モードでナノ粒子の製造を行う計装とプロセス
JP2012530124A (ja) * 2009-06-19 2012-11-29 ナノフォーム ハンガリー リミテッド ナノ粒子のテルミサルタン組成物及びその調製方法
JP2013522358A (ja) * 2010-03-22 2013-06-13 バイオ−シネクティクス インク. ナノ粒子の製造方法
JP2012144045A (ja) * 2010-12-22 2012-08-02 Nbc Meshtec Inc 吸熱性部材
WO2013168437A1 (ja) * 2012-05-11 2013-11-14 株式会社アクティバスファーマ 有機化合物ナノ粉体、その製造方法ならびに懸濁液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3118276A4 *

Also Published As

Publication number Publication date
JPWO2015137289A1 (ja) 2017-04-06
US20170014352A1 (en) 2017-01-19
EP3118276A4 (en) 2017-10-25
CN106068319A (zh) 2016-11-02
EP3118276A1 (en) 2017-01-18
KR20160133434A (ko) 2016-11-22

Similar Documents

Publication Publication Date Title
Chang et al. Nanocrystal technology for drug formulation and delivery
Homayouni et al. Curcumin nanoparticles containing poloxamer or soluplus tailored by high pressure homogenization using antisolvent crystallization
Zhong et al. Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment
US20090297565A1 (en) Method and device for producing very fine particles and coating such particles
Sanganwar et al. Simultaneous production and co-mixing of microparticles of nevirapine with excipients by supercritical antisolvent method for dissolution enhancement
Margulis et al. Formation of curcumin nanoparticles by flash nanoprecipitation from emulsions
Yu et al. Stabilized amorphous glibenclamide nanoparticles by high-gravity technique
US20140053757A1 (en) Alkaline earth metal carbonate micropowder
CN103768012A (zh) 一种姜黄素脂质纳米粒悬浮液或纳米粒的制备方法
CN106344508B (zh) 一种莪术醇纳米混悬剂及其制备方法和应用
JP6310636B2 (ja) マイクロ流体化処理によって作製された難溶性薬物のナノ懸濁液
Cai et al. Supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer (SAA-HCM) for micronization of levofloxacin hydrochloride
WO2016121541A1 (ja) 油中ナノ粒子分散体の製造方法
WO2015137289A1 (ja) 水分散性非晶質粒子及びその調製方法
Zhang et al. Preparation, characterization and bioavailability of oral puerarin nanoparticles by emulsion solvent evaporation method
Hui et al. Biomimetic core–shell silica nanoparticles using a dual-functional peptide
Fatnassi et al. Encapsulation of complementary model drugs in spray-dried nanostructured materials
CN101606906B (zh) 熊去氧胆酸纳米混悬剂及其制备方法
Melzig et al. Formation of long-term stable amorphous ibuprofen nanoparticles via antisolvent melt precipitation (AMP)
Seo et al. Effect of process parameters on formation and aggregation of nanoparticles prepared with a Shirasu porous glass membrane
Brossault et al. Salt-driven assembly of magnetic silica microbeads with tunable porosity
Wais et al. Formation of hydrophobic drug nanoparticles via ambient solvent evaporation facilitated by branched diblock copolymers
JP7481259B2 (ja) スプレー溶液の連続調整を伴うスプレードライプロセス
ES2964411T3 (es) Un proceso de secado por pulverización con preparación continua de solución de pulverización
AU2018283777B2 (en) Amorphous nanostructured pharmaceutical materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507739

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167024244

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15124001

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015760926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015760926

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE