WO2011118686A1 - 圧電薄膜素子及び圧電薄膜デバイス - Google Patents

圧電薄膜素子及び圧電薄膜デバイス Download PDF

Info

Publication number
WO2011118686A1
WO2011118686A1 PCT/JP2011/057117 JP2011057117W WO2011118686A1 WO 2011118686 A1 WO2011118686 A1 WO 2011118686A1 JP 2011057117 W JP2011057117 W JP 2011057117W WO 2011118686 A1 WO2011118686 A1 WO 2011118686A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
piezoelectric thin
knn
substrate
piezoelectric
Prior art date
Application number
PCT/JP2011/057117
Other languages
English (en)
French (fr)
Inventor
柴田 憲治
末永 和史
渡辺 和俊
明 野本
文正 堀切
Original Assignee
日立電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立電線株式会社 filed Critical 日立電線株式会社
Priority to CN201180013990.7A priority Critical patent/CN102804436B/zh
Priority to US13/636,883 priority patent/US8446074B2/en
Publication of WO2011118686A1 publication Critical patent/WO2011118686A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates

Definitions

  • the present invention relates to a piezoelectric thin film element and a piezoelectric thin film device using an alkali niobium oxide-based piezoelectric thin film.
  • Piezoelectric materials are widely used as functional electronic parts such as actuators that are deformed by applying a voltage to cause deformation, and sensors that generate voltage from the deformation of the element.
  • a lead-based material dielectric material having excellent piezoelectric characteristics particularly a Pb (Zr 1-x Ti x ) O 3 -based perovskite ferroelectric material called PZT
  • PZT a lead-based material dielectric material having excellent piezoelectric characteristics
  • a piezoelectric material such as PZT is formed by sintering an oxide of a piezoelectric material.
  • a piezoelectric material manufactured by a manufacturing method centering on a sintering method which is a conventional manufacturing method, becomes thinner as the thickness of the piezoelectric material becomes closer to about 10 ⁇ m. Since it approaches the size, there arises a problem that characteristic variation and deterioration become remarkable.
  • a method for forming a piezoelectric body using a thin film technique or the like instead of the sintering method has been recently studied.
  • a PZT thin film formed on a silicon substrate by a sputtering method has been put into practical use as a piezoelectric thin film for an actuator for a high-speed, high-definition inkjet printer head.
  • the piezoelectric sintered body and piezoelectric thin film made of PZT described above contain about 60 to 70% by weight of lead, which is not preferable from the viewpoint of ecology and pollution prevention. Therefore, development of a piezoelectric body that does not contain lead is desired in consideration of the environment.
  • various lead-free piezoelectric materials have been studied, and among them, there is potassium sodium niobate represented by the composition formula: (K 1-x Na x ) NbO 3 (0 ⁇ x ⁇ 1) (for example, , See Patent Document 1 and Patent Document 2).
  • This potassium sodium niobate is a material having a perovskite structure and is expected as a promising candidate for a lead-free piezoelectric material.
  • An object of the present invention is to provide a piezoelectric thin film element and a piezoelectric thin film device that can solve the above-mentioned problems, can realize a dielectric loss tan ⁇ of 0.1 or less, and have excellent piezoelectric characteristics.
  • a first aspect of the present invention includes a substrate, and a piezoelectric thin film having an alkali niobium oxide-based perovskite structure represented by a composition formula (K 1-x Na x ) y NbO 3 provided on the substrate,
  • the carbon concentration of the piezoelectric thin film is 2 ⁇ 10 19 / cm 3 or less.
  • a second aspect of the present invention includes a substrate and a piezoelectric thin film having an alkali niobium oxide-based perovskite structure represented by a composition formula (K 1-x Na x ) y NbO 3 provided on the substrate,
  • the piezoelectric thin film element has a hydrogen concentration of the piezoelectric thin film of 4 ⁇ 10 19 / cm 3 or less.
  • the piezoelectric thin film element in the piezoelectric thin film element according to the first aspect or the second aspect, is a pseudo-cubic crystal and is preferentially oriented in the (001) plane orientation.
  • the composition of the piezoelectric thin film is 0.4 ⁇ x ⁇ 0.7 and 0.75 ⁇ y ⁇ 0.0. 90.
  • a base layer is provided between the substrate and the piezoelectric thin film.
  • the base layer is a Pt layer, and the Pt layer is preferentially oriented in the (111) plane direction.
  • the substrate is a Si substrate, a Si substrate with a surface oxide film, or an SOI substrate.
  • the piezoelectric thin film element according to any one of the first to seventh aspects, an upper electrode and a lower electrode provided above and below the piezoelectric thin film of the piezoelectric thin film element,
  • the piezoelectric thin film device includes a voltage applying unit or a voltage detecting unit connected between the upper electrode and the lower electrode.
  • the present invention it is possible to provide a piezoelectric thin film element and a piezoelectric thin film device that can realize a dielectric loss tan ⁇ of 0.1 or less and have excellent piezoelectric characteristics.
  • 1 is a schematic cross-sectional view showing the structure of a piezoelectric thin film element according to a first embodiment of the present invention. It is a schematic sectional drawing which shows the structure of the piezoelectric thin film element concerning the 2nd Embodiment of this invention.
  • 1 is a schematic configuration diagram showing an embodiment of a piezoelectric thin film device according to the present invention. It is a graph which shows the depth direction profile of carbon concentration, hydrogen concentration, and O, K, Nb, and Na intensity
  • FIG. 4 is a diagram showing a list of tan ⁇ in a table format.
  • An actuator using a piezoelectric thin film with a high tan ⁇ generates a large amount of heat during operation, and deterioration of the piezoelectric thin film element is accelerated, and a sensor using a piezoelectric thin film with a high tan ⁇ has a small deformation of the piezoelectric thin film. It turns out that sensitivity becomes extremely bad. For example, when a piezoelectric thin film is used for an actuator of an ink jet printer head, tan ⁇ is required to be 0.1 or less. The current potassium sodium niobate piezoelectric thin film does not satisfy this requirement and is difficult to apply to products.
  • the present inventors further studied and found that the carbon concentration or hydrogen concentration contained in the piezoelectric thin film of (K 1-x Na x ) y NbO 3 (hereinafter also abbreviated as “KNN”), and KNN
  • KNN the carbon concentration or hydrogen concentration contained in the piezoelectric thin film of (K 1-x Na x ) y NbO 3
  • KNN the carbon concentration or hydrogen concentration contained in the piezoelectric thin film of (K 1-x Na x ) y NbO 3 (hereinafter also abbreviated as “KNN”), and KNN
  • a piezoelectric thin film element according to an embodiment of the present invention includes a substrate, a piezoelectric thin film having an alkali niobium oxide-based perovskite structure represented by a composition formula (K 1-x Na x ) y NbO 3 provided on the substrate, The carbon concentration of the piezoelectric thin film is 2 ⁇ 10 19 / cm 3 or less.
  • a piezoelectric thin film element has a substrate and an alkali niobium oxide perovskite structure represented by a composition formula (K 1-x Na x ) y NbO 3 provided on the substrate.
  • the hydrogen concentration of the piezoelectric thin film is 4 ⁇ 10 19 / cm 3 or less.
  • the KNN piezoelectric thin film is preferably pseudo-cubic and preferentially oriented in the (001) plane orientation.
  • FIG. 1 is a cross-sectional view showing a schematic structure of a piezoelectric thin film element according to a first embodiment of the present invention.
  • a base layer 2 a piezoelectric thin film 3, and an electrode 4 are sequentially formed on a substrate 1.
  • the substrate 1 is preferably a Si (silicon) substrate, a Si substrate with a surface oxide film having an oxide film on the surface of the Si substrate, or a SOI (Silicon on Insulator) substrate.
  • a (100) Si substrate having a (100) plane orientation is used as the Si substrate, but a Si substrate having a plane orientation different from the (100) plane may be used.
  • the substrate 1 may be a quartz glass substrate, a GaAs substrate, a sapphire substrate, a metal substrate such as stainless steel, an MgO substrate, an SrTiO 3 substrate, or the like.
  • the underlayer 2 is preferably composed of a Pt (platinum) layer and is preferentially oriented in the (111) plane orientation.
  • a Pt layer formed on a Si substrate is easily oriented in the (111) plane orientation because of self-orientation.
  • the material of the underlayer 2 may be an alloy containing Pt, Au (gold), Ru (ruthenium), Ir (iridium), or a metal oxide such as SrTiO 3 or LaNiO 3 .
  • the underlayer 2 is formed using a sputtering method, a vapor deposition method, or the like. Note that an adhesion layer may be provided between the substrate 1 and the foundation layer 2 in order to improve adhesion between the substrate 1 and the foundation layer 2.
  • the underlayer 2 can be used as an electrode (lower electrode).
  • the piezoelectric thin film 3 is a KNN piezoelectric thin film having an alkali niobium oxide perovskite structure represented by a composition formula (K 1-x Na x ) y NbO 3 , and the carbon concentration of the KNN piezoelectric thin film 3 is 2 ⁇ 10 19. / cm 3 below, or hydrogen concentration of the KNN piezoelectric thin film 3 is in the 4 ⁇ 10 19 / cm 3 or less.
  • the KNN piezoelectric thin film 3 is preferably pseudo-cubic and is preferentially oriented in the (001) plane orientation, and the composition x, y of the KNN piezoelectric thin film 3 is 0.40 ⁇ x ⁇ 0.70.
  • a sputtering method a CVD (Chemical Vapor Deposition) method, a sol-gel method, or the like is used.
  • the electrode 4 is formed by a sputtering method, a vapor deposition method, a plating method, a metal paste method, or the like using a material such as Pt, Au, or Al (aluminum). Since the electrode 4 does not have a great influence on the crystal structure of the piezoelectric thin film unlike the underlayer 2, the material and crystal structure of the electrode 4 are not particularly limited.
  • the KNN thin film with a high tan ⁇ has a high concentration in the film.
  • carbon was mixed in.
  • the carbon contamination source was carbon contained in the KNN sintered compact target.
  • a KNN sintered compact target usually becomes a KNN sintered compact target through the process of mixing, temporary firing, and main firing using K 2 CO 3 , Na 2 CO 3 , and Nb 2 O 5 powder as starting materials. At this time, most of the carbon in the starting materials K 2 CO 3 and Na 2 CO 3 is removed in the firing process at a high temperature, but a part of the carbon seems to remain in the KNN sintered body.
  • the carbon concentration in the KNN sintered compact target is reduced, and in the atmospheric gas (for example, a mixed gas of Ar (argon) and O 2 (oxygen)) in sputtering film formation. It is effective to increase the ratio of O 2 and to perform heat treatment in the air or oxygen atmosphere after the KNN thin film is formed (see FIG. 8 in Examples described later).
  • the atmospheric gas for example, a mixed gas of Ar (argon) and O 2 (oxygen)
  • the carbon concentration in the KNN thin film can be measured by, for example, general SIMS analysis.
  • SIMS analysis there is no guarantee that a correct concentration profile is obtained near the surface of the sample to be measured or near the interface with the adjacent layer adjacent to the sample. Therefore, in the present embodiment, 200 nm in the vicinity of the interface with the underlayer 2 that is an adjacent layer adjacent to the KNN piezoelectric thin film 3 and 200 nm in the vicinity of the surface of the KNN piezoelectric thin film 3 or 200 nm in the vicinity of the interface with the electrode 4 of the KNN piezoelectric thin film 3 are obtained.
  • the carbon concentration in the KNN piezoelectric thin film 3 was determined by considering the carbon concentration in the region of the removed KNN piezoelectric thin film 3 as the correct carbon concentration.
  • the hydrogen concentration of the KNN piezoelectric thin film 3 by SIMS analysis was determined in the same manner.
  • the KNN thin film formed by a film forming method other than sputtering for example, CVD method, sol-gel method, etc.
  • a film forming method other than sputtering for example, CVD method, sol-gel method, etc.
  • CVD method chemical vapor deposition method
  • sol-gel method sol-gel method
  • FIG. 2 shows a schematic cross-sectional structure of a piezoelectric thin film element according to the second embodiment of the present invention.
  • the piezoelectric thin film element of the second embodiment has a base layer 2, a piezoelectric thin film 3, and an electrode 4 on a substrate 1, as in the piezoelectric thin film element of the first embodiment shown in FIG.
  • the substrate 1 is a substrate with a surface oxide film having an oxide film 5 formed on the surface thereof, and between the oxide film 5 and the underlayer 2 for enhancing the adhesion of the underlayer 2.
  • An adhesion layer 6 is provided.
  • Surface oxide film coated substrate is, for example, a Si substrate with an oxide film, the Si substrate with an oxide film, oxide film, there is a SiO 2 film formed SiO 2 film formed by thermal oxidation, a CVD method.
  • a 4-inch circle is usually used as the substrate size, but a 6-inch or 8-inch round or rectangular substrate may be used.
  • the adhesion layer 6 is made of Ti (titanium), Ta (tantalum), or the like, and is formed by a sputtering method, a vapor deposition method, or the like.
  • the piezoelectric thin film 3 of the piezoelectric thin film element according to the first and second embodiments is a single-layer KNN thin film, but the piezoelectric thin film 3 has a carbon concentration of 2 ⁇ 10 19 / cm 3 or less or A plurality of (K 1-x Na x) including a KNN thin film having a hydrogen concentration of 4 ⁇ 10 19 / cm 3 or less and a range of 0.40 ⁇ x ⁇ 0.70 and 0.75 ⁇ y ⁇ 0.90. ) Y NbO 3 (0 ⁇ x ⁇ 1) layer may be formed.
  • the thin film which consists of may be contained.
  • FIG. 3 shows a schematic configuration diagram of an embodiment of a piezoelectric thin film device manufactured using the piezoelectric thin film element according to the present invention.
  • the piezoelectric thin film element 10 has a cross-sectional structure similar to that of the piezoelectric thin film element of the first embodiment shown in FIG.
  • the electrode 2 is used, and the electrode 4 is used as the upper electrode 4.
  • at least a voltage detection means (or voltage application means) 11 is connected between the lower electrode 2 and the upper electrode 4 of the piezoelectric thin film element 10 formed into a predetermined shape.
  • a sensor as a piezoelectric thin film device can be obtained by connecting the voltage detection means 11 between the lower electrode 2 and the upper electrode 4.
  • the piezoelectric thin film element 10 of this sensor is deformed with any change in physical quantity, a voltage is generated by the deformation, and various physical quantities can be measured by detecting this voltage with the voltage detecting means 11.
  • the sensor include a gyro sensor, an ultrasonic sensor, a pressure sensor, and a speed / acceleration sensor.
  • an actuator as a piezoelectric thin film device can be obtained by connecting the voltage applying means 11 between the lower electrode 2 and the upper electrode 4 of the piezoelectric thin film element 10.
  • Various members can be operated by applying a voltage to the piezoelectric thin film element 10 of the actuator to deform the piezoelectric thin film element 10.
  • the actuator can be used in, for example, an ink jet printer, a scanner, an ultrasonic generator, and the like.
  • the piezoelectric thin film elements of Examples and Comparative Examples have the same cross-sectional structure as that of the second embodiment shown in FIG. 2, and a Ti adhesion layer and a Pt lower electrode (lower) Layer), a KNN piezoelectric thin film, and a Pt upper electrode (electrode).
  • the film-forming method of the KNN piezoelectric thin film in an Example and a comparative example is demonstrated.
  • a Si substrate with a thermal oxide film ((100) plane orientation, thickness 0.525 mm, 4 inch circular shape, thermal oxide film thickness 200 nm) was used.
  • a Ti adhesion layer (film thickness: 10 nm) and a Pt lower electrode ((111) plane preferred orientation, film thickness: 200 nm) were formed on a substrate by RF magnetron sputtering.
  • the Ti adhesion layer and the Pt lower electrode have a substrate temperature of 350 ° C., a discharge power of 300 W, an introduced gas Ar, an Ar atmosphere pressure of 2.5 Pa, and a film formation time of 3 minutes for the Ti adhesion layer and 10 minutes for the Pt lower electrode.
  • the film was formed.
  • a (K 1-x Na x ) y NbO 3 piezoelectric thin film having a film thickness of 3 ⁇ m was formed on the Pt lower electrode by RF magnetron sputtering.
  • the KNN sintered compact target is made from K 2 CO 3 powder, Na 2 CO 3 powder and Nb 2 O 5 powder as raw materials, mixed for 24 hours using a ball mill, pre-fired at 850 ° C. for 10 hours, and then ball mill again. It was produced by pulverizing at a pressure of 200 MPa and firing at 1000 to 1250 ° C.
  • the (K + Na) / Nb ratio and the Na / (K + Na) ratio were controlled by adjusting the mixing ratio of K 2 CO 3 powder, Na 2 CO 3 powder, and Nb 2 O 5 powder.
  • the produced sintered compact target was measured for atomic% of K, Na, Nb by EDX (energy dispersive X-ray spectroscopic analysis) before being used for sputtering film formation, and each (K + Na) / Nb ratio and Na / The (K + Na) ratio was calculated.
  • the carbon concentration and hydrogen concentration (wt ppm) in the sintered compact target were measured by gas component analysis (IGA: Interstitial Gas Analysis).
  • the gas component analysis is a method of determining the concentration by measuring gas components such as C, N, O, and H generated by burning a material by infrared absorption or thermal conductivity measurement.
  • FIG. 8 shows (K + Na) / Nb ratio and Na / (K + Na) ratio, target firing temperature, carbon concentration contained in the target, and hydrogen of the KNN sintered compact targets used in Examples 1 to 10 and Comparative Examples 1 to 8. Concentration, Ar / O 2 ratio during sputtering film formation, and presence / absence of heat treatment after film formation are shown. As heat treatment of the KNN thin film after film formation, heat treatment was performed at 750 ° C. for 2 hours in an air atmosphere.
  • Composition analysis of KNN piezoelectric thin film Composition analysis of the KNN thin films of Examples 1 to 10 and Comparative Examples 1 to 8 was performed by ICP-AES (inductively coupled plasma emission spectrometry). A wet acid decomposition method was used to make the sample into solution, and a mixed solution of hydrofluoric acid and nitric acid was used as the acid. The (K + Na) / Nb ratio and Na / (K + Na) ratio were calculated from the ratios of Nb, Na, and K obtained by ICP-AES. FIG. 8 shows the calculated (K + Na) / Nb ratio and Na / (K + Na) ratio. It can be seen that KNN piezoelectric thin films with different (K + Na) / Nb ratios can be produced by using targets with different (K + Na) / Nb ratios.
  • FIG. 4 shows the case of Example 1
  • FIG. 5 shows the case of Comparative Example 1.
  • FIGS. 4 and 5 also show the profile in the depth direction of the O, K, Nb, and Na strengths of the KNN piezoelectric thin film.
  • Comparative Example 1 shows the concentration of carbon and hydrogen is high on the surface side of the KNN piezoelectric thin film, and gradually decreases as it approaches the Pt lower electrode side.
  • Example 1 as shown in FIG. 4, there are regions where the concentration of carbon and hydrogen is high near the surface and near the Pt lower electrode interface, but in other regions, the concentration of carbon and hydrogen is very low. The concentration is almost constant.
  • FIG. 8 shows the maximum values of carbon concentration and hydrogen concentration of the KNN thin films in Examples 1 to 10 and Comparative Examples 1 to 8.
  • the carbon concentration and the hydrogen concentration in the KNN sintered compact target can be reduced by increasing the firing temperature of the KNN sintered compact target. This seems to be because the carbon concentration and the hydrogen concentration remaining in the KNN sintered compact target were reduced by firing at a high temperature.
  • the carbon concentration and the hydrogen concentration in the formed KNN thin film are also reduced.
  • the Ar / O 2 ratio at the time of sputtering film formation by increasing the proportion of O 2, carbon concentration and the hydrogen concentration in the KNN thin film is reduced.
  • the carbon concentration and the hydrogen concentration in the KNN thin film are also decreased by the heat treatment after the film formation.
  • the Pt upper electrode (film thickness 100 nm, size 1 mm ⁇ 1 mm) 4 was formed by RF magnetron sputtering.
  • the upper electrode 4 and the lower electrode 2 were connected to an LCR meter, and the capacitance and tan ⁇ were measured at a measurement frequency of 1 kHz. From the obtained capacitance, the relative dielectric constant was calculated in consideration of the electrode area (lmm 2 ), the thickness of the KNN piezoelectric thin film 3 (3 ⁇ m), and the dielectric constant of vacuum.
  • FIG. 8 shows the relative dielectric constant and tan ⁇ of the KNN thin films in Examples 1 to 10 and Comparative Examples 1 to 8.
  • FIG. 7 shows the relationship between tan ⁇ of the KNN thin film and the maximum values of the carbon concentration and the hydrogen concentration in the KNN thin film.
  • the carbon concentration and the hydrogen concentration show almost the same tendency with respect to tan ⁇ , and the logarithmic values of the carbon concentration and the hydrogen concentration increase in proportion to the increase of tan ⁇ .
  • a KNN thin film of tan ⁇ ⁇ 0.1 can be realized by setting the carbon concentration to 2 ⁇ 10 19 / cm 3 or less and the hydrogen concentration to 4 ⁇ 10 19 / cm 3 or less.
  • the KNN thin film of the example having a carbon concentration of 2 ⁇ 10 19 / cm 3 or less and a hydrogen concentration of 4 ⁇ 10 19 / cm 3 or less, the carbon concentration exceeds 2 ⁇ 10 19 / cm 3 .
  • the piezoelectric constant there was almost no difference between the KNN thin film of the comparative example and the KNN thin film of the example. That is, in the KNN thin film of the example, it was found that the value of tan ⁇ that was a problem could be reduced while maintaining the same good piezoelectric constant and relative dielectric constant as before.
  • a voltage was applied to the KNN piezoelectric thin film between the Pt upper electrode and the Pt lower electrode of this cantilever to expand and contract the KNN piezoelectric thin film, thereby bending and stretching the entire cantilever (piezoelectric thin film element).
  • the tip displacement amount ⁇ of the cantilever at this time was measured with a laser Doppler displacement meter.
  • the piezoelectric constant d 31 is calculated from the displacement amount ⁇ of the tip of the cantilever, the length of the cantilever, the thickness and Young's modulus of the substrate 1 and the KNN piezoelectric thin film 3, and the applied voltage.
  • the cantilever By applying a unipolar sine wave continuously between the upper and lower electrodes to the actuator (cantilever) using the KNN piezoelectric thin film of Example 1 and the actuator (cantilever) using the KNN piezoelectric thin film of Comparative Example 1, the cantilever was driven continuously. At this time, it was confirmed that the actuator of Example 1 can suppress heat generation compared to the actuator of Comparative Example 1. In addition, the rate at which the piezoelectric constant d 31 after driving 100 million times decreases (deteriorates) from the initial piezoelectric constant d 31 (decrease rate, deterioration rate) is also suppressed in the actuator of the first embodiment compared to the actuator of the first comparative example. It was confirmed that
  • the Pt layer that also serves as the lower electrode is used as the base layer.
  • a NaNbO 3 layer may be formed on the Pt layer
  • the base layer may be composed of two layers of the Pt layer and the NaNbO 3 layer.
  • a filter device using surface acoustic waves can be formed by forming a KNN piezoelectric thin film on a substrate and forming an electrode having a predetermined pattern on the piezoelectric thin film.
  • the Pt layer is not used as a lower electrode but is used as a base layer.
  • another base layer may be provided instead of the Pt layer.
  • a device structure in which a substrate, a nickel lanthanum layer serving as an underlayer, a KNN piezoelectric thin film, and an upper pattern electrode are stacked may be employed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 基板1と、基板1上に設けられる組成式(K1-xNaNbOで表されるアルカリニオブ酸化物系ペロブスカイト構造の圧電薄膜3とを有し、圧電薄膜3の炭素濃度が2×1019/cm以下、あるいは、圧電薄膜3の水素濃度が4×1019/cm以下である圧電薄膜素子である。

Description

圧電薄膜素子及び圧電薄膜デバイス
 本発明は、アルカリニオブ酸化物系の圧電薄膜を用いた圧電薄膜素子及び圧電薄膜デバイスに関するものである。
 圧電体は種々の目的に応じて様々な圧電素子に加工され、電圧を加えて変形を生じさせるアクチュエータや、素子の変形から電圧を発生するセンサなどの機能性電子部品として広く利用されている。
 アクチュエータやセンサの用途に利用されている圧電体としては、優れた圧電特性を有する鉛系材料の誘電体、特にPZTと呼ばれるPb(Zr1-xTi)O3 系のペロブスカイト型強誘電体がこれまで広く用いられている。通常PZTなどの圧電体は圧電体材料の酸化物を焼結することにより形成されている。現在、各種電子部品の小型化、高性能化が進むにつれ、圧電素子においても小型化、高性能化が強く求められるようになった。
 ところが、従来からの製法である焼結法を中心とした製造方法により作製した圧電材料は、その厚みを薄くするにつれ、特に厚みが10μm程度の厚さに近づくにつれて、材料を構成する結晶粒の大きさに近づくため、特性のばらつきや劣化が顕著になるといった問題が発生する。これを回避するために、焼結法に変わる薄膜技術等を応用した圧電体の形成法が近年研究されるようになってきた。最近、シリコン基板上にスパッタリング法で形成したPZT薄膜が、高速高精細のインクジェットプリンタヘッド用アクチュエータの圧電薄膜として実用化されている。
 しかしながら、前記のPZTから成る圧電焼結体や圧電薄膜は、鉛を60~70重量%程度含有しているので、生態学的見地および公害防止の面から好ましくない。そこで、環境への配慮から鉛を含有しない圧電体の開発が望まれている。現在、様々な非鉛圧電材料が研究されているが、その中に組成式:(K1-xNa)NbO(0<x<1)で表されるニオブ酸カリウムナトリウムがある(例えば、特許文献1、特許文献2参照)。このニオブ酸カリウムナトリウムは、ペロブスカイト構造を有する材料であり、非鉛圧電材料の有力な候補として期待されている。
特開2007-184513号公報 特開2008-159807号公報
 しかし、従来技術により製造したニオブ酸カリウムナトリウム圧電薄膜を、アクチュエータとして用いた場合には、動作時の発熱が大きく、素子の劣化が早いものが多くあり、また、センサとして用いた場合には、圧電薄膜の変形が小さいときの感度が極端に悪くなるものがあった。
 本発明の目的は、上記課題を解決し、0.1以下の誘電損失tanδを実現でき、しかも優れた圧電特性を有する圧電薄膜素子及び圧電薄膜デバイスを提供することにある。
 本発明の第1の態様は、基板と、前記基板上に設けられる組成式(K1-xNaNbOで表されるアルカリニオブ酸化物系ペロブスカイト構造の圧電薄膜とを有し、前記圧電薄膜の炭素濃度が2×1019/cm以下である圧電薄膜素子である。
 本発明の第2の態様は、基板と、前記基板上に設けられる組成式(K1-xNaNbOで表されるアルカリニオブ酸化物系ペロブスカイト構造の圧電薄膜とを有し、前記圧電薄膜の水素濃度が4×1019/cm以下である圧電薄膜素子である。
 本発明の第3の態様は、第1の態様又は第2の態様の圧電薄膜素子において、前記圧電薄膜は、擬立方晶であり、かつ(001)面方位に優先配向している。
 本発明の第4の態様は、第1~第3の態様のいずれかの圧電薄膜素子おいて、前記圧電薄膜の組成が0.4≦x≦0.7かつ0.75≦y≦0.90である。
 本発明の第5の態様は、第1~第4の態様のいずれかの圧電薄膜素子において、前記基板と前記圧電薄膜との間には下地層が設けられている。
 本発明の第6の態様は、第5の態様の圧電薄膜素子において、前記下地層はPt層であり、前記Pt層は(111)面方位に優先配向している。
 本発明の第7の態様は、第1~第6の態様のいずれかの圧電薄膜素子において、前記基板は、Si基板、表面酸化膜付きSi基板、またはSOI基板である。
 本発明の第8の態様は、第1~第7の態様のいずれかに記載の圧電薄膜素子と、前記圧電薄膜素子の前記圧電薄膜を挟んで上下に設けられる上部電極と下部電極と、前記上部電極と前記下部電極との間に接続される電圧印加手段または電圧検知手段とを備えた圧電薄膜デバイスである。
 本発明によれば、0.1以下の誘電損失tanδを実現でき、しかも優れた圧電特性を有する圧電薄膜素子及び圧電薄膜デバイスを提供することができる。
本発明の第1の実施形態に係る圧電薄膜素子の構造を示す概略的な断面図である。 本発明の第2の実施形態に係る圧電薄膜素子の構造を示す概略的な断面図である。 本発明に係る圧電薄膜デバイスの一実施形態を示す概略的な構成図である。 本発明の一実施例のKNN薄膜をSIMS分析によって測定した、炭素濃度、水素濃度、およびO,K,Nb,Na強度の深さ方向プロファイルを示すグラフである。 比較例のKNN薄膜をSIMS分析によって測定した、炭素濃度、水素濃度、およびO,K,Nb,Na強度の深さ方向プロファイルを示すグラフである。 実施例および比較例のKNN薄膜に対して誘電損失tanδを測定する際に作製した構造を示す概略的な断面図である。 実施例および比較例のKNN薄膜のtanδと、炭素濃度および水素濃度の最大値との関係を示すグラフである。 実施例および比較例における、KNN焼結体ターゲットの組成等、スパッタ成膜時のAr/O比、成膜後の熱処理の有無、及びKNN薄膜の組成、炭素濃度、水素濃度、比誘電率、tanδの一覧を表形式で示す図である。
(知見)
 上述したように、従来技術によって得られたニオブ酸カリウムナトリウム圧電薄膜を、アクチュエータとして用いた場合、動作時の発熱が大きく、圧電薄膜素子の劣化が早いものが多くあり、また、センサとして用いた場合、圧電薄膜の変形が小さいときの感度が極端に悪くなるものがあった。
 本発明者らが、上記問題について検討を行ったところ、従来のニオブ酸カリウムナトリウム圧電薄膜は、しばしば誘電損失tanδが高かった。そして、tanδが高い圧電薄膜を用いたアクチュエータでは、動作時の発熱が大きく、圧電薄膜素子の劣化が早くなり、また、tanδが高い圧電薄膜を用いたセンサでは、圧電薄膜の変形が小さい場合の感度が極端に悪くなる、ということが分かった。例えばインクジェットプリンタヘッドのアクチュエータに圧電薄膜を用いる場合には、tanδが0.1以下であることが求められる。現状のニオブ酸カリウムナトリウム圧電薄膜は、この要求を満足できておらず、製品への適用は困難な状況であった。ニオブ酸カリウムナトリウム薄膜が広くインクジェットプリンタヘッドなどに適用されるためには、tanδが0.1以下のニオブ酸カリウムナトリウム圧電薄膜を実現する必要がある。
 そこで、さらに本発明者らが検討を行ったところ、(K1-xNaNbO(以下、「KNN」とも略称する)の圧電薄膜中に含まれる炭素濃度または水素濃度と、KNN圧電薄膜の誘電損失tanδとの間には強い相関があり、KNN圧電薄膜の炭素濃度または水素濃度を調整することで、KNN圧電薄膜の誘電損失tanδを制御できるという知見を得て、本発明をなすに至った。
(圧電薄膜素子の実施形態)
 以下に、本発明に係る圧電薄膜素子の実施形態を説明する。
 本発明の一実施形態に係る圧電薄膜素子は、基板と、前記基板上に設けられる組成式(K1-xNaNbOで表されるアルカリニオブ酸化物系ペロブスカイト構造の圧電薄膜とを有し、前記圧電薄膜の炭素濃度が2×1019/cm以下である。
 また、本発明の他の実施形態に係る圧電薄膜素子は、基板と、前記基板上に設けられる組成式(K1-xNaNbOで表されるアルカリニオブ酸化物系ペロブスカイト構造の圧電薄膜とを有し、前記圧電薄膜の水素濃度が4×1019/cm以下である。
 KNN圧電薄膜の炭素濃度を2×1019/cm以下に、あるいはKNN圧電薄膜の水素濃度を4×1019/cm以下にすることにより、KNN圧電薄膜の誘電損失tanδを0.1以下に実現することができる(後述の実施例における図6参照)。
 上記実施形態の圧電薄膜素子において、KNN圧電薄膜は、擬立方晶であり、かつ(001)面方位に優先配向しているのが好ましい。このような結晶構造とすることより、高い圧電定数が得られる。
 また、上記実施形態の圧電薄膜素子において、KNN圧電薄膜の、x=Na/(K+Na)比率、およびy=(K+Na)/Nb比率は、0.4≦x≦0.7、かつ0.75≦y≦0.90とするのが好ましい。
 y=1であるストイキオメトリー組成のKNN膜((K1-xNa)NbO)に比べて、KやNaが少ないKNN膜を作製したところ、y=1付近のKNN膜と比べて圧電定数が大きくなることを見出した。圧電定数が向上するメカニズムの詳細は明らかではないが、yを1よりも小さくすることで、結晶として理想的なy=1のKNN膜に対して適度の不安定要因が導入されることとなり、電界による結晶格子伸縮(圧電動作)が起こりやすくなったと推測される。(K1-xNaNbOの組成x、yが0.4≦x≦0.7かつ0.75≦y≦0.90の範囲にあるKNN薄膜は、PZT薄膜に代替可能な実用レベルの高い圧電定数d31を有する。
 次に、本発明に係る圧電薄膜素子のより具体的な実施形態を図面を用いて説明する。
(圧電薄膜素子の第1の実施形態)
 図1は、本発明の第1の実施形態に係る圧電薄膜素子の概略的な構造を示す断面図である。圧電薄膜素子は、図1に示すように、基板1上に、下地層2と、圧電薄膜3と、電極4とが順次形成されている。
 基板1は、Si(シリコン)基板、Si基板表面に酸化膜を有する表面酸化膜付きSi基板、またはSOI(Silicon on Insulator)基板を用いるのが好ましい。Si基板には、例えば、Si基板表面が(100)面方位の(l00)Si基板が用いられたりするが、(100)面とは異なる面方位のSi基板でも勿論よい。また、基板1には、石英ガラス基板、GaAs基板、サファイヤ基板、ステンレスなどの金属基板、MgO基板、SrTiO基板などを用いてもよい。
 下地層2は、Pt(白金)層からなり、(111)面方位に優先配向しているのが好ましい。例えば、Si基板上に形成したPt層は、自己配向性のため(111)面方位に配向しやすい。下地層2の材料としては、Pt以外に、Ptを含む合金、Au(金)、Ru(ルテニウム)、Ir(イリジウム)、またはSrTiO、LaNiOなどの金属酸化物でもよい。下地層2はスパッタリング法、蒸着法などを用いて形成する。なお、基板1と下地層2との密着性を高めるために、基板1と下地層2との間に密着層を設けてもよい。下地層2は電極(下部電極)として用いることができる。
 圧電薄膜3は、組成式(K1-xNaNbOで表されるアルカリニオブ酸化物系のペロブスカイト構造を有するKNN圧電薄膜であり、KNN圧電薄膜3の炭素濃度は2×1019/cm以下に、あるいはKNN圧電薄膜3の水素濃度は4×1019/cm以下になっている。KNN圧電薄膜3は、擬立方晶であり、かつ(001)面方位に優先配向しているのが好ましく、また、KNN圧電薄膜3の組成x、yは、0.40≦x≦0.70かつ0.75≦y≦0.90の範囲にあるのが好ましい。圧電薄膜3の形成には、スパッタリング法、CVD(Chemical Vapor Deposition)法、ソルゲル法などが用いられる。
 電極4は、Pt、Au、Al(アルミニウム)などの材料を用い、スパッタリング法、蒸着法、メッキ法、金属ペースト法などで形成される。電極4は、下地層2のように圧電薄膜の結晶構造に大きな影響を与えるものではないため、電極4の材料、結晶構造は特に限定されない。
 我々は、KNN薄膜の成膜方法として最も一般的であるスパッタ法で形成されたKNN薄膜について、誘電損失tanδが高くなる原因を調査した結果、tanδが高いKNN薄膜は、膜中に高い濃度の炭素が混入していることを突き止めた。炭素の混入源は、KNN焼結体ターゲット中に含まれる炭素であることも分かった。KNN焼結体ターゲットは、通常、KCO、NaCO、Nb粉末を出発原料として、混合、仮焼成、本焼成の過程を経て、KNN焼結体ターゲットになる。この時、出発原料KCO及びNaCO中の炭素は高温での焼成工程で大半は取り除かれるが、一部がKNN焼結体中に残留していると思われる。
 KNN薄膜中の炭素濃度の低減には、KNN焼結体ターゲット中の炭素濃度を減らすこと、スパッタリング成膜における雰囲気ガス(例えば、Ar(アルゴン)とO(酸素)との混合ガス)中のOの比率を高めること、KNN薄膜の成膜後に大気または酸素雰囲気で熱処理を行うことが有効である(後述の実施例における図8参照)。
 KNN薄膜中の炭素濃度の測定は、例えば、一般的なSIMS分析で測定できる。ただし、SIMS分析では、測定する試料の表面付近や試料に隣接する隣接層との界面付近は、正しい濃度プロファイルが得られる保証がない。そのため、本実施形態では、KNN圧電薄膜3に隣接する隣接層である下地層2との界面近傍200nmと、KNN圧電薄膜3の表面近傍200nmないしKNN圧電薄膜3の電極4との界面近傍200nmを除いたKNN圧電薄膜3の領域での炭素濃度を正しい炭素濃度と考えて、KNN圧電薄膜3中の炭素濃度を求めた。SIMS分析によるKNN圧電薄膜3の水素濃度も同様にして求めた。
 優れた圧電特性が得られる、組成x、yが0.4≦x≦0.7かつ0.75≦y≦0.90で(001)面優先配向の擬立方晶ペロブスカイト構造のKNN薄膜について、炭素濃度の深さ方向プロファイルとtanδとを測定した結果、炭素濃度が2×1019/cm以下の場合に、tanδ≦0.1が実現できることが分かった(後述の実施例における図7参照)。
 また、SIMS分析で炭素濃度と同時に水素濃度の深さ方向プロファイルを測定した結果、KNN薄膜中の水素濃度と炭素濃度は、ほぼ同じような傾向のプロファイルを示していた。KNN薄膜の水素濃度に関しては、4×1019/cm以下の場合に、tanδ≦0.1が実現できることも分かった(後述の実施例における図7参照)。
 スパッタリング法以外の成膜方法(例えばCVD法、ソルゲル法など)で形成されたKNN薄膜に関しても、成膜条件で多少の違いはあるが、概ね高い濃度の炭素、水素がKNN薄膜中に混在しており、炭素濃度2×1019/cm以下、または水素濃度4×1019/cm以下にすることで、tanδ≦0.1のKNN薄膜が実現できる。
(圧電薄膜素子の第2の実施形態)
 図2に、本発明の第2の実施形態に係る圧電薄膜素子の概略的な断面構造を示す。第2の実施形態の圧電薄膜素子は、図1に示す上記第1の実施形態の圧電薄膜素子と同様に、基板1上に、下地層2、圧電薄膜3、電極4を有するが、図2に示すように、基板1は、その表面に酸化膜5が形成された表面酸化膜付き基板であり、酸化膜5と下地層2との間には、下地層2の密着性を高めるための密着層6が設けられている。
 表面酸化膜付き基板は、例えば、酸化膜付きSi基板であり、酸化膜付きSi基板では、酸化膜は、熱酸化によって形成されるSiO膜、CVD法により形成されるSiO膜がある。基板サイズは通常4インチ円形が使われることが多いが、6インチや8インチの円形あるいは矩形の基板を用いてもよい。また、密着層6には、Ti(チタン)、Ta(タンタル)などが用いられ、スパッタリング法や蒸着法などで形成される。
 なお、上記第1、第2の実施形態に係る圧電薄膜素子の圧電薄膜3は、いずれも単層のKNN薄膜であるが、圧電薄膜3は、炭素濃度が2×1019/cm以下または水素濃度が4×1019/cm以下であって0.40≦x≦0.70かつ0.75≦y≦0.90の範囲のKNN薄膜を含む、複数の(K1-xNaNbO(0<x<1)層から形成されていてもよい。また、KNNの圧電薄膜に、K(カリウム)、Na(ナトリウム)、Nb(ニオブ)、O(酸素)以外の元素、例えば、Li(リチウム)、Ta(タンタル)、Sb(アンチモン)、Ca(カルシウム)、Cu(銅)、Ba(バリウム)、Ti(チタン)などを5原子数%以下で添加してもよく、この場合も同様の効果が得られる。更に、下地層2と電極4との間に、KNN以外のアルカリニオブ酸化物系の材料、あるいはペロブスカイト構造を有する材料(LaNiO、SrTiO、LaAlO、YAlO、BaSnO、BaMnOなど)からなる薄膜が含まれていてもよい。
(圧電薄膜デバイスの実施形態)
 図3に、本発明に係る圧電薄膜素子を用いて作製した圧電薄膜デバイスの一実施形態の概略的な構成図を示す。
 圧電薄膜素子10は、図3に示すように、図1に示す第1の実施形態の圧電薄膜素子と同様の断面構造を有し、第1の実施形態の圧電薄膜素子の下地層2を下部電極2とし、また電極4を上部電極4として用いている。圧電薄膜デバイスは、所定の形状に成形された圧電薄膜素子10の下部電極2と上部電極4の間に、少なくとも電圧検知手段(または電圧印加手段)11が接続されている。
 下部電極2と上部電極4の間に、電圧検知手段11を接続することで、圧電薄膜デバイスとしてのセンサが得られる。このセンサの圧電薄膜素子10が何らかの物理量の変化に伴って変形すると、その変形によって電圧が発生するので、この電圧を電圧検知手段11で検知することで各種物理量を測定することができる。センサとしては、例えば、ジャイロセンサ、超音波センサ、圧カセンサ、速度・加速度センサなどが挙げられる。
 また、圧電薄膜素子10の下部電極2と上部電極4の間に、電圧印加手段11を接続することで、圧電薄膜デバイスとしてのアクチュエータが得られる。このアクチュエータの圧電薄膜素子10に電圧を印加して、圧電薄膜素子10を変形することによって各種部材を作動させることができる。アクチュエータは、例えば、インクジェットプリンタ、スキャナー、超音波発生装置などに用いることができる。
 次に、本発明の具体的な実施例を説明する。
 実施例および比較例の圧電薄膜素子は、図2に示す上記第2の実施形態と同様の断面構造を有し、熱酸化膜を有するSi基板上に、Ti密着層と、Pt下部電極(下地層)と、KNN圧電薄膜と、Pt上部電極(電極)とが積層されている。
[KNN圧電薄膜の成膜]
 以下に、実施例および比較例におけるKNN圧電薄膜の成膜方法を説明する。
 基板には熱酸化膜付きSi基板((100)面方位、厚さ0.525mm、形状4インチ円形、熱酸化膜の厚さ200nm)を用いた。まず、基板上にRFマグネトロンスパッタリング法で、Ti密着層(膜厚10nm)、Pt下部電極((111)面優先配向、膜厚200nm)を形成した。Ti密着層とPt下部電極は、基板温度350℃、放電パワー300W、導入ガスAr、Ar雰囲気の圧力2.5Pa、成膜時間は、Ti密着層では3分、Pt下部電極では10分の条件で成膜した。
 続いて、Pt下部電極の上に、RFマグネトロンスパッタリング法で膜厚3μmの(K1-xNaNbO圧電薄膜を形成した。(K1-xNaNbO圧電薄膜は、y=(K+Na)/Nb比率=0.86~1.05、x=Na/(K+Na)比率=0.44~0.78の(K1-xNaNbO焼結体をターゲットに用い、基板温度(基板表面の温度)550℃、放電パワー75W、導入ガスAr/O混合ガス(Ar/O=99/1~90/10)、雰囲気ガスの圧力1.3Paの条件で成膜した。各KNN薄膜のスパッタリング成膜時間は、KNN薄膜の膜厚がほぼ3μmになるように調整して行った。
 KNN焼結体ターゲットは、KCO粉末、NaCO粉末、Nb粉末を原料にして、ボールミルを用いて24時間混合し、850℃で10時間仮焼成し、その後再びボールミルで粉砕し、200MPaの圧力で成形した後、1000~1250℃で焼成することで作製した。(K+Na)/Nb比率およびNa/(K+Na)比率は、KCO粉末、NaCO粉末、Nb粉末の混合比率を調整することで制御した。作製した焼結体ターゲットは、スパッタリング成膜に用いる前にEDX(エネルギー分散型X線分光分析)によってK、Na、Nbの原子数%を測定し、それぞれの(K+Na)/Nb比率およびNa/(K+Na)比率を算出した。また、焼結体ターゲット中の炭素濃度および水素濃度(wt ppm)は、ガス成分分析(IGA:Interstitial Gas Analysis)で測定した。ガス成分分析とは、材料を燃焼させて発生したC、N、O、Hなどのガス成分を赤外線吸収や熱伝導度測定で測定し、濃度を決定する方法である。
 KNN焼結体ターゲット中の炭素濃度および水素濃度は焼成温度が高いほど少なくなる傾向があった。図8に、実施例1~10および比較例1~8で用いたKNN焼結体ターゲットの(K+Na)/Nb比率およびNa/(K+Na)比率、ターゲット焼成温度、ターゲットに含まれる炭素濃度および水素濃度、スパッタリング成膜時のAr/O比率、成膜後の熱処理の有無を示す。成膜後のKNN薄膜の熱処理としては、大気雰囲気で750℃、2時間の熱処理を行った。
[KNN圧電薄膜の組成分析]
 ICP-AES(誘導結合型プラズマ発光分析法)によって、実施例1~10および比較例1~8のKNN薄膜の組成分析を行った。試料の溶液化には、湿式酸分解法を用い、酸にはフッ化水素酸と硝酸の混合液を用いた。ICP-AESによって得られたNb、Na、Kの割合から(K+Na)/Nb比率、Na/(K+Na)比率を算出した。図8に、算出した(K+Na)/Nb比率、Na/(K+Na)比率を示す。(K+Na)/Nb比率が異なるターゲットを用いたことで(K+Na)/Nb比率が異なるKNN圧電薄膜が作製できていることが分かる。
[KNN圧電薄膜中の炭素および水素の深さ方向濃度プロファイルの測定]
 一般的な二次イオン質量分析法(SIMS: Secondary Ion Mass Spectrometry)により、KNN圧電薄膜の表面側からPt下部電極までの炭素および水素の深さ方向濃度プロファイルを測定した。測定結果の一例として、実施例1の場合を図4、比較例1の場合を図5にそれぞれ示す。図4、図5には、KNN圧電薄膜のO,K,Nb,Na強度の深さ方向プロファイルも示す。比較例1では、図5に示すように、炭素および水素の濃度は、KNN圧電薄膜の表面側が高く、Pt下部電極側に近づくにつれて徐々に濃度が減少している。一方、実施例1では、図4に示すように、表面付近とPt下部電極界面付近で炭素、水素の濃度が高い領域があるが、これら以外の領域は、炭素および水素の濃度は非常に低く、且つほぼ一定の濃度となっている。
 SIMS分析においては、表面付近(表面から深さ200nm以内の領域)は様々な影響で正しい濃度が測定できない可能性があると言われている。また、SIMS分析での濃度深さプロファイル測定は、イオンエッチングで膜を削りながら測定を行うため、深い領域では測定している面の平坦性が失われ、その結果、深さ方向の分解能が低下する可能性もある。従って、下地層(本実施例ではPt下部電極)との界面付近(Pt下部電極界面から200nm以内の領域のKNN薄膜)も、正しい濃度測定ができていない可能性があると考えた。そこで、SIMS分析の結果が信頼できる深さの範囲(KNN薄膜の表面から深さ200nm以内の領域およびPt下部電極界面から200nm以内の領域を除く領域)で、KNN薄膜の炭素および水素の深さ方向濃度プロファイル中での濃度の最大値を読み取った。図8に、実施例1~10および比較例1~8でのKNN薄膜の炭素濃度、水素濃度の最大値を示す。
 図8に示すように、KNN焼結体ターゲット中の炭素濃度、水素濃度はKNN焼結体ターゲットの焼成温度を高くすることで低減できている。これは、高温で焼成することで、KNN焼結体ターゲット中に残留する炭素濃度、水素濃度が低下したためと思われる。また、炭素濃度、水素濃度が低いKNN焼結体ターゲットを用いることにより、成膜されるKNN薄膜中の炭素濃度および水素濃度も減少している。更に、スパッタリング成膜時のAr/O比率において、Oの割合を多くすることで、KNN薄膜中の炭素濃度および水素濃度が減少している。また、成膜後の熱処理によっても、KNN薄膜中の炭素濃度および水素濃度が減少している。
[誘電損失tanδ、比誘電率の測定]
 KNN圧電薄膜の比誘電率および誘電損失tanδを測定するために、図6に示すように、上記実施例および比較例のKNN圧電薄膜3の上に、Pt上部電極(膜厚100nm、サイズ1mm×1mm)4をRFマグネトロンスパッタリング法で形成した。この上部電極4と下部電極2をLCRメーターに接続し、測定周波数1kHzで静電容量とtanδを測定した。得られた静電容量から、電極面積(lmm)、KNN圧電薄膜3の膜厚(3μm)、真空の誘電率を考慮して、比誘電率を算出した。図8に、実施例1~10および比較例1~8でのKNN薄膜の比誘電率、tanδを示す。
[KNN薄膜のtanδと炭素濃度および水素濃度との関係]
 図7にKNN薄膜のtanδと、KNN薄膜中の炭素濃度および水素濃度の最大値との関係を示す。炭素濃度と水素濃度はtanδに対してほぼ同じ傾向を示し、tanδの増加に比例して炭素濃度および水素濃度の対数値は増加している。図7に示すように、炭素濃度を2×1019/cm以下、水素濃度を4×1019/cm以下にすることで、tanδ≦0.1のKNN薄膜が実現できることが分かる。
 比誘電率に関しては、炭素濃度が2×1019/cm以下、水素濃度が4×1019/cm以下の実施例のKNN薄膜と、炭素濃度が2×1019/cmを超え、水素濃度が4×1019/cmを超える比較例のKNN薄膜とは、殆ど違いはなかった。また、圧電定数に関しても、比較例のKNN薄膜と実施例のKNN薄膜とで殆ど違いは見られなかった。つまり、実施例のKNN薄膜では、従前と同等の良好な圧電定数や比誘電率を維持したまま、問題であったtanδの値を低減できることが分かった。
[アクチュエータの試作および特性の評価]
 上記実施例1及び比較例1のKNN圧電薄膜を用いて、カンチレバー型の簡易アクチュエータを試作した。まず、試作にあたって、上記実施例1および比較例1のKNN圧電薄膜の上にPt上部電極をRFマグネトロンスパッタリング法で形成した後、短冊形に切り出し、KNN圧電薄膜を有する圧電薄膜素子を作製した。次に、この短冊形の圧電薄膜素子を、その長手方向の一端をクランプで固定することで簡易的なユニモルフカンチレバーを作製した。このカンチレバーのPt上部電極とPt下部電極との間のKNN圧電薄膜に、電圧印加手段によって電圧を印加し、KNN圧電薄膜を伸縮させることで、カンチレバー(圧電薄膜素子)全体を屈伸させた。このときのカンチレバーの先端変位量Δをレーザードップラ変位計で測定した。圧電定数d31は、カンチレバー先端の変位量Δ、カンチレバーの長さ、基板1とKNN圧電薄膜3の厚さとヤング率、および印加電圧から算出される。
 実施例1のKNN圧電薄膜を用いたアクチュエータ(カンチレバー)と、比較例1のKNN圧電薄膜を用いたアクチュエータ(カンチレバー)とに、ユニポーラのsin波を上下電極間に連続で印加することで、カンチレバーを連続駆動させた。このとき、実施例1のアクチュエータは、比較例1のアクチュエータに比べて発熱が抑えられることが確認された。また、1億回駆動後の圧電定数d31が初期の圧電定数d31から低下(劣化)する割合(低下率、劣化率)も、実施例1のアクチュエータでは、比較例1のアクチュエータよりも抑えられることが確認された。
(他の実施例)
 上記実施例では、下地層として下部電極ともなるPt層を用いたが、例えば、Pt層上にNaNbO層を形成し、Pt層とNaNbO層の二層からなる下地層としてもよい。また、基板上にKNN圧電薄膜を形成し、圧電薄膜上に所定のパターンを備えた電極を形成することで、表面弾性波を利用したフィルタデバイスを形成することができる。表面弾性波を利用するフィルタデバイスなどのように、下部電極を必要としないデバイスの場合には、Pt層を下部電極として用いずに下地層として用いる。あるいは、Pt層に代わり他の下地層を設けても良い。例えば、基板と、下地層となるランタン酸ニッケル層と、KNN圧電薄膜と、上部パターン電極とを積層したデバイス構造としてもよい。
 1 基板
 2 下地層(下部電極)
 3 圧電薄膜(KNN圧電薄膜)
 4 電極(上部電極)
 5 酸化膜
 6 密着層
10 圧電薄膜素子
11 電圧検知手段または電圧印加手段

Claims (8)

  1.  基板と、前記基板上に設けられる組成式(K1-xNaNbOで表されるアルカリニオブ酸化物系ペロブスカイト構造の圧電薄膜とを有し、前記圧電薄膜の炭素濃度が2×1019/cm以下である圧電薄膜素子。
  2.  基板と、前記基板上に設けられる組成式(K1-xNaNbOで表されるアルカリニオブ酸化物系ペロブスカイト構造の圧電薄膜とを有し、前記圧電薄膜の水素濃度が4×1019/cm以下である圧電薄膜素子。
  3.  請求項1または2に記載の圧電薄膜素子において、前記圧電薄膜は、擬立方晶であり、かつ(001)面方位に優先配向している圧電薄膜素子。
  4.  請求項1~3のいずれかに記載の圧電薄膜素子において、前記圧電薄膜の組成が0.4≦x≦0.7かつ0.75≦y≦0.90である圧電薄膜素子。
  5.  請求項1~4のいずれかに記載の圧電薄膜素子において、前記基板と前記圧電薄膜との間には下地層が設けられている圧電薄膜素子。
  6.  請求項5に記載の圧電薄膜素子において、前記下地層はPt層であり、前記Pt層は(111)面方位に優先配向している圧電薄膜素子。
  7.  請求項1~6のいずれかに記載の圧電薄膜素子において、前記基板は、Si基板、表面酸化膜付きSi基板、またはSOI基板であることを特徴とする圧電薄膜素子。
  8.  請求項1~7のいずれかに記載の圧電薄膜素子と、前記圧電薄膜素子の前記圧電薄膜を挟んで上下に設けられる上部電極と下部電極と、前記上部電極と前記下部電極との間に接続される電圧印加手段または電圧検知手段とを備えた圧電薄膜デバイス。
PCT/JP2011/057117 2010-03-25 2011-03-24 圧電薄膜素子及び圧電薄膜デバイス WO2011118686A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180013990.7A CN102804436B (zh) 2010-03-25 2011-03-24 压电薄膜器件和压电薄膜装置
US13/636,883 US8446074B2 (en) 2010-03-25 2011-03-24 Piezoelectric thin-film element and piezoelectric thin-film device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010070361A JP5071503B2 (ja) 2010-03-25 2010-03-25 圧電薄膜素子及び圧電薄膜デバイス
JP2010-070361 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118686A1 true WO2011118686A1 (ja) 2011-09-29

Family

ID=44673235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057117 WO2011118686A1 (ja) 2010-03-25 2011-03-24 圧電薄膜素子及び圧電薄膜デバイス

Country Status (4)

Country Link
US (1) US8446074B2 (ja)
JP (1) JP5071503B2 (ja)
CN (1) CN102804436B (ja)
WO (1) WO2011118686A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107563A (ja) * 2012-11-28 2014-06-09 Tdk Corp 圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
JP2014112675A (ja) * 2012-11-28 2014-06-19 Tdk Corp 薄膜圧電素子、薄膜圧電アクチュエータ、及び薄膜圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
US20140339458A1 (en) * 2013-05-14 2014-11-20 Tdk Corporation Piezoelectric ceramic and piezoelectric device containing the same
JPWO2013094171A1 (ja) * 2011-12-22 2015-04-27 キヤノンアネルバ株式会社 SrRuO3膜の成膜方法
JP2015129349A (ja) * 2012-06-29 2015-07-16 株式会社半導体エネルギー研究所 スパッタリング用ターゲット
US9324931B2 (en) 2013-05-14 2016-04-26 Tdk Corporation Piezoelectric device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515675B2 (ja) * 2009-11-20 2014-06-11 日立金属株式会社 圧電薄膜素子及び圧電薄膜デバイス
JP2013251355A (ja) * 2012-05-31 2013-12-12 Hitachi Cable Ltd 圧電体膜素子の製造方法、圧電体膜素子、及び圧電体デバイス
JP5858385B2 (ja) * 2012-08-07 2016-02-10 住友化学株式会社 圧電体素子、圧電体デバイス及びその製造方法
JP5897436B2 (ja) * 2012-09-13 2016-03-30 住友化学株式会社 圧電体薄膜付き基板の製造方法、及び圧電体薄膜素子の製造方法
US9277869B2 (en) 2012-11-28 2016-03-08 Tdk Corporation Thin-film piezoelectric element, thin-film piezoelectric actuator, thin-film piezoelectric sensor, hard disk drive, and inkjet printer apparatus
JP6266987B2 (ja) * 2013-03-19 2018-01-24 住友化学株式会社 圧電薄膜素子、圧電センサ及び振動発電機
JP5943870B2 (ja) * 2013-04-01 2016-07-05 富士フイルム株式会社 圧電体膜
JP6173845B2 (ja) * 2013-09-09 2017-08-02 住友化学株式会社 圧電体薄膜素子の製造方法
US10680160B2 (en) 2013-10-30 2020-06-09 Oregon State University Piezoelectric thin film stack
JP2015153850A (ja) * 2014-02-13 2015-08-24 株式会社サイオクス 圧電体薄膜素子、その製造方法、および該圧電体薄膜素子を用いた電子デバイス
WO2015139130A1 (en) * 2014-03-17 2015-09-24 Manconi John William Piezoelectric enhanced windmill
FR3022674B1 (fr) * 2014-06-18 2019-12-13 Iem Sarl Borne de detection comprenant un transducteur piezoelectrique fixe a une membrane liee a une structure de butee
JP6327087B2 (ja) * 2014-09-25 2018-05-23 Tdk株式会社 圧電組成物、圧電素子およびスパッタリングターゲット
JP6239566B2 (ja) 2015-10-16 2017-11-29 株式会社サイオクス 圧電薄膜付き積層基板、圧電薄膜素子およびその製造方法
US10355196B2 (en) 2016-02-10 2019-07-16 Seiko Epson Corporation Piezoelectric element, piezoelectric element application device, and method of manufacturing piezoelectric element
JP6922326B2 (ja) 2017-03-28 2021-08-18 セイコーエプソン株式会社 圧電素子及び圧電素子応用デバイス
CN107332561B (zh) * 2017-07-18 2021-02-26 上海示方科技有限公司 一种信号探询装置、氢原子频标
JP6502460B2 (ja) * 2017-11-01 2019-04-17 株式会社サイオクス 圧電薄膜付き積層基板および圧電薄膜素子
JP7352347B2 (ja) * 2018-12-07 2023-09-28 住友化学株式会社 圧電積層体、圧電素子および圧電積層体の製造方法
JP6961770B2 (ja) * 2019-03-20 2021-11-05 住友化学株式会社 圧電薄膜付き積層基板および圧電薄膜素子
JP6758444B2 (ja) * 2019-03-20 2020-09-23 住友化学株式会社 圧電薄膜付き積層基板および圧電薄膜素子
JP7331424B2 (ja) * 2019-04-10 2023-08-23 セイコーエプソン株式会社 圧電素子、液体吐出ヘッド、およびプリンター
JP6756886B1 (ja) * 2019-04-26 2020-09-16 Jx金属株式会社 ニオブ酸カリウムナトリウムスパッタリングターゲット
JP7415696B2 (ja) * 2020-03-16 2024-01-17 Tdk株式会社 圧電組成物および電子部品
GB2599107A (en) * 2020-09-23 2022-03-30 Attana Ab A piezoelectric resonator, a piezoelectric material for a piezoelectric resonator, and a method for manufacturing a piezoelectric resonator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300019A (ja) * 2003-03-14 2004-10-28 Toyota Central Res & Dev Lab Inc 結晶配向セラミックス及びその製造方法
JP2007287918A (ja) * 2006-04-17 2007-11-01 Seiko Epson Corp 圧電体積層体、表面弾性波素子、薄膜圧電共振子および圧電アクチュエータ、ならびに圧電体積層体の製造方法
JP2007284281A (ja) * 2006-04-14 2007-11-01 Denso Corp 結晶配向セラミックスの製造方法
JP2009200469A (ja) * 2008-01-24 2009-09-03 Hitachi Cable Ltd 圧電薄膜素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1457471B1 (en) 2003-03-14 2014-02-26 Denso Corporation Crystal oriented ceramics and production method of same
JP4795748B2 (ja) * 2004-09-13 2011-10-19 株式会社デンソー 圧電アクチュエータ
JP4735840B2 (ja) 2005-12-06 2011-07-27 セイコーエプソン株式会社 圧電体積層体、表面弾性波素子、薄膜圧電共振子および圧電アクチュエータ
CN100539228C (zh) * 2005-12-06 2009-09-09 精工爱普生株式会社 压电层压体、表面声波元件、压电谐振器及压电传动装置
JP2008127244A (ja) * 2006-11-21 2008-06-05 Hitachi Cable Ltd 圧電セラミックス及び圧電セラミックス素子
JP2008159807A (ja) 2006-12-22 2008-07-10 Hitachi Cable Ltd 圧電薄膜素子及び圧電薄膜素子を用いて製造したアクチュエータとセンサ
JP2010053021A (ja) * 2008-07-28 2010-03-11 Ngk Insulators Ltd 圧電/電歪セラミックス焼結体及び散漫散乱強度比の算出方法
JP5035378B2 (ja) * 2009-06-22 2012-09-26 日立電線株式会社 圧電薄膜素子及びその製造方法、並びに圧電薄膜デバイス
JP5531653B2 (ja) * 2010-02-02 2014-06-25 日立金属株式会社 圧電薄膜素子、その製造方法及び圧電薄膜デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300019A (ja) * 2003-03-14 2004-10-28 Toyota Central Res & Dev Lab Inc 結晶配向セラミックス及びその製造方法
JP2007284281A (ja) * 2006-04-14 2007-11-01 Denso Corp 結晶配向セラミックスの製造方法
JP2007287918A (ja) * 2006-04-17 2007-11-01 Seiko Epson Corp 圧電体積層体、表面弾性波素子、薄膜圧電共振子および圧電アクチュエータ、ならびに圧電体積層体の製造方法
JP2009200469A (ja) * 2008-01-24 2009-09-03 Hitachi Cable Ltd 圧電薄膜素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013094171A1 (ja) * 2011-12-22 2015-04-27 キヤノンアネルバ株式会社 SrRuO3膜の成膜方法
JP2015129349A (ja) * 2012-06-29 2015-07-16 株式会社半導体エネルギー研究所 スパッタリング用ターゲット
JP2014107563A (ja) * 2012-11-28 2014-06-09 Tdk Corp 圧電素子、圧電アクチュエータ、及び圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
JP2014112675A (ja) * 2012-11-28 2014-06-19 Tdk Corp 薄膜圧電素子、薄膜圧電アクチュエータ、及び薄膜圧電センサ、並びにハードディスクドライブ、及びインクジェットプリンタ装置
US20140339458A1 (en) * 2013-05-14 2014-11-20 Tdk Corporation Piezoelectric ceramic and piezoelectric device containing the same
US9324931B2 (en) 2013-05-14 2016-04-26 Tdk Corporation Piezoelectric device

Also Published As

Publication number Publication date
CN102804436A (zh) 2012-11-28
JP5071503B2 (ja) 2012-11-14
CN102804436B (zh) 2015-01-14
JP2011204887A (ja) 2011-10-13
US20130009519A1 (en) 2013-01-10
US8446074B2 (en) 2013-05-21

Similar Documents

Publication Publication Date Title
JP5071503B2 (ja) 圧電薄膜素子及び圧電薄膜デバイス
JP5056914B2 (ja) 圧電薄膜素子および圧電薄膜デバイス
JP5515675B2 (ja) 圧電薄膜素子及び圧電薄膜デバイス
JP5858385B2 (ja) 圧電体素子、圧電体デバイス及びその製造方法
JP5531635B2 (ja) 圧電薄膜素子及び圧電薄膜デバイス
JP6239566B2 (ja) 圧電薄膜付き積層基板、圧電薄膜素子およびその製造方法
JP5495512B2 (ja) 圧電素子の製造方法
JP5743203B2 (ja) 圧電膜素子及び圧電膜デバイス
JP2007294593A (ja) 圧電薄膜を用いた素子
JP7362339B2 (ja) 圧電積層体、圧電素子、および圧電積層体の製造方法
JP5115161B2 (ja) 圧電薄膜素子
JP2007317853A (ja) 圧電薄膜及び圧電薄膜を用いた素子
WO2017135166A1 (ja) 圧電素子
JP7399753B2 (ja) 圧電膜、圧電積層体、圧電素子および圧電積層体の製造方法
JP7074512B2 (ja) 圧電積層体、圧電積層体の製造方法、圧電素子、およびスパッタリングターゲット材
JP2018019108A (ja) 圧電薄膜付き積層基板および圧電薄膜素子
WO2024202318A1 (ja) 圧電積層体、圧電積層体の製造方法、及び圧電素子
JP7320091B2 (ja) 圧電薄膜付き積層基板、圧電薄膜付き積層基板の製造方法、圧電薄膜素子、スパッタリングターゲット材、およびスパッタリングターゲット材の製造方法
WO2024202319A1 (ja) 圧電積層体、圧電積層体の製造方法、及び圧電素子
WO2011099231A1 (ja) 圧電薄膜素子、圧電薄膜デバイス及び圧電薄膜素子の製造方法
JP2021088773A (ja) スパッタリングターゲット材、スパッタリングターゲット材の製造方法、および圧電薄膜付き積層基板の製造方法
JP2013012710A (ja) 圧電膜素子、圧電膜デバイス、および圧電膜素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013990.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13636883

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759491

Country of ref document: EP

Kind code of ref document: A1