WO2011118452A1 - ばねの通電加熱方法及びその装置 - Google Patents

ばねの通電加熱方法及びその装置 Download PDF

Info

Publication number
WO2011118452A1
WO2011118452A1 PCT/JP2011/056052 JP2011056052W WO2011118452A1 WO 2011118452 A1 WO2011118452 A1 WO 2011118452A1 JP 2011056052 W JP2011056052 W JP 2011056052W WO 2011118452 A1 WO2011118452 A1 WO 2011118452A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
electrode
electrodes
workpiece
resistance value
Prior art date
Application number
PCT/JP2011/056052
Other languages
English (en)
French (fr)
Inventor
雄一 平田
浩之 小木曽
厚志 深津
Original Assignee
中央発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央発條株式会社 filed Critical 中央発條株式会社
Priority to US13/636,259 priority Critical patent/US20130092675A1/en
Priority to BR112012024030A priority patent/BR112012024030A2/pt
Priority to CA2793708A priority patent/CA2793708A1/en
Priority to EP11759258.4A priority patent/EP2551360A4/en
Priority to CN201180015274.2A priority patent/CN102834530B/zh
Priority to KR1020127027305A priority patent/KR20130050293A/ko
Priority to MX2012011028A priority patent/MX2012011028A/es
Publication of WO2011118452A1 publication Critical patent/WO2011118452A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/40Direct resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0004Devices wherein the heating current flows through the material to be heated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes

Definitions

  • This application relates to a technique for energizing and heating a spring.
  • heat treatment for example, quenching, tempering, tempering, etc.
  • a heating furnace is generally used for the heat treatment of the spring, the size of the equipment tends to increase. Therefore, it has been studied to heat-treat the spring by energization heating.
  • energization heating an electrode is brought into contact with one end of a spring to be heated, another electrode is brought into contact with the other end of the spring, and a voltage is applied between the electrodes brought into contact with both ends of the spring. As a result, a current flows from one end side to the other end side in the spring, and the spring is heated by the Joule heat.
  • the method of energizing and heating a spring disclosed in this specification includes a step of bringing at least a pair of electrodes into contact with the spring, and a step of energizing and heating the spring by applying a voltage between the pair of electrodes in contact with the spring. ing.
  • the electrode includes a first portion having a first electric resistance value and a second portion having a second electric resistance value higher than the first electric resistance value.
  • the electrode used in this method has a first portion having a low electrical resistance value and a second portion having a high electrical resistance value. For this reason, when the spring is energized through the electrode, the second part generates heat, and the vicinity of the part in contact with the electrode of the spring is heated by this heat generation. Further, heat generation from the vicinity of the electrode of the spring is suppressed by the heat generation of the second portion. As a result, the entire spring including the vicinity of the electrode can be heated by a single current heating.
  • the coefficient ⁇ is a coefficient for considering that the temperature of the second portion of the electrode at the start of energization varies depending on the operating state of the energization heating apparatus in which the electrode is used. That is, when the operating state of the energization heating apparatus is at the time of start-up or intermittent operation, the temperature of the second part of the electrode is low, so that the temperature increase amount of the second part of the electrode needs to be increased. On the other hand, when the operating state of the energization heating apparatus is during continuous operation, the temperature of the second portion of the electrode is high, and therefore it is not necessary to increase the temperature increase amount of the second portion of the electrode.
  • an appropriate operating condition can be determined by introducing a coefficient ⁇ (coefficient ⁇ corresponding to the temperature of the second portion of the electrode at the start of energization) that changes according to the operating state of the energization heating device.
  • This coefficient ⁇ can be in the range of 0.7 to 1.0.
  • a predetermined set temperature that is, when the energization heating device is in continuous operation
  • the coefficient ⁇ is set to 0.7 to 0.8.
  • the coefficient ⁇ is set to 1.0.
  • the electrode is made of a first part made of a Cu-based material in order from the side in contact with the spring, and a material having the same resistance as the spring or a material having an electrical resistance value equal to or greater than the electrical resistance value of the spring. It is preferable to have a second part made of a material and a third part made of a Cu-based material. According to such a configuration, since the first portion made of the Cu-based material is disposed on the side in contact with the spring, the contact resistance between the spring and the electrode can be lowered. As a result, it is possible to allow a current to flow suitably through the spring.
  • the present specification provides an energization heating apparatus that can be suitably used for the above energization heating method. That is, the energization heating device disclosed in this specification includes a pair of electrodes that are brought into contact with the spring and a power supply device that applies a voltage between the pair of electrodes.
  • the electrode includes a first portion having a first electric resistance value and a second portion having a second electric resistance value higher than the first electric resistance value.
  • FIG. 1 The figure which shows schematic structure of the electric heating apparatus of Example 1.
  • FIG. 2 The figure which expands and shows the structure of an electrode.
  • the energization heating apparatus 10 includes a power source 12, electrodes 16a and 16b connected to the power source 12 through a wiring 13b, and electrodes 16c connected to the power source 12 through a switch 14 and a wiring 13a. , 16d.
  • the power source 12 either a DC power source or an AC power source can be used.
  • the on / off state of the switch 14 is controlled by a control device (not shown).
  • the electrodes 16a and 16b clamp one end of the workpiece W, and the electrodes 16c and 16d clamp the other end of the workpiece W.
  • the workpiece W is a torsion bar formed of a conductive material (for example, spring steel).
  • the electrodes 16a to 16d clamp the workpiece W, the electrodes 16a to 16d and the workpiece W are in electrical contact.
  • the power supply 12, the wirings 13a and 13b, the switch 14, the electrodes 16a to 16d, and the work W form one electric circuit.
  • the control device turns on the switch 14 a current flows through the workpiece W, and the workpiece W is energized and heated.
  • the control device turns off the switch 14, the current flowing through the workpiece W is interrupted.
  • Each of the electrodes 16a to 16d has the same configuration, and as shown in FIG. 2, is composed of a first electrode portion 18a, a second electrode portion 20, and a third electrode portion 18b.
  • the first electrode portion 18a is formed of a material having a low electrical resistance value (for example, a Cu-based material (Cu alloy or the like)).
  • a contact surface that follows the surface shape of the workpiece W is formed on the first electrode portion 18a. As a result, the contact resistance between the first electrode portion 18a and the workpiece W is reduced.
  • the 2nd electrode part 20 is formed with the material (for example, Fe type material) whose electrical resistance value is higher than the 1st electrode part 18a.
  • the material of the 2nd electrode part 20 when the workpiece
  • the 2nd electrode part 20 is connected to the surface of the side which does not contact the workpiece
  • the third electrode portion 18b is formed of the same material as the first electrode portion 18a (for example, a Cu-based material (Cu alloy or the like)). The 3rd electrode part 18b is connected to the surface opposite to the side connected to the 1st electrode part 18a of the 2nd electrode part 18a.
  • the resistance value of the workpiece W is R W
  • the weight is m W
  • the specific heat is Cp W
  • the resistance value of each of the second electrode portions 20 of the electrodes 16a to 16d is R E
  • the weight is m E
  • the material, weight ratio, and dimensions of the second electrode portion 20 of each of the electrodes 16a to 16d are determined so that / (m W ⁇ Cp W ) ⁇ R E / (m E ⁇ Cp E ) is satisfied.
  • the coefficient ⁇ is set to 0.7 to 0.8.
  • the coefficient ⁇ is set to 1.0.
  • the resistance R W of the workpiece W is, ⁇ w ⁇ L w / A w ( ⁇ w: the resistivity of the workpiece W, L w: length of the workpiece W, A w: the cross-sectional area of the workpiece W) is calculated by be able to.
  • the resistance value R E of the second electrode unit 20 can also be calculated in the same manner as the resistance value R W of the workpiece W.
  • the temperature of each of the electrodes 16a to 16d is increased to a temperature substantially equal to the temperature of the workpiece W when the workpiece W is energized and heated.
  • the temperature of the second electrode unit 20 can be increased. For example, when the resistance value of the workpiece W is large and the workpiece W is likely to become high temperature, the size and weight of the second electrode portion 20 of each of the electrodes 16a to 16d are reduced, and the temperature of each of the electrodes 16a to 16d is increased to a high temperature. Adjust to raise the temperature. Further, as apparent from the above description, the coefficient ⁇ changes according to the operation status of the electric heating device 10, and therefore the condition required for the second electrode unit 20 also changes according to the operation status of the electric heating device 10. .
  • one end of the workpiece W is clamped by the electrodes 16a and 16b, and the other end of the workpiece W is clamped by the electrodes 16c and 16d.
  • the switch 14 is turned on to pass a current through the work W.
  • a DC power source is used as the power source 12
  • one end (electrodes 16a and 16d) of the work W is connected to the other end (electrodes 16c and 16d), or one end (the electrodes 16c and 16d) is connected to the other end (electrodes 16c and 16d).
  • a current flows towards the electrodes 16a, 16b).
  • each of the electrodes 16a to 16d has the second electrode portion 20 having a high electric resistance value, and the temperature of each of the electrodes 16a to 16d rises to approximately the same as the temperature of the workpiece W during energization heating. Therefore, the end portion of the workpiece W (in the vicinity of the portion in contact with the electrodes 16a to 16d) is heated or kept warm by the heat generated by the electrodes 16a to 16d. As a result, the entire workpiece W including the terminal is heated to a predetermined temperature. When the energization heating to the workpiece W is finished, the switch 14 is turned off.
  • each of the electrodes 16a to 16d has the second electrode portion 20 having a high electric resistance value, and is approximately the same as the temperature of the workpiece W during energization heating.
  • the electrodes 16a to 16d are configured to be heated to a temperature of Therefore, the end portion of the workpiece W (in the vicinity of the portion in contact with the electrodes 16a to 16d) can be heated or kept warm by the heat generated by the electrodes 16a to 16d. As a result, the entire work W can be heated only by energizing the work W once (that is, by passing a current from one end of the work W to the other end).
  • the desired heat treatment can be performed on the entire workpiece W.
  • the electrodes 16a to 16d are formed with a first electrode portion 18a having a low electric resistance value at a portion in contact with the workpiece W, and a contact surface following the surface shape of the workpiece W is formed on the first electrode portion 18a. ing. For this reason, the contact resistance between the workpiece W and the first electrode portion 18a can be kept low, and a current can be suitably passed through the workpiece W. Depending on the hardness and shape of the workpiece W, the contact resistance may not be a problem even with the second electrode portion 20 alone. In such a case, the first electrode portion 18a may be omitted.
  • a rod-shaped spring material such as a torsion bar is energized and heated, but the technique disclosed in this specification is not limited to such a form.
  • the technique disclosed in this specification can be applied to an energization heating device that energizes and heats the coil spring 22.
  • This energization heating device includes a clamp mechanism (24a, 26a) for clamping the upper end 22a of the coil spring 22 and a clamp mechanism (24b, 26b) for clamping the lower end 22b of the coil spring 22.
  • the clamp mechanism (24a, 26a) includes clamp members 24a, 26a. As shown in FIG. 4, electrodes 25a and 23a are attached to the clamp members 24a and 26a, respectively.
  • the electrodes 23a and 25a have the same configuration as that of the above-described embodiment. That is, the electrodes 23a and 25a have a first electrode portion, a second electrode portion, and a third electrode portion, and the electric resistance value of the second electrode portion is higher than the electric resistance values of the first and third electrode portions. Has been. Further, a contact surface that follows the shape of the coil spring 22 is formed on the first electrode portion.
  • the clamp members 24a and 26a can be moved between positions close to each other (clamp position) and positions separated from each other (open position) by an actuator (not shown).
  • an actuator not shown
  • the clamp members 24a and 26a move to the clamp position
  • the upper end 22a of the coil spring 22 is clamped by the electrodes 25a and 23a.
  • the coil spring 22 and the electrodes 25a and 23a are electrically connected.
  • the clamp members 24a and 26a move to the open position, the upper end 22a of the coil spring 22 and the electrodes 25a and 23a are not in contact with each other.
  • the clamp mechanism (24a, 26a) is rotatable around the axis of the coil spring 22. As a result, even if the coil spring 22 is deformed by energization heating, the deformation can be dealt with.
  • the clamp mechanism (24b, 26b) for clamping the lower end of the coil spring 22 has substantially the same configuration as the clamp mechanism (24a, 26a) described above. However, unlike the clamp mechanisms (24a, 26a), the clamp mechanisms (24b, 26b) are also driven in the vertical direction in FIG. 3 by an actuator (not shown). The clamp mechanism (24b, 26b) is driven up and down to enable the coil spring 22 to be set and removed from the energization heating device. The clamp mechanism (24b, 26b) can be moved between a clamp position and an open position by an actuator (not shown) as well as the clamp mechanism (24a, 26a) described above. It can be rotated around.
  • the energization heating apparatus includes a jig 28 that supports the lower end 22 b of the coil spring 22 and a jig 42 that supports the upper end 22 a of the coil spring 22.
  • the jig 28 is formed with a contact surface 28 a that follows the shape of the lower end 22 b of the coil spring 22.
  • the jig 28 is driven up and down by a hydraulic device 34.
  • the hydraulic device 34 includes a cylinder 30 and a piston rod 32 that moves forward and backward with respect to the cylinder 30.
  • a jig 28 is attached to the tip of the piston rod 32.
  • the jig 42 is configured similarly to the jig 28 described above.
  • the jig 42 has a contact surface 42 a that follows the shape of the upper end 22 a of the coil spring 22, and is driven up and down by a hydraulic device 40 that includes a cylinder 36 and a piston rod 38.
  • a hydraulic device 40 that includes a cylinder 36 and a piston rod 38.
  • the clamp mechanism (24b, 26b) and the jig 28 are retracted downward.
  • the coil spring 22 is set on the jig 42 by a robot hand (not shown). That is, the robot hand is driven until the upper end 22 a of the coil spring 22 comes into contact with the jig 42 to position the coil spring 22 with respect to the jig 42.
  • the clamp mechanism (24a, 26a) clamps the upper end 22a of the coil spring 22.
  • the jig 28 and the clamp mechanism (24b, 26b) move upward, and then the lower end 22b of the coil spring 22 is clamped by the clamp mechanism (24b, 26b).
  • a voltage is applied between the upper end and the lower end of the coil spring 22 in this state, and the coil spring 22 is energized.
  • the entirety of the coil spring 22 excluding the end portion that is, the vicinity of the portion in contact with the electrode
  • the end of the coil spring 22 (that is, the vicinity of the portion in contact with the electrode) is heated to approximately the same temperature as the coil spring 22 due to the heat generated by the electrode.
  • the clamp mechanism (24b, 26b) opens the lower end 22b of the coil spring 22, and then the jig 28 and the clamp mechanism (24b, 26b) are retracted downward.
  • a robot hand (not shown) grips the coil spring 22
  • the clamp mechanism (24 a, 26 a) opens the upper end 22 a of the coil spring 22.
  • the robot hand conveys the coil spring 22 outside the apparatus.
  • the clamp mechanism (24b, 26b) moves in the vertical direction according to the deformation of the coil spring 22, and the clamp mechanisms (24a, 26a), (24b, 26b) move around the axis of the coil spring 22. Rotate. Thereby, the thermal deformation of the coil spring 22 is absorbed.
  • the coil spring 22 can be heated by a single energization process by using the energization heating device of FIGS. Further, during energization heating, the clamp mechanism can freely move according to the thermal deformation of the coil spring 22, so that unnecessary external force can be prevented from acting on the coil spring 22. Thereby, the heat treatment of the coil spring 22 can be suitably performed.
  • the clamp mechanism (24a, 26a) that clamps the upper end of the coil spring 22 may be movable in the vertical direction.
  • the technique disclosed in this specification can be suitably applied when heat-treating a spring having a tip portion that does not function as a spring. That is, the tip portion that does not function as a spring is less required to strictly control the temperature during heat treatment. For this reason, by clamping this tip part with an electrode and conducting energization heating, the part functioning as a spring is not clamped with an electrode, and the heat treatment temperature of the part functioning as a spring can be accurately controlled.
  • Examples of such a spring include a coil spring, a snap ring, a stabilizer, a torsion bar, and a spiral spring.
  • the electrode portion is heated in advance by a heater (for example, a resistance heater, a plasma heater, an induction heater), and then the electric heating of the workpiece is performed. Good. Thereby, the vicinity of the part which contacts the electrode part of a workpiece
  • a heater for example, a resistance heater, a plasma heater, an induction heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Resistance Heating (AREA)
  • Heat Treatment Of Articles (AREA)
  • Resistance Heating (AREA)

Abstract

 1回の通電加熱によって、電極の近傍を含むばね全体を加熱することができる方法を提供する。この方法は、ばねに少なくとも一対の電極を接触させる工程と、ばねに接触させた一対の電極間に電圧を印加してばねを通電加熱する工程と、を有している。電極が、第1の電気抵抗値を有する第1部分18aと、第1の電気抵抗値より高い第2の電気抵抗値を有する第2部分20を有している。第2部分20は、加熱対象となるばねと略同程度の電気抵抗値を有することができる。通電加熱時には、第2部分がばねと同程度の温度まで上昇し、これによってばねの電極と接触する部分の近傍が昇温される。

Description

ばねの通電加熱方法及びその装置
 本願は、ばねを通電加熱するための技術に関する。
 ばねに所望の機械的特性を付与するために、熱処理(例えば、焼入れ、焼戻し、テンパー等)が行われる。ばねの熱処理には、一般的に加熱炉が用いられるため、設備が大型化し易い。そこで、通電加熱によりばねを熱処理することが検討されている。通電加熱では、加熱対象となるばねの一端に電極を接触させると共にばねの他端に他の電極を接触させ、ばねの両端に接触させた電極間に電圧を印加する。これによって、ばね内を一端側から他端側へ電流が流れ、そのジュール熱によってばねが加熱される。しかしながら、このような通電加熱方法では、ばねの電極と接触する部分の近傍に電流が流れ難く、ばね全体を均一に加熱することが難しい。このため、ばねの熱処理に通電加熱を用いると、電極と接触する部分の近傍が加熱されず、また、電極(一般的にはCu系電極)からの放熱により端末部の温度が上がらず、この部分に十分な熱処理が施されないという問題があった。その結果、所望の機械的特性を得ることができない。
 上記の問題を解決するための技術が、例えば、特開平6-136432号公報,特開2004-193033号公報に提案されている。これらの文献に開示された技術では、ワークの一端に複数の電極を接触させると共に、ワークの他端に複数の電極を接触させる。ワークを加熱する際は、まず、ワークの一端に接触させた複数の電極からワークの他端に接触させた複数の電極に電流が流れるようにし、端部(すなわち、電極と接触する部分の近傍)を除いてワーク全体を通電加熱する。次いで、ワークの一端に接触させた電極間で電流が流れると共に、ワークの他端に接触させた電極間で電流が流れるようにし、ワークの端部のみを通電加熱する。これによって、ワークの全体が均一に加熱される。
 上述した技術では、ワークの一端から他端に電流を流してワーク全体(ただし、電極の近傍を除く部分)を加熱する工程と、ワークの端部に局所的に電流を流してワークの端部を加熱する工程とを行わなければならない。このため、通電加熱工程を複数回に分けて行わなければならないといった問題があった。本願は、1回の通電加熱によって、電極の近傍を含むワーク全体を加熱することができる技術を提供することを目的とする。
 本明細書に開示するばねを通電加熱する方法は、ばねに少なくとも一対の電極を接触させる工程と、ばねに接触させた一対の電極間に電圧を印加してばねを通電加熱する工程を有している。そして、電極が、第1の電気抵抗値を有する第1部分と、第1の電気抵抗値より高い第2の電気抵抗値を有する第2部分を有している。
 この方法で用いられる電極は、電気抵抗値の低い第1部分と、電気抵抗値の高い第2部分を有している。このため、ばねに電極を介して通電すると、第2部分が発熱し、この発熱によってばねの電極に接触する部分の近傍が加熱される。また、第2部分の発熱により、ばねの電極近傍からの放熱が抑えられる。その結果、1回の通電加熱によって、電極の近傍を含むばねの全体を加熱することができる。
 上記の通電加熱方法では、ばねの抵抗値をRとし、ばねの重量をmとし、ばねの比熱をCpとし、電極の第2部分の抵抗値をRとし、電極の第2部分の重量をmとし、電極の第2部分の比熱をCpとし、通電開始時における電極の第2部分の温度に応じて決まる係数をαとしたときに、α×R/(m×Cp)≦R/(m×Cp)が成立する条件で、通電加熱工程を実行することが好ましい。このような条件で通電加熱を行うことで、電極の温度をワークの温度と略同程度まで昇温することができ、ワークの電極の近傍の部分を好適に加熱することができる。
 ここで、上記の係数αは、通電開始時における電極の第2部分の温度が、この電極が用いられる通電加熱装置の運転状況に応じて変化することを考慮するための係数である。すなわち、通電加熱装置の運転状況が始動時や間欠運転時であるときは、電極の第2部分の温度が低いため、電極の第2部分の昇温量を大きくする必要がある。一方、通電加熱装置の運転状況が連続運転時であるときは、電極の第2部分の温度が高いため、電極の第2部分の昇温量を大きくする必要はない。このため、通電加熱装置の運転状況に応じて変化する係数α(通電開始時における電極の第2部分の温度に応じた係数α)を導入することで、適切な運転条件を決定することができる。この係数αは、0.7~1.0の範囲とすることができる。例えば、電極の第2部分の温度が所定の設定温度より高いとき(すなわち、通電加熱装置が連続運転時のとき)は、係数αを0.7~0.8とする。一方、電極の第2部分の温度が所定の設定温度より低いとき(すなわち、通電加熱装置が始動時又は間欠運転時のとき)は、係数αを1.0とする。これによって、適切な条件でワークを加熱することができる。
 上記の通電加熱方法では、電極は、ばねと接触する側から順に、Cu系材料を材料とする第1部分と、ばねと同一の材料又はばねの電気抵抗値以上の電気抵抗値を有する材料を材料とする第2部分と、Cu系材料を材料とする第3部分を有していることが好ましい。このような構成によると、ばねと接触する側にCu系材料を材料とする第1部分を配置するため、ばねと電極との接触抵抗を下げることができる。これによって、ばねに好適に電流を流すことができる。
 また、本明細書は、上記の通電加熱方法に好適に使用できる通電加熱装置を提供する。すなわち、本明細書に開示する通電加熱装置は、ばねに接触させる一対の電極と、一対の電極間に電圧を印加する電源装置と、を有している。そして、電極が、第1の電気抵抗値を有する第1部分と、第1の電気抵抗値より高い第2の電気抵抗値を有する第2部分を有している。
実施例1の通電加熱装置の概略構成を示す図。 電極の構成を拡大して示す図。 実施例2の通電加熱装置の側面図。 図3に示す通電加熱装置の平面図。
 本実施例に係る通電加熱装置10を図面に基づいて説明する。図1に示すように、通電加熱装置10は、電源12と、電源12に配線13bを介して接続された電極16a,16bと、電源12にスイッチ14及び配線13aを介して接続された電極16c,16dを有している。電源12には、直流電源と交流電源のいずれをも用いることができる。スイッチ14のオン/オフは、図示しない制御装置によって制御されるようになっている。
 電極16a,16bはワークWの一端をクランプし、電極16c,16dはワークWの他端をクランプする。ワークWは、導電性の材料(例えば、ばね鋼)によって形成されたトーションバーである。電極16a~16dがワークWをクランプすると、電極16a~16dとワークWが電気的に接触する。これによって、電源12と、配線13a,13bと、スイッチ14と、電極16a~16dと、ワークWによって一つの電気回路が形成される。このため、制御装置がスイッチ14をオンすると、ワークWに電流が流れ、ワークWが通電加熱される。制御装置がスイッチ14をオフすると、ワークWに流れる電流が遮断される。
 電極16a~16dのそれぞれは同一構成を有しており、図2に示すように、第1電極部18aと、第2電極部20と、第3電極部18bから構成されている。第1電極部18aは、電気抵抗値の低い材料(例えば、Cu系材料(Cu合金等))によって形成されている。第1電極部18aには、ワークWの表面形状に倣った接触面が形成されている。これによって、第1電極部18aとワークWとの接触抵抗の低減が図られている。第2電極部20は、第1電極部18aよりも電気抵抗値の高い材料(例えば、Fe系材料)によって形成されている。なお、第2電極部20の材料は、ワークWがばね鋼の場合は、ばね鋼と同等の電気抵抗値を有するFe系材料を用いることができる。さらには、線径の細いワークに対して電極を大きくしたい場合等には、Fe系材料より電気抵抗値の大きいステンレスやインコネルなどを用いることもできる。第2電極部20は、第1電極部18aのワークWと接触しない側の面に接続されている。このため、第2電極部20が、ワークWと直接接触することはない。第3電極部18bは、第1電極部18aと同一の材料(例えば、Cu系材料(Cu合金等))によって形成されている。第3電極部18bは、第2電極部18aの第1電極部18aと接続する側と反対の面に接続されている。
 本実施例では、ワークWの抵抗値をR、重量をm、比熱をCpとし、電極16a~16dのそれぞれの第2電極部20の抵抗値をR、重量をm、電極の比熱をCpとし、通電加熱装置10の運転状況に応じて変化する係数α(すなわち、通電開始時における第2電極部20の温度に応じた係数α)としたときに、α×R/(m×Cp)<R/(m×Cp)が成立するように、各電極16a~16dの第2電極部20の材料、重量比及び寸法が決定されている。ここで、通電加熱装置10が連続運転しているとき(例えば、第2電極部20の温度が所定の設定温度より高いとき)は、係数αを0.7~0.8とする。一方、通電加熱装置10が始動時又は間欠運転時のとき(例えば、第2電極部20の温度が所定の設定温度より低いとき)は、係数αを1.0とする。また、ワークWの抵抗値Rは、ρ×L/A(ρ:ワークWの抵抗率,L:ワークWの長さ,A:ワークWの断面積)で算出することができる。なお、第2電極部20の抵抗値Rも、ワークWの抵抗値Rと同様に算出することができる。
 このような条件が成立するように各電極16a~16dの第2電極部20を構成することで、ワークWの通電加熱時に、ワークWの温度と略同程度の温度まで各電極16a~16dの第2電極部20を昇温することができる。例えば、ワークWの抵抗値が大きく、ワークWが高温となり易い場合は、各電極16a~16dの第2電極部20の寸法及び重量を小さくして、各電極16a~16dの温度が高い温度まで昇温されるように調整する。また、上述の説明から明らかなように、係数αは通電加熱装置10の運転状況に応じて変化するため、第2電極部20に求められる条件も通電加熱装置10の運転状況に応じて変化する。
 上述した通電加熱装置10によりワークWを通電加熱する際は、ワークWの一端を電極16a,16bでクランプし、ワークWの他端を電極16c,16dでクランプする。次いで、スイッチ14をオンし、ワークWに電流を流す。例えば、電源12に直流電源を用いている場合は、ワークWの一端(電極16a,16b)から他端(電極16c,16d)、又は、ワークWの他端(電極16c,16d)から一端(電極16a,16b)に向かって電流が流れる。ワークW内を電流が流れることによって、ワークWの端部(電極16a~16dと接触する部分の近傍)を除く全体が加熱される。同時に、各電極16a~16dは、電気抵抗値の高い第2電極部20を有しており、通電加熱時に各電極16a~16dの温度がワークWの温度と略同程度まで上昇する。このため、ワークWの端部(電極16a~16dと接触する部分の近傍)は、各電極16a~16dの発熱によって加熱または保温される。これによって、ワークWの全体が端末も含めて所定温度に加熱される。ワークWへの通電加熱を終了するときは、スイッチ14をオフ状態とする。
 上述したように、本実施例の通電加熱装置10では、電極16a~16dのそれぞれが、電気抵抗値の高い第2電極部20を有しており、通電加熱時にはワークWの温度と略同程度の温度まで電極16a~16dが昇温されるように構成されている。このため、電極16a~16dの発熱によって、ワークWの端部(電極16a~16dと接触する部分の近傍)を加熱または保温することができる。その結果、ワークWに1回通電する(すなわち、ワークWの一端から他端に向かって電流を流す)だけで、ワークWの全体を加熱することができる。したがって、本実施例の通電加熱装置10を用いてワークWに熱処理(焼入れ、焼戻し、テンパー等)を行えば、ワークWの全体に所望の熱処理を行うことができる。これによって、ワークWへの熱処理が局所的に不十分となって生じる、硬さや組織の異常や、いわゆる置き割れ等を防止することができる。
 また、電極16a~16dは、ワークWと接触する部分に電気抵抗値の低い第1電極部18aが形成され、その第1電極部18aにはワークWの表面形状に倣った接触面が形成されている。このため、ワークWと第1電極部18aとの接触抵抗が低く抑えられ、ワークWに電流を好適に流すことができる。なお、ワークWの硬さや形状によっては、第2電極部20だけでも接触抵抗が問題とならない場合がある。かかる場合は、第1電極部18aを省略した構成としてもよい。
 以上、実施例を詳細に説明したが、これは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 すなわち、上述した実施例では、トーションバーのような棒状のばね材(ワークW)を通電加熱したが、本明細書に開示の技術はこのような形態に限られない。例えば、図3,4に示すように、本明細書に開示の技術は、コイルばね22を通電加熱する通電加熱装置に適用することができる。この通電加熱装置は、コイルばね22の上端22aをクランプするクランプ機構(24a,26a)と、コイルばね22の下端22bをクランプするクランプ機構(24b,26b)を備えている。
 クランプ機構(24a,26a)は、クランプ部材24a,26aを備えている。図4に示すように、クランプ部材24a,26aには、電極25a,23aがそれぞれ取付けられている。電極23a,25aは、上述した実施例と同様の構成を有している。すなわち、電極23a,25aは、第1電極部、第2電極部及び第3電極部を有しており、第2電極部の電気抵抗値が第1,第3電極部の電気抵抗値より高くされている。また、第1電極部には、コイルばね22の形状に倣った接触面が形成されている。
 クランプ部材24a,26aは、図示しないアクチュエータによって、互いに近接した位置(クランプ位置)と、互いに離間した位置(開放位置)との間を移動できるようになっている。クランプ部材24a,26aがクランプ位置に移動すると、コイルばね22の上端22aが電極25a,23aでクランプされる。これによって、コイルばね22と電極25a,23aが電気的に接続される。一方、クランプ部材24a,26aが開放位置に移動すると、コイルばね22の上端22aと電極25a,23aとが非接触の状態となる。なお、クランプ機構(24a,26a)は、コイルばね22の軸線周りに回転可能とされている。これによって、通電加熱によってコイルばね22が変形しても、その変形に対応できるようになっている。
 コイルばね22の下端をクランプするクランプ機構(24b,26b)は、上述したクランプ機構(24a,26a)と略同一の構成を有している。ただし、クランプ機構(24b,26b)は、クランプ機構(24a,26a)と異なり、図示しないアクチュエータによって、図3の上下方向にも駆動されるようになっている。クランプ機構(24b,26b)が上下に駆動されることで、通電加熱装置へのコイルばね22のセットと取出しを可能としている。なお、クランプ機構(24b、26b)は、上述したクランプ機構(24a,26a)と同様に、図示しないアクチュエータによって、クランプ位置と開放位置との間を移動可能とされると共に、コイルばね22の軸線周りに回転可能とされている。
 また、この通電加熱装置は、図3,4に示すように、コイルばね22の下端22bを支持する冶具28と、コイルばね22の上端22aを支持する冶具42を有している。冶具28には、コイルばね22の下端22bの形状に倣った接触面28aが形成されている。冶具28は、油圧装置34によって上下に駆動される。油圧装置34は、シリンダ30と、シリンダ30に対して進退動するピストンロッド32を備えている。ピストンロッド32の先端に冶具28が取付けられている。冶具42も、上述した冶具28と同様に構成されている。すなわち、冶具42は、コイルばね22の上端22aの形状に倣った接触面42aを有しており、シリンダ36とピストンロッド38を備えた油圧装置40によって上下に駆動されるようになっている。冶具28及び冶具42によってコイルばね22の両端を支持することで、コイルばね22を所望の位置に精度良く位置決めすることができる。なお、コイルばね22の上端は必ずしも冶具によって支持する必要はなく、コイルばね22の上端22aを支持する冶具42については省略することもできる。
 上述した通電加熱装置によってコイルばね22を通電加熱する際は、まず、クランプ機構(24b,26b)及び冶具28を下方に退避した状態とする。次いで、図示しないロボットハンドによって、コイルばね22を冶具42に対してセットする。すなわち、コイルばね22の上端22aが冶具42に当接するまでロボットハンドを駆動し、コイルばね22を冶具42に対して位置決めする。これと同時に、クランプ機構(24a,26a)がコイルばね22の上端22aをクランプする。次に、冶具28及びクランプ機構(24b,26b)が上方に移動し、その後に、コイルばね22の下端22bをクランプ機構(24b,26b)がクランプする。コイルばね22の上端22aと下端22bがクランプされると、この状態でコイルばね22の上端と下端の間に電圧を印加し、コイルばね22に通電する。これによって、コイルばね22の端部(すなわち、電極と接触する部分の近傍)を除く全体が加熱される。同時に、電極の発熱によって、コイルばね22の端部(すなわち、電極と接触する部分の近傍)が、コイルばね22の温度と略同程度まで昇温される。コイルばね22の通電加熱が終了すると、クランプ機構(24b,26b)はコイルばね22の下端22bを開放し、その後、冶具28及びクランプ機構(24b,26b)が下方に退避する。次いで、図示しないロボットハンドがコイルばね22を把持すると、クランプ機構(24a,26a)がコイルばね22の上端22aを開放する。その後、ロボットハンドが装置外にコイルばね22を搬送する。
 なお、コイルばね22を通電加熱すると、その熱によってコイルばね22が変形する。本実施例では、コイルばね22の変形に応じて、クランプ機構(24b,26b)が上下方向に移動すると共に、クランプ機構(24a,26a),(24b,26b)がコイルばね22の軸線周りに回転する。これによって、コイルばね22の熱変形が吸収される。
 上述したことから明らかなように、図3,4の通電加熱装置を用いれば、コイルばね22を1回の通電処理で、その全体を加熱することができる。また、通電加熱中は、コイルばね22の熱変形に応じてクランプ機構が自由に移動できるため、コイルばね22に不要な外力が作用することを防止することができる。これによって、コイルばね22の熱処理を好適に行うことができる。なお、上述の通電加熱装置においては、コイルばね22の上端をクランプするクランプ機構(24a,26a)を上下方向に移動可能としてもよい。
 なお、本明細書に開示する技術は、ばねとして機能しない先端部分を有するばねを熱処理する場合に好適に適用することができる。すなわち、ばねとして機能しない先端部分は、熱処理時の温度を厳しく管理する必要性が低い。このため、この先端部分を電極でクランプして通電加熱することで、ばねとして機能する部分が電極でクランプされず、ばねとして機能する部分の熱処理温度を精度良く制御することができる。なお、このようなばねの例としては、コイルばね、スナップリング、スタビライザ、トーションバー、渦巻きばね等がある。
 また、本明細書に開示する通電加熱装置では、電極部分を予め加熱器(例えば、抵抗加熱器、プラズマ加熱器、誘導加熱器)により加熱した後に、ワークの通電加熱を実行するようにしてもよい。これによって、ワークの電極部分と接触する部分の近傍を十分に加熱することができる。
 さらに、サーモグラフ等の非接触式温度計によってワークの温度を計測し、その計測した温度に基づいて通電加熱量を制御するようにしてもよい。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (6)

  1.  ばねを通電加熱する方法であって、
     ばねに少なくとも一対の電極を接触させる工程と、
     ばねに接触させた一対の電極間に電圧を印加してばねを通電加熱する工程と、を有しており、
     前記電極が、第1の電気抵抗値を有する第1部分と、第1の電気抵抗値より高い第2の電気抵抗値を有する第2部分を有している、ばねの通電加熱方法。
  2.  ばねの抵抗値をRとし、ばねの重量をmとし、ばねの比熱をCpとし、電極の第2部分の抵抗値をRとし、電極の第2部分の重量をmとし、電極の第2部分の比熱をCpとし、通電開始時における電極の第2部分の温度に応じて決まる係数をαとしたときに、
    α×R/(m×Cp)≦R/(m×Cp
    が成立する条件で、通電加熱工程を実行する、請求項1に記載のばねの通電加熱方法。
  3.  通電開始時における電極の第2部分の温度が高いほど、係数αが小さくなるように設定されている、請求項2に記載のばねの通電加熱方法。
  4.  係数αは、通電開始時における電極の第2部分の温度が設定温度より高いときは0.7~0.8とし、通電開始時における電極の第2部分の温度が設定温度より低いときは1.0とする、請求項3に記載のばねの通電加熱方法。
  5.  電極は、ばねと接触する側から順に、Cu系材料を材料とする第1部分と、ばねと同一の材料又はばねの電気抵抗値以上の電気抵抗値を有する材料を材料とする第2部分と、Cu系材料を材料とする第3部分を有している、請求項1~4のいずれか一項に記載のばねの通電加熱方法。
  6.  ばねを通電加熱する装置であって、
     ばねに接触させる一対の電極と、
     一対の電極間に電圧を印加する電源装置と、を有しており、
     前記電極が、第1の電気抵抗値を有する第1部分と、第1の電気抵抗値より高い第2の電気抵抗値を有する第2部分を有している、ばねの通電加熱装置。
     
PCT/JP2011/056052 2010-03-23 2011-03-15 ばねの通電加熱方法及びその装置 WO2011118452A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/636,259 US20130092675A1 (en) 2010-03-23 2011-03-15 Method and apparatus for electrically heating spring
BR112012024030A BR112012024030A2 (pt) 2010-03-23 2011-03-15 método e aparelho para aquecimento elétrico de mola
CA2793708A CA2793708A1 (en) 2010-03-23 2011-03-15 Method and apparatus for electrically heating spring
EP11759258.4A EP2551360A4 (en) 2010-03-23 2011-03-15 METHOD FOR THE ELECTRIC HEATING OF A SPRING AND DEVICE THEREFOR
CN201180015274.2A CN102834530B (zh) 2010-03-23 2011-03-15 弹簧的通电加热方法及其装置
KR1020127027305A KR20130050293A (ko) 2010-03-23 2011-03-15 스프링의 통전 가열 방법 및 그 장치
MX2012011028A MX2012011028A (es) 2010-03-23 2011-03-15 Metodo y aparato para calentar electricamente un resorte.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010065506A JP5574772B2 (ja) 2010-03-23 2010-03-23 ばねの通電加熱方法及びその装置
JP2010-065506 2010-03-23

Publications (1)

Publication Number Publication Date
WO2011118452A1 true WO2011118452A1 (ja) 2011-09-29

Family

ID=44673009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056052 WO2011118452A1 (ja) 2010-03-23 2011-03-15 ばねの通電加熱方法及びその装置

Country Status (9)

Country Link
US (1) US20130092675A1 (ja)
EP (1) EP2551360A4 (ja)
JP (1) JP5574772B2 (ja)
KR (1) KR20130050293A (ja)
CN (1) CN102834530B (ja)
BR (1) BR112012024030A2 (ja)
CA (1) CA2793708A1 (ja)
MX (1) MX2012011028A (ja)
WO (1) WO2011118452A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107760834A (zh) * 2012-03-28 2018-03-06 中央发条株式会社 加热装置以及加热方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099821A1 (ja) * 2011-12-26 2013-07-04 中央発條株式会社 ばねの製造方法及びばね
JP6229223B2 (ja) * 2013-03-08 2017-11-15 高周波熱錬株式会社 薄肉立体形状体の製造方法
DE102013105678B4 (de) * 2013-06-03 2023-07-27 Witzenmann Gmbh Verfahren zum Trennen von Wickelschläuchen
JP6127830B2 (ja) * 2013-08-21 2017-05-17 トヨタ自動車株式会社 通電加熱装置
RU2578859C2 (ru) * 2014-04-08 2016-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Способ повышения упругих свойств стальных витых пружин
KR101719151B1 (ko) * 2016-03-18 2017-03-23 대원강업주식회사 중공 코일스프링 제조방법
CN106011434A (zh) * 2016-08-03 2016-10-12 苏州市虎丘区浒墅关弹簧厂 一种抗变形弹簧的退火工艺
CN107809810A (zh) * 2017-10-31 2018-03-16 山东华宁电伴热科技有限公司 一种弹簧加热器
KR102016914B1 (ko) 2018-09-04 2019-09-02 대원강업주식회사 저항가열을 이용한 자동차 현가장치 코일스프링의 핫세팅용 지그
KR102065353B1 (ko) 2018-09-12 2020-01-13 대원강업주식회사 뜨임 및 핫세팅 통합 공정에 의한 자동차 현가장치 코일스프링 생산 방법
KR102122809B1 (ko) 2019-02-07 2020-06-15 대원강업주식회사 자동차 현가장치 코일스프링 생산 방법
KR102181670B1 (ko) * 2019-03-12 2020-11-23 대원강업주식회사 자동차 현가장치용 코일스프링 생산 방법
WO2023188536A1 (ja) * 2022-03-30 2023-10-05 日本発條株式会社 加熱方法および加熱システム
WO2024075314A1 (ja) * 2022-10-05 2024-04-11 日本発條株式会社 コイルばねの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139007A (ja) * 1974-04-27 1975-11-06
JPS5274511A (en) * 1975-12-18 1977-06-22 Shiroyama Seisakusho Kk Method of heating steel bar etc by passage of electricity
JPS5938329A (ja) * 1982-08-27 1984-03-02 Nhk Spring Co Ltd ばねの焼入れ方法
JPH06136432A (ja) * 1992-10-26 1994-05-17 Kawasaki Steel Corp 導電性棒材の通電加熱方法及び装置
JP2000336425A (ja) * 1999-05-26 2000-12-05 High Frequency Heattreat Co Ltd 鋼板の部分焼入方法
JP2004193033A (ja) * 2002-12-13 2004-07-08 Honda Motor Co Ltd 導電性ロッド状部材の通電加熱方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1253296B (de) * 1959-05-13 1967-11-02 Hahn Fa Geb Verfahren und Vorrichtung zur Waermebehandlung von Federn
DE8804059U1 (de) * 1988-03-25 1988-08-18 Meinhard, Wolfgang, 2308 Preetz Vorrichtung zum Ausglühen auszubauender Spiralfedern
US6235131B1 (en) * 1999-07-09 2001-05-22 Mathew Warren Industries, Inc. System for heat treating coiled springs
US20090261077A1 (en) * 2005-08-31 2009-10-22 Kazuhiko Katsumata Heat treatment holder and heat treatment apparatus and method
CN101467484A (zh) * 2006-03-16 2009-06-24 诺布尔先进技术公司 用于对物品进行均匀电阻加热的方法和设备
US8506732B2 (en) * 2009-08-07 2013-08-13 Radyne Corporation Heat treatment of helical springs or similarly shaped articles by electric resistance heating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139007A (ja) * 1974-04-27 1975-11-06
JPS5274511A (en) * 1975-12-18 1977-06-22 Shiroyama Seisakusho Kk Method of heating steel bar etc by passage of electricity
JPS5938329A (ja) * 1982-08-27 1984-03-02 Nhk Spring Co Ltd ばねの焼入れ方法
JPH06136432A (ja) * 1992-10-26 1994-05-17 Kawasaki Steel Corp 導電性棒材の通電加熱方法及び装置
JP2000336425A (ja) * 1999-05-26 2000-12-05 High Frequency Heattreat Co Ltd 鋼板の部分焼入方法
JP2004193033A (ja) * 2002-12-13 2004-07-08 Honda Motor Co Ltd 導電性ロッド状部材の通電加熱方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107760834A (zh) * 2012-03-28 2018-03-06 中央发条株式会社 加热装置以及加热方法

Also Published As

Publication number Publication date
MX2012011028A (es) 2013-01-29
KR20130050293A (ko) 2013-05-15
BR112012024030A2 (pt) 2016-08-30
EP2551360A1 (en) 2013-01-30
CA2793708A1 (en) 2011-09-29
JP2011195919A (ja) 2011-10-06
CN102834530A (zh) 2012-12-19
CN102834530B (zh) 2014-07-09
EP2551360A4 (en) 2014-01-15
JP5574772B2 (ja) 2014-08-20
US20130092675A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5574772B2 (ja) ばねの通電加熱方法及びその装置
JP5865246B2 (ja) ばねの製造方法及び通電加熱装置
US7363822B2 (en) Technique for applying direct resistance heating current to a specific location in a specimen under test while substantially reducing thermal gradients in the specimen gauge length
US11044788B2 (en) Heat treatment of helical springs or similarly shaped articles by electric resistance heating
JP5513555B2 (ja) スタビライザの製造方法および加熱装置
WO2013099821A1 (ja) ばねの製造方法及びばね
JP2014043922A (ja) スタビライザの製造方法および加熱装置
CN111515512A (zh) 一种高温超导带材接头感应加热焊接工艺及其焊接装置
CN103667657B (zh) 一种端部变截面汽车稳定杆的整体加热装置
JP5932431B2 (ja) 加熱装置及び加熱方法
JPH0768388A (ja) スポット溶接の後処理方法
JP6108613B2 (ja) 誘導加熱装置及び熱処理方法
CN102220475A (zh) 细钢丝二级加热热处理的方法及设备
JP6192606B2 (ja) 圧延装置
JP2018092800A (ja) ヒーター装置
WO2012147441A1 (ja) 棒状部材の通電加熱方法及びその装置
US20090020519A1 (en) Method to supply electric current to a tube furnace
SU205917A1 (ru) СПОСОБ ПРИСОЕДИНЕНИЯ МИКРОПРОВОДОВ В СТЕКЛЯННОЙ ИЗОЛЯЦИИ к ТОКОПОДВОДАМ
JP2002129243A (ja) 円筒状金属コイルの加熱方法
JP2015151556A (ja) 熱処理方法
JP2008133522A (ja) 金属線材加熱装置
JPS6231048B2 (ja)
JPH06136433A (ja) 被加熱体の直接通電加熱法
JP2011034691A (ja) 鋼材加熱装置の電極構造及び鋼材加熱方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015274.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759258

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2662/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2793708

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1201004899

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/011028

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20127027305

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011759258

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13636259

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012024030

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012024030

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120921