WO2023188536A1 - 加熱方法および加熱システム - Google Patents

加熱方法および加熱システム Download PDF

Info

Publication number
WO2023188536A1
WO2023188536A1 PCT/JP2022/043525 JP2022043525W WO2023188536A1 WO 2023188536 A1 WO2023188536 A1 WO 2023188536A1 JP 2022043525 W JP2022043525 W JP 2022043525W WO 2023188536 A1 WO2023188536 A1 WO 2023188536A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil spring
heating
shaft member
shaft
rotation
Prior art date
Application number
PCT/JP2022/043525
Other languages
English (en)
French (fr)
Inventor
和也 竹田
浩之 安田
航太 塚田
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022057252A external-priority patent/JP2023148954A/ja
Priority claimed from JP2022057253A external-priority patent/JP2023148955A/ja
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2023188536A1 publication Critical patent/WO2023188536A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a heating method and heating system for, for example, hardening a coil spring.
  • the present invention has been made in view of the above, and provides a heating method and a heating system that can suppress variations in the gap between the wires of a coil spring and variations in the diameter of the coil formed by winding.
  • the purpose is to
  • a heating method is a heating method for hardening a coil spring, which comprises: fixing one end of the coil spring to the outer circumferential surface of a first shaft member; a fixing step of fixing the other end to the outer peripheral surface of the second shaft member; a heating step of energizing the first and second shaft members to heat the coil spring; and a heating step of energizing the first and second shaft members.
  • the center axis of the coil spring attached to the first and second shaft members is parallel to the straight line.
  • the heating step and the rotating step are stopped based on a set temperature set to a temperature equal to or higher than the transformation point temperature of the material forming the coil spring. You can also do this.
  • the rotation step is performed at a rotation speed set based on variations in gaps between wires of the coil springs and/or variations in coil diameters of the coil springs.
  • the first and second shaft members may be rotated.
  • the fixing step may fix the coil spring at a position where the central axis of the coil spring is offset with respect to the straight line.
  • the heating system is a heating system for hardening a coil spring, and is rotatable around a central axis extending in the longitudinal direction, and includes a first shaft member that grips one end of the coil spring, and a first shaft member that grips one end of the coil spring. a second shaft member that is rotatable around a central axis extending in the direction and grips the other end of the coil spring; energizing the first and second shaft members; and supplying electricity to the first and second shaft members.
  • first and second shaft members are located on the same straight line with each rotation axis making an angle of 0 to 30 degrees with respect to the horizontal direction;
  • the center axis of the coil spring attached to the first and second shaft members is parallel to the straight line.
  • the heating method according to the present invention is a heating method for hardening a coil spring, in which the coil spring is placed on a support member, and one end of the coil spring is connected to the outer periphery of a rotatable first shaft member. a fixing step of fixing the first shaft member to the surface and fixing the other end to the outer peripheral surface of the second shaft member; a heating step of energizing the first and second shaft members to heat the coil spring; a rotation step of rotating and moving one end of the coil spring to a preset position, wherein each axis of the first and second shaft members is at an angle of 0 to 30 degrees with respect to the horizontal direction.
  • the coil springs are located on the same straight line forming an angle, are attached to the first and second shaft members, and are supported by the support member. The central axes of the coil springs are parallel to the straight line. do.
  • the rotating step is performed when the temperature of the coil spring reaches a set temperature that is set to a temperature equal to or higher than the transformation point temperature of the material forming the coil spring.
  • the first shaft member may be rotated.
  • the fixing step may fix the coil spring at a position where the central axis of the coil spring is offset with respect to the straight line.
  • the heating system is a heating system for hardening a coil spring, and is rotatable around a rotation axis extending in the longitudinal direction, and includes a first shaft member that grips one end of the coil spring, and a first shaft member that grips one end of the coil spring.
  • a second shaft member that extends in the axial direction and grips the other end of the coil spring, and a control device that controls energization of the first and second shaft members and rotation of the first shaft member,
  • the rotation axis of the first shaft member and the longitudinal axis of the second shaft member are located on the same straight line forming an angle of 0 to 30 degrees with respect to the horizontal direction, and
  • the central axis of the attached coil spring is parallel to the straight line, and the control device releases the rotation restriction of the first shaft member when starting heating the coil spring, and by the end of the heating process. , characterized in that one end of the coil spring is moved to a preset position.
  • FIG. 1 is a diagram showing a schematic configuration of a heating system according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram for explaining the configuration of main parts of the heating system according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart showing a heating method according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart showing a heating method according to Modification 1 of Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing a heating method according to Modification 2 of Embodiment 1 of the present invention.
  • FIG. 6 is a diagram showing a schematic configuration of a heating system according to Embodiment 2 of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of a heating system according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram for explaining the configuration of main parts of the heating system according to Embodiment 1 of the present invention.
  • FIG. 3 is
  • FIG. 7 is a flowchart showing a heating method according to Embodiment 2 of the present invention.
  • FIG. 8 is a diagram showing a schematic configuration of a heating system according to Modification 1 of Embodiment 2 of the present invention.
  • FIG. 9 is a flowchart showing a heating method according to Modification 2 of Embodiment 2 of the present invention.
  • FIG. 10 is a flowchart showing a heating method according to a third modification of the second embodiment of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of a heating system according to Embodiment 1 of the present invention.
  • a heating system 1 shown in FIG. 1 is a system for hardening a coil spring 100, for example.
  • the heating system 1 includes a heating device 10 that holds and heats the coil spring 100, and a control device 20 that controls the heating device 10.
  • the coil spring 100 is formed by winding a wire material helically around a predetermined axis (N 100 in this case).
  • the heating device 10 includes a first shaft member 11 and a second shaft member 12.
  • the first shaft member 11 rotates around an axis N 11 (rotation axis) passing through the center of the shaft body 110 extending in a cylindrical shape and extending parallel to the longitudinal direction.
  • the first shaft member 11 is provided with a spring holding portion 111 that is fixed to the side surface of the shaft body 110 and holds one end of the coil spring 100.
  • the spring holding portion 111 is provided with a gripping portion 112 that holds one end of the coil spring 100 between the outer circumferential surface of the shaft body 110.
  • the spring holding portion 111 rotates integrally with the shaft body 110.
  • the second shaft member 12 rotates around an axis N 12 (rotation axis) that passes through the center of a shaft body 120 that extends in a cylindrical shape and extends parallel to the longitudinal direction.
  • the second shaft member 12 is provided with a spring holding portion 121 that is fixed to the side surface of the shaft body 120 and holds the other end of the coil spring 100.
  • the spring holding part 121 is provided with a grip part 122 that holds the other end of the coil spring 100 between the outer peripheral surface of the shaft body 120 and the other end of the coil spring 100 .
  • the spring holding portion 121 rotates integrally with the shaft body 120.
  • a straight line extending one axis toward the other axis coincides with the other axis. That is, the axis N 11 and the axis N 12 are located on the same straight line. Note that the axis N 11 and the axis N 12 do not need to be on the same straight line as long as the rotation control of the coil spring 100 is not hindered. Further, in a state in which the coil spring 100 is held by each gripping part (gripping parts 112, 122), the central axis N100 of the coiled spring 100 is parallel to the axis N11 and the axis N12, respectively.
  • the central axis N 100 and the axes N 11 and N 12 are offset, it is possible to make the central axis N 100 and the axes N 11 and N 12 coincide with each other. It may be placed in When the center axis N 100 is offset from the axis N 11 and the axis N 12 , the coil spring 100 rotates around axes that are parallel to the center axis N 100 and located at different positions. On the other hand, when the central axis N 100 and the axes N 11 and N 12 are on the same straight line, the coil spring 100 rotates around the central axis N 100 .
  • the central axis N 100 , the axis N 11 , and the axis N 12 are set at angles with respect to the horizontal direction of 0 degrees or more and 30 degrees or less. This angle is set depending on the characteristics of the coil spring, etc.
  • the horizontal direction here is a direction perpendicular to the direction of gravity (vertical direction).
  • shaft body 110 of the first shaft member 11 and the shaft body 120 of the second shaft member 12 are formed using a conductive material. Further, each shaft body and the control device 20 are connected by electric wires (not shown).
  • FIG. 2 is a diagram for explaining the configuration of main parts of the heating system according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating the configuration and operation of the shaft body and the spring holding section.
  • FIG. 2 shows the first shaft member 11, the second shaft member 12 also operates in the same manner.
  • the spring holding part 111 also rotates in conjunction with this rotation.
  • the shaft body 110 reciprocates at a rotation angle ⁇ under the control of the control device 20.
  • the spring holding part 111 has two positions: a position P R rotated clockwise by a rotation angle ⁇ /2 with respect to the reference position P S and a position P R rotated counterclockwise by a rotation angle ⁇ /2 with respect to the reference position P S.
  • the rotation angle ⁇ can be set depending on the type of the coil spring 100, and is set within a range of, for example, 90 degrees ( ⁇ 45 degrees) or more and 360 degrees or less. Note that each shaft member is configured so that the amount of rotation can be measured using an encoder or the like.
  • control device 20 includes an input section 21, an output section 22, a setting section 23, a detection section 24, a control section 25, and a storage section 26.
  • the input unit 21 receives input of various signals related to the operation of the heating system 1.
  • the input unit 21 is configured using a keyboard, a mouse, a switch, a touch panel, and the like.
  • the output unit 22 displays images and outputs sound and light under the control of the control unit 25.
  • the output unit 22 is configured using a display, a speaker, a light source, and the like.
  • the setting unit 23 sets heating conditions.
  • the setting unit 23 sets the heating temperature and heating time of the coil spring 100, the rotation angle of the shaft member, and the rotation speed of the shaft member, based on, for example, the setting information received by the input unit 21 and information stored in the storage unit 26. , sets the amount of power to be applied to the shaft member.
  • the detection unit 24 detects the temperature of the coil spring 100. Note that the detection unit 24 may detect the temperature of each shaft member.
  • the control unit 25 controls the operation of each component of the heating system 1. Further, the control section 25 includes an energization control section 251 and a rotation control section 252. The energization control unit 251 turns on the energization to the first shaft member 11 and the second shaft member 12, for example, when an instruction to start the heat treatment is input via the input unit 21. Further, the rotation control unit 252 rotates the first shaft member 11 and the second shaft member 12 in a pattern set in the heat treatment.
  • the setting unit 23, the detection unit 24, and the control unit 25 each use a processor such as a CPU (Central Processing Unit) or a processor such as various arithmetic circuits that execute a specific function such as an ASIC (Application Specific Integrated Circuit). configured.
  • a processor such as a CPU (Central Processing Unit) or a processor such as various arithmetic circuits that execute a specific function such as an ASIC (Application Specific Integrated Circuit). configured.
  • the storage unit 26 stores programs for the control unit 25 to execute various operations (for example, programs executed during heat treatment).
  • the storage unit 26 also includes a heating condition storage unit 261 that stores heating conditions for hardening the coil spring 100, heat treatment programs and parameters, rotation conditions for controlling the rotation of the coil spring 100, It has a rotation condition storage section 262 that stores programs and parameters.
  • the storage unit 26 is configured using volatile memory or nonvolatile memory, or a combination thereof.
  • the storage unit 26 is configured using a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.
  • FIG. 3 is a flowchart showing a heating method according to Embodiment 1 of the present invention. The following description assumes that each part operates under the control of the control device 20.
  • the coil spring 100 is set in the heating device 10 (step S101). Specifically, one end of the coil spring 100 is held by the grip part 112 and the shaft body 110, and the other end is gripped by the grip part 122 and the shaft body 120. Thereby, both ends of the coil spring 100 are fixed to the first shaft member 11 and the second shaft member 12.
  • the energization control unit 251 After setting the coil spring 100, the energization control unit 251 starts energizing the first shaft member 11 and the second shaft member 12 (step S102). The energization control unit 251 starts energization control using the energization start instruction received by the input unit 21 as a trigger. When energized, current flows through the coil spring 100 through the first shaft member 11 and the second shaft member 12, generating heat. This heat heat heats the coil spring. The energization control unit 251 controls the flow of current to the first shaft member 11 and the second shaft member 12 such that the heating temperature of the coil spring 100 rises to the heating temperature set by the setting unit 23.
  • the rotation control unit 252 starts the rotation of the first shaft member 11 and the second shaft member 12 at the same time as starting the energization control (step S103).
  • the rotation control unit 252 rotates the shaft bodies 110, 120 at a set rotation speed and rotation angle.
  • the rotation control unit 252 rotates the shaft bodies 110 and 120 in synchronized operation.
  • the rotational speed is set based on variations in the gap between the wires of the coil spring 100 and/or variations in the coil diameter of the coil spring 100.
  • the rotation start timing may be at the same time as the energization start timing, or may be after a set time has elapsed from the energization start timing.
  • the energization control unit 251 determines whether the temperature of the coil spring 100 has reached the set temperature (step S104). If the energization control unit 251 determines that the temperature of the coil spring 100 has not reached the set temperature based on the temperature detected by the detection unit 24 (step S104: No), it repeats checking the temperature. On the other hand, when the energization control unit 251 determines that the temperature of the coil spring 100 has reached the set temperature (step S104: Yes), the process moves to step S105.
  • the set temperature is set to a temperature equal to or higher than the transformation point temperature of the material forming the coil spring 100.
  • step S105 the energization control unit 251 ends energization of each shaft member.
  • the rotation control unit 252 rotates the shaft bodies 110, 120 to move the positions of the grips 112, 122 to preset positions, and ends the heat treatment (step S106).
  • the set position is, for example, a position for transporting the coil spring 100 to the next treatment after the heat treatment. Specifically, a position where the conveyance arm can easily grasp the coil spring 100 is set.
  • the energization end timing and the rotation end timing may be simultaneous, or the rotation may be ended first.
  • the ends of the coil springs are gripped and fixed on the outer circumferential surface of each shaft body, and the shaft members are rotated while the coil spring 100 is energized through the shaft body.
  • the spring 100 was heated under rotation. According to the first embodiment, by rotating the coil spring 100 during heating to uniformly heat the coil spring, it is possible to eliminate variations in the gap between the wires of the coil spring and to reduce the diameter of the coil formed by winding. Variations can be suppressed.
  • FIG. 4 is a flowchart showing a heating method according to Modification 1 of the present invention. The following description assumes that each part operates under the control of the control device 20. In addition, in the modified example, the description will be made assuming that the detection unit 24 detects the energization time.
  • the coil spring 100 is set in the heating device 10 in the same manner as steps S101 to S103 shown in FIG. S201 to S203).
  • the energization control unit 251 determines whether or not the energization time has elapsed for a preset time (step S204). If the energization control unit 251 determines that the energization time has not exceeded the set time based on the energization time detected by the detection unit 24 (step S204: No), it repeats checking of the elapsed time. On the other hand, when the energization control unit 251 determines that the energization time has elapsed for the set time (step S204: Yes), the process proceeds to step S205.
  • the set time set at this time is, for example, the time required for the coil spring 100 to reach a temperature equal to or higher than the transformation point temperature of the material forming the coil spring 100.
  • step S205 the energization control unit 251 ends energization of each shaft member.
  • the rotation control unit 252 rotates the shaft bodies 110, 120 to move the positions of the grips 112, 122 to preset positions, and ends the heat treatment (step S206).
  • the energization end timing and the rotation end timing may be simultaneous, or the rotation may be ended first.
  • the ends of the coil springs are gripped and fixed on the outer peripheral surface of each shaft body, and the shaft members are held while energizing the coil spring 100 through the shaft body. was rotated so that the coil spring 100 was heated under rotation.
  • the first modification by rotating the coil spring 100 during heating to uniformly heat the coil spring, variations in the gap between the wires of the coil spring and variations in the diameter of the coil formed by winding can be prevented. can be suppressed.
  • FIG. 5 is a flowchart showing a heating method according to Modification 2 of the present invention. The following description assumes that each part operates under the control of the control device 20. In the second modification, description will be given assuming that the detection unit 24 detects the amount of energized power (for example, the total amount of power from the start of energization).
  • the coil spring 100 is set in the heating device 10 in the same manner as steps S101 to S103 shown in FIG. S301 to S303).
  • the energization control unit 251 determines whether the amount of energized power has reached a preset amount of power (step S304). If the energization control unit 251 determines that the energized power amount has not reached the set power amount based on the energized power amount detected by the detection unit 24 (step S304: No), it repeats confirmation of the energized power amount. On the other hand, when the energization control unit 251 determines that the amount of energized power has reached the set amount of power (step S304: Yes), the process proceeds to step S305.
  • the set amount of power set at this time is, for example, the amount of power required for the coil spring 100 to reach a temperature equal to or higher than the transformation point temperature of the material forming the coil spring 100 (for example, the total amount of power). Ru.
  • step S305 the energization control unit 251 ends energization of each shaft member.
  • the rotation control unit 252 rotates the shaft bodies 110, 120 to move the positions of the grips 112, 122 to preset positions, and ends the heat treatment (step S306).
  • the energization end timing and the rotation end timing may be simultaneous, or the rotation may be ended first.
  • the ends of the coil springs are gripped and fixed on the outer circumferential surface of each shaft body, and the shaft members are held while energizing the coil spring 100 through the shaft body. was rotated so that the coil spring 100 was heated under rotation.
  • the second modification by rotating the coil spring 100 during heating to uniformly heat the coil spring, variations in the gaps between the wires of the coil spring and variations in the diameter of the coil formed by winding can be avoided. can be suppressed.
  • each shaft member rotates in complete synchronization, but it may also be configured to rotate following the deformation of the coil spring 100 due to heating.
  • FIG. 6 is a diagram showing a schematic configuration of a heating system according to Embodiment 2 of the present invention.
  • the configuration of a heating system 1A according to the second embodiment includes a heating device 10A instead of the heating device 10. Since the control device 20 has the same configuration as in Embodiment 1, a description thereof will be omitted.
  • the shaft main body 120 will be described as not rotating. Furthermore, there are no restrictions on the rotational position and amount of rotation of the shaft body 110, and the shaft body 110 rotates around the rotation axis N11 . Specifically, the shaft body 110 may rotate beyond the position P R or the position P L with respect to the reference position P S shown in FIG. 2 . Further, the rotation control unit 252 executes rotation control of the first shaft member 11 during the heat treatment.
  • the heating device 10A includes a first shaft member 11, a second shaft member 12, and a support member 13.
  • the first shaft member 11 and the second shaft member 12 are the same as those in Embodiment 1, so their description will be omitted.
  • the support member 13 is a plate on which the coil spring 100 is placed and supports the coil spring 100.
  • the support member 13 may be moved up and down in the vertical direction depending on the positions of the first shaft member 11 and the second shaft member 12 and the size of the coil spring 100. Further, the support member 13 may have a structure that supports only a specific portion of the coil spring 100 (for example, the center portion of the coil spring 100).
  • FIG. 7 is a flowchart showing a heating method according to Embodiment 2 of the present invention. The following description assumes that each part operates under the control of the control device 20.
  • the coil spring 100 is set in the heating device 10A, and the energization control section 251 controls the first shaft member 11 and the second shaft member. Electrification to the member 12 is started (steps S401, S402).
  • step S403 releases the restriction on the rotation of the first shaft member 11 about the rotation axis N11 (step S403).
  • the first shaft member 11 becomes free to rotate about the rotation axis N11 .
  • steps S402 and S403 may be executed simultaneously, or step S403 may be executed first.
  • step S403 may be executed first.
  • step S403 if the first shaft member 11 is in a free rotation state at the time of transitioning to step S403, it is not necessary to execute this step S403.
  • the coil spring 100 is deformed due to tissue transformation or the like.
  • the first shaft member 11 follows this deformation and rotates around the rotation axis N11 . This rotation allows the load applied to the coil spring 100 during deformation to be released.
  • the rotation control unit 252 determines whether the temperature of the coil spring 100 has reached the set temperature (step S404). If the rotation control unit 252 determines that the temperature of the coil spring 100 has not reached the set temperature based on the temperature detected by the detection unit 24 (step S404: No), it repeats checking the temperature. On the other hand, when the rotation control unit 252 determines that the temperature of the coil spring 100 has reached the set temperature (step S404: Yes), the process proceeds to step S405.
  • the set temperature is set to a temperature equal to or higher than the transformation point temperature of the material forming the coil spring 100.
  • step S405 the rotation control section 252 rotates the shaft body 110 to move the position of the grip section 112 to a preset setting position.
  • the set position is, for example, a position where the coil spring 100 is attached before heating, or a position corresponding to the end position of the coil spring 100 held by the second shaft member 12. Note that if a shape with the required accuracy is obtained, step S405 may not be performed.
  • the energization control unit 251 ends the energization of the first shaft member 11 and the second shaft member 12, and ends the heat treatment (step S406).
  • the end timing of energization and the execution timing of the rotation process may be simultaneous, or the rotation process may be executed first.
  • the ends of the coil springs are gripped and fixed on the outer circumferential surface of each shaft body, and the coil springs 100 are energized and heated through the shaft body, and when heating, one shaft member
  • the rotation of the coil spring 100 is made free, and the rotation follows the deformation of the coil spring 100 accompanying tissue transformation.
  • the gap between the wires of the coil spring is released by moving the end position to the set position at the end of heating while relieving the load due to the deformation during the tissue transformation of the coil spring 100 that occurs during energization heating. It is possible to suppress variations in the diameter of the coil (for example, the gap S 1 shown in FIG. 1) and the diameter of the coil formed by winding (for example, the coil diameter R 1 shown in FIG. 1).
  • the first shaft member 11 when the coil spring 100 reaches the transformation point temperature, the first shaft member 11 is rotated to move the end position of the coil spring 100 to an appropriate position, so that the shape accuracy is can be made even higher.
  • FIG. 8 is a diagram showing a schematic configuration of a heating system according to Modification 1 of Embodiment 2 of the present invention.
  • a heating system 1B according to modification 1 includes a heating device 10B instead of the heating device 10A. Since the control device 20 has the same configuration as in the second embodiment, a description thereof will be omitted.
  • the heating device 10B includes a first shaft member 11, a second shaft member 12, and a support member 13A.
  • the first shaft member 11 and the second shaft member 12 are the same as those in Embodiment 2, so their description will be omitted.
  • the coil spring 100 is placed on the support member 13A, and supports the coil spring 100.
  • the support member 13A is made up of a plurality of rod-like members 131 that extend in a rod-shape and support a portion of the coil spring 100 at their tips.
  • the support member 13A may move each rod-shaped member 131 up and down in the vertical direction depending on the positions of the first shaft member 11 and the second shaft member 12 and the size of the coil spring 100.
  • the support member 13A may have a structure that supports only a specific portion of the coil spring 100 (for example, the center portion of the coil spring 100).
  • the heating treatment of the coil spring 100 by the heating system 1B is performed in the same manner as the flowchart shown in FIG. 7.
  • the heat treatment is performed in the same manner as in the second embodiment, so that the end position at the end of the heating is released while the load due to the deformation of the coil spring 100 during the tissue transformation that occurs during energization heating is released.
  • the coil spring By moving the coil spring to the set position, it is possible to suppress variations in the gap between the wires of the coil spring and variations in the diameter of the coil formed by winding.
  • the heating system according to the second modification is the same as the heating system 1A according to the second embodiment, and includes a measuring mechanism (not shown) that measures the temperature of the coil spring 100.
  • the description will be made assuming that the detection unit 24 detects the energization time.
  • FIG. 9 is a flowchart showing a heating method according to Modification 2 of Embodiment 2.
  • step S502 First, in the same manner as steps S401 and S402 shown in FIG. Start (step S502).
  • the rotation control unit 252 releases the restriction on rotation of the first shaft member 11 about the rotation axis N11 (step S503). During the heat treatment, it rotates around the rotation axis N11 following the deformation of the coil spring 100.
  • the rotation control unit 252 determines whether or not the energization time has elapsed for a preset time (step S504).
  • the rotation control unit 252 determines that the energization time has not exceeded the set time based on the energization time detected by the detection unit 24 (step S504: No)
  • the rotation control unit 252 repeats confirmation of the energization time.
  • the process proceeds to step S505.
  • the set time set at this time is, for example, the time required for the coil spring 100 to reach a temperature equal to or higher than the transformation point temperature of the material forming the coil spring 100.
  • step S505 the rotation control section 252 rotates the shaft body 110 to move the position of the grip section 112 to a preset setting position. Note that if a shape with the required accuracy is obtained, step S505 may be omitted.
  • the energization control unit 251 ends energization of the rotating shaft (step S506).
  • the heat treatment is performed in the same manner as in the second embodiment, so that the end position at the end of the heating is released while the load due to the deformation during the tissue transformation of the coil spring 100 that occurs during energization heating is released.
  • the coil spring By moving the coil spring to the set position, it is possible to suppress variations in the gap between the wires of the coil spring and variations in the diameter of the coil formed by winding.
  • the heating system according to Modification 3 is the same as heating system 1A according to Embodiment 2, but includes a measuring mechanism (not shown) that measures the temperature of coil spring 100.
  • the detection unit 24 detects the amount of electric power (for example, the total amount of electric power from the start of energization).
  • FIG. 10 is a flowchart showing a heating method according to the third modification of the second embodiment.
  • step S602 First, in the same manner as steps S401 and S402 shown in FIG. Start (step S602).
  • the rotation control unit 252 releases the restriction on the rotation of the first shaft member 11 about the rotation axis N11 (step S603). During the heat treatment, it rotates around the rotation axis N11 following the deformation of the coil spring 100.
  • the rotation control unit 252 determines whether the amount of energized power has reached a preset amount of power (step S604).
  • the rotation control unit 252 determines that the energized power amount has not reached the set power amount based on the energized power amount detected by the detection unit 24 (step S604: No)
  • the rotation control unit 252 determines that the amount of energized power has reached the set amount of power (step S604: Yes)
  • the process proceeds to step S605.
  • the set amount of power set at this time is, for example, the amount of power required for the coil spring 100 to reach a temperature equal to or higher than the transformation point temperature of the material forming the coil spring 100 (for example, the total amount of power). Ru.
  • step S605 the rotation control section 252 rotates the shaft body 110 to move the position of the grip section 112 to a preset setting position.
  • the energization control unit 251 ends energization of the rotating shaft (step S606).
  • the end position at the end of the heating is released while the load due to the deformation during the tissue transformation of the coil spring 100 that occurs during energization heating is released.
  • the present invention may include various embodiments not described herein, and various design changes may be made without departing from the technical idea specified by the claims. is possible.
  • the heating method and heating system according to the present invention are suitable for suppressing variations in the gaps between the wires of a coil spring and variations in the diameter of the coil formed by winding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本発明に係る加熱方法は、コイルばねの焼入れを行う加熱方法であって、コイルばねの一端を第1軸部材の外周面に固定し、他端を第2軸部材の外周面に固定する固定ステップと、第1および第2軸部材に通電し、コイルばねを加熱する加熱ステップと、第1および第2軸部材が通電している状態において、第1および第2軸部材をそれぞれ回転させる回転ステップと、を含み、第1および第2軸部材の各回転軸は、水平方向に対して0以上30度以下の角度をなす互いに同じ直線上に位置し、第1および第2軸部材に取り付けられた前記コイルばねの中心軸は、上記直線と平行である。

Description

加熱方法および加熱システム
 本発明は、例えばコイルばねの焼入れを行うための加熱方法および加熱システムに関するものである。
 従来、コイルばねを作製する工程において、焼入れが行われる。焼入れは、例えば、機械的な特性を改善させたりするために実施される。焼入れを行うための加熱方法として、コイルばねの端部に電極を接続し、通電によって発生する熱で加熱する方法が知られている(例えば、特許文献1を参照)。特許文献1では、コイルばねを支持プレートで支持して、コイルばねの中心軸を略水平方向に向けて横置きにして加熱している。
特開昭61-30246号公報
 しかしながら、特許文献1が開示する加熱方法では、焼入れ後に、コイルばねの線材間の隙間のばらつきや巻回によって形成されるコイルの径のばらつきが大きくなる場合があった。
 本発明は、上記に鑑みてなされたものであって、コイルばねの線材間の隙間のばらつきや、巻回によって形成されるコイルの径のばらつきを抑制することができる加熱方法および加熱システムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る加熱方法は、コイルばねの焼入れを行う加熱方法であって、コイルばねの一端を第1軸部材の外周面に固定し、他端を第2軸部材の外周面に固定する固定ステップと、前記第1および第2軸部材に通電し、前記コイルばねを加熱する加熱ステップと、前記第1および第2軸部材が通電している状態において、前記第1および第2軸部材をそれぞれ回転させる回転ステップと、を含み、前記第1および第2軸部材の各回転軸は、水平方向に対して0以上30度以下の角度をなす互いに同じ直線上に位置し、前記第1および第2軸部材に取り付けられた前記コイルばねの中心軸は、前記直線と平行である、ことを特徴とする。
 また、本発明に係る加熱方法は、上記発明において、前記加熱ステップおよび前記回転ステップは、前記コイルばねを形成する材料の変態点温度以上の温度に設定される設定温度に基づいて停止されるようにしてもよい。
 また、本発明に係る加熱方法は、上記発明において、前記回転ステップは、前記コイルばねの線材間の隙間のばらつき、および/または、前記コイルばねのコイル径のばらつきに基づいて設定された回転速度で前記第1および第2軸部材を回転させてもよい。
 また、本発明に係る加熱方法は、上記発明において、前記固定ステップは、前記コイルばねの中心軸が、前記直線に対してオフセットした位置に前記コイルばねを固定してもよい。
 また、本発明に係る加熱システムは、コイルばねの焼入れを行う加熱システムであって、長手方向に延びる中心軸のまわりに回転可能であり、コイルばねの一端を把持する第1軸部材と、長手方向に延びる中心軸のまわりに回転可能であり、コイルばねの他端を把持する第2軸部材と、前記第1および第2軸部材への通電、および、前記第1および第2軸部材の回転を制御する制御装置と、を備え、前記第1および第2軸部材は、各回転軸が、水平方向に対して0以上30度以下の角度をなす互いに同じ直線上に位置し、前記第1および第2軸部材に取り付けられた前記コイルばねの中心軸は、前記直線と平行である、ことを特徴とする。
 また、本発明に係る加熱方法は、コイルばねの焼入れを行う加熱方法であって、前記コイルばねを支持部材に載置するとともに、該コイルばねの一端を、回転自在な第1軸部材の外周面に固定し、他端を第2軸部材の外周面に固定する固定ステップと、前記第1および第2軸部材に通電し、前記コイルばねを加熱する加熱ステップと、前記第1軸部材を回転させて、前記コイルばねの一端を、予め設定された位置に移動させる回転ステップと、を含み、前記第1および第2軸部材の各軸が、水平方向に対して0以上30度以下の角度をなす互いに同じ直線上に位置し、前記第1および第2軸部材に取り付けられ、前記支持部材に支持されている前記コイルばねの中心軸は、前記直線と平行である、ことを特徴とする。
 また、本発明に係る加熱方法は、上記発明において、前記回転ステップは、前記コイルばねの温度が当該コイルばねを形成する材料の変態点温度以上の温度に設定される設定温度に到達した場合に、前記第1軸部材を回転させてもよい。
 また、本発明に係る加熱方法は、上記発明において、前記固定ステップは、前記コイルばねの中心軸が、前記直線に対してオフセットした位置に前記コイルばねを固定してもよい。
 また、本発明に係る加熱システムは、コイルばねの焼入れを行う加熱システムであって、長手方向に延びる回転軸のまわりに回転可能であり、コイルばねの一端を把持する第1軸部材と、長手軸方向に延び、コイルばねの他端を把持する第2軸部材と、前記第1および第2軸部材への通電、および、前記第1軸部材の回転を制御する制御装置と、を備え、前記第1軸部材の回転軸、および第2軸部材の長手軸は、水平方向に対して0以上30度以下の角度をなす互いに同じ直線上に位置し、前記第1および第2軸部材に取り付けられた前記コイルばねの中心軸は、前記直線と平行であり、前記制御装置は、コイルばねへの加熱を開始時に、前記第1軸部材の回転規制を解除し、加熱処理終了時までに、前記コイルばねの一端を、予め設定された位置に移動させる、ことを特徴とする。
 本発明によれば、コイルばねの線材間の隙間のばらつきや、巻回によって形成されるコイルの径のばらつきを抑制することができるという効果を奏する。
図1は、本発明の実施の形態1に係る加熱システムの概略構成を示す図である。 図2は、本発明の実施の形態1に係る加熱システムの要部の構成を説明するための図である。 図3は、本発明の実施の形態1に係る加熱方法を示すフローチャートである。 図4は、本発明の実施の形態1の変形例1に係る加熱方法を示すフローチャートである。 図5は、本発明の実施の形態1の変形例2に係る加熱方法を示すフローチャートである。 図6は、本発明の実施の形態2に係る加熱システムの概略構成を示す図である。 図7は、本発明の実施の形態2に係る加熱方法を示すフローチャートである。 図8は、本発明の実施の形態2の変形例1に係る加熱システムの概略構成を示す図である。 図9は、本発明の実施の形態2の変形例2に係る加熱方法を示すフローチャートである。 図10は、本発明の実施の形態2の変形例3に係る加熱方法を示すフローチャートである。
 以下、添付図面を参照して本発明を実施するための形態(以下、「実施の形態」という)を説明する。なお、図面は模式的なものであって、各部分の厚みと幅との関係、それぞれの部分の厚みの比率などは現実のものとは異なる場合があり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれる場合がある。
(実施の形態1)
 図1は、本発明の実施の形態1に係る加熱システムの概略構成を示す図である。図1に示す加熱システム1は、例えばコイルばね100の焼入れを行うためシステムである。加熱システム1は、コイルばね100を保持して加熱する加熱装置10と、加熱装置10を制御する制御装置20とを備える。コイルばね100は、所定の軸(ここではN100)のまわりに線材を螺旋状に巻回してなる。
 加熱装置10は、第1軸部材11と、第2軸部材12とを備える。
 第1軸部材11は、制御装置20の制御のもと、円柱状をなして延びる軸本体110の中心を通過し、かつ長手方向と平行に延びる軸N11(回転軸)のまわりに回転する。また、第1軸部材11には、軸本体110の側面に固定され、コイルばね100の一端を保持するばね保持部111が設けられる。ばね保持部111には、軸本体110の外周面とによってコイルばね100の一端を挟み込む把持部112が設けられる。ばね保持部111は、軸本体110と一体的に回転する。
 第2軸部材12は、制御装置20の制御のもと、円柱状をなして延びる軸本体120の中心を通過し、かつ長手方向と平行に延びる軸N12(回転軸)のまわりに回転する。また、第2軸部材12には、軸本体120の側面に固定され、コイルばね100の他端を保持するばね保持部121が設けられる。ばね保持部121には、軸本体120の外周面とによってコイルばね100の他端を挟み込む把持部122が設けられる。ばね保持部121は、軸本体120と一体的に回転する。
 第1軸部材11の軸N11、および、第2軸部材12の軸N12は、一方の軸を他方の軸に向けて延長させた直線が、該他方の軸と一致する。すなわち、軸N11および軸N12は、同一直線上に位置する。なお、コイルばね100の回転制御に支障が出ない範囲であれば、軸N11および軸N12は全く同一の直線上になくてもよい。
 また、各把持部(把持部112、122)によってコイルばね100を把持した状態において、コイルばね100の中心軸N100は、軸N11および軸N12とそれぞれ平行である。なお、図1では、中心軸N100と、軸N11および軸N12とがオフセットされた例を示しているが、中心軸N100と、軸N11および軸N12とが互いに一致するように配置してもよい。中心軸N100と、軸N11および軸N12とがオフセットしている場合、コイルばね100は、中心軸N100と平行かつ互いに異なる位置に位置する軸のまわりに回転する。これに対し、中心軸N100と、軸N11および軸N12とが同一直線上にある場合、コイルばね100は、中心軸N100のまわりに回転する。
 なお、中心軸N100と、軸N11および軸N12とは、水平方向に対する角度が、0以上30度以下に設定される。この角度は、コイルばねの特性等によって設定される。ここでいう水平方向とは、重力の方向(鉛直方向)に対して垂直な方向である。
 また、第1軸部材11の軸本体110、および、第2軸部材12の軸本体120は、導電性材料を用いて形成される。また、各軸本体と制御装置20とは、図示しない電線によって接続される。
 図2は、本発明の実施の形態1に係る加熱システムの要部の構成を説明するための図である。図2は、軸本体およびばね保持部の構成、動作について説明する図である。図2では、第1軸部材11について図示しているが、第2軸部材12も同様に動作する。軸本体110が回転すると、この回転に連動してばね保持部111も回転する。この際、軸本体110は、制御装置20の制御のもと、回転角θで往復動する。ばね保持部111は、基準位置PSに対し、回転角θ/2だけ時計まわりに回転した位置PRと、基準位置PSに対し、回転角θ/2だけ反時計まわりに回転した位置PLとを往復動する。軸本体110と把持部112とがコイルばね100を把持している場合、軸本体110の回転にしたがってコイルばね100の端部も軸本体110の外周に沿って移動する。
 回転角θは、コイルばね100の種別に応じて設定が可能であり、例えば、90度(±45度)以上360度以下の範囲で角度が設定される。
 なお、各軸部材では、エンコーダ等を用いて回転量が計測可能に構成される。
 図1に戻り、制御装置20は、入力部21と、出力部22と、設定部23と、検出部24と、制御部25と、記憶部26とを備える。
 入力部21は、加熱システム1の動作に関する各種信号の入力を受け付ける。入力部21は、キーボード、マウス、スイッチ、タッチパネル等を用いて構成される。
 出力部22は、制御部25の制御のもと、画像を表示させたり、音や光を出力させたりする。出力部22は、ディスプレイや、スピーカー、光源等を用いて構成される。
 設定部23は、加熱条件の設定を行う。設定部23は、例えば入力部21が受け付けた設定情報や、記憶部26に記憶されている情報に基づいて、コイルばね100の加熱温度や加熱時間、軸部材の回転角、軸部材の回転速度、軸部材へ通電する電力量を設定する。
 検出部24は、コイルばね100の温度を検出する。なお、検出部24は、各軸部材の温度を検出するようにしてもよい。
 制御部25は、加熱システム1の各構成部品の動作を制御する。また、制御部25は、通電制御部251と、回転制御部252とを有する。通電制御部251は、例えば、入力部21を介して加熱処理を開始する指示入力があると、第1軸部材11および第2軸部材12への通電をオンにする。また、回転制御部252は、加熱処理において設定されたパターンで第1軸部材11および第2軸部材12を回転させる。
 設定部23、検出部24および制御部25は、それぞれ、CPU(Central Processing Unit)等のプロセッサや、ASIC(Application Specific Integrated Circuit)等の特定の機能を実行する各種演算回路等のプロセッサを用いて構成される。
 記憶部26は、制御部25が各種動作を実行するためのプログラム(例えば加熱処理時に実行するプログラム)等を記憶する。また、記憶部26は、コイルばね100を焼入れする際の加熱条件や、加熱処理のプログラムやパラメータを記憶する加熱条件記憶部261、コイルばね100を回転制御する際の回転条件や、回転制御のプログラムやパラメータを記憶する回転条件記憶部262を有する。記憶部26は、揮発性メモリや不揮発性メモリを用いて構成されるか、またはそれらを組み合わせて構成される。例えば、記憶部26は、RAM(Random Access Memory)、ROM(Read Only Memory)等を用いて構成される。
 続いて、加熱システム1によるコイルばね100の加熱処理について、図3を参照して説明する。図3は、本発明の実施の形態1に係る加熱方法を示すフローチャートである。以下、制御装置20の制御のもと、各部が動作するものとして説明する。
 まず、コイルばね100を加熱装置10にセットする(ステップS101)。具体的には、コイルばね100の一端を把持部112と軸本体110とによって把持させ、他端を把持部122と軸本体120とによって把持させる。これにより、コイルばね100の両端が、第1軸部材11および第2軸部材12に固定される。
 コイルばね100をセット後、通電制御部251は、第1軸部材11および第2軸部材12への通電を開始する(ステップS102)。通電制御部251は、入力部21が受け付けた通電開始指示等をトリガとして、通電制御を開始する。通電によって、第1軸部材11および第2軸部材12を経てコイルばね100に電流が流れて発熱する。この熱によってコイルばねが加熱される。通電制御部251は、コイルばね100の加熱温度が、設定部23が設定した加熱温度まで上昇するような電流を第1軸部材11および第2軸部材12へ流す制御を行う。
 また、回転制御部252は、通電制御の開始とともに、第1軸部材11および第2軸部材12の回転を開始させる(ステップS103)。回転制御部252は、軸本体110、120を、設定された回転速度および回転角で回転させる。回転制御部252は、軸本体110、120を、動作を同期して回転させる。ここで、例えば、回転速度は、コイルばね100の線材間の隙間のばらつき、および/または、コイルばね100のコイル径のばらつきに基づいて設定される。
 なお、回転開始のタイミングは、通電開始タイミングと同時であってもよいし、通電開始タイミングから設定された時間経過後であってもよい。
 通電制御部251は、コイルばね100の温度が、設定温度に到達したか否かを判断する(ステップS104)。通電制御部251は、検出部24が検出した温度に基づいて、コイルばね100の温度が設定温度に到達していないと判断した場合(ステップS104:No)、温度の確認を繰り返す。これに対し、通電制御部251は、コイルばね100の温度が設定温度に到達したと判断した場合(ステップS104:Yes)、ステップS105に移行する。ここで、設定温度は、コイルばね100を形成する材料の変態点温度以上の温度が設定される。
 ステップS105において、通電制御部251は、各軸部材への通電を終了する。
 通電が終了すると、回転制御部252は、軸本体110、120を回転させて、把持部112、122の位置を、予め設定されている設定位置に移動させ、加熱処理を終了する(ステップS106)。ここで、設定位置は、例えば加熱処理の次の処理へコイルばね100を搬送するための位置である。具体的には、搬送アームがコイルばね100を掴みやすい位置等が設定される。
 なお、通電の終了タイミングおよび回転の終了タイミングは、同時であってもよいし、回転を先に終了させてもよい。
 以上説明した本実施の形態1では、各軸本体の外周面にコイルばねの端部をそれぞれ把持させて固定し、軸本体を介してコイルばね100に通電しながら軸部材を回転させて、コイルばね100を回転下で加熱するようにした。本実施の形態1によれば、加熱時にコイルばね100を回転させてコイルばねの加熱を均一にすることによって、コイルばねの線材間の隙間のばらつきや、巻回によって形成されるコイルの径のばらつきを抑制することができる。
(実施の形態1の変形例1)
 次に、本発明の実施の形態1の変形例1について、図4を参照して説明する。変形例1に係る加熱システムは、実施の形態に係る加熱システムと同様であるため、説明を省略する。図4は、本発明の変形例1に係る加熱方法を示すフローチャートである。以下、制御装置20の制御のもと、各部が動作するものとして説明する。なお、変形例では、検出部24が通電時間を検出するものとして説明する。
 変形例1では、図3に示すステップS101~S103と同様にして、コイルばね100を加熱装置10にセットし、第1軸部材11および第2軸部材12への通電および回転を開始させる(ステップS201~S203)。
 その後、通電制御部251は、通電時間が、予め設定されている設定時間経過したか否かを判断する(ステップS204)。通電制御部251は、検出部24が検出した通電時間に基づいて、通電時間が設定時間経過していないと判断した場合(ステップS204:No)、経過時間の確認を繰り返す。これに対し、通電制御部251は、通電時間が設定時間経過したと判断した場合(ステップS204:Yes)、ステップS205に移行する。この際に設定される設定時間は、例えば、コイルばね100が、当該コイルばね100を形成する材料の変態点温度以上の温度に到達するのに要する時間が設定される。
 ステップS205において、通電制御部251は、各軸部材への通電を終了する。
 通電が終了すると、回転制御部252は、軸本体110、120を回転させて、把持部112、122の位置を、予め設定されている設定位置に移動させ、加熱処理を終了する(ステップS206)。
 なお、通電の終了タイミングおよび回転の終了タイミングは、同時であってもよいし、回転を先に終了させてもよい。
 以上説明した本変形例1では、実施の形態と同様に、各軸本体の外周面にコイルばねの端部をそれぞれ把持させて固定し、軸本体を介してコイルばね100に通電しながら軸部材を回転させて、コイルばね100を回転下で加熱するようにした。本変形例1によれば、加熱時にコイルばね100を回転させてコイルばねの加熱を均一にすることによって、コイルばねの線材間の隙間のばらつきや、巻回によって形成されるコイルの径のばらつきを抑制することができる。
(実施の形態1の変形例2)
 次に、本発明の実施の形態1の変形例2について、図5を参照して説明する。変形例2に係る加熱システムは、実施の形態に係る加熱システムと同様であるため、説明を省略する。図5は、本発明の変形例2に係る加熱方法を示すフローチャートである。以下、制御装置20の制御のもと、各部が動作するものとして説明する。なお、変形例2では、検出部24が通電電力量(例えば通電開始からの総電力量)を検出するものとして説明する。
 変形例2では、図3に示すステップS101~S103と同様にして、コイルばね100を加熱装置10にセットし、第1軸部材11および第2軸部材12への通電および回転を開始させる(ステップS301~S303)。
 その後、通電制御部251は、通電電力量が、予め設定されている設定電力量に到達したか否かを判断する(ステップS304)。通電制御部251は、検出部24が検出した通電電力量に基づいて、通電電力量が設定電力量に到達していないと判断した場合(ステップS304:No)、通電電力量の確認を繰り返す。これに対し、通電制御部251は、通電電力量が設定電力量に到達したと判断した場合(ステップS304:Yes)、ステップS305に移行する。この際に設定される設定電力量は、例えば、コイルばね100が、当該コイルばね100を形成する材料の変態点温度以上の温度に到達するのに要する電力量(例えば総電力量)が設定される。
 ステップS305において、通電制御部251は、各軸部材への通電を終了する。
 通電が終了すると、回転制御部252は、軸本体110、120を回転させて、把持部112、122の位置を、予め設定されている設定位置に移動させ、加熱処理を終了する(ステップS306)。
 なお、通電の終了タイミングおよび回転の終了タイミングは、同時であってもよいし、回転を先に終了させてもよい。
 以上説明した本変形例2では、実施の形態と同様に、各軸本体の外周面にコイルばねの端部をそれぞれ把持させて固定し、軸本体を介してコイルばね100に通電しながら軸部材を回転させて、コイルばね100を回転下で加熱するようにした。本変形例2によれば、加熱時にコイルばね100を回転させてコイルばねの加熱を均一にすることによって、コイルばねの線材間の隙間のばらつきや、巻回によって形成されるコイルの径のばらつきを抑制することができる。
 なお、実施の形態1では、把持部112、122が、各軸本体の上部に位置している例を図示(図2等参照)して説明したが、コイルばね100の巻き数等によって端部の位置が異なるため、把持部112、122は、保持するコイルばね100の形状や巻き数等によってその位置(例えば基準位置PS)が変わる。
 また、実施の形態1および変形例では、基準位置を中心に往復動、すなわち回転方向を逆向きにして回転動作を繰り返す例について説明したが、これに限らず、例えば同一方向への回転させる構成としてもよい。
 また、実施の形態1および変形例において、各軸部材は、完全同期で回転する例について説明したが、コイルばね100の加熱による変形に追従して回転するようにしてもよい。
(実施の形態2)
 次に、本発明の実施の形態2について、図6および図7を参照して説明する。図6は、本発明の実施の形態2に係る加熱システムの概略構成を示す図である。本実施の形態2に係る加熱システム1Aの構成は、加熱装置10に代えて加熱装置10Aを備える。制御装置20は、実施の形態1と同じ構成であるため、説明を省略する。なお、本実施の形態2では、軸本体120は回転しないものとして説明する。また、軸本体110の回転位置および回転量に規制はなく、軸本体110は、回転軸N11のまわりに回転する。具体的には、軸本体110は、図2に示す基準位置PSに対し、位置PRや位置PLを超えて回転することもある。また、回転制御部252は、加熱処理時における第1軸部材11の回転制御を実行する。
 加熱装置10Aは、第1軸部材11と、第2軸部材12と、支持部材13とを備える。第1軸部材11および第2軸部材12は、実施の形態1と同様であるため、説明を省略する。
 支持部材13は、コイルばね100が載置されて、該コイルばね100を支持するプレートである。支持部材13は、第1軸部材11および第2軸部材12の位置や、コイルばね100のサイズに応じて鉛直方向に上下動させるようにしてもよい。また、支持部材13は、コイルばね100の特定の部分(例えば、コイルばね100の中央部)のみを支持する構造であってもよい。
 続いて、本実施の形態2に係る加熱システムによるコイルばねの加熱処理について、図7を参照して説明する。図7は、本発明の実施の形態2に係る加熱方法を示すフローチャートである。以下、制御装置20の制御のもと、各部が動作するものとして説明する。
 本実施の形態2に係る加熱処理では、実施の形態1のステップS101、S102と同様に、コイルばね100を加熱装置10Aにセットし、通電制御部251は、第1軸部材11および第2軸部材12への通電を開始する(ステップS401、S402)。
 また、回転制御部252は、第1軸部材11の回転軸N11まわりの回転規制を解除する(ステップS403)。これにより、第1軸部材11は、回転軸N11まわりの回転がフリーな状態となる。
 なお、ステップS402およびS403の処理は、同時に実行されてもよく、ステップS403を先に実行してもよい。また、ステップS403に移行した時点で第1軸部材11が回転フリーな状態となっていれば、本ステップS403を実行しなくてもよい。
 加熱処理時、コイルばね100では、組織変態等によって変形する。この際、第1軸部材11では、この変形に追従して回転軸N11まわりに回転する。この回転により、変形時に当該コイルばね100にかかる荷重を逃がすことができる。
 そして、回転制御部252は、コイルばね100の温度が、設定温度に到達したか否かを判断する(ステップS404)。回転制御部252は、検出部24が検出した温度に基づいて、コイルばね100の温度が設定温度に到達していないと判断した場合(ステップS404:No)、温度の確認を繰り返す。これに対し、回転制御部252は、コイルばね100の温度が設定温度に到達したと判断した場合(ステップS404:Yes)、ステップS405に移行する。ここで、設定温度は、コイルばね100を形成する材料の変態点温度以上の温度が設定される。
 ステップS405において、回転制御部252は、軸本体110を回転させて、把持部112の位置を、予め設定されている設定位置に移動させる。ここで、設定位置は、例えば加熱前にコイルばね100を取り付けた位置や、第2軸部材12に保持されるコイルばね100の端部位置に対応する位置である。
 なお、必要とされる精度の形状が得られる場合は、当該ステップS405を実施しない処理としてもよい。
 その後、通電制御部251は、第1軸部材11および第2軸部材12への通電を終了し、加熱処理を終了する(ステップS406)。
 なお、通電の終了タイミングおよび回転処理の実行タイミングは、同時であってもよいし、回転処理を先に実行させてもよい。
 以上説明した本実施の形態2では、各軸本体の外周面にコイルばねの端部をそれぞれ把持させて固定し、軸本体を介してコイルばね100を通電加熱するとともに、加熱時に一方の軸部材の回転をフリーにし、組織変態に伴うコイルばね100の変形に追従させて回転するようにした。本実施の形態2によれば、通電加熱において生じるコイルばね100の組織変態時の変形による荷重を逃がしつつ、加熱終了時に端部位置を設定位置に移動させることによって、コイルばねの線材間の隙間(例えば図1に示す隙間S1)のばらつきや、巻回によって形成されるコイルの径(例えば図1に示すコイル径R1)のばらつきを抑制することができる。
 また、本実施の形態2によれば、コイルばね100が変態点温度に到達した場合に第1軸部材11を回転させてコイルばね100の端部位置を適切な位置に移動させるため、形状精度を一層高くすることができる。
(実施の形態2の変形例1)
 次に、本発明の実施の形態2の変形例1について、図8を参照して説明する。図8は、本発明の実施の形態2の変形例1に係る加熱システムの概略構成を示す図である。変形例1に係る加熱システム1Bは、加熱装置10Aに代えて加熱装置10Bを備える。制御装置20は、実施の形態2と同じ構成であるため、説明を省略する。
 加熱装置10Bは、第1軸部材11と、第2軸部材12と、支持部材13Aとを備える。第1軸部材11および第2軸部材12は、実施の形態2と同様であるため、説明を省略する。
 支持部材13Aは、コイルばね100が載置されて、該コイルばね100を支持する。支持部材13Aは、棒状に延び、先端部でコイルばね100の一部を支持する複数の棒状部材131からなる。支持部材13Aは、第1軸部材11および第2軸部材12の位置や、コイルばね100のサイズに応じて、各棒状部材131を鉛直方向に上下動させるようにしてもよい。また、支持部材13Aは、コイルばね100の特定の部分(例えば、コイルばね100の中央部)のみを支持する構造であってもよい。
 加熱システム1Bによるコイルばね100の加熱処理は、図7に示すフローチャートと同様の流れで実行される。
 以上説明した本変形例1では、実施の形態2と同様にして加熱処理が実行されるため、通電加熱において生じるコイルばね100の組織変態時の変形による荷重を逃がしつつ、加熱終了時に端部位置を設定位置に移動させることによって、コイルばねの線材間の隙間のばらつきや、巻回によって形成されるコイルの径のばらつきを抑制することができる。
(実施の形態2の変形例2)
 次に、本発明の実施の形態2の変形例2について説明する。変形例2に係る加熱システムは、実施の形態2に係る加熱システム1Aにおいて、コイルばね100の温度を測定する測定機構(図示略)を備える。なお、変形例2では、検出部24が通電時間を検出するものとして説明する。
 本変形例2に係る加熱処理について、図9を参照して説明する。図9は、実施の形態2の変形例2に係る加熱方法を示すフローチャートである。
 まず、図7に示すステップS401およびS402と同様にして、コイルばね100を加熱装置10にセットし(ステップS501)、通電制御部251によって第1軸部材11および第2軸部材12への通電を開始する(ステップS502)。
 その後、回転制御部252が、第1軸部材11の回転軸N11まわりの回転規制を解除する(ステップS503)。加熱処理時、コイルばね100の変形に追従して回転軸N11まわりに回転する。
 その後、回転制御部252は、通電時間が、予め設定されている設定時間経過したか否かを判断する(ステップS504)。回転制御部252は、検出部24が検出した通電時間に基づいて、通電時間が設定時間経過していないと判断した場合(ステップS504:No)、通電時間の確認を繰り返す。これに対し、回転制御部252は、通電時間が設定時間経過したと判断した場合(ステップS504:Yes)、ステップS505に移行する。この際に設定される設定時間は、例えば、コイルばね100が、当該コイルばね100を形成する材料の変態点温度以上の温度に到達するのに要する時間が設定される。
 ステップS505において、回転制御部252は、軸本体110を回転させて、把持部112の位置を、予め設定されている設定位置に移動させる。
 なお、必要とされる精度の形状が得られる場合は、当該ステップS505を実施しない処理としてもよい。
 その後、通電制御部251は、回転軸への通電を終了する(ステップS506)。
 以上説明した本変形例2では、実施の形態2と同様にして加熱処理が実行されるため、通電加熱において生じるコイルばね100の組織変態時の変形による荷重を逃がしつつ、加熱終了時に端部位置を設定位置に移動させることによって、コイルばねの線材間の隙間のばらつきや、巻回によって形成されるコイルの径のばらつきを抑制することができる。
(実施の形態2の変形例3)
 次に、本発明の実施の形態2の変形例3について説明する。変形例3に係る加熱システムは、実施の形態2に係る加熱システム1Aにおいて、コイルばね100の温度を測定する測定機構(図示略)を備える。なお、変形例3では、検出部24が電力量(例えば通電開始からの総電力量)を検出するものとして説明する。
 本変形例3に係る加熱処理について、図10を参照して説明する。図10は、実施の形態2の変形例3に係る加熱方法を示すフローチャートである。
 まず、図7に示すステップS401およびS402と同様にして、コイルばね100を加熱装置10にセットし(ステップS601)、通電制御部251によって第1軸部材11および第2軸部材12への通電を開始する(ステップS602)。
 その後、回転制御部252が、第1軸部材11の回転軸N11まわりの回転規制を解除する(ステップS603)。加熱処理時、コイルばね100の変形に追従して回転軸N11まわりに回転する。
 その後、回転制御部252は、通電電力量が、予め設定されている設定電力量に到達したか否かを判断する(ステップS604)。回転制御部252は、検出部24が検出した通電電力量に基づいて、通電電力量が設定電力量に到達していないと判断した場合(ステップS604:No)、通電電力量の確認を繰り返す。これに対し、回転制御部252は、通電電力量が設定電力量に到達したと判断した場合(ステップS604:Yes)、ステップS605に移行する。この際に設定される設定電力量は、例えば、コイルばね100が、当該コイルばね100を形成する材料の変態点温度以上の温度に到達するのに要する電力量(例えば総電力量)が設定される。
 ステップS605において、回転制御部252は、軸本体110を回転させて、把持部112の位置を、予め設定されている設定位置に移動させる。
 その後、通電制御部251は、回転軸への通電を終了する(ステップS606)。
 以上説明した本変形例3では、実施の形態2と同様にして加熱処理が実行されるため、通電加熱において生じるコイルばね100の組織変態時の変形による荷重を逃がしつつ、加熱終了時に端部位置を設定位置に移動させることによって、コイルばねの線材間の隙間のばらつきや、巻回によって形成されるコイルの径のばらつきを抑制することができる。
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1、2およびその変形例によってのみ限定されるべきものではない。なお、実施の形態2では、第2軸部材12は回転しない例について説明したが、第2軸部材12を回転させる構成としてもよいし、第1軸部材11および第2軸部材12の両方を回転自在な構成としてもよい。両軸部材を回転自在な構成とする場合は、例えばステップS105において、一方の軸部材のばね保持部の位置と、他方の軸部材のばね保持部の位置とが設計に対応する位置となるように、少なくとも一方の軸部材を回転させる。
 また、実施の形態1、2およびそれらの変形例では、温度、加熱時間および電力量のいずれかを用いて停止または継続を判断する例について説明したが、これに限らず、温度、時間および電力量を組み合わせて制御するようにしてもよい。
 このように、本発明はここでは記載していない様々な実施の形態等を含みうるものであり、請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。
 以上説明したように、本発明に係る加熱方法および加熱システムは、コイルばねの線材間の隙間のばらつきや、巻回によって形成されるコイルの径のばらつきを抑制するのに好適である。
 1、1A、1B 加熱システム
 10、10A、10B 加熱装置
 11 第1軸部材
 12 第2軸部材
 13、13A 支持部材
 20 制御装置
 21 入力部
 22 出力部
 23 設定部
 24 検出部
 25 制御部
 26 記憶部
 251 通電制御部
 252 回転制御部
 261 加熱条件記憶部
 262 回転条件記憶部

Claims (9)

  1.  コイルばねの焼入れを行う加熱方法であって、
     コイルばねの一端を第1軸部材の外周面に固定し、他端を第2軸部材の外周面に固定する固定ステップと、
     前記第1および第2軸部材に通電し、前記コイルばねを加熱する加熱ステップと、
     前記第1および第2軸部材が通電している状態において、前記第1および第2軸部材をそれぞれ回転させる回転ステップと、
     を含み、
     前記第1および第2軸部材の各回転軸は、水平方向に対して0以上30度以下の角度をなす互いに同じ直線上に位置し、
     前記第1および第2軸部材に取り付けられた前記コイルばねの中心軸は、前記直線と平行である、
     ことを特徴とする加熱方法。
  2.  前記加熱ステップおよび前記回転ステップは、前記コイルばねを形成する材料の変態点温度以上の温度に設定される設定温度に基づいて停止される、
     ことを特徴とする請求項1に記載の加熱方法。
  3.  前記回転ステップは、前記コイルばねの線材間の隙間のばらつき、および/または、前記コイルばねのコイル径のばらつきに基づいて設定された回転速度で前記第1および第2軸部材を回転させる、
     ことを特徴とする請求項1に記載の加熱方法。
  4.  前記固定ステップは、前記コイルばねの中心軸が、前記直線に対してオフセットした位置に前記コイルばねを固定する、
     ことを特徴とする請求項1または2に記載の加熱方法。
  5.  コイルばねの焼入れを行う加熱システムであって、
     長手方向に延びる中心軸のまわりに回転可能であり、コイルばねの一端を把持する第1軸部材と、
     長手方向に延びる中心軸のまわりに回転可能であり、コイルばねの他端を把持する第2軸部材と、
     前記第1および第2軸部材への通電、および、前記第1および第2軸部材の回転を制御する制御装置と、
     を備え、
     前記第1および第2軸部材は、各回転軸が、水平方向に対して0以上30度以下の角度をなす互いに同じ直線上に位置し、
     前記第1および第2軸部材に取り付けられた前記コイルばねの中心軸は、前記直線と平行である、
     ことを特徴とする加熱システム。
  6.  コイルばねの焼入れを行う加熱方法であって、
     前記コイルばねを支持部材に載置するとともに、該コイルばねの一端を、回転自在な第1軸部材の外周面に固定し、他端を第2軸部材の外周面に固定する固定ステップと、
     前記第1および第2軸部材に通電し、前記コイルばねを加熱する加熱ステップと、
     前記第1軸部材を回転させて、前記コイルばねの一端を、予め設定された位置に移動させる回転ステップと、
     を含み、
     前記第1および第2軸部材の各軸が、水平方向に対して0以上30度以下の角度をなす互いに同じ直線上に位置し、
     前記第1および第2軸部材に取り付けられ、前記支持部材に支持されている前記コイルばねの中心軸は、前記直線と平行である、
     ことを特徴とする加熱方法。
  7.  前記回転ステップは、前記コイルばねの温度が当該コイルばねを形成する材料の変態点温度以上の温度に設定される設定温度に到達した場合に、前記第1軸部材を回転させる、
     ことを特徴とする請求項6に記載の加熱方法。
  8.  前記固定ステップは、前記コイルばねの中心軸が、前記直線に対してオフセットした位置に前記コイルばねを固定する、
     ことを特徴とする請求項6または7に記載の加熱方法。
  9.  コイルばねの焼入れを行う加熱システムであって、
     長手方向に延びる回転軸のまわりに回転可能であり、コイルばねの一端を把持する第1軸部材と、
     長手軸方向に延び、コイルばねの他端を把持する第2軸部材と、
     前記第1および第2軸部材への通電、および、前記第1軸部材の回転を制御する制御装置と、
     を備え
     前記第1軸部材の回転軸、および第2軸部材の長手軸は、水平方向に対して0以上30度以下の角度をなす互いに同じ直線上に位置し、
     前記第1および第2軸部材に取り付けられた前記コイルばねの中心軸は、前記直線と平行であり、
     前記制御装置は、コイルばねへの加熱を開始時に、前記第1軸部材の回転規制を解除し、加熱処理終了時までに、前記コイルばねの一端を、予め設定された位置に移動させる、
     ことを特徴とする加熱システム。
PCT/JP2022/043525 2022-03-30 2022-11-25 加熱方法および加熱システム WO2023188536A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-057252 2022-03-30
JP2022057252A JP2023148954A (ja) 2022-03-30 2022-03-30 加熱方法および加熱システム
JP2022057253A JP2023148955A (ja) 2022-03-30 2022-03-30 加熱方法および加熱システム
JP2022-057253 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023188536A1 true WO2023188536A1 (ja) 2023-10-05

Family

ID=88199956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043525 WO2023188536A1 (ja) 2022-03-30 2022-11-25 加熱方法および加熱システム

Country Status (1)

Country Link
WO (1) WO2023188536A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130246A (ja) * 1984-07-19 1986-02-12 Toshikazu Okuno スプリングの加熱装置
US6235131B1 (en) * 1999-07-09 2001-05-22 Mathew Warren Industries, Inc. System for heat treating coiled springs
US20110031666A1 (en) * 2009-08-07 2011-02-10 Warner Jerry G Heat Treatment of Helical Springs or Similarly Shaped Articles by Electric Resistance Heating
JP2011195919A (ja) * 2010-03-23 2011-10-06 Chuo Spring Co Ltd ばねの通電加熱方法及びその装置
WO2012014672A1 (ja) * 2010-07-26 2012-02-02 中央発條株式会社 ばねの製造方法及び通電加熱装置
WO2013099821A1 (ja) * 2011-12-26 2013-07-04 中央発條株式会社 ばねの製造方法及びばね

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130246A (ja) * 1984-07-19 1986-02-12 Toshikazu Okuno スプリングの加熱装置
US6235131B1 (en) * 1999-07-09 2001-05-22 Mathew Warren Industries, Inc. System for heat treating coiled springs
US20110031666A1 (en) * 2009-08-07 2011-02-10 Warner Jerry G Heat Treatment of Helical Springs or Similarly Shaped Articles by Electric Resistance Heating
JP2011195919A (ja) * 2010-03-23 2011-10-06 Chuo Spring Co Ltd ばねの通電加熱方法及びその装置
WO2012014672A1 (ja) * 2010-07-26 2012-02-02 中央発條株式会社 ばねの製造方法及び通電加熱装置
WO2013099821A1 (ja) * 2011-12-26 2013-07-04 中央発條株式会社 ばねの製造方法及びばね

Similar Documents

Publication Publication Date Title
JP5301412B2 (ja) 測定力制御装置
JP2011061099A (ja) 角線の巻線装置及びエッジワイズコイルの巻線方法
WO2023188536A1 (ja) 加熱方法および加熱システム
WO2017204083A1 (ja) 回転テーブル用ウェーハ加熱保持機構及び方法並びにウェーハ回転保持装置
WO2015155970A1 (ja) スピニング成形装置
US20220319935A1 (en) Method of measuring resistivity, method of manufacturing semiconductor device, recording medium, and resistivity measuring device
JP2023148954A (ja) 加熱方法および加熱システム
JP2023148955A (ja) 加熱方法および加熱システム
JP6623555B2 (ja) 誘導加熱装置
JP2010220317A (ja) コイル製造方法及びコイル製造装置
JP2015103807A (ja) 導体を曲げ且つ巻いて超伝導コイルを作る装置及び方法
JP4252370B2 (ja) 平板ガラスの湾曲装置
US20160207091A1 (en) Coil spring forming method and forming device
JP2012066273A (ja) 加熱ヘッド
JP4506148B2 (ja) インダクタの製造装置
JP2011110569A (ja) コイル状線材の矯正装置及び矯正方法
JP2006333652A (ja) リニアモータ及び精密回転テーブル
JP7339119B2 (ja) 磁気センサの検査装置、磁気センサの検査方法
JP3665931B2 (ja) 電磁石コイル巻線装置および電磁石装置
JP2009245850A (ja) 電磁誘導加熱装置
JP2016212036A (ja) クランプ式センサ
JP2006332343A (ja) エッジワイズ巻線の空芯コイルのフォーミング治具およびフォーミング装置
JP6442737B2 (ja) コイルの巻線方法および巻線装置
JP2010160014A (ja) 測定装置及び測定方法
JP7336127B2 (ja) 誘導加熱装置、並びに、誘導加熱コイル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935665

Country of ref document: EP

Kind code of ref document: A1