WO2011118026A1 - 電極活物質の製造方法 - Google Patents

電極活物質の製造方法 Download PDF

Info

Publication number
WO2011118026A1
WO2011118026A1 PCT/JP2010/055393 JP2010055393W WO2011118026A1 WO 2011118026 A1 WO2011118026 A1 WO 2011118026A1 JP 2010055393 W JP2010055393 W JP 2010055393W WO 2011118026 A1 WO2011118026 A1 WO 2011118026A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
solvent
carbon source
mixed
Prior art date
Application number
PCT/JP2010/055393
Other languages
English (en)
French (fr)
Inventor
英行 山村
静修 小宗
泰明 山口
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/637,070 priority Critical patent/US10312544B2/en
Priority to PCT/JP2010/055393 priority patent/WO2011118026A1/ja
Priority to CN201080065754.5A priority patent/CN102812582B/zh
Priority to JP2012506740A priority patent/JP5553180B2/ja
Publication of WO2011118026A1 publication Critical patent/WO2011118026A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing an electrode active material used for lithium secondary batteries and other batteries. Moreover, it is related with the electrode active material manufactured by this method, and its utilization.
  • lithium secondary batteries typically lithium ion batteries
  • nickel metal hydride batteries have become increasingly important as power sources for vehicles or as power sources for personal computers and portable terminals.
  • a lithium secondary battery that is lightweight and has a high energy density is expected to be preferably used as a high-output power source for mounting on a vehicle.
  • One of the characteristics required for a secondary battery used as a high output power source mounted on a vehicle is an improvement in battery capacity.
  • use of a material capable of realizing a higher capacity than that conventionally used as an electrode active material has been studied.
  • a metal compound including a semi-metal element, the same shall apply hereinafter
  • a metal oxide material can be used as an electrode active material (specifically, a negative electrode active material) that reversibly absorbs and releases lithium ions, and is conventionally used as a negative electrode active material. It is known to have a higher capacity than the graphite material. Therefore, it is expected that a high capacity of the lithium secondary battery can be realized by using these metal compounds (typically, metal oxides) as an electrode active material.
  • the metal compound material for example, metal oxide material such as silicon oxide (SiO x )
  • metal oxide material such as silicon oxide (SiO x )
  • the metal oxide is used as an electrode active material
  • a conductive film specifically a film made of conductive carbon
  • the electrode active material is formed. It is necessary to secure a conductive path (path) through which lithium ions and electrons can move between the material particles and between the electrode active material particles and the electrolytic solution or electrode current collector.
  • Examples of prior art relating to such an electrode active material include the following Patent Documents 1 to 3.
  • Patent Document 1 describes an electrode active material in which the surfaces of particles composed of Si, SiO and SiO 2, and a carbonaceous material are coated with carbon.
  • Patent Document 2 describes various granular metal compounds coated with a carbonaceous material as compounds that can be used as a negative electrode active material for a non-aqueous lithium secondary battery.
  • Patent Document 3 describes a negative electrode active material for a lithium secondary battery composed of metal composite oxide particles containing an amorphous structure and a method for producing the same.
  • the present invention has been created to solve such conventional problems.
  • the present invention provides a method for producing an electrode active material of the following aspect. That is, one manufacturing method disclosed here is a method for manufacturing a granular electrode active material whose surface is coated with a conductive carbon film. Such a method is (1) A carbon source supply material prepared by dissolving a carbon source for forming the carbon coating in a predetermined first solvent in which the granular electrode active material to be coated can be dispersed is prepared. To do, (2) The granular electrode active material to be coated is a solvent that is compatible with the first solvent and that can disperse the granular electrode active material and is a poor solvent for the carbon source.
  • Preparing an electrode active material supply material prepared by dispersing in 2 solvent (3) preparing a mixed material obtained by mixing the prepared carbon source supply material and the electrode active material supply material; and (4) Forming a conductive carbon film derived from the carbon source on the surface of the electrode active material by firing the mixture of the electrode active material and the carbon source obtained after the mixing. Is included.
  • a carbon source supply material prepared by dissolving a carbon source for forming a carbon film in the first solvent, and a poor solvent (that is, different from the first solvent)
  • a solvent having a relatively low solubility of the carbon source typically the solubility of the first solvent when compared at the same temperature (for example, a room temperature range such as 20 to 30 ° C.).
  • an electrode active material supply material prepared by being dispersed in a poor solvent that is 1/10 or less, more preferably 1/100 or less.
  • the carbon source is contained in the second solvent (poor solvent) component. It is difficult to exist, and substantially exists only in the first solvent component.
  • the granular electrode active material can flow and disperse in both the first and second solvents.
  • the electrode active material particles that freely move back and forth between the first and second solvent components in the mixed solvent are present in the solvent when present in the first solvent component.
  • Interact with carbon sources Typically, a carbon source adheres to or binds to the surface of the electrode active material particles.
  • the electrode active material particles that are in an interaction state with the carbon source are transferred from the first solvent to the second solvent. Regulated by the presence of interacting carbon sources.
  • the carbon source can efficiently interact (attach or bind) to the dispersed electrode active material particles, Excessive aggregation of the electrode active material particles is suppressed. Therefore, according to the manufacturing method of this configuration, a good carbon film was formed on the surface of the primary particles by firing the electrode active material particles in a well dispersed state in which excessive aggregation was suppressed together with the carbon source (that is, It is possible to produce a granular electrode active material (having few uncoated portions).
  • Examples of the granular electrode active material to be coated with the carbon film suitably used in the electrode active material manufacturing method disclosed herein include Si, Ge, Sn, Pb, Al, Ga, In, As, Sb, and Bi. And a metal oxide or other metal compound (preferably a metal compound having any one of these as a constituent metal element and further having a hydroxy group on the surface thereof).
  • a metal oxide or other metal compound preferably a metal compound having any one of these as a constituent metal element and further having a hydroxy group on the surface thereof.
  • the electrode active material has a general formula: SiO x (typically, x is a real number satisfying 0 ⁇ x ⁇ 2). It is mainly composed of the silicon oxide shown. This type of silicon oxide has a large theoretical capacity for occlusion and release of lithium ions, and can be suitably used, for example, as a negative electrode active material of a lithium secondary battery.
  • an electrode active material composed of the above-described silicon oxide or other compound of the above-described metal species typically a metal oxide expands or contracts with the insertion and extraction of lithium ions during charge and discharge. The volume fluctuates greatly.
  • the secondary particles are crushed by the stress accompanying the expansion and contraction.
  • a granular material having a surface on which no carbon film is formed is produced.
  • the silicon oxide and other metal compounds having no carbon film do not have a conductive path due to the carbon film, and do not contribute to an improvement in battery capacity as an electrode active material. Further, it is not preferable because it causes deterioration of battery durability, particularly cycle characteristics.
  • the carbon film can be efficiently formed on the surface of the primary particles.
  • the carbon source is a water-soluble compound
  • the first solvent is an aqueous solvent (typically water)
  • the first The second solvent is a non-aqueous solvent compatible with water.
  • a polar solvent such as ethanol
  • a water-soluble polymer such as polyvinyl alcohol (typically a polymer having a polar group such as a hydroxy group in the molecular chain) can be mentioned.
  • the method further includes refluxing the mixed material before the firing.
  • the mixed material is refluxed (typically in a temperature range in which the solvent of the mixed material can be boiled), whereby the granular electrode active material is more suitably contained in the mixed material. Can be dispersed. For this reason, a carbon film can be formed on the surface of electrode active material particles more efficiently.
  • the solvent is different from the second solvent, the particulate electrode active material can be dispersed, and the poor solvent for the carbon source. It further includes adding the mixed material before firing to the third solvent. And the mixture of the said electrode active material and the said carbon source after adding to this 3rd solvent is baked. When the mixed material is added to the third solvent, the carbon source present in the mixed material is not dissolved in the third solvent. For this reason, the mixture of the electrode active material particles added to the third solvent and the carbon source (typically, the electrode active material particles having the carbon source attached or bonded to the surface) is contained in the third solvent. To form aggregates of a predetermined size, and typically precipitate in the solvent.
  • the size (particle diameter) of the secondary particles of the electrode active material with a carbon coating after firing can be defined according to the size of the formed aggregate. That is, typically, a granular electrode active material (secondary particle) in which a carbon film is formed on a surface having a small particle size distribution (preferably having a substantially uniform particle size) is obtained without performing pulverization after firing. be able to.
  • the first solvent is an aqueous solvent and the carbon source is a water-soluble compound
  • the third solvent is compatible with the aqueous solvent and difficult to dissolve the water-soluble compound. Preferred organic solvents are preferred.
  • the present invention also provides a lithium secondary comprising the electrode active material disclosed herein (typically a negative electrode active material comprising a metal compound produced by any of the production methods disclosed herein) on the positive electrode or the negative electrode.
  • a lithium secondary comprising the electrode active material disclosed herein (typically a negative electrode active material comprising a metal compound produced by any of the production methods disclosed herein) on the positive electrode or the negative electrode.
  • the lithium secondary battery disclosed herein can achieve high capacity and good electrical conductivity by including the electrode active material. For this reason, it is equipped with performance suitable as a battery mounted on a vehicle that requires high-rate charge / discharge. Therefore, according to this invention, the vehicle provided with the lithium secondary battery disclosed here is provided.
  • a vehicle for example, an automobile
  • the lithium secondary battery as a power source typically, a power source of a hybrid vehicle or an electric vehicle
  • FIG. 1 is a perspective view schematically showing an assembled battery according to an embodiment of the present invention.
  • FIG. 2 is a front view schematically showing an example of a wound electrode body.
  • FIG. 3 is a cross-sectional view schematically showing a configuration of a unit cell provided in the assembled battery.
  • FIG. 4 is a side view schematically showing a vehicle including a lithium secondary battery.
  • FIG. 5 is a diagram schematically illustrating a state in which a carbon source and a granular electrode active material are added and mixed together in a conventional single solvent (aggregation state of electrode active material particles).
  • FIG. 6 schematically shows the presence state of the carbon source and the granular electrode active material in the mixed material (material prepared by mixing the first solvent and the second solvent) obtained by the manufacturing method disclosed herein.
  • FIG. 7 is a diagram schematically illustrating the state of the aggregate present in the third solvent obtained by the production method of the preferred embodiment disclosed herein.
  • FIG. 8 is a line graph (see the vertical axis on the right) showing the PVA particle layer thickness (mm) in the mixed material of each sample (3-1 to 3-6) obtained in the examples described later, Bar graph showing active material capacity (mAh / g) obtained by testing with evaluation cells (counter electrode is metallic lithium) constructed using samples (3-1 to 3-6) as electrode active materials (left) In the vertical axis).
  • the “electrode active material” is a term including a positive electrode active material used on the positive electrode side and a negative electrode active material used on the negative electrode side.
  • the active material refers to a substance (compound) involved in power storage on the positive electrode side or the negative electrode side. That is, it refers to a substance involved in electron emission or capture during battery charge / discharge.
  • lithium secondary battery refers to a battery in which lithium ions in the electrolyte are responsible for charge transfer, and is called a so-called lithium ion battery (or lithium ion secondary battery), a lithium polymer battery, or the like. These are typical examples included in the “lithium secondary battery” mentioned here.
  • a granular electrode active material having a conductive carbon film formed on the surface can be produced.
  • the production method disclosed herein can efficiently coat the surfaces of electrode active material particles (ie, primary particles) with poor electrical conductivity with a conductive carbon coating.
  • the granular electrode active material to be coated is at least dispersible in the first solvent and the second solvent, and has an active property such that a conductive carbon film derived from a carbon source can be formed on the surface by firing. Any substance can be used.
  • various metal compounds for example, metal oxides suitable as a negative electrode active material of a lithium secondary battery, such as Si, Ge, Sn, Pb, Al, Ga, In, As, Sb, and Bi, are used as constituent metal elements.
  • Metal oxides and other metal compounds preferably metal compounds having any of these as constituent metal elements and further having a hydroxy group on the surface thereof.
  • a silicon oxide as defined by the above formula can be preferably employed.
  • Various lithium transition metal composite oxides for example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4
  • the general formula polyanionic compound represented by Limao 4 and the like.
  • M in such formula is typically one or more elements (typically one or two) including at least one metal element selected from the group consisting of Fe, Co, Ni and Mn.
  • a metal element of a species or more that is, it contains at least one metal element selected from the group consisting of Fe, Co, Ni, and Mn, but allows the presence of other minor additive elements that can be contained in small amounts (even if such minor additive elements are not present).
  • a in the above formula is typically one or more elements selected from the group consisting of P, Si, S and V.
  • the average particle diameter (eg, median diameter based on light scattering method: d50, or average particle diameter based on microscopic observation) is about 10 nm to 10 ⁇ m (typically about 100 nm to 5 ⁇ m, for example, about 100 nm to 1000 nm)
  • the granular electrode active material can be preferably used.
  • a particularly preferred specific example of the electrode active material is a silicon oxide represented by the general formula: SiO x .
  • x in the formula is typically a real number satisfying 0 ⁇ x ⁇ 2, and preferably 0 ⁇ x ⁇ 0.6.
  • a commercially available powder material made of silicon oxide such as SiO can be suitably used.
  • a lithium secondary battery having a particularly high charge / discharge capacity can be obtained.
  • the negative electrode active material for a lithium secondary battery made of this type of metal compound expands as the lithium ion is occluded during charging and discharging, and conversely, the active material itself expands as the lithium ion is released. Shrink. Therefore, the structural change of the negative electrode active material structure (that is, typically formed into a layer on the surface of the negative electrode current collector such as copper by the secondary particles in which the primary particles aggregate) existing in the negative electrode of the battery.
  • the conductive carbon film is sufficiently formed in advance on the surface of the primary particles constituting the negative electrode active material structure. There is a need. By carrying out the production method disclosed herein, a sufficient conductive carbon coating can be efficiently formed on the surface of the primary particles of the electrode active material having such properties.
  • silicon oxide particles such as silica often have H groups (typically Si—O—H or Si—H) on their surfaces in a normal state. Due to the presence of the H group (H atom), for example, when a water-soluble compound is used as a carbon source, the H group of the silicon oxide particles and a portion having a high electronegativity in the compound (for example, a portion of —OH group). A hydrogen bond, a covalent bond, etc. arise between this and strong interaction can be produced. For this reason, by selecting an appropriate first solvent and second solvent, a carbon source such as a water-soluble compound can be easily applied to the surface of the silicon oxide particles.
  • H groups typically Si—O—H or Si—H
  • a carbon source for forming a conductive carbon film on the surface of electrode active material particles made of a metal compound such as silicon oxide it is thermally decomposed and conductive when fired together with the electrode active material particles.
  • a carbon film (carbon structure) can be formed, and those having the property of being soluble in at least a predetermined solvent can be used.
  • a water-soluble organic substance particularly a high molecular compound such as a water-soluble polymer
  • a preferred example of this type of organic material is a water-soluble polymer compound (polymer) such as polyvinyl alcohol (PVA).
  • PVA has many hydroxy groups (—OH) in the molecular chain. Due to the presence of such hydroxy groups, the interaction with electrode active material particles (for example, chemicals such as hydrogen bonds, covalent bonds, and ionic bonds). This is preferable because it can easily cause physical bonds such as mechanical bonds or physical bonds such as adsorption. Further, it is preferable because a carbon film showing good conductivity can be formed by thermal decomposition under oxidizing conditions such as in the air.
  • examples of water-soluble polymer compounds that can be used as a carbon source include cellulose derivatives such as starch, gelatin, methylcellulose, and carboxymethylcellulose, polyacrylic acid, polyacrylamide, polyethylene oxide, polyethylene glycol, and the like.
  • the carbon source supply material used in the production method disclosed herein is a predetermined carbon source (only one type of carbon source may be used, or two or more types of carbon sources may be used in combination). It is prepared by dissolving an appropriate amount in a soluble first solvent.
  • the first solvent that is, the solvent for preparing the carbon source feed material
  • the first solvent is described as the first solvent for convenience, but may itself be constituted by a single substance (molecular species), or A mixed medium of a plurality of substances (molecular species) may be used.
  • the first solvent can be selected according to the carbon source used.
  • a water-soluble organic substance such as PVA
  • an aqueous solvent capable of suitably dissolving the compound is preferable.
  • water including distilled water and deionized water
  • the first solvent can be used as the first solvent.
  • the concentration of the carbon source in the carbon source supply material is not particularly limited, but a content that can be completely dissolved (that is, a lower concentration than the saturated solution in the solvent) is preferable.
  • the concentration of the water-soluble compound is about 0.1 to 20% by mass (preferably 0.3 to 15% by mass) based on 100% by mass of the entire carbon source feed material.
  • Aqueous solution can be suitably used as the carbon source feed material.
  • an aqueous PVA solution prepared by adding about 1 to 10 g of PVA to 1 liter (L) of water is an example of a suitable carbon source supply material.
  • the carbon source supply material may contain components other than the first solvent and the carbon source described above.
  • the additional component include a pH adjuster, a surfactant, a preservative, and a colorant.
  • the granular electrode active material supply material used in the production method disclosed herein is prepared by dispersing an appropriate amount in a second solvent capable of dispersing a predetermined granular electrode active material.
  • the second solvent is also described as the second solvent for the sake of convenience, but it may be composed of a single substance (molecular species) or a plurality of substances (molecules). Seed) mixed media.
  • the second solvent is required to be compatible with the first solvent and to be a poor solvent for the carbon source to be used.
  • a water-soluble organic substance such as PVA, polyacrylic acid, or polyethylene glycol
  • PVA polyacrylic acid
  • polyethylene glycol an organic solvent that is difficult to dissolve in the carbon source
  • An organic solvent that is difficult to dissolve in the carbon source can be preferably used as the second solvent.
  • alcohols that are poor solvents for PVA for example, lower alcohols having 5 or less carbon atoms such as methanol, ethanol, isopropanol, butanol (typically 2-methyl-2-butanol) are used as the second solvent.
  • any solvent known to be a poor solvent for the carbon source may be appropriately selected.
  • the concentration of the electrode active material in the electrode active material supply material is not particularly limited.
  • the total content of the electrode active material is 100% by mass, and the content of the granular electrode active material is about 0.5 to 20% by mass.
  • a dispersion liquid (preferably about 1 to 10% by mass) can be suitably used as the electrode active material supply material.
  • a dispersion (or suspension) prepared by adding about 10 to 100 g of silicon oxide to 1 liter (L) of a lower alcohol having 5 or less carbon atoms such as ethanol is preferable.
  • the electrode active material supply material may contain components other than the second solvent and the granular electrode active material described above.
  • the additional component include a conductive auxiliary material typically made of a carbon material such as carbon black, a dispersant, a pH adjuster, a surfactant, an antiseptic, a colorant, and the like.
  • a conductive auxiliary material for example, carbon black
  • a conductive auxiliary material in an amount corresponding to 1 to 20% by mass of the total amount of electrode active material composed of silicon oxide such as SiO or other metal compound (oxide etc.) as described above. It is preferable to add a fine conductive carbon material.
  • the carbon source supply material prepared as described above and the electrode active material supply material are mixed at a predetermined ratio to prepare a mixed material.
  • the second solvent derived from the electrode active material supply material
  • the carbon source typically an organic substance
  • the granular electrode active material can flow in both the first and second solvents. For this reason, the electrode active material particles that freely move back and forth between the first and second solvent components in the mixed solvent are carbon atoms present in the solvent when present in the first solvent component. Interact with the source.
  • the carbon source is a compound having a polar group (for example, PVA having a large number of hydroxy groups in the molecular chain), and the granular electrode active material has a polar group (for example, a hydrogen atom on the surface of SiO) on the surface.
  • a polar group for example, a hydrogen atom on the surface of SiO
  • the presence of such a hydroxy group is preferable because it easily causes an interaction with the electrode active material particles (for example, a chemical bond such as a hydrogen bond, a covalent bond, and an ionic bond, or a physical bond such as adsorption).
  • FIG. 5 is a schematic diagram illustrating a state in which a carbon source (for example, PVA) 102 and a granular electrode active material (for example, silicon oxide) 104 are added and mixed together in a conventional single solvent (for example, water).
  • a carbon source for example, PVA
  • a granular electrode active material for example, silicon oxide
  • a conventional single solvent for example, water
  • the carbon source 102 is substantially Since it exists only in the first solvent component, the presence distribution of the granular electrode active material 104 is also regulated according to the presence distribution in the mixed material of the carbon source 102, and aggregation as shown in FIG. A suitable dispersion state of the active material (primary particles) 104 can be realized.
  • the mixing mass ratio of the carbon source supply material and the electrode active material supply material is not particularly limited because it can vary depending on the concentration of the carbon source and / or the content of the active material particles in these supply materials. As one guide, it is preferable to mix both feed materials so that a sufficient amount of carbon source is applied to the surface of the electrode active material.
  • the carbon source supply material and the electrode active material supply so that about 0.1 to 15 parts by mass of carbon source (eg, PVA) is mixed with 1 part by mass of granular electrode active material (eg, silicon oxide). It is preferable to adjust the mixing ratio with the material.
  • a carbon source eg, PVA
  • the granular electrode active material eg, silicon oxide
  • the carbon source supply material and the electrode active material supply material are mixed to prepare a mixed material so that about 1 to 5 parts by mass of a carbon source (for example, PVA) is mixed with (for example, silicon oxide). More preferably.
  • a mixed material By mixing the carbon source and the granular electrode active material at such a mixing ratio, an appropriate amount of carbon source can be imparted to the surface of the electrode active material.
  • a mixed material is added to the third solvent, a good aggregate can be formed. That is, if the mixing ratio of the carbon source is too low, it is difficult to form an aggregate. On the other hand, if the mixing ratio of the carbon source is too high, an aggregate consisting only of the carbon source may be generated.
  • the mixing volume ratio of the second solvent which is a poor solvent for the carbon source (for example, a polar organic solvent such as ethanol or other lower alcohol capable of dispersing electrode active material particles such as SiO x ) is set to the first volume ratio.
  • a solvent for example, water capable of dissolving a carbon source such as PVA
  • the mixing volume ratio of the first solvent and the second solvent is 1: 3 to 3: 1, and 1: 2 to 2: 1.
  • the ratio is 1: 1.5 to 1.5: 1, and it is particularly preferable that the mixing is approximately 1: 1.
  • the mixing volume ratio of the first solvent and the second solvent By setting the mixing volume ratio of the first solvent and the second solvent, the aggregation of the electrode active material particles is reduced, and the electrode active material secondary particles (associates) having a relatively small particle diameter are reduced. ) Can be formed.
  • the carbon-coated electrode active material particles aggregates of primary particles, ie, secondary particles obtained after firing ) Particle size and size can be adjusted.
  • the two feed materials are mixed and then subjected to a baking treatment described later in order to further improve the dispersion state of the granular electrode active material in the mixed material.
  • the mixed material is heated to a temperature range where the solvent of the mixed material (that is, the mixed medium of the first solvent and the second solvent) is boiled to perform a reflux treatment.
  • the solvent of the mixed material that is, the mixed medium of the first solvent and the second solvent
  • the azeotropic temperature of the water and ethanol is about Reflux treatment is performed in a temperature range exceeding 73 ° C.
  • excessive aggregation of the electrode active material particles is more reliably suppressed, and further, an aggregate of electrode active material particles having a small particle diameter and a carbon source ( That is, to obtain a base for forming secondary particles made of an electrode active material with a carbon coating), the particulate electrode active material can be dispersed in a solvent different from the second solvent, and the carbon source can be dispersed.
  • the mixed material before firing is added to the third solvent which is a poor solvent.
  • the carbon source 102 and the granular electrode active material 104 as shown in FIG.
  • a relatively small-sized aggregate 110 constituted by the above can be formed.
  • the carbon source 102 present in the mixed material is not dissolved in the third solvent, and therefore the granular electrode active material added to the third solvent is not dissolved.
  • a mixture of the substance 104 and the carbon source 102 (typically electrode active material particles having a carbon source attached or bonded to the surface) forms an aggregate 110 having a predetermined size in the third solvent. Typically, it precipitates in the solvent.
  • a third solvent that is 1 or more times, particularly 1.5 or more times (more preferably 2 or more times) the volume of the mixed material.
  • the aggregate is recovered from the third solvent (for example, filtration or centrifugation), and the recovered aggregate (a mixture of the electrode active material particles and the carbon source) is fired.
  • Secondary particles composed of an electrode active material with a carbon coating having a predetermined size can be produced.
  • the size (particle diameter) of secondary particles made of the electrode active material with a carbon coating after firing can be defined according to the size of the formed aggregate.
  • secondary particles having a small particle size distribution (preferably having a substantially uniform particle size) can be produced.
  • the third solvent various solvents can be used as long as the above conditions are satisfied.
  • the first solvent is an aqueous solvent (typically water)
  • the carbon source is
  • the third solvent is preferably an organic solvent that is compatible with the aqueous solvent and difficult to dissolve the water-soluble compound.
  • an aprotic polar solvent for example, acetone or acetonitrile
  • an aprotic polar solvent for example, acetone or acetonitrile
  • the mixed material prepared as described above that is, when the reflux treatment is performed, the mixed material after the reflux treatment, and when added to the third solvent, A mixed material (aggregate) after recovery from a solvent.
  • a mixture formed by the interaction of an electrode active material and a carbon source typically a carbon source is an electrode active material particle.
  • the mixture formed by adhering to or bonding to the surface of the substrate is fired.
  • a conductive carbon film derived from the carbon source typically an organic substance such as PVA
  • PVA organic substance
  • the firing conditions are not particularly limited as long as the carbon source used can be pyrolyzed and the surface of the granular electrode active material can be coated with the pyrolyzate.
  • a metal oxide such as silicon oxide represented by the above general formula: SiO x
  • an inert gas atmosphere such as argon gas or nitrogen gas is preferable. It is preferable to perform firing in view of not affecting the structure and composition of the electrode active material by the firing treatment.
  • the firing temperature is not limited as long as the carbon source to be used can be thermally decomposed, but is typically 800 ° C.
  • pre-baking is performed for an appropriate time (typically 12 hours or less, for example, about 1 to 6 hours) before raising the temperature of the object to be heated to the maximum temperature range.
  • the temperature range of the pre-baking is not particularly limited, but it is typically preferable to perform the temperature in the temperature range of 100 to 600 ° C., for example, 200 ° C. to 300 ° C.
  • the electrode active material with a granular carbon film manufactured by the manufacturing method disclosed here can be suitably used as an active material of a positive electrode or a negative electrode of a battery, similarly to a conventional electrode active material. Except for using such an electrode active material, various types of secondary batteries can be constructed by employing the same materials and processes as in the past.
  • a lithium secondary battery is constructed by employing, as a negative electrode active material, a metal oxide such as a silicon oxide represented by the above general formula: SiO x with a carbon coating produced by the production method disclosed herein. be able to.
  • a lithium secondary battery including a negative electrode active material made of a silicon oxide represented by the above general formula: SiO x manufactured by the manufacturing method disclosed herein will be described.
  • the usage form of the electrode active material is not intended to be limited to this.
  • the lithium secondary battery according to the present embodiment is characterized by using the above-described granular electrode active material with a carbon coating as a negative electrode active material. Therefore, as long as the object of the present invention can be realized, the contents, materials, and compositions of other battery constituent materials and members are not particularly limited, and those similar to conventional lithium secondary batteries can be used.
  • a granular negative electrode active material (SiO x ) obtained by the production method disclosed herein is used as a negative electrode mixture together with a binder (binder) and a conductive auxiliary material used as necessary.
  • a material in which a negative electrode active material layer (also referred to as a negative electrode composite material layer) is formed by being attached on an electric body can be preferably used.
  • As the negative electrode current collector a rod-like body, a plate-like body, a foil-like body, a net-like body or the like mainly composed of copper, nickel, titanium, stainless steel, or the like can be used.
  • binder examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), and the like.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • a carbon material such as carbon black similar to the conventional one can be preferably used.
  • the surface of the granular negative electrode active material (primary particles) used here is sufficiently covered with a carbon coating and has excellent conductivity. For this reason, the conductive auxiliary material is not contained in the negative electrode active material layer, or the content of the conductive auxiliary material can be reduced as compared with the conventional case.
  • the amount of the conductive auxiliary material used relative to 100 parts by mass of the negative electrode active material used is, for example, about 1 to 30 parts by mass (preferably about 2 to 20 parts by mass, for example, about 5 to 10 parts by mass). can do.
  • a conductive auxiliary material may be previously contained in the electrode active material supply material described above.
  • a paste-like negative electrode mixture (hereinafter referred to as “negative electrode mixture paste”) is prepared by dispersing and kneading in such an aqueous solvent.
  • a negative electrode for a lithium secondary battery can be produced by applying an appropriate amount of this negative electrode mixture paste onto a negative electrode current collector, followed by drying and pressing.
  • the positive electrode a material in which an active material capable of reversibly occluding and releasing Li is attached to a current collector as a positive electrode mixture together with a binder and a conductive material used as necessary is preferably used.
  • a current collector a rod-like body, a plate-like body, a foil-like body, a net-like body or the like mainly composed of aluminum, nickel, titanium, stainless steel, or the like can be used.
  • a lithium transition metal composite oxide having a layered structure, a lithium transition metal composite oxide having a spinel structure, a polyanion compound having an olivine structure, or the like that can be used for a positive electrode of a general lithium secondary battery is preferably used.
  • Typical examples of such an active material include lithium transition metal oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ). And the following general formula: LiMAO 4 The compound shown by these is mentioned.
  • M in such a formula is one or more elements (typically one or more metals) including at least one metal element selected from the group consisting of Fe, Co, Ni, and Mn. Element). That is, it contains at least one metal element selected from the group consisting of Fe, Co, Ni, and Mn, but allows the presence of other minor additive elements that can be contained in small amounts (even if such minor additive elements are not present). Good.)
  • a in the above formula is preferably one or more elements selected from the group consisting of P, Si, S and V.
  • LiFePO 4 Examples, LiFeSiO 4, LiCoPO 4, LiCoSiO 4, LiFe 0.5 Co 0.5 PO 4, LiFe 0.5 Co 0.5 SiO 4, LiMnPO 4, LiMnSiO 4, LiNiPO 4, LiNiSiO 4 is particularly It is mentioned as a preferable polyanion type compound.
  • the binder those similar to those on the negative electrode side can be used.
  • the conductive material include carbon black (for example, acetylene black), carbon material such as graphite powder, or conductive metal powder such as nickel powder.
  • the amount of the conductive material used relative to 100 parts by mass of the positive electrode active material can be, for example, 1 to 20 parts by mass (preferably 5 to 15 parts by mass).
  • the amount of the binder used relative to 100 parts by mass of the positive electrode active material can be, for example, 0.5 to 10 parts by mass.
  • a powdery material containing the positive electrode active material and the conductive auxiliary material as described above is dispersed in an appropriate dispersion medium together with an appropriate binder and kneaded, whereby a paste-like positive electrode mixture (hereinafter, "Positive electrode mixture paste”) is prepared.
  • a positive electrode for a lithium secondary battery can be produced by applying an appropriate amount of this positive electrode mixture paste onto a positive electrode current collector, followed by drying and pressing.
  • a liquid electrolyte containing a nonaqueous solvent and a lithium salt soluble in the solvent is preferably used. It may be a solid (gel) electrolyte in which a polymer is added to such a liquid electrolyte.
  • aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones, and lactones can be used.
  • lithium ion batteries such as 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile, propionitrile, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane, ⁇ -butyrolactone, etc.
  • One kind or two or more kinds selected from non-aqueous solvents known as those that can be used in the electrolyte can be used.
  • Lithium salts include LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (SO 2 CF 3 ) 3 , LiClO 4, etc., one or more selected from various lithium salts known to be capable of functioning as a supporting electrolyte in the electrolyte of a lithium ion battery can be used.
  • the concentration of the lithium salt is not particularly limited, and can be the same as, for example, the electrolyte used in a conventional lithium ion battery.
  • a nonaqueous electrolyte containing a supporting electrolyte (lithium salt) at a concentration of about 0.1 mol / L to 5 mol / L (for example, about 0.8 mol / L to 1.5 mol / L) is preferably used. it can.
  • a lithium secondary battery is constructed by housing the positive electrode and the negative electrode together with an electrolyte in a suitable container (a metal or resin casing, a bag made of a laminate film, etc.).
  • a separator is interposed between the positive electrode and the negative electrode.
  • a separator the thing similar to the separator used for a general lithium secondary battery can be used, and it does not specifically limit.
  • a porous sheet made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, or polyamide, a nonwoven fabric, or the like can be used.
  • the electrolyte may also serve as a separator.
  • the shape (outer shape of the container) of the lithium secondary battery is not particularly limited, and may be, for example, a cylindrical shape, a square shape, a coin shape, or the like.
  • a lithium secondary battery including a wound electrode body and an assembled battery (battery pack) mounted on a vehicle as a constituent part (unit cell) are taken as an example and manufactured by the manufacturing method disclosed herein.
  • a more specific embodiment of the lithium secondary battery using the negative electrode active material will be described, the present invention is not intended to be limited to such an embodiment.
  • symbol is attached
  • the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship.
  • the cell 12 used as a component of the assembled battery 10 is typically a predetermined battery constituent material (positive An active body for each negative electrode, a current collector for each positive and negative electrode, a separator, etc.) and a container for housing the electrode body and an appropriate electrolyte.
  • the assembled battery 10 disclosed herein includes a predetermined number (typically 10 or more, preferably about 10 to 30, for example, 20) of unit cells 12 having the same shape.
  • the unit cell 12 includes a container 14 having a shape (a flat box shape in this embodiment) that can accommodate a flat wound electrode body to be described later.
  • each part of the unit cell 12 may vary due to a dimensional error at the time of manufacturing the container 14 used.
  • the container 14 is provided with a positive electrode terminal 15 electrically connected to the positive electrode of the wound electrode body and a negative electrode terminal 16 electrically connected to the negative electrode of the electrode body. As shown in the figure, one positive terminal 15 and the other negative terminal 16 are electrically connected by a connector 17 between adjacent unit cells 12.
  • the assembled battery 10 of the desired voltage is constructed
  • the container 14 can be provided with a safety valve 13 or the like for venting gas generated inside the container in the same manner as a conventional unit cell container. Since the configuration of the container 14 itself does not characterize the present invention, a detailed description is omitted.
  • the material of the container 14 is not particularly limited as long as it is the same as that used in the conventional unit cell.
  • a container made of metal for example, aluminum, steel, etc.
  • a container made of synthetic resin for example, polyolefin resin such as polypropylene, high melting point resin such as polyethylene terephthalate, polytetrafluoroethylene, polyamide resin, etc.
  • the container 14 according to the present embodiment is made of, for example, aluminum. As shown in FIGS.
  • the unit cell 12 has a sheet-like positive electrode 32 (hereinafter also referred to as “positive electrode sheet 32”) and a sheet-like negative electrode 34 (hereinafter, referred to as a wound electrode body of a normal lithium ion battery).
  • positive electrode sheet 32 a sheet-like positive electrode 32
  • a sheet-like negative electrode 34 hereinafter, referred to as a wound electrode body of a normal lithium ion battery.
  • separator sheets 36 laminated together with a total of two sheet-like separators 36 (hereinafter also referred to as “separator sheets 36”), and the positive electrode sheet 32 and the negative electrode sheet 34 are wound while being slightly shifted.
  • a flat wound electrode body 30 is provided which is produced by crushing and curling the obtained wound body from the side surface direction.
  • the winding electrode body 30 As shown in FIGS. 2 and 3, as a result of the winding electrode body 30 being wound while being slightly shifted as described above in the lateral direction with respect to the winding direction, one end of the positive electrode sheet 32 and the negative electrode sheet 34 is obtained.
  • the portion protrudes outward from the wound core portion 31 (that is, the portion where the positive electrode active material layer forming portion of the positive electrode sheet 32, the negative electrode active material layer forming portion of the negative electrode sheet 34, and the separator sheet 36 are closely wound). ing.
  • a positive electrode lead terminal 32B and a negative electrode lead terminal 34B are attached to the protruding portion (that is, the non-forming portion of the positive electrode active material layer) 32A and the protruding portion (that is, the non-forming portion of the negative electrode active material layer) 34A.
  • the lead terminals 32B and 34B are electrically connected to the positive terminal 15 and the negative terminal 16 described above, respectively.
  • the material and the member itself constituting the wound electrode body 30 having the above configuration employ a negative electrode active material with a carbon coating obtained by the production method disclosed herein (for example, SiO x of the above general formula) as the negative electrode active material. Otherwise, it may be the same as the electrode body of the conventional lithium ion battery, and there is no particular limitation.
  • the positive electrode sheet 32 is formed by applying a positive electrode active material layer for a lithium secondary battery on a long positive electrode current collector (for example, a long aluminum foil).
  • a sheet-like positive electrode current collector having a shape that can be preferably used for the lithium secondary battery (unit cell) 12 including the wound electrode body 30 is used.
  • a positive electrode prepared in advance using an aluminum foil having a length of 2 m to 4 m (eg, 2.7 m), a width of 8 cm to 12 cm (eg, 10 cm), and a thickness of about 5 ⁇ m to 30 ⁇ m (eg, 10 ⁇ m to 20 ⁇ m) as a current collector.
  • a positive electrode active material layer is formed by applying a composite paste to the surface of the current collector.
  • the paste can be suitably applied to the surface of the positive electrode current collector by using an appropriate application device such as a gravure coater, a slit coater, a die coater, or a comma coater.
  • the solvent (typically water) contained in the paste is dried and compressed (pressed) to form a positive electrode active material layer.
  • a conventionally known compression method such as a roll press method or a flat plate press method can be employed.
  • the thickness may be measured with a film thickness measuring instrument, and the press pressure may be adjusted to compress a plurality of times until a desired thickness is obtained.
  • the negative electrode sheet 34 may be formed by applying a negative electrode active material layer for a lithium secondary battery on a long negative electrode current collector.
  • a conductive member made of a highly conductive metal, such as copper can be used.
  • a sheet-like negative electrode current collector having a shape that can be preferably used for the lithium secondary battery (unit cell) 12 including the wound electrode body 30 is used.
  • a copper foil having a length of 2 m to 4 m (for example, 2.9 m), a width of 8 cm to 12 cm (for example, 10 cm), and a thickness of about 5 ⁇ m to 30 ⁇ m (for example, 10 ⁇ m to 20 ⁇ m) is used as the negative electrode current collector.
  • a negative electrode mixture paste prepared by adding and dispersing or dissolving an active material and a binder in an appropriate solvent (water, an organic solvent and a mixed solvent thereof) (for example, 80 to 90% by mass of the negative electrode active material, conductivity aid) 3 to 15% by mass of a material and 3 to 10% by mass of a binder) are applied, and the solvent is preferably dried and compressed.
  • a porous separator sheet 36 used between the positive / negative electrode sheets 32 and 34 what was comprised with the porous polyolefin resin is illustrated.
  • a porous separator sheet made of a synthetic resin for example, made of polyolefin such as polyethylene
  • a width of 8 to 12 cm for example, 11 cm
  • a thickness of about 5 to 30 ⁇ m for example, 25 ⁇ m. It can be preferably used.
  • a separator is not necessary (that is, in this case, the electrolyte itself can function as a separator). ) Is possible.
  • the obtained flat wound electrode body 30 is accommodated in the container 14 so that the winding axis is laid down as shown in FIG. 3, and an appropriate supporting salt (for example, a lithium salt such as LiPF 6 ).
  • an appropriate supporting salt for example, a lithium salt such as LiPF 6 .
  • DEC diethyl carbonate
  • EC ethylene carbonate
  • a single battery 12 is constructed by injecting a nonaqueous electrolyte (electrolytic solution) and sealing.
  • the plurality of cells 12 having the same shape constructed as described above are inverted one by one so that the positive terminals 15 and the negative terminals 16 are alternately arranged.
  • Wide surfaces that is, surfaces corresponding to flat surfaces of a wound electrode body 30 to be described later housed in the container 14
  • a cooling plate 11 having a predetermined shape is disposed in close contact with the wide surface of the container 14 between the arranged unit cells 12 and both outsides in the unit cell arrangement direction (stacking direction).
  • the cooling plate 11 functions as a heat radiating member for efficiently dissipating heat generated in each unit cell during use.
  • the cooling plate 11 is a cooling fluid (typically air) between the unit cells 12. It has a frame shape that can be introduced.
  • a cooling plate 11 made of a metal with good thermal conductivity or lightweight and hard polypropylene or other synthetic resin is suitable.
  • a pair of end plates 18 are disposed on the outer side of the cooling plate 11 arranged on both outsides of the unit cells 12 and the cooling plates 11 (hereinafter collectively referred to as “single cell group”). , 19 are arranged.
  • One or a plurality of sheet-like spacer members 40 serving as length adjusting means are provided between the cooling plate 11 and the end plate 18 arranged on the outside of one of the unit cell groups (the right end in FIG. 2). It may be sandwiched.
  • the constituent material of the spacer member 40 is not particularly limited, and various materials (metal material, resin material, ceramic material, etc.) can be used as long as the thickness adjusting function described later can be exhibited.
  • a metal material or a resin material is preferably used from the viewpoint of durability against impact or the like.
  • a lightweight polyolefin resin spacer member 40 can be preferably used.
  • the single cell group, the spacer member 40 and the end plates 18 and 19 arranged in the stacking direction of the single cells 12 in this way are attached so as to bridge both the end plates 18 and 19.
  • the band 21 is restrained by a predetermined restraining pressure P in the stacking direction. More specifically, as shown in FIG. 1, by tightening and fixing the end of the restraining band 21 to the end plate 18 with screws 22, the unit cell group has a predetermined restraining pressure P (for example, the container 14) in the arrangement direction.
  • the surface pressure received by the wall surface is constrained to be about 0.1 MPa to 10 MPa.
  • the constraining pressure is also applied to the wound electrode body 30 inside the container 14 of each unit cell 12, and the gas generated in the container 14 is generated inside the wound electrode body 30. It is possible to prevent the battery performance from being deteriorated by being stored in (for example, between the positive electrode sheet 32 and the negative electrode sheet 34).
  • a lithium secondary battery (sample battery) is constructed using a negative electrode including a granular negative electrode active material (silicon oxide) manufactured by the manufacturing method disclosed herein. The performance was evaluated.
  • SiO silicon monoxide powder
  • CB carbon black
  • a powder material containing silicon monoxide having an average particle diameter (median diameter based on light scattering method: d50) of about 400 nm is weighed in an amount of 12 g of silicon monoxide and added to 75 mL of ethanol by the above ball mill treatment. did. And it stirred for 1 hour using the stirrer, applying an ultrasonic wave, and prepared the electrode active material supply material of the state to which the silicon monoxide was disperse
  • a mixed material of Sample 1-1 was obtained.
  • a part of this mixed material was collected, and the average particle diameter of SiO was calculated based on observation with an optical microscope. The results are shown in the corresponding column of Table 1.
  • a part of this mixed material was collected, and the average particle diameter of SiO was calculated in the same manner as in Sample 1-1. The results are shown in the corresponding column of Table 1.
  • the mixed material of Sample 1-2 showed particularly good SiO dispersibility. That is, the mixing ratio (EtOH: H 2 O) between the content of ethanol (poor solvent) as the second solvent and water as the first solvent is approximately 1: 2 to 2: 1 (more preferably 1: It was confirmed that the aggregation between the electrode active material particles can be reduced by setting the ratio to 1.5 to 1.5: 1 approximately 1: 1 here.
  • the mixing ratio of water was high (for example, Sample 1-1 and Sample 1-4), the dispersibility of SiO decreased.
  • the mixing ratio of a poor solvent such as ethanol is high (for example, Sample 1-3 or Sample 1-5), PVA is difficult to dissolve and tends to precipitate in the solution, and the dispersibility of SiO decreases. It was.
  • An evaluation cell was produced using each of Samples 1-1 to 1-5. Specifically, it is as follows. That is, the mixed material (each sample) was dried using a rotary evaporator, and then the obtained mixture of the carbon source and SiO was fired. As the firing conditions, the maximum firing temperature was set to about 1000 ° C. in an argon gas atmosphere, and firing was performed at the temperature for about 6 hours. The sample was pre-baked for about 1 to 5 hours in the temperature range of 200 ° C. to 300 ° C., and then heated to the maximum baking temperature. Thereby, an unnecessary hydroxy group of PVA can be eliminated.
  • test electrode active material The fired sample thus obtained was crushed and classified with a 100 mesh sieve to obtain a test electrode active material.
  • a test electrode was produced using the obtained 100-mesh under electrode active material. That is, the above active material, graphite particles having an average particle diameter of 13 ⁇ m, and PVDF are mixed with N-methylpyrrolidone so that the mass ratio thereof becomes 85: 10: 5, and a slurry composition (paste).
  • This composition was applied to a copper foil having a thickness of 10 ⁇ m (manufactured by Japan Foil) and dried to form an active material layer having a thickness of 25 ⁇ m on one surface of the copper foil. This was pressed so that the total electrode density including the copper foil and the active material layer was 1.2 mg / cm 2, and then punched into a circle having a diameter of 16 mm to produce a test electrode.
  • a metal lithium foil having a diameter of 15 mm and a thickness of 0.15 mm was used as the counter electrode.
  • a porous polyolefin sheet having a diameter of 22 mm and a thickness of 0.02 mm was used.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 as a lithium salt at a concentration of about 1 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: 7 was used. .
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Constant current of 0.2 C (1 C, that is, 0.2 times the current value that can be fully charged and discharged in 1 hour) for each coin cell produced for each sample (that is, for each electrode active material corresponding to each sample)
  • the operation of occluding Li in the test electrode until the interelectrode voltage becomes 0.01 V at 50 and the operation of releasing Li until the interelectrode voltage becomes 1.2 V at a constant current of 0.2 C are 50 in total. Repeated times.
  • the ratio of the 50th Li release capacity (discharge capacity) to the first Li storage capacity (discharge capacity) was measured as the capacity retention rate (%). Specifically, it was obtained from the following formula: (50th Li release capacity) / (1st Li storage capacity) ⁇ 100.
  • SiO silicon monoxide powder
  • CB carbon black
  • a powder material containing silicon monoxide having an average particle diameter (median diameter based on light scattering method: d50) of about 400 nm is weighed in an amount of 5 g of silicon monoxide and added to 150 mL of ethanol by the above ball mill treatment. did. And it stirred for 1 hour using the stirrer, applying an ultrasonic wave, and prepared the electrode active material supply material of the state to which the silicon monoxide was disperse
  • a reflux treatment for 12 hours was performed.
  • a mixed material of Sample 2-1 was obtained.
  • SEM electron microscope
  • the mixed material manufactured by the manufacturing method disclosed herein shows good dispersion of SiO particles (primary particles)
  • the mixed material is obtained by adding both a carbon source and SiO to pure water. Then, SiO agglomerates remarkably and there was a problem in dispersibility.
  • Sample 2-1 produced by the production method disclosed herein has good dispersibility of SiO, and an evaluation cell employing the electrode active material of the sample (in reality, The lithium secondary battery using the electrode active material as the negative electrode active material) was able to achieve a high capacity retention rate.
  • SiO silicon monoxide powder
  • CB carbon black
  • a powder material containing silicon monoxide having an average particle diameter (median diameter based on light scattering method: d50) of about 400 nm is weighed in an amount of 5 g of silicon monoxide and added to 150 mL of ethanol by the above ball mill treatment. did. And it stirred for 1 hour using the stirrer, applying an ultrasonic wave, and prepared the electrode active material supply material of the state to which the silicon monoxide was disperse
  • the mixed material (about 300 mL) after the reflux treatment was put in 300 mL of acetone as a third solvent.
  • Acetone is a poor solvent for PVA, and spherical aggregates containing SiO and PVA were produced in acetone.
  • the spherical aggregate was recovered using a centrifuge.
  • a mixed material of Sample 3-1 composed of the aggregate that is, a mixture containing SiO and PVA
  • 150 mL of the obtained sample was weighed, placed in a centrifuge tube, set in a centrifuge, and centrifuged at 2000 rpm for 2 minutes.
  • SiO-PVA layer a layer containing SiO and PVA (hereinafter referred to as “SiO-PVA layer”) is separated from the inside of the tube, and the presence / absence of a PVA particle layer consisting only of excess PVA and the presence of the PVA particle layer are present.
  • the layer thickness (nm) was measured with a digital caliper. The results are shown in the corresponding column of Table 4 and FIG.
  • a carbon source supply material is prepared by adding 5 g of PVA to 150 mL of pure water, and the powder material containing silicon monoxide after the above ball mill treatment is weighed to an amount of 1 g of silicon monoxide, and is added to 150 mL of ethanol.
  • a mixed material of Sample 3-3 composed of the above aggregate ie, a mixture containing SiO and PVA was obtained by the same procedure as the preparation process of Sample 3-1, except that the electrode active material supply material was prepared by addition. It was.
  • a carbon source supply material is prepared by adding 12 g of PVA to 150 mL of pure water, and the powder material containing silicon monoxide after the ball mill treatment is weighed in an amount of 1.2 g of silicon monoxide, and 150 mL
  • a mixed material of Sample 3-4 comprising the above aggregate (ie, a mixture containing SiO and PVA) by the same procedure as the preparation process of Sample 3-1, except that the electrode active material supply material was prepared by adding to ethanol. Got. Then, the same treatment as in Samples 3-1 to 3 was performed, and the presence / absence of the PVA particle layer was confirmed, and when the PVA particle layer was present, the layer thickness (nm) was measured with a digital caliper. The results are shown in the corresponding column of Table 4 and FIG.
  • a carbon source supply material is prepared by adding 12 g of PVA to 150 mL of pure water, and a powder material containing silicon monoxide after the ball mill treatment is weighed in an amount of 0.8 g of silicon monoxide, and 150 mL
  • a mixed material of Sample 3-5 comprising the above aggregate (ie, a mixture containing SiO and PVA) by the same procedure as the preparation process of Sample 3-1, except that the electrode active material supply material was prepared by adding to ethanol. Got. Then, the same treatment as in Samples 3-1 to 4 was performed, and the presence / absence of the PVA particle layer was confirmed, and when the PVA particle layer was present, the layer thickness (nm) was measured with a digital caliper. The results are shown in the corresponding column of Table 4 and FIG.
  • evaluation cell construction and electrochemical characteristics evaluation Similarly to the performance evaluation test 1, an evaluation cell (2032 type coin cell) was constructed using each of the samples 3-1 to 3-6. Then, each coin cell was subjected to an operation of inserting Li into the test electrode at a constant current of 0.1 C until the interelectrode voltage became 0.01 V, and then releasing Li until it became 1.2 V. The value obtained by dividing the Li desorption capacity at this time by the mass of the active material was defined as the active material capacity (mAh / g). The results are shown in Table 4 and FIG.
  • each of the evaluation cells employing the electrode active material of each sample had a good active material capacity, but the carbon source (PVA), the electrode active material (SiO),
  • the mixing ratio (PVA: SiO) is in the range of 0.1: 1 to 10: 1
  • the amount of PVA particles present that is, reflecting the excess amount of PVA
  • the active material capacity is particularly good.
  • 850 mAh / g or more, particularly 900 to 1200 mAh / g the mixing ratio
  • a very good active material capacity of 1000 mAh / g or more for example, 1100 to 1200 mAh / g was obtained.
  • any of the lithium secondary battery 12 and the assembled battery 10 disclosed herein may have a performance suitable as a battery mounted on a vehicle, in particular, a high capacity maintenance ratio and an excellent durability. Further, by using a metal oxide such as SiO x as the electrode active material, a high capacity can be realized. Therefore, according to this invention, as shown in FIG. 4, the vehicle 1 provided with one of the lithium secondary batteries 12 (assembled battery 10) disclosed here is provided. In particular, a vehicle (for example, an automobile) including the lithium secondary battery 12 as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.
  • a power source typically, a power source of a hybrid vehicle or an electric vehicle
  • an electrode active material that is excellent in capacity retention rate (that is, cycle characteristics) and can realize high capacity. Therefore, by using such an electrode active material, it is possible to provide a secondary battery such as a lithium secondary battery having high capacity and good durability.
  • a vehicle-mounted secondary battery particularly a vehicle-mounted lithium secondary battery used as a power source for driving a vehicle. Can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明によって提供される粒状電極活物質の製造方法では、炭素被膜を形成するための炭素源(102)を所定の第1の溶媒に溶解させて調製した炭素源供給材料と、粒状電極活物質(104)を第1の溶媒と相溶性がある溶媒であって前記炭素源に対して貧溶媒である第2の溶媒に分散させて調製した電極活物質供給材料とを使用する。そして、該炭素源供給材料と電極活物質供給材料とを混合し、該混合後に得られた前記電極活物質と前記炭素源との混合物を焼成することによって該炭素源由来の導電性炭素被膜を該電極活物質の表面に形成する。

Description

電極活物質の製造方法
 本発明は、リチウム二次電池その他の電池に用いられる電極活物質の製造方法に関する。また、該方法によって製造された電極活物質とその利用に関する。
 近年、リチウム二次電池(典型的にはリチウムイオン電池)、ニッケル水素電池等の二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウム二次電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。
 車両搭載用高出力電源として利用される二次電池に求められる特性の一つとして電池容量の向上がある。かかる要求に応えるべく、従来使用されているものよりも高容量化を実現できる物質を電極活物質として利用することが検討されている。例えば、リチウム二次電池に関しては、Si、Ge、Sn、Pb、Al、Ga、In、As、Sb、Bi等を構成金属元素(半金属元素を包含する。以下同じ。)とする金属化合物(典型的には金属酸化物)材料がリチウムイオンを可逆的に吸蔵及び放出する電極活物質(具体的には負極活物質)として使用することが可能であり、しかも負極活物質として従来用いられている黒鉛材料よりも高容量であることが知られている。従って、これら金属化合物(典型的には金属酸化物)を電極活物質として利用することによってリチウム二次電池の高容量化が実現されることが期待されている。
 ところで、上述したような元素を構成要素とする金属化合物材料(例えばケイ素酸化物(SiO)のような金属酸化物材料)は、一般に導電性が低い。従って、当該金属酸化物を電極活物質として使用する場合には、当該金属酸化物から成る電極活物質粒子の表面に導電性被膜、具体的には導電性炭素から成る被膜を形成し、電極活物質粒子間ならびに電極活物質粒子と電解液や電極集電体との間にリチウムイオンや電子が移動し得る導電経路(パス)を確保する必要がある。
 このような電極活物質に関する従来技術の例として以下の特許文献1~3が挙げられる。特許文献1には、Siと、SiO及びSiOと、炭素質物と、から成る粒子の表面を炭素で被覆した電極活物質が記載されている。また、特許文献2には、非水系リチウム二次電池用負極活物質として利用し得る化合物として、炭素質物で被覆された種々の粒状金属化合物が記載されている。また、特許文献3には、非晶質構造を含む金属複合酸化物粒子から成るリチウム二次電池用負極活物質とその製造方法が記載されている。
日本国特許公開第2006-092969号公報 日本国特許公開第2000-090916号公報 日本国特許公開第平11-185752号公報
 しかしながら、上記特許文献に記載されているような従来技術では、上述した金属化合物(例えばケイ素酸化物:SiO)の粒子に十分な炭素被膜を形成することは困難である。即ち、この種の金属化合物粒子(一次粒子)は水等の溶媒中では凝集しがちであり、結果的に一次粒子が寄り集まって凝集してなる二次粒子の表面にのみ炭素被膜形成用炭素質材料が付与され、その付与部分にのみ炭素被膜が形成される。かかる態様では、二次粒子を構成する各一次粒子の表面に炭素被膜が形成されていない部分がかなりの比率で存在することとなり、結果、リチウムイオンに対して不活性な物質(部分)を高率で含有する電極活物質(二次粒子)が生産されてしまい、電池の高容量化を図るうえで好ましくない。
 本発明は、かかる従来の問題を解決すべく創出されたものであり、その目的とするところは、電池の高容量化を実現する電極活物質となり得るSiO等の金属化合物粒子(一次粒子)に効率よく炭素被膜を形成し得る方法を提供することである。また、本発明の他の一の目的は、かかる炭素被膜形成方法を実施して好ましい炭素被膜が形成された電極活物質を製造する方法を提供することである。また、本発明の他の一の目的は、かかる製造方法で製造された電極活物質(詳しくは負極活物質及び/又は正極活物質)を備えるリチウム二次電池その他の高容量化を実現する電池を提供することである。
 本発明によって以下の態様の電極活物質の製造方法が提供される。
 即ち、ここで開示される一つの製造方法は、表面が導電性炭素被膜で被覆された粒状電極活物質を製造する方法である。かかる方法は、
(1)上記炭素被膜を形成するための炭素源を、上記被覆の対象である粒状電極活物質が分散可能な所定の第1の溶媒に、溶解させることにより調製された炭素源供給材料を用意すること、
(2)上記被覆の対象である粒状電極活物質を、上記第1の溶媒と相溶性があり且つ該粒状電極活物質が分散可能な溶媒であって上記炭素源に対して貧溶媒である第2の溶媒に、分散させることにより調製された電極活物質供給材料を用意すること、
(3)上記用意した炭素源供給材料と電極活物質供給材料とを混合した混合材料を調製すること、および、
(4)上記混合後に得られた前記電極活物質と前記炭素源との混合物を焼成することによって、該炭素源由来の導電性炭素被膜を該電極活物質の表面に形成すること、
を包含する。
 上記構成の製造方法では、炭素被膜形成用炭素源を上記第1の溶媒に溶解させて調製された炭素源供給材料と、該第1の溶媒とは異なり該炭素源に対して貧溶媒(即ち該炭素源の溶解度が相対的に小さい溶媒、典型的には該炭素源の溶解度が同じ温度(例えば20~30℃であるような室温域)で比較したときに上記第1の溶媒の溶解度の10分の1以下、より好ましくは100分の1以下であるような貧溶媒)に分散させて調製された電極活物質供給材料と、を混合することを特徴とする。
 かかる二つの材料を混合して生じる上記第1の溶媒と第2の溶媒とが混在する(相溶する)混合溶媒中において、上記炭素源は、第2の溶媒(貧溶媒)成分中には存在困難であり実質的には第1の溶媒成分中にのみ存在することとなる。他方、粒状電極活物質は、第1と第2の何れの溶媒においても流動、分散することができる。換言すれば、上記混合溶媒中において第1と第2の溶媒成分間を自由に行き来して分散する電極活物質粒子は、第1の溶媒成分中に存在しているときに該溶媒中に存在する炭素源と相互作用する。典型的には炭素源が電極活物質粒子の表面に付着若しくは結合する。そして、炭素源と相互作用した状態にある電極活物質粒子(典型的には炭素源が表面に付着若しくは結合した電極活物質粒子)は、第1の溶媒から第2の溶媒への移動が当該相互作用した炭素源の存在により規制される。このため、上記第1の溶媒成分と第2の溶媒成分とが混在する混合溶媒中において、分散する電極活物質粒子に効率よく炭素源を相互作用させる(付着若しくは結合させる)ことができるとともに、電極活物質粒子同士の過度な凝集が抑制される。従って、本構成の製造方法によると、過度な凝集が抑制された良好な分散状態の電極活物質粒子を炭素源とともに焼成することにより、一次粒子の表面に良好に炭素被膜が形成された(即ち被膜非形成部分の少ない)粒状電極活物質を製造することができる。
 ここで開示される電極活物質製造方法に好適に用いられる炭素被膜で被覆される対象の粒状電極活物質としては、Si、Ge、Sn、Pb、Al、Ga、In、As、Sb、Bi等を構成金属元素とする金属酸化物その他の金属化合物(好ましくはこれらの何れかを構成金属元素とする金属化合物であってさらにその表面にヒドロキシ基を有する金属化合物)が挙げられる。これら金属化合物をリチウム二次電池の負極活物質として利用することにより、例えば従来の黒鉛を負極活物質とするリチウムイオン電池よりも高容量化を実現したリチウム二次電池を提供することが可能となる。
 ここで開示される製造方法の好ましい一つの態様では、上記電極活物質は、一般式:SiO(典型的には、式中のxは0<x<2を満足する実数である。)で示されるケイ素酸化物を主体に構成されている。この種のケイ素酸化物は、リチウムイオンの吸蔵及び放出に関する理論容量が大きく、例えばリチウム二次電池の負極活物質として好適に使用し得る。
 また、上記のケイ素酸化物或いは他の上記した金属種の化合物(典型的には金属酸化物)から成る電極活物質は、充放電の際、リチウムイオンの吸蔵及び放出に伴って膨張若しくは収縮して体積が大きく変動する。その際、上述したように二次粒子(即ち一次粒子の凝集体)の表面のみに炭素被膜が形成されている活物質では、上記膨張と収縮に伴う応力により当該二次粒子が破砕してしまい、結果、炭素被膜が形成されていない表面を備える粒状物が生じてしまう。炭素被膜が形成されていない上記ケイ素酸化物その他の金属化合物は炭素被膜による導電パスが存在せず、電極活物質としての電池容量の向上に寄与しない。また、電池の耐久性、特にサイクル特性の劣化を招くため好ましくない。
 これに対し、ここで開示される製造方法によると、一次粒子の表面に効率良く炭素被膜を形成することができる。このため、リチウムイオンの吸蔵及び放出に伴って活物質が膨張若しくは収縮して体積が大きく変動しても炭素被膜が形成されていない表面を備える粒状物(二次粒子の破砕物)は生じ難い。従って、安定的に高容量を維持し、サイクル特性にも優れる電池の構築に資する炭素被膜付き電極活物質を提供することができる。
 また、ここで開示される電極活物質製造方法の好ましい他の一態様では、上記炭素源は水溶性化合物であり、上記第1の溶媒は水性溶媒(典型的には水)であり、上記第2の溶媒は水と相溶性のある非水溶媒である。特に好ましくは、上記非水溶媒(第2の溶媒)として、エタノール等の極性溶媒を使用する。また、水溶性化合物の好適例としてポリビニルアルコール等の水溶性ポリマー(典型的にはヒドロキシ基のような極性基を分子鎖中に有するポリマー)が挙げられる。
 このような組み合わせで第1の溶媒と第2の溶媒とを採用することにより、より良好に一次粒子の表面に炭素被膜が形成された粒状電極活物質を製造することができる。
 また、ここで開示される電極活物質製造方法の他の好ましい一態様では、上記焼成の前に、上記混合材料を還流処理すること、をさらに包含する。
 上記混合後、焼成前に混合材料に対して還流処理を行う(典型的には混合材料の溶媒が沸騰可能な温度域で行う)ことにより、より好適に粒状電極活物質を当該混合材料中において分散させることができる。このため、より効率よく、電極活物質粒子の表面に炭素被膜を形成することができる。
 また、ここで開示される電極活物質製造方法の他の好ましい一態様では、上記第2の溶媒とは異なる溶媒であって上記粒状電極活物質が分散可能で且つ上記炭素源に対して貧溶媒である第3の溶媒に、上記焼成前の混合材料を添加すること、をさらに包含する。そして、該第3の溶媒に添加した後の上記電極活物質と上記炭素源との混合物を焼成する。
 かかる第3の溶媒に上記混合材料を添加した際、該混合材料中に存在する炭素源は当該第3の溶媒には溶解しない。このため、当該第3の溶媒中に添加された電極活物質粒子と炭素源との混合物(典型的には炭素源が表面に付着若しくは結合した電極活物質粒子)は、当該第3の溶媒中で所定の大きさの会合体を形成し、典型的には該溶媒中で沈澱する。そして、本態様の製造方法では、かかる会合体を形成した状態の電極活物質粒子と炭素源との混合物を焼成することができる。
 従って、かかる態様の製造方法によると、形成される会合体のサイズに応じて焼成後の炭素被膜付き電極活物質の二次粒子のサイズ(粒径)を規定することができる。即ち、典型的には、焼成後に粉砕処理を行うことなく粒度分布の小さい(好ましくはほぼ均一な粒径サイズの)表面に炭素被膜が形成された粒状電極活物質(二次粒子)を製造することができる。
 例えば、上記第1の溶媒が水性溶媒であって、前記炭素源が水溶性化合物である場合、上記第3の溶媒としては、該水性溶媒と相溶性があり且つ該水溶性化合物の溶解が困難な有機溶媒が好ましい。
 また、本発明は、ここで開示される電極活物質(典型的にはここで開示されるいずれかの製造方法によって製造された金属化合物から成る負極活物質)を正極又は負極に備えるリチウム二次電池を提供する。
 ここで開示されるリチウム二次電池は、上記電極活物質を備えることによって高容量化と良好な電気伝導性を実現し得る。このため、特にハイレート充放電が要求される車両に搭載される電池として適した性能を備える。
 したがって本発明によると、ここで開示されるリチウム二次電池を備えた車両が提供される。特に、該リチウム二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。
図1は、本発明の一実施形態に係る組電池を模式的に示す斜視図である。 図2は、捲回電極体の一例を模式的に示す正面図である。 図3は、組電池に装備される単電池の構成を模式的に示す断面図である。 図4は、リチウム二次電池を備えた車両を模式的に示す側面図である。 図5は、従来の単一の溶媒に炭素源と粒状電極活物質とを一緒に添加して混合した状態(電極活物質粒子の凝集状態)を模式的に説明する図である。 図6は、ここで開示される製造方法により得られる混合材料(第1の溶媒と第2の溶媒を混合して調製した材料)中の炭素源と粒状電極活物質の存在状態を模式的に説明する図である。 図7は、ここで開示される好適な態様の製造方法によって得られる第3の溶媒中に存在する会合体の状態を模式的に説明する図である。 図8には、後述する実施例で得られた各サンプル(3-1~3-6)の混合材料中のPVA粒子層厚み(mm)を示す折れ線グラフ(右の縦軸参照)と、各サンプル(3-1~3-6)を電極活物質としてそれぞれ使用して構築した評価用セル(対極は金属リチウム)で試験して得られた活物質容量(mAh/g)を示す棒グラフ(左の縦軸参照)とが記載されている。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 なお、本明細書において「電極活物質」は、正極側で使用される正極活物質と負極側で使用される負極活物質を包含する用語である。ここで活物質とは、正極側又は負極側において蓄電に関与する物質(化合物)をいう。即ち、電池の充放電時において電子の放出若しくは取り込みに関与する物質をいう。
 また、本明細書において「リチウム二次電池」は、電解質中のリチウムイオンが電荷の移動を担う電池をいい、いわゆるリチウムイオン電池(若しくはリチウムイオン二次電池)、リチウムポリマー電池等と呼ばれているものは、ここでいう「リチウム二次電池」に包含される典型例である。
 ここで開示される製造方法によると、上述のとおり、表面に導電性炭素被膜が形成された粒状電極活物質を製造することができる。
 ここで開示される製造方法は、電気伝導性の乏しい電極活物質粒子(即ち一次粒子)の表面を効率よく導電性炭素被膜で被覆することができる。
 かかる被覆を行う対象である粒状電極活物質としては、少なくとも上記第1の溶媒ならびに第2の溶媒に分散可能であり、焼成により炭素源由来の導電性炭素被膜が表面に形成され得る性状の活物質であればよい。例えば、リチウム二次電池の負極活物質として好適な種々の金属化合物(例えば金属酸化物)、例えばSi、Ge、Sn、Pb、Al、Ga、In、As、Sb、Bi等を構成金属元素とする金属酸化物その他の金属化合物(好ましくはこれらの何れかを構成金属元素とする金属化合物であってさらにその表面にヒドロキシ基を有する金属化合物)が挙げられる。特に、上記式により規定されるようなケイ素酸化物を好ましく採用することができる。また、リチウム二次電池の正極活物質として使用し得る種々のリチウム遷移金属複合酸化物(例えばLiCoO、LiNiO、LiMn)を採用することができる。
 例えば、一般式:LiMAOで示されるポリアニオン化合物が挙げられる。かかる式中のMは、典型的にはFe、Co、Ni及びMnから成る群から選択される少なくとも1種の金属元素を含む1種又は2種以上の元素(典型的には1種又は2種以上の金属元素)である。即ち、Fe、Co、Ni及びMnから成る群から選択される少なくとも1種の金属元素を含むが他の少量含有され得るマイナー添加元素の存在を許容する(かかるマイナー添加元素は存在しなくてもよい。)。また、上記式中のAは、典型的には、P、Si、S及びVから成る群から選択される1種又は2種以上の元素である。
 典型的には平均粒子径(例えば光散乱法に基づくメジアン径:d50、或いは顕微鏡観察に基づく平均粒子径)が凡そ10nm以上10μm以下(典型的には100nm以上5μm以下、例えば100nm以上1000nm以下程度の粒状電極活物質を好ましく使用することができる。
 電極活物質の特に好適な具体例として、一般式:SiOで示されるケイ素酸化物が挙げられる。ここで式中のxは典型的には0<x<2を満足する実数であり、好ましくは0<x<0.6程度であり得る。市販されるSiO等のケイ素酸化物から成る粉末材料を好適に使用することができる。
 かかるケイ素酸化物を負極活物質として利用することにより、特に高い充放電容量を有するリチウム二次電池が得られ得る。また、この種の金属化合物から成るリチウム二次電池用負極活物質は、充放電時におけるリチウムイオンの吸蔵に伴って活物質自体が膨張し、反対にリチウムイオンの放出に伴って活物質自体が収縮する。従って、電池の負極に存在する負極活物質構造物(即ち一次粒子が凝集した二次粒子によって典型的には銅等の負極集電体の表面に層状に構成されている。)の構造変化が起き易く、構造変化後の負極活物質構造物にも高い電気伝導性を維持させるためには当該負極活物質構造物を構成する一次粒子の表面に充分に導電性炭素被膜を予め形成しておく必要がある。ここに開示される製造方法を実施することによって、このような性状の電極活物質の一次粒子の表面に効率よく充分な導電性炭素被膜を形成することができる。
 また、シリカ等のケイ素酸化物の粒子は、通常の状態において、その表面にH基(典型的にはSi-O-H、若しくはSi-H)が存在する場合が多い。かかるH基(H原子)の存在により、例えば炭素源として水溶性化合物を用いた場合、ケイ素酸化物粒子のH基と、当該化合物中の電気陰性度の高い部分(例えば-OH基の部分)との間で水素結合、共有結合等が生じ、強い相互作用を生じさせることができる。このため、適当な第1の溶媒と第2の溶媒とを選択することにより、水溶性化合物等の炭素源を容易にケイ素酸化物粒子の表面に付与することができる。
 上記ケイ素酸化物のような金属化合物から成る電極活物質粒子の表面に導電性炭素被膜を形成するための炭素源としては、電極活物質粒子とともに焼成された際に熱分解して導電性のある炭素被膜(炭素構造物)を形成可能であり、少なくとも所定の溶媒に溶解可能な性質のものを使用することができる。
 例えば、水溶性有機物(特に水溶性ポリマー等の高分子化合物)であって所定の有機溶媒には溶解性が乏しい(即ち当該有機溶媒は貧溶媒に該当する。)ような性質を有する水溶性有機物を好ましく使用することができる。
 この種の有機物の好適例としてポリビニルアルコール(PVA)のような水溶性高分子化合物(ポリマー)が挙げられる。PVAは、分子鎖中に多くのヒドロキシ基(-OH)を有しており、かかるヒドロキシ基の存在により、電極活物質粒子との相互作用(例えば、水素結合、共有結合、イオン結合等の化学的結合、或いは吸着等の物理的結合)を起こし易く好ましい。また、大気中のような酸化条件下での熱分解により、良好な導電性を示す炭素被膜を形成することができるため好ましい。PVAの他、炭素源として使用可能な水溶性高分子化合物として、デンプン、ゼラチン、メチルセルロース、カルボキシメチルセルロース等のセルロース誘導体、ポリアクリル酸、ポリアクリルアミド、ポリエチレンオキシド、ポリエチレングリコール等が挙げられる。
 次に上述したような粒状電極活物質と炭素源(炭素被膜形成用材料)とを使用してここで開示される製造方法を好適に実施する態様について説明する。
 ここで開示される製造方法に使用される炭素源供給材料は、所定の炭素源(1種類の炭素源のみを用いてもよく、2種類以上の炭素源を組み合わせて用いてもよい。)を溶解可能な第1の溶媒に適量を溶解させることにより調製される。第1の溶媒(即ち炭素源供給材料を調製するための溶媒)は、便宜上第1の溶媒と記載しているが、それ自体が単独の物質(分子種)により構成されていてもよく、或いは複数の物質(分子種)の混合媒体であってもよい。第1の溶媒は、使用する炭素源に応じて選択することができる。例えば、PVA等の水溶性有機物を炭素源として使用する場合、当該化合物を好適に溶解し得る水性溶媒が好ましい。典型的には、水(蒸留水や脱イオン水を包含する。)を第1の溶媒として使用することができる。
 また、炭素源供給材料(即ち炭素源溶液)における当該炭素源の濃度は特に限定しないが、完全に溶解され得るような含有量(即ち当該溶媒に対する飽和溶液よりも低濃度)が好ましい。特に限定しないが、例えばPVAのような水溶性化合物の場合、炭素源供給材料全体を100質量%として水溶性化合物の濃度が0.1~20質量%程度(好ましくは0.3~15質量%程度)であるような水溶液を炭素源供給材料として好適に使用することができる。例えば、水1リットル(L)に対して1g~10g程度のPVAを添加することにより調製されたPVA水溶液は、好適な炭素源供給材料の一例である。なお、炭素源供給材料の調製時には、炭素源を充分に溶解させるための種々の攪拌・混合手段を採用することができる。例えば、超音波による振動で攪拌を行ったり、マグネチックスターラーを使用することができる。
 なお、本発明の目的を妨げない限りにおいて、炭素源供給材料に、上述した第1の溶媒ならびに炭素源以外の成分を含ませてもよい。例えば、付加的な成分としては、pH調整剤、界面活性剤、防腐剤、着色剤、等が挙げられる。
 一方、ここで開示される製造方法に使用される粒状電極活物質供給材料は、所定の粒状電極活物質を分散可能な第2の溶媒に適量を分散させることにより調製される。なお、第1の溶媒と同様、第2の溶媒についても便宜上第2の溶媒と記載しているがそれ自体が単独の物質(分子種)により構成されていてもよく、或いは複数の物質(分子種)の混合媒体であってもよい。
 第2の溶媒は、使用する粒状電極活物質が分散可能であることに加え、第1の溶媒と相溶性があり、且つ、使用する炭素源に対して貧溶媒であることが要求される。例えば、PVA、ポリアクリル酸、ポリエチレングリコール等の水溶性有機物(典型的には水溶性ポリマー)を第1の溶媒としての水に溶解させて炭素源供給材料として使用する場合、水と相溶性があり且つ当該炭素源が溶け難い(即ち非常に溶解度が小さい)有機溶媒を第2の溶媒として好ましく使用することができる。例えば、PVAに対して貧溶媒であるアルコール類、例えばメタノール、エタノール、イソプロパノール、ブタノール(典型的には2-メチル-2-ブタノール)のような炭素数5以下の低級アルコールを第2の溶媒として使用することができる。このように、使用する炭素源をいったん決定すれば、その炭素源に対して貧溶媒であることが公知である何れかの溶媒を適宜選択すればよいことは、当業者には理解される。
 また、電極活物質供給材料(即ち活物質源を分散状態で含む分散液若しくは懸濁液)における当該電極活物質の濃度は特に限定されない。例えば、SiOのようなケイ素酸化物或いは上述したような他の金属の酸化物の場合、電極活物質供給材料全体を100質量%として粒状電極活物質の含有率が0.5~20質量%程度(好ましくは1~10質量%程度)であるような分散液を電極活物質供給材料として好適に使用することができる。例えば、エタノールのようなカーボン数が5以下の低級アルコール1リットル(L)に対して10g~100g程度のケイ素酸化物を添加することにより調製された分散液(又は懸濁液)は、好適な電極活物質源供給材料の一例である。
 なお、本発明の目的を妨げない限りにおいて、電極活物質供給材料に、上述した第2の溶媒ならびに粒状電極活物質以外の成分を含ませてもよい。例えば、付加的な成分としては、典型的にはカーボンブラック等の炭素材から成る導電補助材、分散剤、pH調整剤、界面活性剤、防腐剤、着色剤、等が挙げられる。例えば、SiOのようなケイ素酸化物或いは上述したような他の金属化合物(酸化物等)から成る電極活物質全量の1~20質量%に相当する量の導電補助材(例えばカーボンブラックのような微粒状の導電性炭素材)を添加することが好ましい。
 ここで開示される製造方法では、上記のようにして調製した炭素源供給材料と、電極活物質供給材料とを所定の割合で混合して混合材料を調製する。このとき、第2の溶媒(電極活物質供給材料由来)は、炭素源供給材料に含まれる炭素源に対して貧溶媒であるので、当該炭素源(典型的には有機物)は第2の溶媒(貧溶媒)成分中には存在困難であり実質的には第1の溶媒成分中にのみ存在することとなる。他方、粒状電極活物質は、第1と第2の何れの溶媒においても流動可能である。このため、混合溶媒中において第1と第2の溶媒成分間を自由に行き来して分散する電極活物質粒子は、第1の溶媒成分中に存在しているときに該溶媒中に存在する炭素源と相互作用する。例えば、炭素源が極性基を有する化合物(例えばヒドロキシ基を分子鎖中に多数有するPVA)であり、且つ、粒状電極活物質が表面に極性基(例えばSiOの表面にある水素原子)を備えている場合、かかるヒドロキシ基の存在により、電極活物質粒子との相互作用(例えば、水素結合、共有結合、イオン結合等の化学的結合、或いは吸着等の物理的結合)を起こし易くなり好ましい。
 図5は、従来の単一の溶媒(例えば水)に炭素源(例えばPVA)102と粒状電極活物質(例えばケイ素酸化物)104とを一緒に添加し混合した状態を説明する模式図である。この図に示すように、単独の溶媒(即ち炭素源に対する良溶媒)を用いると該溶媒中の電極活物質粒子から成る過度な凝集を起こしがちであり、上述した理由により好ましくない。その一方、図6に示すように、第1の溶媒と第2の溶媒とを用いて炭素源供給材料と電極活物質供給材料とを適量ずつ混合する方法によると、炭素源102は実質的に第1の溶媒成分中にのみ存在するため、当該炭素源102の混合材料中における存在分布に応じて粒状電極活物質104の存在分布も規制され、図5に示すような凝集が抑制されて電極活物質(一次粒子)104の好適な分散状態を実現することができる。
 炭素源供給材料と電極活物質供給材料の混合質量比率は、これら供給材料中における炭素源の濃度及び/又は活物質粒子の含有率によっても異なり得るため特に限定されない。
 一つの目安として、電極活物質の表面に充分量の炭素源が付与されるように両供給材料を混合することが好ましい。例えば、1質量部の粒状電極活物質(例えばケイ素酸化物)に対して0.1~15質量部程度の炭素源(例えばPVA)が混合されるように、炭素源供給材料と電極活物質供給材料との混合割合を調整することが好ましい。1質量部の粒状電極活物質(例えばケイ素酸化物)に対して0.1~10質量部程度の炭素源(例えばPVA)が混合されることが、より好ましく、1質量部の粒状電極活物質(例えばケイ素酸化物)に対して1~5質量部程度の炭素源(例えばPVA)が混合されるようにして上記炭素源供給材料と電極活物質供給材料とを混合して混合材料を調製することが、さらに好ましい。このような混合比率で炭素源と粒状電極活物質とを混合することにより、電極活物質の表面に適当量の炭素源を付与することができる。また、後述するように第3の溶媒に混合材料を添加した場合に良好な会合体を形成することができる。即ち、炭素源の混合割合が低すぎると会合体を形成困難となり、他方、炭素源の混合割合が高すぎると炭素源のみから成る会合体が生成される虞があり好ましくない。
 また、他の一つの目安として、粒状電極活物質が過度に凝集しないように両供給材料を混合することが好ましい。かかる観点からは、炭素源の貧溶媒である第2の溶媒(例えばSiO等の電極活物質粒子を分散可能なエタノールその他の低級アルコールのような極性有機溶媒)の混合体積比率を第1の溶媒(例えばPVA等の炭素源を溶解可能な水)の混合体積比率とほぼ同じにする、即ちほぼ均等量を混合することが望ましい。例えば、第1の溶媒と第2の溶媒との混合体積比率(第1の溶媒:第2の溶媒)が1:3~3:1であることが適当であり、1:2~2:1であることが好ましく、1:1.5~1.5:1であることがより好ましく、ほぼ1:1に混合することが特に好ましい。
 このように、第1の溶媒と第2の溶媒との混合体積比率を設定することによって、電極活物質粒子相互の凝集を低減し、比較的小粒径の電極活物質二次粒子(会合体)を形成することができる。このことは、換言すれば、第1の溶媒と第2の溶媒との混合体積比率を調整することによって、焼成後に得られる炭素被膜付き電極活物質粒子(一次粒子の凝集体、即ち二次粒子)の粒径やサイズを調整することができる。
 また、ここで開示される製造方法の好適な一態様では、上記混合材料中の粒状電極活物質の分散状態をより改善すべく、上記二つの供給材料を混合した後、後述する焼成処理の前に、該混合材料の溶媒(即ち第1の溶媒と第2の溶媒との混合媒体)が沸騰する温度域まで該混合材料を加熱して還流処理を行う。
 例えば、第1の溶媒が水であり、第2の溶媒が水と相溶性のある非水溶媒であるエタノール(又は他の低級アルコール)である場合、該水とエタノールの共沸温度である約73℃を上回る温度域(典型的には80~100℃、例えば90±5℃程度)で適当時間、典型的には1時間~24時間程度(例えば8時間~12時間)の還流処理を行うことが好ましい。なお、還流処理自体は、従来技術であり、本発明の実施において特別な処理を必要としないため、これ以上の詳細な説明は省略する。
 また、ここで開示される製造方法の好適な他の一態様では、電極活物質粒子の過度の凝集をより確実に抑制し、さらには粒径の小さい電極活物質粒子と炭素源の会合体(即ち炭素被膜付き電極活物質から成る二次粒子を形成するベースとなるもの)を得るため、上記第2の溶媒とは異なる溶媒であって粒状電極活物質が分散可能で且つ炭素源に対して貧溶媒である第3の溶媒に焼成前の混合材料を添加することを行う。
 かかる第3の溶媒への混合材料の添加(典型的には第3の溶媒に該混合材料を滴下する。)を行うことにより、図7に示すような炭素源102と粒状電極活物質104とにより構成される比較的小サイズの会合体110を形成することができる。即ち、第3の溶媒に上記混合材料を添加した際、該混合材料中に存在する炭素源102は当該第3の溶媒には溶解しないため、当該第3の溶媒中に添加された粒状電極活物質104と炭素源102との混合物(典型的には炭素源が表面に付着若しくは結合した電極活物質粒子)は、当該第3の溶媒中で所定の大きさの会合体110を形成する。典型的には該溶媒中で沈澱する。
 かかる目的のためには、添加される混合材料の容積と同じか或いは該容積を上回る量の第3の溶媒を使用することがより好ましい。特に限定しないが、例えば混合材料の容積に対して1倍以上、特に1.5倍以上(さらには2倍以上)の第3の溶媒を使用することが好ましい。
 そして、本態様の製造方法では、かかる会合体を第3の溶媒中から回収し(例えば濾過や遠心分離)、回収した会合体(電極活物質粒子と炭素源との混合物)を焼成することにより、所定のサイズの炭素被膜付き電極活物質から成る二次粒子を作製することができる。換言すれば、かかる態様の製造方法によると、形成される会合体のサイズに応じて焼成後の炭素被膜付き電極活物質から成る二次粒子のサイズ(粒径)を規定することができる。また、粒度分布の小さい(好ましくはほぼ均一な粒径サイズの)二次粒子を製造することができる。
 第3の溶媒としては、上記の条件を具備する限りにおいて種々の溶媒を使用することができるが、例えば上記第1の溶媒が水性溶媒(典型的には水)であって、前記炭素源が水溶性化合物(例えばPVA)である場合、上記第3の溶媒(貧溶媒)としては、該水性溶媒と相溶性があり且つ水溶性化合物の溶解が困難な有機溶媒が好ましい。例えば、該水溶性化合物の溶解が困難な非プロトン性の極性溶媒(例えばアセトン、アセトニトリル)が好ましく使用される。
 ここで開示される製造方法によると、上記のように調製した混合材料(即ち、上記還流処理を行った場合は当該還流処理後の混合材料、さらにまた上記第3の溶媒に添加した場合は当該溶媒から回収後の混合材料(会合体)を意味する。以下同じ。)に含まれる電極活物質と炭素源とが相互作用して構成された混合物、典型的には炭素源が電極活物質粒子の表面に付着若しくは結合して構成された混合物を焼成する。これにより当該炭素源(典型的にはPVA等の有機物)由来の導電性炭素被膜を該電極活物質の表面に形成することができる。
 焼成条件は、使用する炭素源を熱分解可能であり且つ当該熱分解物で粒状電極活物質の表面を被覆できる条件であれば特に制限はない。上記一般式:SiOで示されるケイ素酸化物のような金属酸化物を電極活物質(この場合は負極活物質)とする場合は、好ましくは、アルゴンガス、窒素ガスのような不活性ガス雰囲気中で焼成することが当該焼成処理により電極活物質の構造や組成に影響を与えないという観点から好ましい。また、焼成温度は、使用する炭素源を熱分解可能であればよいが、典型的には800℃以上(例えば800~1200℃、例えば900~1000℃)で概ね3~12時間程度(例えば5~8時間)の焼成を行う。これにより、粒状電極活物質(一次粒子)の表面に炭素被膜を好適に形成することができる。なお、好ましくは、被焼成物を上記最高温度域まで昇温する前に適当時間(典型的には12時間以下、例えば1~6時間程度)の仮焼成を行う。仮焼成の温度域は特に限定しないが、典型的には100~600℃、例えば200℃~300℃の温度域で行うことが好ましい。このような仮焼成を行うことにより、例えば炭素源の過剰な反応性基(例えばPVAのヒドロキシ基)を消失させておくことができる。また、良好な焼結体を得ることができる。
 ここで開示される製造方法によって製造された粒状の炭素被膜付き電極活物質は、従来の電極活物質と同様に電池の正極若しくは負極の活物質として好適に使用することができる。そして、かかる電極活物質を使用する以外は、従来と同様の材料とプロセスを採用して種々のタイプの二次電池を構築することができる。例えば、ここで開示される製造方法によって製造された炭素被膜付きの上記一般式:SiOで示されるケイ素酸化物のような金属酸化物を負極活物質として採用してリチウム二次電池を構築することができる。
 以下、ここで開示される製造方法により製造される上記一般式:SiOで示されるケイ素酸化物から成る負極活物質を備えるリチウム二次電池の一実施形態を説明するが、ここで開示される電極活物質の使用形態をこれに限定する意図ではない。
 本実施形態に係るリチウム二次電池は、上記炭素被膜付き粒状電極活物質を負極活物質として用いることによって特徴付けられる。従って、本発明の目的を実現し得る限り、他の電池構成材料や部材等の内容、材質あるいは組成は特に制限されず、従来のリチウム二次電池と同様のものを用いることができる。
 負極としては、ここで開示される製造方法により得られた粒状負極活物質(SiO)を、バインダ(結着材)および必要に応じて使用される導電補助材等とともに負極合材として負極集電体上に付着させて負極活物質層(負極合材層ともいう。)を形成した形態のものを好ましく使用し得る。
 負極集電体としては、銅、ニッケル、チタン、ステンレス鋼等を主体とする棒状体、板状体、箔状体、網状体等を用いることができる。バインダとしては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)等が例示される。導電補助材としては、従来と同様のカーボンブラック等の炭素材を好ましく使用することができる。
 ここで使用する粒状負極活物質(一次粒子)の表面は炭素被膜によって充分に被覆されており導電性に優れる。このため、負極活物質層に導電補助材を含有させないか或いは従来よりも導電補助材の含有率を低減させることができる。限定するものではないが、使用する負極活物質100質量部に対する導電補助材の使用量は、例えば凡そ1~30質量部(好ましくは凡そ2~20質量部、例えば5~10質量部程度)とすることができる。上述した電極活物質供給材料中に導電補助材を予め含有させておいてもよい。
 そして、上記粒状負極活物質および必要に応じて導電補助材を含む粉末状材料を適当なバインダ(結着材)とともに適当な分散媒体(例えばN-メチルピロリドン:NMPのような有機溶媒或いは水のような水性溶媒)に分散させて混練することによって、ペースト状の負極合材(以下、「負極合材ペースト」という。)を調製する。この負極合材ペーストを負極集電体上に適当量塗布し、さらに乾燥ならびにプレスすることによってリチウム二次電池用負極を作製することができる。
 一方、正極としては、Liを可逆的に吸蔵および放出可能な活物質をバインダおよび必要に応じて使用される導電材等とともに正極合材として集電体に付着させた形態のものを好ましく使用し得る。
 正極集電体としては、アルミニウム、ニッケル、チタン、ステンレス鋼等を主体とする棒状体、板状体、箔状体、網状体等を用いることができる。正極活物質としては、一般的なリチウム二次電池の正極に用いられ得る層状構造のリチウム遷移金属複合酸化物、スピネル構造のリチウム遷移金属複合酸化物、オリビン構造を有するポリアニオン化合物、等を好ましく用いることができる。かかる活物質の代表例として、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等のリチウム遷移金属酸化物が挙げられる。また、以下の一般式:
  LiMAO    
で示される化合物が挙げられる。かかる式中のMは、Fe、Co、Ni及びMnから成る群から選択される少なくとも1種の金属元素を含む1種又は2種以上の元素(典型的には1種又は2種以上の金属元素)である。即ち、Fe、Co、Ni及びMnから成る群から選択される少なくとも1種の金属元素を含むが他の少量含有され得るマイナー添加元素の存在を許容する(かかるマイナー添加元素は存在しなくてもよい。)。また、上記式中のAは、P、Si、S及びVから成る群から選択される1種又は2種以上の元素であることが好ましい。具体例としてLiFePO、LiFeSiO、LiCoPO、LiCoSiO、LiFe0.5Co0.5PO、LiFe0.5Co0.5SiO、LiMnPO、LiMnSiO、LiNiPO、LiNiSiOが特に好ましいポリアニオン型化合物として挙げられる。
 バインダとしては、負極側と同様のもの等を使用することができる。導電材としては、カーボンブラック(例えばアセチレンブラック)、グラファイト粉末等の炭素材、或いはニッケル粉末等の導電性金属粉末が例示される。特に限定するものではないが、正極活物質100質量部に対する導電材の使用量は、例えば1~20質量部(好ましくは5~15質量部)とすることができる。また、正極活物質100質量部に対するバインダの使用量は、例えば0.5~10質量部とすることができる。
 そして、負極側と同様、上記したような正極活物質および導電補助材を含む粉末状材料を適当なバインダとともに適当な分散媒体に分散させて混練することによって、ペースト状の正極合材(以下、「正極合材ペースト」という。)を調製する。この正極合材ペーストを正極集電体上に適当量塗布し、さらに乾燥ならびにプレスすることによってリチウム二次電池用正極を作製することができる。
 正極と負極との間に介在される電解質としては、非水溶媒と該溶媒に溶解可能なリチウム塩とを含む液状電解質が好ましく用いられる。かかる液状電解質にポリマーが添加された固体状(ゲル状)の電解質であってもよい。上記非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を用いることができる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン等の、一般にリチウムイオン電池の電解質に使用し得るものとして知られている非水溶媒から選択される一種または二種以上を用いることができる。
 リチウム塩としては、LiPF,LiBF,LiN(SOCF,LiN(SO,LiCFSO,LiCSO,LiC(SOCF,LiClO等の、リチウムイオン電池の電解液において支持電解質として機能し得ることが知られている各種のリチウム塩から選択される一種または二種以上を用いることができる。リチウム塩の濃度は特に制限されず、例えば従来のリチウムイオン電池で使用される電解質と同様とすることができる。通常は、支持電解質(リチウム塩)を凡そ0.1mol/L~5mol/L(例えば凡そ0.8mol/L~1.5mol/L)程度の濃度で含有する非水電解質を好ましく使用することができる。
 上記正極および負極を電解質とともに適当な容器(金属または樹脂製の筐体、ラミネートフィルムからなる袋体等)に収容してリチウム二次電池が構築される。ここに開示されるリチウム二次電池の代表的な構成では、正極と負極との間にセパレータが介在される。セパレータとしては、一般的なリチウム二次電池に用いられるセパレータと同様のものを用いることができ、特に限定されない。例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂からなる多孔質シート、不織布等を用いることができる。なお、固体状の電解質を用いたリチウム二次電池では、該電解質がセパレータを兼ねる構成としてもよい。リチウム二次電池の形状(容器の外形)は特に限定されず、例えば、円筒型、角型、コイン型等の形状であり得る。
 以下、捲回電極体を備えるリチウム二次電池と該電池を構成パーツ(単電池)として構築される車載用の組電池(バッテリーパック)を例にして、ここで開示される製造方法により製造された負極活物質を使用したリチウム二次電池のより具体的な態様を説明するが、本発明をかかる実施態様に限定することを意図したものではない。
 なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略又は簡略化することがある。また、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。
 図1に示すように、本実施形態に係る組電池10の構成要素として用いられる単電池12は、従来の組電池に装備される単電池と同様、典型的には所定の電池構成材料(正負極それぞれの活物質、正負極それぞれの集電体、セパレータ等)を具備する電極体と、該電極体及び適当な電解質を収容する容器とを備える。
 ここで開示される組電池10は、所定数(典型的には10個以上、好ましくは10~30個程度、例えば20個)の同形状の単電池12を備える。単電池12は、後述する扁平形状の捲回電極体を収容し得る形状(本実施形態では扁平な箱形)の容器14を備える。単電池12の各部のサイズ(例えば、積層方向の厚み等の外形形状)は、使用する容器14の製造時における寸法誤差等によりばらつき得る。
 容器14には、捲回電極体の正極と電気的に接続する正極端子15及び該電極体の負極と電気的に接続する負極端子16が設けられている。図示するように、隣接する単電池12間において一方の正極端子15と他方の負極端子16とが接続具17によって電気的に接続される。このように各単電池12を直列に接続することにより、所望する電圧の組電池10が構築される。
 なお、容器14には、容器内部で発生したガス抜きのための安全弁13等が従来の単電池容器と同様に設けられ得る。かかる容器14の構成自体は本発明を特徴付けるものではないため、詳細な説明は省略する。
 容器14の材質は、従来の単電池で使用されるものと同じであればよく特に制限はない。例えば、金属(例えばアルミニウム、スチール等)製の容器、合成樹脂(例えばポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリアミド系樹脂等の高融点樹脂等)製の容器等を好ましく用いることができる。本実施形態に係る容器14は例えばアルミニウム製である。
 図2及び図3に示すように、単電池12は、通常のリチウムイオン電池の捲回電極体と同様、シート状正極32(以下「正極シート32」ともいう。)とシート状負極34(以下「負極シート34」ともいう。)とを計二枚のシート状セパレータ36(以下「セパレータシート36」ともいう。)とともに積層し、さらに当該正極シート32と負極シート34とをややずらしつつ捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される扁平形状の捲回電極体30を備える。
 図2及び図3に示すように、かかる捲回電極体30の捲回方向に対する横方向において、上記のとおりにややずらしつつ捲回された結果として、正極シート32及び負極シート34の端の一部がそれぞれ捲回コア部分31(即ち正極シート32の正極活物質層形成部分と負極シート34の負極活物質層形成部分とセパレータシート36とが密に捲回された部分)から外方にはみ出ている。かかる正極側はみ出し部分(即ち正極活物質層の非形成部分)32A及び負極側はみ出し部分(即ち負極活物質層の非形成部分)34Aには、正極リード端子32B及び負極リード端子34Bが付設されており、それらのリード端子32B,34Bがそれぞれ上述の正極端子15及び負極端子16と電気的に接続される。
 上記構成の捲回電極体30を構成する材料及び部材自体は、負極活物質としてここで開示される製造方法で得られた炭素被膜付き負極活物質(例えば上記一般式のSiO)を採用する以外、従来のリチウムイオン電池の電極体と同様でよく、特に制限はない。
 正極シート32は長尺状の正極集電体(例えば長尺状アルミニウム箔)の上にリチウム二次電池用正極活物質層が付与されて形成される。本実施形態では、捲回電極体30を備えるリチウム二次電池(単電池)12に好ましく使用され得る形状であるシート状正極集電体が用いられている。例えば、長さ2m~4m(例えば2.7m)、幅8cm~12cm(例えば10cm)、厚み5μm~30μm(例えば10μm~20μm)程度のアルミニウム箔を集電体として使用し、予め調製された正極合材ペーストを当該集電体表面に塗布することにより、正極活物質層を形成する。そして、グラビアコーター、スリットコーター、ダイコーター、コンマコーター等の適当な塗付装置を使用することにより、正極集電体の表面に上記ペーストを好適に塗付することができる。
 上記ペーストを塗布した後、該ペーストに含まれる溶媒(典型的には水)を乾燥させ、圧縮(プレス)することにより正極活物質層を形成する。圧縮方法としては、従来公知のロールプレス法、平板プレス法等の圧縮方法を採用することができる。正極活物質層の層厚を調整するにあたり、膜厚測定器で該厚みを測定し、プレス圧を調整して所望の厚みになるまで複数回圧縮してもよい。
 一方、負極シート34は長尺状の負極集電体の上にリチウム二次電池用負極活物質層が付与されて形成され得る。負極集電体としては、導電性の良好な金属からなる導電性部材、例えば銅を用いることができる。本実施形態では、捲回電極体30を備えるリチウム二次電池(単電池)12に好ましく使用され得る形状であるシート状負極集電体が用いられている。例えば、長さ2m~4m(例えば2.9m)、幅8cm~12cm(例えば10cm)、厚み5μm~30μm(例えば10μm~20μm)程度の銅箔を負極集電体として使用し、その表面に負極活物質と結着材等とを適当な溶媒(水、有機溶媒及びこれらの混合溶媒)に添加し分散または溶解させて調製した負極合材ペースト(例えば負極活物質80~90質量%、導電補助材3~15質量%、バインダ3~10質量%)が塗付され、溶媒を乾燥させて圧縮することにより好ましく作製され得る。
 また、正負極シート32,34間に使用される好適なセパレータシート36としては多孔質ポリオレフィン樹脂で構成されたものが例示される。例えば、長さ2m~4m(例えば3.1m)、幅8cm~12cm(例えば11cm)、厚み5μm~30μm(例えば25μm)程度の合成樹脂製(例えばポリエチレン等のポリオレフィン製)の多孔質セパレータシートを好適に使用し得る。
 なお、電解質として固体電解質若しくはゲル状電解質を使用するリチウム二次電池(いわゆるリチウムイオンポリマー電池)の場合には、セパレータが不要な場合(即ちこの場合には電解質自体がセパレータとしても機能し得る。)があり得る。
 得られた扁平形状の捲回電極体30を、図3に示すように捲回軸が横倒しになるようにして容器14内に収容するとともに、適当な支持塩(例えばLiPF等のリチウム塩)を適当量(例えば濃度1M)含むジエチルカーボネート(DEC)とエチレンカーボネート(EC)との混合溶媒(例えば体積比でDEC:ECが1:9~9:1の範囲内であり得る。)のような非水電解質(電解液)を注入して封止することによって単電池12が構築される。
 図1に示すように、上記のようにして構築した同形状の複数の単電池12は、それぞれの正極端子15及び負極端子16が交互に配置されるように一つづつ反転させつつ、容器14の幅広な面(即ち容器14内に収容される後述する捲回電極体30の扁平面に対応する面)が対向する方向に配列されている。当該配列する単電池12間ならびに単電池配列方向(積層方向)の両アウトサイドには、所定形状の冷却板11が容器14の幅広面に密接した状態で配置されている。この冷却板11は、使用時に各単電池内で発生する熱を効率よく放散させるための放熱部材として機能するものであって、好ましくは単電池12間に冷却用流体(典型的には空気)を導入可能なフレーム形状を有する。或いは熱伝導性の良い金属製もしくは軽量で硬質なポリプロピレンその他の合成樹脂製の冷却板11が好適である。
 上記配列させた単電池12及び冷却板11(以下、これらを総称して「単電池群」ともいう。)の両アウトサイドに配置された冷却板11のさらに外側には、一対のエンドプレート18,19が配置されている。また、上記単電池群の一方(図2の右端)のアウトサイドに配置された冷却板11とエンドプレート18との間には、長さ調整手段としてのシート状スペーサ部材40を一枚又は複数枚挟み込んでいてもよい。なお、スペーサ部材40の構成材質は特に限定されず、後述する厚み調整機能を発揮し得るものであれば種々の材料(金属材料、樹脂材料、セラミック材料等)を使用可能である。衝撃に対する耐久性等の観点から金属材料または樹脂材料の使用が好ましく、例えば軽量なポリオレフィン樹脂性のスペーサ部材40を好ましく使用することができる。
 そして、このように単電池12の積層方向に配列された単電池群、スペーサ部材40及びエンドプレート18,19の全体が、両エンドプレート18,19を架橋するように取り付けられた締め付け用の拘束バンド21によって、該積層方向に所定の拘束圧Pで拘束されている。より詳しくは、図1に示すように、拘束バンド21の端部をビス22によりエンドプレート18に締め付け且つ固定することによって、単電池群がその配列方向に所定の拘束圧P(例えば容器14の壁面が受ける面圧が0.1MPa~10MPa程度)が加わるように拘束されている。かかる拘束圧Pで拘束された組電池10では、各単電池12の容器14の内部の捲回電極体30にも拘束圧がかかり、容器14内で発生したガスが、捲回電極体30内部(例えば正極シート32と負極シート34との間)に貯留して電池性能が低下することを防止することができる。
 以下、具体的ないくつかの実施例として、ここで開示される製造方法によって製造された粒状負極活物質(ケイ素酸化物)を備える負極を使用してリチウム二次電池(サンプル電池)を構築し、その性能評価を行った。
             <性能評価試験:1>
(サンプル1-1の調製)
 炭素源としてのポリビニルアルコール(PVA)12gを第1の溶媒としての純水225mLに添加し、超音波をかけながらスターラーを用いて1時間攪拌し、炭素源供給材料を調製した。
 また、市販の一酸化ケイ素粉末(SiO:シグマ・アルドリッチ社製品)とカーボンブラック(CB)粉末を、質量比でSiO:CB=10:1となるように遊星ボールミルに入れ、250rpmで3時間の粉砕・混合処理を行った。
 上記ボールミル処理により平均粒子径(光散乱法に基づくメジアン径:d50)が約400nmである一酸化ケイ素を含む粉末材料を、一酸化ケイ素質量が12gとなる量を秤量し、75mLのエタノールに添加した。そして、超音波をかけながらスターラーを用いて1時間攪拌し、一酸化ケイ素が分散した状態の電極活物質供給材料を調製した。
 次に、上記調製した電極活物質供給材料(第2の溶媒:エタノール)を、超音波をかけながらスターラーで攪拌しつつ上記調製した炭素源供給材料(第1の溶媒:純水)に添加した。
 次いで得られた混合材料、即ち各12gのSiOとPVAとを含み、純水225mLとエタノール75mLとの混合溶媒(体積比で水:エタノール=3:1)から成る混合材料について90℃で12時間の還流処理を行った。これにより、サンプル1-1の混合材料を得た。この混合材料の一部を採取し、光学顕微鏡観察に基づいてSiOの平均粒子径を算出した。結果を表1の該当欄に示す。
(サンプル1-2の調製)
 PVA12gを純水150mLに添加し、超音波をかけながらスターラーを用いて1時間攪拌し、炭素源供給材料を調製した。
 上記ボールミル処理後の一酸化ケイ素を含む粉末材料を、一酸化ケイ素質量が12gとなる量を秤量し、150mLのエタノールに添加した。そして、超音波をかけながらスターラーを用いて1時間攪拌して電極活物質供給材料を調製した。
 以後はサンプル1-1の調製と同様の手順により、サンプル1-2の混合材料(即ち各12gのSiOとPVAとを含み、純水150mLとエタノール150mLとの混合溶媒(体積比で水:エタノール=1:1)から成る混合材料)を得た。この混合材料の一部を採取し、サンプル1-1と同様にSiOの平均粒子径を算出した。結果を表1の該当欄に示す。
(サンプル1-3の調製)
 PVA12gを純水75mLに添加し、超音波をかけながらスターラーを用いて1時間攪拌し、炭素源供給材料を調製した。
 上記ボールミル処理後の一酸化ケイ素を含む粉末材料を、一酸化ケイ素質量が12gとなる量を秤量し、225mLのエタノールに添加した。そして、超音波をかけながらスターラーを用いて1時間攪拌して電極活物質供給材料を調製した。
 以後はサンプル1-1の調製と同様の手順により、サンプル1-3の混合材料(即ち各12gのSiOとPVAを含み、純水75mLとエタノール225mLとの混合溶媒(体積比で水:エタノール=1:3)から成る混合材料)を得た。この混合材料の一部を採取し、サンプル1-1と同様にSiOの平均粒子径を算出した。結果を表1の該当欄に示す。
(サンプル1-4の調製)
 PVA12gを純水300mLに添加し、超音波をかけながらスターラーを用いて1時間攪拌し、炭素源供給材料を調製した。
 上記ボールミル処理後の一酸化ケイ素を含む粉末材料を、一酸化ケイ素質量が12gとなる量を秤量し、上記炭素源供給材料に添加した。そして、超音波をかけながらスターラーを用いて1時間攪拌した。
 以後はサンプル1-1の調製と同様の手順により、サンプル1-4の混合材料(即ち各12gのSiOとPVAを純水300mLに混合してなる混合材料)を得た。この混合材料の一部を採取し、サンプル1-1と同様にSiOの平均粒子径を算出した。結果を表1の該当欄に示す。
(サンプル1-5の調製)
 上記ボールミル処理後の一酸化ケイ素を含む粉末材料を、一酸化ケイ素質量が12gとなる量を秤量し、300mLのエタノールに添加した。そして、超音波をかけながらスターラーを用いて1時間攪拌して電極活物質供給材料を調製した。
 次いでPVA12gを上記電極活物質供給材料に添加した。そして、超音波をかけながらスターラーを用いて1時間攪拌した。
 以後はサンプル1-1の調製と同様の手順により、サンプル1-5の混合材料(即ち各12gのSiOとPVAをエタノール300mLに混合してなる混合材料)を得た。この混合材料では、PVAが溶解せずに析出したままであったので平均粒子径を算出しなかった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すSiOの平均粒子径の結果から明らかなように、サンプル1-2の混合材料では、特に良好なSiOの分散性を示した。即ち、第2の溶媒であるエタノール(貧溶媒)の含有率と第1の溶媒である水との混合比率(EtOH:HO)を概ね1:2~2:1(より好ましくは1:1.5~1.5:1ここでは概ね1:1)とすることにより、電極活物質粒子相互の凝集を低減し得ることが確認された。水の混合比率が高い場合(例えばサンプル1-1やサンプル1-4)では、SiOの分散性は低下した。また、反対にエタノール等の貧溶媒の混合比率が高い場合(例えばサンプル1-3やサンプル1-5)では、PVAの溶解が困難で溶液中に析出する傾向になりSiOの分散性も低くなった。
(評価用セルの構築ならびに電気化学特性評価)
 上記サンプル1-1~1-5を用いて、それぞれ、評価用セルを作製した。具体的には、以下のとおりである。
 即ち、上記混合材料(各サンプル)をロータリーエバポレータを用いて乾燥させ、次いで得られた炭素源とSiOとの混合物を焼成した。焼成条件は、アルゴンガス雰囲気中において最高焼成温度を約1000℃に設定し、当該温度で約6時間の焼成を行った。なお、試料を200℃~300℃の温度域で予め1~5時間程度の仮焼成を行った後に最高焼成温度まで昇温した。これによりPVAの不要なヒドロキシ基を消失させることができる。
 こうして得られた焼成処理後のサンプルを解砕し、100メッシュの篩で分級して試験用電極活物質を得た。得られた100メッシュアンダーの電極活物質を用いて試験用電極を作製した。即ち、上記活物質と、平均粒子径13μmの黒鉛粒子と、PVDFとを、これらの質量比が85:10:5となるようにN-メチルピロリドンと混合して、スラリー状組成物(ペースト)を調製した。この組成物を厚み10μmの銅箔(日本製箔製)に塗布して乾燥させることにより、該銅箔の片面に厚み25μmの活物質層を形成した。これを銅箔と活物質層とを含む全体の電極密度が1.2mg/cmとなるようにプレスし、次いで直径16mmの円形に打ち抜いて試験用電極を作製した。
 対極としては直径15mm、厚み0.15mmの金属リチウム箔を使用した。セパレータとしては、直径22mm、厚み0.02mmの多孔質ポリオレフィンシートを使用した。電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比3:7の混合溶媒に、リチウム塩としてのLiPFを約1モル/Lの濃度で溶解させたものを使用した。
 これらの構成要素をステンレス製容器に組み込んで、厚み2mm、直径32mm(いわゆる2032型)の一般的形状の評価用コインセルを構築した。
 上記サンプル毎(即ち各サンプルに対応する電極活物質毎)に作製した各コインセルに対し、0.2C(1C即ち1時間で満充放電できる電流値の0.2倍の電流値)の定電流にて極間電圧が0.01Vとなるまで試験用電極にLiを吸蔵させる操作と、0.2Cの定電流にて極間電圧が1.2VとなるまでLiを放出させる操作とを計50回繰り返した。而して、1回目のLi吸蔵容量(放電容量)に対する50回目のLi放出容量(放電容量)の割合を容量維持率(%)として測定した。
 具体的には次式:(50回目のLi放出容量)/(1回目のLi吸蔵容量)×100より求めた。結果を表2に示す。
 表2から明らかなように、ここで開示された製造方法により製造されたサンプル1-1~1-3の電極活物質を採用した評価用セル(実際には当該電極活物質を負極活物質として使用したリチウム二次電池)は高い容量維持率を実現することができる。特に、第2の溶媒であるエタノール(貧溶媒)の含有率と第1の溶媒である水との混合比率(EtOH:HO)を概ね1:2~2:1(より好ましくは1:1.5~1.5:1ここでは概ね1:1)として調製したサンプル1-2の電極活物質を採用した評価用セルにおいて高い容量維持率が認められた。
Figure JPOXMLDOC01-appb-T000002
             <性能評価試験:2>
(サンプル2-1の調製)
 炭素源としてのポリビニルアルコール(PVA)0.5gを第1の溶媒としての純水150mLに添加し、超音波をかけながらスターラーを用いて1時間攪拌し、炭素源供給材料を調製した。
 また、市販の一酸化ケイ素粉末(SiO:シグマ・アルドリッチ社製品)とカーボンブラック(CB)粉末を、質量比でSiO:CB=10:1となるように遊星ボールミルに入れ、250rpmで3時間の粉砕・混合処理を行った。
 上記ボールミル処理により平均粒子径(光散乱法に基づくメジアン径:d50)が約400nmである一酸化ケイ素を含む粉末材料を、一酸化ケイ素質量が5gとなる量を秤量し、150mLのエタノールに添加した。そして、超音波をかけながらスターラーを用いて1時間攪拌し、一酸化ケイ素が分散した状態の電極活物質供給材料を調製した。
 次に、上記調製した電極活物質供給材料(第2の溶媒:エタノール)を、超音波をかけながらスターラーで攪拌しつつ上記調製した炭素源供給材料(第1の溶媒:純水)に添加した。
 次いで得られた混合材料、即ち5gのSiOと0.5gのPVAを含み、純水150mLとエタノール150mLとの混合溶媒(体積比で水:エタノール=1:1)から成る混合材料について90℃で12時間の還流処理を行った。これにより、サンプル2-1の混合材料を得た。該混合材料中のSiOの分散状態を調べるため、該混合材料の一部を採取して電子顕微鏡(SEM)での観察を行い、近接するSiO間の距離を目測で確認した。結果を表3の該当欄に示す。
(サンプル2-2の調製)
 PVA0.5gを純水150mLに添加し、超音波をかけながらスターラーを用いて1時間攪拌し、炭素源供給材料を調製した。
 上記ボールミル処理後の一酸化ケイ素を含む粉末材料を、一酸化ケイ素質量が5gとなる量を秤量し、150mLの純水に添加した。そして、超音波をかけながらスターラーを用いて1時間攪拌して電極活物質供給材料を調製した。
 以後はサンプル2-1の調製と同様の手順により、サンプル2-2の混合材料、即ち5gのSiOと0.5gのPVAを含み、純水300mLの溶媒から成る混合材料を得た。この混合材料の一部を採取し、サンプル2-1と同様にSEM観察を行った。結果を表3の該当欄に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、ここで開示される製造方法により製造された混合材料では良好なSiO粒子(一次粒子)の分散が認められる一方、純水に炭素源とSiOの両方を添加した混合材料では、SiO同士が顕著に凝集してしまい、分散性に問題があった。
(評価用セルの構築ならびに電気化学特性評価)
 上記性能評価試験1と同様に、上記サンプル2-1~2-2を用いて、それぞれ、評価用セル(2032型コインセル)を構築した。
 各コインセルに対し、上記性能評価試験1と同様に0.2Cの定電流にて極間電圧が0.01Vとなるまで試験用電極にLiを吸蔵させる操作と、0.2Cの定電流にて極間電圧が1.2VとなるまでLiを放出させる操作とを計20回繰り返し、1回目のLi吸蔵容量(放電容量)に対する20回目のLi放出容量(放電容量)の割合を容量維持率(%)として測定した。結果を表3に示す。
 表3から明らかなように、ここで開示された製造方法により製造されたサンプル2-1はSiOの分散性が良好であり、該サンプルの電極活物質を採用した評価用セル(実際には当該電極活物質を負極活物質として使用したリチウム二次電池)は高い容量維持率を実現することができた。
             <性能評価試験:3>
(サンプル3-1の調製)
 炭素源としてのポリビニルアルコール(PVA)0.5gを第1の溶媒としての純水150mLに添加し、超音波をかけながらスターラーを用いて1時間攪拌し、炭素源供給材料を調製した。
 また、市販の一酸化ケイ素粉末(SiO:シグマ・アルドリッチ社製品)とカーボンブラック(CB)粉末を、質量比でSiO:CB=10:1となるように遊星ボールミルに入れ、250rpmで3時間の粉砕・混合処理を行った。
 上記ボールミル処理により平均粒子径(光散乱法に基づくメジアン径:d50)が約400nmである一酸化ケイ素を含む粉末材料を、一酸化ケイ素質量が5gとなる量を秤量し、150mLのエタノールに添加した。そして、超音波をかけながらスターラーを用いて1時間攪拌し、一酸化ケイ素が分散した状態の電極活物質供給材料を調製した。
 次に、上記調製した電極活物質供給材料(第2の溶媒:エタノール)を、超音波をかけながらスターラーで攪拌しつつ上記調製した炭素源供給材料(第1の溶媒:純水)に添加した。
 次いで得られた混合材料、即ち5gのSiOと0.5gのPVAを含み、純水150mLとエタノール150mLとの混合溶媒(体積比で水:エタノール=1:1)から成る混合材料について90℃で12時間の還流処理を行った。
 上記還流処理後の混合材料(約300mL)を第3の溶媒としてのアセトン300mL中に入れた。アセトンはPVAに関する貧溶媒であり、アセトン中でSiOとPVAを含む球形状の微細な会合体が生成された。
 次いで、遠心分離機を用いて上記球状会合体を回収した。これにより、上記会合体(即ちSiOとPVAを含む混合物)からなるサンプル3-1の混合材料を得た。
 得られたサンプルのうち150mLを量り取り、遠心分離用チューブに入れて遠心分離機にセットし、2000rpmで2分間の遠心分離処理を行った。その後、上記チューブ内からSiOとPVAを含む層(以下「SiO-PVA層」という。)を分離するとともに、過剰なPVAのみからなるPVA粒子層の有無の確認と該PVA粒子層が存在する場合にはその層厚み(nm)をデジタルノギスによって測定した。結果を表4の該当欄ならびに図8に示す。
(サンプル3-2の調製)
 PVA5gを純水150mLに添加して炭素源供給材料を調製した以外は、サンプル3-1の調製プロセスと同様の手順(即ち混合材料調製→還流処理→アセトン処理→遠心分離処理)によって、上記会合体(即ちSiOとPVAを含む混合物)からなるサンプル3-2の混合材料を得た。そして、サンプル3-1の場合と同様の処理を行い、上記PVA粒子層の有無の確認と該PVA粒子層が存在する場合にはその層厚み(nm)をデジタルノギスによって測定した。結果を表4の該当欄ならびに図8に示す。
(サンプル3-3の調製)
 PVA5gを純水150mLに添加して炭素源供給材料を調製し、且つ、上記ボールミル処理後の一酸化ケイ素を含む粉末材料を、一酸化ケイ素質量が1gとなる量を秤量して150mLのエタノールに添加して電極活物質供給材料を調製した以外は、サンプル3-1の調製プロセスと同様の手順によって、上記会合体(即ちSiOとPVAを含む混合物)からなるサンプル3-3の混合材料を得た。そして、サンプル3-1および3-2の場合と同様の処理を行い、上記PVA粒子層の有無の確認と該PVA粒子層が存在する場合にはその層厚み(nm)をデジタルノギスによって測定した。結果を表4の該当欄ならびに図8に示す。
(サンプル3-4の調製)
 PVA12gを純水150mLに添加して炭素源供給材料を調製し、且つ、上記ボールミル処理後の一酸化ケイ素を含む粉末材料を、一酸化ケイ素質量が1.2gとなる量を秤量して150mLのエタノールに添加して電極活物質供給材料を調製した以外は、サンプル3-1の調製プロセスと同様の手順によって、上記会合体(即ちSiOとPVAを含む混合物)からなるサンプル3-4の混合材料を得た。そして、サンプル3-1~3の場合と同様の処理を行い、上記PVA粒子層の有無の確認と該PVA粒子層が存在する場合にはその層厚み(nm)をデジタルノギスによって測定した。結果を表4の該当欄ならびに図8に示す。
(サンプル3-5の調製)
 PVA12gを純水150mLに添加して炭素源供給材料を調製し、且つ、上記ボールミル処理後の一酸化ケイ素を含む粉末材料を、一酸化ケイ素質量が0.8gとなる量を秤量して150mLのエタノールに添加して電極活物質供給材料を調製した以外は、サンプル3-1の調製プロセスと同様の手順によって、上記会合体(即ちSiOとPVAを含む混合物)からなるサンプル3-5の混合材料を得た。そして、サンプル3-1~4の場合と同様の処理を行い、上記PVA粒子層の有無の確認と該PVA粒子層が存在する場合にはその層厚み(nm)をデジタルノギスによって測定した。結果を表4の該当欄ならびに図8に示す。
(サンプル3-6の調製)
 上記サンプル3-1の調製に使用したものと同じ炭素源供給材料と電極活物質調製材料とを使用し、サンプル3-1の調製プロセスと同様の手順によって上記還流処理まで行った後に、上記アセトンを使用した会合体形成処理を行うことなく、還流処理後の混合材料から吸引濾過によりSiOとPVAの混合物(サンプル3-6)を回収した。そして、サンプル3-1~5の場合と同様の処理を行い、上記PVA粒子層の有無の確認と該PVA粒子層が存在する場合にはその層厚み(nm)をデジタルノギスによって測定した。結果を表4の該当欄ならびに図8に示す。
Figure JPOXMLDOC01-appb-T000004
(評価用セルの構築ならびに電気化学特性評価)
 上記性能評価試験1と同様に、上記サンプル3-1~3-6を用いて、それぞれ、評価用セル(2032型コインセル)を構築した。
 そして、各コインセルに対して0.1Cの定電流にて極間電圧が0.01Vとなるまで試験用電極にLiを吸蔵させ、その後1.2VとなるまでLiを放出させる操作を行った。このときのLi脱離容量を活物質の質量で割った値を活物質容量(mAh/g)とした。結果を表4ならびに図8に示す。
 表4及び図8に示すように、各サンプルの電極活物質を採用した評価用セルでは何れも良好な活物質容量を有していたが、炭素源(PVA)と電極活物質(SiO)との混合比(PVA:SiO)が0.1:1~10:1の範囲であるとPVA粒子の存在量(即ちPVAの過剰量を反映する。)も比較的少なく、特に良好な活物質容量(850mAh/g以上、特に900~1200mAh/g)を示した。特に混合比(PVA:SiO)を1:1~5:1の範囲にすることにより、1000mAh/g以上(例えば1100~1200mAh/g)というたいへん良好な活物質容量が得られた。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。
 ここに開示されるいずれかのリチウム二次電池12および組電池10は、車両に搭載される電池として適した性能、特に容量維持率が高く耐久性に優れたものであり得る。また、電極活物質としてSiO等の金属酸化物を採用することにより高容量化を実現することができる。
 したがって本発明によると、図4に示すように、ここに開示されるいずれかのリチウム二次電池12(組電池10)を備えた車両1が提供される。特に、該リチウム二次電池12を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。
 ここで開示される製造方法によると、容量維持率(即ちサイクル特性)に優れ、高容量化を実現し得る電極活物質を提供することができる。従って、かかる電極活物質を利用することによって、高容量で耐久性のよいリチウム二次電池等の二次電池を提供することができる。このような特徴からここで開示される製造方法により製造される電極活物質を採用することにより、例えば車両を駆動する電源として利用される車載用二次電池(特には車載用リチウム二次電池)を提供することができる。

Claims (9)

  1.  表面が導電性炭素被膜で被覆された粒状電極活物質を製造する方法であって:
     前記炭素被膜を形成するための炭素源を、前記被覆の対象である粒状電極活物質が分散可能な所定の第1の溶媒に、溶解させることにより調製された炭素源供給材料を用意すること;
     前記被覆の対象である粒状電極活物質を、前記第1の溶媒と相溶性があり且つ該粒状電極活物質が分散可能な溶媒であって前記炭素源に対して貧溶媒である第2の溶媒に、分散させることにより調製された電極活物質供給材料を用意すること;
     前記用意した炭素源供給材料と電極活物質供給材料とを混合した混合材料を調製すること;および
     前記混合後に得られた前記電極活物質と前記炭素源との混合物を焼成することによって、該炭素源由来の導電性炭素被膜を該電極活物質の表面に形成すること;
     を包含する、製造方法。
  2.  前記電極活物質は、一般式:SiO(式中のxは0<x<2を満足する実数)で示されるケイ素酸化物を主体に構成されている、請求項1に記載の製造方法。
  3.  前記炭素源は水溶性化合物であり、前記第1の溶媒は水性溶媒であり、前記第2の溶媒は水と相溶性のある非水溶媒である、請求項1又は2に記載の製造方法。
  4.  前記焼成の前に、前記混合材料を還流処理すること、
     をさらに包含する、請求項1~3のいずれかに記載の製造方法。
  5.  前記第2の溶媒とは異なる溶媒であって前記粒状電極活物質が分散可能で且つ前記炭素源に対して貧溶媒である第3の溶媒に、前記焼成前の混合材料を添加すること、をさらに包含し、
     該第3の溶媒に添加した後の前記電極活物質と前記炭素源との混合物を焼成する、請求項1~4のいずれかに記載の製造方法。
  6.  1質量部の前記粒状電極活物質に対して1~5質量部の炭素源が混合されるように、前記炭素源供給材料と電極活物質供給材料とを混合して前記混合材料を調製する、請求項1~5のいずれかに記載の製造方法。
  7.  請求項1~6のいずれかに記載の製造方法により製造された電極活物質。
  8.  請求項7に記載の電極活物質を正極又は負極に備えるリチウム二次電池。
  9.  請求項8に記載のリチウム二次電池を備える、車両。
PCT/JP2010/055393 2010-03-26 2010-03-26 電極活物質の製造方法 WO2011118026A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/637,070 US10312544B2 (en) 2010-03-26 2010-03-26 Method for manufacturing electrode active material
PCT/JP2010/055393 WO2011118026A1 (ja) 2010-03-26 2010-03-26 電極活物質の製造方法
CN201080065754.5A CN102812582B (zh) 2010-03-26 2010-03-26 电极活性物质的制造方法
JP2012506740A JP5553180B2 (ja) 2010-03-26 2010-03-26 電極活物質の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055393 WO2011118026A1 (ja) 2010-03-26 2010-03-26 電極活物質の製造方法

Publications (1)

Publication Number Publication Date
WO2011118026A1 true WO2011118026A1 (ja) 2011-09-29

Family

ID=44672615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055393 WO2011118026A1 (ja) 2010-03-26 2010-03-26 電極活物質の製造方法

Country Status (4)

Country Link
US (1) US10312544B2 (ja)
JP (1) JP5553180B2 (ja)
CN (1) CN102812582B (ja)
WO (1) WO2011118026A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445878B2 (ja) * 2010-04-26 2014-03-19 トヨタ自動車株式会社 電極活物質の製造方法
US20160028118A1 (en) * 2013-03-01 2016-01-28 Nec Corporation Electrolyte solution for secondary batteries, and secondary battery using same
US9711825B2 (en) 2013-03-01 2017-07-18 Nec Corporation Lithium ion secondary battery
US9780411B2 (en) 2013-03-01 2017-10-03 Nec Corporation Nonaqueous electrolyte solution secondary battery
WO2019225387A1 (ja) * 2018-05-24 2019-11-28 本田技研工業株式会社 複合粒子、複合粒子の製造方法、リチウムイオン二次電池用電極、およびリチウムイオン二次電池
KR20210066261A (ko) * 2019-11-28 2021-06-07 한국과학기술연구원 이오노머-이오노머 지지체 복합체, 이의 제조방법 및 상기 이오노머-이오노머 지지체 복합체를 포함하는 연료전지용 촉매 전극

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109747B1 (ko) * 2011-04-06 2012-02-15 (주)신행건설 분진 및 가스상의 대기오염물질 동시 제거를 위한 활성탄 및 이를 이용한 박판 전극의 제조방법
KR20140075836A (ko) * 2012-11-27 2014-06-20 삼성전기주식회사 전극 구조체 및 그 제조 방법, 그리고 상기 전극 구조체를 구비하는 에너지 저장 장치
CN103219519B (zh) * 2013-04-28 2015-06-17 中国科学院苏州纳米技术与纳米仿生研究所 一种硫-石墨烯复合结构锂硫电池正极材料制备方法
JP6196183B2 (ja) * 2014-04-22 2017-09-13 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法、並びに非水電解質二次電池用負極活物質層、非水電解質二次電池用負極、非水電解質二次電池
KR102231209B1 (ko) * 2014-05-22 2021-03-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
CN112934427A (zh) * 2019-11-26 2021-06-11 新疆硅基新材料创新中心有限公司 一种破碎、研磨SiOX的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186865A (ja) * 1997-09-02 1999-03-30 Denso Corp 二次電池およびその製造方法
JP2002042806A (ja) * 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2008210618A (ja) * 2007-02-26 2008-09-11 Hitachi Maxell Ltd 非水電解質二次電池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4026207B2 (ja) 1997-12-16 2007-12-26 宇部興産株式会社 リチウムイオン非水二次電池用負極材料の製造方法
JP3960691B2 (ja) 1998-09-10 2007-08-15 三菱化学株式会社 非水系炭素被覆リチウム二次電池用負極活物質
JP2000243396A (ja) * 1999-02-23 2000-09-08 Hitachi Ltd リチウム二次電池とその製造方法及びその負極材並びに電気機器
US20030160215A1 (en) * 2002-01-31 2003-08-28 Zhenhua Mao Coated carbonaceous particles particularly useful as electrode materials in electrical storage cells, and methods of making the same
US7618678B2 (en) * 2003-12-19 2009-11-17 Conocophillips Company Carbon-coated silicon particle powders as the anode material for lithium ion batteries and the method of making the same
CN100547830C (zh) * 2004-03-08 2009-10-07 三星Sdi株式会社 可充电锂电池的负极活性物质及其制法以及包含它的可充电锂电池
JP4519592B2 (ja) * 2004-09-24 2010-08-04 株式会社東芝 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP2007258111A (ja) * 2006-03-24 2007-10-04 Fujifilm Corp 燃料電池用触媒材料、触媒膜、電極膜接合体および燃料電池
JP2007214137A (ja) 2007-03-12 2007-08-23 Mitsubishi Chemicals Corp 非水系炭素被覆リチウム二次電池用負極活物質
JP5176400B2 (ja) 2007-06-14 2013-04-03 住友大阪セメント株式会社 電極材料の製造方法と電極材料および電極並びに電池
CN101442124B (zh) 2007-11-19 2011-09-07 比亚迪股份有限公司 锂离子电池负极用复合材料的制备方法及负极和电池
CN101439972B (zh) * 2007-11-21 2013-01-09 比亚迪股份有限公司 硅碳复合材料及其制备方法以及电池负极和锂离子电池
JP2009277486A (ja) * 2008-05-14 2009-11-26 Toyota Motor Corp Si/C複合体型負極活物質の製造方法
US9123940B2 (en) * 2008-06-02 2015-09-01 Dainichiseika Color & Chemicals Mfg. Co, Ltd. Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof
JP2010165610A (ja) 2009-01-19 2010-07-29 Toyota Motor Corp 電極活物質の製造方法
JP2011204564A (ja) * 2010-03-26 2011-10-13 Toyota Motor Corp 電極活物質の製造方法
WO2013148579A1 (en) * 2012-03-29 2013-10-03 Cebix Inc. Pegylated c-peptide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186865A (ja) * 1997-09-02 1999-03-30 Denso Corp 二次電池およびその製造方法
JP2002042806A (ja) * 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2008210618A (ja) * 2007-02-26 2008-09-11 Hitachi Maxell Ltd 非水電解質二次電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445878B2 (ja) * 2010-04-26 2014-03-19 トヨタ自動車株式会社 電極活物質の製造方法
US20160028118A1 (en) * 2013-03-01 2016-01-28 Nec Corporation Electrolyte solution for secondary batteries, and secondary battery using same
US9711825B2 (en) 2013-03-01 2017-07-18 Nec Corporation Lithium ion secondary battery
US9780411B2 (en) 2013-03-01 2017-10-03 Nec Corporation Nonaqueous electrolyte solution secondary battery
US9941545B2 (en) * 2013-03-01 2018-04-10 Nec Corporation Electrolyte solution for secondary batteries, and secondary battery using same
WO2019225387A1 (ja) * 2018-05-24 2019-11-28 本田技研工業株式会社 複合粒子、複合粒子の製造方法、リチウムイオン二次電池用電極、およびリチウムイオン二次電池
KR20210066261A (ko) * 2019-11-28 2021-06-07 한국과학기술연구원 이오노머-이오노머 지지체 복합체, 이의 제조방법 및 상기 이오노머-이오노머 지지체 복합체를 포함하는 연료전지용 촉매 전극
KR102299218B1 (ko) * 2019-11-28 2021-09-08 한국과학기술연구원 이오노머-이오노머 지지체 복합체, 이의 제조방법 및 상기 이오노머-이오노머 지지체 복합체를 포함하는 연료전지용 촉매 전극

Also Published As

Publication number Publication date
JP5553180B2 (ja) 2014-07-16
JPWO2011118026A1 (ja) 2013-07-04
CN102812582A (zh) 2012-12-05
US20130059205A1 (en) 2013-03-07
CN102812582B (zh) 2015-07-01
US10312544B2 (en) 2019-06-04

Similar Documents

Publication Publication Date Title
JP5445878B2 (ja) 電極活物質の製造方法
JP5553180B2 (ja) 電極活物質の製造方法
JP6236197B2 (ja) リチウム電池用正極及びリチウム電池
TWI708422B (zh) 非水電解質二次電池用負極活性物質、非水電解質二次電池、非水電解質二次電池用負極材料的製造方法、以及非水電解質二次電池的製造方法
JP5445874B2 (ja) リチウム二次電池および該電池用正極
JP5370790B2 (ja) リチウム二次電池及び該電池用正極
JP6239476B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2011036759A1 (ja) リチウム二次電池及びその製造方法
JP5818115B2 (ja) 非水電解液二次電池およびその利用
JP2011204564A (ja) 電極活物質の製造方法
CN111226329B (zh) 硅-碳复合物和包含所述硅-碳复合物的锂二次电池
WO2018179934A1 (ja) 負極材料および非水電解質二次電池
WO2011045848A1 (ja) 非水電解液型リチウムイオン二次電池
JP5855737B2 (ja) リチウムイオン電池
JP5564872B2 (ja) 非水電解質二次電池
WO2020110943A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2017145654A1 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法
WO2020110942A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5585847B2 (ja) 電極活物質の製造方法
KR20230074011A (ko) 리튬이차전지
CN118843959A (zh) 包含不同类型的导电材料的锂硫电池用正极和包含其的锂离子二次电池
JP2024513448A (ja) 硫黄-炭素複合体を含む正極及びこれを含むリチウムイオン二次電池
JP2017152238A (ja) 負極活物質、それを用いた負極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065754.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012506740

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13637070

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10848419

Country of ref document: EP

Kind code of ref document: A1