WO2011114963A1 - 溶接部の特性に優れたマルテンサイトステンレス鋼およびマルテンサイトステンレス鋼材 - Google Patents

溶接部の特性に優れたマルテンサイトステンレス鋼およびマルテンサイトステンレス鋼材 Download PDF

Info

Publication number
WO2011114963A1
WO2011114963A1 PCT/JP2011/055502 JP2011055502W WO2011114963A1 WO 2011114963 A1 WO2011114963 A1 WO 2011114963A1 JP 2011055502 W JP2011055502 W JP 2011055502W WO 2011114963 A1 WO2011114963 A1 WO 2011114963A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
content
martensitic stainless
γpot
steel
Prior art date
Application number
PCT/JP2011/055502
Other languages
English (en)
French (fr)
Inventor
柘植 信二
治彦 梶村
井上 裕滋
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to KR1020127023989A priority Critical patent/KR101479826B1/ko
Priority to US13/583,258 priority patent/US20130039801A1/en
Priority to CA2791878A priority patent/CA2791878C/en
Priority to CN201180013767.2A priority patent/CN102803538B/zh
Publication of WO2011114963A1 publication Critical patent/WO2011114963A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention for example, in a welded structure such as a building structure or a ship structure, is produced using martensitic stainless steel suitably used for a portion requiring welding, and the martensitic stainless steel. Further, the present invention relates to a martensitic stainless steel material that is excellent in impact properties and corrosion resistance of a welded portion, Ni is reduced, and the cost is low.
  • Martensitic stainless steel can be easily increased in strength by quenching heat treatment, and is therefore widely used for tools such as blades, springs, and brake disks.
  • martensitic stainless steel is not used for welded structures because it has low toughness and poor weldability.
  • steels containing 13 to 17% Cr steel materials with improved toughness, weldability and corrosion resistance have been developed by reducing the C content and adding approximately 3% or more of Ni. It is used as a steel pipe for runners and oil wells (for example, Patent Documents 1 to 4).
  • Patent Document 4 directed to a martensite single-phase structure and the martensite phase are mainly used. And a multiphase structure containing a ferrite phase or a retained austenite phase is disclosed.
  • the martensitic stainless steel of Patent Document 5 has a metal structure mainly composed of a martensite phase including a ferrite phase, has poor hot workability, and often has a problem of reducing the production yield of steel materials. Further, in order to ensure the mechanical characteristics, it is necessary to add an austenite forming element in an amount commensurate with the increased amounts of Cr and Mo, leading to an increase in alloy costs. That is, steel containing a large amount of Ni has been put to practical use as steel that can maintain the characteristics of the base metal and the welded portion satisfactorily. However, there has been no practical steel that has good hot workability and has corrosion resistance equivalent to that of SUS430 and excellent mechanical properties in the base material and the welded portion, and has a reduced Ni content and is inexpensive.
  • Non-Patent Document 1 shows an example in which high-purity stainless steel containing 17% Cr is used as a base and Ni or Mn is added. However, an example in which Ni and Mn are added in combination is not disclosed, and the corrosion resistance is not considered.
  • the present inventors use steel containing 16% Cr and 2% Ni as a base, and about steels containing 2% or more of Mn.
  • the martensitic stainless steel having excellent weld properties according to an aspect of the present invention is C: 0.003-0.03%, Si: 0.01-1.0%, Mn : 3.0 to 6.0%, P: 0.05% or less, S: 0.003% or less, Ni: 1.0 to 3.0%, Cr: 15.0 to 18.0%, Mo: 0 to 1.0%, Cu: 0 to 2.0%, Ti: 0 to 0.05%, N: 0.05% or less, Al: 0.001 to 0.1%, O: 0.005% It contains the following, and the balance consists of Fe and inevitable impurities.
  • the total amount of C and N is 0.060% or less
  • ⁇ max represented by Formula 1 is 80 or more
  • ⁇ pot represented by Formula 2 is 60 to 90.
  • ⁇ max 420 ⁇ C% + 470 ⁇ N% + 23 ⁇ Ni% + 9 ⁇ Cu% + 7 ⁇ Mn% ⁇ 11.5 ⁇ Cr% ⁇ 11.5 ⁇ Si% ⁇ 52 ⁇ Al% + 189
  • Formula 1 ⁇ pot 700 ⁇ C% + 800 ⁇ N% + 10 ⁇ (Mn% + Cu%) + 20 ⁇ Ni% ⁇ 9.3 ⁇ Si% ⁇ 6.2 ⁇ Cr% ⁇ 9.3 ⁇ Mo% ⁇ 74.4 ⁇ Ti% ⁇ 37.2 ⁇ Al% + 63.2 Equation 2
  • C%, N%, Ni%, Cu%, Mn%, Cr%, Si%, Al%, Mo%, and Ti% indicate the content (mass%) of each element.
  • the martensitic stainless steel excellent in the properties of the weld according to one aspect of the present invention described in (1) further contains Nb, and the ⁇ pot calculated by Formula 3 instead of Formula 2 is It may be 60-90.
  • ⁇ pot 700 ⁇ C% + 800 ⁇ N% + 10 ⁇ (Mn% + Cu%) + 20 ⁇ Ni% ⁇ 9.3 ⁇ Si% ⁇ 6.2 ⁇ Cr% ⁇ 9.3 ⁇ Mo% ⁇ 3.1 ⁇ Nb% ⁇ 74.4 ⁇ Ti% ⁇ 37.2 ⁇ Al% + 63.2
  • C%, N%, Mn%, Cu%, Ni%, Si%, Cr%, Mo%, Nb%, Ti%, and Al% indicate the content (mass%) of each element.
  • the martensitic stainless steel excellent in the properties of the weld according to one aspect of the present invention described in (1) or (2) further includes one or both of V and W. Also good.
  • the martensitic stainless steel excellent in the properties of the weld according to one aspect of the present invention described in any one of (1) to (3) may further contain Co.
  • the martensitic stainless steel excellent in the properties of the weld according to one aspect of the present invention described in any one of (1) to (4) above is further selected from B, Ca, Mg, and REM You may contain 1 type, or 2 or more types.
  • a martensitic stainless steel material according to an aspect of the present invention has the composition described in any one of (1) to (5) above, 5 to 30% ferrite phase, and 0 to 20%. Of the remaining austenite phase, and the balance is a martensite phase.
  • the martensitic stainless steel material according to one aspect of the present invention described in (6) may have a yield strength of 400 to 800 MPa.
  • the martensitic steel having the composition of one embodiment of the present invention exhibits the effect of being excellent in the toughness and corrosion resistance of the weld.
  • desired characteristics can be obtained, so that mass productivity can be improved. Therefore, one embodiment of the present invention can greatly contribute to the industry.
  • the unit of content of each component in the following is mass%.
  • C is contained in an amount of 0.003% or more in order to ensure the strength of the steel.
  • the C content is limited to 0.003 to 0.03%.
  • the C content is preferably 0.005 to 0.025%.
  • Si is added in an amount of 0.01% or more for deoxidation. However, if Si is added in excess of 1.0%, the toughness deteriorates. Therefore, the upper limit of Si content is limited to 1.0%.
  • the Si content is preferably 0.2 to 0.5%.
  • Mn is added in an amount of 3.0% or more to improve the toughness of the weld.
  • an increase in the amount of Mn deteriorates the corrosion resistance.
  • the Mn content and ⁇ max, ⁇ pot, and the ratio of the ferrite phase in the steel material of the present embodiment, which will be described later, are closely related, and through the control of the metal structure, the Mn content is increased. Corresponding deterioration of corrosion resistance is suppressed.
  • Mn exceeds 6.0%, desired corrosion resistance cannot be ensured. For this reason, the upper limit of Mn content is limited to 6.0%.
  • the Mn content is preferably 3.5 to 5.5%.
  • PP limits the P content to 0.05% or less in order to degrade hot workability and toughness.
  • the P content is preferably 0.03% or less.
  • P is an element inevitably contained in steel, and the smaller the content, the better.
  • P is unavoidably contained in an amount of about 0.005% or more.
  • S deteriorates hot workability, toughness, and corrosion resistance
  • the S content is limited to 0.003% or less.
  • the S content is preferably 0.001% or less.
  • S is an element inevitably contained in the steel, and the smaller the content, the better.
  • S is unavoidably contained in an amount of about 0.0001% or more.
  • Ni stabilizes the austenite structure and improves the corrosion resistance and toughness against various acids. For this reason, Ni is contained 1.0% or more. On the other hand, Ni is an expensive alloy, and the Ni content is limited to 3.0% or less from the viewpoint of cost. The Ni content is preferably 1.5 to 2.5%.
  • ⁇ Cr is contained at 15.0% or more in order to ensure basic corrosion resistance.
  • content of Cr shall be 15.0% or more and 18.0% or less.
  • the Cr content is preferably 16 to 17%.
  • Mo is an extremely effective element for additionally increasing the corrosion resistance of stainless steel, and is an optional component (selective component) that is included as necessary. Since Mo is a very expensive element, when it is added to increase corrosion resistance, the upper limit of the Mo content is set to 1.0% or less from the viewpoint of cost. When Mo is added, the Mo content is preferably 0.1 to 0.5%.
  • Cu is an element having an action of additionally enhancing the corrosion resistance of stainless steel to acid and improving toughness, and is an optional component (optional component) contained as necessary.
  • ⁇ Cu precipitates exceeding the solid solubility, and embrittlement occurs.
  • the upper limit of the Cu content is set to 2.0%.
  • Cu has the effect of stabilizing the austenite phase and improving toughness.
  • the Cu content is preferably 0.2 to 1.5%.
  • Ti is an element that forms oxides, nitrides and sulfides in a very small amount, and refines the crystal grains of the solidified steel and high-temperature heated structure, and is optionally added as an optional component (selective component) ).
  • an optional component selective component
  • Ti is contained in excess of 0.05%, a ferrite phase is generated and TiN is generated to inhibit the toughness of the steel.
  • the upper limit of the Ti content is set to 0.05%.
  • the Ti content is preferably 0.003 to 0.020%.
  • N is contained in an amount of 0.01% or more in order to increase the strength of the martensite phase. However, if N exceeds 0.05%, the strength becomes too high and the toughness is deteriorated. For this reason, the N content is limited to 0.05% or less.
  • the N content is preferably 0.01 to 0.04%.
  • Al is an important element for deoxidation of steel and is contained together with Si in order to reduce oxygen in the steel. Reduction of the amount of oxygen is essential for securing toughness, and for this purpose, it is necessary to contain 0.001% or more of Al.
  • Al is an element that increases the ferrite phase, and when Al is added excessively, toughness is inhibited. When Al exceeds 0.1%, the toughness is significantly reduced. For this reason, the upper limit of Al content is defined as 0.1%.
  • the Al content is preferably 0.01 to 0.05%.
  • O is an element that constitutes an oxide that is representative of non-metallic inclusions and is inevitably contained in steel. Therefore, the smaller the O content, the better. However, extremely reducing it causes an increase in cost. For this reason, usually O is unavoidably contained in an amount of about 0.001% or more. On the other hand, when an excessive amount of O is contained, toughness is inhibited. Moreover, when a coarse cluster-like oxide is generated, it causes surface defects. For this reason, the upper limit of the O content is set to 0.005%.
  • the sum of the C and N contents (C + N) is related to the strength of the steel.
  • the sum of the contents of C and N (C + N) exceeds 0.060%, the strength becomes too high and the toughness is inhibited.
  • the upper limit of the sum of the contents of C and N (C + N) is set to 0.060%.
  • the sum of the contents of C and N (C + N) is preferably 0.015 to 0.050%.
  • ⁇ max shown in the following formula 1 is a calculation formula for predicting the maximum value of the ratio of the austenite phase generated in the temperature range of 900 to 1000 ° C.
  • the toughness of steel can be increased.
  • ⁇ max is determined to be 80% or more.
  • ⁇ max is preferably 85% or more.
  • ⁇ max 420 ⁇ C% + 470 ⁇ N% + 23 ⁇ Ni% + 9 ⁇ Cu% + 7 ⁇ Mn% ⁇ 11.5 ⁇ Cr% ⁇ 11.5 ⁇ Si% ⁇ 52 ⁇ Al% + 189 Formula 1
  • C%, N%, Ni%, Cu%, Mn%, Cr%, Si%, and Al% indicate the content (mass%) of each element.
  • ⁇ pot shown in the following formula 2 is a calculation formula indicating the ratio of the martensite phase in the cast state, and also corresponds to the ratio of the austenite phase during hot working.
  • the range of ⁇ pot is determined in order to ensure hot workability.
  • the upper limit of ⁇ pot depends on the amount of Mn and S that affect the hot workability, but in this embodiment, if ⁇ pot exceeds 90%, the problem of significantly reducing the production yield of steel materials occurs. For this reason, the upper limit of ⁇ pot is set to 90%.
  • ⁇ pot is less than 60%, C and N are concentrated in the martensite phase generated in the welded portion and become hard, resulting in a heterogeneous structure. Further, since the corrosion resistance of the martensite phase enriched with alloy elements such as C, N and Mn is lowered, the lower limit of ⁇ pot is set to 60%. ⁇ pot is preferably 65 to 85%.
  • ⁇ pot 700 ⁇ C% + 800 ⁇ N% + 10 ⁇ (Mn% + Cu%) + 20 ⁇ Ni% ⁇ 9.3 ⁇ Si% ⁇ 6.2 ⁇ Cr% ⁇ 9.3 ⁇ Mo% ⁇ 74.4 ⁇ Ti% ⁇ 37.2 ⁇ Al% + 63.2 Equation 2
  • C%, N%, Ni%, Cu%, Mn%, Cr%, Si%, Al%, Mo%, and Ti% indicate the content (mass%) of each element.
  • Nb is an element effective for refining the crystal grains of the hot rolled structure. Furthermore, Nb also has an effect of increasing corrosion resistance. Nitride and carbide formed by Nb are generated in the course of hot working and heat treatment, and have the effect of suppressing the growth of crystal grains and strengthening steel and steel materials. For this purpose, Nb may be contained in an amount of 0.01% or more. On the other hand, when an excessive amount of Nb is added, it precipitates as an undissolved precipitate during heating before hot rolling, thereby inhibiting toughness. For this reason, the upper limit of Nb content is defined as 0.2%. When Nb is contained, the Nb content is preferably 0.03 to 0.10%.
  • ⁇ pot shown in the following formula 3 is a calculation formula indicating the ratio of the martensite phase in the cast state when Nb is contained, and also corresponds to the ratio of the austenite phase during hot working.
  • the ⁇ pot calculated by the expression 3 with the Nb term added is set to 60 to 90% instead of the expression 2. Even when Nb is contained, ⁇ pot is preferably 65 to 85%.
  • ⁇ pot 700 ⁇ C% + 800 ⁇ N% + 10 ⁇ (Mn% + Cu%) + 20 ⁇ Ni% ⁇ 9.3 ⁇ Si% ⁇ 6.2 ⁇ Cr% ⁇ 9.3 ⁇ Mo% ⁇ 3.1 ⁇ Nb% ⁇ 74.4 ⁇ Ti% ⁇ 37.2 ⁇ Al% + 63.2 Formula 3
  • C%, N%, Mn%, Cu%, Ni%, Si%, Cr%, Mo%, Nb%, Ti%, and Al% indicate the content (mass%) of each element.
  • V and W are elements added to additionally enhance the corrosion resistance of the duplex stainless steel.
  • V may be contained in an amount of 0.05% or more for the purpose of improving the corrosion resistance. However, if V is contained in excess of 0.5%, coarse V-based carbonitrides are generated and toughness is deteriorated. Therefore, the upper limit of V content is limited to 0.5%.
  • the V content is preferably 0.1 to 0.3%.
  • W like Mo, is an element that additionally improves the corrosion resistance of stainless steel, and has a higher solid solubility than V. In the present embodiment, for the purpose of improving the corrosion resistance, W may be contained in a range of 1.0% or less. When W is contained, the content of W is preferably 0.05 to 0.5%. That is, one or both of V and W having the contents defined above may be contained.
  • Co is an element effective for enhancing the toughness and corrosion resistance of steel, and may be selectively added.
  • the Co content is preferably 0.03% or more. If Co is contained in an amount exceeding 1.0%, an effect commensurate with the cost cannot be exhibited because it is an expensive element. For this reason, the upper limit of Co content is defined as 1.0%.
  • the Co content is preferably 0.03 to 0.5%.
  • B, Ca, Mg, and REM may be contained as necessary.
  • REM is a rare earth metal, and is selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • B, Ca, Mg, and REM are all elements that improve the hot workability of steel, and one or more of them may be added for that purpose. When an excessive amount of B, Ca, Mg, or REM is added, the hot workability and toughness are lowered. Therefore, the upper limit of the content is determined as follows. The upper limit of each content of B and Ca is 0.0050%.
  • the upper limit of the Mg content is 0.0030%.
  • the upper limit of the content of REM is 0.10%.
  • Each content of B and Ca is preferably 0.0005 to 0.0030%.
  • the Mg content is preferably 0.0001 to 0.0015%.
  • the REM content is preferably 0.005 to 0.05%.
  • the REM content is the sum of the contents of lanthanoid rare earth elements such as La and Ce.
  • the martensitic stainless steel material of this embodiment has the composition of the martensitic stainless steel of this embodiment described above and a metal structure that satisfies the following requirements.
  • the ferrite phase is soft and contains a certain amount, thereby suppressing an excessive increase in strength and finely controlling crystal grains through a two-phase mixed structure.
  • the improvement of the toughness of the martensitic stainless steel material of the present embodiment is realized.
  • the ferrite phase needs to be at least 5%.
  • the ratio of the ferrite phase is set to 30% or less.
  • the proportion of the ferrite phase is preferably 5 to 20%.
  • This ferrite phase ratio is realized through the manufacturing conditions of the steel material in addition to the chemical composition, ⁇ max, and ⁇ pot.
  • the ferrite phase in the above range can be realized by selecting the production conditions from the range of the production conditions of ordinary stainless steel materials. For example, under the rolling conditions, the heating temperature for hot rolling may be selected from 1150 to 1250 ° C.
  • the quenching heat treatment temperature may be selected from 850 to 950 ° C.
  • the tempering heat treatment temperature may be selected from 550 to 750 ° C.
  • the soaking time of the quenching heat treatment temperature is preferably about 5 to 30 minutes.
  • the soaking time of the tempering heat treatment temperature is preferably about 10 minutes to 1 hour.
  • the retained austenite phase is generated by the austenite phase existing at high temperature remaining untransformed.
  • This residual austenite phase is soft and increases the toughness of the steel material.
  • the upper limit of the ratio of a retained austenite phase is set to 20%.
  • the chemical component is such that Formula 4 is 200 ° C. or higher.
  • the retained austenite phase ratio exceeds 20% of the upper limit defined in the present embodiment. Further, since the retained austenite phase ratio may be 0%, it is not necessary to set the upper limit of the Ms value (° C.) shown in Equation 4. Within the composition range of the present embodiment, the Ms value can be set high within an allowable range. In addition, the ratio of a retained austenite phase can be calculated
  • Ms 1305-41.7 ⁇ (Cr% + Mo% + Cu%) ⁇ 61 ⁇ Ni% ⁇ 33 ⁇ Mn% ⁇ 27.8 ⁇ Si% ⁇ 1667 ⁇ (C% + N%) Equation 4
  • Cr%, Mo%, Cu%, Ni%, Mn%, Si%, C%, and N% indicate the content (mass%) of each element.
  • the balance other than the ferrite phase and the retained austenite phase is the martensite phase, and the sum of the proportions of the three phases becomes 100%.
  • the yield strength of the martensitic stainless steel material of this embodiment is preferably 400 to 800 MPa.
  • the present embodiment relates to martensitic stainless steel and steel materials mainly composed of a martensite phase structure, and has high strength and excellent toughness. For this reason, when the yield strength is less than 400 MPa, the value applied to the high-strength structural member targeted by the present embodiment is insufficient. On the other hand, when the yield strength exceeds 800 MPa, the desired weld toughness cannot be secured even if the metal structure is appropriately controlled. Therefore, the yield strength of the martensitic stainless steel material of this embodiment is preferably 400 to 800 MPa.
  • Tables 1 to 4 show the evaluation results of the chemical composition and joint characteristics of the test steel. These steels were produced by the following method. A 50 kg steel ingot was produced by vacuum melting in a laboratory, and this steel ingot was forged to obtain a rolling test piece having a thickness of 60 mm ⁇ width 110 mm ⁇ length 150 mm. Thereafter, the rolling test piece was hot-rolled to a thickness of 12 mm.
  • the chemical compositions in Tables 1 to 3 are the results of analyzing specimens collected from this hot-rolled steel sheet.
  • the components other than those listed in Tables 1 to 3 (remainder) are Fe and inevitable impurity elements.
  • the content of components whose content is not described indicates an impurity level.
  • REM means a lanthanoid rare earth element, and the content of REM indicates the total of these elements.
  • Steel numbers A to U are examples of the present invention, and V to AG are comparative examples.
  • Tables 5 to 8 show the manufacturing conditions, hot workability, metal structure, and base material characteristics of the steel material of this example.
  • a rolling test piece having a thickness of 60 mm, a width of 110 mm, and a length of 150 mm was heated to a predetermined hot rolling heating temperature, and then rolled to a thickness of 12 mm by a plurality of reductions.
  • the temperature at the time of final reduction is shown in Tables 5 and 6 as the hot rolling finishing temperature.
  • the size of the ear crack generated in the ear part of the steel plate obtained by this hot rolling is measured, and when the maximum ear crack is 5 mm or less, it is evaluated as good, and the maximum ear crack is 5 mm. When exceeding, it evaluated as bad (bad) and displayed in the item "hot workability" of Tables 5 and 6.
  • the metal structure of the obtained steel sheet was investigated by the following method with respect to the steel sheet obtained by performing either one or both of the quenching heat treatment and the tempering heat treatment.
  • the plate thickness cross section was etched to reveal a metal structure (micro structure).
  • the metal structure was observed with an optical microscope, and the area ratio of the ferrite phase was determined by image analysis.
  • a sample having a size of 3 mm ⁇ 23 mm ⁇ 23 mm with a 1 ⁇ 4 portion of the plate thickness as the measurement surface was prepared, and the residual austenite phase ratio was quantified by X-ray diffraction.
  • a tensile test and an impact test were performed by the following methods.
  • a round bar tensile test piece having a diameter of 10 mm in diameter and perpendicular to the rolling direction and having a diameter of 10 mm and a length of 60 mm was collected.
  • a tensile test was performed using this test piece, and a 0.2% yield strength was measured.
  • a JIS No. 4 full-size Charpy test piece in which a 2 mm V groove was formed was produced. Using this test piece, the test was conducted twice at -60 ° C., and the impact value was measured. The average value of the impact values obtained was shown as impact value 2.
  • martensitic stainless steel having excellent properties of the welded portion can be obtained, and by satisfying the requirements related to the metal structure, the base material and the welded portion can be obtained. It became clear that a martensitic stainless steel material having excellent characteristics can be obtained.
  • an economical martensitic stainless steel material having favorable weld properties and low Ni content. For this reason, an inexpensive high-strength steel material applicable to a large structure can be provided.
  • the mass productivity can be improved and it can greatly contribute to the industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 このマルテンサイトステンレス鋼は、質量%で、C:0.003~0.03%、Si:0.01~1.0%、Mn:3.0~6.0%、P:0.05%以下、S:0.003%以下、Ni:1.0~3.0%、Cr:15.0~18.0%、Mo:0~1.0%、Cu:0~2.0%、Ti:0~0.05%、N:0.05%以下、Al:0.001~0.1%、О:0.005%以下を含有し、残部がFeおよび不可避的不純物からなり、CとNの合計量が0.060%以下であり、かつ式1で示されるγmaxが80以上であり、式2で示されるγpotが60~90である。 γmax=420×C%+470×N%+23×Ni%+9×Cu%+7×Mn%-11.5×Cr%-11.5×Si%-52×Al%+189 ・・・ 式1 γpot=700×C%+800×N%+10×(Mn%+Cu%)+20×Ni%-9.3×Si%-6.2×Cr%-9.3×Mo%-74.4×Ti%-37.2×Al%+63.2 ・・・ 式2 ここで、C%、N%、Ni%、Cu%、Mn%、Cr%、Si%、Al%、Mo%、Ti%は、それぞれの元素の含有量(質量%)を示す。

Description

溶接部の特性に優れたマルテンサイトステンレス鋼およびマルテンサイトステンレス鋼材
 本発明は、例えば建築構造物、船舶構造物などの溶接構造物において、溶接を必要とする部位に好適に使用されるマルテンサイトステンレス鋼、及び前記マルテンサイトステンレス鋼を用いて作製され、母材及び溶接部の衝撃特性及び耐食性に優れ、Niが節減されてコストの安価なマルテンサイトステンレス鋼材に関する。
 本願は、2010年3月17日に、日本に出願された特願2010-60048号に基づき優先権を主張し、その内容をここに援用する。
 マルテンサイトステンレス鋼は、焼き入れ熱処理によって容易に強度を上げることができるため、刃物やバネ、ブレーキディスクなどの器物に広く使用されている。しかし、マルテンサイトステンレス鋼は、靭性が低く、溶接性も悪いため、溶接構造用としては使用されていない。
 一方、Crを13~17%含有する鋼において、C含有量を低減し、Niをおよそ3%以上添加することにより、靭性、溶接性および耐食性を向上させた鋼材が開発され、水力発電用水車ランナーや油井用鋼管として使用されている(例えば、特許文献1~4)。
 しかしながら、このように改良されたマルテンサイトステンレス鋼においても、焼き戻し抵抗が非常に大きい。このため、最終製品の特性を調質するための焼き戻し熱処理において、長時間の処理が必要とされるなど熱処理設備能力を阻害し、製造コストが大きいという課題を残している。
 そこで、調質のための熱処理が不要なマルテンサイトステンレス鋼や脱水素処理を不要とする製造条件が検討されており、マルテンサイト単相組織を指向した上記特許文献4や、マルテンサイト相を主体とし、かつフェライト相または残留オーステナイト相を含有する複相組織とした特許文献5が開示されている。
 特許文献4が開示するように、マルテンサイトステンレス鋼の多くは、Cr量が11~15%の範囲にあり、SUS430のようなフェライトステンレス鋼に比べて耐食性が低く、屋内環境においても発銹(さびの発生)を生じることがある。このため、すぐれた耐食性を付与するには、Moを添加するか、又はCr量を増加することが必要とされる。
 また、前記特許文献5では、耐食性を高めるために、15%以上のCrや1%以上のMoを含有させることが好ましいと開示されている。しかし、特許文献5のマルテンサイトステンレス鋼は、フェライト相を含むマルテンサイト相主体の金属組織を有し、熱間加工性が良好でなく、しばしば鋼材の製造歩留まりを低下させる問題があった。また、機械的特性を確保するためには、Cr、Moの増加量に見合った量のオーステナイト形成元素の添加が必要であり、合金コストの増加を招いていた。
 すなわち、母材と溶接部の特性を良好に維持できる鋼としては、Niを多く含有させた鋼が実用化されている。しかし、熱間加工性が良好であり、かつ母材及び溶接部でSUS430と同等の耐食性と、優れた機械特性を有し、Ni量が節減されて安価な実用鋼は存在しなかった。
特開平6-306549号公報 特開平6-306551号公報 特開平2-243739号公報 特開平2-243740号公報 特開2001-279392号公報
材料とプロセス Vol.3(1990),1840
 このような問題に鑑み、本発明者らは、熱間加工性と機械特性が良好であり、かつSUS430と同等の耐食性を有する安価なマルテンサイトステンレス鋼の成分系と金属組織を明らかにし、実用鋼材を開発することを発明の課題とした。
 Niを代替する元素としては、C,N,Mn,Cu,Co等が想定されるが、上記のマルテンサイトステンレス鋼において、多量のMn,Cu,Coが含有された鋼に関する文献は少ない。一例として非特許文献1では、17%のCrを含有する高純度ステンレスをベースとして用い、Ni又はMnを添加した例を示している。しかし、NiとMnを複合添加する例は開示されておらず、また耐食性についても考慮されていない。
 ところで、Mnは、一般的に耐食性を低下させる元素であるため、一般のステンレス鋼と比べて耐食性が低いマルテンサイトステンレス鋼において、積極的にMnを添加することを試みた例は少ない。Cr量を高めると同時にMn量を増加させた場合に、所望の耐食性が得られるのかどうかについては疑問視されていたというのが実情であった。このため、耐食性に加えて、優れた熱間加工性と機械特性も確保できる実用鋼材を開発するために、これらの合金元素を調整する手法を採用することは、それまでに得られた技術上の見地から、あるいは経験上から、あり得なかった。
 本発明者らは、16%のCr及び2%のNiを含有する鋼をベースとして用い、2%以上のMnを含有する鋼について、成分元素と鋼材の金属組織が上記諸特性に与える影響について詳細に検討した。その結果、Cr、Ni、Mn及び後述するその他の元素の含有量を所定の範囲にすることによって、価格の変動が激しいNi量を抑制しつつ、溶接部の靭性及び耐食性を両立できることを見出した。更に鋼材の相率を一定の範囲内に収めることによって、従来必要とされていた焼入れ・焼き戻しの熱処理を省略しても、母材の機械特性を確保できることを見出した。以上により、本発明の完成に至った。
 本発明の要件を以下に示す。
(1)本発明の一態様に係る溶接部の特性に優れたマルテンサイトステンレス鋼は、質量%で、C:0.003~0.03%、Si:0.01~1.0%、Mn:3.0~6.0%、P:0.05%以下、S:0.003%以下、Ni:1.0~3.0%、Cr:15.0~18.0%、Mo:0~1.0%、Cu:0~2.0%、Ti:0~0.05%、N:0.05%以下、Al:0.001~0.1%、О:0.005%以下を含有し、残部がFeおよび不可避的不純物からなる。CとNの合計量が0.060%以下であり、かつ式1で示されるγmaxが80以上であり、式2で示されるγpotが60~90である。
 γmax=420×C%+470×N%+23×Ni%+9×Cu%+7×Mn%-11.5×Cr%-11.5×Si%-52×Al%+189 ・・・ 式1
 γpot=700×C%+800×N%+10×(Mn%+Cu%)+20×Ni%-9.3×Si%-6.2×Cr%-9.3×Mo%-74.4×Ti%-37.2×Al%+63.2 ・・・ 式2
 ここで、C%、N%、Ni%、Cu%、Mn%、Cr%、Si%、Al%、Mo%、Ti%は、それぞれの元素の含有量(質量%)を示す。
(2)前記(1)に記載の本発明の一態様に係る溶接部の特性に優れたマルテンサイトステンレス鋼は、更にNbを含有し、前記式2に代えて式3で計算されるγpotが60~90であってもよい。
 γpot=700×C%+800×N%+10×(Mn%+Cu%)+20×Ni%-9.3×Si%-6.2×Cr%-9.3×Mo%-3.1×Nb%-74.4×Ti%-37.2×Al%+63.2 ・・・ 式3
 ここで、C%、N%、Mn%、Cu%、Ni%、Si%、Cr%、Mo%、Nb%、Ti%、Al%は、それぞれの元素の含有量(質量%)を示す。
(3)前記(1)又は(2)に記載の本発明の一態様に係る溶接部の特性に優れたマルテンサイトステンレス鋼は、更にV及びWのうち、いずれか一方又は両方を含有してもよい。
(4)前記(1)~(3)のいずれか1項に記載の本発明の一態様に係る溶接部の特性に優れたマルテンサイトステンレス鋼は、更にCoを含有してもよい。
(5)前記(1)~(4)のいずれか1項に記載の本発明の一態様に係る溶接部の特性に優れたマルテンサイトステンレス鋼は、更にB、Ca、Mg、及びREMから選択される1種又は2種以上を含有してもよい。
(6)本発明の一態様に係るマルテンサイトステンレス鋼材は、前記(1)~(5)のいずれか1項に記載の組成を有し、かつ5~30%のフェライト相、0~20%の残留オーステナイト相を含み、残部がマルテンサイト相からなる組織を有する。
(7)前記(6)に記載の本発明の一態様に係るマルテンサイトステンレス鋼材は、降伏強度が400~800MPaであってもよい。
 本発明の一態様の組成を有するマルテンサイト鋼は、溶接部の靭性及び耐食性に優れるという効果を発揮する。また、本発明の一態様によれば、例えば建築構造物あるいは船舶構造物などの大型の溶接構造物に使用でき、かつコストの安価なマルテンサイトステンレス鋼材を提供できる。また、長時間の焼入れ・焼き戻し熱処理を省略しても、所望の特性を得ることができるため、量産性を向上させることができる。このため、本発明の一態様は、産業上に大きく寄与できる。
 以下に、まず、本実施形態のマルテンサイトステンレス鋼の化学組成の限定理由について説明する。なお、以下における各成分の含有量の単位は、質量%である。
 Cは、鋼の強度を確保するために、0.003%以上含有させる。しかしながら、Cを、0.03%を越えて含有させると、強度が必要以上に高くなると共に、溶接部での耐食性、靱性が劣化する。このため、C含有量を0.003~0.03%に制限する。C含有量は、好ましくは0.005~0.025%である。
 Siは、脱酸のために、0.01%以上添加する。しかしながら、Siを、1.0%を超えて添加すると、靱性が劣化する。そのため、Si含有量の上限を1.0%に限定する。Si含有量は、好ましくは0.2~0.5%である。
 Mnは、溶接部の靭性改善のために、3.0%以上添加する。しかしながら、Mn量の増加は、耐食性を劣化させる。本実施形態の鋼において、Mn含有量と、γmax、γpot、及び後述する本実施形態の鋼材におけるフェライト相の割合とは、密接な関係にあり、金属組織の制御を通じて、Mn含有量の増加に伴う耐食性劣化を抑制している。しかし、Mnを、6.0%を越えて含有させると、所望の耐食性を確保できなくなる。このため、Mn含有量の上限を6.0%に限定する。Mn含有量は、好ましくは3.5~5.5%である。
 Pは、熱間加工性および靱性を劣化させるため、P含有量を0.05%以下に限定する。P含有量は、好ましくは0.03%以下である。また、Pは、鋼中に不可避的に含有される元素であって、その含有量は少ないほど好ましい。しかし、極度に低減させることはコストの増加を招くため、通常、Pは、不可避的に0.005%程度以上含有している。
 Sは、熱間加工性、靱性および耐食性を劣化させるため、S含有量を0.003%以下に限定する。S含有量は、好ましくは0.001%以下である。また、Sも鋼中に不可避的に含有される元素であって、その含有量は少ないほど好ましい。しかし、極度に低減させることはコストの増加を招くため、通常、Sは、不可避的に0.0001%程度以上含有している。
 Niは、オーステナイト組織を安定にし、各種の酸に対する耐食性、さらに靭性を改善する。このためNiを1.0%以上含有させる。一方、Niは高価な合金であり、コストの観点より、Ni含有量を3.0%以下に制限する。Ni含有量は、好ましくは1.5~2.5%である。
 Crは、基本的な耐食性を確保するために、15.0%以上含有させる。一方、Crを、18.0%を超えて含有させると、靭性および溶接部の耐食性を阻害する。このためCrの含有量を15.0%以上18.0%以下とする。Cr含有量は、好ましくは16~17%である。
 Moは、ステンレス鋼の耐食性を付加的に高めるために非常に有効な元素であり、必要に応じて含有させる任意成分(選択的成分)である。Moは、非常に高価な元素であるため、耐食性を高めるために添加する場合には、コストの点より、Mo含有量の上限を1.0%以下とする。Moを添加する場合、Mo含有量は、好ましくは0.1~0.5%である。
 Cuは、ステンレス鋼の酸に対する耐食性を付加的に高めるとともに靭性を改善する作用を有する元素であり、必要に応じて含有させる任意成分(選択的成分)である。Cuを、2.0%を越えて含有させると、固溶度を超えてεCuが析出し、脆化が発生する。このため、Cuを含有させる場合には、Cu含有量の上限を2.0%とする。Cuは、オーステナイト相を安定にし、靭性を改善する効果を有する。Cuを含有させる場合、Cu含有量は、好ましくは0.2~1.5%である。
 Tiは、極微量で、酸化物、窒化物、硫化物を形成し、鋼の凝固および高温加熱組織の結晶粒を微細化する元素であり、必要に応じて添加される任意成分(選択的成分)である。Tiを、0.05%を越えて含有させると、フェライト相が生成すると共に、TiNが生成して鋼の靭性を阻害するようになる。このためTiを含有させる場合、Ti含有量の上限を0.05%と定める。Tiを含有させる場合、Ti含有量は、好ましくは0.003~0.020%である。
 Nは、マルテンサイト相の強度を高めるために0.01%以上含有させる。しかしNを、0.05%を越えて含有すると、強度が高くなり過ぎて靭性を劣化させる。このためN含有量を0.05%以下に制限する。N含有量は、好ましくは0.01~0.04%である。
 Alは、鋼の脱酸のための重要な元素であり、鋼中の酸素を低減するためにSiと共に含有される。酸素量の低減は、靭性確保のために必須であり、このために0.001%以上のAlを含有することが必要である。一方、Alは、フェライト相を増加させる元素であり、Alが過剰に添加されると、靭性を阻害する。Alが0.1%を越えると、靭性低下が著しくなる。このため、Al含有量の上限を0.1%と定める。Al含有量は、好ましくは0.01~0.05%である。
 Oは、非金属介在物の代表である酸化物を構成し、鋼中に不可避的に含有される元素である。したがって、О含有量は、少ない程好ましいが、極度に低減させることはコストの増加を招く。このため、通常、Oは、不可避的に0.001%程度以上含有している。一方、過剰量のOを含有する場合、靭性が阻害される。また、粗大なクラスター状の酸化物が生成すると、表面疵の原因となる。このため、O含有量の上限を0.005%とする。
 CとNの含有量の和(C+N)は鋼の強度と関連性がある。CとNの含有量の和(C+N)が0.060%を越えると、強度が高くなりすぎ、靭性を阻害するようになる。このため、CとNの含有量の和(C+N)の上限を0.060%とする。CとNの含有量の和(C+N)は、好ましくは0.015~0.050%である。
 下記の式1に示すγmaxは、900~1000℃の温度域で生成するオーステナイト相の割合の最大値を予測する計算式である。このγmaxの値を大きくすることによって、鋼の靭性を高めることができる。本実施形態の場合、このγmaxの値が80%未満であると、フェライト相が多くなり過ぎ、フェライトバンド組織の残留によって所望の靭性を確保できなくなる。このためγmaxを80%以上と定める。γmaxは、好ましくは85%以上である。
 γmax=420×C%+470×N%+23×Ni%+9×Cu%+7×Mn%-11.5×Cr%-11.5×Si%-52×Al%+189 ・・・ 式1
 ここで、C%、N%、Ni%、Cu%、Mn%、Cr%、Si%、Al%は、それぞれの元素の含有量(質量%)を示す。
 下記の式2に示すγpotは、鋳造状態でのマルテンサイト相の割合を示す計算式であり、熱間加工時のオーステナイト相の割合にも対応する。本実施形態では、熱間加工性を確保するためにγpotの範囲を定める。γpotが高くなると、軟質なフェライト相が少なくなり過ぎて、熱間加工時にフェライト相へ歪みが集中し、割れを促進するようになる。γpotの上限は、熱間加工性に影響するMn量やS量などに依存するが、本実施形態では、γpotが90%を越えると、鋼材の製造歩留まりが大きく低下する問題が発生する。このため、γpotの上限を90%と定める。一方、γpotが60%未満になると、溶接部で生成するマルテンサイト相にC,Nが濃化して硬質となり、不均質な組織になる。またC,N,Mn等の合金元素が濃化したマルテンサイト相の耐食性が低下するため、γpotの下限を60%と定める。γpotは、好ましくは65~85%である。
 γpot=700×C%+800×N%+10×(Mn%+Cu%)+20×Ni%-9.3×Si%-6.2×Cr%-9.3×Mo%-74.4×Ti%-37.2×Al%+63.2 ・・・ 式2
 ここで、C%、N%、Ni%、Cu%、Mn%、Cr%、Si%、Al%、Mo%、Ti%は、それぞれの元素の含有量(質量%)を示す。
 次いで、本実施形態における任意成分(選択的成分)の限定理由について説明する。以下に説明する元素は、必要に応じて添加される任意成分(選択的成分)である。
 Nbは、熱間圧延組織の結晶粒の微細化に有効な元素である。更に、Nbは耐食性を高める作用も有する。Nbが形成する窒化物、炭化物は、熱間加工及び熱処理の過程で生成し、結晶粒の成長を抑制し、鋼及び鋼材を強化する作用を有する。このためにNbを0.01%以上含有させてもよい。一方、過剰量のNbを添加すると、熱間圧延前の加熱時に未固溶析出物として析出し、靭性を阻害する。このため、Nb含有量の上限を0.2%と定める。Nbを含有させる場合、Nb含有量は、好ましくは0.03~0.10%である。
 下記の式3に示すγpotは、Nbを含有する場合における鋳造状態でのマルテンサイト相の割合を示す計算式であり、熱間加工時のオーステナイト相の割合にも対応する。Nbを含有する場合には、前記式2に代えて、Nbの項を加えた式3で計算したγpotを60~90%とする。Nbを含有する場合も、γpotは、好ましくは65~85%である。
 γpot=700×C%+800×N%+10×(Mn%+Cu%)+20×Ni%-9.3×Si%-6.2×Cr%-9.3×Mo%-3.1×Nb%-74.4×Ti%-37.2×Al%+63.2 ・・・ 式3
 ここで、C%、N%、Mn%、Cu%、Ni%、Si%、Cr%、Mo%、Nb%、Ti%、Al%は、それぞれの元素の含有量(質量%)を示す。
 V、Wは、二相ステンレス鋼の耐食性を付加的に高めるために添加される元素である。
 Vは、耐食性を高める目的のために0.05%以上含有させてもよい。しかし、Vを、0.5%を超えて含有させると、粗大なV系炭窒化物が生成し、靱性が劣化する。そのため、V含有量の上限を0.5%に限定する。Vを含有させる場合、V含有量は、好ましくは0.1~0.3%である。
 Wは、Moと同様にステンレス鋼の耐食性を付加的に向上させる元素であり、Vに比べて固溶度が大きい。本実施形態において、耐食性を高める目的のためには、Wを1.0%以下の範囲で含有させてもよい。Wを含有させる場合、Wの含有量は、好ましくは0.05~0.5%である。
 すなわち、上記で規定された含有量のV、Wのうち、いずれか一方又は両方を含有してもよい。
 Coは、鋼の靭性と耐食性を高めるために有効な元素であり、選択的に添加してもよい。Coの含有量は、好ましくは0.03%以上である。Coを、1.0%を越えて含有させると、高価な元素であるためにコストに見合った効果が発揮されないようになる。このためCo含有量の上限を1.0%と定める。Coを含有させる場合、Co含有量は、好ましくは0.03~0.5%である。
 更に、熱間加工性の向上を図るために、必要に応じてB,Ca,Mg,REMを含有してもよい。
 ここで、REMとは、希土類金属であり、Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,及びLuから選択される1種以上である。
 B,Ca,Mg,REMは、いずれも鋼の熱間加工性を改善する元素であり、その目的で1種または2種以上を添加してもよい。過剰量のB,Ca,Mg,又はREMを添加すると、熱間加工性および靭性が低下するため、その含有量の上限を次のように定める。BとCaのそれぞれの含有量の上限は0.0050%である。Mgの含有量の上限は0.0030%である。REMの含有量の上限は0.10%である。BとCaのそれぞれの含有量は、好ましくは0.0005~0.0030%である。Mgの含有量は、好ましくは0.0001~0.0015%である。REMの含有量は、好ましくは0.005~0.05%である。なお、REMの含有量は、LaやCe等のランタノイド系希土類元素の含有量の総和とする。
 次いで、本実施形態のマルテンサイトステンレス鋼材の限定理由について説明する。
 本実施形態のマルテンサイトステンレス鋼材は、前述した本実施形態のマルテンサイトステンレス鋼の組成を有し、かつ以下の要件を満たす金属組織を有する。鋼材の相率を調整することによって、母材の機械特性、強度を確保できる。
 フェライト相は軟質であり、一定量含有させることによって、過度の強度上昇を抑制するとともに、二相混合組織を通じて結晶粒を微細に制御する。これにより、本実施形態のマルテンサイトステンレス鋼材の靭性の改善を実現する。このためには、フェライト相は、最低限5%必要である。一方、フェライト相自体は靭性が乏しいため、過剰量のフェライト相を含むと、本実施形態のマルテンサイトステンレス鋼材の靭性を低下させる。これを防ぐために、フェライト相の割合を30%以下とする。フェライト相の割合は、好ましくは5~20%である。
 このフェライト相率は、化学組成、γmax、及びγpotに加えて、鋼材の製造条件を通じて実現される。化学組成に応じて、通常のステンレス鋼材の製造条件の範囲の中から製造条件を選定することによって、上記範囲のフェライト相が実現可能である。例えば圧延条件であれば、熱間圧延の加熱温度は1150~1250℃から選定すればよい。熱間圧延の仕上げ温度は950~700℃から選定すればよい。また、必要に応じて熱処理を行う場合は、焼入れ熱処理温度は850~950℃から選定すればよい。焼戻し熱処理温度は550~750℃から選定すればよい。また焼入れ熱処理温度の均熱時間は5分から30分程度が好ましい。また、焼戻し熱処理温度の均熱時間は10分から1時間程度が好ましい。
 また、残留オーステナイト相は、高温で存在するオーステナイト相が未変態で残留することにより生成する。この残留オーステナイト相は軟質であり、鋼材の靭性を高める。一方、過剰に残留オーステナイト相が残留すると、鋼材の降伏強度を低下させ、本実施形態のマルテンサイトステンレス鋼材の強度特性を損なうようになる。このため、残留オーステナイト相の割合の上限を20%と定める。
 残留オーステナイト相の量を制御するためには、下記式4に示すMs値(℃)を制御する必要がある。化学成分は、式4が200℃以上になるようにする。式4の値が200未満になると、残留オーステナイト相率が本実施形態にて規定された上限値の20%を超えてしまう。また、残留オーステナイト相率は0%でも良いため、式4に示すMs値(℃)の上限を設定する必要はない。本実施形態の組成範囲内において、許される範囲内でMs値を高く設定できる。なお、残留オーステナイト相の割合は、X線測定により求めることができる。残留オーステナイト相の量は、好ましくは3~15%である。
 Ms=1305-41.7×(Cr%+Mo%+Cu%)-61×Ni%-33×Mn%-27.8×Si%-1667×(C%+N%) ・・・ 式4
 ここで、Cr%、Mo%、Cu%、Ni%、Mn%、Si%、C%、N%は、それぞれの元素の含有量(質量%)を示す。
 また、フェライト相と残留オーステナイト相以外の残部は、マルテンサイト相であり、3相の割合の総和が100%になる。
 本実施形態のマルテンサイトステンレス鋼材の降伏強度は、400~800MPaであることが好ましい。
 本実施形態は、マルテンサイト相組織を主体とするマルテンサイトステンレス鋼及び鋼材に係り、高い強度と優れた靭性を有している。このため降伏強度が400MPa未満であると、本実施形態の目的とする高強度の構造部材への適用価値が不足する。一方、800MPaを越える降伏強度を有する場合、金属組織を適性に制御しても、所望の溶接部靭性が確保できなくなる。このため本実施形態のマルテンサイトステンレス鋼材の降伏強度は400~800MPaであることが好ましい。
 以下に、実施例について説明する。
 表1~4は、供試鋼の化学組成及び継手特性の評価結果を示す。これらの鋼は、以下の方法により製造された。実験室にて真空溶解により50kgの鋼塊を製造し、この鋼塊を鍛造して、厚さ60mm×幅110mm×長さ150mmの圧延試験片を得た。その後、圧延試験片を熱間圧延し、厚さを12mmとした。
 表1~3の化学組成は、この熱間圧延鋼板より試験片を採取して分析した結果である。
 なお、表1~3に記載されている成分以外(残部)は、Fe及び不可避的不純物元素である。また、表1~3に示した成分において、含有量が記載されていない成分の含有量は、不純物レベルであることを示す。また表中のREMは、ランタノイド系希土類元素を意味し、REMの含有量はそれら元素の合計を示している。そして、鋼番号A~Uは本発明例であり、V~AGは比較例である。
 継手特性を評価するための溶接は、以下のように実施した。
 鋼板の幅中央部を圧延長手方向に切断し、V型の開先になるように端面を切削加工した。次いで、SUS329J3L用のサブマージアーク溶接用溶接棒とフラックスを使用し、3.5kJ/mmの入熱条件で2パスの溶接により、継手を作製した。この溶接部において、溶接金属と熱影響部の境界より熱影響部側に1mm離れた位置にて、2mmのV型開先が形成されたシャルピー試験片を採取した。-20℃にて各2回の試験を実施した。得られた衝撃値の平均値を衝撃値1として表4中に示した。
 耐食性の評価は、以下のように実施した。
 溶接金属と熱影響部とを含む孔食電位測定試料を作製した。次いで、銀塩化銀電極(SSE)を参照電極にして、30℃の3.5%NaCl中でJISG0577に準じて孔食電位Vc’100を求めた。その結果を表4中に示した。
 衝撃値1が35J/cm(=27J)以上の場合、良好であると判断した。また、孔食電位Vc’100が、SUS430鋼の母材の平均的な孔食電位レベルである0.10V以上の場合、耐食性が良好であると判断した。
 その結果、本実施形態の組成を有する鋼は、いずれも衝撃値1及び耐食性が優れていることが分かった。これに対して、本実施形態の範囲外の組成を有する比較例では、いずれも衝撃値1や耐食性が劣っており、本実施形態の鋼の優位性が明らかである。
 また、表5~8は、本実施例の鋼材の製造条件、熱間加工性、金属組織、鋼材の母材特性を示す。
 厚さ60mm×幅110mm×長さ150mmの圧延試験片を所定の熱延加熱温度に加熱し、次いで複数回の圧下により、厚さが12mmとなるように圧延した。最終圧下時の温度を熱延仕上温度として表5,6中に記載した。この熱間圧延によって得られた鋼板の耳部に発生した耳割れの大きさを測定し、最大の耳割れが5mm以下の場合には良(good)と評価し、最大の耳割れが5mmを越える場合には不良(bad)と評価して、表5,6の項目『熱間加工性』に表示した。
 得られた鋼板のまま、又は焼入熱処理及び焼戻熱処理のいずれか一方又は両方の熱処理を行って得られた鋼板について、以下の方法により金属組織を調査した。板厚断面をエッチングして、金属組織(ミクロ組織)を現出させた。光学顕微鏡により金属組織を観察し、フェライト相の面積比率を画像解析により求めた。また、板厚の1/4部分を測定面とする3mm×23mm×23mmの寸法の試料を作製し、X線回折法により残留オーステナイト相率の定量を行った。これらの結果を表7,8の項目『金属組織』に示した。
 次いで引張り試験と衝撃試験を以下の方法により実施した。
 圧延方向と直角に、平行部が直径10mmの円形であり、長さが60mmの丸棒引張り試験片を採取した。この試験片を用いて引張試験を行い、0.2%降伏強度を測定した。
 2mmのV開先が形成されたJIS4号フルサイズシャルピー試験片を作製した。この試験片を用いて-60℃で各2回の試験を行い、衝撃値を測定した。得られた衝撃値の平均値を衝撃値2として示した。
 降伏強度が400MPa以上の場合、オーステナイトステンレス鋼よりも降伏強度が高く、良好であると判断した。衝撃値が35J/cm(=27J)以上の場合、良好であると判断した。その結果、本実施形態に相当する実施例では、いずれも熱間加工性、母材強度・靭性が良好であることがわかる。また、実施例34~37の結果より、焼入や焼戻熱処理を行うことなく、母材の強度及び靭性を確保できていることが分かる。一方、比較例では、熱間加工性が不足するか、母材降伏強度、衝撃値2のいずれかが所望の値を示さなかった。比較例39,40の結果より、本実施形態の化学組成に係る要件を満たす鋼であっても、製造条件が適性でなく、金属組織が本実施形態の要件を満たさない場合には、所望の特性を示さないことがわかる。
 以上の実施例、比較例からわかるように、本実施形態により、溶接部の特性に優れたマルテンサイトステンレス鋼が得られ、また、金属組織に係る要件も満たすことによって、母材及び溶接部の特性に優れたマルテンサイトステンレス鋼材が得られることが明確となった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明の一態様により、溶接部の特性が良好であり、かつNi含有量が少なく経済的なマルテンサイトステンレス鋼材を提供できる。このため、大型の構造物に適用できる安価な高強度鋼材を提供できる。また、従来必要であった長時間の熱処理を省略することができるため、量産性を向上でき、産業上に大きく寄与できる。

Claims (7)

  1.  質量%で、
     C:0.003~0.03%、
     Si:0.01~1.0%、
     Mn:3.0~6.0%、
     P:0.05%以下、
     S:0.003%以下、
     Ni:1.0~3.0%、
     Cr:15.0~18.0%、
     Mo:0~1.0%、
     Cu:0~2.0%、
     Ti:0~0.05%、
     N:0.05%以下、
     Al:0.001~0.1%、
     О:0.005%以下を含有し、
     残部がFeおよび不可避的不純物からなり、
     CとNの合計量が0.060%以下であり、かつ式1で示されるγmaxが80以上であり、式2で示されるγpotが60~90であることを特徴とする溶接部の特性に優れたマルテンサイトステンレス鋼。
     γmax=420×C%+470×N%+23×Ni%+9×Cu%+7×Mn%-11.5×Cr%-11.5×Si%-52×Al%+189 ・・・ 式1
     γpot=700×C%+800×N%+10×(Mn%+Cu%)+20×Ni%-9.3×Si%-6.2×Cr%-9.3×Mo%-74.4×Ti%-37.2×Al%+63.2 ・・・ 式2
     ここで、C%、N%、Ni%、Cu%、Mn%、Cr%、Si%、Al%、Mo%、Ti%は、それぞれの元素の含有量(質量%)を示す。
  2.  更にNbを含有し、前記式2に代えて式3で計算されるγpotが60~90である請求項1に記載の溶接部の特性に優れたマルテンサイトステンレス鋼。
     γpot=700×C%+800×N%+10×(Mn%+Cu%)+20×Ni%-9.3×Si%-6.2×Cr%-9.3×Mo%-3.1×Nb%-74.4×Ti%-37.2×Al%+63.2 ・・・ 式3
     ここで、C%、N%、Mn%、Cu%、Ni%、Si%、Cr%、Mo%、Nb%、Ti%、Al%は、それぞれの元素の含有量(質量%)を示す。
  3.  更にV及びWのうち、いずれか一方又は両方を含有する請求項1又は2に記載の溶接部の特性に優れたマルテンサイトステンレス鋼。
  4.  更にCoを含有する請求項1~3のいずれか1項に記載の溶接部の特性に優れたマルテンサイトステンレス鋼。
  5.  更にB、Ca、Mg、及びREMから選択される1種又は2種以上を含有する請求項1~4のいずれか1項に記載の溶接部の特性に優れたマルテンサイトステンレス鋼。
  6.  請求項1~5のいずれか1項に記載の組成を有し、かつ
     5~30%のフェライト相、0~20%の残留オーステナイト相を含み、残部がマルテンサイト相からなる組織を有することを特徴とするマルテンサイトステンレス鋼材。
  7.  降伏強度が400~800MPaである請求項6に記載のマルテンサイトステンレス鋼材。
PCT/JP2011/055502 2010-03-17 2011-03-09 溶接部の特性に優れたマルテンサイトステンレス鋼およびマルテンサイトステンレス鋼材 WO2011114963A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127023989A KR101479826B1 (ko) 2010-03-17 2011-03-09 용접부의 특성이 우수한 마르텐사이트 스테인리스 강 및 마르텐사이트 스테인리스 강재
US13/583,258 US20130039801A1 (en) 2010-03-17 2011-03-09 Martensitic stainless steel with excellent weld characteristics, and martensitic stainless steel material
CA2791878A CA2791878C (en) 2010-03-17 2011-03-09 Martensitic stainless steel with excellent weld characteristics, and martensitic stainless steel material
CN201180013767.2A CN102803538B (zh) 2010-03-17 2011-03-09 焊接部的特性优异的马氏体不锈钢及马氏体不锈钢材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010060048A JP5544197B2 (ja) 2010-03-17 2010-03-17 溶接部の特性に優れたマルテンサイトステンレス鋼および鋼材
JP2010-060048 2010-03-17

Publications (1)

Publication Number Publication Date
WO2011114963A1 true WO2011114963A1 (ja) 2011-09-22

Family

ID=44649061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055502 WO2011114963A1 (ja) 2010-03-17 2011-03-09 溶接部の特性に優れたマルテンサイトステンレス鋼およびマルテンサイトステンレス鋼材

Country Status (6)

Country Link
US (1) US20130039801A1 (ja)
JP (1) JP5544197B2 (ja)
KR (1) KR101479826B1 (ja)
CN (1) CN102803538B (ja)
CA (1) CA2791878C (ja)
WO (1) WO2011114963A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555859B (zh) * 2014-09-17 2016-11-01 Nippon Steel & Sumikin Sst Stainless steel with mattress iron and its manufacturing method
JP2022509863A (ja) * 2018-11-29 2022-01-24 ポスコ 耐食性が向上したフェライト系ステンレス鋼及びその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2014DN09051A (ja) * 2013-02-08 2015-05-22 Nippon Steel & Sumikin Sst
RU2524465C1 (ru) * 2013-05-30 2014-07-27 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочная сталь мартенситного класса
JP6124930B2 (ja) * 2014-05-02 2017-05-10 日新製鋼株式会社 マルテンサイト系ステンレス鋼板およびメタルガスケット
DE102015112215A1 (de) * 2015-07-27 2017-02-02 Salzgitter Flachstahl Gmbh Hochlegierter Stahl insbesondere zur Herstellung von mit Innenhochdruck umgeformten Rohren und Verfahren zur Herstellung derartiger Rohre aus diesem Stahl
AU2017274993B2 (en) * 2016-06-01 2019-09-12 Nippon Steel Corporation Duplex stainless steel and duplex stainless steel manufacturing method
FI127450B (en) * 2016-06-30 2018-06-15 Outokumpu Oy Martensitic stainless steel and process for its manufacture
CN110236263A (zh) * 2019-06-25 2019-09-17 温州市三盟鞋业有限公司 一种高跟鞋鞋底
CN112941403A (zh) * 2021-01-14 2021-06-11 上海欣冈贸易有限公司 一种焊接用无硫低碳钢金属合金及其组合物
CN113234894B (zh) * 2021-05-14 2022-02-11 东北大学 一种改善含氮双相不锈钢耐腐蚀性能的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167653A (ja) * 2000-11-29 2002-06-11 Kawasaki Steel Corp 加工性と溶接性に優れたステンレス鋼
WO2009099035A1 (ja) * 2008-02-07 2009-08-13 Nisshin Steel Co., Ltd. 高強度ステンレス鋼材及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2861024B2 (ja) * 1989-03-15 1999-02-24 住友金属工業株式会社 油井用マルテンサイト系ステンレス鋼材とその製造方法
JPH07138704A (ja) * 1993-11-12 1995-05-30 Nisshin Steel Co Ltd 高強度高延性複相組織ステンレス鋼およびその製造方法
US6220306B1 (en) * 1998-11-30 2001-04-24 Sumitomo Metal Ind Low carbon martensite stainless steel plate
EP1449933B1 (en) * 1999-10-04 2006-03-15 Hitachi Metals, Ltd. Power transmission belt
JP2001179485A (ja) * 1999-12-27 2001-07-03 Sumitomo Metal Ind Ltd マルテンサイト系ステンレス溶接鋼管およびその製造方法
JP5109222B2 (ja) * 2003-08-19 2012-12-26 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
JP4519513B2 (ja) * 2004-03-08 2010-08-04 新日鐵住金ステンレス株式会社 剛性率に優れた高強度ステンレス鋼線およびその製造方法
JP5191679B2 (ja) * 2006-05-01 2013-05-08 新日鐵住金ステンレス株式会社 耐銹性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼
JP5000281B2 (ja) * 2006-12-05 2012-08-15 新日鐵住金ステンレス株式会社 加工性に優れた高強度ステンレス鋼板およびその製造方法
JP5033584B2 (ja) * 2006-12-08 2012-09-26 新日鐵住金ステンレス株式会社 耐食性に優れるマルテンサイト系ステンレス鋼

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167653A (ja) * 2000-11-29 2002-06-11 Kawasaki Steel Corp 加工性と溶接性に優れたステンレス鋼
WO2009099035A1 (ja) * 2008-02-07 2009-08-13 Nisshin Steel Co., Ltd. 高強度ステンレス鋼材及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555859B (zh) * 2014-09-17 2016-11-01 Nippon Steel & Sumikin Sst Stainless steel with mattress iron and its manufacturing method
JP2022509863A (ja) * 2018-11-29 2022-01-24 ポスコ 耐食性が向上したフェライト系ステンレス鋼及びその製造方法
JP7427669B2 (ja) 2018-11-29 2024-02-05 ポスコ カンパニー リミテッド 耐食性が向上したフェライト系ステンレス鋼及びその製造方法

Also Published As

Publication number Publication date
KR101479826B1 (ko) 2015-01-06
CN102803538A (zh) 2012-11-28
CN102803538B (zh) 2014-06-04
JP5544197B2 (ja) 2014-07-09
CA2791878A1 (en) 2011-09-22
CA2791878C (en) 2015-02-24
KR20120120428A (ko) 2012-11-01
US20130039801A1 (en) 2013-02-14
JP2011190521A (ja) 2011-09-29

Similar Documents

Publication Publication Date Title
WO2011114963A1 (ja) 溶接部の特性に優れたマルテンサイトステンレス鋼およびマルテンサイトステンレス鋼材
EP2684973B1 (en) Two-phase stainless steel exhibiting excellent corrosion resistance in weld
JP4803174B2 (ja) オーステナイト系ステンレス鋼
EP2358918B1 (en) Ferritic-austenitic stainless steel
JP4538094B2 (ja) 高強度厚鋼板およびその製造方法
EP2773785B1 (en) Duplex stainless steel
KR101635008B1 (ko) 용접 열영향부 ctod 특성이 우수한 후육 고장력강 및 그의 제조 방법
KR101648694B1 (ko) 2상 스테인리스강, 2상 스테인리스강 주조편 및 2상 스테인리스강 강재
JP7059357B2 (ja) 二相ステンレスクラッド鋼板およびその製造方法
KR20130105721A (ko) 합금 원소 절감형 2상 스테인리스 열연 강재, 클래드재로서 2상 스테인리스강을 구비하는 클래드 강판 및 그들의 제조 방법
WO2005017222A1 (ja) 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
KR20090078813A (ko) 듀플렉스 스테인리스 강 합금 및 이 합금의 용도
WO2018139513A1 (ja) 二相ステンレスクラッド鋼およびその製造方法
KR102628769B1 (ko) 고Mn강 및 그의 제조 방법
WO2011093516A1 (ja) 靭性に優れた高耐食性フェライト系ステンレス熱延鋼板
JP4816642B2 (ja) 低合金鋼
KR101608239B1 (ko) 대입열 용접용 강재
KR102520119B1 (ko) 용접 구조물 및 그 제조 방법
JP2008240033A (ja) 溶接熱影響部の靭性に優れた高強度低降伏比鋼材
EP1354975B1 (en) Stainless steel sheet for welded structural components and method for making the same
JP7109333B2 (ja) 耐食性に優れた省資源型二相ステンレス鋼
JP2019501286A (ja) 耐食性および加工性が向上したリーン二相ステンレス鋼およびその製造方法
JP5171198B2 (ja) 冷間加工性に優れた着磁性を有する軟質2相ステンレス鋼線材
JP5329634B2 (ja) 二相ステンレス鋼、二相ステンレス鋼鋳片、および、二相ステンレス鋼鋼材
JP4830318B2 (ja) 表面性状に優れた非調質高張力鋼の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013767.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756152

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2791878

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13583258

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127023989

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756152

Country of ref document: EP

Kind code of ref document: A1