WO2011114566A1 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
WO2011114566A1
WO2011114566A1 PCT/JP2010/069076 JP2010069076W WO2011114566A1 WO 2011114566 A1 WO2011114566 A1 WO 2011114566A1 JP 2010069076 W JP2010069076 W JP 2010069076W WO 2011114566 A1 WO2011114566 A1 WO 2011114566A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
engine
air density
vehicle
motor
Prior art date
Application number
PCT/JP2010/069076
Other languages
English (en)
French (fr)
Inventor
阿部 浩
健 大埜
寿雄 本多
武司 平田
上野 宗利
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US13/394,838 priority Critical patent/US8509980B2/en
Priority to EP10847973.4A priority patent/EP2548778B1/en
Priority to BR112012023878-7A priority patent/BR112012023878B1/pt
Priority to RU2012143973/11A priority patent/RU2513087C1/ru
Priority to JP2012505442A priority patent/JP5240400B2/ja
Priority to CN201080039951.XA priority patent/CN102574523B/zh
Priority to MX2012007871A priority patent/MX2012007871A/es
Priority to KR1020127026870A priority patent/KR101403725B1/ko
Publication of WO2011114566A1 publication Critical patent/WO2011114566A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/62Atmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a hybrid vehicle provided with an engine and a motor as drive sources.
  • Patent Document 1 discloses that a hybrid vehicle has an air density in a hybrid vehicle having an engine connected to drive wheels, a first motor, and a second motor capable of generating electric power using at least a part of the power from the engine.
  • a technology is disclosed that changes the engine speed by controlling the driving of the first motor and the second motor so as to offset the influence of the change and make the engine output match the target value.
  • Patent Document 2 discloses a hybrid vehicle having a plurality of drive sources of an engine and a motor and having a transmission configured of a motor and a planetary gear for controlling the driving force of the vehicle.
  • Disclosed is a technology in which the motor assists the shortage of the vehicle torque when the output decreases and the vehicle torque intended by the driver is not obtained, so that the vehicle torque intended by the driver can be obtained. ing
  • JP 2005-351259 A Japanese Patent Laid-Open No. 2000-104590
  • the present invention provides a hybrid vehicle having a first traveling mode for driving a vehicle using an output of the engine, and a second traveling mode for stopping the engine and driving the vehicle by the output of the motor.
  • the driving force of the vehicle in the second traveling mode is the driving force of the vehicle in the first traveling mode when switching the traveling mode.
  • the motor output of the second travel mode is reduced relative to the output of the motor at the reference air density so as to approach.
  • Explanatory drawing which showed typically the system configuration of the hybrid vehicle to which this invention was applied. Explanatory drawing which showed typically the correlation of the maximum torque and the engine operating area at the time of city area driving
  • FIG. 7 is an explanatory view schematically showing a difference in actual engine torque due to a difference in air density in a hybrid vehicle provided with an engine and a motor as a drive source.
  • Explanatory drawing which showed typically the flow of the calculation in HCM in 2nd Embodiment of this invention.
  • Explanatory drawing which showed typically the detail of the calculation procedure of an engine torque decreasing rate.
  • Explanatory drawing which showed typically the detail of the calculation procedure of target input torque Tm and target drive torque instruction
  • a first running mode (HEV running mode to be described later) for driving the vehicle using the output of the engine and a drive for driving the vehicle with the output of the motor after stopping the engine
  • HEV running mode for driving the vehicle using the output of the engine
  • a drive for driving the vehicle with the output of the motor after stopping the engine It is possible to eliminate or reduce the level difference of the driving force of the vehicle when the traveling mode is switched between the two traveling modes (the EV traveling mode described later). This is because, when the air density is lower than the reference air density, the driving force of the vehicle in the second traveling mode approaches the driving force of the vehicle in the first traveling mode when switching the traveling mode.
  • the motor output in the second travel mode is reduced relative to the motor output when the air density is not lower than the reference air density.
  • the motor output of the second traveling mode is not lower than the air density to which the air density is reference Therefore, for example, when the first traveling mode is in the traveling power generation state, the output of the engine resulting from the air density being lower than the reference air density
  • the first travel mode and the second travel mode are not compensated for by the torque control of the motor that reduces the generated torque of the motor (that reduces the amount of power generated by the motor) for all the insufficiency (output reduction).
  • the first traveling mode is the motor assist traveling state
  • the motor torque which increases the power consumption of the motor
  • the drive mode is switched between the first drive mode and the second drive mode. It becomes possible to eliminate or reduce the level difference of the driving force of the vehicle.
  • the motor output in the second travel mode is not lower than the air density at the air density.
  • the vehicle density is eliminated or reduced when the traveling mode is switched between the first traveling mode and the second traveling mode by reducing the motor output, the air density is reduced.
  • the first traveling mode is in the traveling power generation state. As a result, it is possible to suppress the insufficient power generation by the motor, and to suppress the increase in the power consumption of the motor when the first traveling mode is the motor assist traveling state.
  • FIG. 1 is an explanatory view schematically showing a system configuration of a hybrid vehicle to which the present invention is applied.
  • the hybrid vehicle includes, for example, an in-line four-cylinder engine (internal combustion engine) 1 as a drive source, a motor generator 2 (hereinafter referred to as a motor 2) that also functions as a generator, and differential gears 4 for the motive power of the engine 1 and motor 2. Interposed between the motor 2 and the drive wheel 5, the automatic transmission 3 transmitting to the drive wheel 5 via the first clutch 6 (CL 1) interposed between the engine 1 and the motor 2, and And a second clutch 7 (CL2).
  • an in-line four-cylinder engine internal combustion engine
  • a motor generator 2 hereinafter referred to as a generator
  • differential gears 4 for the motive power of the engine 1 and motor 2.
  • the automatic transmission 3 Interposed between the motor 2 and the drive wheel 5, the automatic transmission 3 transmitting to the drive wheel 5 via the first clutch 6 (CL 1) interposed between the engine 1 and the motor 2, and And a second clutch 7 (CL2).
  • the automatic transmission 3 automatically switches (performs shift control), for example, a stepped gear ratio such as 5 forward speeds and 1 reverse speed or 6 forward speed and 1 reverse speed according to the vehicle speed and the accelerator opening degree. is there. Further, the automatic transmission 3 has gear stages in which a one-way clutch is interposed among a plurality of gear stages. Further, the second clutch 7 in the present embodiment is configured by diverting the existing forward gear selection friction element or the reverse gear selection friction element in the automatic transmission 3.
  • the automatic transmission 3 is not limited to the above-described stepped type, and may be a continuously variable transmission.
  • This hybrid vehicle has an HCM (Hybrid Controller Module) 10 for integrated control of the vehicle, an ECM (Engine Control Module) 11, an MC (Motor Controller) 12, and an ATCU (Automatic Transmission Control Unit) 13.
  • HCM Hybrid Controller Module
  • ECM Engine Control Module
  • MC Motor Controller
  • ATCU Automatic Transmission Control Unit
  • the HCM 10 is connected to the ECM 11, the MC 12 and the ATCU 13 via a communication line 14 capable of exchanging information with each other.
  • a rotation speed sensor 16 for detecting the rotation speed of the engine 1
  • a crank angle sensor 17 for detecting a crank angle
  • an A / F sensor 18 for detecting an exhaust air-fuel ratio
  • an accelerator opening degree Accelerator opening sensor 19 throttle sensor 20 for detecting throttle opening
  • vehicle speed sensor 21 for detecting vehicle speed
  • water temperature sensor 22 for detecting cooling water temperature of engine 1
  • atmospheric pressure sensor 23 for detecting atmospheric pressure
  • intake temperature Output signals from an intake air temperature sensor 24 for detecting the air flow rate
  • an air flow meter 25 for detecting the amount of intake air, and the like are inputted.
  • the ECM 11 controls the engine 1 in accordance with a target engine torque command (target required torque) or the like from the HCM 10.
  • target engine torque determined by the HCM 10 is determined in consideration of the driving torque required by the driver based on the accelerator opening, the battery charge amount described later, or the operating condition of the vehicle (for example, acceleration / deceleration state).
  • the throttle opening is calculated so as to be obtained.
  • the throttle valve is controlled to the throttle opening degree, the intake air amount obtained at that time is detected by the air flow meter 25, and fuel is supplied to the engine 1 so that a predetermined air fuel ratio can be obtained based on the detected intake air amount. Supply.
  • the information from each of the sensors described above is output to the HCM 10 via the communication line 14.
  • the MC 12 controls the motor 2 in accordance with a target motor torque command or the like from the HCM 10. Further, the motor 2 is operated by a power running operation to which electric power supplied from a battery (not shown) is applied, a regenerative operation that functions as a generator to charge the battery, and switching between start and stop. It is controlled. The output (current value) of the motor 2 is monitored by the MC 12. That is, the motor output is detected by the MC 12.
  • the ATCU 13 determines the optimum shift speed from the vehicle speed, the accelerator opening degree, and the like, and performs shift control by switching the friction element in the automatic transmission 3. Further, since the second clutch 7 is constituted by the friction element of the automatic transmission 3, the second clutch 7 is also controlled via the ATCU 13.
  • the first clutch 6 is controlled to be engaged and released based on a first clutch control command from the HCM 10.
  • various command signals output from HCM such as target engine torque command, target motor torque command, shift control command (second clutch control command), and first clutch control command are calculated according to the operating condition. is there.
  • the HCM 10 also includes information on the charge / discharge state of the battery, that is, information on the charge amount (SOC) of the battery, the input rotational speed of the automatic transmission 3 (between the motor 2 and the automatic transmission 3 in FIG. The number of rotations at the position of) is also input.
  • This hybrid vehicle has two traveling modes according to the engagement and release states of the first clutch 6.
  • the first travel mode is an engine use travel mode (HEV travel mode) in which the first clutch 6 is engaged and travels while including the engine 1 as a power source.
  • the second travel mode is an electric vehicle travel mode (EV travel mode) as a motor use travel mode in which only the power of the motor 2 travels with the first clutch 6 in the open state.
  • HEV travel mode engine use travel mode
  • EV travel mode electric vehicle travel mode
  • the HEV travel mode has three travel states: "engine travel state”, “motor assist travel state”, and “travel power generation state”.
  • the “engine running state” is to move the drive wheels 5 with only the engine 1 as a power source.
  • the “motor-assisted travel state” is to move the drive wheel 5 using two of the engine 1 and the motor 2 as a power source.
  • the motor 2 is made to function as a generator while moving the drive wheels 5 with the engine 1 as a power source.
  • the motor 2 In the “running power generation state”, at the time of constant speed operation or acceleration operation, the motor 2 is operated as a generator using the power of the engine 1 and the generated power is used for charging the battery. Further, during the deceleration operation, the braking energy is used to operate the motor 2 as a generator to regenerate the braking energy.
  • the ECM 11 calculates the target throttle opening degree from the target engine torque calculated according to the operating state, but if the intake air density changes due to the change of the atmospheric pressure or the intake temperature, the generated torque increases or decreases. Become.
  • FIG. 2 is an explanatory view schematically showing the correlation between the maximum torque and the engine operation area when traveling in a city area.
  • Characteristic line A in FIG. 2 indicates the maximum torque (flat ground WOT torque) that engine 1 can generate on a flat ground
  • characteristic line B in FIG. 2 indicates engine 1 generates on a high ground (for example, 2000 m above sea level)
  • the maximum torque (high altitude WOT torque) which can be done is shown, and a plurality of plots in Drawing 2 show an engine operating point at the time of a city area run of a flatland.
  • the throttle opening is corrected to the increase side, and the engine torque expected when the air density does not decrease can be realized.
  • the range that can be corrected by the correction of the throttle opening is narrow. I understand.
  • the decrease in air density is large, there is a possibility that the engine torque required by the HCM 10 can not be realized even by correction of the throttle opening.
  • the target engine torque is corrected according to the air density of the environment in which the vehicle travels, and the reduction of the driving force at the time of the air density reduction is suppressed. To prevent. Furthermore, due to changes in the air density of the environment in which the vehicle is traveling, when the traveling mode is switched (switching from HEV traveling mode to EV traveling mode, or switching from EV traveling mode to HEV traveling mode) The engine 1 and the motor 2 are coordinated so as not to occur.
  • FIG. 3 and FIG. 4 are explanatory views schematically showing an outline of engine torque correction according to air density, taking a case where a vehicle is traveling in a traveling power generation state in HEV traveling mode as an example, for example, battery charging It shows a state in which the engine 1 is generating an engine torque including a target power generation torque which is reduced in amount and covers the power generation of the motor 2.
  • Fig. 3 shows the standard with the air density as the standard when the air density is rising relative to the standard air density as the standard (for example, the air density at the standard pressure (101.3 KPa) and the air temperature 25 ° C). The case where it is falling with respect to air density (for example, air density in the case of standard pressure (101.3 KPa) and air temperature 25 ° C) is shown, respectively.
  • the target engine torque actually required of the engine 1 is generated by the motor 2 to a torque for a target driving force corresponding to the driver requested driving torque with respect to the driver requested driving torque requested by the driver.
  • the required target power generation torque and the target engine friction torque in consideration of the friction are added.
  • the target driving torque is 100 Nm
  • the target generating torque is 100 Nm
  • the target engine friction torque is 50 Nm
  • the air density is 120% of the standard air density
  • the driving torque of the driver request torque (target driving force portion torque) 100 Nm becomes 50 Nm excess driving torque.
  • the output torque of the motor 2 basically corresponds to the driver's request drive torque, so the excess of the drive torque is suddenly reduced, and a step difference is caused in the drive force. It will occur.
  • the opening degree of the throttle valve (not shown) is adjusted (decreased correction) according to the increase in air density.
  • the target driving force torque is decreased and corrected so that the actual driving force torque becomes the driver's requested driving torque, and the air is generated so that the actual generating torque becomes the target generating torque when the standard air density is obtained.
  • the target power generation torque when the density is rising is reduced and corrected, and the target engine friction when the air density is rising so that the actual engine friction torque becomes the target engine friction torque when the air density is the standard air density. Make correction to decrease the minute torque.
  • the actual engine torque becomes the target engine torque, and the driver's requested driving torque matches the corrected driving force torque, so that the timing at which the traveling mode is switched even if the air density is higher than the standard air density.
  • the motor torque in the EV travel mode that is, the actual driving force torque (driver request driving torque) substantially matches the corrected driving torque in the HEV travel mode. It is possible to prevent the drive power level difference from being generated therebetween.
  • the air density is lower than the standard air density (for example, when the atmospheric pressure is reduced and the air density is reduced due to traveling at high altitudes), as shown in FIG.
  • the actual driving force torque of the actual engine torque decreases with respect to the minute torque
  • the actual power generation torque of the actual engine torque decreases with respect to the target power generation torque
  • the actual engine torque is actual against the target engine friction torque.
  • the engine friction reduces torque.
  • the target driving torque is 100 Nm
  • the target generating torque is 100 Nm
  • the target engine friction torque is 50 Nm
  • the air density is 80% of the standard air density
  • the driving torque of 50 Nm is insufficient with respect to the driver request driving torque (target driving force portion torque) 100 Nm.
  • the battery charge amount increases and the power generation of the motor 2 becomes unnecessary, and the vehicle travels using the power of only the motor 2 as the power source from the traveling power generation state.
  • the output torque of the motor 2 basically corresponds to the driver's request drive torque, so the shortage of the drive torque described above will be eliminated suddenly, and the step in the drive force is generated. It will occur.
  • the power generation load of the motor 2 is reduced to occupy in the actual engine torque.
  • the ratio of the actual driving force torque to the actual engine torque is relatively increased, and the reduction of the driving force torque obtained after the correction is suppressed.
  • the torque corresponding to the driving force obtained after the correction is made to be a torque corresponding to 80% of the driver's requested driving torque.
  • the motor torque of the motor 2 is decreased and the air density is lower than the standard air density.
  • the torque is reduced to be equal to the torque for the driving power after correction in the HEV driving mode in the case.
  • a motor corresponding to the driver's requested driving torque when the air density is the standard air density The output of the motor 2 is reduced with respect to the output of 2.
  • the power generation load of the motor 2 is reduced in the HEV drive mode, and the ratio of the actual power generation torque to the engine torque is reduced, and the EV drive mode
  • the motor torque in the HEV drive mode is corrected so as to become smaller according to the decrease in the drive torque in the HEV drive mode, so that the motor torque in the EV drive mode, that is, the actual drive force, as shown in FIG. It is possible to prevent the drive power level difference from being generated between the torque (driver request drive torque) and the drive power torque after correction in the HEV drive mode.
  • the motor torque is HEV in the EV running mode.
  • the ratio of the actual driving torque to the actual engine torque is relatively decreased by relatively reducing the ratio of the actual generating torque to the actual engine torque.
  • Lowering the power generation load of the motor 2 so as to suppress the reduction of the driving force equivalent torque obtained after the correction increases the motor torque of the EV traveling mode in accordance with the reduction of the driving force equivalent torque in the HEV traveling mode. The reduction is consistent with the suppression of the consumption of the energy stored in the battery, and the step of the driving force can be suppressed while reducing the switching frequency of the traveling mode.
  • the HEV running mode and the EV running mode are not required to adjust all of the engine output shortage due to the decrease in air density by the torque control on the motor side.
  • the motor output of the EV travel mode is lower than the motor output when the air density is not lower than the reference air density. Therefore, when the HEV drive mode is in the motor assist drive state, all the engine output shortages (output reductions) due to the air density being lower than the reference air density.
  • the air density is lower than the standard air density when eliminating or reducing the difference in driving force of the vehicle when the driving mode is switched between the HEV driving mode and the EV driving mode.
  • the power shortage output reduction
  • FIG. 7 is an explanatory view schematically showing the flow of calculation of a torque command to the engine 1 and a torque command to the motor 2.
  • a correction coefficient TTEHOSBU corresponding to the air density is calculated using the atmospheric pressure and the intake air temperature. Then, the driving force generated by the engine 1 is corrected in the ECM 11 using this correction coefficient TTEHOSBU. The driving force generated by the motor 2 is corrected in the HCM 10 using the correction coefficient TTEHOSBU calculated by the ECM 11.
  • S11 to S14 are processes performed in the HCM 10, and S21 to S25 are processes performed in the ECM 11.
  • the target driving force of the vehicle is calculated according to the accelerator opening degree. That is, in S12, the target driving force corresponding to the target engine torque generated by the engine 1 in the engine traveling state in the HEV traveling mode and the traveling power generation state, and the target engine torque generated by the engine 1 in the motor assist traveling state in the HEV traveling mode A target driving force corresponding to the sum of a motor torque (for driving assist) generated by the motor 2 or a motor torque (for driving) generated by the motor 2 in the EV travel mode is calculated.
  • the target driving force calculated in S12 is distributed to the engine 1 and the motor 2 in accordance with the traveling mode. That is, of the target driving force, the share to the engine 1 and the share to the motor 2 are determined.
  • an engine torque command is output to the ECM 11 and a motor torque command is output to the MC 12 using the information from S11 to S13 and air density information (correction coefficient TTEHOSBU) from S23 described later.
  • the motor torque command is a torque command value corrected as necessary based on the air density information.
  • the engine torque command is not a command value based on air density information, but a torque command value corresponding to a target engine torque.
  • the torque correction atmospheric pressure PPAMBTTE is calculated based on the input signal from the atmospheric pressure sensor 23.
  • the atmospheric pressure sensor 23 referring to the purge line pressure on the purge line leading from the fuel tank (not shown) through the canister (not shown) for processing evaporative fuel to the purge control valve as atmospheric pressure It is possible. However, in this case, the calculation of the atmospheric pressure is permitted only when the purge control valve is continuously closed for a predetermined time or more. When the purge control valve is open, the evaporated fuel adsorbed in the canister is introduced into the intake passage.
  • the intake air temperature TANTTE for torque correction is calculated.
  • the torque correction intake air temperature TANTTE is calculated in consideration of the influence of the ambient temperature of the engine 1.
  • a torque correction coefficient TTEHOSBU which is an atmospheric pressure / intake air temperature correction rate, is calculated.
  • the atmospheric pressure / intake air temperature correction rate is a correction value corresponding to the air density of the environment in which the vehicle travels, and S23 corresponds to an air density detection unit.
  • a basic correction coefficient TTEHOSB is calculated by multiplying the temperature correction coefficient TTEHOST.
  • a correction value TTEHOSA which is a value obtained by correcting the basic correction coefficient TTEHOSB in consideration of variations in the sensor, is subjected to a rate limit process, and is used as a torque correction coefficient TTEHOSBU.
  • the correction value TTEHOSA is calculated using the TTEHOSA calculation table shown in FIG. Further, the rate limit processing is performed to suppress the torque step due to the change of the torque correction coefficient TTEHOSBU at the time of updating the atmospheric pressure and the intake air temperature.
  • the torque correction coefficient TTEHOSBU becomes a smaller value as the air density increases.
  • the target engine torque calculated in S14 of the HCM 10 is input as an engine torque command, and a target torque TTEP based on this command is output to S25.
  • the target torque TTEP corresponds to the sum of the target driving torque of the engine 1, the target engine friction torque, and the target power generation torque.
  • the target torque TTEP is corrected using the torque correction coefficient TTEHOSBU, and the corrected target torque TTEPHOS is calculated.
  • the actual correction factor TTEHOSK is calculated from the torque correction factor TTEHOSBU using the TTEHOSK calculation table shown in FIG.
  • the corrected target torque TTEPHOS is calculated by multiplying the actual correction factor TTEHOSK by Then, the target throttle opening degree is set from the corrected target torque TTEPHOS.
  • the air density decreases with respect to the reference air density, and if the vehicle is in the engine running state or the motor assist running state, the actual driving torque of the engine 1 is It is also possible to compensate for the decrease by increasing the motor torque and to suppress the decrease in the vehicle driving force with respect to the driver request driving torque.
  • the motor torque may be increased to compensate for a part (predetermined percentage) of the reduction in torque.
  • correction is performed to reduce the output of motor 2 so that a step is not generated in the driving force of the vehicle when the driving mode is switched between HEV driving mode and EV driving mode. it can.
  • the throttle opening when adjusting the output (torque) of the engine 1, the throttle opening is adjusted, but the throttle opening, the ignition timing of the engine 1, the engine 1 has a variable valve mechanism.
  • the output (torque) of the engine 1 may be adjusted by adjusting the opening timing of the intake valve and the like.
  • the reference air density may be a predetermined single value or all values within a predetermined range. That is, when the reference air density is all values within a predetermined reference range, the air density detected when the detected air density value decreases beyond the predetermined reference range is It is determined that the detected air density is lower than the reference air density, and the detected air density is higher than the predetermined reference range, and the detected air density is lower than the reference air density. If the detected air density is within the predetermined reference range, it may be determined that the detected air density matches the reference air density.
  • the air density is lower than that at a low altitude, so the output of the engine 1 is lowered and the driving torque of the vehicle is also relatively lowered.
  • the output of the motor 2 is not affected by the air density. Therefore, in the hybrid vehicle having the engine 1 and the motor 2 as a drive source of the vehicle, when the air density changes, a step is generated in the driving force of the vehicle when the traveling mode is switched. It has already been described that the engine 1 and the motor 2 are coordinated so as not to cause a step in the driving force.
  • the hybrid vehicle has more air even though the drive torque required by the vehicle is the same.
  • the reduction of the driving force may increase.
  • FIG. 11 is an explanatory view schematically showing a difference in actual engine torque (a torque actually outputted by the engine) due to a difference in air density in a vehicle having only an engine as a drive source.
  • FIG. 12 shows a hybrid vehicle including an engine and a motor as a drive source, where the engine torque includes the drive torque of the vehicle transmitted to the drive wheels and the generated torque that generates electric power from the motor.
  • FIG. 6 is an explanatory view schematically showing a difference in actual engine torque (a torque actually outputted by the engine) due to a difference in air density.
  • the target engine torque Te * (not including the engine friction Tfric) follows the target driving torque Td * of the vehicle.
  • the torque actually delivered by the engine (actual engine torque Te1) is a value including the engine friction Tfric.
  • the actual driving torque Td1 is smaller by ⁇ T1 than the target driving torque Td * of the vehicle when traveling on a highland where the air density is low.
  • the actual engine torque Te2 which is the torque actually delivered by the engine, has a value smaller by ⁇ T1 than the actual engine torque Te1 at a low altitude (normal) where the air density is high.
  • the actual driving torque Td1 at this time is an amount obtained by removing the engine friction Tfric from the actual engine torque Te2.
  • the target engine torque Te * (not including the engine friction Tfric) follows the target driving torque Td * of the vehicle.
  • the torque actually delivered by the engine (actual engine torque Te3) has a value including the engine friction Tfric and the power generation torque Tp for supporting the power generation by the motor.
  • the torque actually delivered by the engine (actual engine torque Te4) is the actual engine at low altitudes (normal) where air density is high. The value is smaller than the torque Te3 by ⁇ T2.
  • the actual driving torque Td2 at this time is an amount obtained by subtracting the engine friction Tfric and the power generation torque Tp from the actual engine torque Te4.
  • the generated torque Tp is constant regardless of the air density, so the target driving torque Td * in FIG. 11 and the target driving torque Td in FIG. If the value of * is the same value, the actual engine torque Te3 is larger than the actual engine torque Te1 by the amount by which the generated torque Tp is added to the target engine torque Te * , so the torque decreases when the air density decreases. The amount becomes large ( ⁇ T2> ⁇ T1).
  • the power generation torque Tp is suppressed by suppressing the power generation torque Tp.
  • the engine and the motor are controlled so as to ensure the balance between the amount of power consumption when assisting the vehicle driving force with the motor and the amount of power supply by the power generation by the motor while suppressing descent amount and ensuring drivability. Coordinate That is, the assist torque and the power generation torque of the motor are corrected so that the balance between the powering and the regeneration of the motor becomes constant at high and low grounds in a certain operation pattern.
  • the required motor torque Tg is also reduced at the same rate with respect to (Td * -Te * ), which is a necessary value at low ground. That is, when the engine torque decreases, the driving force of the vehicle is also reduced, and the motor does not compensate the driving torque. And in the power generation by the motor and the assist of the driving force by the motor, in the second embodiment, the output is reduced at the same correction rate.
  • the power generation by the motor and the assist of the driving force by the motor the balance between the power consumption when assisting the vehicle driving power by the motor and the power supply by the power generation by the motor can be ensured. It is not necessary to reduce by the same correction factor.
  • FIG. 13 is an explanatory view schematically showing a flow of calculation of a torque command in the HCM 10 according to the second embodiment of the present invention, in which an engine torque command output to the ECM 11 is output to the MC 12 Shows a flow of calculation of the motor torque command, the target driving torque command output to the ATCU 13 and the target clutch torque command at the time of shifting.
  • the processing of the engine torque command in the ECM 11 is the same as that of the first embodiment described above (the same as S21 to S25 in FIG. 7), so that the processing flow in the overlapping ECM 11 is related. The description is omitted.
  • the engine torque reduction rate is calculated by applying a change rate limitation to the correction coefficient TTEHOSBU input from the ECM 11 in order to prevent a sudden change in the driving force. .
  • the target drive torque Td * is corrected in S170 (details will be described later) using this engine torque decrease rate, and the target drive torque Tc * after shifting is corrected in S190 (details will be described later).
  • the command torque based engine torque estimated value (Te * Z which is the previous value of the target engine torque Te * ) is corrected in order to determine the power generation by the motor 2 and the assist torque.
  • the engine torque decrease rate is calculated using the correction coefficient TTEHOSBU which is air density information calculated in the ECM 11 and input as a CAN signal through the communication line 14.
  • TTEHOSBU correction coefficient
  • S111 it is determined whether or not the CAN signal corresponding to the input correction coefficient TTEHOSBU is a normal value, and if it is a normal value, the input correction coefficient TTEHOSBU is used and it is determined that the value is not a normal value. Does not use the input correction coefficient TTEHOSBU, and replaces it with 100% (i.e., "1"). That is, at the time of communication abnormality between the ECM 11 and the HCM 10 by the communication line 14 or when the atmospheric pressure sensor 23 or the intake air temperature sensor 24 fails, the value of the input correction coefficient TTEHOSBU is replaced with 100%, It does not happen.
  • upper and lower limits are set for the input correction coefficient TTEHOSBU.
  • the upper limit is set to 100% and the lower limit to 60%.
  • the upper limit may be set to 100% because correction is made on the side of the ECM 11 when the engine torque increases.
  • the lower limit may be set smaller as the maximum altitude at which the vehicle is supposed to travel is set higher.
  • the change speed of the input correction coefficient TTEHOSBU is limited.
  • a change rate limit of 0.03 (% / sec) is set.
  • the rate of change limitation of 0.03 (% / sec) is set from the rate of change when a 10% climbing road continues to climb at 100 km / h.
  • the driving force correction engine friction is calculated from the number of revolutions of the motor 2 with reference to the engine friction calculation table (not shown).
  • the engine friction calculation table is set, for example, such that the calculated driving force correction engine friction increases as the rotation speed of the motor 2 increases.
  • the driving force correction engine friction is set as a negative value, and the value calculated at S120 is output as a negative value.
  • the target engine torque Te * is calculated from the engine speed and the accelerator opening with reference to a target engine torque calculation map (not shown).
  • the target engine torque calculation map is set, for example, such that the target engine torque to be calculated becomes larger as the accelerator opening degree becomes larger.
  • the target engine torque Te * calculated at S130 is output to the ECM 11 as an engine torque command without being subjected to the correction by the correction coefficient TTEHOSBU.
  • the processing of the target engine torque Te * in the ECM 11 is the same as that of the first embodiment described above.
  • a target assist torque Ta * is calculated from the engine speed and the accelerator opening with reference to a target assist torque calculation map (not shown).
  • the target assist torque calculation map is set, for example, such that the target engine torque to be calculated becomes larger as the accelerator opening degree becomes larger.
  • the target engine torque Te * and the target assist torque Ta * are summed to calculate a shift target clutch torque Tc * .
  • the target engine torque Te * and the target assist torque Ta * input in S150 are values calculated based on the current engine speed
  • Tm the torque command to the second clutch 7 is calculated using the engine torque decrease rate calculated in S110, the driving force correction engine friction calculated in S120, and the target driving torque Td * calculated in S150.
  • a target driving torque command, which is a value, is calculated and output to the ATCU 13.
  • the target input torque Tm is calculated as a result of the processing of S171 to S175, and the target driving torque command is calculated as a result of the processing of S176 to S180.
  • the target input torque Tm is obtained by adding the engine torque reduction rate to the value obtained by adding the driving force correction engine friction to the target driving torque Td * (S171) (S172), and then adding the driving force correction engine friction (Subtract) (S173). Since the driving force correction engine friction is set to a negative value in S120, the driving force correction engine friction is actually added in S171 as described above, and the driving force correction engine friction is subtracted in S173. It will be done. Then, if the current gear position of the automatic transmission 3 is the gear position (for example, the first gear) in which the one-way clutch is interposed, output is performed after the target input torque Tm does not become negative torque in S175. Ru.
  • the target output torque Tm is not the value obtained in S173 but the value output from S174 to S175.
  • the target driving torque command is obtained by adding the engine torque reduction rate to the value obtained by adding the driving force correcting engine friction to the target driving torque Td * (S176) (S177), and then adding the driving force correcting engine friction (Subtract) (S178). Then, if the current gear position of the automatic transmission 3 is the gear position (for example, the first gear) in which the one-way clutch is interposed, the command value of the target driving torque command is not negative torque in S180. Output from That is, in S179, the value obtained in S178 and "0" are compared and the larger value is output to S180, and the current gear of the automatic transmission 3 is a gear in which the one-way clutch is interposed. In the case of a stage (for example, first gear), not the value obtained in S178 but the value output from S179 to S180 is output as a target driving torque command.
  • the target drive torque Td * used for the calculation of the target input torque Tm is, when the value calculated in S150 is equal to or more than a predetermined upper limit value set in advance, for protection of the automatic transmission 3.
  • the upper limit value is processed to obtain the target drive torque Td * . Further, the correction using the engine torque decrease rate in S170 is always performed during traveling so that the driving power level difference between the EV traveling mode and the HEV traveling is suppressed.
  • the shift for the automatic transmission 3 is performed using the engine torque decrease rate calculated in S110, the driving force correction engine friction calculated in S120, and the shift target clutch torque Tc * calculated in S160.
  • the shift target clutch torque command which is a torque command value at the time of shift, is calculated and output to the ATCU 13.
  • the shift target clutch torque command is obtained by multiplying the shift target clutch torque Tc * by adding the driving force correction engine friction (S191) to the engine torque decrease rate (S192). ), And then add (subtract) the engine friction for driving force correction (S193). Then, if the current gear position of the automatic transmission 3 is the gear position (for example, the first gear) in which the one-way clutch is interposed, the command value of the gear shift target clutch torque command does not become negative torque in S195. Will be output. That is, in S194, the value obtained in S193 and "0" are compared and the larger value is output to S195, and the current gear of the automatic transmission 3 is a gear in which the one-way clutch is interposed. In the case of a gear (for example, first gear), not the value obtained in S193 but the value output from S194 to S195 is output as a shift target clutch torque command.
  • the estimated engine torque Tn is a value obtained by adding the driving force correction engine friction to the previous value Te * Z of the target engine torque Te * (S 201), and the engine torque reduction rate (S202), and then the driving power correction engine friction is added (subtracted) (S203). Note that in calculating the estimated engine torque Tn, instead of Te * Z is a previous value of the target engine torque Te *, it is also possible to use a target engine torque Te * (current value).
  • the value obtained in S203 is subjected to a filter operation and output as an estimated engine torque Tn.
  • the filter calculation performed in S204 simulates the delay of the actual engine torque with respect to the command value.
  • the difference between the target input torque Tm calculated in S170 and the estimated engine torque Tn calculated in S200 is calculated as a motor torque Tg which is a motor torque command, and is output to the MC 12.
  • the target drive torque command and the automatic torque command value for the second clutch 7 as well as the motor torque command and the engine torque command.
  • the shift target clutch torque command which is a torque command value at the time of gear shift, for the transmission 3
  • Driving performance can be secured. That is, when the reduction amount of the actual engine torque Te caused by the reduction of the air density in the hybrid vehicle can not be suppressed, the drivability of the vehicle is suppressed by suppressing the reduction amount of the actual driving torque Td by suppressing the power generation torque Tp. Can be secured.
  • the engine 1 and the motor 2 can be coordinated so as to ensure a balance between the amount of power consumption when assisting the vehicle driving force by the motor 2 and the amount of power supply by the power generation of the motor 2.
  • the torque command to the automatic transmission 3 is set so that the torque command after correction by the engine torque decrease rate does not become a negative torque command when the gear is a gear stage in which a one-way clutch is interposed. Therefore, it is possible to prevent the reduction of the input rotational speed due to the one-way clutch disengagement, the reverse rotation, and the abutment shock of the one-way clutch.
  • FIG. 18 is a flowchart showing the control flow of the second embodiment described above.
  • the engine torque decrease rate is calculated using the correction coefficient TTEHOSBU input from the ECM 11.
  • a driving force correction engine friction is calculated from the rotational speed of the motor 2.
  • a target engine torque Te * is calculated from the engine speed and the accelerator opening.
  • a target assist torque Ta * is calculated from the engine speed and the accelerator opening.
  • an estimated engine torque Tn is calculated using the engine torque decrease rate, the driving force correction engine friction, and the previous value Te * Z of the target engine torque Te * .
  • the target drive torque Td * calculated using the target engine torque Te * and the target assist torque Ta * is corrected to calculate the target input torque Tm, and a target that is a torque command value for the second clutch 7 Calculate the drive torque command.
  • the shift target clutch torque Tc * calculated using the target engine torque Te * and the target assist torque Ta * is corrected, and the shift target clutch torque which is a torque command value for the shift of the automatic transmission 3 Calculate the command.
  • target engine torque Te * is output as an engine torque command to the ECM 11.
  • the target drive torque command calculated in S350 is output to the ATCU 13.
  • a motor torque Tg which is the difference between the target input torque Tm and the estimated engine torque Tn, is output as a motor torque command to the MC 12.
  • the shift target clutch torque command calculated in S360 is output to the ATCU 13.
  • FIG. 19 is a flowchart showing the flow of control when calculating the engine torque decrease rate, and corresponds to the subroutine of S300 in FIG.
  • step S301 it is determined whether the correction coefficient TTEHOSBU input from the ECM 11 is larger than a predetermined lower limit value set in advance. If the correction coefficient TTEHOSBU is larger, the process proceeds to step S303, and if smaller, the process proceeds to step S302. In S302, the predetermined lower limit value is set as the correction coefficient TTEHOSBU, and the process proceeds to S303. In S303, it is determined whether the correction coefficient TTEHOSBU is smaller than a predetermined upper limit value set in advance. If smaller, the process proceeds to S305, and if larger, the process proceeds to S304. In S304, the predetermined upper limit value is set as the correction coefficient TTEHOSBU, and the process proceeds to S305.
  • S305 it is determined whether or not the change speed of the correction coefficient TTEHOSBU is smaller than a preset limit value, and if smaller, the correction coefficient TTEHOSBU in S305 is output as the engine torque reduction rate, and if large, to S306. move on.
  • the change rate of the correction coefficient TTEHOSBU is limited, and then the correction coefficient TTEHOSBU in S306 is output as the engine torque reduction rate.
  • Td * 0, Td ⁇ 0, and thus the actual driving torque Td does not become zero. Therefore, for example, when the shift range of the automatic transmission is the P range or the N range, or when the creep torque is cut, the actual driving torque Td does not become zero.
  • the value after correction using the engine torque reduction rate should not be larger than the value before correction using the engine torque reduction rate (see S602 in FIG. 20 described later), and creep The torque is limited so as not to be smaller than the driving torque at the time of coasting (see S601 in FIG. 20 described later).
  • the target torque is set to 0 (see S603 in FIG. 20 described later).
  • an automatic mode in which the automatic transmission 3 sets a gear position according to the operating state among a plurality of gear positions, and a manual setting a gear position according to the driver's manual operation out of a plurality of gear positions.
  • the current gear position of the automatic transmission 3 is a gear position (for example, 1st gear) in which the one-way clutch is interposed other than the manual mode
  • a command for torque command is provided. Make sure that the value does not become negative torque (see S175 in FIG. 20 described later). This is because, when the setting of the automatic transmission 3 is set to the manual mode and the driver wants to apply the engine brake, the engine brake should be applied according to the driver's intention.
  • S171 to S173 are the same processes as S171 to S173 of FIG. 15 described above, but downstream of S173 of FIG. Three processes of S601 to S603 described later are added. Further, as to S175, in the third embodiment, the condition that the shift mode of the automatic transmission 3 is not the manual mode is newly added, but the other conditions are the same as S175 of the second embodiment.
  • the value obtained in S173 (the value obtained by subtracting the engine friction for driving force correction from the target driving torque Td * is multiplied by the engine torque reduction rate, and then the engine friction for driving force correction is obtained.
  • the target creep torque or the target coast torque target torque when the foot is released from the accelerator
  • the larger value is output to S602.
  • when compared with target creep torque it is driving at the time of start, when compared with target coast torque.
  • the value output from S601 is compared with the target drive torque Td *, and the smaller value is output to S603.
  • the target torque is set to 0, otherwise Outputs the target torque input from S602.
  • the target input in S175 It is output after preventing the torque Tm from becoming a negative torque. That is, in S174, the value obtained in S603 and "0" are compared and the larger value is output to S175, and the current gear of the automatic transmission 3 is a gear in which the one-way clutch is interposed. In the case of a gear (for example, 1st gear) and the shift mode of the automatic transmission 3 is not the manual mode, the value output from S174 to S175 is set as the target input torque Tm, not the value output from S603. .
  • the above three processes of S601 to S603 are added on the downstream side of S178 in FIG. 15 described above, and in S180, the shift mode of the automatic transmission 3 is manual. A new condition of not being a mode will be added.
  • the above-described three processes of S601 to S603 are added on the downstream side of S193 in FIG. 16 described above, and the shift mode of the automatic transmission 3 is manual at S195. A new condition of not being a mode will be added.
  • the target torque corrected using the engine torque reduction rate is not larger than the target torque before correction using the engine torque reduction rate, and therefore, drivability is ensured. it can.
  • the target torque corrected using the engine torque decrease rate does not have a value smaller than the target creep torque, it is possible to suppress the backward movement of the vehicle due to the creep torque shortage at the start of the slope.
  • the target torque corrected using the engine torque decrease rate does not have a value smaller than the target coast torque, it is possible to ensure the drivability at the time of releasing the accelerator from the foot.

Abstract

ハイブリッド車両は、エンジンと、モータと、を駆動源して備え、前記エンジンの出力を利用して車両を駆動する第1の走行モードと、前記エンジンを停止して前記モータの出力で車両を駆動させる第2の走行モードと、を有する。そして、車両の走行する環境の空気密度を検出する空気密度検出部を備え、検出された空気密度が基準とする空気密度に対して低下している場合、走行モードの切り替えの際に前記第2の走行モードの車両の駆動力が、前記第1の走行モードの車両の駆動力に近づくように、前記基準空気密度におけるモータの出力に対して前記第2の走行モードのモータ出力を低下させる。

Description

ハイブリッド車両
 本発明は、エンジンとモータとを駆動源として備えたハイブリッド車両に関する。
 特許文献1には、駆動輪に連結されたエンジンと第1のモータと、少なくとも前記エンジンからの動力の一部を用いて発電可能な第2のモータと、を有するハイブリッド車両において、空気密度が変化したときの影響を相殺するように、第1のモータ及び第2モータを駆動制御することによって機関回転数を変更し、機関出力を目標値に一致させる技術が開示されている。
また、特許文献2には、エンジンとモータの複数の駆動源を備え、車両の駆動力を制御するモータと遊星歯車から構成される変速装置を有するハイブリッド車両において、大気圧の変動等によりエンジンの出力が低下し、運転者が意図する車両トルクが得られていない場合には、モータにより車両トルクの不足分をアシストして、運転者が意図する車両トルクが得られるようにした技術が開示されている
特開2005-351259号公報 特開2000-104590号公報
しかしながら、特許文献1に記載のハイブリッド車両においては、空気密度が変化したときの影響を相殺するように、第1及び第2のモータにより機関回転数を変更すると、これら2つのモータの出力トルクは空気密度の影響を受けないため、エンジンで車両の駆動力を発生させている状態から、エンジンを停止してモータで車両の駆動力を発生させている状態に運転状態が移行する際に、駆動力段差が生じてしまい、運転者に違和感を与えてしまう虞がある。
 また、特許文献2に記載のハイブリッド車両においては、エンジンの出力トルク不足分をすべてモータのアシストトルクで補おうとすると、バッテリの消費電力が多くなってしまうという問題がある。またモータが発電している状況でエンジンの出力トルクの不足分をアシストする場合には、モータの発電負荷を低下させることになるため、十分な発電量が確保できなくなる虞がある。
 そこで、本発明は、エンジンの出力を利用して車両を駆動する第1の走行モードと、前記エンジンを停止して前記モータの出力で車両を駆動させる第2の走行モードと、を有するハイブリッド車両において、空気密度が基準とする空気密度に対して低下している場合、走行モードの切り替えの際に前記第2の走行モードの車両の駆動力が前記第1の走行モードの車両の駆動力に近づくように、前記基準空気密度におけるモータの出力に対して前記第2の走行モードのモータ出力を低下させる。
本発明が適用されたハイブリッド車両のシステム構成を模式的に示した説明図。 最大トルクと、市街地走行時のエンジン動作領域の相関を模式的に示した説明図。 本発明において、空気密度が上昇している場合のエンジントルク補正の概略を模式的に示した説明図。 本発明において、空気密度が低下している場合のエンジントルク補正の概略を模式的に示した説明図。 空気密度が上昇している場合において、走行モードが切り替わる際の駆動力の挙動を示す説明図。 空気密度が低下している場合において、走行モードが切り替わる際の駆動力の挙動を示す説明図。 エンジン及びモータへのトルク指令の演算の流れを模式的に示した説明図。 吸気温補正係数TTEHOSTの算出テーブル。 補正値TTEHOSAの算出テーブル。 実補正率TTEHOSKの算出テーブル。 駆動源としてエンジンのみも持つ車両において、空気密度の違いによる実エンジントルクの違いを模式的に示した説明図。 駆動源としてエンジンとモータとを備えたハイブリッド車両において、空気密度の違いによる実エンジントルクの違いを模式的に示した説明図である。 本発明の第2実施形態におけるHCM内の演算の流れを模式的に示した説明図。 エンジントルク低下率の演算手順の詳細を模式的に示した説明図。 目標入力トルクTmと目標駆動トルク指令の演算手順の詳細を模式的に示した説明図。 変速時目標クラッチトルク指令の演算手順の詳細を模式的に示した説明図。 推定エンジントルクTnの演算手順の詳細を模式的に示した説明図。 本発明の第2実施形態の制御の流れを示すフローチャート。 エンジントルク低下率の演算する際の制御の流れを示すフローチャート。 本発明の第3実施形態における目標入力トルクTmの演算手順の詳細を模式的に示した説明図。
 以下に説明する本発明のハイブリッド車両では、エンジンの出力を利用して車両を駆動する第1の走行モード(後述するHEV走行モード)と、エンジンを停止してモータの出力で車両を駆動する第2の走行モード(後述するEV走行モード)との間で走行モードが切り替わる際の車両の駆動力の段差を解消もしくは緩和することができる。これは、空気密度が基準とする空気密度よりも低下している場合、走行モードの切り替えの際に、第2の走行モードの車両の駆動力が第1の走行モードの車両の駆動力に近づくように、第2の走行モードのモータ出力を、空気密度が基準とする空気密度よりも低下していないときのモータ出力に対して低下させているためである。
 そして、本発明のハイブリッド車両では、空気密度が基準とする空気密度よりも低下している場合、第2の走行モードのモータ出力を、空気密度が基準とする空気密度よりも低下していないときのモータ出力に対して低下させているため、例えば、第1の走行モードが走行発電状態である場合には、空気密度が基準とする空気密度よりも低下していることに起因するエンジンの出力不足分(出力低下分)の全てをモータの発電トルクを低下させるような(モータによる発電量を低下させるような)モータのトルク制御で補わなくとも、第1の走行モードと第2の走行モードとの間で走行モードが切り替わった際の車両の駆動力の段差を解消もしくは緩和することが可能となる。また、例えば、第1の走行モードがモータアシスト走行状態である場合には、空気密度が基準とする空気密度よりも低下していることに起因するエンジンの出力不足分(出力低下分)の全てをモータトルクでアシストするような(モータの消費電力を増大させるような)モータのトルク制御で補わなくとも、第1の走行モードと第2の走行モードとの間で走行モードが切り替わった際の車両の駆動力の段差を解消もしくは緩和することが可能となる。
 つまり、本発明のハイブリッド車両では、空気密度が基準とする空気密度よりも低下している場合、第2の走行モードのモータ出力を、空気密度が基準とする空気密度よりも低下していないときのモータ出力に対して低下させることで、第1の走行モードと第2の走行モードとの間で走行モードが切り替わった際の車両の駆動力の段差を解消もしくは緩和する際に、空気密度が基準とする空気密度よりも低下していることに起因するエンジンの出力不足分(出力低下分)の全てをモータのトルク制御で補う場合に比べ、第1の走行モードが走行発電状態の場合にはモータでの発電不足を抑制することができると共に、第1の走行モードがモータアシスト走行状態の場合にはモータの消費電力の増大を抑制することができる。
 以下、本発明の一実施形態を図面に基づいて詳細に説明する。
 図1は、本発明が適用されたハイブリッド車両のシステム構成を模式的に示した説明図である。
 ハイブリッド車両は、駆動源として例えば直列4気筒のエンジン(内燃機関)1と発電機としても機能するモータジェネレータ2(以下、モータ2と記す)と、エンジン1とモータ2の動力をディファレンシャルギヤ4を介して駆動輪5に伝達する自動変速機3と、エンジン1とモータ2との間に介装された第1クラッチ6(CL1)と、モータ2と駆動輪5との間に介装された第2クラッチ7(CL2)と、を備えている。
 自動変速機3は、例えば、前進5速後退1速や前進6速後退1速等の有段階の変速比を車速やアクセル開度等に応じて自動的に切り換える(変速制御を行う)ものである。また、この自動変速機3は、複数の変速段のうち、内部にワンウェイクラッチを介在させるギヤ段を有している。そして、本実施形態における第2クラッチ7は、自動変速機3内にある既存の前進変速段選択用の摩擦要素または後退変速段選択用の摩擦要素を流用して構成されたものである。なお、自動変速機3としては、上記した有段式のものに限られず、無段変速機であってもよい。
 このハイブリッド車両は、車両を統合制御するHCM(ハイブリッドコントローラモジュール)10と、ECM(エンジンコントロールモジュール)11、MC(モータコントローラ)12及びATCU(オートマチックトランスミッションコントロールユニット)13を有している。
 HCM10は、互いに情報交換が可能な通信線14を介して、ECM11、MC12及びATCU13と接続されている。
 ECM11には、エンジン1の回転数を検知する回転数センサ16、クランク角を検知するクランク角センサ17、排気空燃比を検知するA/Fセンサ18、アクセルペダルの踏み込み量からアクセル開度を検知するアクセル開度センサ19、スロットル開度を検知するスロットルセンサ20、車速を検知する車速センサ21、エンジン1の冷却水温を検知する水温センサ22、大気圧を検知をする大気圧センサ23、吸気温を検知する吸気温センサ24、吸入空気量を検知するエアフローメータ25等からの出力信号が入力されている。
 ECM11は、HCM10からの目標エンジントルク指令(目標要求トルク)等に応じて、エンジン1を制御している。具体的には、アクセル開度に基づく運転者が要求する駆動トルクや、後述するバッテリ充電量、あるいは車両の運転条件(例えば加減速状態)などを考慮して、HCM10が決めた目標エンジントルクが得られるように、スロットル開度を算出する。そして、このスロットル開度にスロットル弁を制御し、そのときに得られる吸入空気量をエアフロメータ25で検出し、検出された吸入空気量に基づき所定の空燃比が得られるようにエンジン1に燃料を供給する。尚、上述した各センサからの情報は、通信線14を介してHCM10に出力されている。
 MC12は、HCM10からの目標モータトルク指令等に応じて、モータ2を制御している。また、モータ2は、バッテリ(図示せず)から供給された電力が印加された力行運転と、発電機として機能して前記バッテリを充電する回生運転と、起動及び停止の切り換えと、がMC12によって制御されている。尚、モータ2の出力(電流値)は、MC12で監視されている。つまり、MC12によりモータ出力が検知されている。
 ATCU13には、上述のアクセル開度センサ19、車速センサ21等からの信号が入力されている。ATCU13は、車速やアクセル開度等から最適な変速段を決定し、自動変速機3内部の摩擦要素の掛け替えによる変速制御を行う。また、第2クラッチ7が自動変速機3の摩擦要素によって構成されているので、第2クラッチ7もATCU13を介して制御される。
 尚、第1クラッチ6は、HCM10からの第1クラッチ制御指令に基づいて、締結及び開放が制御されている。また、目標エンジントルク指令、目標モータトルク指令、変速制御指令(第2クラッチ制御指令)、第1クラッチ制御指令等のHCMから出力される各種指令信号は、運転状態に応じて算出されるものである。また、HCM10には、前記バッテリの充放電状態に関する情報、すなわち前記バッテリの充電量(SOC)に関する情報や、自動変速機3の入力回転数(図1におけるモータ2と自動変速機3との間の位置における回転数)も入力されている。
 このハイブリッド車両は、第1クラッチ6の締結・開放状態に応じた2つの走行モードを有している。第1の走行モードは、第1クラッチ6を締結状態とし、エンジン1を動力源に含みながら走行するエンジン使用走行モード(HEV走行モード)である。第2の走行モードは、第1クラッチ6を開放状態とし、モータ2の動力のみを動力源として走行するモータ使用走行モードとしての電気自動車走行モード(EV走行モード)である。
 ここで、前記HEV走行モードは、「エンジン走行状態」、「モータアシスト走行状態」及び「走行発電状態」の3つの走行状態を有している。「エンジン走行状態」は、エンジン1のみを動力源として駆動輪5を動かすものである。「モータアシスト走行状態」は、エンジン1とモータ2の2つを動力源として駆動輪5を動かすものである。「走行発電状態」は、エンジン1を動力源として駆動輪5を動かすと同時に、モータ2を発電機として機能させるものである。
 前記「走行発電状態」は、定速運転時や加速運転時に、エンジン1の動力を利用してモータ2を発電機として動作させ、発電した電力をバッテリの充電のために使用する。また、減速運転時には、制動エネルギーを利用してモータ2を発電機として動作させ、制動エネルギーを回生する。
 ここで、ECM11は、運転状態に応じて算出された目標エンジントルクから目標スロットル開度を算出しているが、大気圧や吸気温度の変化により吸入空気密度が変化すると発生トルクが増減することになる。
 図2は、最大トルクと、市街地走行時のエンジン動作領域の相関を模式的に示した説明図である。
 図2中の特性線Aは、平地においてエンジン1が発生させることができる最大トルク(平地WOTトルク)を示し、図2中の特性線Bは、高地(例えば標高2000m)においてエンジン1が発生させることができる最大トルク(高地WOTトルク)を示し、図2中の複数のプロットは、平地の市街地走行時のエンジン動作点を示している。
 例えば、空気密度が低下した場合、スロットル開度を増加側に補正することで、空気密度が低下しない場合に期待されるエンジントルクを実現できるが、特にハイブリッド車両では、図2からも明らかなように、HCM10が要求するエンジントルクに応じたエンジン動作点は、燃費の良い高負荷側を使用する頻度が多く、余裕トルクが小さいため、スロットル開度の補正によって補正できる幅が狭くなっていることがわかる。そして空気密度の低下が大きい場合には、HCM10が要求するエンジントルクを、スロットル開度の補正によっても実現できない可能性が出てくる。
 そこで、本実施形態においては、車両の走行する環境の空気密度に応じて目標エンジントルクを補正し、空気密度低下時の駆動力低下を抑制すると共に、空気密度上昇時の駆動力の過剰な発生を防止する。さらに、車両の走行する環境の空気密度の変化によって、走行モードの切り替わる際(HEV走行モードからEV走行モードへの切り替わり、あるいはEV走行モードからHEV走行モードへの切り替わり)に車両の駆動力に段差が生じないようにエンジン1とモータ2とを協調させる。
 図3及び図4は、車両がHEV走行モードの走行発電状態で走行中の場合を例に、空気密度に応じたエンジントルク補正の概略を模式的に示した説明図であって、例えばバッテリ充電量が低下して、モータ2の発電を賄う目標発電分トルクを含んだエンジントルクを、エンジン1が発生している状態を示す。図3は空気密度が基準となる標準空気密度(例えば標準気圧(101.3KPa)、気温25℃の場合の空気密度)に対して上昇している場合、図4は空気密度が基準となる標準空気密度(例えば標準気圧(101.3KPa)、気温25℃の場合の空気密度)に対して低下している場合をそれぞれ示している。
 運転者が要求する運転者要求駆動トルクに対して、エンジン1に実際に要求される目標エンジントルクは、前記運転者要求駆動トルクに相当する目標駆動力分トルクに、モータ2で発電するために必要な目標発電分トルクと、フリクションを考慮した目標エンジンフリクション分トルクとを加えたものとなる。
 空気密度が標準空気密度に対して上昇している場合(例えば寒冷地での走行のため吸気温が低下して空気密度が上昇している場合)、図3に示すように、目標駆動力分トルクに対して実エンジントルクの実駆動力分トルクが増加し、目標発電分トルクに対して実エンジントルクの実発電分トルクが増加し、目標エンジンフリクション分トルクに対して実エンジントルクの実エンジンフリクション分トルクが増加することになる。
 例えば、目標駆動力分トルクが100Nm、目標発電分トルクが100Nm、目標エンジンフリクション分トルクが50Nm、空気密度が標準空気密度の120%の場合には、実エンジントルクは、(100+100+50)×1.2=300Nmとなる。空気密度が上昇すると、目標エンジンフリクション分トルク相当の実エンジンフリクション分トルクは増加することになるが、実際にフリクション分として使用するトルクは目標エンジンフリクション分トルクと同じである。また、発電に使用するトルクは目標発電分トルクと同じである。よって、実エンジントルクの実駆動力分トルクは、300-100-50=150Nmとなり、運転者要求駆動トルク(目標駆動力分トルク)100Nmに対して、50Nmの駆動トルク過剰となってしまう。
 このように、空気密度が基準の空気密度を上回っているときに、バッテリ充電量が増加してモータ2の発電が不要となって、走行発電状態からモータ2のみの動力を動力源として走行するEV走行モードに切り替わった場合、モータ2の出力トルクは基本的に運転者要求駆動トルクに一致しているため、上記の駆動トルクの過剰分が急に減少することになり、駆動力に段差を生じてしまう。
 そこで、本実施形態においては、空気密度が標準空気密度に対して上昇している場合に、空気密度の上昇に応じてスロットル弁(図示せず)の開度を調整(減少補正)して目標エンジントルクを減少側に補正することで、この補正後に得られる駆動力分トルクと運転者要求駆動トルクとを一致させている。
 具体的には、実駆動力分トルクが運転者要求駆動トルクとなるように目標駆動力分トルクを減少補正し、実発電分トルクが標準空気密度のときの目標発電分トルクとなるように空気密度が上昇している場合の目標発電分トルクを減少補正し、実エンジンフリクション分トルクが標準空気密度のときの目標エンジンフリクション分トルクとなるように空気密度が上昇している場合の目標エンジンフリクション分トルクを減少補正する。
 これにより、実エンジントルクが目標エンジントルクとなり、運転者要求駆動トルクが補正後の駆動力分トルクと一致するので、空気密度が標準空気密度に対して上昇していても、走行モードの切り替わるタイミングにおいて、図5に示すように、EV走行モードにおけるモータトルクすなわち実駆動力分トルク(運転者要求駆動トルク)と、HEV走行モードにおける補正後の駆動力分トルクとが実質的に一致し、両者間に駆動力段差が生じてしまうことを防止することができる。
 一方、空気密度が標準空気密度に対して低下している場合(例えば高地での走行のため大気圧が低下して空気密度が低下している場合)、図4に示すように、目標駆動力分トルクに対して実エンジントルクの実駆動力分トルクが減少し、目標発電分トルクに対して実エンジントルクの実発電分トルクが減少し、目標エンジンフリクション分トルクに対して実エンジントルクの実エンジンフリクション分トルクが減少することになる。
 例えば、目標駆動力分トルクが100Nm、目標発電分トルクが100Nm、目標エンジンフリクション分トルクが50Nm、空気密度が標準空気密度の80%の場合には、実エンジントルクは、(100+100+50)×0.8=200Nmとなる。空気密度が低下すると、目標エンジンフリクション分トルク相当の実エンジンフリクション分トルクは減少することになるが、実際にフリクション分として使用するトルクは目標エンジンフリクション分トルクと同じである。また、発電に使用するトルクは目標発電分トルクと同じである。よって、実エンジントルクの実駆動力分トルクは、200-100-50=50Nmとなり、運転者要求駆動トルク(目標駆動力分トルク)100Nmに対して、50Nmの駆動トルク不足となってしまう。
 このように、空気密度が基準の空気密度を下回っているときに、バッテリ充電量が増加してモータ2の発電が不要となって、走行発電状態からモータ2のみの動力を動力源として走行するEV走行モードに切り替わった場合、モータ2の出力トルクは基本的に運転者要求駆動トルクに一致しているため、上記の駆動トルクの不足分が急に解消することになり、駆動力に段差を生じてしまう。
 そこで、本実施形態においては、空気密度が標準空気密度に対して低下している場合、実発電トルク分の一部を実駆動力分トルクに振り分ける補正を行い、実駆動力分トルクの低下を抑制する。
 詳述すると、車両がHEV走行モードの走行発電状態での走行中に、空気密度が標準空気密度に対して低下している場合には、モータ2の発電負荷を低下させ、実エンジントルクに占める実発電トルク分の割合を相対的に低下させることで、実エンジントルクに占める実駆動力分トルクの割合を相対的に上昇させ、補正後に得られる駆動力分トルクの低下を抑制する。本実施形態においては、モータ2の発電負荷を低下させることで、例えば、補正後に得られる駆動力分トルクが運転者要求駆動トルクの80%に相当するトルクとなるようにしている。
 また、空気密度が標準空気密度に対して低下している場合には、車両がEV走行モードで走行する際に、モータ2のモータトルクを、空気密度が標準空気密度に対して低下している場合のHEV走行モードにおける補正後の駆動力分トルクと同等となるように低下させる。換言すれば、空気密度が標準空気密度に対して低下している場合には、車両がEV走行モードで走行する際に、空気密度が標準空気密度のときの運転者要求駆動トルクに相当するモータ2の出力に対して、モータ2の出力を低下させる。
 これにより、空気密度が標準空気密度に対して低下している場合には、HEV走行モードにおいてモータ2の発電負荷を低下させ、エンジントルクに占める実発電トルク分の割合を低下させ、EV走行モードにおいてモータトルクをHEV走行モードにおける駆動力分トルクの低下に合わせて小さくなるよう補正することで、走行モードが切り替わるタイミングにおいて、図6に示すように、EV走行モードにおけるモータトルクすなわち実駆動力分トルク(運転者要求駆動トルク)と、HEV走行モードにおける補正後の駆動力分トルクとの間に駆動力段差が生じてしまうことを防止することができる。
 つまり、運転者要求駆動トルクに対する実際に車両を駆動するのに使用される駆動トルクの乖離を出来るだけ少なくすることと、HEV走行モードとEV走行モードとの間で走行モードが切り替わる際の駆動力の段差を解消することとを、空気密度が相対的に低下しているときと相対的に上昇しているときとにそれぞれ適した態様で両立することができる。
 特に、空気密度が基準よりも低下しているときにはエンジントルクを増大させることができないにも関わらず、バッテリ充電量が低下してしまえば発電が必要となり、HEV走行モードの走行発電状態にしなければならない。そうなると、空気密度が低下しているときにHEV走行モードの走行発電状態とEV走行モードとの間で走行モードを切り替える必要が生じるが、本実施形態によれば、EV走行モードではモータトルクをHEV走行モードにおける駆動力分トルクの低下に合わせて小さくすることで、EV走行モードでのバッテリに蓄えられたエネルギーの消費量を抑制することができるので、HEV走行モードの走行発電状態におけるモータ2の発電負荷の低下と矛盾無く整合し、走行モードの切り替え頻度を低下させつつ、駆動力の段差を抑制することができる。言い方を変えると、HEV走行モードの走行発電状態において、実エンジントルクに占める実発電トルク分の割合を相対的に低下させることで、実エンジントルクに占める実駆動力分トルクの割合を相対的に上昇させ、補正後に得られる駆動力分トルクの低下を抑制するようにモータ2の発電負荷を低下させることは、HEV走行モードにおける駆動力分トルクの低下に合わせたEV走行モードでのモータトルクの減少によって、バッテリに蓄えられたエネルギーの消費量が抑制されることと矛盾無く整合し、走行モードの切り替え頻度を低下させつつ、駆動力の段差を抑制することができる。つまり、空気密度が低下している場合に、HEV走行モードにおいては、空気密度の低下によるエンジンの出力不足分の全てをモータ側のトルク制御で調整しなくても、HEV走行モードとEV走行モードとの間で走行モードが切り替わった際の車両の駆動力の段差を抑制できる。
 詳述すると、空気密度が基準とする空気密度よりも低下している場合、EV走行モードのモータ出力を、空気密度が基準とする空気密度よりも低下していないときのモータ出力に対して低下させているため、HEV走行モードがモータアシスト走行状態である場合には、空気密度が基準とする空気密度よりも低下していることに起因するエンジンの出力不足分(出力低下分)の全てをモータトルクでアシストするような(モータ2の消費電力を増大させるような)モータ2のトルク制御で補わなくとも、HEV走行モードとEV走行モードとの間で走行モードが切り替わった際の車両の駆動力の段差を解消もしくは緩和することが可能となる。また、HEV走行モードが走行発電状態である場合には、空気密度が基準とする空気密度よりも低下していることに起因するエンジンの出力不足分(出力低下分)の全てをモータ2の発電トルクを低下させるような(モータ2による発電量を低下させるような)モータ2のトルク制御で補わなくとも、HEV走行モードとEV走行モードとの間で走行モードが切り替わった際の車両の駆動力の段差を解消もしくは緩和することが可能となる。
 つまり、HEV走行モードとEV走行モードとの間で走行モードが切り替わった際の車両の駆動力の段差を解消もしくは緩和する際に、空気密度が基準とする空気密度よりも低下していることに起因するエンジンの出力不足分(出力低下分)の全てをモータ2のトルク制御で補う場合に比べ、HEV走行モードにおけるモータ2の消費電力の増大を抑制できると共に、HEV走行モードにおけるモータ2での発電不足を抑制することができる。
 図7は、エンジン1へのトルク指令、モータ2へのトルク指令の演算の流れを模式的に示した説明図である。
 ECM11で、大気圧と吸気温度を用いて空気密度に相当する補正係数TTEHOSBUを演算する。そして、エンジン1で発生させる駆動力は、ECM11において、この補正係数TTEHOSBUを用いて補正される。また、モータ2で発生させる駆動力は、HCM10において、ECM11で演算された補正係数TTEHOSBUを用いて補正される。S11~S14は、HCM10内で行われる処理であり、S21~S25は、ECM11内で行われる処理である。
 S11では、前記バッテリの充電量(SOC)に応じてモータ2で発電をする場合、モータ2での発電に必要な発電トルク(発電負荷)を演算する。
 S12では、アクセル開度に応じて車両の目標駆動力を演算する。つまり、S12では、HEV走行モードのエンジン走行状態及び走行発電状態においてエンジン1で発生させる目標エンジントルクに相当する目標駆動力、HEV走行モードのモータアシスト走行状態においてエンジン1で発生させる目標エンジントルクとモータ2で発生させるモータトルク(駆動アシスト用)との和に相当する目標駆動力、あるいは、EV走行モードにおいてモータ2で発生させるモータトルク(駆動用)に相当する目標駆動力を演算する。
 S13では、走行モードに応じて、S12で演算した目標駆動力をエンジン1とモータ2とに振り分ける。すなわち、目標駆動力のうち、エンジン1への分担分と、モータ2への分担分を決定する。
 S14では、S11~S13からの情報と、後述するS23からの空気密度情報(補正係数TTEHOSBU)を用いて、ECM11にはエンジントルク指令を出力し、MC12にはモータトルク指令を出力する。尚、モータトルク指令は、空気密度情報に基づき、必要に応じて補正されたトルク指令値である。一方、エンジントルク指令は、空気密度情報に基づいた指令値ではなく、目標エンジントルクに相当するトルク指令値である。
 S21では、大気圧センサ23からの入力信号に基づいてトルク補正用大気圧PPAMBTTEを演算する。尚、大気圧センサ23に替わり、燃料タンク(図示せず)から蒸発燃料を処理するキャニスタ(図示せず)を経てパージ制御弁へ至るパージライン上におけるパージライン圧を大気圧として参照することも可能である。但し、この場合には、パージ制御弁が所定時間以上継続して閉じている場合のみ大気圧の演算が許可される。尚、パージ制御弁が開いた状態のとき、キャニスタに吸着された蒸発燃料が吸気通路に導入される。
 S22では、吸気温センサ24からの入力信号に基づいてトルク補正用吸気温TANTTEを演算する。このトルク補正用吸気温TANTTEは、エンジン1の雰囲気温度の影響を考慮して算出されるものである。
 S23では、トルク補正用大気圧PPAMBTTEとトルク補正用吸気温TANTTEを用いて、大気圧・吸気温補正率であるトルク補正係数TTEHOSBUを演算する。この大気圧・吸気温補正率が、車両が走行する環境の空気密度に相当する補正値であり、S23が空気密度検出部に相当する。
 このS23では、標準気圧(101.3KPa)をトルク補正用大気圧PPAMBTTEで除した大気圧補正係数TTEHOSPと、トルク補正用吸気温TANTTEと図8に示すTTEHOST算出テーブルとを用いて算出された吸気温補正係数TTEHOSTと、を乗じて基本補正係数TTEHOSBを算出する。そして、この基本補正係数TTEHOSBに対してセンサのバラツキ分を考慮した補正を行って得られた値である補正値TTEHOSAにレートリミット処理を施したものをトルク補正係数TTEHOSBUとしている。補正値TTEHOSAは、図9に示すTTEHOSA算出テーブルを用いて算出される。また、レートリミット処理は、大気圧や吸気温の更新時のトルク補正係数TTEHOSBUの変化によるトルク段差を抑えるために行っている。尚、トルク補正係数TTEHOSBUは、空気密度が大きくなるほど小さい値となる。
 S24には、HCM10のS14で演算された目標エンジントルクがエンジントルク指令として入力され、この指令に基づく目標トルクTTEPをS25へ出力する。この、目標トルクTTEPは、エンジン1の目標駆動力トルクと、目標エンジンフリクション分トルクと、目標発電トルク分との和に相当するものである。
 S25では、トルク補正係数TTEHOSBUを用いて目標トルクTTEPを補正し、補正後目標トルクTTEPHOSを算出する。本実施形態においては、空気密度が標準空気密度よりも高い場合のみエンジントルクの補正を行うため、図10に示すTTEHOSK算出テーブルを用い、トルク補正係数TTEHOSBUから実補正率TTEHOSK算出し、目標トルクTTEPにこの実補正率TTEHOSKを乗ずることで補正後目標トルクTTEPHOSを算出する。そして、この補正後目標トルクTTEPHOSから目標スロットル開度が設定される。
 尚、車両がHEV走行モードで走行中に、空気密度が基準とする空気密度に対して低下した際に、車両がエンジン走行状態もしくはモータアシスト走行状態の場合には、エンジン1の実駆動トルクの低下をモータトルクを増加させることで補い、運転者要求駆動トルクに対する車両駆動力の低下を抑制することも可能である。ここで、空気密度の低下に起因したエンジン1の実駆動トルクの低下分の全てを補うように、モータトルクを増加させる必要性はなく、例えば、空気密度の低下に起因したエンジン1の実駆動トルクの低下分のうちの一部(所定割合分)が補われるようにモータトルクを増加させてもよい。そして、EV走行モードではモータ2の出力を低下させる補正を行うことにより、HEV走行モードとEV走行モードとの間で走行モードが切り替わる際に車両の駆動力に段差が生じないようにすることができる。
 そして、上述した実施形態においては、エンジン1の出力(トルク)を調整するにあたって、スロットル開度で調整しているが、スロットル開度と、エンジン1の点火時期、エンジン1が可変動弁機構を備えるものである場合には吸気弁の開時期等をあわせて調整することでエンジン1の出力(トルク)を調整するようにしてもよい。
 また、上述した実施形態においては、HEV走行モードとEV走行モードとの間で走行モードが切り替わる際に、車両の駆動力に段差が生じないようにする例を示したが、本発明は走行モードが切り替わる際に車両の駆動力に段差が生じないものにのみ限定されるものでない。つまり、走行モードが切り替わる際に車両の駆動力の段差が小さくなるように補正してもよく、この場合でも走行モードが切り替わる際に運転者に違和感を与えないようにすることが可能である。
 さらに、上述した実施形態においては、基準となる空気密度は、ある所定の一つの値であっても、ある所定の範囲内にある全ての値であってもよい。つまり、基準となる空気密度がある所定の基準範囲内にある全ての値である場合、検出された空気密度の値が前記所定の基準範囲を越えて低下した際に検出された空気密度が前記基準とする空気密度に対して低下していると判定し、検出された空気密度の値が前記所定の基準範囲を越えて上昇した際に検出された空気密度が前記基準とする空気密度に対して上昇していると判定し、検出された空気密度がこの所定の基準範囲内にあれば検出された空気密度が基準となる空気密度と一致していると判定するようにしてもよい。
 高地にて車両が走行した場合、低地に比べて空気密度が低下するため、エンジン1の出力が低下し、車両の駆動トルクも相対的に低下する。一方、モータ2の出力は、空気密度の影響を受けることはない。そのため、車両の駆動源としてエンジン1とモータ2とを有するハイブリッド車両では、空気密度が変化すると、走行モードが切り替わる際に、車両の駆動力に段差が生じるため、上述した実施形態では、車両の駆動力に段差が生じないようにエンジン1とモータ2とを協調させていることは既に述べた。
 ここでさらに、駆動源としてエンジンのみも持つ車両と、駆動源としてエンジンとモータ/ジェネレータとを有するハイブリッド車両とを対比すると、車両が要求する駆動トルクが同じであっても、ハイブリッド車両のほうが空気密度が低下する高地において駆動力の低下が大きくなる場合がある。
 図11は、駆動源としてエンジンのみも持つ車両において、空気密度の違いによる実エンジントルク(実際にエンジンが出しているトルク)の違いを模式的に示した説明図である。図12は、駆動源としてエンジンとモータとを備えたハイブリッド車両において、エンジントルクが、駆動輪に伝達される車両の駆動トルクと、モータでの発電を賄う発電トルクと、を含んでなる場合に、空気密度の違いによる実エンジントルク(実際にエンジンが出しているトルク)の違いを模式的に示した説明図である。
 図11において、空気密度が高い低地(通常)での走行時には、車両の目標駆動トルクTd*に対し目標エンジントルクTe*(エンジンフリクションTfricは含まない)は追従する。このときエンジンが実際に出しているトルク(実エンジントルクTe1)はエンジンフリクションTfricを含む値となっている。そして、空気密度以外の運転条件が同じとき、空気密度が低い高地での走行時には、実駆動トルクTd1は、車両の目標駆動トルクTd*に対してΔT1だけ小さい値となる。このときエンジンが実際に出しているトルクである実エンジントルクTe2は、空気密度が高い低地(通常)での実エンジントルクTe1よりもΔT1だけ小さい値となる。なお、このときの実駆動トルクTd1は、実エンジントルクTe2からエンジンフリクションTfricを除いた量となる。
 図12において、空気密度が高い低地(通常)での走行時には、車両の目標駆動トルクTd*に対して目標エンジントルクTe*(エンジンフリクションTfricは含まない)は追従する。このときエンジンが実際に出しているトルク(実エンジントルクTe3)はエンジンフリクションTfric及びモータでの発電を賄う発電トルクTpを含む値となっている。そして、空気密度以外の運転条件が同じとき、空気密度が低い高地での走行時には、エンジンが実際に出しているトルク(実エンジントルクTe4)は、空気密度が高い低地(通常)での実エンジントルクTe3に対して、ΔT2だけ小さい値となっている。このときの実駆動トルクTd2は、実エンジントルクTe4からエンジンフリクションTfricと発電トルクTpとを除いた量となっている。
 ここで、空気密度の低下による実エンジントルクTeの低下割合は一定であっても、空気密度に関わらず発電トルクTpは一定なので、図11における目標駆動トルクTd*と図12における目標駆動トルクTd*とが同じ値であれば、実エンジントルクTe3は、発電トルクTpが目標エンジントルクTe*に上乗せされている分だけ実エンジントルクTe1よりも大きいため、空気密度が低下した際のトルクの低下量は大きくなる(ΔT2>ΔT1)。
 そこで、本発明の第2実施形態においては、ハイブリット車両において空気密度が小さくなることに起因する実エンジントルクTeの低下量を抑制できない場合に、発電トルクTpを抑制することで実駆動トルクTdの低下量を抑制して運転性を確保すると共に、モータにより車両駆動力をアシストする際の電力使用量と、モータによる発電による電力の供給量とのバランスが確保するように、エンジンとモータとを協調させる。つまり、ある運転パターンだとモータの力行と回生のバランスしているところを高地でも低地でも一定となるように、モータのアシストトルク、発電トルクを補正する。
 低地に対する高地でのエンジン出力補正係数をαとすると、実際にエンジンが出力しているトルク(実エンジントルク)Teは、目標エンジントルクをTe*、エンジンフリクションをTfricとすれば、Te=(Te*+Tfric)×α-Tfricとなる。ここで、本発明では、駆動輪に出力される駆動トルクも同じ割合で低下させるものとする。つまり、実駆動トルクTdは、Td=(Td*+Tfric)×α-Tfricとなる。このときのモータトルクTgは上述の値を使うと、Tg=Td-Te=((Td*+Tfric)×α-Tfric)-((Te*+Tfric)×α-Tfric)=(Td*-Te*)×αとなる。
 つまり、必要なモータトルクTgも低地で必要な値である(Td*-Te*)に対して同じ割合で低下させる。すなわち、エンジントルクが低下する場合には、車両の駆動力も低下させ、モータで駆動トルクを補うことはしない。そして、モータによる発電、モータによる駆動力のアシストについてもこの第2実施形態では、同じ補正率で出力を低下させる。但し、モータによる発電、モータによる駆動力のアシストについては、モータにより車両駆動力をアシストする際の電力使用量と、モータによる発電による電力の供給量とのバランスが確保できる範囲であれば、必ずしも同じ補正率で低下させる必要はない。
 図13は、本発明の第2実施形態におけるHCM10内でのトルク指令の演算の流れを模式的に示した説明図であり、ECM11に対して出力されるエンジントルク指令、MC12に対して出力されるモータトルク指令、ATCU13に対して出力される目標駆動トルク指令及び変速時目標クラッチトルク指令の演算の流れを示している。尚、この第2実施形態においても、ECM11におけるエンジントルク指令の処理は、上述した第1実施形態と同じ(図7におけるS21~25と同じ)であるので、重複するECM11内の演算の流れに関する説明は省略する。
 この第2実施形態においては、S110(詳細は後述)において、駆動力が急変しないようにするためにECM11から入力された補正係数TTEHOSBUに変化率制限を与えてエンジントルク低下率を演算している。そして、このエンジントルク低下率を用いて、S170(詳細は後述)では目標駆動トルクTd*を補正し、S190(詳細は後述)では変速後の目標駆動トルクTc*を補正し、S200(詳細は後述)ではモータ2による発電、アシストトルクを決定するために指令値ベースのエンジントルク推定値(目標エンジントルクTe*の前回値であるTe*Z)を補正する。
 S110では、ECM11内で演算され、通信線14を介してCAN信号として入力された空気密度情報である補正係数TTEHOSBUを用いてエンジントルク低下率を演算する。図14を用いて、S110内のエンジントルク低下率の演算の流れを詳述する。
 S111では、入力された補正係数TTEHOSBUに相当するCAN信号が正常値であるか否かを判定し、正常値であれば入力された補正係数TTEHOSBUを使用し、正常値でないと判定された場合には入力された補正係数TTEHOSBUを使用せず、100%(すなわち「1」)に置き換える。つまり、通信線14によるECM11とHCM10との間の通信異常時や、大気圧センサ23や吸気温センサ24の故障時には、入力された補正係数TTEHOSBUの値が100%と置き換わり、実質的な補正は行われない。
 S112では、入力された補正係数TTEHOSBUに対して上限及び下限の制限を設定する。上下限制限としては、例えば、上限を100%と下限を60%となるように設定する。上限については、エンジントルクが増える場合はECM11側で補正するので100%とすればよい。下限については、車両が走行すると想定される最大高度を高く設定するほど下限値を小さく設定すればよい。
 S113では、入力された補正係数TTEHOSBUの変化速度に制限を加えている。このS113では、例えば0.03(%/sec)といった変化率制限が設定される。尚、この0.03(%/sec)という変化率制限は、10%の登坂路を100km/hで登り続けた場合の変化率から設定されたものである。
 このように、補正係数TTEHOSBUに対して、上限、下限の制限及び変化速度の制限を設定することで、大気圧センサ23や吸気温センサ24等の故障時や通信異常時等が発生しても、運転性を確保することできる。
 S120では、モータ2の回転数からエンジンフリクション演算テーブル(図示せず)を参照して駆動力補正用エンジンフリクションを演算する。エンジンフリクション演算テーブルは、例えばモータ2の回転数が大きくなるほど演算される駆動力補正用エンジンフリクションが大きくなるように設定されている。なお、本実施形態では、このS120において、駆動力補正用エンジンフリクションが負値として設定されており、S120で演算された値は、負の値として出力されている。
 S130では、エンジン回転数とアクセル開度から目標エンジントルク演算マップ(図示せず)を参照して目標エンジントルクTe*を演算する。目標エンジントルク演算マップは、例えばアクセル開度が大きくなるほど演算される目標エンジントルクが大きくなるよう設定されている。そして、この第2実施形態では、ECM11に対してS130で演算された目標エンジントルクTe*がエンジントルク指令として、補正係数TTEHOSBUによる補正を受けることなく出力される。尚、ECM11内における目標エンジントルクTe*の処理は、上述した第1実施形態と同一である。
 S140では、エンジン回転数とアクセル開度から目標アシストトルク演算マップ(図示せず)を参照して目標アシストトルクTa*を演算する。目標アシストトルク演算マップは、例えばアクセル開度が大きくなるほど演算される目標エンジントルクが大きくなるよう設定されている。
 そして、S150では、目標エンジントルクTe*と目標アシストトルクTa*とを合算して、目標駆動トルクTd*を演算する。
 S160では、目標エンジントルクTe*と目標アシストトルクTa*とを合算して、変速時目標クラッチトルクTc*を演算する。
 ここで、S150に入力される目標エンジントルクTe*及び目標アシストトルクTa*は現在のエンジン回転数に基づいて演算された値であり、S160に入力される目標エンジントルクTe*及び目標アシストトルクTa*は変速後のエンジン回転数に基づいて演算された値である。
 S170では、S110で演算されたエンジントルク低下率と、S120で演算された駆動力補正用エンジンフリクションと、S150で演算された目標駆動トルクTd*とを用いて、S210に出力される目標入力トルクTmを演算する。さらにS170では、S110で演算されたエンジントルク低下率と、S120で演算された駆動力補正用エンジンフリクションと、S150で演算された目標駆動トルクTd*とを用いて、第2クラッチ7に対するトルク指令値である目標駆動トルク指令を演算してATCU13に出力する。
 図15を用いて詳述すると、目標入力トルクTmはS171~S175の処理の結果演算され、目標駆動トルク指令はS176~S180の処理の結果演算される。
 目標入力トルクTmは、目標駆動トルクTd*に駆動力補正用エンジンフリクションを加算した値に対して(S171)、エンジントルク低下率を乗じ(S172)、その上で駆動力補正用エンジンフリクションを上乗せ(減算)する(S173)。なお、駆動力補正用エンジンフリクションはS120において負値で設定されているので、実際には、上述したようにS171では駆動力補正用エンジンフリクションが加算され、S173では駆動力補正用エンジンフリクションが減算されることになる。そして、自動変速機3の現在の変速段がワンウェイクラッチを介在させたギヤ段(例えば、1速)である場合には、S175において目標入力トルクTmが負のトルクとならないようにしてから出力される。つまり、S174にて、S173で得られた値と「0」とを比較して大きい方の値をS175へ出力しておき、自動変速機3の現在の変速段がワンウェイクラッチを介在させたギヤ段(例えば、1速)である場合には、S173で得られた値ではなく、S174からS175へ出力された値を目標入力トルクTmする。
 目標駆動トルク指令は、目標駆動トルクTd*に駆動力補正用エンジンフリクションを加算した値に対して(S176)、エンジントルク低下率を乗じ(S177)、その上で駆動力補正用エンジンフリクションを上乗せ(減算)する(S178)。
そして、自動変速機3の現在の変速段がワンウェイクラッチを介在させたギヤ段(例えば、1速)である場合には、S180において目標駆動トルク指令の指令値が負のトルクとならないようにしてから出力される。つまり、S179にて、S178で得られた値と「0」とを比較して大きい方の値をS180へ出力しておき、自動変速機3の現在の変速段がワンウェイクラッチを介在させたギヤ段(例えば、1速)である場合には、S178で得られた値ではなく、S179からS180へ出力された値を目標駆動トルク指令として出力する。
 なお、目標入力トルクTmの演算に用いられる目標駆動トルクTd*については、自動変速機3の保護のため、S150で演算された値が予め設定された所定の上限値以上となった場合には、この上限値をもって目標駆動トルクTd*とする処理が施されている。また、S170におけるエンジントルク低下率を用いた補正は、EV走行モードとHEV走行との間での駆動力段差が抑制されるように、走行中は常に実施する。
 S190では、S110で演算されたエンジントルク低下率と、S120で演算された駆動力補正用エンジンフリクションと、S160で演算された変速時目標クラッチトルクTc*とを用いて、自動変速機3に対する変速時のトルク指令値である変速時目標クラッチトルク指令を演算してATCU13に出力する。
 図16を用いて詳述すると、変速時目標クラッチトルク指令は、変速時目標クラッチトルクTc*に駆動力補正用エンジンフリクションを加算した値に対して(S191)、エンジントルク低下率を乗じ(S192)、その上で駆動力補正用エンジンフリクションを上乗せ(減算)する(S193)。そして、自動変速機3の現在の変速段がワンウェイクラッチを介在させたギヤ段(例えば、1速)である場合には、S195において変速時目標クラッチトルク指令の指令値が負のトルクとならないようにしてから出力される。つまり、S194にて、S193で得られた値と「0」とを比較して大きい方の値をS195へ出力しておき、自動変速機3の現在の変速段がワンウェイクラッチを介在させたギヤ段(例えば、1速)である場合には、S193で得られた値ではなく、S194からS195へ出力された値を変速時目標クラッチトルク指令として出力する。
 S200では、S110で演算されたエンジントルク低下率と、S120で演算された駆動力補正用エンジンフリクションと、S130で演算された目標エンジントルクTe*の前回値であるTe*Zとを用いて、S210に出力される推定エンジントルクTnを演算する。
 図17を用いて詳述すると、推定エンジントルクTnは、目標エンジントルクTe*の前回値であるTe*Zに駆動力補正用エンジンフリクションを加算した値に対して(S201)、エンジントルク低下率を乗じ(S202)、その上で駆動力補正用エンジンフリクションを上乗せ(減算)する(S203)。なお、推定エンジントルクTnを算出するにあたり、目標エンジントルクTe*の前回値であるTe*Zの替わりに、目標エンジントルクTe*(今回値)を用いることも可能である。
 S204では、S203で得られた値をフィルタ演算して推定エンジントルクTnとして出力する。ここで、S204で行うフィルタ演算は、指令値に対する実際のエンジントルクの遅れを模擬するものである。
 そして、S210では、S170で演算された目標入力トルクTmと、S200で演算された推定エンジントルクTnとの差分をモータトルク指令であるモータトルクTgとして算出し、MC12へ出力する。
 このように、空気密度の低下によるエンジントルクの低下率であるエンジントルク低下率を用いて、モータトルク指令及びエンジントルク指令のほか、第2クラッチ7に対するトルク指令値である目標駆動トルク指令及び自動変速機3に対する変速時のトルク指令値である変速時目標クラッチトルク指令に対しても補正することにより、空気密度が低下してから内燃機関のみの車両と同等の駆動力を確保して車両の運転性を確保することができる。つまり、ハイブリット車両において空気密度が小さくなることに起因する実エンジントルクTeの低下量を抑制できない場合に、発電トルクTpを抑制することで実駆動トルクTdの低下量を抑制して車両の運転性を確保することができる。
 また、モータ2により車両駆動力をアシストする際の電力使用量と、モータ2による発電による電力の供給量とのバランスが確保するように、エンジン1とモータ2とを協調させることができる。
 さらに、自動変速機3に対するトルク指令については、変速段がワンウェイクラッチを介在させたギヤ段である場合に、エンジントルク低下率による補正後のトルク指令が負のトルク指令とならないように設定されているので(S175、S180、S195)、ワンウェイクラッチ外れによる入力回転数の低下、逆回転及びワンウェイクラッチの当接ショックを防止することができる。
 図18は、上述した第2実施形態の制御の流れを示すフローチャートである。S300では、ECM11から入力された補正係数TTEHOSBUを用いてエンジントルク低下率を演算する。S310では、モータ2の回転数から駆動力補正用エンジンフリクションを演算する。S320では、エンジン回転数とアクセル開度から目標エンジントルクTe*を演算する。S330では、エンジン回転数とアクセル開度から目標アシストトルクTa*を演算する。S340では、エンジントルク低下率と、駆動力補正用エンジンフリクションと、目標エンジントルクTe*の前回値Te*Zと、を用いて推定エンジントルクTnを演算する。S350では、目標エンジントルクTe*と目標アシストトルクTa*とを用いて演算された目標駆動トルクTd*を補正し、目標入力トルクTmを演算すると共に、第2クラッチ7に対するトルク指令値である目標駆動トルク指令を演算する。S360では、目標エンジントルクTe*と目標アシストトルクTa*とを用いて演算された変速時目標クラッチトルクTc*を補正し、自動変速機3に対する変速時のトルク指令値である変速時目標クラッチトルク指令を演算する。S370では、ECM11に対して、目標エンジントルクTe*をエンジントルク指令として出力する。S380では、ATCU13に対して、S350で演算された目標駆動トルク指令を出力する。S390では、MC12に対して、目標入力トルクTmと推定エンジントルクTnとの差分であるモータトルクTgをモータトルク指令として出力する。S400では、ATCU13に対して、S360で演算された変速時目標クラッチトルク指令を出力する。
 図19は、エンジントルク低下率を演算する際の制御の流れを示すフローチャートであり、図18のS300のサブルーチンに相当するものである。S301では、ECM11から入力された補正係数TTEHOSBUが予め設定された所定の下限値よりも大きいか否かを判定し、大きい場合はS303に進み、小さい場合にはS302へ進む。S302では、前記所定の下限値を補正係数TTEHOSBUとしてS303へ進む。S303では、補正係数TTEHOSBUが予め設定された所定の上限値よりも小さいか否かを判定し、小さい場合はS305に進み、大きい場合にはS304へ進む。S304では、前記所定の上限値を補正係数TTEHOSBUとしてS305へ進む。
 S305では、補正係数TTEHOSBUの変化速度が予め設定された制限値よりも小さいか否かを判定し、小さい場合にはS305における補正係数TTEHOSBUをエンジントルク低下率として出力し、大きい場合にはS306へ進む。S306では、補正係数TTEHOSBUの変化速度制限を実施した上で、S306における補正係数TTEHOSBUをエンジントルク低下率として出力する。
 次に、本発明の第3実施形態について説明する。上述した第2実施形態では、車両の実駆動トルクTdがTd=(Td*+Tfric)×α-Tfricとなると述べた。ここで、(Td*+Tfric)<0となった場合、Td>Td*となるため、目標駆動トルクTd*よりも実駆動トルクTdが大きくなる。そのため、例えば、コースト時においては、車両の減速度が小さくなることになる。
そして、(Td*+Tfric)>0となった場合、Td<Td*となるため、目標駆動トルクTd*よりも実駆動トルクTdが小さくなる。そのため、例えば登り坂においては、クリープトルクが小さくなって、坂道で後退することになる。また、Td*=0となった場合、Td<0となるため実駆動トルクTdが0とならない。そのため、例えば自動変速機の変速レンジがPレンジやNレンジのときや、クリープトルクをカットしているような場合には、実駆動トルクTdが0にならないことになる。
 そこで、この第3実施形態においては、上述した第2実施形態において、トルク指令の演算過程において、すなわち目標入力トルクTmを演算する過程、目標駆動トルク指令を演算する過程、及び変速時目標クラッチトルク指令を演算する過程において、以下のような演算処理を追加する。
 具体的には、エンジントルク低下率を用いた補正後の値が、エンジントルク低下率を用いた補正を行う前の値よりも大きくならないようにし(後述する図20のS602を参照)、かつクリープトルク、コースト時の駆動トルクよりも小さい値とならないように制限する(後述する図20のS601を参照)。そして、自動変速機3の変速レンジがPレンジやNレンジのときには、目標トルクを0にする(後述する図20のS603を参照)。
 また、自動変速機3が、複数の変速段のうちから運転状態に応じた変速段に設定するオートモードと、複数の変速段のうちから運転者の手動操作に応じた変速段に設定するマニュアルモードとを備えているような場合には、マニュアルモード以外で、自動変速機3の現在の変速段がワンウェイクラッチを介在させたギヤ段(例えば、1速)である場合に、トルク指令の指令値が負のトルクとならないようにする(後述する図20のS175を参照)。これは、自動変速機3の設定をマニュアルモードにして、運転者がエンジンブレーキを効かせたい場面では、運転者の意図に合わせてエンジンブレーキを効かせたいためである。
 図20を用い、目標入力トルクTmの演算過程を例に説明すると、S171~S173までは、上述した図15のS171~S173と同じ処理であるが、上述した図15のS173の下流側に、後述するS601~S603の3つの処理が追加されている。また、S175については、この第3実施形態では、自動変速機3の変速モードがマニュアルモードではないという条件を新たに追加しているが、それ以外は第2実施形態のS175と同じである。
 詳述すると、S601では、S173で得られた値(目標駆動トルクTd*から駆動力補正用エンジンフリクションを除いた値に対して、エンジントルク低下率を乗じ、その上で駆動力補正用エンジンフリクションを上乗せした値)と、目標クリープトルクまたは目標コーストトルク(アクセルから足を離したときの目標トルク)との大小を比較し、大きい方の値をS602へ出力する。尚、目標クリープトルクと比較される場合は発進時、目標コーストトルクと比較される場合は走行中である。
 S602では、S601から出力された値と、目標駆動トルクTd*との大小を比較し、小さい方の値をS603へ出力する。S603では、変速レンジがPレンジやNレンジであるか、自動変速機3内の摩擦要素がPレンジもしくはNレンジの位置に向けて制御中の場合には、目標トルクを0とし、そうでない場合はS602から入力された目標トルクを出力する。
 そして、自動変速機3の現在の変速段がワンウェイクラッチを介在させたギヤ段(例えば、1速)であり、かつ自動変速機3の変速モードがマニュアルモードではない場合には、S175において目標入力トルクTmが負のトルクとならないようにしてから出力される。つまり、S174にて、S603で得られた値と「0」とを比較して大きい方の値をS175へ出力しておき、自動変速機3の現在の変速段がワンウェイクラッチを介在させたギヤ段(例えば、1速)であり、かつ自動変速機3の変速モードがマニュアルモードではない場合には、S603から出力された値ではなく、S174からS175へ出力された値を目標入力トルクTmする。
 なお、目標駆動トルク指令を演算する場合には、上述した図15におけるS178の下流側に、上述したS601~S603の3つの処理を追加し、S180については、自動変速機3の変速モードがマニュアルモードではないという条件を新たに追加することになる。変速時目標クラッチトルク指令を演算する場合には、上述した図16におけるS193の下流側に、上述したS601~S603の3つの処理を追加し、S195については、自動変速機3の変速モードがマニュアルモードではないという条件を新たに追加することになる。
 このような第3実施形態においては、エンジントルク低下率を用いて補正された目標トルクが、エンジントルク低下率を用いて補正される前の目標トルクよりも大きくならないので運転性を確保することができる。
 また、エンジントルク低下率を用いて補正された目標トルクが、目標クリープトルクよりも小さい値とはならないため、坂道発進でのクリープトルク不足による車両の後退を抑制することができる。
 また、エンジントルク低下率を用いて補正された目標トルクが、目標コーストトルクよりも小さい値とはならないため、アクセルから足を離した時の運転性を確保することができる。

Claims (10)

  1.  エンジンと、モータと、を駆動源して備え、前記エンジンの出力を利用して車両を駆動する第1の走行モードと、前記エンジンを停止して前記モータの出力で車両を駆動させる第2の走行モードと、を有するハイブリッド車両において、
     車両の走行する環境の空気密度を検出する空気密度検出部を備え、
     検出された空気密度が基準とする空気密度に対して低下している場合、走行モードの切り替えの際に前記第2の走行モードの車両の駆動力が前記第1の走行モードの車両の駆動力に近づくように、前記基準空気密度におけるモータの出力に対して前記第2の走行モードのモータの出力を低下させるハイブリッド車両。
  2.  検出された空気密度が基準とする空気密度に対して低下しているとき、前記第1の走行モードでは前記エンジンの出力に対する前記モータの発電負荷を低下させる補正を行い、前記第2の走行モードでは走行モードの切り替えの際に前記第2の走行モードの車両の駆動力が前記第1の走行モードの車両の補正後の駆動力に近づくように前記モータの出力を低下させる補正を行う請求項1に記載のハイブリッド車両。
  3.  検出された空気密度が基準とする空気密度に対して低下しているとき、前記第1の走行モードでは前記エンジンに対する前記モータの出力を低下させる補正を行い、前記第2の走行モードでは走行モードの切り替えの際に前記第2の走行モードの車両の駆動力が前記第1の走行モードの車両の補正後の駆動力に近づくように前記モータの出力を低下させる補正を行う請求項1に記載のハイブリッド車両。
  4.  検出された空気密度が基準とする空気密度に対して上昇しているとき、前記第1の走行モードでは、走行モードの切り替えの際に前記第1の走行モードの車両の駆動力が前記第2の走行モードの車両の駆動力に近づくように前記エンジンの出力を低下させる補正を行う請求項1~3のいずれかに記載のハイブリッド車両。
  5.  前記駆動源の下流側に複数の変速段を達成する変速機を備え、この変速機内の摩擦要素に対する変速時の目標クラッチトルクを、空気密度に応じて補正する請求項1~4のいずれかに記載のハイブリッド車両。
  6.  空気密度に応じて行う補正の補正量は、空気密度の低下による前記エンジンの出力の低下率に基づいている請求項1~5のいずれかに記載にハイブリッド車両。
  7.  空気密度に相当するエンジントルク出力補正係数に対して、上限、下限の制限及び変化速度の制限を設定する請求項1~6のいずれかに記載のハイブリッド車両。
  8.  前記エンジントルク出力補正係数により補正される車両の駆動力は、補正後の値が補正前の値以下となるよう設定する請求項7に記載のハイブリッド車両。
  9.  前記エンジントルク出力補正係数により補正される車両の駆動力は、補正後の値が車両の目標クリープトルクよりも大きくなるよう設定する請求項7~8のいずれかに記載のハイブリッド車両。
  10.  前記変速機は、複数の変速段のうちから運転状態に応じた変速段に設定するオートモードと、複数の変速段のうちから運転者の手動操作に応じた変速段に設定するマニュアルモードとを備え、かつ内部にワンウェイクラッチを介在させるギヤ段を有し、
     前記エンジントルク出力補正係数により補正される車両の駆動力は、前記変速機のギヤ段が前記ワンウェイクラッチを介在させたギヤ段で、かつ変速機の変速モードがマニュアルモードある場合、補正後の値が0以上の値となるよう設定する請求項7~9のいずれかに記載のハイブリッド車両。
PCT/JP2010/069076 2010-03-16 2010-10-27 ハイブリッド車両 WO2011114566A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/394,838 US8509980B2 (en) 2010-03-16 2010-10-27 Hybrid vehicle
EP10847973.4A EP2548778B1 (en) 2010-03-16 2010-10-27 Hybrid vehicle
BR112012023878-7A BR112012023878B1 (pt) 2010-03-16 2010-10-27 veículo híbrido
RU2012143973/11A RU2513087C1 (ru) 2010-03-16 2010-10-27 Гибридное транспортное средство
JP2012505442A JP5240400B2 (ja) 2010-03-16 2010-10-27 ハイブリッド車両
CN201080039951.XA CN102574523B (zh) 2010-03-16 2010-10-27 混合动力车辆
MX2012007871A MX2012007871A (es) 2010-03-16 2010-10-27 Vehiculo hibrido.
KR1020127026870A KR101403725B1 (ko) 2010-03-16 2010-10-27 하이브리드 차량

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-058607 2010-03-16
JP2010058607 2010-03-16

Publications (1)

Publication Number Publication Date
WO2011114566A1 true WO2011114566A1 (ja) 2011-09-22

Family

ID=44648685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069076 WO2011114566A1 (ja) 2010-03-16 2010-10-27 ハイブリッド車両

Country Status (9)

Country Link
US (1) US8509980B2 (ja)
EP (1) EP2548778B1 (ja)
JP (1) JP5240400B2 (ja)
KR (1) KR101403725B1 (ja)
CN (1) CN102574523B (ja)
BR (1) BR112012023878B1 (ja)
MX (1) MX2012007871A (ja)
RU (1) RU2513087C1 (ja)
WO (1) WO2011114566A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027501A1 (ja) * 2012-08-16 2014-02-20 日産自動車株式会社 車両の制御装置及び車両の制御方法
JP2014234008A (ja) * 2013-05-31 2014-12-15 ボッシュ株式会社 変速制御装置
WO2015015872A1 (ja) * 2013-07-29 2015-02-05 日立オートモティブシステムズ株式会社 車両制御装置
WO2020213056A1 (ja) * 2019-04-16 2020-10-22 日産自動車株式会社 ハイブリッド車両の制御方法およびハイブリッド車両の制御装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234652B1 (ko) * 2010-12-02 2013-02-19 기아자동차주식회사 하이브리드 차량의 가속 토크 제어 방법 및 장치
KR101294163B1 (ko) * 2011-07-22 2013-08-08 현대자동차주식회사 하이브리드 전기차량의 언덕길 밀림방지 제어방법
EP2927069B1 (en) 2012-11-27 2018-05-09 Nissan Motor Co., Ltd Vehicle control apparatus, and method of controlling same
US9073533B2 (en) * 2013-07-30 2015-07-07 Toyota Motor Engineering & Manufacturing North America, Inc. Wide open throttle guard for a vehicle for high elevation changes
JP6204866B2 (ja) * 2014-03-31 2017-09-27 日立建機株式会社 ハイブリッド建設機械
KR101628087B1 (ko) * 2014-09-02 2016-06-21 현대자동차 주식회사 하이브리드 차량의 제어 시스템 및 방법
KR101664074B1 (ko) * 2015-06-19 2016-10-10 현대자동차 주식회사 하이브리드 차량의 토크 저감 제어 장치 및 방법
CN105109479A (zh) * 2015-09-07 2015-12-02 江苏大学 一种用于可外接式混合动力汽车的模式切换系统及方法
KR101694076B1 (ko) * 2015-11-12 2017-01-17 현대자동차주식회사 하이브리드 차량의 토크 인터벤션 제어 시스템 및 방법
US10029673B2 (en) * 2016-04-20 2018-07-24 Ford Global Technologies, Llc Speed limiting of altitude compensation for target engine speed in hybrid electric vehicles
EP3467286A4 (en) * 2016-05-27 2019-05-22 Nissan Motor Co., Ltd. ANOMALY DIAGNOSTIC METHOD AND ANOMALY DIAGNOSIS DEVICE FOR A TRAINING FORCE CONTROL SYSTEM
SE541342C2 (en) * 2016-06-21 2019-07-16 Scania Cv Ab Method and system for controlling torque reduction of a gear shift operation
JP6874702B2 (ja) * 2018-01-29 2021-05-19 トヨタ自動車株式会社 ハイブリッド車両
JP6962271B2 (ja) * 2018-05-17 2021-11-05 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR20220096746A (ko) * 2020-12-31 2022-07-07 현대자동차주식회사 차량 구동장치의 토크 제어 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104590A (ja) 1998-09-28 2000-04-11 Hitachi Ltd ハイブリッド車両
JP2005035125A (ja) 2003-07-18 2005-02-10 Alps Electric Co Ltd インクリボン
JP2006288170A (ja) * 2005-04-05 2006-10-19 Toyota Motor Corp 移動体の制御装置
JP2007216841A (ja) * 2006-02-16 2007-08-30 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
JP2008273460A (ja) * 2007-05-02 2008-11-13 Nissan Motor Co Ltd ハイブリッド車両の駆動制御装置
JP2009173235A (ja) * 2008-01-28 2009-08-06 Toyota Motor Corp ハイブリッド車両の駆動力制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3449239B2 (ja) * 1998-09-22 2003-09-22 日産自動車株式会社 ハイブリッド車両の制御装置
KR100397526B1 (ko) * 1998-12-24 2003-09-13 도요다 지도샤 가부시끼가이샤 내연기관의 출력상태 검출장치
JP2005307874A (ja) * 2004-04-22 2005-11-04 Toyota Motor Corp 動力出力装置およびこれを備える自動車並びに動力出力装置の制御方法
JP4165483B2 (ja) * 2004-05-11 2008-10-15 トヨタ自動車株式会社 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP4086018B2 (ja) * 2004-07-15 2008-05-14 トヨタ自動車株式会社 ハイブリッド車およびその制御方法並びに動力出力装置
JP2007223403A (ja) * 2006-02-22 2007-09-06 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
US9002550B2 (en) * 2007-07-02 2015-04-07 GM Global Technology Operations LLC Use of torque model at virtual engine conditions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104590A (ja) 1998-09-28 2000-04-11 Hitachi Ltd ハイブリッド車両
JP2005035125A (ja) 2003-07-18 2005-02-10 Alps Electric Co Ltd インクリボン
JP2006288170A (ja) * 2005-04-05 2006-10-19 Toyota Motor Corp 移動体の制御装置
JP2007216841A (ja) * 2006-02-16 2007-08-30 Toyota Motor Corp 動力出力装置およびその制御方法並びに車両
JP2008273460A (ja) * 2007-05-02 2008-11-13 Nissan Motor Co Ltd ハイブリッド車両の駆動制御装置
JP2009173235A (ja) * 2008-01-28 2009-08-06 Toyota Motor Corp ハイブリッド車両の駆動力制御装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027501A1 (ja) * 2012-08-16 2014-02-20 日産自動車株式会社 車両の制御装置及び車両の制御方法
JP5862783B2 (ja) * 2012-08-16 2016-02-16 日産自動車株式会社 車両の制御装置及び車両の制御方法
US9664123B2 (en) 2012-08-16 2017-05-30 Nissan Motor Co., Ltd. Vehicle control device and vehicle control method
JP2014234008A (ja) * 2013-05-31 2014-12-15 ボッシュ株式会社 変速制御装置
WO2015015872A1 (ja) * 2013-07-29 2015-02-05 日立オートモティブシステムズ株式会社 車両制御装置
JP2015025439A (ja) * 2013-07-29 2015-02-05 日立オートモティブシステムズ株式会社 車両制御装置
WO2020213056A1 (ja) * 2019-04-16 2020-10-22 日産自動車株式会社 ハイブリッド車両の制御方法およびハイブリッド車両の制御装置
JPWO2020213056A1 (ja) * 2019-04-16 2020-10-22
JP7192971B2 (ja) 2019-04-16 2022-12-20 日産自動車株式会社 ハイブリッド車両の制御方法およびハイブリッド車両の制御装置
US11654887B2 (en) 2019-04-16 2023-05-23 Nissan Motor Co., Ltd. Control method for hybrid vehicle and control device for hybrid vehicle

Also Published As

Publication number Publication date
KR20120128160A (ko) 2012-11-26
EP2548778B1 (en) 2018-11-21
EP2548778A1 (en) 2013-01-23
BR112012023878A2 (pt) 2017-12-05
CN102574523B (zh) 2014-10-29
JPWO2011114566A1 (ja) 2013-06-27
BR112012023878B1 (pt) 2021-03-09
RU2513087C1 (ru) 2014-04-20
US8509980B2 (en) 2013-08-13
EP2548778A4 (en) 2018-03-14
JP5240400B2 (ja) 2013-07-17
MX2012007871A (es) 2012-07-25
KR101403725B1 (ko) 2014-06-03
US20120185119A1 (en) 2012-07-19
CN102574523A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
WO2011114566A1 (ja) ハイブリッド車両
JP4197013B2 (ja) ハイブリッド車両の制御装置
JP4240128B2 (ja) ハイブリッド駆動装置の制御装置
JP6210176B2 (ja) ハイブリッド車両の制振制御装置
JP2006335197A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP2008265533A (ja) ハイブリッド車両の駆動制御装置
US10100923B2 (en) Vehicle and control method of vehicle
US20180148044A1 (en) Hybrid vehicle control apparatus
US11180131B2 (en) Control system for hybrid vehicle
JP2013071662A (ja) ハイブリッド車両の制御装置
JP2012106711A (ja) ハイブリッド車輌の制御装置
JP4274185B2 (ja) ハイブリッド駆動装置の制御装置
US20170166184A1 (en) Control system for power transmission system
JP2005127332A (ja) 複数の原動機を備えた車両の制御装置
JP3705290B2 (ja) 複数の原動機を備えた車両の制御装置
WO2014174909A1 (ja) ハイブリッド車両の制御装置
JP2001112101A (ja) 電動発電機を備えた車両の制御装置
JP3951957B2 (ja) 動力出力装置及びその制御方法並びに車両
JP2009190436A (ja) 車両の制御装置
JP5696496B2 (ja) ハイブリッド車両の制御装置
JP2012218577A (ja) ハイブリッド車
JP5029398B2 (ja) 車両の制御装置
JP2023175523A (ja) 車両
JP2013189034A (ja) ハイブリッド自動車
JP2003087906A (ja) 車輛用駆動制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039951.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847973

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505442

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13394838

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010847973

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/007871

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1201004700

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3057/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127026870

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012143973

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012023878

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012023878

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: ERR

Ref document number: 112012023878

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012023878

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120917