WO2011108436A1 - 半導体装置及び半導体装置用接合材 - Google Patents

半導体装置及び半導体装置用接合材 Download PDF

Info

Publication number
WO2011108436A1
WO2011108436A1 PCT/JP2011/054133 JP2011054133W WO2011108436A1 WO 2011108436 A1 WO2011108436 A1 WO 2011108436A1 JP 2011054133 W JP2011054133 W JP 2011054133W WO 2011108436 A1 WO2011108436 A1 WO 2011108436A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
layer
bonding material
semiconductor
substrate
Prior art date
Application number
PCT/JP2011/054133
Other languages
English (en)
French (fr)
Inventor
克昭 菅沼
声俊 金
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2012503096A priority Critical patent/JP5773344B2/ja
Priority to KR1020127025457A priority patent/KR101559617B1/ko
Priority to US13/581,941 priority patent/US9217192B2/en
Priority to EP11750546.1A priority patent/EP2544225A4/en
Publication of WO2011108436A1 publication Critical patent/WO2011108436A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/282Zn as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/05186Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/05187Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05664Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29118Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • H01L2224/32505Material outside the bonding interface, e.g. in the bulk of the layer connector
    • H01L2224/32507Material outside the bonding interface, e.g. in the bulk of the layer connector comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/83464Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04944th Group
    • H01L2924/04941TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Definitions

  • the present invention relates to a semiconductor device in which a semiconductor member is stacked on a substrate, and a semiconductor device bonding material for bonding the semiconductor member and the substrate.
  • Patent Document 1 discloses a semiconductor device in which a semiconductor element is die-attached to a die pad.
  • the semiconductor device of Patent Document 1 uses lead having a low melting point as a main component of the bonding material.
  • a power module used in a hybrid vehicle generates heat in the device itself due to a large current and is close to the engine, and thus is in a severe temperature environment. Therefore, it is used as a bonding agent for die attach of a next generation power semiconductor (SiC semiconductor chip) that is assumed to be used at a high temperature of 200 ° C. or higher, and cannot be used as a bonding material.
  • SiC semiconductor chip next generation power semiconductor
  • the present invention provides compound semiconductor devices such as GaN semiconductors and SiC semiconductors that have been developed as next-generation power semiconductors, and semiconductor device bonding materials with excellent heat resistance stability as bonding materials for die attach of semiconductor devices. Objective.
  • a characteristic configuration of a semiconductor device according to the present invention is a semiconductor device in which a semiconductor member is stacked on a substrate, and the semiconductor member and the substrate are for a semiconductor device whose main component is zinc. Bonded via a bonding material.
  • a bonding material for a semiconductor device containing lead as a main component has been used for bonding a semiconductor member and a substrate.
  • these bonding materials for semiconductor devices have a low melting point, and are stable as heat-resistant as bonding materials for die attach of GaN semiconductors and SiC semiconductors that are being developed as next-generation power semiconductors that are expected to be used at high temperatures of 200 ° C or higher. Unusable due to lack of sex.
  • a bonding material for a semiconductor device whose main component is zinc having a melting point of 420 ° C. is used, a next-generation power semiconductor excellent in heat fatigue that can withstand a temperature cycle up to 300 ° C. A device can be obtained.
  • the coating layer that prevents diffusion of the bonding material for the semiconductor device is provided on at least one of the substrate surface and the semiconductor member surface. Accordingly, the reaction between the substrate and the bonding material for semiconductor device and / or the reaction between the semiconductor member and the bonding material for semiconductor device is hindered, and the formation of a reaction layer having a low strength can be prevented. As a result, the bonding strength between the substrate and the bonding material for semiconductor device and / or the bonding strength between the semiconductor member and the bonding material for semiconductor device can be maintained, and a semiconductor device with excellent reliability can be obtained.
  • the coat layer is formed by laminating a barrier layer made of nitride, carbide or carbonitride and a protective layer made of noble metal.
  • a barrier layer made of nitride, carbide or carbonitride
  • a protective layer made of noble metal.
  • the nitride, carbide or carbonitride constituting the barrier layer has a lower free energy than the free energy of the substance constituting the insulating layer provided on the substrate. Is selected. Therefore, the activation of the barrier layer is suppressed, and the substance constituting the substrate or the semiconductor member does not move to the semiconductor device bonding material side. For this reason, the reaction between the substrate and the bonding material for a semiconductor device and the reaction between the semiconductor member and the bonding material for a semiconductor device can be prevented, and the formation of a reaction layer having a low strength can be prevented. As a result, a highly reliable semiconductor device can be obtained.
  • the material constituting the barrier layer is TiN
  • the material constituting the protective layer is Au, Ag, Cu, Ni, or Pd, and is included in the substrate.
  • the material constituting the insulating layer is Si 3 N 4 , Al 2 O 3 , or AlN.
  • TiN as a material constituting the barrier layer has a free energy smaller than that of Si 3 N 4 as a material constituting the insulating layer included in the substrate.
  • the bonding force between Ti and N is larger than the bonding force between Ti and Zn and the bonding force between N and Zn.
  • the reaction between the substrate and the bonding material for a semiconductor device can be prevented, and the formation of a reaction layer having a low strength can be prevented.
  • a highly reliable semiconductor device can be obtained as described above.
  • Au, Ag, Cu, Ni, or Pd as a material constituting the protective layer improves the wettability of the bonding material for a semiconductor device with respect to the coat layer, so that an Au layer, Ag on the bonding surface with the bonding material for the semiconductor device.
  • the layer, the Cu layer, the Ni layer, or the Pd layer is provided, generation of voids at the joint surface can be suppressed, and a good joint surface can be obtained.
  • the purity of the zinc is 90 wt% or more.
  • Zinc is a highly conductive metal with excellent flexibility. Therefore, by containing 90 wt% or more of zinc in the bonding material for a semiconductor device, it is possible to prevent the semiconductor device from being fragile and broken by an impact such as bending or bending.
  • the purity of zinc is 99.9999 wt% or more.
  • the barrier layer has a thickness in the range of 100 nm to 2000 nm, and the protective layer has a thickness in the range of 20 nm to 500 nm. Within this thickness range, the barrier layer can sufficiently prevent diffusion of the bonding material for semiconductor devices, and the protective layer can reliably prevent oxidation and contamination of the bonding material for semiconductor devices. it can.
  • the bonding material for a semiconductor device contains an impurity element.
  • the impurity element preferably includes at least one element selected from the group consisting of Ca, Mn, Ti, Cr, Ni, V, and Nb.
  • a characteristic configuration of the bonding material for a semiconductor device according to the present invention is a bonding material for a semiconductor device that bonds the semiconductor member and the substrate in a semiconductor device in which a semiconductor member is stacked on a substrate. It is mainly composed of zinc.
  • the bonding material for a semiconductor device according to the present invention is a bonding material for a semiconductor device whose main component is zinc having a melting point of 420 ° C., if this material is used, it has excellent thermal fatigue that can withstand a temperature cycle up to 300 ° C. Next-generation power semiconductor devices can be obtained.
  • FIG. 1 It is a schematic diagram of the test piece for a tensile test.
  • (A) And (b) is a graph which shows the result of a tension test.
  • (A) And (b) is a graph which shows the result of a tension test.
  • (A)-(e) is a figure which shows the image of the surface of the zinc to which pure zinc and the impurity element were added.
  • (A) And (b) is a figure which shows the image of the surface of zinc to which the impurity element was added, and pure zinc. It is a graph which shows the change of the weight increase amount with respect to the oxidation time of a sample.
  • (A) And (b) is a graph which shows the result of a tension test.
  • (A) And (b) is a graph which shows the result of a tension test.
  • FIG. 1 is a schematic diagram showing a semiconductor device 100 according to an embodiment of the present invention.
  • the semiconductor device 100 has a configuration in which a semiconductor member 120 is stacked on a substrate 110.
  • substrate 110 and the semiconductor member 120 are joined via the bonding
  • the semiconductor device bonding material 130 is used as a die attach material (semiconductor die bonding material) in a semiconductor manufacturing process. It is an adhesive that is provided in the form of a thin film layer, a paste, or a film, and joins a semiconductor member (for example, a die chip) and a substrate. Since the melting point of the material mainly composed of zinc is about 420 ° C., it can function as a die attach material (die bonding material for semiconductor) without melting even at a high temperature of about 300 ° C.
  • the substrate 110 includes an insulating layer 111 and Cu layers (first Cu layer 112 and second Cu layer 113) bonded to both surfaces of the insulating layer 111.
  • a first coat layer 140 that prevents diffusion of the semiconductor device bonding material 130 is provided on the surface of the substrate 110.
  • the first coat layer 140 is configured by laminating a first barrier layer 141 made of nitride, carbide or carbonitride and a first protective layer 142 made of a noble metal.
  • a second coat layer 150 is provided on the surface of the semiconductor member 120 to prevent the semiconductor device bonding material 130 from diffusing.
  • the second coat layer 150 is formed by laminating a second barrier layer 151 made of nitride, carbide or carbonitride and a second protective layer 152 made of a noble metal.
  • the material constituting the semiconductor member 120 is, for example, SiC, and the semiconductor device 100 functions as a SiC semiconductor device. Further, the material constituting the semiconductor member 120 may be GaN, and the semiconductor device 100 functions as a GaN semiconductor device. Further, the material constituting the insulating layer 111 is a Si 3 N 4 for example, so long as it functions as an insulator, but is not limited to Si 3 N 4. For example, the insulating layer 111 can be Al 2 O 3 or AlN. Alternatively, the insulating layer 111 may be other ceramics.
  • the thickness of the first protective layer 142 and the second protective layer 152 is preferably about 20 nm to 500 nm.
  • the first protective layer 142 and the second protective layer 152 are made of a noble metal, and for example, Au, Ag, Cu, Ni, or Pd can be adopted.
  • Au, Ag, Cu, Ni, or Pd ensures the wettability of the bonding material for semiconductor device 130 and prevents contamination of the bonding material for semiconductor device.
  • an Au layer, an Ag layer, a Cu layer, a Ni layer, or a Pd layer is provided on the bonding surface with the semiconductor device bonding material 130, generation of voids at the bonding surface can be suppressed, and a good bonding surface can be obtained. it can.
  • the thicknesses of the first barrier layer 141 and the second barrier layer 151 are preferably about 100 nm to 2000 nm. With this thickness, the barrier layer can sufficiently prevent diffusion of the semiconductor device bonding material 130.
  • the nitride, carbide, or carbonitride constituting the first barrier layer 141 and the second barrier layer 151 is selected to have a free energy smaller than the free energy of the material constituting the insulating layer 111. Therefore, activation of each barrier layer 141 and 151 is suppressed, and the substance which comprises the board
  • FIG. 2 is a graph showing changes in free energy of various nitrides.
  • the vertical axis shows the free energy change (kcal / mol) of the reaction (Me + N2 ⁇ Me-nitride), and the horizontal axis shows the temperature (° C.).
  • NbN, TiN, Ta 2 N, and ZrN have a smaller change in free energy of reaction than Si 3 N 4 .
  • the material constituting the insulating layer is Si 3 N 4
  • the material constituting the first barrier layer 141 and the second barrier layer 151 can be selected from TiN, for example.
  • TiN has a free energy that is smaller than the free energy of Si 3 N 4 .
  • NbN, TiN, Ta 2 N, and ZrN can be used as materials constituting the first barrier layer 141 and the second barrier layer 151.
  • the substance which comprises the 1st barrier layer 141 and the 2nd barrier layer 151 is a carbide
  • carbonized_material TiC, TaC, ZrC, NbC etc. can be used, for example.
  • the semiconductor The material constituting the first barrier layer 141 and the second barrier layer 151 may be changed to TiC or NbC by reacting SiC constituting the member 120 with Ti or Nb. This reaction may occur in a solid state, but when a metal barrier (for example, Ti) is dissolved in a liquid, a reaction with SiC is more likely to occur.
  • the material constituting the first barrier layer 141 and the second barrier layer 151 may be a carbonitride such as TiCN.
  • the first barrier layer 141 and the second barrier layer 151 may be made of different materials.
  • the first coat layer 140 is provided on the surface of the substrate 110 as long as the substrate 110 and the semiconductor member 120 are bonded via the semiconductor device bonding material 130 containing zinc as a main component. It is not limited to that.
  • the second coat layer 150 is not limited to be provided on the surface of the semiconductor member 120.
  • the first coat layer 140 may not be provided on the surface of the substrate 110, and the second coat layer 150 may not be provided on the surface of the semiconductor member 120.
  • each of the first protective layer 142 and the second protective layer 152 is a noble metal as long as the noble metal layer is provided on the bonding surface of the semiconductor device bonding material 130. It is not limited to a single layer. At least one of the first protective layer 142 and the second protective layer 152 may have at least one metal layer in addition to the single noble metal layer. Further, each of the first protective layer 142 and the second protective layer 152 may include a plurality of noble metal layers, such as a noble metal layer including an Ni layer and an Au layer. Further, the semiconductor device bonding material 130 may be added with a small amount of impurities if zinc is a main component. The purity of zinc as a main component in the bonding material 130 for a semiconductor device is 90 wt% or more, but is preferably high purity (99.99 wt% or more).
  • the bonding material for a semiconductor device whose main component is zinc having a melting point of 420 ° C. since it has excellent thermal fatigue that can withstand a temperature cycle up to 300 ° C. A next-generation power semiconductor device can be obtained.
  • a coat layer that prevents diffusion of the bonding material for the semiconductor device is provided on the substrate surface. Therefore, the reaction between the substrate and the bonding material for a semiconductor device is hindered, and formation of a reaction layer having a low strength can be prevented. As a result, the bonding strength between the substrate and the bonding material for a semiconductor device is maintained, and a semiconductor device having excellent reliability can be obtained.
  • the material constituting the barrier layer is TiN
  • the material constituting the protective layer is Au, Ag, Cu, Ni, or Pd
  • the material constituting the insulating layer included in the substrate is Si 3 N 4 , Al 2.
  • it constitutes a preferred semiconductor device of the present invention.
  • TiN as a material constituting the barrier layer has a free energy smaller than that of Si 3 N 4 as a material constituting the insulating layer included in the substrate.
  • the bonding force between Ti and N is larger than the bonding force between Ti and Zn and the bonding force between N and Zn.
  • the reaction between the substrate and the bonding material for a semiconductor device can be prevented, and the formation of a reaction layer having a low strength can be prevented.
  • a highly reliable semiconductor device can be obtained as described above.
  • Au, Ag, Cu, Ni, or Pd as a material constituting the protective layer improves the wettability of the bonding material for a semiconductor device with respect to the coat layer, so that an Au layer, Ag on the bonding surface with the bonding material for the semiconductor device.
  • the layer, the Cu layer, the Ni layer, or the Pd layer is provided, generation of voids at the joint surface can be suppressed, and a good joint surface can be obtained.
  • the impurity element is, for example, at least one selected from the group consisting of Ca (calcium), Mn (manganese), Ti (titanium), Cr (chromium), Ni (nickel), V (vanadium), and Nb (niobium). It is preferable that an element is included.
  • Ca is an alkaline earth metal
  • Mn, Ti, Cr, Ni, V, and Nb are transition metals. In particular, Ni, V and Nb are also called refractory metals.
  • thermal shock test sample 1 a thermal shock test sample 2, and a thermal shock test comparative sample were prepared.
  • the thermal shock test sample 1 pure zinc (purity 99.99 wt%, length 4 mm, width 4 mm, thickness 0.2 mm) was used as the bonding material 130 for the semiconductor device.
  • the insulating layer 111 an Si 3 N 4 layer (15 mm long, 15 mm wide, 0.5 mm thick) was used.
  • An Au layer (13 mm long, 13 mm wide, 200 nm thick) is provided as a first protective layer 142 on one side (second Cu layer 113 (13 mm long, 13 mm wide, 0.5 mm thick)) of the substrate 100, and a first barrier layer.
  • a TiN layer (length 13 mm, width 13 mm, thickness 800 nm) was used as 141.
  • the Au layer is laminated on the semiconductor device bonding material 130 side, and the TiN layer is laminated on the second Cu layer 113 side.
  • An Au layer (3 mm length, 3 mm width, 200 nm thickness) as the second protective layer 152 on one side (3 mm length, 3 mm width, 1 mm thickness) side of the semiconductor member 120, and a TiN layer (3 mm length) as the second barrier layer 151 , Width 3 mm, thickness 800 nm).
  • the Au layer is laminated on the semiconductor device bonding material 130 side, and the TiN layer is laminated on the semiconductor member 120 side.
  • the thermal shock test sample 2 includes layers other than the first coat layer 140 among the layers of the thermal shock test sample 1.
  • the thermal shock test comparative sample has the same configuration as the thermal shock test sample 1 except that Pb-5Sn (melting point is 315 ° C.) is used as the bonding material for the semiconductor device.
  • the surface of the first Cu layer was polished and the first coat layer was deposited to prepare a thermal shock test sample 1 and a thermal shock test comparative sample.
  • the semiconductor device bonding material was melted in an infrared furnace (Ar atmosphere, 450 ° C. ⁇ 60 s (melting point: 420 ° C. or higher, 100 s)). .
  • thermal shock test For each of the thermal shock test sample 1, the thermal shock test sample 2 and the thermal shock test comparative sample, a temperature cycle (0 to 500 times) between ⁇ 50 ° C. and 300 ° C. was performed in the air. Each time, 30 minutes was maintained.
  • FIG. 3 is a view showing a photograph of a cross section of the thermal shock test sample 1 after the thermal shock test.
  • the thermal shock test sample 1 after the thermal shock test includes a SiC layer (semiconductor member 120), a TiN layer (second barrier layer 151), a Zn layer (semiconductor device bonding material 130), and a Cu layer (second Cu layer 113). including.
  • a SiC layer semiconductor member 120
  • TiN layer second barrier layer 151
  • Zn layer semiconductor device bonding material 130
  • Cu layer second Cu layer 113
  • the thermal shock test sample 1 after the thermal shock test is observed for appearance and low magnification, large bonding defects (cracks, interface peeling, etc.) are not confirmed, and the semiconductor member 120, the bonding material 130 for the semiconductor device, and the substrate 110 are not observed.
  • the semiconductor device bonding material 130 was bonded well. Only the TiN layer (second barrier layer 151) was formed at the interface at the bonding surface between the semiconductor member 120 and the bonding material for semiconductor device 130 and at the interface at the bonding surface between the substrate 110 and the bonding material for semiconductor device.
  • FIG. 4 is a view showing a photograph of a cross section of the thermal shock test sample 2 after the thermal shock test.
  • the thermal shock test sample 2 after the thermal shock test includes an SiC layer (semiconductor member 120), a TiN layer (second barrier layer 151), a Zn layer (semiconductor device bonding material 130), a CuZn 5 layer, and a Cu 5 Zn 8. And a Cu layer (second Cu layer 113). At the interface between the Zn layer (semiconductor device bonding material 130) and the Cu layer (second Cu layer 113), the Zn layer (semiconductor device bonding material 130) and the Cu layer (second Cu layer 113) react to form CuZn 5. Layer, Cu 5 Zn 8 layer was formed.
  • FIG. 5 is a view showing a photograph of a cross section of the thermal shock test comparative sample after the thermal shock test.
  • the comparative sample for the thermal shock test after the thermal shock test includes a SiC layer, a TiN layer, a Pb-5Sn layer (a bonding material for a semiconductor device), and a Cu layer. Cracks are generated inside the Pb-5Sn layer (semiconductor device bonding material).
  • FIG. 6 is a diagram for explaining the configuration of a shear test sample and the shear test results.
  • FIG. 6A is a schematic diagram showing a configuration of a sample for shear test.
  • a shear test sample 1 For the shear test, a shear test sample 1, a shear test sample 2 and a shear test comparative sample were prepared.
  • Each of the shear test sample 1 and the shear test comparative sample has a first Cu layer 213 (length 7 mm, width 11 mm, thickness 0.8 mm), first coating layer 240 (Au layer 242 thickness 200 nm, from the bottom) TiN layer 241 thickness 800 nm), semiconductor device bonding material layer 230 (length 4 mm, width 4 mm, thickness 0.2 mm), second coat layer 250 (Au layer 252 thickness 200 nm, TiN layer 251 thickness) 800 nm) and a second Cu layer 220 (length 4 mm, width 4 mm, thickness 0.8 mm).
  • the shear test sample 2 includes layers other than the first coat layer 240 among the layers of the shear test sample 1.
  • the semiconductor device bonding material of the shear test sample 1 and the shear test sample 2 is pure zinc (purity 99.99 wt%), and the semiconductor device bonding material of the shear test comparative sample is Pb-5Sn.
  • a temperature cycle (0 to 500 times) between ⁇ 50 ° C. and 300 ° C. is performed in the atmosphere for each of the shear test sample 1, the shear test sample 2, and the shear test comparative sample. Each time, 30 minutes was maintained. At each of the 0th, 250th and 500th temperature cycles, an impact was applied by the head.
  • the test height (head position) is 0.1 mm from the upper surface of the first coat layer 240, and the test speed (head speed) is 50 ⁇ m / s.
  • a portion to which a shearing force is applied is indicated by an arrow in FIG. 6A (a portion of the bonding material layer 230 for a semiconductor device).
  • FIG. 6B is a graph showing the shear test results for the shear test sample 1, the shear test sample 2, and the shear test comparative sample.
  • the vertical axis represents shear strength (MPa), and the horizontal axis represents the number of temperature cycles (times).
  • the shear test sample 1 showed a shear strength of about 36 to 39 MPa, which was about 3.5 times the shear strength of the shear test comparative sample.
  • the bonding material for a semiconductor device mainly composed of zinc having a melting point of 420 ° C. since it can withstand a temperature cycle up to 300 ° C. It is possible to obtain a next-generation power semiconductor device having excellent heat fatigue.
  • Samples 1 to 5 were prepared in order to investigate changes in characteristics due to the addition of impurity elements.
  • Sample 1 commercially available zinc to which no impurity element was added was prepared. The purity of this zinc was 99.99 wt%. Such zinc is represented as 4N.
  • zinc to which no impurity element is added in the sample 1 may be referred to as pure zinc.
  • Samples 2 to 5 four additives prepared by adding the impurity elements Ca, Mn, Ti, and Cr to 0.1 mass percent (0.1 wt%) to the above-described zinc were prepared. Samples 2 to 5 are respectively added with Ca, Mn, Ti and Cr.
  • samples 1 to 5 were processed into test pieces for tensile testing.
  • FIG. 7 the schematic diagram of a test piece is shown. Specifically, samples 1 to 5 were respectively casted and rolled until the thickness of each sample was changed from 10 to 13 mm to 1.3 mm, and then electric discharge machining was performed. In this way, test pieces 1 to 5 were formed from samples 1 to 5, respectively.
  • each of the test pieces 1 to 5 had a thickness of 1.2 mm, and a heat treatment was performed at 180 ° C. for 3 hours to remove the residual stress. Thereafter, each of the test pieces 1 to 5 was polished with an alumina abrasive. In the polishing, the particle size of the alumina abrasive was gradually reduced, and finally an abrasive having a particle size of 0.3 ⁇ m was used.
  • Ten test pieces 1 to 5 were prepared as described above, and a tensile test was performed. The elongation rate was 7 ⁇ 10 ⁇ 4 mm / sec. In the tensile test, the result of the test piece fractured at a portion other than the gauge distance was ignored, and the average of six pieces excluding the maximum value and the minimum value among the measurement results of the remaining test pieces was calculated. .
  • FIG. 8 shows the results of the tensile test.
  • FIG. 8A shows the nominal stress with respect to the nominal strain
  • FIG. 8B shows the maximum tensile strength (UTS) of the test pieces 1 to 5.
  • UTS maximum tensile strength
  • FIG. 8A and 8B the results of the test pieces 1 to 5 are shown as Zn, 0.1Ca, 0.1Mn, 0.1Cr, and 0.1Ti, respectively.
  • the addition of Ca, Mn, Cr and Ti increased the elastic range and increased the Young's modulus. In particular, the Young's modulus increased significantly with the addition of Ti.
  • FIG. 9 (a) shows the results of the elongation of each of the test pieces 1 to 5.
  • the elongation of the test piece 1 was relatively low at 5.0%, whereas the elongation of the test pieces 2 to 4 to which the impurity element was added was 20% or more. Thus, it has been found that the elongation increases with the addition of the impurity element.
  • FIG. 9 (b) shows the result of 0.2% proof strength.
  • the proof stress of Samples 2, 3, and 5 to which Ca, Mn, and Ti were added was higher than that of Sample 1, but the proof stress of Sample 4 to which Cr was added was almost the same as that of Sample 1.
  • FIG. 10 shows an enlarged image of each sample 1-5.
  • FIGS. 10A to 10E are images of samples 1 to 5, respectively.
  • the crystal grains of zinc in Sample 1 were relatively large, the grain diameter of the zinc crystals was reduced by the addition of the impurity element.
  • the crystal grain size of zinc was considerably reduced.
  • FIGS. 11 (a) and 11 (b) show enlarged images of fracture surfaces in the initial structures of Sample 5 and Sample 1 to which Ti is added, respectively.
  • Sample 5 is considered to be an intermetallic compound.
  • EDS Energy dispersive X-ray analysis
  • FIG. 12 shows the result of weight gain with respect to the oxidation time of samples 1 to 5. While the increase in the weight of Sample 1 with respect to the oxidation time was relatively large, the increase in the weight of Samples 2 to 5 with respect to the oxidation time was relatively small due to the addition of the impurity element. In particular, the increase in weight was considerably reduced by the addition of Cr. As described above, the addition of the impurity element (particularly, addition of Cr) could suppress the oxidation of the sample mainly composed of zinc.
  • test piece 6 was polished with an alumina abrasive.
  • the particle size of the alumina abrasive was gradually reduced, and finally an abrasive having a particle size of 0.3 ⁇ m was used.
  • Three test pieces 6 were prepared as described above, and a tensile test was performed. The elongation rate was 7 ⁇ 10 ⁇ 4 mm / sec.
  • FIG. 13 shows the results of the tensile test.
  • FIG. 13A shows the nominal stress with respect to the nominal strain
  • FIG. 13B shows the maximum tensile strength (UTS) of the test pieces 1 and 6.
  • UTS maximum tensile strength
  • Fig.13 (a) and FIG.13 (b) the result of the test pieces 1 and 6 is each shown as 4NZn and 6NZn.
  • Fig. 14 (a) shows the results of the elongation of each of the test pieces 1 and 6 (Elongation).
  • the elongation percentage of the test piece 1 was relatively low at 5.0%, whereas the elongation percentage of the test piece 6 was 8% or more.
  • the elongation rate improved with the increase in purity of zinc.
  • FIG. 14B shows the result of 0.2% proof strength.
  • the yield strength decreased with increasing purity of zinc.
  • the semiconductor device and the bonding material for a semiconductor device according to the present invention can be used for a compound semiconductor device such as a GaN semiconductor device or a SiC semiconductor device that has been developed as a next-generation power semiconductor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Die Bonding (AREA)

Abstract

 本発明による基板110に半導体部材120を積層した半導体装置100は、半導体部材120と基板110とは亜鉛を主成分とする半導体装置用接合材130を介して接合されている。また、基板110の表面および半導体部材120の表面の少なくとも一方に半導体装置用接合材130の拡散を防ぐコート層が設けられている。また、コート層140は、窒化物、炭化物または炭窒化物からなるバリア層141と、貴金属からなる保護層142とを積層して構成される。更に、バリア層141を構成する窒化物、炭化物または炭窒化物は、基板110に設けられた絶縁層111を構成する物質が有する自由エネルギーよりも小さい自由エネルギーを有するように選択される。

Description

半導体装置及び半導体装置用接合材
 本発明は、基板に半導体部材を積層した半導体装置、及び半導体部材と基板とを接合する半導体装置用接合材に関する。
 一般に、半導体実装工程において、ダイ(半導体素子)と基板とが接合材によって接合される。例えば、特許文献1では、半導体素子がダイパッドにダイアタッチされている半導体装置が開示される。
特開平6-163737号公報
 しかし、特許文献1の半導体装置には、接合材の主成分として、融点が低い鉛が用いられている。例えば、ハイブリッド自動車に使用されているパワーモジュールは、大電流によりデバイス自体に発熱が起こるとともに、エンジンに近接しているため、厳しい温度環境におかれる。従って、200℃以上の高温での使用を想定している次世代パワー半導体(SiC半導体チップ)のダイアタッチ用接合剤としては耐熱安定性にかけ、接合材としては使えない。
 本発明は、次世代パワー半導体として開発されているGaN半導体やSiC半導体などの化合物半導体装置、及び半導体装置のダイアタッチ用接合材として耐熱安定性に優れた半導体装置用接合材を提供することを目的とする。
 上記課題を解決するために、本発明に係る半導体装置の特徴的構成は、基板に半導体部材を積層した半導体装置であって、前記半導体部材と前記基板とは亜鉛を主成分とする半導体装置用接合材を介して接合されている。
 背景技術の項目で説明したように、従来の半導体装置では、半導体部材と基板との接合のためには鉛を主成分とする半導体装置用接合材が用いられてきた。しかし、これら半導体装置用接合材では融点が低く、200℃以上の高温での使用を想定している次世代パワー半導体として開発されているGaN半導体やSiC半導体のダイアタッチ用接合材としては耐熱安定性に欠けるため使用に耐えられない。一方、本発明の半導体装置であれば、融点が420℃である亜鉛を主成分とする半導体装置用接合材を用いるため、300℃までの温度サイクルに耐え得る耐熱疲労に優れた次世代パワー半導体装置を得ることができる。
 本発明の半導体装置の好適な態様によれば、半導体装置用接合材の拡散を防ぐコート層が基板表面および半導体部材表面の少なくとも一方に設けられている。従って、基板と半導体装置用接合材との反応および/または半導体部材と半導体装置用接合材との反応が妨げられ、強度が弱い反応層の形成を防ぐことができる。その結果、基板と半導体装置用接合材との接合強度および/または半導体部材と半導体装置用接合材との接合強度が保たれ、信頼性に優れた半導体装置を得ることができる。
 本発明の半導体装置の好適な態様によれば、前記コート層は、窒化物、炭化物または炭窒化物からなるバリア層と、貴金属からなる保護層とを積層して構成される。バリア層を設けることにより半導体装置用接合材が基板に拡散することを防ぐことができる。また、貴金属(特にAu)は、コート層に対する半導体装置用接合材の濡れ性を向上させる。その結果、半導体装置用接合材と基板との良好な接合が可能になる。
 本発明の半導体装置の好適な態様によれば、前記バリア層を構成する窒化物、炭化物または炭窒化物は、前記基板に設けられた絶縁層を構成する物質が有する自由エネルギーよりも小さい自由エネルギーを有するように選択される。従って、バリア層の活性化が抑制され、基板又は半導体部材を構成する物質が半導体装置用接合材側に移動しない。このため、基板と半導体装置用接合材との反応及び半導体部材と半導体装置用接合材との反応を防ぎ得、強度が弱い反応層の形成を防ぐことができる。結果として、信頼性の高い半導体装置を得ることができる。
 本発明の半導体装置の好適な態様によれば、前記バリア層を構成する物質はTiNであり、前記保護層を構成する物質はAu、Ag、Cu、Ni又はPdであり、前記基板に含まれる絶縁層を構成する物質はSi、Al、又はAlNである。例えば、バリア層を構成する物質としてのTiNは、基板に含まれる絶縁層を構成する物質としてのSiが有する自由エネルギーよりも小さい自由エネルギーを有する。またTiとNとの結合力が、TiとZnとの結合力及びNとZnとの結合力よりも大きい。従って、基板と半導体装置用接合材との反応を防ぎ得、強度が弱い反応層の形成を防ぐことができる。その結果、上記と同様に、信頼性の高い半導体装置を得ることができる。また保護層を構成する物質としてのAu、Ag、Cu、Ni又はPdは、コート層に対する半導体装置用接合材の濡れ性を向上させるため、半導体装置用接合材との接合面にAu層、Ag層、Cu層、Ni層又はPd層を設けると、接合面でのボイドの生成を抑えることができ、良好な接合面を得ることができる。
 本発明の半導体装置の好適な態様によれば、前記亜鉛の純度は、90wt%以上である。亜鉛は柔軟性に優れた導電性の良好な金属である。従って、半導体装置用接合材に亜鉛を90wt%以上含有させることで、半導体装置の曲げや折れなどの衝撃によって脆く破壊されることを避けることができる。なお、亜鉛の純度は、99.9999wt%以上であることが好ましい。高純度の亜鉛を用いることにより、半導体装置用接合材の伸び率を向上させることができる。
 本発明の半導体装置の好適な態様によれば、前記バリア層の厚さは100nmから2000nmの範囲内であり、前記保護層の厚さは20nmから500nmの範囲内である。この程度の厚さ範囲であれば、バリア層によって半導体装置用接合材の拡散を防ぐことが十分に可能となり、且つ、保護層によって半導体装置用接合材の酸化及び汚染を確実に防止することができる。
 本発明の半導体装置の好適な態様によれば、前記半導体装置用接合材は、不純物元素を含む。不純物元素を含むことにより、半導体装置用接合材の特性を改善することができる。なお、不純物元素は、Ca、Mn、Ti、Cr、Ni、VおよびNbからなる群から選択された少なくとも1つの元素を含むことが好ましい。このような不純物元素の添加により、半導体装置用接合材の延性を向上させるとともに酸化を抑制することができる。
 上記課題を解決するために、本発明に係る半導体装置用接合材の特徴的構成は、基板に半導体部材を積層した半導体装置において、前記半導体部材と前記基板とを接合する半導体装置用接合材であって、亜鉛を主成分とする。
 本発明に係る半導体装置用接合材によれば、上記説明した本発明の半導体装置と同様の作用効果を得ることができる。本発明に係る半導体装置用接合材は融点が420℃である亜鉛を主成分とする半導体装置用接合材であるため、これを使用すれば、300℃までの温度サイクルに耐え得る耐熱疲労に優れた次世代パワー半導体装置を得ることができる。
本発明の実施形態に係る半導体装置を示す模式図である。 各種窒化物の自由エネルギー変化を示すグラフである。 熱衝撃試験後の熱衝撃試験用試料1の断面の写真を示す図である。 熱衝撃試験後の熱衝撃試験用試料2の断面の写真を示す図である。 熱衝撃試験後の熱衝撃試験用比較試料の断面の写真を示す図である。 せん断試験用試料の構成及びせん断試験結果を説明する図であり、(a)はせん断試験用試料の構成を示す模式図であり、(b)はせん断試験結果を示すグラフである。 引張試験用の試験片の模式図である。 (a)および(b)は引張試験の結果を示すグラフである。 (a)および(b)は引張試験の結果を示すグラフである。 (a)~(e)は純亜鉛および不純物元素の添加された亜鉛の表面の像を示す図である。 (a)および(b)は不純物元素の添加された亜鉛および純亜鉛の表面の像を示す図である。 試料の酸化時間に対する重量増加量の変化を示すグラフである。 (a)および(b)は引張試験の結果を示すグラフである。 (a)および(b)は引張試験の結果を示すグラフである。
 図1、図2を参照して、本発明の半導体装置及び半導体装置用接合材に関する実施形態を説明し、図3~図14を参照して、本発明の実施例を説明する。なお、本発明は、以下の実施形態に限定されない。
 図1は、本発明の実施形態に係る半導体装置100を示す模式図である。半導体装置100は、基板110に半導体部材120を積層した構成を有する。基板110と半導体部材120とは、亜鉛を主成分とする半導体装置用接合材130を介して接合されている。半導体装置用接合材130は、ダイアタッチ材(半導体用ダイボンド材)として半導体製造過程で用いられる。薄膜層状、ペースト状、フィルム状等の形状で提供され、半導体部材(例えばダイチップ)と基板とを接合する接着剤である。亜鉛を主成分とする材料の融点は、約420℃であるため、300℃程度の高温であっても融解することなく、ダイアタッチ材(半導体用ダイボンド材)としての機能を発揮しえる。
 基板110は、絶縁層111と、絶縁層111の両面に接合されたCu層(第1Cu層112と第2Cu層113)とを含む。基板110の表面に半導体装置用接合材130の拡散を防ぐ第1コート層140が設けられている。第1コート層140は、窒化物、炭化物または炭窒化物からなる第1バリア層141と、貴金属からなる第1保護層142とを積層して構成される。
 半導体部材120の表面に半導体装置用接合材130の拡散を防ぐ第2コート層150が設けられている。第2コート層150は、窒化物、炭化物または炭窒化物からなる第2バリア層151と、貴金属からなる第2保護層152とを積層して構成される。
 半導体部材120を構成する物質は例えばSiCであり、半導体装置100はSiC半導体装置として機能する。また、半導体部材120を構成する物質はGaNであり得、半導体装置100はGaN半導体装置として機能する。また、絶縁層111を構成する物質は例えばSiであるが、絶縁体として機能する限りは、Siに限定されない。例えば、絶縁層111はAl、又はAlNであり得る。あるいは、絶縁層111は他のセラミックスであってもよい。
 第1保護層142及び第2保護層152の厚さは20nmから500nmの程度であることが好ましい。第1保護層142及び第2保護層152は貴金属で構成され、例えばAu、Ag、Cu、Ni又はPdを採用することができる。Au、Ag、Cu、Ni又はPdは半導体装置用接合材130の濡れ性を確保し、半導体装置用接合材の汚染を防止する。半導体装置用接合材130との接合面にAu層、Ag層、Cu層、Ni層又はPd層を設けると、接合面でのボイドの生成を抑えることができ、良好な接合面を得ることができる。
 第1バリア層141及び第2バリア層151の厚さは100nmから2000nmの程度であることが好ましい。この程度の厚さであれば、バリア層によって半導体装置用接合材130の拡散を防ぐことが十分に可能となる。第1バリア層141及び第2バリア層151を構成する窒化物、炭化物または炭窒化物は、絶縁層111を構成する物質が有する自由エネルギーよりも小さい自由エネルギーを有するように選択される。従って、各バリア層141、151の活性化が抑制され、基板110又は半導体部材120を構成する物質が半導体装置用接合材130側に移動しない。このため、基板と半導体装置用接合材との反応及び半導体部材と半導体装置用接合材との反応を防ぎ得、強度が弱い反応層の形成を防ぐことができる。結果として、信頼性の高い半導体装置を得ることができる。
 図2は、各種窒化物の自由エネルギー変化を示すグラフである。縦軸は反応(Me+N2→Me-nitride)の自由エネルギー変化(kcal/mol)を示し、横軸は温度(℃)を示す。図2を参照すれば、NbN、TiN、TaN及びZrNは、Siよりも反応の自由エネルギー変化が小さい。例えば、絶縁層を構成する物質がSiであれば、第1バリア層141及び第2バリア層151を構成する物質は例えばTiNを選択可能である。TiNは、Siが有する自由エネルギーよりも小さい自由エネルギーを有する。この他、第1バリア層141及び第2バリア層151を構成する物質としては、NbN、TiN、TaN及びZrNを用い得る。なお、第1バリア層141及び第2バリア層151を構成する物質が炭化物の場合は、例えば、TiC、TaC、ZrC、NbCなどを用い得る。また、TiCまたはNbCから構成された第1バリア層141及び第2バリア層151を形成する場合、予めTiまたはNbから構成された第1バリア層141及び第2バリア層151を形成した後、半導体部材120を構成するSiCとTiまたはNbとが反応することによって、第1バリア層141及び第2バリア層151を構成する物質をTiCまたはNbCに変化させてもよい。この反応は固相状態で生じてもよいが、メタルバリア(例えば、Ti)が液体中に溶けると、SiCとの反応がさらに生じやすくなる。あるいは、第1バリア層141及び第2バリア層151を構成する物質はTiCNなどの炭窒化物であってもよい。なお、第1バリア層141及び第2バリア層151は互いに異なる物質から構成されてもよい。
 以上、図1及び図2を参照して、本発明の半導体装置100及び半導体装置用接合材130に関する実施形態を説明した。なお、半導体装置100において、基板110と半導体部材120とが亜鉛を主成分とする半導体装置用接合材130を介して接合されている限りは、基板110の表面に第1コート層140が設けられることに限定されない。また同様に、半導体部材120の表面に第2コート層150が設けられることに限定されない。基板110の表面に第1コート層140が設けられないことがあり得、半導体部材120の表面に第2コート層150が設けられないことがあり得る。
 更に、第1コート層140と第2コート層150において、半導体装置用接合材130との接合面に貴金属層が設けられる限りは、第1保護層142と第2保護層152の各々は、貴金属層の単層に限定されない。第1保護層142と第2保護層152の少なくとも一方が、貴金属層の単層に加えて少なくとも一層の金属層を有し得る。更に、第1保護層142と第2保護層152の各々は、例えばNi層とAu層とを含んだ貴金属層のように、複数の貴金属層を含み得る。更に、半導体装置用接合材130は、亜鉛が主成分であれば、微量の不純物を添加し得る。半導体装置用接合材130における主成分としての亜鉛の純度は、90wt%以上であるが、高純度(99.99wt%以上)であることが好ましい。
 本発明の半導体装置及び半導体装置用接合材によれば、融点が420℃である亜鉛を主成分とする半導体装置用接合材を用いるため、300℃までの温度サイクルに耐え得る耐熱疲労に優れた次世代パワー半導体装置を得ることができる。また、半導体装置用接合材の拡散を防ぐコート層が基板表面に設けられている。従って、基板と半導体装置用接合材との反応が妨げられ、強度が弱い反応層の形成を防ぐことができる。その結果、基板と半導体装置用接合材との接合強度が保たれ、信頼性に優れた半導体装置を得ることができる。
 特に、バリア層を構成する物質がTiNであり、保護層を構成する物質がAu、Ag、Cu、Ni又はPdであり、基板に含まれる絶縁層を構成する物質がSi、Al、又はAlNである場合は、本発明の好適な半導体装置を構成する。例えば、バリア層を構成する物質としてのTiNは、基板に含まれる絶縁層を構成する物質としてのSiが有する自由エネルギーよりも小さい自由エネルギーを有する。またTiとNとの結合力が、TiとZnとの結合力及びNとZnとの結合力よりも大きい。従って、基板と半導体装置用接合材との反応を防ぎ得、強度が弱い反応層の形成を防ぐことができる。その結果、上記と同様に、信頼性の高い半導体装置を得ることができる。また保護層を構成する物質としてのAu、Ag、Cu、Ni又はPdは、コート層に対する半導体装置用接合材の濡れ性を向上させるため、半導体装置用接合材との接合面にAu層、Ag層、Cu層、Ni層又はPd層を設けると、接合面でのボイドの生成を抑えることができ、良好な接合面を得ることができる。
 上述したように、半導体装置用接合材130において、主成分の亜鉛に微量の不純物元素が添加されてもよい。不純物元素は、例えば、Ca(カルシウム)、Mn(マンガン)、Ti(チタン)、Cr(クロム)、Ni(ニッケル)、V(バナジウム)およびNb(ニオブ)からなる群から選択された少なくとも1つの元素を含むことが好ましい。なお、Caはアルカリ土類金属であり、Mn、Ti、Cr、Ni、VおよびNbは遷移金属である。特に、Ni、VおよびNbは高融点金属とも呼ばれる。このような不純物元素の添加により、半導体装置用接合材130の延性を向上させるとともに半導体装置用接合材130の酸化を低減させることができる。不純物元素として亜鉛よりも酸化しやすい元素を用いることにより、半導体装置用接合材130の表面に亜鉛の保護膜となる酸化膜が形成されると考えられる。また、半導体装置用接合材130において純度の高い亜鉛を用いることによって延性を向上させることができる。
 なお、露出された銅が200℃以上の温度の環境下にさらされると、酸化が著しく進行し、銅とSiCおよび銅とセラミックスのそれぞれの界面に酸化物が生成し、強度が低下してしまうことがある。これに対して、第1バリア層141を構成する物質としてTiNを用いて絶縁層111の表面のCu層113を覆うと、300℃の高温下にさらされても銅の酸化はほとんど進行しない。このように、第1バリア層141を構成する物質としてTiNを用いることにより、SiC/TiN/銅/セラミックス界面における強度の低下を抑制することができる。
 以下、本発明の実施例を図3から図14を参照して説明する。
[熱衝撃試験用試料]
 熱衝撃試験のために、熱衝撃試験用試料1、熱衝撃試験用試料2及び熱衝撃試験用比較試料を用意した。
 熱衝撃試験用試料1において、半導体装置用接合材130として純亜鉛(純度99.99wt%、縦4mm、横4mm、厚さ0.2mm)を用いた。絶縁層111として、Si層(縦15mm、横15mm、厚さ0.5mm)を用いた。基板100の片面(第2Cu層113(縦13mm、横13mm、厚さ0.5mm))側に第1保護層142としてAu層(縦13mm、横13mm、厚さ200nm)を、第1バリア層141としてTiN層(縦13mm、横13mm、厚さ800nm)を用いた。Au層は半導体装置用接合材130側に積層され、TiN層は第2Cu層113側に積層されている。半導体部材120の片面(縦3mm、横3mm、厚さ1mm)側に第2保護層152としてAu層(縦3mm、横3mm、厚さ200nm)を、第2バリア層151としてTiN層(縦3mm、横3mm、厚さ800nm)を用いた。Au層は半導体装置用接合材130側に積層され、TiN層は半導体部材120側に積層されている。
 熱衝撃試験用試料2は、熱衝撃試験用試料1の各層のうち、第1コート層140以外の層を含む。熱衝撃試験用比較試料は、半導体装置用接合材としてPb-5Sn(融点は315℃)を用いる点以外は、熱衝撃試験用試料1と同様の構成である。
 第1Cu層の表面を研磨し、第1コート層を蒸着することにより、熱衝撃試験用試料1及び熱衝撃試験用比較試料を作製した。熱衝撃試験用試料1、熱衝撃試験用試料2及び熱衝撃試験用比較試料において、赤外線炉(Ar雰囲気、450℃×60s(融点420℃以上、100s))で半導体装置用接合材を溶融した。
[熱衝撃試験]
 熱衝撃試験用試料1、熱衝撃試験用試料2及び熱衝撃試験用比較試料の各々に対し、大気中、-50℃と300℃との間の温度サイクル(0~500回)を実施した。各回において、30min保持した。
 図3は、熱衝撃試験後の熱衝撃試験用試料1の断面の写真を示す図である。熱衝撃試験後の熱衝撃試験用試料1は、SiC層(半導体部材120)、TiN層(第2バリア層151)、Zn層(半導体装置用接合材130)及びCu層(第2Cu層113)を含む。半導体部材120と半導体装置用接合材130との接合面及び基板110と半導体装置用接合材130との接合面の各々は完全に濡れ、ボイドを見つけることができなかった。Zn層(半導体装置用接合材130)内部では、AuZn化合物が確認されたが、微量であり定量が困難であった((18-22at%)Au-(78-82at%)Zn)。熱衝撃試験後の熱衝撃試験用試料1を外観観察及び低倍率観察しても、大きな接合欠陥(亀裂、界面剥離等)は確認されず、半導体部材120と半導体装置用接合材130及び基板110と半導体装置用接合材130は良好に接合していた。半導体部材120と半導体装置用接合材130との接合面における界面及び基板110と半導体装置用接合材130との接合面における界面では、TiN層(第2バリア層151)のみ形成されていた。
 図4は、熱衝撃試験後の熱衝撃試験用試料2の断面の写真を示す図である。熱衝撃試験後の熱衝撃試験用試料2は、SiC層(半導体部材120)、TiN層(第2バリア層151)、Zn層(半導体装置用接合材130)、CuZn層、CuZn層及びCu層(第2Cu層113)を含む。Zn層(半導体装置用接合材130)とCu層(第2Cu層113)との界面では、Zn層(半導体装置用接合材130)とCu層(第2Cu層113)とが反応し、CuZn層、CuZn層が形成された。CuZn層部分から亀裂が発生しているが、Zn層(半導体装置用接合材130)内部には伝播していない。熱衝撃試験後の熱衝撃試験用試料2を外観観察及び低倍率観察しても、大きな接合欠陥(亀裂等)は確認されず、半導体部材120と半導体装置用接合材130及び基板110と半導体装置用接合材130は良好に接合していた。半導体部材120とZn層(半導体装置用接合材130)との接合面における界面では、TiN層(第2バリア層151)のみ形成されていた。
 図5は、熱衝撃試験後の熱衝撃試験用比較試料の断面の写真を示す図である。熱衝撃試験後の熱衝撃試験用比較試料は、SiC層、TiN層、Pb-5Sn層(半導体装置用接合材)及びCu層を含む。Pb-5Sn層(半導体装置用接合材)内部に亀裂が発生している。
[せん断試験用試料]
 図6は、せん断試験用試料の構成及びせん断試験結果を説明する図である。図6(a)は、せん断試験用試料の構成を示す模式図である。せん断試験のために、せん断試験用試料1、せん断試験用試料2及びせん断試験用比較試料を用意した。せん断試験用試料1、及びせん断試験用比較試料の各々は、下から第1Cu層213(縦7mm、横11mm、厚さ0.8mm)、第1コート層240(Au層242の厚さ200nm、TiN層241の厚さ800nm)、半導体装置用接合材層230(縦4mm、横4mm、厚さ0.2mm)、第2コート層250(Au層252の厚さ200nm、TiN層251の厚さ800nm)、第2Cu層220(縦4mm、横4mm、厚さ0.8mm)を含む。せん断試験用試料2は、せん断試験用試料1の各層のうち、第1コート層240以外の層を含む。せん断試験用試料1及びせん断試験用試料2の半導体装置用接合材は、純亜鉛(純度99.99wt%)であり、せん断試験用比較試料の半導体装置用接合材は、Pb-5Snである。
 せん断試験用試料1、せん断試験用試料2及びせん断試験用比較試料の各々に対して、大気中、-50℃と300℃との間の温度サイクル(0~500回)を実施している。各回において、30min保持した。温度サイクルが0回目、250回目及び500回目の各々において、ヘッドによる衝撃を与えた。試験高さ(ヘッドの位置)は、第1コート層240の上面から0.1mmの部分、試験速度(ヘッドスピード)は50μm/sである。せん断力を付与する部分を図6(a)において矢印で示す(半導体装置用接合材層230の部分)。
[せん断試験結果]
 図6(b)は、せん断試験用試料1、せん断試験用試料2及びせん断試験用比較試料に対するせん断試験結果を示すグラフである。縦軸はせん断強度(MPa)を示し、横軸は温度サイクル数(回)を示す。
 せん断試験用試料1では、サイクル数が500回目であっても、極めて微細な亀裂が生じる以外は微細組織に変化がなく、初期強度が維持される信頼性の高いダイアタッチ接合を得ることができた。せん断試験用試料2では、金属間化合物層(CuZn層)で亀裂が生じるが、接合部分(半導体装置用接合材内部)には亀裂は伝播しないため、初期強度が維持される信頼性の高いダイアタッチ接合を得ることができた。
 せん断試験用試料1は約36~39MPaのせん断強度を示し、せん断試験用比較試料のせん断強度の約3.5倍であった。
 このように、本発明の半導体装置100及び半導体装置用接合材130によれば、融点が420℃である亜鉛を主成分とする半導体装置用接合材を用いるため、300℃までの温度サイクルに耐え得る耐熱疲労に優れた次世代パワー半導体装置を得ることができる。
[不純物元素の添加による特性の変化]
 不純物元素の添加による特性の変化を調べるために試料1~5を用意した。試料1として、不純物元素を添加しない市販の亜鉛を用意した。この亜鉛の純度は99.99wt%であった。このような亜鉛は4Nと表される。ここでは、試料1における不純物元素の添加を行わない亜鉛を純亜鉛と呼ぶことがある。
 試料2~5として、上述の亜鉛に不純物元素Ca、Mn、Ti、Crがそれぞれ0.1質量パーセント(0.1wt%)となるように添加した4つの添加物を用意した。試料2~5には、それぞれ、Ca、Mn、TiおよびCrが添加されている。
 具体的には、不純物を添加した亜鉛をアーク炉においてAr雰囲気において融解し、その後、ひっくり返した。溶解およびひっくり返しを交互に3回行い、不純物元素を含む亜鉛合金を試料2~5として作製した。
 次に、試料1~5を引張試験用の試験片に加工した。図7に、試験片の模式図を示す。具体的には、試料1~5をそれぞれ鋳造し、それぞれの厚さが10~13mmから1.3mmになるまで圧延し、その後、放電加工を行った。このようにして、試料1~5から試験片1~5をそれぞれ形成した。
 次に、試験片1~5のそれぞれの厚さが1.2mmになるように研磨を行い、180℃で3時間の熱処理を行い、残留応力を除去した。その後、アルミナ研磨剤で試験片1~5のそれぞれの研磨を行った。研磨では、アルミナ研磨剤の粒径を徐々に小さくしていき、最終的に粒径0.3μmの研磨剤を用いた。
 以上のようにして試験片1~5をそれぞれ10個用意し、引張試験を行った。伸長速度は7×10-4mm/秒であった。なお、引張試験において標点距離以外の部分において破断した試験片の結果を無視し、また、残りの試験片の測定結果のうちの最大値および最小値を除外した6個ずつの平均を算出した。
 図8に、引張試験の結果を示す。図8(a)は、公称ひずみ(Nominal Strain)に対する公称応力(Nominal Stress)を示し、図8(b)に、試験片1~5の最大引張強さ(Ultimate Tensile Stress:UTS)を示す。図8(a)および図8(b)では、試験片1~5の結果をそれぞれ、Zn、0.1Ca、0.1Mn、0.1Cr、0.1Tiと示している。Ca、Mn、CrおよびTiの添加により、弾性域が拡大したとともにヤング率が増大した。特に、Tiの添加により、ヤング率は著しく増大した。
 図9(a)に、試験片1~5のそれぞれの伸び率(Elongation)の結果を示す。試験片1の伸び率は5.0%と比較的低かったのに対して、不純物元素の添加された試験片2~4の伸び率は20%以上を示した。このように、不純物元素の添加により、伸び率が増大することが分かった。
 図9(b)に、0.2%耐力(proof strength)の結果を示す。Ca、Mn、Tiの添加された試料2、3、5の耐力は試料1と比べて高かったが、Crの添加された試料4の耐力は試料1とほぼ同程度であった。試料4のように、試料2、3、5と比べて耐力の低い材料で半導体装置用接合材を形成することにより、半導体装置が衝撃を受けた場合の半導体部材へのダメージを吸収することができる。
 図10に、各試料1~5の拡大像を示す。図10(a)~図10(e)は、それぞれ、試料1~5の像である。試料1における亜鉛の結晶粒は比較的大きかったが、不純物元素の添加により、亜鉛の結晶の粒径が小さくなった。特に、CrおよびTiの添加された試料4、5では亜鉛の結晶の粒径がかなり小さくなった。
 図11(a)および図11(b)にTiの添加された試料5および試料1のそれぞれの初期組織における破断面の拡大像を示す。試料5には金属間化合物と考えられるところがある。試料5に対してエネルギー分散型X線分析(Energy Dispersive X-ray Spectroscopy:EDS)を行ったところ、ZnおよびTiの質量%(wt%)は99.43、0.57であり、原子数%(at%)は99.23、0.77であった。
 また、試料1~5の酸化速度を熱重量分析(Thermogravimetry Analysis:TGA)で測定した。ここでは、大気中400℃で酸化を行った。図12に、試料1~5の酸化時間に対する重量増加量(weight gain)の結果を示す。酸化時間に対する試料1の重量増加量は比較的大きかったのに対して、不純物元素の添加により、酸化時間に対する試料2~5の重量増加量は比較的小さくなった。特に、Crの添加により、重量増加量はかなり小さくなった。このように、不純物元素の添加(特に、Crの添加)により、亜鉛を主成分とする試料の酸化を抑制することができた。
 以上から、不純物元素の添加により、亜鉛の結晶が微細化し、これにともない、強度および伸び率が向上したと考えられる。
[亜鉛の純度による特性の変化]
 純度の異なる亜鉛を用いてその特性の比較を行った。ここでは、純度99.99wt%(4N)の亜鉛と、純度99.9999wt%の亜鉛とを比較した。なお、純度99.99wt%の亜鉛(4N)の特性は図8および図9を参照して上述した結果と同様である。ここでは、試料6として純度99.9999wt%の亜鉛を用意した。このような亜鉛は6Nと表される。試料6を厚さが10~13mmから1.3mmになるまで圧延した後、図7に示した形状となるように放電加工を行った。このようにして、試料6から試験片6を形成した。
 次に、試験片6のそれぞれの厚さが1.2mmになるように研磨を行い、180℃で3時間の熱処理を行い、残留応力を除去した。その後、アルミナ研磨剤で試験片6の研磨を行った。研磨では、アルミナ研磨剤の粒径を徐々に小さくしていき、最終的に粒径0.3μmの研磨剤を用いた。以上のようにして試験片6を3個用意し、引張試験を行った。伸長速度は7×10-4mm/秒であった。
 図13に、引張試験の結果を示す。図13(a)は、公称ひずみ(Nominal Strain)に対する公称応力(Nominal Stress)を示し、図13(b)に、試験片1、6の最大引張強さ(Ultimate Tensile Stress:UTS)を示す。図13(a)および図13(b)では、試験片1、6の結果をそれぞれ、4NZn、6NZnと示している。亜鉛の高純度化に伴って弾性域が拡大した。
 図14(a)に、試験片1、6のそれぞれの伸び率(Elongation)の結果を示す。試験片1の伸び率は5.0%と比較的低かったのに対して、試験片6の伸び率は8%以上であった。このように、亜鉛の高純度化に伴って伸び率が向上した。
 図14(b)に、0.2%耐力(proof strength)の結果を示す。亜鉛の高純度化に伴って耐力が低減した。このように耐力の比較的低い材料で半導体装置用接合材を形成することにより、半導体装置が衝撃を受けた場合の半導体部材へのダメージを好適に吸収することができる。
 本発明による半導体装置及び半導体装置用接合材は、次世代パワー半導体として開発されているGaN半導体装置やSiC半導体装置などの化合物半導体装置に利用可能である。
100  半導体装置
110  基板
111  絶縁層
112  第1Cu層
113  第2Cu層
120  半導体部材
130  半導体装置用接合材
140  第1コート層
141  第1保護層
142  第1バリア層
150  第2コート層
151  第2保護層
152  第2バリア層

Claims (15)

  1.  基板に半導体部材を積層した半導体装置であって、
     前記半導体部材と前記基板とは亜鉛を主成分とする半導体装置用接合材を介して接合されている、半導体装置。
  2.  前記基板の表面および前記半導体部材の表面の少なくとも一方に前記半導体装置用接合材の拡散を防ぐコート層が設けられている、請求項1に記載の半導体装置。
  3.  前記コート層は、窒化物、炭化物または炭窒化物からなるバリア層と、貴金属からなる保護層とを積層して構成される、請求項2に記載の半導体装置。
  4.  前記バリア層を構成する窒化物、炭化物または炭窒化物は、前記基板に設けられた絶縁層を構成する物質が有する自由エネルギーよりも小さい自由エネルギーを有するように選択される、請求項3に記載の半導体装置。
  5.  前記バリア層を構成する物質はTiNであり、前記保護層を構成する物質はAu、Ag、Cu、Ni又はPdであり、前記基板に含まれる絶縁層を構成する物質はSi、Al、又はAlNである、請求項3又は請求項4に記載の半導体装置。
  6.  前記半導体装置用接合材における亜鉛の純度は、90wt%以上である、請求項1から請求項5の何れか一項に記載の半導体装置。
  7.  前記半導体装置用接合材における亜鉛の純度は、99.9999wt%以上である、請求項6に記載の半導体装置。
  8.  前記バリア層の厚さは100nmから2000nmの範囲内にあり、前記保護層の厚さは20nmから500nmの範囲内にある、請求項4から請求項7の何れか一項に記載の半導体装置。
  9.  前記半導体装置用接合材は、不純物元素を含む、請求項1から請求項8の何れか一項に記載の半導体装置。
  10.  前記不純物元素は、Ca、Mn、Ti、Cr、Ni、VおよびNbからなる群から選択された少なくとも1つの元素を含む、請求項9に記載の半導体装置。
  11.  基板に半導体部材を積層した半導体装置において、前記半導体部材と前記基板とを接合する半導体装置用接合材であって、
     亜鉛を主成分とする、半導体装置用接合材。
  12.  前記亜鉛の純度は、90wt%以上である、請求項11に記載の半導体装置用接合材。
  13.  前記亜鉛の純度は、99.9999wt%以上である、請求項12に記載の半導体装置用接合材。
  14.  前記半導体装置用接合材は不純物元素を含む、請求項11から請求項13の何れか一項に記載の半導体装置用接合材。
  15.  前記不純物元素は、Ca、Mn、Ti、Cr、Ni、VおよびNbからなる群から選択された少なくとも1つの元素を含む、請求項14に記載の半導体装置用接合材。
PCT/JP2011/054133 2010-03-01 2011-02-24 半導体装置及び半導体装置用接合材 WO2011108436A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012503096A JP5773344B2 (ja) 2010-03-01 2011-02-24 半導体装置及び半導体装置用接合材
KR1020127025457A KR101559617B1 (ko) 2010-03-01 2011-02-24 반도체장치 및 반도체장치용 접합재
US13/581,941 US9217192B2 (en) 2010-03-01 2011-02-24 Semiconductor device and bonding material for semiconductor device
EP11750546.1A EP2544225A4 (en) 2010-03-01 2011-02-24 Semiconductor device and bonding material for semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010043666 2010-03-01
JP2010-043666 2010-03-01

Publications (1)

Publication Number Publication Date
WO2011108436A1 true WO2011108436A1 (ja) 2011-09-09

Family

ID=44542090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054133 WO2011108436A1 (ja) 2010-03-01 2011-02-24 半導体装置及び半導体装置用接合材

Country Status (5)

Country Link
US (1) US9217192B2 (ja)
EP (1) EP2544225A4 (ja)
JP (1) JP5773344B2 (ja)
KR (1) KR101559617B1 (ja)
WO (1) WO2011108436A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198455A1 (ja) 2017-04-28 2018-11-01 三菱電機株式会社 接合構造体およびその製造方法並びに電動機およびその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485968B2 (en) 2005-08-11 2009-02-03 Ziptronix, Inc. 3D IC method and device
US10224259B2 (en) * 2013-06-21 2019-03-05 Sumitomo Bakelite Co., Ltd. Resin composition for sealing semiconductor and semiconductor device
DE102014111435B4 (de) * 2014-08-11 2024-09-26 Infineon Technologies Ag Chip-Anordnung
US9953941B2 (en) 2015-08-25 2018-04-24 Invensas Bonding Technologies, Inc. Conductive barrier direct hybrid bonding
US10840205B2 (en) 2017-09-24 2020-11-17 Invensas Bonding Technologies, Inc. Chemical mechanical polishing for hybrid bonding
US11056348B2 (en) 2018-04-05 2021-07-06 Invensas Bonding Technologies, Inc. Bonding surfaces for microelectronics
US11393779B2 (en) 2018-06-13 2022-07-19 Invensas Bonding Technologies, Inc. Large metal pads over TSV
KR20210009426A (ko) 2018-06-13 2021-01-26 인벤사스 본딩 테크놀로지스 인코포레이티드 패드로서의 tsv
US11011494B2 (en) 2018-08-31 2021-05-18 Invensas Bonding Technologies, Inc. Layer structures for making direct metal-to-metal bonds at low temperatures in microelectronics
US11158573B2 (en) 2018-10-22 2021-10-26 Invensas Bonding Technologies, Inc. Interconnect structures
US11610861B2 (en) 2020-09-14 2023-03-21 Infineon Technologies Austria Ag Diffusion soldering with contaminant protection
US11264357B1 (en) 2020-10-20 2022-03-01 Invensas Corporation Mixed exposure for large die

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119049A (ja) * 1984-11-15 1986-06-06 Nec Corp 半導体装置の製造方法
JPH0679494A (ja) * 1992-09-07 1994-03-22 Furukawa Electric Co Ltd:The 金属接合用Zn基合金
JPH06163737A (ja) 1992-11-26 1994-06-10 Seiko Epson Corp 半導体装置および半導体装置の製造方法
JP2006255762A (ja) * 2005-03-18 2006-09-28 Uchihashi Estec Co Ltd 電子部品用線状はんだ
JP2009129983A (ja) * 2007-11-20 2009-06-11 Toyota Central R&D Labs Inc 接合体及びその製造方法、並びにパワー半導体モジュール及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432063A (en) * 1977-08-16 1979-03-09 Asahi Glass Co Ltd Si semiconductor solder
US4647308A (en) 1984-06-18 1987-03-03 Copper Development Association, Inc. Soldering compositions, fluxes and methods of use
JP4077888B2 (ja) * 1995-07-21 2008-04-23 株式会社東芝 セラミックス回路基板
TW516984B (en) * 1999-12-28 2003-01-11 Toshiba Corp Solder material, device using the same and manufacturing process thereof
JP3878978B2 (ja) * 2002-10-24 2007-02-07 コーア株式会社 鉛非含有はんだ、および鉛非含有の継手
JP4115979B2 (ja) * 2004-09-24 2008-07-09 株式会社東芝 非鉛系はんだ材
JP2006320913A (ja) 2005-05-17 2006-11-30 Sumitomo Metal Mining Co Ltd 高温はんだ合金
US7578966B2 (en) * 2005-06-30 2009-08-25 Intel Corporation Solders with intermetallic phases, solder bumps made thereof, packages containing same, and methods of assembling packages therewith
JP4703492B2 (ja) 2006-06-09 2011-06-15 パナソニック株式会社 鉛フリーはんだ材料
JP4390799B2 (ja) * 2006-11-21 2009-12-24 株式会社日立製作所 接続材料、接続材料の製造方法、および半導体装置
JP5160201B2 (ja) * 2007-11-20 2013-03-13 株式会社豊田中央研究所 はんだ材料及びその製造方法、接合体及びその製造方法、並びにパワー半導体モジュール及びその製造方法
CN101911219B (zh) 2008-01-17 2015-12-16 日亚化学工业株式会社 导电性材料及其制造方法、电子设备、发光装置及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119049A (ja) * 1984-11-15 1986-06-06 Nec Corp 半導体装置の製造方法
JPH0679494A (ja) * 1992-09-07 1994-03-22 Furukawa Electric Co Ltd:The 金属接合用Zn基合金
JPH06163737A (ja) 1992-11-26 1994-06-10 Seiko Epson Corp 半導体装置および半導体装置の製造方法
JP2006255762A (ja) * 2005-03-18 2006-09-28 Uchihashi Estec Co Ltd 電子部品用線状はんだ
JP2009129983A (ja) * 2007-11-20 2009-06-11 Toyota Central R&D Labs Inc 接合体及びその製造方法、並びにパワー半導体モジュール及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2544225A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198455A1 (ja) 2017-04-28 2018-11-01 三菱電機株式会社 接合構造体およびその製造方法並びに電動機およびその製造方法
JP6440908B1 (ja) * 2017-04-28 2018-12-19 三菱電機株式会社 接合構造体およびその製造方法並びに電動機およびその製造方法
EP3616827A4 (en) * 2017-04-28 2020-09-02 Mitsubishi Electric Corporation JUNCTION STRUCTURE, ITS MANUFACTURING PROCESS, ELECTRIC MOTOR AND ITS MANUFACTURING PROCESS
US11059133B2 (en) 2017-04-28 2021-07-13 Mitsubishi Electric Corporation Bonded structure, method of manufacturing same, electric motor, and method of manufacturing same

Also Published As

Publication number Publication date
EP2544225A1 (en) 2013-01-09
US20120319280A1 (en) 2012-12-20
KR20120127518A (ko) 2012-11-21
KR101559617B1 (ko) 2015-10-12
JP5773344B2 (ja) 2015-09-02
JPWO2011108436A1 (ja) 2013-06-27
EP2544225A4 (en) 2018-07-25
US9217192B2 (en) 2015-12-22

Similar Documents

Publication Publication Date Title
JP5773344B2 (ja) 半導体装置及び半導体装置用接合材
CN114478045B (zh) 接合体、电路基板及半导体装置
JP6895131B2 (ja) 半導体装置用はんだ材
EP2282334B1 (en) Method for producing substrate for power module
WO2017217145A1 (ja) はんだ接合部
EP3106447B1 (en) Copper-ceramic bonded body and power module substrate
JP2010179336A (ja) 接合体、半導体モジュール、及び接合体の製造方法
CN113348046B (zh) 铜-陶瓷接合体的制造方法、绝缘电路基板的制造方法、铜-陶瓷接合体及绝缘电路基板
WO2012049893A1 (ja) 高温半導体素子用平角状銀(Ag)クラッド銅リボン
WO2003046981A1 (en) Module structure and module comprising it
JP5861559B2 (ja) PbフリーIn系はんだ合金
JP6810915B2 (ja) はんだ材
JP5828352B2 (ja) 銅/セラミックス接合体、及び、パワーモジュール用基板
TW201308543A (zh) 接合構造體
JP4592486B2 (ja) 半導体モジュール
KR20240058199A (ko) 땜납 합금, 땜납 볼, 땜납 프리폼, 땜납 페이스트 및 솔더 조인트
JP5105973B2 (ja) はんだ接合構造およびはんだバンプ形成方法
JP2011192840A (ja) 半導体素子用平角状アルミニウム被覆銅リボン
JP2021165227A (ja) 銅/セラミックス接合体、及び、絶縁回路基板
JP6020391B2 (ja) PbフリーZn−Al系合金はんだとCu系母材の半導体素子接合用クラッド材
JP2017136628A (ja) In系クラッド材
JP5203906B2 (ja) Bi含有はんだ箔の製造方法、Bi含有はんだ箔、接合体、及びパワー半導体モジュール
WO2011158449A1 (ja) 接続材料、半導体装置、およびその製造方法
JP4397738B2 (ja) 電子部品用パッケージおよびその製造方法並びに電子部品用パッケージの蓋材
JP2017147285A (ja) PbフリーZn−Al系合金はんだと金属母材とのクラッド材によって接合された接合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750546

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13581941

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012503096

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127025457

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011750546

Country of ref document: EP