WO2011108388A1 - メタライズドセラミック基板の製造方法 - Google Patents
メタライズドセラミック基板の製造方法 Download PDFInfo
- Publication number
- WO2011108388A1 WO2011108388A1 PCT/JP2011/053706 JP2011053706W WO2011108388A1 WO 2011108388 A1 WO2011108388 A1 WO 2011108388A1 JP 2011053706 W JP2011053706 W JP 2011053706W WO 2011108388 A1 WO2011108388 A1 WO 2011108388A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic substrate
- metal paste
- metallized
- layer
- paste
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/386—Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0212—Resin particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1208—Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
- H05K3/245—Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
- H05K3/246—Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating
Definitions
- the present invention relates to a method for manufacturing a metallized ceramic substrate. Specifically, the present invention relates to a method for manufacturing a metallized ceramic substrate capable of forming a fine pattern having a narrow interval between metallized patterns.
- a cofire method as a method for producing a metallized ceramic substrate, a cofire method (simultaneous firing method) and a postfire method (sequential firing method) are known.
- the cofire method is a method in which a metalized ceramic substrate precursor is formed by forming a metal paste layer on an unfired ceramic substrate precursor called a green sheet, and this is fired. In this method, the green sheet and the metal paste layer are fired simultaneously.
- the post-fire method is a method in which a metalized ceramic substrate precursor is produced by forming a metal paste layer on a ceramic substrate obtained by firing a green sheet, and this is fired. In this method, the green sheet and the metal paste layer are fired sequentially.
- Both methods can form a metallized pattern on a ceramic substrate, and the resulting substrate is mainly used as a substrate for mounting electronic components.
- Substrates for mounting electronic components are required to have higher precision and higher definition of metallized patterns as the components to be mounted become smaller. Conventional manufacturing methods are sufficient to meet these requirements. It has become a situation that can not respond to.
- the green sheet tends to shrink unevenly during firing.
- the center part of each side warps inward.
- the shrinkage occurs and the substrate deforms into a star shape. Therefore, when many metallized patterns having the same shape are formed on one green sheet, the shape of the pattern slightly changes depending on where the pattern is formed. Inevitable.
- a metallized pattern is formed by baking after applying and drying a conductive paste directly on a ceramic substrate.
- the conductive paste layer shrinks in the thickness direction, but almost no shrinkage occurs in the plane direction, so that the pattern shape changes depending on the position as seen by the cofire method. Does not happen.
- the metal paste may flow or bleed before sintering, which is an obstacle to further miniaturization of the pattern. It was. That is, when the “flow” or “smear” of the metal paste occurs, a short circuit may occur between the wirings of the obtained metallized ceramic substrate, and the reliability decreases.
- the formation of a metallized pattern having a gap between metallized patterns (usually also referred to as a space) of about 50 ⁇ m has been limited.
- Patent Document 1 a photosensitive resin layer having adhesiveness is formed on a heat-resistant substrate, a circuit pattern is exposed, the adhesiveness of the exposed portion is lost, and then the circuit-forming particles are contacted.
- a method of forming a circuit by adhering and baking is proposed.
- Patent Document 2 a first circuit is formed with a conductive paste on a resin film coated with a release agent, and this is transferred to a ceramic substrate surface coated with a thermoplastic resin and fired. A method for manufacturing a ceramic circuit board is proposed.
- Patent Document 3 a copper conductor paste is printed on a substrate made of ceramics and baked to form a copper conductor circuit, and then a copper conductor bleeding portion generated at the edge of the circuit is dissolved and removed. There has been proposed a method of manufacturing a ceramic circuit board that sharply processes the substrate.
- Patent Document 4 a ceramic paste layer is formed on a ceramic substrate, a conductive paste layer is formed on the ceramic paste layer to produce a substrate precursor, and the substrate precursor is fired.
- a method for manufacturing a metallized ceramic substrate has been proposed.
- Patent Documents 1 to 3 have many steps and are very time-consuming.
- the type of metal forming the conductive paste is limited to refractory metals such as tungsten, and this method cannot be adopted when using a metal paste containing copper, silver, or the like.
- the cofire method cannot be employed due to restrictions on the firing temperature, and a fine pattern forming method by the postfire method has been desired.
- the present inventors have obtained the following knowledge.
- the solvent absorbing layer needs to be a layer that decomposes and disappears during firing. Thereby, the adhesiveness of a metallized pattern and a ceramic substrate is securable.
- the present invention provides a first step of forming an organic underlayer (20) on a ceramic substrate (10), a metal paste layer (30) is formed on the organic underlayer (20), and a metallized ceramic substrate precursor ( 50) and a third step of firing the metallized ceramic substrate precursor (50), and the organic underlayer (20) absorbs the solvent in the metal paste layer (30).
- the layer thickness of the organic underlayer (20) is preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less.
- the metal paste for forming the metal paste layer (30) is preferably a copper paste, a silver paste, a copper-silver alloy paste, or a tungsten paste.
- the organic underlayer (20) is preferably an acrylic resin layer.
- the acrylic resin layer is preferably formed from a resin dispersion containing acrylic particles having a particle size of 0.05 ⁇ m or more and 0.80 ⁇ m or less.
- particle size in the present invention means a median diameter measured by a dynamic light scattering method.
- the substrate (100) obtained before plating when plating is performed on the formed metallized pattern (40), it is preferable to etch the substrate (100) obtained before plating.
- the organic underlayer (20) absorbs the solvent in the metal paste layer (30).
- the organic underlayer (20) absorbs the solvent in the metal paste layer (30).
- the organic underlayer (20) is thermally decomposed and disappeared during firing and does not hinder the adhesion of the metallized pattern, the metallized ceramic substrate (100) having good adhesion of the metallized pattern (40) can be produced. it can.
- FIG. 1 It is a conceptual diagram which shows the outline of the manufacturing method of the metallized ceramic substrate (100) of this invention. It is the figure which expanded the cross pattern in the metallized ceramic substrate obtained in Example 1. FIG. It is the figure which expanded the cross pattern in the metallized ceramic substrate obtained by the comparative example 1. FIG.
- the method for producing a metallized ceramic substrate of the present invention includes a first step of forming an organic underlayer on the ceramic substrate, a second step of forming a metal paste layer on the organic underlayer, and producing a metallized ceramic substrate precursor. And a third step of firing the metallized ceramic substrate precursor.
- FIG. 1 the conceptual diagram showing the outline
- the organic underlayer 20 is formed on the ceramic substrate 10.
- a substrate having a known ceramic as a constituent material can be used without particular limitation.
- the ceramic that is a constituent material of the ceramic substrate 10 include (i) an oxide ceramic such as an aluminum oxide ceramic, a silicon oxide ceramic, a calcium oxide ceramic, and a magnesium oxide ceramic; (ii) an aluminum nitride ceramic; Nitride ceramics such as silicon nitride ceramics and boron nitride ceramics; (iii) beryllium oxide, silicon carbide, mullite, borosilicate glass and the like can be used.
- nitride ceramics are preferred, and aluminum nitride ceramics are particularly preferred because of their high thermal conductivity.
- a ceramic sintered body substrate in particular, a ceramic particle constituting the sintered body substrate is obtained because it can be easily obtained or obtained in a desired shape. It is preferable to use a ceramic sintered body substrate having an average particle size of 0.5 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 15 ⁇ m.
- a ceramic sintered body substrate can be obtained, for example, by firing a green sheet having a ceramic raw material powder having an average particle diameter of 0.1 ⁇ m to 15 ⁇ m, preferably 0.5 ⁇ m to 5 ⁇ m as a constituent material. it can.
- the green sheet may contain a sintering aid, an organic binder and the like.
- a sintering aid commonly used according to the type of ceramic raw material powder can be used without any particular limitation.
- organic binder polyvinyl butyral, ethyl celluloses and acrylic resins are used, and poly n-butyl methacrylate and polyvinyl butyral are particularly preferably used because green moldability is improved.
- the shape of the ceramic substrate 10 used in the present invention is not particularly limited as long as it has a surface on which the organic underlayer 20 and the metal paste layer 30 can be formed. It can be used even if the part has been subjected to cutting or drilling or a substrate having a curved surface.
- the ceramic substrate 10 may have via holes (that is, through holes filled with a conductor or metal paste) or inner layer wiring. Such a raw material substrate can be easily manufactured by a cofire method using a green sheet having the structure as described above.
- size of the ceramic substrate 10 is not specifically limited, What is necessary is just to determine suitably according to a use.
- the substrate thickness is generally 0.1 mm to 2 mm, preferably about 0.2 mm to 1 mm.
- the ceramic substrate 10 can be subjected to surface treatment for the purpose of improving wettability with the resin dispersion when forming the organic underlayer 20.
- surface treatment by physical treatment such as oxygen plasma treatment, corona treatment, UV ozone treatment, or chemical treatment such as alkali etching can be performed. These surface treatments are particularly suitable when an aqueous resin dispersion having a relatively high surface tension is used.
- Organic underlayer 20 In the first step, a resin dispersion is applied onto the ceramic substrate 10 and, in some cases, the applied resin dispersion is dried to form the organic underlayer 20.
- the organic underlayer 20 needs to be a layer that can absorb a solvent in the metal paste layer 30 described later and thermally decomposes at a temperature at which the metal paste layer 30 is fired. Moreover, it is preferable that the organic underlayer 20 has voids in order to increase the solvent absorption capacity.
- the resin dispersion for forming the organic underlayer 20 is preferably configured to include resin particles and a solvent, and the resin particles are not dissolved in the solvent but are dispersed in the solvent.
- resin particles acrylic resin particles, styrene resin particles, methacrylate resin particles, olefin resin particles, and the like can be used.
- organic solvents such as methanol, chloroform, toluene, water, etc. can be used. Water is preferably used as a solvent from the viewpoint of not dissolving resin particles, and when a resin particle that does not dissolve in an organic solvent such as crosslinked resin particles is used, an organic solvent is used from the viewpoint of ease of drying. preferable.
- the resin particles are dispersed in the resin dispersion without being dissolved in the solvent. And a combination of solvents is preferred. Additives such as commonly used dispersants may be contained in the resin dispersion.
- an organic binder that is soluble in the solvent to be used may be added. When the organic binder is added, the amount added is preferably 50 parts by mass or less with respect to 100 parts by mass of the resin particles. When the amount of the organic binder added is too large, the organic binder fills the voids in the organic underlayer 20, so that the solvent absorbability of the organic underlayer 20 may be deteriorated.
- the particle size of the resin particles is not particularly limited, but is preferably 0.05 ⁇ m or more and 0.80 ⁇ m or less, More preferably, it is 0.08 ⁇ m or more and 0.40 ⁇ m or less. If the particle diameter of the resin particles is too small, the organic underlayer 20 to be formed becomes dense and the solvent absorbability may be deteriorated. On the other hand, if the particle size of the resin particles is too large, the thickness of the organic underlayer 20 may be increased, and the desired thickness may not be obtained, and the surface area of the resin particles forming the organic underlayer 20 is small. Therefore, there is a possibility that the solvent absorbability is inferior.
- the particle diameter is a median diameter measured by a dynamic light scattering method.
- the coating method for forming the organic underlayer 20 is not particularly limited, and a known coating method such as a coating method such as dip coating or spray coating, or a printing method such as screen printing or offset printing can be employed. Among these, the dip coating method is preferable because it can be applied uniformly with a thin film thickness.
- the content rate of the resin particle in a resin dispersion so that it may become an optimal density
- the content ratio of the resin particles is 1% by mass or more and 20% by mass or less based on the entire resin dispersion (100% by mass). Is preferred.
- content of an additive shall be 5 mass% or less.
- the type of the organic underlayer 20 is not particularly limited because it is fired at a high temperature, and a solvent in the metal paste layer 30 is used. As long as it can absorb, any organic underlayer 20 may be formed. This is because firing is performed at a high temperature, so that any organic underlayer 20 can be decomposed and eliminated.
- the firing temperature is lower than that when the high melting point metal paste is used.
- the resin particles that can form the organic underlayer 20 that decomposes and disappears even at the firing temperature include acrylic resin particles and styrene resin particles.
- a copper paste as a metal paste in order to prevent copper being oxidized, baking is performed in nitrogen atmosphere or a vacuum. Further, when a metal paste containing titanium is used, firing is performed under vacuum. In these cases, it is preferable to use acrylic resin particles as the resin particles so that the organic underlayer 20 that is thermally decomposed and disappears even under such firing conditions can be formed.
- the organic underlayer 20 it is preferable to dry the organic underlayer 20 before applying the metal paste to form the metal paste layer 30.
- This drying can be suitably performed by holding the substrate in air at a temperature of 60 ° C. to 120 ° C. for about 2 minutes to 20 minutes.
- the thickness of the organic underlayer 20 is preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less, more preferably 0.2 ⁇ m or more and 0.5 ⁇ m or less. If the thickness is too thin, the solvent in the metal paste layer 30 may not be sufficiently absorbed. Conversely, if the thickness is too thick, the adhesion of the formed metallized pattern may be inferior. In the present invention, the thickness of the organic underlayer 20 is a thickness after the solvent in the organic underlayer 20 is volatilized by applying the resin dispersion on the ceramic substrate 10 and drying it.
- ⁇ Second step> the metal paste layer 30 is formed on the organic underlayer 20 formed in the first step, and the metallized ceramic substrate precursor 50 is produced. Formation of the metal paste layer 30 in the second step is performed by applying the metal paste in a predetermined pattern on the organic underlayer 20 formed on the ceramic substrate 10 and drying it as necessary. Since the lower organic underlayer 20 absorbs the organic solvent contained in the metal paste layer 30, the applied metal paste is prevented from flowing or bleeding and a fine pattern can be obtained.
- the interval (space) between the conductor lines (wirings) is 80 ⁇ m to 10 ⁇ m, preferably 50 ⁇ m to 10 ⁇ m, and most preferably.
- a metallized ceramic substrate having a conductive layer (metallized layer) with a fine pattern of 30 ⁇ m to 15 ⁇ m, and the line and space is preferably 80/80 ⁇ m or less, more preferably 50/50 ⁇ m or less, particularly preferably 30/30 ⁇ m or less.
- a metallized ceramic substrate having a fine pattern metallized layer can be produced with a high yield.
- the circuit board When such a metallized ceramic substrate is used as a circuit board, the circuit board has a fine pattern and does not have a short circuit and is highly reliable.
- the line and space being X / Y ⁇ m means that a plurality of conductor lines (wirings) having a line width of X ⁇ m can be formed while maintaining an interval of Y ⁇ m.
- the metallized pattern 40 may be formed not only as a wiring but also as a recognition marker (positioning mark at the time of mounting) of the metallized substrate.
- the recognition marker is formed by the method of the present invention, the marker Since the shape can be clearly recognized, there is an advantage that the false recognition rate of the marker is lowered.
- a known metal paste composed of components such as a metal powder, an organic binder, an organic solvent, a dispersant, and a plasticizer can be used without particular limitation.
- the metal powder contained in the metal paste examples include metal powders such as tungsten, molybdenum, gold, silver, copper, and copper-silver alloy.
- metal powders such as tungsten, molybdenum, gold, silver, copper, and copper-silver alloy.
- tungsten, molybdenum, gold, silver, copper, and copper-silver alloy even when a metal paste containing gold, silver, copper, and a copper-silver alloy is used, a metallized ceramic substrate having a fine pattern, which was difficult to manufacture by a conventional method, is manufactured. be able to. Therefore, the present invention is particularly effective in such a case.
- the metal paste may contain titanium hydride powder.
- a titanium nitride layer is formed between the metallized pattern 40 and the nitride ceramic substrate 10 by firing by using a metal paste containing titanium hydride powder. Since the adhesion of the pattern 40 is improved, it is effective when a gold, silver, copper, or copper-silver alloy paste that makes it difficult to increase the adhesion between the ceramic substrate 10 and the metallized pattern 40 is used.
- the amount of titanium hydride powder added is preferably 1 part by mass or more and 10 parts by mass or less based on 100 parts by mass of the total of the gold, silver, copper and copper-silver alloy powders.
- organic binder contained in the metal paste known ones can be used without any particular limitation.
- acrylic resins such as polyacrylic acid esters and polymethacrylic acid esters
- cellulose resins such as methyl cellulose, hydroxymethyl cellulose, nitrocellulose, and cellulose acetate butyrate
- vinyl group-containing resins such as polyvinyl butyral, polyvinyl alcohol, and polyvinyl chloride
- hydrocarbon resins such as polyolefin, oxygen-containing resins such as polyethylene oxide, and the like can be used singly or in combination.
- organic solvent contained in the metal paste known ones can be used without any particular limitation.
- toluene, ethyl acetate, terpineol, butyl carbitol acetate, texanol and the like can be used.
- a well-known thing can be especially used as a dispersing agent contained in a metal paste without a restriction
- a phosphoric acid ester-based or polycarboxylic acid-based dispersing agent can be used.
- a plasticizer contained in a metal paste a well-known thing can be used without limitation.
- dioctyl phthalate, dibutyl phthalate, diisononyl phthalate, diisodecyl phthalate, dioctyl adipate, and the like can be used.
- the metal paste includes the metal powder, an organic binder, and an organic solvent.
- the method of the present invention is particularly effective when the amount of the metal powder, the organic binder, and the organic solvent is adjusted and measured with a spiral viscometer under the conditions of 5 rpm and 25 ° C. This is a case where a metal paste having a viscosity of preferably 50 Pa ⁇ s to 350 Pa ⁇ s, more preferably 100 Pa ⁇ s to 300 Pa ⁇ s, and particularly preferably 150 Pa ⁇ s to 250 Pa ⁇ s is used.
- the amount of specific organic binder and organic solvent varies depending on the method of applying the metal paste, the use of the resulting metallized ceramic substrate, the type and shape of the metal powder used, the organic binder, and the type of organic solvent. However, it is not limited in general. However, when the metal paste containing the organic binder and the organic solvent satisfies the viscosity range, the application becomes easy and the productivity can be increased. And when using the metal paste of the said viscosity range containing an organic binder and an organic solvent, the effect by which the flow and bleeding of a metal paste are prevented by providing an organic base layer becomes more remarkable.
- the said metal paste may contain other well-known additives (for example, a dispersing agent, a plasticizer).
- the metal paste can be applied by a known method such as screen printing, calendar printing, or pad printing.
- the thickness of the formed metal paste layer 30 is not particularly limited, but is generally 1 ⁇ m to 100 ⁇ m, preferably 5 ⁇ m to 30 ⁇ m.
- the thickness of the metal paste layer 30 is a thickness after the metal paste is applied on the organic underlayer 20 and dried to volatilize the solvent in the metal paste layer 30.
- the metal paste When the metal paste is applied to form the metal paste layer 30, the metal paste may be repeatedly applied and laminated. At this time, after applying the metal paste, it may be dried, and then the metal paste may be applied and dried again, or after repeatedly applying the metal paste, a plurality of layers of metal paste may be dried together. .
- the type of metal paste layer to be laminated may be the same type of paste as the lower layer, or may be a different type of paste from the lower layer.
- the metallized ceramic substrate precursor 50 in which the organic underlayer 20 and the metal paste layer 30 are formed on the ceramic substrate 10 is fired (third step), whereby the metallized ceramic which is the product of the present invention.
- the substrate 100 is obtained, if necessary, degreasing may be performed before firing.
- Degreasing is performed by using a metallized ceramic substrate precursor in a humidified gas atmosphere in which an oxidizing gas such as oxygen or air, a reducing gas such as hydrogen, an inert gas such as argon or nitrogen, carbon dioxide, and a mixed gas or water vapor thereof is mixed. This is done by heat treating the body 50.
- the heat treatment conditions may be appropriately selected from the range of temperature: 250 ° C. to 1200 ° C. and holding time: 1 minute to 1000 minutes depending on the type and amount of the organic component contained in the metallized ceramic substrate precursor 50.
- the metallized ceramic substrate precursor 50 produced above is fired.
- the conditions usually employed are appropriately employed depending on the type of metal paste used (more specifically, the type of metal powder in the metal paste). For example, when a high melting point metal paste such as tungsten paste or molybdenum paste is used, firing is performed at a temperature of 1600 ° C. to 2000 ° C., preferably 1700 ° C. to 1850 ° C. for 1 hour to 20 hours, preferably 2 hours to 10 hours. do it.
- the firing atmosphere may be a normal pressure under an atmosphere of non-oxidizing gas such as nitrogen gas.
- silver or gold paste it may be fired at a temperature of 750 ° C. to 950 ° C., preferably 800 ° C. to 900 ° C. for 1 minute to 1 hour, preferably 5 minutes to 30 minutes.
- the firing atmosphere may be performed in air at normal pressure.
- a copper paste it may be fired at a temperature of 750 ° C. to 1000 ° C., preferably 800 ° C. to 950 ° C. for 1 minute to 2 hours, preferably 5 minutes to 1 hour.
- the firing atmosphere is preferably fired under a non-oxidizing gas atmosphere such as nitrogen gas or under vacuum, and when firing is performed under a non-oxidizing gas atmosphere, the firing may be performed at normal pressure.
- a non-oxidizing gas atmosphere such as nitrogen gas or under vacuum
- the organic underlayer 20 that decomposes and disappears at such a temperature is formed because it is fired at a relatively low temperature as described above. Need to form.
- a copper paste it is fired in a non-oxidizing atmosphere as described above. Therefore, it is preferable to form the organic underlayer 20 with an acrylic resin layer that decomposes and disappears under such conditions.
- the etching method is not particularly limited, and wet etching is preferably employed from the viewpoint of processing efficiency and economy.
- an alkaline solution, a permanganic acid solution, or the like can be used as the etching solution.
- the plating method is not particularly limited as long as it is performed on a conventional metallized substrate.
- the plating method may be either electroless plating or electrolytic plating, and may be nickel plating, tin plating, or alloy plating. Either is acceptable.
- Example 1> 100 parts by weight of polymethyl methacrylate particles (non-crosslinked) having an average particle size of 0.15 ⁇ m are added to 800 parts by weight of water together with 4.5 parts by weight of a dispersing agent, and dispersed in water by stirring for 1 hour while irradiating ultrasonic waves.
- a dispersing agent 4.5 parts by weight of a dispersing agent
- To prepare an acrylic resin dispersion A 0.64 mm thick aluminum nitride sintered substrate (trade name SH-30, manufactured by Tokuyama Corporation) is immersed in the obtained resin dispersion so that the surface of the substrate is perpendicular to the surface of the resin dispersion. Then, it was slowly pulled up at a constant speed, coated on the substrate surface, and dried at 80 ° C. for 10 minutes to form an organic underlayer. At this time, the film thickness of the organic underlayer was about 0.3 ⁇ m.
- metal paste 1 15 parts by mass of copper powder having an average particle size of 0.3 ⁇ m, 82 parts by mass of copper powder having an average particle size of 2 ⁇ m, 3 parts by mass of titanium hydride powder having an average particle size of 5 ⁇ m, and polyalkyl methacrylate as terpineol Metal paste 1 was prepared by pre-mixing the dissolved vehicle with a mortar and then dispersing with a three-roll mill. The viscosity of the prepared metal paste 1 was measured with a spiral viscometer PCU-2-1 manufactured by Malcolm. The viscosity was 170 Pa ⁇ s at 25 rpm and 25 ° C.
- Preparation of metal paste 2 After premixing Ag—Cu alloy powder (BAg-8, composition: silver 72 wt% ⁇ copper 28 wt%) having an average particle size of 6 ⁇ m and a vehicle in which polyalkyl methacrylate is dissolved in terpineol using a mortar, The metal paste 2 was produced by carrying out a dispersion treatment using a three-roll mill. When the viscosity of the prepared metal paste 2 was measured with the viscometer, it was 230 Pa ⁇ s at 5 rpm and 25 ° C.
- the metal paste 1 produced above is screen-printed on the aluminum nitride sintered body substrate on which the organic underlayer is formed to form a stripe pattern having a line width of 200 ⁇ m and a space between lines of 40 ⁇ m, and dried at 100 ° C. for 10 minutes.
- a first paste layer was formed.
- the same pattern as the metal paste 1 was screen-printed so that the metal paste 2 produced above overlapped with the first paste layer, and dried at 100 ° C. for 10 minutes to form a second paste layer.
- a metallized substrate was obtained by baking at 850 ° C. for 30 minutes in a vacuum (degree of vacuum: 4 ⁇ 10 ⁇ 3 Pa to 8 ⁇ 10 ⁇ 3 Pa).
- a metallized substrate was produced in the same manner using a screen plate with a cross pattern having a line width of 50 ⁇ m and a length of 200 ⁇ m.
- Example 2 Using the acrylic resin dispersion in Example 1, an organic underlayer was formed on a 0.64 mm thick aluminum nitride sintered body substrate (trade name SH-30, manufactured by Tokuyama Corporation). At this time, an organic underlayer was formed in the same manner as in Example 1 except that the film thickness of the organic underlayer was changed to 0.8 ⁇ m by adjusting the speed at which the substrate was pulled up from the acrylic resin dispersion. Thereafter, a metallized substrate was produced in the same manner as in Example 1 and evaluated. At this time, the width of the space between the stripe patterns was 40 ⁇ m, and almost no pattern bleeding was observed.
- Example 3 100 parts by mass of polymethyl methacrylate particles (non-crosslinked) having an average particle size of 0.09 ⁇ m were dispersed in 800 parts by mass of water to prepare an acrylic resin dispersion.
- a 0.64 mm thick aluminum nitride sintered body substrate (trade name SH-30, manufactured by Tokuyama Corporation) is immersed in the obtained resin dispersion so that the surface of the substrate is perpendicular to the liquid surface of the resin dispersion. Then, it was slowly pulled up at a constant speed, coated on the substrate surface, and dried at 80 ° C. for 10 minutes to form an organic underlayer. At this time, the film thickness of the organic underlayer was about 0.3 ⁇ m.
- a metallized substrate was produced in the same manner as in Example 1 and evaluated. At this time, the width of the space between the stripe patterns was 40 ⁇ m, and almost no pattern bleeding was observed.
- Example 1 a metallized substrate was produced in the same manner as in Example 1 except that the organic underlayer was not formed on the aluminum nitride sintered body substrate.
- substrate when the width of the space between metallization patterns was measured with the measure scope, it was 28 micrometers, and became a width considerably narrower than 40 micrometers which is an intended space by the bleeding of a pattern. Further, the surface on which the cross-shaped metallized layer was formed was observed with a video microscope. The photograph is shown in FIG. As shown in FIG. 3, the pattern was greatly deformed by bleeding.
- the metallized ceramic substrate 100 manufactured by the manufacturing method of the present invention can be used as a substrate for mounting electronic components.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Description
(1)ポストファイア法では、セラミック基板上に金属ペーストを塗布して、これを焼成する。しかし、セラミック基板は溶媒を吸収しないため、金属ペーストが流れたり、滲んだりする。
(2)この問題を解決するために、金属ペースト中の溶媒を吸収する層(溶媒吸収層)をセラミック基板上に形成する。
(3)該溶媒吸収層は、焼成の際に分解して消失する層とする必要がある。これにより、メタライズドパターンとセラミック基板との密着性を確保できる。
(4)タングステンぺーストを用いる場合は、焼成温度が高温であるため、溶媒吸収層をどのような有機樹脂により形成したとしても、該溶媒吸収層は焼成時に分解・消失する。これに対し、銅ペースト、銀ペースト、または、銅-銀合金ペーストを用いた場合は、焼成温度が比較的低温であるため、このような温度にて分解・消失する溶媒吸収層を使用する必要がある。
(5)特に、銅ペーストを用いた場合は、焼成を非酸化性雰囲気にて行う必要がある。また、セラミックス基板とメタライズドパターンとの密着性を高めるべく、チタンを含有する金属ペーストを用いた場合は、真空下にて焼成する必要がある。よって、このような条件において分解・消失する溶媒吸収層を使用する必要がある。
(6)溶媒吸収層に、十分な溶媒吸収能力を付与するために、所定粒径の樹脂粒子を含有する樹脂分散液を用いて、空隙を備えた溶媒吸収層を形成する必要がある。
(7)銅ペースト、または、チタンを含有する金属ペーストを用いた場合、非酸化性雰囲気にて焼成する必要があるので、溶媒吸収層に起因するカーボン残渣が生じる虞がある。よって、メタライズドパターンにメッキを施す必要がある場合は、メッキ前に該カーボン残渣を除去する必要がある。
第一工程においては、セラミック基板10上に、有機下地層20を形成する。
(セラミック基板10)
セラミック基板10としては、公知のセラミックを構成材料に有する基板が特に制限なく使用可能である。
セラミック基板10の構成材料であるセラミックとしては、例えば(i)酸化アルミニウム系セラミック、酸化ケイ素系セラミック、酸化カルシウム系セラミック、酸化マグネシウム系セラミックなどの酸化物系セラミック;(ii)窒化アルミニウム系セラミック、窒化ケイ素系セラミック、窒化ホウ素系セラミックなどの窒化物系セラミック;(iii)酸化ベリリウム、炭化ケイ素、ムライト、ホウケイ酸ガラス等を使用することができる。中でも、(ii)窒化物セラミックが好ましく、特に窒化アルミニウム系セラミックが、熱伝導性が高いため好ましく使用することができる。
また、セラミック基板10は、有機下地層20を形成する際の樹脂分散液との濡れ性を改善する目的で、表面処理をおこなうこともできる。例えば、酸素プラズマ処理、コロナ処理、UVオゾン処理等の物理処理や、アルカリエッチング等の化学処理による表面処理を施すことができる。これらの表面処理は、表面張力が比較的高い水系の樹脂分散液を用いる場合に、特に好適である。
第一工程においては、セラミック基板10上に樹脂分散液を塗布し、場合によっては塗布した樹脂分散液を乾燥させて有機下地層20を形成する。有機下地層20は、後に説明する金属ペースト層30中の溶媒を吸収することができ、かつ、該金属ペースト層30を焼成する温度で熱分解する層とする必要がある。また、溶媒吸収能力を高めるべく、有機下地層20は空隙を有していることが好ましい。
より好ましくは0.08μm以上0.40μm以下である。樹脂粒子の粒径が小さすぎると、形成される有機下地層20が緻密なものとなり、溶媒吸収性が悪くなる虞がある。逆に、樹脂粒子の粒径が大きすぎると、有機下地層20の厚みが厚くなり、所望の厚みとすることができない虞があり、また、有機下地層20を形成する樹脂粒子の表面積が小さくなるので、溶媒吸収性において劣る虞がある。なお、この粒径は、動的光散乱法により測定したときのメジアン径である。
第二工程では、第一工程で形成した有機下地層20上に金属ペースト層30を形成し、メタライズドセラミック基板前駆体50を作製する。
第二工程での金属ペースト層30の形成は、セラミック基板10上に形成された有機下地層20上に、金属ペーストを所定のパターンで塗布し、必要に応じて乾燥することにより行われる。下層の有機下地層20が金属ペースト層30に含まれる有機溶媒を吸収するため、塗布された金属ペーストが流れたり、滲んだりすることが抑制され、ファインパターンとすることができる。
第三工程においては、上記で作製したメタライズドセラミック基板前駆体50を焼成する。焼成は、使用した金属ペーストの種類(より具体的には、金属ペースト中の金属粉末の種類)に応じて、通常採用される条件が適宜採用される。
例えば、タングステンペーストまたはモリブデンペースト等の高融点金属ペーストを用いた場合は、1600℃~2000℃、好ましくは1700℃~1850℃の温度で、1時間~20時間、好ましくは2時間~10時間焼成すればよい。焼成雰囲気は、窒素ガス等の非酸化性ガスの雰囲気下で、常圧で行えばよい。
銅ペーストの場合は、750℃~1000℃、好ましくは800℃~950℃の温度で、1分~2時間、好ましくは5分~1時間焼成すればよい。焼成雰囲気は、窒素ガス等の非酸化性ガスの雰囲気下、または、真空下で焼成することが好ましく、非酸化性ガスの雰囲気下で焼成を行う場合には常圧で行えばよい。
また、メタライズドパターン40とセラミック基板10との密着性を向上させるためにチタン成分が含まれる金属ペーストを用いた場合は、焼成は、真空下で行うことが好ましい。
酸化しやすい銅または銅-銀合金によるメタライズドパターン40を形成した場合は、メタライズドパターン40表面にメッキを施すことが好ましい。上記した第三工程における焼成を、銅ペーストを用いた場合のように、比較的低温で、非酸化性雰囲気にて行った場合、有機下地層20に起因するカーボン残渣が生じる虞がある。よって、メタライズドパターン40上にメッキを行う場合は、該カーボン残渣を除去するエッチング工程(第四工程)を行ってから、メッキ工程(第五工程)を行うことが好ましい。
(有機下地層の形成)
平均粒子径が0.15μmであるポリメチルメタクリレート粒子(非架橋)100質量部を分散剤4.5質量部とともに水800質量部に加え、超音波を照射しながら1時間攪拌をおこない水中に分散させ、アクリル樹脂分散液を調製した。得られた樹脂分散液に厚さ0.64mmの窒化アルミニウム焼結体基板((株)トクヤマ製、商品名SH-30)を基板の表面が樹脂分散液の液面と垂直となるように浸漬し、次いで一定の速度でゆっくりと引上げ、基板表面にコーティングし、80℃で10分間乾燥して有機下地層を形成した。このとき、有機下地層の膜厚は約0.3μmであった。
平均粒子径が0.3μmである銅粉末15質量部、平均粒子径が2μmである銅粉末 82質量部及び平均粒子径が5μmである水素化チタン粉末3質量部と、ポリアルキルメタクリレートをターピネオールに溶解させたビヒクルとを乳鉢を用いて予備混合した後、3本ロールミルを用いて分散処理することにより、金属ペースト1を調製した。調製した金属ペースト1の粘度をマルコム社製スパイラル式粘度計PCU-2-1にて測定したところ、回転数5rpm、25℃で170Pa・sであった。
平均粒子径が6μmであるAg-Cu合金粉末(BAg-8、組成:銀72wt%-銅28wt%)と、ポリアルキルメタクリレートをターピネオールに溶解させたビヒクルとを乳鉢を用いて予備混合した後、3本ロールミルを用いて分散処理することにより、金属ペースト2を作製した。調製した金属ペースト2の粘度を前記粘度計にて測定したところ、回転数5rpm、25℃で230Pa・sであった。
上記有機下地層を形成した窒化アルミニウム焼結体基板に上記で作製した金属ペースト1をスクリーン印刷し、ライン幅200μmでライン間スペースが40μmであるストライプパターンを形成し、100℃で10分間乾燥をおこない第一ペースト層を形成した。次いで、上記で作製した金属ペースト2を第一ペースト層と重なるように金属ペースト1と同じパターンをスクリーン印刷し、100℃で10分間乾燥をおこない第二ペースト層を形成した。次いで、真空中(真空度4×10-3Pa~8×10-3Pa)、850℃にて30分間焼成することにより、メタライズド基板を得た。これとは別に、ライン幅50μm、長さ200μmの十字型のパターンのスクリーン版を用い、同様の方法でメタライズド基板を作製した。
上記のようにして得られた基板について、メジャースコープにてストライプパターン間のスペースの幅を測定したところ、40μmでありパターンの滲みはほぼ見られなかった。また、十字型のメタライズ層が形成された表面をビデオマイクロスコープで観察した。その写真を図2に示す。図2に示されるように、にじみの少ないメタライズパターンが形成されていることが分かった。
実施例1におけるアクリル樹脂分散液を使用し、厚さ0.64mmの窒化アルミニウム焼結体基板((株)トクヤマ製、商品名SH-30)上に、有機下地層を形成した。この際、基板をアクリル樹脂分散液から引き上げる速度を調整することにより、有機下地層の膜厚を0.8μmとした以外は、実施例1と同様にして有機下地層を形成した。以降、実施例1と同様にしてメタライズド基板を作製し、評価をおこなった。このとき、ストライプパターン間のスペースの幅は40μmであり、パターンの滲みはほぼ見られなかった。
平均粒子径が0.09μmであるポリメチルメタクリレート粒子(非架橋)100質量部を水800質量部に分散し、アクリル樹脂分散液を調製した。得られた樹脂分散液に厚さ0.64mmの窒化アルミニウム焼結体基板((株)トクヤマ製、商品名SH-30)を基板の表面が樹脂分散液の液面と垂直となるように浸漬し、次いで一定の速度でゆっくりと引上げ、基板表面にコーティングし、80℃で10分間乾燥して有機下地層を形成した。このとき、有機下地層の膜厚は約0.3μmであった。以降、実施例1と同様にしてメタライズド基板を作製し、評価をおこなった。このとき、ストライプパターン間のスペースの幅は40μmであり、パターンの滲みはほぼ見られなかった。
実施例1において、窒化アルミニウム焼結体基板上に有機下地層を形成しなかった以外は実施例1と同様にメタライズド基板を作製した。得られた基板について、メジャースコープにてメタライズパターン間のスペースの幅を測定したところ、28μmであり、パターンの滲みにより所期のスペースである40μmよりかなり狭い幅となっていた。また、十字型のメタライズ層が形成された表面をビデオマイクロスコープで観察した。その写真を図3に示す。図3に示されるように、パターンが滲みによって大きく変形した。
20 有機下地層
30 金属ペースト層
40 メタライズドパターン
50 メタライズドセラミック基板前駆体
100 メタライズドセラミック基板
Claims (6)
- セラミック基板上に、有機下地層を形成する第一工程、
該有機下地層上に金属ペースト層を形成し、メタライズドセラミック基板前駆体を作製する第二工程、および、
該メタライズドセラミック基板前駆体を焼成する第三工程、
を含み、
前記有機下地層が、前記金属ペースト層中の溶媒を吸収し、金属ペースト層を焼成する温度で熱分解する層である、
メタライズドセラミック基板の製造方法。 - 前記有機下地層の層厚が、0.1μm以上1.0μm以下である、請求項1に記載のメタライズドセラミック基板の製造方法。
- 前記金属ペースト層を形成するための金属ぺーストが、銅ペースト、銀ペースト、銅-銀合金ペースト、タングステンペーストのいずれかである、請求項1または2に記載のメタライズドセラミック基板の製造方法。
- 前記金属ペースト層を形成するための金属ペーストが銅ペーストであり、前記有機下地層がアクリル樹脂層である、請求項1~3のいずれかに記載のメタライズドセラミック基板の製造方法。
- 前記アクリル樹脂層が、粒径0.05μm以上0.80μm以下のアクリル粒子を含有する樹脂分散液により形成される、請求項4に記載のメタライズドセラミック基板の製造方法。
- さらに、得られた基板をエッチングする第四工程、および、形成したメタライズドパターン上にメッキを施す第五工程、を含む、請求項1~5のいずれかに記載のメタライズドセラミック基板の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/581,668 US8623225B2 (en) | 2010-03-02 | 2011-02-21 | Production method of metallized ceramic substrate |
EP11750500.8A EP2544516A4 (en) | 2010-03-02 | 2011-02-21 | METHOD FOR PRODUCING A METALLIZED CERAMIC SUBSTRATE |
CN201180008394.XA CN102742370B (zh) | 2010-03-02 | 2011-02-21 | 金属化陶瓷基板的制造方法 |
KR1020127020103A KR20130002981A (ko) | 2010-03-02 | 2011-02-21 | 메탈라이즈드 세라믹 기판의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-045294 | 2010-03-02 | ||
JP2010045294A JP4980439B2 (ja) | 2010-03-02 | 2010-03-02 | メタライズドセラミック基板の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011108388A1 true WO2011108388A1 (ja) | 2011-09-09 |
Family
ID=44542044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/053706 WO2011108388A1 (ja) | 2010-03-02 | 2011-02-21 | メタライズドセラミック基板の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8623225B2 (ja) |
EP (1) | EP2544516A4 (ja) |
JP (1) | JP4980439B2 (ja) |
KR (1) | KR20130002981A (ja) |
CN (1) | CN102742370B (ja) |
TW (1) | TWI505758B (ja) |
WO (1) | WO2011108388A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015111606A (ja) * | 2013-11-28 | 2015-06-18 | 株式会社ムラカミ | 太陽電池の製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9516741B2 (en) * | 2013-08-14 | 2016-12-06 | Denka Company Limited | Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate |
JP6296961B2 (ja) * | 2014-10-31 | 2018-03-20 | シチズン時計株式会社 | 配線基板およびそれを用いた発光装置の製造方法 |
JP6396964B2 (ja) * | 2015-09-29 | 2018-09-26 | 三ツ星ベルト株式会社 | 導電性ペースト並びに電子基板及びその製造方法 |
CN106169426A (zh) * | 2016-08-24 | 2016-11-30 | 浙江德汇电子陶瓷有限公司 | 金属化陶瓷基板的制造方法及其制造的金属化陶瓷基板 |
WO2018122971A1 (ja) | 2016-12-27 | 2018-07-05 | 三ツ星ベルト株式会社 | 導電性ペースト並びに電子基板及びその製造方法 |
CN112624802A (zh) * | 2021-02-04 | 2021-04-09 | 河南梦祥纯银制品有限公司 | 一种陶瓷烧银器及其制造工艺 |
CN114364141A (zh) * | 2022-01-04 | 2022-04-15 | 深圳中富电路股份有限公司 | 一种厚铜陶瓷基板及其制作方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6151988A (ja) * | 1984-08-22 | 1986-03-14 | 富士通株式会社 | 印刷パタ−ン形成方法 |
JPH0574971A (ja) | 1991-09-17 | 1993-03-26 | Showa Denko Kk | 回路形成法 |
JPH0685434A (ja) | 1992-09-01 | 1994-03-25 | Matsushita Electric Ind Co Ltd | セラミック回路基板の製造方法 |
JPH07183657A (ja) * | 1993-12-24 | 1995-07-21 | Nikko Co | 表面実装用基板の製造方法 |
JP2001267725A (ja) * | 2000-03-16 | 2001-09-28 | Matsushita Electric Ind Co Ltd | セラミック厚膜印刷回路基板の製造方法 |
JP2002280709A (ja) | 2001-03-16 | 2002-09-27 | Mitsuboshi Belting Ltd | セラミックス回路基板の製造方法及び得られた基板 |
WO2006064793A1 (ja) | 2004-12-15 | 2006-06-22 | Tokuyama Corporation | メタライズドセラミック基板の製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5176772A (en) * | 1989-10-05 | 1993-01-05 | Asahi Glass Company Ltd. | Process for fabricating a multilayer ceramic circuit board |
JPH04192393A (ja) * | 1990-11-26 | 1992-07-10 | Kawasaki Steel Corp | AlN基板上に形成した金属層のパターン精度向上方法 |
JPH0751988A (ja) * | 1993-08-13 | 1995-02-28 | Sanyo Electric Co Ltd | Ncデータ自動生成装置 |
JP2000138428A (ja) * | 1998-10-30 | 2000-05-16 | Kyocera Corp | 配線基板 |
WO2002086924A1 (fr) * | 2001-04-20 | 2002-10-31 | Matsushita Electric Industrial Co., Ltd. | Procede de production de pieces electroniques, et element de production associe |
US7067574B2 (en) * | 2001-07-30 | 2006-06-27 | Daikin Industries, Ltd. | Aqueous dispersion composition of fluororesin for coating |
JP2003264356A (ja) * | 2002-03-12 | 2003-09-19 | Matsushita Electric Ind Co Ltd | 焼失性下地とその製造方法、耐熱基板とその製造方法、この焼失性下地とこの耐熱基板を用いた電子部品の製造方法 |
JP4737958B2 (ja) * | 2004-01-28 | 2011-08-03 | 京セラ株式会社 | セラミック回路基板の製造方法 |
JP4487595B2 (ja) * | 2004-02-27 | 2010-06-23 | Tdk株式会社 | 積層セラミック電子部品用の積層体ユニットの製造方法 |
JP2008007555A (ja) * | 2006-06-27 | 2008-01-17 | Three M Innovative Properties Co | ポリヒドロキシエーテル及び有機粒子を含む接着剤組成物及びそれを用いた回路基板の接続方法 |
JP2010010548A (ja) * | 2008-06-30 | 2010-01-14 | Konica Minolta Holdings Inc | インク受容基材及びそれを用いた導電性パターンの作製方法 |
JP2011096754A (ja) * | 2009-10-28 | 2011-05-12 | Kyocera Corp | 支持フィルムおよびこれを用いた配線基板の製造方法、ならびに配線基板 |
-
2010
- 2010-03-02 JP JP2010045294A patent/JP4980439B2/ja not_active Expired - Fee Related
-
2011
- 2011-02-21 US US13/581,668 patent/US8623225B2/en not_active Expired - Fee Related
- 2011-02-21 CN CN201180008394.XA patent/CN102742370B/zh not_active Expired - Fee Related
- 2011-02-21 KR KR1020127020103A patent/KR20130002981A/ko not_active Application Discontinuation
- 2011-02-21 WO PCT/JP2011/053706 patent/WO2011108388A1/ja active Application Filing
- 2011-02-21 EP EP11750500.8A patent/EP2544516A4/en not_active Withdrawn
- 2011-03-02 TW TW100106912A patent/TWI505758B/zh not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6151988A (ja) * | 1984-08-22 | 1986-03-14 | 富士通株式会社 | 印刷パタ−ン形成方法 |
JPH0574971A (ja) | 1991-09-17 | 1993-03-26 | Showa Denko Kk | 回路形成法 |
JPH0685434A (ja) | 1992-09-01 | 1994-03-25 | Matsushita Electric Ind Co Ltd | セラミック回路基板の製造方法 |
JPH07183657A (ja) * | 1993-12-24 | 1995-07-21 | Nikko Co | 表面実装用基板の製造方法 |
JP2001267725A (ja) * | 2000-03-16 | 2001-09-28 | Matsushita Electric Ind Co Ltd | セラミック厚膜印刷回路基板の製造方法 |
JP2002280709A (ja) | 2001-03-16 | 2002-09-27 | Mitsuboshi Belting Ltd | セラミックス回路基板の製造方法及び得られた基板 |
WO2006064793A1 (ja) | 2004-12-15 | 2006-06-22 | Tokuyama Corporation | メタライズドセラミック基板の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2544516A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015111606A (ja) * | 2013-11-28 | 2015-06-18 | 株式会社ムラカミ | 太陽電池の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI505758B (zh) | 2015-10-21 |
JP2011181736A (ja) | 2011-09-15 |
TW201218890A (en) | 2012-05-01 |
CN102742370B (zh) | 2015-03-04 |
CN102742370A (zh) | 2012-10-17 |
US20130001199A1 (en) | 2013-01-03 |
KR20130002981A (ko) | 2013-01-08 |
EP2544516A4 (en) | 2014-07-30 |
US8623225B2 (en) | 2014-01-07 |
JP4980439B2 (ja) | 2012-07-18 |
EP2544516A1 (en) | 2013-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4980439B2 (ja) | メタライズドセラミック基板の製造方法 | |
JP5431598B2 (ja) | メタライズド基板、金属ペースト組成物、および、メタライズド基板の製造方法 | |
TWI536877B (zh) | 陶瓷通孔基板、金屬化陶瓷通孔基板、此等之製造方法 | |
JP2007201346A (ja) | セラミックス回路基板及びその製造方法 | |
US20080268637A1 (en) | Electrically conductive composition for via-holes | |
JP2013153051A (ja) | メタライズドセラミックスビア基板及びその製造方法 | |
JP4731976B2 (ja) | メタライズドセラミック基板の製造方法 | |
JP7212700B2 (ja) | セラミックス-銅複合体、セラミックス回路基板、パワーモジュール及びセラミックス-銅複合体の製造方法 | |
JP2017183715A (ja) | 貫通電極を有する両面配線基板及びその製造方法 | |
JP5409117B2 (ja) | セラミックグリーンシートおよびセラミック多層基板の製造方法 | |
KR20100005143A (ko) | 비아홀용 전기 전도성 조성물 | |
JP2007207604A (ja) | 導電性ペースト及びその導電性ペーストを用いたセラミック多層回路基板 | |
JP2008034860A (ja) | 積層型セラミック電子部品の製造方法 | |
JP5989879B2 (ja) | メタライズドセラミックスビア基板及びその製造方法 | |
JP5201974B2 (ja) | メタライズド基板の製造方法 | |
JP2004228410A (ja) | 配線基板 | |
JP5268847B2 (ja) | 配線基板およびその製造方法 | |
JP2006203185A (ja) | セラミック電子部品の製造方法 | |
JP2010109068A (ja) | 配線基板および配線基板の製造方法 | |
JP2002084051A (ja) | 銅メタライズ組成物、低温焼結セラミック配線基板、及びその製造方法 | |
JP2003323816A (ja) | 導体組成物 | |
JP2005116337A (ja) | 導電性ペースト、ビアホール導体及び多層セラミック基板 | |
JP2004281989A (ja) | ガラスセラミック配線基板の製造方法 | |
JP2018006248A (ja) | 粉末及び導電ペースト並びにセラミック基板の製造方法 | |
JP2001342076A (ja) | ガラスセラミック基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180008394.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11750500 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127020103 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13581668 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011750500 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011750500 Country of ref document: EP |