WO2011108115A1 - 有機el封着用無鉛ガラス材とこれを用いた有機elディスプレイ及び該ディスプレイの製造方法 - Google Patents

有機el封着用無鉛ガラス材とこれを用いた有機elディスプレイ及び該ディスプレイの製造方法 Download PDF

Info

Publication number
WO2011108115A1
WO2011108115A1 PCT/JP2010/053670 JP2010053670W WO2011108115A1 WO 2011108115 A1 WO2011108115 A1 WO 2011108115A1 JP 2010053670 W JP2010053670 W JP 2010053670W WO 2011108115 A1 WO2011108115 A1 WO 2011108115A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
sealing
glass
lead
display
Prior art date
Application number
PCT/JP2010/053670
Other languages
English (en)
French (fr)
Inventor
好浩 甲原
太田 明宏
昇雨 李
Original Assignee
ヤマト電子株式会社
アンブロカンパニーリミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマト電子株式会社, アンブロカンパニーリミテッド filed Critical ヤマト電子株式会社
Priority to EP10847017.0A priority Critical patent/EP2525626B1/en
Priority to JP2012502950A priority patent/JP5713993B2/ja
Priority to PCT/JP2010/053670 priority patent/WO2011108115A1/ja
Priority to KR1020127019459A priority patent/KR101626840B1/ko
Priority to CN201080064524.7A priority patent/CN102918927B/zh
Publication of WO2011108115A1 publication Critical patent/WO2011108115A1/ja
Priority to US13/593,165 priority patent/US8766524B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • the present invention relates to an organic EL sealing lead-free glass material used for sealing a display using an organic EL (electroluminescence) element, an organic EL display having a panel peripheral portion sealed with the lead-free glass material, and the organic EL display. It relates to the manufacturing method.
  • the organic EL display has a parallel stripe-shaped lower electrode 2, an organic light emitting layer 3, and a lower electrode 2 on one side (inner surface) side of a glass EL element substrate 1 in order from the lower layer side.
  • a parallel stripe-shaped upper electrode 4 is formed along a direction orthogonal to the EL element substrate 1, and a peripheral portion between the EL element substrate 1 and the sealing glass plate 5 disposed to face the EL element substrate 1 is sealed with a sealing layer 6. Yes.
  • Such an organic EL display has a bright and high construct and excellent display recognizability, and can be configured to be extremely thin.
  • an ultra-thin display having a total thickness of 1 mm or less for a small device such as a mobile phone or a digital camera.
  • the whole can be made of a solid material and that the driving circuit is simplified by direct current drive.
  • the probability of a sealing technique for blocking the organic EL element from the outside air has become a big issue.
  • a sealing method using a glass frit and a laser is promising as a sealing means for an organic EL display.
  • a glass frit is formed by heating and melting a powder mixture of components mainly composed of metal oxides to vitrify, and then finely pulverizing the powder to form a paste with a solution in which an organic binder is usually dissolved in an organic solvent. It is applied to the part and remelted by heating to form a sealing glass layer.
  • glass frit having various glass compositions not containing toxic lead has been put into practical use, and is widely used as a sealing part for keeping the inside of LCD, PDP, fluorescent display tube (VFD), etc. at a high vacuum.
  • the organic EL element that is sensitive to moisture is also suitable for shielding from the outside air.
  • the sealing temperature of a general glass frit is 400 ° C. or more
  • Patent Documents 1 to 4 is promising.
  • such laser sealing has an advantage that the sealing time can be greatly shortened as compared with sealing by heating in the furnace.
  • glass frit which has been widely used for sealing flat displays in the past, generally has a bright color tone and is poor in laser light absorption. Therefore, it is necessary to add metal powder such as iron or manganese to increase the absorption. As a result, the material cost is high, and it takes time and effort to prepare the frit, and the insulation is lowered. On the other hand, even when laser sealing is performed, it is desirable that the glass frit softens at a lower temperature in order to reduce the thermal adverse effect on the organic EL element, and it is possible to ensure sealing and increase the sealing strength.
  • the thermal expansion coefficient of the glass frit close to the thermal expansion coefficient of the glass substrate. Furthermore, when sealing continuously in mass production of organic EL displays, the glass frit has high stability and crystal precipitation during melting in order to relax the sealing conditions and suppress the occurrence of errors due to fluctuations in the conditions. It is desirable that it does not occur easily. However, the conventional glass frit has not been able to exhibit satisfactory performance in terms of low temperature softening property, thermal expansion coefficient, stability, and the like.
  • the present invention can exhibit high absorbability with respect to laser light without adding metal powder as a lead-free glass material for sealing an organic EL, and thus good sealing quality can be obtained by laser sealing.
  • it has excellent low temperature softening properties and stability at melting, has a small coefficient of thermal expansion, reduces the amount of heat input at the time of sealing, and sufficiently suppresses the adverse thermal effects of the organic EL element, while strictly sealing conditions.
  • the main purpose is to provide a device capable of achieving high sealing performance and high sealing strength with high yield without requiring management control.
  • Another object of the present invention is to provide an organic EL display of excellent quality and a method for efficiently and reliably manufacturing the display by using the above-mentioned lead-free glass material for sealing an organic EL.
  • the lead-free glass material for sealing an organic EL according to the invention of claim 1 is 30% to 60% V 2 O 5 , 5 to 20% ZnO, 5 to 20% in terms of mol%.
  • the lead-free glass material for sealing an organic EL according to the invention of claim 2 is expressed in terms of mol%, 35 to 55% V 2 O 5 , 10 to 18% ZnO, 5 to 18% BaO, 15 to 30 % TeO 2 , 0-7% Nb 2 O 5 , 0-5% Al 2 O 3 , 0-5% SiO 2 , 0-5% MgO, 0-5% Sb 2 O 3 , 0-4% CuO, 0-4% SnO, Nb 2 O 5 + Al 2 O 3 2-8%, SiO 2 + MgO + Sb 2 O 3 0-5%, CuO + SnO 0-4% It is characterized by having a certain glass composition.
  • SiO 2 + MgO + Sb 2 O 3 in the glass composition is 0.5 to 5 mol%.
  • CuO + SnO in the glass composition is 0.5 to 4 mol%.
  • the filler in the lead-free glass material for sealing an organic EL according to any one of the first to fourth aspects, is 50/50 in a weight ratio of glass powder / filler to the glass powder having the glass composition. It is supposed to be blended in the range of ⁇ 99/1.
  • the organic EL display according to the invention of claim 6 is formed by sealing between the peripheral portions of the opposing glass substrates with the lead-free glass material for sealing an organic EL described in any one of 1 to 5 above.
  • the glass substrate has a thermal expansion coefficient of 35 ⁇ 10 ⁇ 7 / ° C. to 50 ⁇ 10 ⁇ 7 / ° C.
  • the method for producing an organic EL display according to the invention of claim 8 comprises interposing the lead-free glass material for sealing an organic EL according to any one of claims 1 to 5 between the peripheral portions of the glass substrates facing the organic EL display.
  • the glass material is heated and melted by laser light irradiation to seal between the peripheral portions of both glass substrates.
  • a method for producing an organic EL display comprising: preparing a frit paste by adding an organic binder solution to the lead-free glass material powder for sealing an organic EL according to any one of the first to fifth aspects; After the paste is applied to at least one peripheral part of a pair of glass substrates facing the organic EL display and pre-baked at a softening point of + 50 ° C. to + 120 ° C., the organic components of the coating layer are volatilized and removed. By overlapping both glass substrates through this coating layer and irradiating the coating layer with laser light, the glass component of the coating layer is melted to seal between the peripheral portions of both glass substrates. It is characterized by.
  • a lead-free glass material for sealing an organic EL four components of V 2 O 5 , ZnO, BaO and TeO 2 and at least one of Nb 2 O 5 and Al 2 O 3 are essential components.
  • the glass transition point and the softening point are low, the low-temperature workability is low, the thermal expansion coefficient is small, the fluidity and stability during melting are good, and the absorption of laser light is also good
  • laser sealing with a small amount of heat input suppresses thermal shock to the organic EL element and ensures good display performance, while maintaining high yield without requiring strict management control of sealing conditions What can achieve the performance and the high sealing strength is provided.
  • the lead-free organic EL sealing comprising the four components V 2 O 5 , ZnO, BaO, and TeO 2 and at least one of Nb 2 O 5 and Al 2 O 3 as essential components.
  • each component has a glass composition with a more suitable ratio, so that it is superior in low-temperature workability, and can ensure high sealing quality by reliably avoiding thermal shock to the organic EL element by laser sealing.
  • a specific amount of filler is blended with the glass powder of the glass composition, so that the thermal expansion coefficient of the sealing glass layer is organic.
  • the sealing property can be improved by reliably approaching the thermal expansion property of the glass substrate of the EL display, and the strength of the sealing glass layer is improved.
  • the organic EL display is sealed with the above-mentioned lead-free glass material for sealing the organic EL, the organic EL element inside is completely removed from the outside air. Therefore, it is possible to provide a liquid crystal display device that is excellent in sealing strength of the sealing portion and that can stably exhibit good display performance over a long period of time.
  • the lead-free glass material for sealing the organic EL is interposed between the peripheral portions of the glass substrates facing the organic EL display, and the glass material is used for the laser light. Because it is heated and melted by irradiation to seal between the peripheral parts of both glass substrates, the amount of heat input associated with sealing is reduced to suppress thermal shock to the organic EL element, and strict control of sealing conditions Without requiring control, an organic EL display having good sealing quality and excellent durability can be mass-produced with high efficiency and high yield.
  • the lead-free glass material for sealing the organic EL is pasted and applied to the peripheral portion of the glass substrate, and pre-baked at a specific temperature to be applied. After stripping and removing the organic components, the two glass substrates are overlapped and laser-sealed through this coating layer, so the amount of heat input during laser sealing is reduced and the thermal adverse effect on the organic EL element is reduced. There is an advantage that it can be further reduced and the assembly operation of the member in the preparation stage of sealing can be easily and reliably performed.
  • the lead-free glass material for organic EL sealing according to the present invention is basically composed of V 2 O 5 —ZnO—BaO—TeO 2 in addition to a quaternary glass composition of Nb 2 O 5 and Al 2 O 3 . It contains at least one of the essential components and is superior in low-temperature workability compared to a lead-free glass material having a glass composition comprising four components of V 2 O 5 —ZnO—BaO—TeO 2 , and good flow at a low melting temperature. In addition to exhibiting properties and glass luster, the coefficient of thermal expansion is remarkably small, the color tone is relatively dark, the laser light absorption is high, and the water resistance and chemical resistance are also excellent.
  • this lead-free glass material is used for sealing between the glass substrates of the organic EL display, laser sealing can be performed with a small amount of heat input, and the thermal adverse effect on the organic EL element can be reliably suppressed, and the glass substrate and the sealing can be sealed. It was easy to adapt the thermal expansibility with the glass stop layer, so that very excellent sealing properties and large sealing strength could be imparted, and the water resistance and chemical resistance of the sealing glass layer were also improved.
  • the organic EL display has excellent durability and can exhibit high display performance over a long period of time.
  • the ratio of each component of such an organic EL sealing lead-free glass material is expressed in mol%, V 2 O 5 is 30 to 60%, ZnO is 5 to 20%, BaO is 5 to 20%, and TeO 2 is 15 Nb 2 O 5 is 0 to 7%, Al 2 O 3 is 0 to 7%, and the total amount of Nb 2 O 5 and Al 2 O 3 is 0.5 to 10%.
  • the softening point [Tf] is less than 320 ° C.
  • the glass transition point [Tg] is less than 300 ° C.
  • sealing processing at a low temperature is possible.
  • the coefficient of thermal expansion is as small as 110 ⁇ 10 ⁇ 7 / ° C. to 130 ⁇ 10 ⁇ 7 / ° C., and it generally exhibits a dark brown color with good laser light absorption.
  • Nb 2 O 5 and Al 2 O 3 greatly improves the low-temperature workability and greatly reduces the coefficient of thermal expansion, and the stability of the glass
  • the water resistance and chemical resistance are also increased.
  • each exceeds 7 mol% or the total amount exceeds 10 mol% the low temperature workability deteriorates even if the thermal expansion coefficient further decreases.
  • the total amount of both is less than 0.5 mol%, a sufficient blending effect cannot be obtained.
  • the stability of the glass can be improved by increasing the blending amount of TeO 2 from the specified range. However, in this case, there is a problem that the thermal expansion coefficient is greatly increased.
  • a more preferable glass composition is expressed in mol%, V 2 O 5 is 35 to 55%, ZnO is 10 to 18%, BaO is 5 to 18%, TeO 2 is 15 to 30%, Nb 2 O 5 Is 0 to 7%, Al 2 O 3 is 0 to 5%, and the total amount of Nb 2 O 5 and Al 2 O 3 is 2 to 8%.
  • the lead-free glass material for sealing an organic EL of the present invention in addition to the above six components of V 2 O 5 , ZnO, BaO, TeO 2 , Nb 2 O 5 , and Al 2 O 3 , if necessary Various other oxide components may be blended. As particularly preferred in such optional ingredients, SiO 2, MgO, Sb 2 O 3, CuO, 5 kinds of SnO, and the like.
  • B 2 O 3 that is commonly used as a component of lead-free glass materials for sealing, when added to the above glass composition, increases the glass transition point (Tg) and softening point (Tf) and in a molten state. Therefore, it is desirable not to contain it substantially.
  • all of the three components of SiO 2 , MgO, and Sb 2 O 3 have the effect of reducing the thermal expansion coefficient by additionally blending into the glass composition, but the blending amount is If the amount is too large, low-temperature processability is impaired. For this reason, the blending amount of these three kinds is 0 to 5 mol% when used alone, and the total amount (SiO 2 + MgO + Sb 2 O 3 ) is 0 to 5 mol%, but the total amount is 0.1 mol%. If it is less than the range, the blending effect is not recognized. To obtain a substantially sufficient blending effect, the total amount is preferably in the range of 0.5 to 5 mol%.
  • two components of CuO and SnO also have the effect of reducing the thermal expansion coefficient by additional blending.
  • the fluidity at the time is significantly deteriorated.
  • the blending amount of these two types is 0 to 4 mol% when used alone, and 0 to 4 mol% even when the total amount (CuO + SnO) is used, but if the total amount is less than 0.1 mol%, it is substantially blended.
  • the total amount is preferably in the range of 0.5 to 4 mol%.
  • the raw material powder mixture is put in a container such as a platinum crucible, and this is baked and melted for a predetermined time in a heating furnace such as an electric furnace.
  • the melt may be poured into an appropriate formwork such as an alumina boat and cooled, and the obtained glass block may be pulverized to an appropriate particle size by a pulverizer to form a glass frit.
  • the particle size of the glass frit is preferably in the range of 0.05 to 100 ⁇ m, and the coarse particles resulting from the pulverization may be classified and removed.
  • the particle size is 10 ⁇ m or less, more preferably 6 ⁇ m or less.
  • various pulverizers such as jet mills conventionally used for glass frit production can be used.
  • wet pulverization is preferably used for a fine particle size of 3 ⁇ m or less.
  • This wet pulverization is performed using a media (ball) or bead mill made of alumina or zirconia with a diameter of 5 mm or less in an aqueous solvent such as water or an alcohol aqueous solution, and is pulverized more finely than jet mill pulverization.
  • the glass composition as a material to be pulverized needs to have high water resistance, and the glass material of the present invention is also suitable in this respect.
  • the lead-free glass material for organic EL sealing of the present invention is a mixture form in which a filler such as a filler or an aggregate is mixed with the glass powder, in addition to using the glass powder (glass frit) having the glass composition alone. It is good.
  • a filler reduces the thermal expansion coefficient of the sealing glass layer depending on the blending thereof. Therefore, the thermal expansion of the sealing glass layer can be easily adjusted to the thermal expansion of the glass substrate of the organic EL display by adjusting the blending amount. Can be adapted.
  • the glass component functions as a binder that binds the filler particles to each other at the time of heating and melting, so that the obtained sealing glass layer becomes a sintered body having a high strength and a dense ceramic form.
  • the filler is not particularly limited as long as it has a higher melting point than the glass component and does not melt at the firing temperature during processing.
  • zirconium silicate, cordierite, zirconium phosphate, ⁇ ⁇ eucryptate , ⁇ -spodumene, zircon, alumina, mullite, silica, ⁇ -quartz solid solution, zinc silicate, aluminum titanate and the like are suitable. Therefore, the blending amount of these fillers is preferably in the range of 50/50 to 99/1 as a weight ratio of glass powder / filler. If the amount is too large, the fluidity at the time of melting deteriorates and the binding force by the glass composition is insufficient, so that a strong sintered body cannot be formed.
  • the thermal expansion coefficient of the glass substrate used for the organic EL display is generally about 35 ⁇ 10 ⁇ 7 / ° C. to 50 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient of the glass powder itself is low, sealing is performed while ensuring sufficient fluidity in a molten state by adjustment by blending of fillers.
  • the thermal expansion coefficient of the glass layer can be reduced to about 50 ⁇ 10 ⁇ 7 / ° C.
  • the lead-free glass material having the glass composition composed of the four components V 2 O 5 —ZnO—BaO—TeO 2 described above fluidity in the molten state is ensured even if adjustment is made by blending the filler.
  • the thermal expansion coefficient of the sealing glass layer can be reduced only to about 60 ⁇ 10 ⁇ 7 / ° C.
  • the glass powder (glass frit) of the lead-free glass material for sealing an organic EL of the present invention and the mixed powder obtained by mixing the filler with the glass powder are generally used as a paste having a high concentration dispersed in an organic binder solution. Since it is applied to the peripheral part of at least one glass substrate to be disposed opposite to the organic EL display panel by screen printing or the like and subjected to firing, it may be commercialized as a paste form in advance.
  • the organic binder solution used for the paste is not particularly limited, but for example, cellulose binders such as nitrocellulose and ethyl cellulose, butyl carbitol acetate, butyl diglycol acetate, terpineol, pine oil, aromatic hydrocarbon solvents.
  • cellulose binders such as nitrocellulose and ethyl cellulose, butyl carbitol acetate, butyl diglycol acetate, terpineol, pine oil, aromatic hydrocarbon solvents.
  • a solvent such as a mixed solvent such as thinner
  • the viscosity of the paste is preferably in the range of 30 to 3000 dPa ⁇ s from the viewpoint of coating workability.
  • the glass material is interposed between the peripheral portions of the opposing glass substrates of the organic EL display panel, and the glass materials are heated and melted to form both glass substrates. Seal between the peripheries. At this time, it is not impossible for the glass material to be interposed between both glass substrates in the form of a powder or a thin plate, but at least one glass substrate (usually as the paste) is used to form an extremely thin sealing glass layer. A method of applying to the sealing glass plate side where the organic EL element is not applied is recommended. The glass material can be heated and melted by holding it in a high-temperature atmosphere in a heating furnace.
  • the organic EL element in order to avoid thermal deterioration of the organic EL element, as described above, it is locally applied by laser light irradiation. It is good to carry out by manual heating. Since the glass powder exhibits a dark brown color with good laser light absorption as described above, laser sealing can be applied without any trouble even if a conventional metal powder is not included.
  • the heat treatment for the sealing process can be performed once, but it is preferable to perform it in two stages in order to improve the sealing quality. That is, by first heating to near the softening point [Tf] of the glass material as temporary firing, the vehicle components (binder and solvent) of the paste are volatilized and pyrolyzed to leave only the frit component, and then laser firing as the main firing. A sealed glass layer in which the glass components are completely melted and integrated is formed by local heating by light irradiation.
  • the vehicle component is volatilized and removed in the first stage of preliminary firing, and the glass components are fused together in the second stage of final firing. And pinholes due to deaeration can be prevented, and the reliability of sealing and the strength of the sealing portion can be increased.
  • organic EL elements that are subject to thermal degradation are placed inside, and the electrodes before the assembly are fixed by sandwiching electrodes, lead wires, exhaust pipes, etc. After the first stage heat treatment is performed only on the coated glass substrate, it is assembled into a product form using this glass substrate and other required members, and the second stage heat treatment is performed in this assembled state to produce an organic EL element. The thermal adverse effects of can be further reduced.
  • the organic EL display panel of the present invention is composed of a sealing glass layer using the above-described lead-free glass material for sealing an organic EL of the present invention in the schematic configuration shown in FIG.
  • the sealing layer 6 has a high hermetic holding force as a melted and solidified product of glass frit, and has adhesion and adhesion strength to the surfaces of both glass substrates opposed to each other, that is, the EL element substrate 1 and the sealing glass plate 5. In addition to providing excellent sealing properties and high sealing strength, it exhibits good water resistance and chemical resistance.
  • the durability of the sealing portion is excellent, good display performance can be stably exhibited over a long period of time, and it is not necessary to dispose a water capturing agent or a desiccant inside the package. Since the panel configuration is simple, assembly and manufacture can be done easily at low cost, and water is difficult to adsorb to the glass material with excellent water resistance, so water vapor is generated as outgas from the glass frit during sealing processing. There is no concern that the water vapor enters the package and degrades the organic EL element.
  • the results are shown in Tables 1 to 3 below.
  • the measurement method for each item is as follows.
  • Glass transition point, softening point, crystallization start temperature Using a differential thermal analyzer (TG-8120 manufactured by Rigaku Corporation), ⁇ -alumina was used as a reference (standard sample), and the sample glass was measured at a heating rate of 10 ° C./min and a temperature range of 25 ° C. (room temperature) to 600 ° C. A transition point [Tg], a softening point [Tf], and a crystallization start temperature [Tx] were measured.
  • thermomechanical analyzer TMA8310 manufactured by Rigaku Corporation.
  • the lead-free glass material powder is melted again, and this is formed into a square column of 5 ⁇ 5 ⁇ 20 mm (length ⁇ width ⁇ height), and the upper bottom surface is formed in parallel and used as a measurement sample.
  • the temperature was raised from room temperature to 250 ° C. at a rate of 10 ° C./min, and the average thermal expansion coefficient ⁇ was determined.
  • quartz glass was used for the standard sample.
  • the basic composition is composed of four components of V 2 O 5 , ZnO, BaO and TeO 2 at appropriate ratios, and one or both of Nb 2 O 5 and Al 2 O 3 are in the appropriate range.
  • the lead-free glass material (No. 2, 4, 6-8, 10) of the present invention having a glass composition added in addition has a glass transition point [Tg] of 275-295 ° C. and a softening point [Tf] of 285-316.
  • Lead-free glass material consisting of the above four components of the above-mentioned basic composition, which has a low fluidity and glass luster at a low temperature of less than 420 ° C. and exhibits good fluidity and glass luster and also has a low thermal expansion coefficient.
  • the glass transition point [Tg] is 285 ° C. or less, the softening point.
  • [Tf] is also very low at 298 ° C. or less, and it can be seen that it has extremely excellent low-temperature workability.
  • lead-free glass materials No. 2, 4, 6, 8, 10
  • Lead-free glass materials (No. 26 to No. 26 to 4) of V 2 O 5 , ZnO, BaO, TeO 2 and 5 components obtained by adding Nb 2 O 5 to these 4 components and B 2 O 3 additionally added In 29), the thermal expansion coefficient is reduced as compared with the lead-free glass material (No. 1) composed of the four components, but the low-temperature workability is not improved, and the glass is devitrified and is good. There is a drawback that the heating temperature for obtaining fluidity and glass gloss is increased.
  • Production Example 2 The lead-free glass materials No. 1 (Comparative Example) and No. 12 (Example) in Production Example 1 were each zirconia-based filler (zirconium phosphate, maximum particle size of 5.5 ⁇ m, average particle size of about 1. 0 ⁇ m) was mixed at the ratios shown in Table 2 below to produce lead-free glass materials No. 30 and No. 31 containing a refractory filler. And about these lead-free glass materials No.30 and 31, the thermal expansion coefficient, the fluidity
  • a frit paste was prepared by adding and mixing 20 g of a vehicle made of ethyl cellulose / butyl carbitol acetate / terpineol to 100 g of each of lead-free glass materials No. 30 and 31 containing a refractory filler obtained in Production Example 2 to prepare a frit paste.
  • a non-alkali glass substrate (length: 40 mm, width: 30 mm, thickness: 0.7 mm, thermal expansion coefficient: 40 ⁇ 10 ⁇ 7 / ° C.) is coated with the frit paste at a line width of 0.6 mm and a thickness of about 10 ⁇ m. It applied so that the rectangle of * 20mm might be drawn.
  • the non-alkali glass substrate of the same dimension is overlapped on the frit coated surface side of the glass substrate in a state of being displaced in the longitudinal direction and clipped.
  • the glass component of the frit is irradiated by irradiating a laser beam of a semiconductor laser (wavelength 808 nm) at an irradiation speed of 2 mm / sec along the frit paste coating line with the glass substrate on the pre-fired side as the upper surface. It was melted and sealed.
  • This pair of sealed glass substrates is fixed vertically, and a pressure is applied downward at 1000 N / min or lower to the upper end of the upper glass substrate due to the above-mentioned positional deviation, and the peak pressure when the sealing surface peels off.
  • the sealing force per unit area was calculated from the results shown in Table 4.
  • the lead-free glass material No. 31 containing a refractory filler that is an example of the present invention has a coefficient of thermal expansion that is higher than that of the lead-free glass material No. 30 containing a refractory filler that is a comparative example.
  • the coefficient of thermal expansion of the glass substrate is very close, so that a high sealing property is obtained, the sealing strength is nearly doubled, and good fluidity and glass gloss are exhibited at a lower temperature. Therefore, it can be seen that it is excellent in low-temperature workability.
  • lead-free glass material No. 31 containing a refractory filler as an example of the present invention is superior in water resistance and acid resistance compared to lead-free glass material No. 30 containing a refractory filler in a comparative example.
  • the alkali resistance is not inferior, and it is clear that excellent durability can be imparted to the organic EL display by using it as a sealing material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】有機EL封着用無鉛ガラス材として、金属粉末を添加することなくレーザー封止によって良好な封止品質が得られ、低温軟化性及び溶融時の安定性に優れて熱膨張係数も小さく、有機EL素子の熱的悪影響を充分に抑制しつつ、封止条件の厳密な管理制御を要さず高歩留りで、高い封止性及び大きな封着強度を達成できるものを提供する。 【解決手段】モル%表示で、30~60%のV25、5~20%のZnO、5~20%のBaO、15~40%のTeO2、0~7%のNb25、0~7%のAl23、0~5%のSiO2、0~5%のMgO、0~5%のSb23、0~4%のCuO、0~4%のSnOを含み、且つNb25+Al23が0.5~10%、SiO2+MgO+Sb23が0~5%、CuO+SnOが0~4%であるガラス組成を有してなる有機EL封着用無鉛ガラス材。

Description

有機EL封着用無鉛ガラス材とこれを用いた有機ELディスプレイ及び該ディスプレイの製造方法
 本発明は、有機EL(エレクトロルミネッセンス)素子を用いるディスプレイの封着に用いる有機EL封着用無鉛ガラス材と、この無鉛ガラス材によってパネル周辺部間を封着した有機ELディスプレイと、該有機ELディスプレイの製造方法に関する。
 近年、液晶ディスプレイ(LCD)やプラズマディスプレイパネル(PDP)に代わる次世代のフラットディスプレイとして、ジアミン類等の有機物発光体を用いる自発光型の有機ELディスプレイが脚光を浴びている。この有機ELディスプレイは、例えば図1に示すように、ガラス製のEL素子基板1の片面(内面)側に、下層側から順次、平行ストライプ状の下部電極2、有機発光層3、下部電極2に対して直交方向に沿う平行ストライプ状の上部電極4が形成され、このEL素子基板1と対向配置する封止ガラス板5との周辺部間をシール層6によって封着した構造を有している。
 このような有機ELディスプレイは、明るく高いコンストラクトで表示認識性に優れる上、極めて薄型に構成でき、例えばケイタイ(携帯電話)やデジタルカメラ等の小型デバイス用として総厚1mm以下といった超薄型ディスプレイにも適用可能であり、また全体を固体材料で構成できると共に、直流駆動で駆動回路も簡単になるといった多くの利点がある。その反面、水分との接触で有機EL素子の発光特性が著しく劣化するという難点があることから、該有機EL素子を外気から遮断するための封止技術の確率が大きな課題になっている。
 現在、有機ELディスプレイの封止手段として、ガラスフリットとレーザーを用いた封止方法が有力視されている。すなわち、ガラスフリットは、金属酸化物を主とする構成成分の粉末混合物を加熱溶融してガラス化し、これを微粉砕した粉末を通常は有機バインダーを有機溶媒に溶解した溶液でペースト化して封着部位に塗着し、加熱によって再溶融させて封着ガラス層を形成するものである。そして、近年では有毒な鉛を含まない種々のガラス組成のガラスフリットが実用化され、LCD,PDP,蛍光表示管(VFD)等の内部を高真空に保つための封止部に多用されているから、湿気に弱い有機EL素子を外気から遮断するのにも適すると考えられる。しかるに、一般的なガラスフリットの封止温度は400℃以上であるため、有機ELディスプレイの場合、炉内加熱による封止では有機EL素子が高温の影響で損傷したり熱劣化するという問題がある。そこで、有機ELディスプレイの封止では、ガラスフリットを介在させたパネル周辺部にレーザービームを照射することにより、ガラスフリットのみを局部的に加熱して溶融させ、もって有機EL素子への熱的悪影響を抑制する方法(特許文献1~4)が有望になっている。なお、このようなレーザー封止では、炉内加熱による封止に比較して封止時間を大幅に短縮できるという利点もある。
特開平10-74583号公報 特開2001-319775号公報 特表2006-524419号公報 特開2007-200843号公報
 前記のガラスフリットとレーザーによる封止では、良好な封止品質を得る上で、ガラスフリットとしてレーザー光の吸収性が高いものを用いる必要がある。しかしながら、従来よりフラットディスプレイの封着に多用されているガラスフリットは、概して明るい色調でレーザー光の吸収性に劣るため、鉄やマンガン等の金属粉末を添加して該吸収性を高める必要があり、それによって材料コストが高く付くと共に、フリットの調製に手間がかかる上、絶縁性が低下するという難点があった。一方、レーザー封止を行う場合でも、有機EL素子への熱的悪影響をより少なくする上で、ガラスフリットがより低温で軟化することが望ましく、また封止を確実にして且つ封着強度を高めるために、ガラスフリットの熱膨張係数をガラス基板の熱膨張係数に近付ける必要がある。更に、有機ELディスプレイの量産において封止を連続的に行う際、封止条件を緩和して且つ該条件のブレによるエラー発生を抑制するために、ガラスフリットとして安定性が高く溶融時に結晶析出を生じにくいことが望ましい。しかるに、従来のガラスフリットでは、これら低温軟化性、熱膨張係数、安定性等の面で満足な性能を発揮できなかった。
 本発明は、上述の事情に鑑みて、有機EL封着用無鉛ガラス材として、金属粉末を添加することなくレーザー光に対する高い吸収性を発揮でき、もってレーザー封止によって良好な封止品質が得られる上、低温軟化性及び溶融時の安定性に優れて熱膨張係数も小さく、封止時の入熱量を少なくして有機EL素子の熱的悪影響を充分に抑制しつつ、封止条件の厳密な管理制御を要することなく高歩留りで、高い封止性及び大きな封着強度を達成できるものを提供することを主たる目的としている。また、本発明の他の目的は、上記の有機EL封着用無鉛ガラス材を用いることにより、優れた品質の有機ELディスプレイと、該ディスプレイを効率よく確実に製造する方法を提供することにある。
 上記目的を達成するために、請求項1の発明に係る有機EL封着用無鉛ガラス材は、モル%表示で、30~60%のV25、5~20%のZnO、5~20%のBaO、15~40%のTeO2、0~7%のNb25、0~7%のAl23、0~5%のSiO2、0~5%のMgO、0~5%のSb23、0~4%のCuO、0~4%のSnOを含み、且つNb25+Al23が0.5~10%、SiO2+MgO+Sb23が0~5%、CuO+SnOが0~4%であるガラス組成を有してなることを特徴としている。
 また、請求項2の発明に係る有機EL封着用無鉛ガラス材は、モル%表示で、35~55%のV25、10~18%のZnO、5~18%のBaO、15~30%のTeO2、0~7%のNb25、0~5%のAl23、0~5%のSiO2、0~5%のMgO、0~5%のSb23、0~4%のCuO、0~4%のSnOを含み、且つNb25+Al23が2~8%、SiO2+MgO+Sb23が0~5%、CuO+SnOが0~4%であるガラス組成を有してなることを特徴としている。
 請求項3の発明は、前記請求項1又は2の有機EL封着用無鉛ガラス材において、前記ガラス組成におけるSiO2+MgO+Sb23が0.5~5モル%である構成としている。
 請求項4の発明は、前記請求項1~3のいずれかの有機EL封着用無鉛ガラス材において、前記ガラス組成におけるCuO+SnOが0.5~4モル%である構成としている。 
 請求項5の発明は、前記請求項1~4の何れかの有機EL封着用無鉛ガラス材において、前記ガラス組成を有するガラス粉末に対してフィラーが、ガラス粉末/フィラーの重量比で50/50~99/1の範囲で配合されてなるものとしている。
 請求項6の発明に係る有機ELディスプレイは、前記1~5のいずれかに記載の有機EL封着用無鉛ガラス材により、対向するガラス基板の周辺部間が封着されてなるものとしている。
 請求項7の発明は、前記請求項6の有機ELディスプレイにおいて、ガラス基板の熱膨張係数が35×10-7/℃~50×10-7/℃である構成としている。
 請求項8の発明に係る有機ELディスプレイの製造方法は、有機ELディスプレイの対向するガラス基板の周辺部間に前記請求項1~5のいずれかに記載の有機EL封着用無鉛ガラス材を介在させ、このガラス材をレーザー光の照射によって加熱溶融させて両ガラス基板の周辺部間を封着することを特徴としている。
 請求項9の発明に係る有機ELディスプレイの製造方法は、請求項1~5のいずれかに記載の有機EL封着用無鉛ガラス材の粉末に有機バインダー溶液を加えてフリットペーストを調製し、このフリットペーストを有機ELディスプレイの対向配置させる一対のガラス基板の少なくとも一方の周辺部に塗着して軟化点+50℃~+120℃で仮焼成することにより、塗着層の有機成分を揮散除去したのち、この塗着層を介して両ガラス基板を重ね合わせて該塗着層にレーザー光を照射することにより、該塗着層のガラス成分を溶融させて両ガラス基板の周辺部間を封着することを特徴としている。
 請求項1の発明によれば、有機EL封着用無鉛ガラス材として、V25,ZnO,BaO,TeO2の4成分と、Nb25及びAl23の少なくとも一方とを必須成分として各々特定比率で含むガラス組成を有することから、ガラス転移点及び軟化点が低く低温加工性に優れると共に熱膨張係数も小さく、溶融時の流動性及び安定性が良好でレーザー光の吸収性もよく、少ない入熱量でのレーザー封止により、有機EL素子への熱衝撃を抑制して良好な表示性能を確保しつつ、封止条件の厳密な管理制御を要することなく高歩留りで高い封止性及び大きな封着強度を達成できるものが提供される。
 請求項2の発明によれば、上記のV25,ZnO,BaO,TeO2の4成分と、Nb2及びAl23の少なくとも一方とを必須成分として含む有機EL封着用無鉛ガラス材として、各成分がより好適な比率のガラス組成を有することから、低温加工性により優れ、レーザー封止によって有機EL素子への熱衝撃を確実に回避して高い封止品質が得られるものが提供される。
 請求項3の発明によれば、上記のV25,ZnO,BaO,TeO2の4成分と、Nb25及びAl23の少なくとも一方とに加え、SiO2とMgOとSb23より選ばれる少なくとも一種を必須成分として特定範囲で含むことから、熱膨張係数がより低減し、有機ELディスプレイのガラス基板の熱膨張性により適合させ易くなるという利点がある。
 請求項4の発明によれば、上記のV25,ZnO,BaO,TeO2の4成分と、Nb25及びAl23の少なくとも一方とに加え、CuOとSnOの少なくとも一方を必須成分として特定範囲で含むことから、熱膨張係数が更に低減し、有機ELディスプレイのガラス基板の熱膨張性により適合させ易くなるという利点がある。
 請求項5の発明によれば、上記の有機EL封着用無鉛ガラス材において、上記ガラス組成のガラス粉末に対してフィラーが特定量配合されていることから、封止ガラス層の熱膨張係数を有機ELディスプレイのガラス基板の熱膨張性に確実に近付けて封止性を高めることができると共に、該封止ガラス層の強度が向上する。
 請求項6の発明によれば、有機ELディスプレイとして、対向するガラス基板の周辺部間が上記の有機EL封着用無鉛ガラス材によって封着されていることから、内部の有機EL素子が外気から完全に遮断されて且つ封止部の封止強度に優れ、もって良好な表示性能を長期にわたって安定的に発揮できるものが提供される。
 請求項7の発明によれば、ガラス基板の熱膨張係数が特定範囲にある上記の有機ELディスプレイとして、該ガラス基板と封止ガラス層との熱膨張性が適合し易く、もって高い封止品質を備えて耐久性により優れるものが提供される。
 請求項8の発明に係る有機ELディスプレイの製造方法によれば、有機ELディスプレイの対向するガラス基板の周辺部間に上記の有機EL封着用無鉛ガラス材を介在させ、このガラス材をレーザー光の照射によって加熱溶融させて両ガラス基板の周辺部間を封着することから、封止に伴う入熱量を少なくして有機EL素子への熱衝撃を抑制しつつ、また封止条件の厳密な管理制御を要することなく、良好な封止品質を備えて耐久性に優れた有機ELディスプレイを高能率で且つ高歩留りで量産できる。
 請求項9の発明に係る有機ELディスプレイの製造方法によれば、上記の有機EL封着用無鉛ガラス材をペースト化してガラス基板の周辺部に塗着し、特定温度で仮焼成して塗着層の有機成分を揮散除去したのち、この塗着層を介して両ガラス基板を重ね合わせてレーザー封止することから、レーザー封止時の入熱量をより少なくして有機EL素子に対する熱的悪影響をより軽減できると共に、封止の準備段階における部材の組付け操作も簡単に且つ確実に行えるという利点がある。
本発明を適用する有機ELディスプレイパネルの概略構成例を示す縦断側面図である。
  本発明に係る有機EL封着用無鉛ガラス材は、基本的にはV25-ZnO-BaO- TeO2の4成分系のガラス組成に加えて、更にNb25及びAl23の少なくとも一方を必須成分として含むものであり、V25-ZnO-BaO-TeO2の4成分からなるガラス組成の無鉛ガラス材に比較して低温加工性に優れ、低い溶融温度で良好な流動性及びガラス光沢を示す上、熱膨張係数が格段に小さく、また比較的に暗い色調でレーザー光の吸収性が高く、耐水性及び耐薬品性にも優れている。従って、この無鉛ガラス材を有機ELディスプレイのガラス基板間の封止に用いれば、レーザー封止を少ない入熱量で行えて有機EL素子への熱的悪影響を確実に抑制できると共に、ガラス基板と封止ガラス層との熱膨張性を適合させ易く、もって非常に優れた封止性及び大きな封着強度を付与でき、封止ガラス層の耐水性及び耐薬品性も良好になるから、得られた有機ELディスプレイは耐久性に優れて高い表示性能を長期にわたって発揮できるものとなる。
 このような有機EL封着用無鉛ガラス材の各成分の比率は、モル%表示で、V25が30~60%、ZnOが5~20%、BaOが5~20%、TeO2が15~40%、Nb25が0~7%、Al23が0~7%であり、且つNb25とAl23が合量で0.5~10%とする。このようなガラス組成では、後述する実施例の熱的特性で示すように、軟化点〔Tf〕は320℃未満、ガラス転移点〔Tg〕は300℃未満となり、低い温度での封着加工が可能であると共に、熱膨張係数も110×10-7/℃~130×10-7/℃と小さく、また概してレーザー光の吸収性がよい濃褐色を呈している。
 上記ガラス組成において、V25の割合は、多過ぎてはレーザー封止時に失透する懸念があり、逆に少な過ぎてはガラス転移点〔Tg〕及び軟化点〔Tf〕の上昇によって低温加工性が悪化すると共に熱膨張性が大きくなる。またZnO及びBaOとTeO2の割合は、いずれも多過ぎてはガラス化が阻害されて溶融不能や溶け残りを生じ易くなり、逆に少な過ぎてはレーザー封止時に失透する懸念がある。
 Nb25とAl23については、上記規定範囲内での一方の単独使用又は両方の併用により、低温加工性が大きく向上すると共に熱膨張係数も大幅に低減し、またガラスの安定性が増し、耐水性や耐薬品性も上昇する。しかるに、各々が7モル%を超えたり、両者の合量で10モル%を越えると、熱膨張係数が更に下がっても低温加工性は却って悪化する。なお、両者の合量で0.5モル%未満では充分な配合効果が得られない。なお、ガラスの安定性についてはTeO2の配合量を前記規定範囲より多くすることで改善できるが、この場合には熱膨張係数が大幅に増加するという問題がある。
 しかして、より好ましいガラス組成は、モル%表示で、V25が35~55%、ZnOが10~18%、BaOが5~18%、TeO2が15~30%、Nb25が0~7%、Al23が0~5%で、且つNb25とAl23が合量で2~8%の各範囲である。
 更に、本発明の有機EL封着用無鉛ガラス材としては、上記のV25,ZnO,BaO,TeO2,Nb25,Al23の6種の成分の他に、必要に応じて他の種々の酸化物成分を配合してもよい。このような任意の配合成分で特に好適なものとして、SiO2、MgO、Sb23、CuO、SnOの5種が挙げられる。ただし、封着用無鉛ガラス材の成分として一般的に多用されるB23は、上記ガラス組成に追加配合すると、ガラス転移点(Tg)及び軟化点(Tf)が上昇する上に溶融状態での流動性も悪化するから、実質的に含有しないことが望ましい。
 上記の好適な任意成分の内、SiO2、MgO、Sb23の3種の成分はいずれも、上記ガラス組成に追加配合することによって熱膨張係数を低減する効果があるが、配合量が多すぎては低温加工性を阻害する。このため、これら3種の配合量は、各々の単独使用で0~5モル%、合量(SiO2+MgO+Sb23)でも0~5モル%とするが、合量で0.1モル%未満では配合効果が認められず、実質的に充分な配合効果を得るには合量で0.5~5モル%の範囲とするのがよい。
 また、上記の好適な任意成分の内、CuO及びSnOの2種の成分は、やはり追加配合によって熱膨張係数を低減する効果があるが、配合量が多すぎては結晶化し易くなると共に溶融状態での流動性が著しく悪化する。従って、これら2種の配合量は、各々の単独使用で0~4モル%、合量(CuO+SnO)でも0~4モル%とするが、合量で0.1モル%未満では実質的に配合効果が認められず、充分な配合効果を得るには合量で0.5~4モル%の範囲とするのがよい。
 本発明の有機EL封着用無鉛ガラス材を製造するには、原料の粉末混合物を白金るつぼ等の容器に入れ、これを電気炉等の加熱炉内で所定時間焼成して溶融させてガラス化し、この溶融物をアルミナボート等の適当な型枠に流し込んで冷却し、得られたガラスブロックを粉砕機によって適当な粒度まで粉砕してガラスフリットとすればよい。そのガラスフリットの粒度は、0.05~100μmの範囲が好適であり、上記粉砕による粗粒分は分級して除去すればよい。ただし、小型デバイス用の超薄型ディスプレイのシール材に用いるガラスフリットでは、前記粒度を10μm以下、より好適には6μm以下とすることが推奨される。
 上記の粉砕には、従来よりガラスフリット製造に汎用されているジェットミル等の各種粉砕機を使用できるが、特に3μm以下といった細かい粒度にするには湿式粉砕を利用するのがよい。この湿式粉砕は、水やアルコール水溶液の如き水性溶媒中で、5mm径以下のアルミナやジルコニアからなるメディア(ボール)もしくはビーズミルを用いて粉砕するものであり、ジェットミル粉砕よりも更に細かく粉砕することが可能であるが、水性溶媒を用いた微粉砕であるため、被粉砕物であるガラス組成物が高い耐水性を備えている必要があり、この点でも本発明のガラス材が適合する。
 なお、本発明の有機EL封着用無鉛ガラス材は、前記ガラス組成を有するガラス粉末(ガラスフリット)を単独で使用する以外に、そのガラス粉末に充填材や骨材の如きフィラーを混合した混合物形態としてもよい。このようなフィラーは、その配合によって封着ガラス層の熱膨張係数を低下させるから、その配合量の調整によって該封着ガラス層の熱膨張性を有機ELディスプレイのガラス基板の熱膨張性に容易に適合させることができる。また、この混合物形態では、加熱溶融時にガラス成分がフィラーの粒子同士を結着するバインダーとして機能するから、得られる封止ガラス層が高強度で緻密なセラミック形態の焼結体になる。
 上記のフィラーとしては、ガラス成分よりも高融点で、加工時の焼成温度では溶融しないものであればよく、特に種類は制約されないが、例えば珪酸ジルコニウム、コジェライト、リン酸ジルコニウム、β・ユークリプタート、β・スポジュメン、ジルコン、アルミナ、ムライト、シリカ、β-石英固溶体、ケイ酸亜鉛、チタン酸アルミニウム等の粉末が好適である。しかして、これらフィラーの配合量は、ガラス粉末/フィラーの重量比で50/50~99/1の範囲とするのがよい。この配合量が多過ぎては、溶融時の流動性が悪化すると共に、ガラス組成物による結着力が不足して強固な焼結体を形成できない。
 なお、有機ELディスプレイに用いるガラス基板の熱膨張係数は、一般的に35×10-7/℃~50×10-7/℃程度である。これに対し、本発明の有機EL封着用無鉛ガラス材では、ガラス粉末自体の熱膨張係数が低いことから、フィラーの配合による調整で、溶融状態での流動性を充分に確保しつつ、封着ガラス層の熱膨張係数を50×10-7/℃程度まで低下させることができる。これに対し、既述のV25-ZnO-BaO-TeO2の4成分からなるガラス組成の無鉛ガラス材では、フィラーの配合による調整を行っても、溶融状態での流動性を確保する上で、封着ガラス層の熱膨張係数は60×10-7/℃程度までしか低下できない。
 本発明の有機EL封着用無鉛ガラス材のガラス粉末(ガラスフリット)、ならびに該ガラス粉末に前記フィラーを混合した混合粉末は、一般的には有機バインダー溶液に高濃度分散させたペーストとし、これを有機ELディスプレイパネルの対向配置させる少なくとも一方のガラス基板の周辺部にスクリーン印刷等で塗工して焼成に供するから、予めペースト形態として製品化してもよい。
 上記ペーストに用いる有機バインダー溶液としては、特に制約はないが、例えばニトロセルロースやエチルセルロースの如きセルロース類のバインダーを、ブチルカルビトールアセテート、ブチルジグリコールアセテート、ターピネオール、パインオイル、芳香族炭化水素系溶剤、シンナーの如き混合溶剤等の溶剤に溶解させたもの、アクリル系樹脂バインダーをケトン類、エステル類、低沸点芳香族等の溶剤に溶解させたものがある。しかして、ペーストの粘度は、塗工作業性面より、30~3000dPa・sの範囲とするのがよい。
 本発明の有機EL封着用無鉛ガラス材を用いた封着加工では、有機ELディスプレイパネルの対向するガラス基板の周辺部間に該ガラス材を介在させ、このガラス材を加熱溶融させて両ガラス基板の周辺部間を封着する。このとき、該ガラス材は粉末形態や薄板状形態で両ガラス基板間に介在させることも不可能ではないが、極薄の封着ガラス層とする上で前記ペーストとして少なくとも一方のガラス基板(通常、有機EL素子を被着しない封止ガラス板側)に塗着する方法が推奨される。また、該ガラス材の加熱溶融は、加熱炉内の高温雰囲気中で保持することでも可能であるが、有機EL素子の熱劣化を回避する上で、既述のようにレーザー光の照射による局部的加熱によって行うのがよい。しかして、ガラス粉末は既述のようにレーザー光の吸収性がよい濃褐色を呈するから、従来のような金属粉末を含有させなくとも支障なくレーザー封着を適用できる。
 しかして、この封着加工の熱処理は、一回で行うことも可能であるが、封着品質を高める上では2段階で行うのがよい。すなわち、まず仮焼成としてガラス材の軟化点〔Tf〕付近まで加熱することにより、ペーストのビークル成分(バインダーと溶媒)を揮散・熱分解させてフリット成分のみが残る状態とし、次いで本焼成としてレーザー光の照射による局部的加熱でガラス成分が完全に溶融一体化した封着ガラス層を形成する。
 このような2段階の熱処理によれば、一段目の仮焼成でビークル成分が揮散除去され、2段目の本焼成ではガラス成分同士が融着することになるから、封着ガラス層中に気泡や脱気によるピンホールが生じるのを防止でき、もって封止の信頼性及び封止部の強度を高めることができる。また、特に有機ELディスプレイパネルでは、内部に熱劣化し易い有機EL素子を配置させると共に、封着部分に電極やリード線、排気管等を挟んで封着固定することから、組立前のペーストを塗着したガラス基板のみで1段目の熱処理を行ったのち、このガラス基板と他の所要部材を用いて製品形態に組み立て、この組立状態で2段目の熱処理を行うことで有機EL素子への熱的悪影響をより軽減できる。
 本発明の有機ELディスプレイパネルは、既述した図1で示す概略構成において、シール層6が上記した本発明の有機EL封着用無鉛ガラス材を用いた封着ガラス層からなるものである。そして、このシール層6は、ガラスフリットの溶融固化物として高い気密保持力を持つと共に、対向配置する両ガラス基板つまりEL素子基板1及び封止ガラス板5の表面に対する密着性及び被着強度に優れ、もって高い封止性と大きな封着強度を付与する上、良好な耐水性及び耐薬品性を示す。従って、この有機ELディスプレイパネルでは、封止部の耐久性に優れ、良好な表示性能を長期にわたって安定的に発揮できる上、パッケージ内部に捕水剤や乾燥剤を配設する必要がなく、それだけパネル構成が簡素になって組立製作を容易に低コストで行え、また耐水性に優れた該ガラス材には水分が吸着しにくいため、封着加工の際にガラスフリットからアウトガスとして水蒸気が発生することがなく、該水蒸気がパッケージ内に入り込んで有機EL素子を劣化させる懸念もない。
 以下に、本発明を実施例によって具体的に説明する。なお、以下において使用した原料酸化物はいずれも和光純薬社製の特級試薬であり、その他の分析試薬等についても同様に特級試薬を用いた。
 製造例1
 原料酸化物としてV25、ZnO、BaO、TeO2、Nb25、Al23、SiO2、MgO、Sb23、CuO、SnO、B23の各粉末を後記表1~3に記載の比率(モル%)で混合したもの(全量10g)を白金るつぼに収容し、電気炉内で約1000℃にて60分間加熱して溶融させたのち、その溶融物をアルミナポートに流し込んでガラスバーを作成し、大気中で冷却後に該ガラスバーを自動乳鉢にて粉砕し、この粉砕物を分級して粒径100μm以下のものを採取し、粉末状の無鉛ガラス材No.1~29を製造した。
 上記方法で製造した無鉛ガラス材No.1~29について、ガラス転移点〔Tg〕、軟化点〔Tf〕、結晶化開始温度〔Tx〕、熱膨張係数、溶融状態での流動性及びガラス光沢、色合いを調べた。その結果を後記表1~3に示す。各項目の測定方法は次の通りである。
〔ガラス転移点、軟化点、結晶化開始温度〕
 示差熱分析装置(リガク社製TG-8120)により、リファレンス(標準サンプル)としてα-アルミナを用い、加熱速度10℃/分、温度範囲25℃(室温)~600℃の測定条件でサンプルのガラス転移点〔Tg〕、軟化点〔Tf〕、結晶化開始温度〔Tx〕を測定した。
〔熱膨張係数〕
 熱機械分析装置(リガク社製TMA8310)により、熱膨張係数を測定した。この測定は、無鉛ガラス材粉末を再度溶融し、これを5×5×20mm(縦×横×高さ)の四角柱に成形し、上底面が平行に成形されたものを測定試料として用い、常温~250℃まで10℃/分で昇温させ、平均熱膨張係数αを求めた。また、標準サンプルには石英ガラスを用いた。
〔流動性/ガラス光沢〕
 各無鉛ガラス材を型内で溶融・硬化させて径8.8mm、厚さ2.0mmのボタン状の成形試料を作製し、この成形試料をガラス基板上に載置した状態で、電気炉内で加熱速度10℃/分で加熱して昇温させてゆき、420℃、450℃、500℃の各温度で10分間保持後に室温まで冷却し、成形試料の状態変化を観察し、次の4段階で評価した。
  ◎・・・420℃未満で良好な流動性及びガラス光沢を示す。
  ○・・・420℃以上~450℃未満で良好な流動性及びガラス光沢を示す。
  △・・・450℃以上~500℃未満で良好な流動性及びガラス光沢を示す。
  ×・・・500℃未満では良好な流動性及びガラス光沢を示さない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3の結果から、各々適正比率のV25,ZnO,BaO,TeO2の4成分からなる基本配合に、更にNb25及びAl23の一方又は両方を適正範囲で追加配合したガラス組成を有する本発明の無鉛ガラス材(No.2,4,6~8,10)は、ガラス転移点〔Tg〕が275~295℃、軟化点〔Tf〕が285~316℃と低く、420℃未満という低温で良好な流動性及びガラス光沢を示す上、ガラスの熱膨張係数も小さく、元来より低融性である上記基本配合の4成分からなる無鉛ガラス材(No.1)よりも更に低温加工性及び封止性に優れ、有機EL封着用として高い適性を具備することが明らかである。特に、Nb25及びAl23がより好適な配合範囲にある無鉛ガラス材(No.2,4,6,8,10)では、ガラス転移点〔Tg〕が285℃以下、軟化点〔Tf〕も298℃以下と非常に低く、極めて優れた低温加工性を具備することが判る。しかるに、Nb25及びAl23の単独及び合量の配合比率が高すぎる無鉛ガラス材(No.3,5,9,11)では、ガラスの熱膨張係数がより低減する反面、ガラス転移点〔Tg〕及び軟化点〔Tf〕が逆に上昇しており、却って低温加工性が損なわれることが判る。
 また、V25,ZnO,BaO,TeO2の4成分と、Nb25及びAl23の少なくとも一方の成分とに加え、SiO2、MgO、Sb23、CuO、SnOより選ばれる少なくとも一種の成分を適正範囲で追加したガラス組成の無鉛ガラス材(No.12~14,16,17,22,24)では、優れた低温加工性を確保した上で、熱膨張係数が更に低減しており、より高い封止性が得られることが判る。しかるに、SiO2、MgO、Sb23の3成分について、単独及び合量の配合比率が高すぎる無鉛ガラス材(No.15)では熱膨張係数がより低減しても低温加工性は悪化し、また該配合比率が適正でもNb25及びAl23のいずれをも含まない無鉛ガラス材(No.18~21)では溶融状態での流動性及びガラス光沢が著しく悪化している。一方、CuO及びSnOの2成分について、配合比率が高すぎる無鉛ガラス材(No23,25)では、結晶化によって溶融状態での流動性を示さなくなる。
 なお、V25,ZnO,BaO,TeO2の4成分、ならびに該4成分にNb25を加えた5成分に、更にB23を追加配合した無鉛ガラス材(No.26~29)では、該4成分からなる無鉛ガラス材(No.1)に比較して熱膨張係数が低減しているが、低温加工性は向上せず、しかもガラスの失透を生じたり、良好な流動性及びガラス光沢を得るための加熱温度が高くなるという欠点が現れている。
 製造例2
 前記製造例1における無鉛ガラス材No.1(比較例)及びNo.12(実施例)の粉末に対し、それぞれジルコニア系フィラー(リン酸ジルコニウム、最大粒子径5.5μm、平均粒子径約1.0μm)を後記表2に記載の比率で混合し、耐火物フィラー入り無鉛ガラス材No.30及びNo.31を製造した。そして、これら無鉛ガラス材No.30,31について、熱膨張係数と溶融状態での流動性及びガラス光沢を前記同様にして調べ、これらの結果を次の封着試験による封着強度の測定値と共に表4に示す。なお、流動性及びガラス光沢は製造例1と同様の4段階評価とした。
〔封着強度試験〕
 前記製造例2で得られた耐火物フィラー入り無鉛ガラス材No.30,31の各100gに対し、エチルセルロース/ブチルカルビトールアセテート/ターピネオールからなるビークル20gを添加混合してフリットペーストを調製し、矩形の無アルカリガラス基板(長さ40mm、幅30mm、厚さ0.7mm、熱膨張係数40×10-7/℃)の片面に、該フリットペーストを線幅0.6mm、厚さ約10μmで30×20mmの矩形を描くように塗着した。そして、このガラス基板を電気炉中で300℃にて60分間仮焼成したのち、該ガラス基板のフリット塗着面側に同寸法の無アルカリガラス基板を長手方向に位置ずれした状態に重ねてクリップで固定し、その仮焼成側のガラス基板を上面として前記フリットペーストの塗着ラインに沿い、半導体レーザー(波長808nm)のレーザー光を照射速度2mm/秒で照射することにより、フリットのガラス成分を溶融させて封着を行った。この封着した一対のガラス基板を垂直に固定し、上記位置ずれで上位になったガラス基板の上端に1000N/分以下で下向きに圧力を加えてゆき、封着面が剥離したときのピーク圧から単位面積当たりの封着力(圧縮剪断強度)を算出し、封着強度として表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、本発明の実施例である耐火物フィラー入り無鉛ガラス材No.31では、比較例である耐火物フィラー入り無鉛ガラス材No.30に比べ、熱膨張係数が有機ELディスプレイのガラス基板の熱膨張係数にかなり近くなっており、もって高い封着性が得られると共に、封着強度も2倍近くになっている上、より低い温度で良好な流動性及びガラス光沢を示すから低温加工性にも優れていることが判る。
〔耐水性・耐薬品性試験〕
 前記製造例2で得られた耐火物フィラー入り無鉛ガラス材No.30,31について、型内で溶融・硬化させて約1gの角柱状試料(長さ約6.3mm)を作製し、この角柱状試料を各々500mLの水、1モル濃度のHCl水、1モル濃度のNaOH水が入った容器の液中に浸漬し、この各容器を70℃の恒温槽に収容し、所定時間毎に試料を取り出して100℃,1時間の乾燥を行い、自然冷却後の試料の重量を測定し、初期重量からの重量減少率を次式で算出した。その結果を表5に示す。
  重量減少率(%)=〔1-測定重量(g)/初期重量(g)〕×100
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、本発明の実施例である耐火物フィラー入り無鉛ガラス材No.31は、比較例の耐火物フィラー入り無鉛ガラス材No.30に比べ、耐水性及び耐酸性に優れると共に、耐アルカリ性も遜色がなく、これを封着材として用いることで有機ELディスプレイに優れた耐久性を付与できることが明らかである。
 1  EL素子基板(ガラス基板)
 2  下部電極
 3  有機発光層
 4  上部電極
 5  封止ガラス板(ガラス基板)
 6  シール層(封着ガラス層)

Claims (9)

  1.  モル%表示で、30~60%のV25、5~20%のZnO、5~20%のBaO、15~40%のTeO2、0~7%のNb25、0~7%のAl23、0~5%のSiO2、0~5%のMgO、0~5%のSb23、0~4%のCuO、0~4%のSnOを含み、且つNb25+Al23が0.5~10%、SiO2+MgO+Sb23が0~5%、CuO+SnOが0~4%であるガラス組成を有してなる有機EL封着用無鉛ガラス材。
  2.  モル%表示で、35~50%のV25、10~18%のZnO、5~18%のBaO、15~30%のTeO2、0~7%のNb25、0~5%のAl23、0~5%のSiO2、0~5%のMgO、0~5%のSb23、0~4%のCuO、0~4%のSnOを含み、且つNb25+Al23が2~8%、SiO2+MgO+Sb23が0~5%、CuO+SnOが0~4%であるガラス組成を有してなる有機EL封着用無鉛ガラス材。
  3.  前記ガラス組成におけるSiO2+MgO+Sb23が0.5~5モル%である請求項1又は2に記載の有機EL封着用無鉛ガラス材。
  4.  前記ガラス組成におけるCuO+SnOが0.5~4モル%である請求項1~3のいずれかに記載の有機EL封着用無鉛ガラス材。
  5.  前記ガラス組成を有するガラス粉末に対してフィラーが、ガラス粉末/フィラーの重量比で50/50~99/1の範囲で配合されてなる請求項1~4の何れかに記載の有機EL封着用無鉛ガラス材。
  6.  請求項1~5のいずれかに記載の有機EL封着用無鉛ガラス材により、対向するガラス基板の周辺部間が封着されてなる有機ELディスプレイ。
  7.  前記ガラス基板の熱膨張係数が35×10-7/℃~50×10-7/℃である請求項6記載の有機ELディスプレイ。
  8.  有機ELディスプレイの対向するガラス基板の周辺部間に前記請求項1~5のいずれかに記載の有機EL封着用無鉛ガラス材を介在させ、このガラス材をレーザー光の照射によって加熱溶融させて両ガラス基板の周辺部間を封着することを特徴とする有機ELディスプレイの製造方法。
  9.  前記請求項1~5のいずれかに記載の有機EL封着用無鉛ガラス材の粉末に有機バインダー溶液を加えてフリットペーストを調製し、このフリットペーストを有機ELディスプレイの対向配置させる一対のガラス基板の少なくとも一方の周辺部に塗着して軟化点+50℃~+120℃で仮焼成することにより、塗着層の有機成分を揮散除去したのち、この塗着層を介して両ガラス基板を重ね合わせて該塗着層にレーザー光を照射することにより、該塗着層のガラス成分を溶融させて両ガラス基板の周辺部間を封着することを特徴とする有機ELディスプレイの製造方法。
PCT/JP2010/053670 2010-03-05 2010-03-05 有機el封着用無鉛ガラス材とこれを用いた有機elディスプレイ及び該ディスプレイの製造方法 WO2011108115A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10847017.0A EP2525626B1 (en) 2010-03-05 2010-03-05 Lead-free glass material for organic-el sealing, organic el display formed using the same
JP2012502950A JP5713993B2 (ja) 2010-03-05 2010-03-05 有機el封着用無鉛ガラス材とこれを用いた有機elディスプレイ及び該ディスプレイの製造方法
PCT/JP2010/053670 WO2011108115A1 (ja) 2010-03-05 2010-03-05 有機el封着用無鉛ガラス材とこれを用いた有機elディスプレイ及び該ディスプレイの製造方法
KR1020127019459A KR101626840B1 (ko) 2010-03-05 2010-03-05 유기 el 봉착용 무연 유리재와 이것을 사용한 유기 el 디스플레이
CN201080064524.7A CN102918927B (zh) 2010-03-05 2010-03-05 有机el封装用无铅玻璃材料和使用它的有机el显示器
US13/593,165 US8766524B2 (en) 2010-03-05 2012-08-23 Lead-free glass material for organic-EL sealing, organic EL display formed using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053670 WO2011108115A1 (ja) 2010-03-05 2010-03-05 有機el封着用無鉛ガラス材とこれを用いた有機elディスプレイ及び該ディスプレイの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/593,165 Continuation US8766524B2 (en) 2010-03-05 2012-08-23 Lead-free glass material for organic-EL sealing, organic EL display formed using the same

Publications (1)

Publication Number Publication Date
WO2011108115A1 true WO2011108115A1 (ja) 2011-09-09

Family

ID=44541799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053670 WO2011108115A1 (ja) 2010-03-05 2010-03-05 有機el封着用無鉛ガラス材とこれを用いた有機elディスプレイ及び該ディスプレイの製造方法

Country Status (6)

Country Link
US (1) US8766524B2 (ja)
EP (1) EP2525626B1 (ja)
JP (1) JP5713993B2 (ja)
KR (1) KR101626840B1 (ja)
CN (1) CN102918927B (ja)
WO (1) WO2011108115A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102898024A (zh) * 2012-09-27 2013-01-30 广东风华高新科技股份有限公司 含碲玻璃材料及其制备方法和应用
JP2013155059A (ja) * 2012-01-27 2013-08-15 Nippon Electric Glass Co Ltd 色素増感型太陽電池用ガラス組成物及び色素増感型太陽電池用材料
WO2014073086A1 (ja) * 2012-11-09 2014-05-15 株式会社 日立製作所 接合構造体とその製造方法
KR20140079390A (ko) * 2011-09-21 2014-06-26 가디언 인더스트리즈 코퍼레이션. 바나듐계 프릿 물질 및 이를 제조하는 방법
JP2015504840A (ja) * 2011-12-29 2015-02-16 ガーディアン・インダストリーズ・コーポレーション バナジウム系フリット材料、結合剤、及び/又は溶媒、並びにその製造方法
WO2015029792A1 (ja) * 2013-08-29 2015-03-05 セントラル硝子株式会社 無鉛ガラス及び封着材料
JP2015511922A (ja) * 2012-01-20 2015-04-23 ガーディアン・インダストリーズ・コーポレーション バナジウム系フリット材料に対する熱膨張係数フィラー及び/又はその製造方法及び/又はその利用方法
JP2016044101A (ja) * 2014-08-22 2016-04-04 旭硝子株式会社 封着用無鉛ガラス、封着材料、封着材料ペーストおよび封着パッケージ
WO2016051577A1 (ja) 2014-10-02 2016-04-07 ヤマト電子株式会社 局所加熱封着用バナジウム系ガラス材とこれを用いたフラットディスプレイ及び該ディスプレイの製造方法
JP2016199423A (ja) * 2015-04-09 2016-12-01 旭硝子株式会社 ガラスペーストおよび電子部品
JP2016213182A (ja) * 2015-04-28 2016-12-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. ディスプレイ装置シーリング用組成物、それを含んだ有機発光ディスプレイ装置、及びその製造方法
US9776910B2 (en) 2011-02-22 2017-10-03 Guardian Glass, LLC Vanadium-based frit materials, and/or methods of making the same
US10125045B2 (en) 2011-02-22 2018-11-13 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US10329187B2 (en) 2011-02-22 2019-06-25 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101993331B1 (ko) 2013-01-03 2019-06-27 삼성디스플레이 주식회사 유기발광표시장치 및 그 제조방법
KR102072805B1 (ko) * 2013-04-15 2020-02-04 삼성디스플레이 주식회사 유기발광표시장치 및 그의 제조방법
KR20140134565A (ko) 2013-05-14 2014-11-24 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR102078356B1 (ko) 2013-05-16 2020-04-08 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN103539354B (zh) * 2013-10-25 2017-01-25 上海大学 密封发光器件的玻璃料组合物及制备方法、气密密封方法
KR101524098B1 (ko) * 2014-04-03 2015-06-01 주식회사 베이스 저융점 유리 분말과 저팽창 결정질 세라믹 필러를 이용한 유리 프릿 및 이를 포함하는 페이스트
DE102014014322B4 (de) * 2014-10-01 2017-11-23 Ferro Gmbh Tellurat-Fügeglas mit Verarbeitungstemperaturen ≦ 400 °C
JP6617541B2 (ja) * 2015-01-15 2019-12-11 セントラル硝子株式会社 無鉛ガラス及び封着材料
KR101683538B1 (ko) * 2015-04-29 2016-12-08 주식회사 베이스 Oled 패널 봉착용 저융점 유리 프릿 및 그 유리 페이스트
EP3406574B1 (en) * 2016-01-18 2021-11-03 Hitachi, Ltd. Lead-free glass composition, glass composite material, glass paste, sealing structure, electrical/electronic component and coated component
EP3502067A4 (en) 2016-08-17 2020-07-29 Agc Inc. GLASS
CN106784370B (zh) * 2016-12-23 2018-08-17 上海天马有机发光显示技术有限公司 一种有机发光显示面板及其制作方法
WO2019164059A1 (ko) * 2018-02-23 2019-08-29 엘지전자 주식회사 무연계 저온 소성 글라스 프릿, 페이스트 및 이를 이용한 진공 유리 조립체
KR102599092B1 (ko) 2018-06-27 2023-11-08 삼성디스플레이 주식회사 글래스 프릿 및 이를 포함하는 표시장치
KR102217221B1 (ko) 2018-11-09 2021-02-18 엘지전자 주식회사 무연계 저온 소성 글라스 프릿, 페이스트 및 이를 이용한 진공 유리 조립체
EP4361112A2 (en) 2018-11-26 2024-05-01 Owens Corning Intellectual Capital, LLC High performance fiberglass composition with improved elastic modulus
BR112021010112A2 (pt) 2018-11-26 2021-08-24 Owens Corning Intellectual Capital, Llc Composição de fibra de vidro de alto desempenho com módulo específico melhorado
CN111708200A (zh) * 2020-07-01 2020-09-25 福耀玻璃工业集团股份有限公司 一种pdlc调光膜及其封边方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074583A (ja) 1996-08-30 1998-03-17 Sanyo Electric Co Ltd 有機elディスプレイ及び有機elディスプレイの 製造方法
JP2001319775A (ja) 2000-05-10 2001-11-16 Auto Network Gijutsu Kenkyusho:Kk 有機el表示装置の封止方法および封止構造
JP2004250276A (ja) * 2003-02-19 2004-09-09 Yamato Denshi Kk 封着加工用無鉛低融点ガラス
JP2006524419A (ja) 2003-04-16 2006-10-26 コーニング インコーポレイテッド フリットにより密封されたガラスパッケージおよびその製造方法
JP2006342044A (ja) * 2005-05-09 2006-12-21 Nippon Electric Glass Co Ltd バナジウムリン酸系ガラス
JP2007182347A (ja) * 2006-01-06 2007-07-19 Hitachi Ltd 接合用ガラスおよびこの接合用ガラスを用いた平板型ディスプレイ装置
JP2007200843A (ja) 2006-01-23 2007-08-09 Samsung Sdi Co Ltd 有機電界発光表示装置及びその製造方法
JP2008527656A (ja) * 2005-12-06 2008-07-24 コーニング インコーポレイテッド フリットで密封されたガラスパッケージおよびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171987B1 (en) * 1997-12-29 2001-01-09 Ben-Gurion University Of The Negev Cadmium-free and lead-free glass compositions, thick film formulations containing them and uses thereof
JP2003192378A (ja) * 2001-12-25 2003-07-09 Yamato Denshi Kk 封着加工用無鉛低融点ガラス
EP1642871B1 (en) * 2003-06-27 2010-12-01 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
US8022000B2 (en) * 2006-01-06 2011-09-20 Hitachi Displays Ltd. Display device and production method thereof
KR100824531B1 (ko) * 2006-11-10 2008-04-22 삼성에스디아이 주식회사 유기 전계 발광표시장치 및 그 제조방법
JP2008214152A (ja) * 2007-03-06 2008-09-18 Hitachi Powdered Metals Co Ltd ガラスペースト組成物
JP5525714B2 (ja) * 2008-02-08 2014-06-18 日立粉末冶金株式会社 ガラス組成物
JP5224102B2 (ja) * 2008-03-26 2013-07-03 日本電気硝子株式会社 有機elディスプレイ用封着材料
JP5552743B2 (ja) * 2008-03-28 2014-07-16 旭硝子株式会社 フリット

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074583A (ja) 1996-08-30 1998-03-17 Sanyo Electric Co Ltd 有機elディスプレイ及び有機elディスプレイの 製造方法
JP2001319775A (ja) 2000-05-10 2001-11-16 Auto Network Gijutsu Kenkyusho:Kk 有機el表示装置の封止方法および封止構造
JP2004250276A (ja) * 2003-02-19 2004-09-09 Yamato Denshi Kk 封着加工用無鉛低融点ガラス
JP2006524419A (ja) 2003-04-16 2006-10-26 コーニング インコーポレイテッド フリットにより密封されたガラスパッケージおよびその製造方法
JP2006342044A (ja) * 2005-05-09 2006-12-21 Nippon Electric Glass Co Ltd バナジウムリン酸系ガラス
JP2008527656A (ja) * 2005-12-06 2008-07-24 コーニング インコーポレイテッド フリットで密封されたガラスパッケージおよびその製造方法
JP2007182347A (ja) * 2006-01-06 2007-07-19 Hitachi Ltd 接合用ガラスおよびこの接合用ガラスを用いた平板型ディスプレイ装置
JP2007200843A (ja) 2006-01-23 2007-08-09 Samsung Sdi Co Ltd 有機電界発光表示装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2525626A4

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10329187B2 (en) 2011-02-22 2019-06-25 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US10125045B2 (en) 2011-02-22 2018-11-13 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US11014847B2 (en) 2011-02-22 2021-05-25 Guardian Glass, LLC Vanadium-based frit materials, and/or methods of making the same
US10087676B2 (en) 2011-02-22 2018-10-02 Guardian Glass, LLC Vanadium-based frit materials, and/or methods of making the same
US10752535B2 (en) 2011-02-22 2020-08-25 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US10107028B2 (en) 2011-02-22 2018-10-23 Guardian Glass, LLC Method of making vacuum insulated glass (VIG) window unit
US11028009B2 (en) 2011-02-22 2021-06-08 Guardian Glass, LLC Coefficient of thermal expansion filler for vanadium-based frit materials and/or methods of making and/or using the same
US10858880B2 (en) 2011-02-22 2020-12-08 Guardian Glass, LLC Vanadium-based frit materials, binders, and/or solvents and/or methods of making the same
US10196299B2 (en) 2011-02-22 2019-02-05 Guardian Glass, LLC Vanadium-based frit materials, and/or methods of making the same
US9776910B2 (en) 2011-02-22 2017-10-03 Guardian Glass, LLC Vanadium-based frit materials, and/or methods of making the same
JP2014534148A (ja) * 2011-09-21 2014-12-18 ガーディアン・インダストリーズ・コーポレーション バナジウムを主成分とするフリット材料及びその製造方法
KR102017353B1 (ko) * 2011-09-21 2019-09-02 가디언 인더스트리즈, 엘엘씨 바나듐계 프릿 물질 및 이를 제조하는 방법
KR20140079390A (ko) * 2011-09-21 2014-06-26 가디언 인더스트리즈 코퍼레이션. 바나듐계 프릿 물질 및 이를 제조하는 방법
JP2015504840A (ja) * 2011-12-29 2015-02-16 ガーディアン・インダストリーズ・コーポレーション バナジウム系フリット材料、結合剤、及び/又は溶媒、並びにその製造方法
JP2015511922A (ja) * 2012-01-20 2015-04-23 ガーディアン・インダストリーズ・コーポレーション バナジウム系フリット材料に対する熱膨張係数フィラー及び/又はその製造方法及び/又はその利用方法
JP2013155059A (ja) * 2012-01-27 2013-08-15 Nippon Electric Glass Co Ltd 色素増感型太陽電池用ガラス組成物及び色素増感型太陽電池用材料
CN102898024A (zh) * 2012-09-27 2013-01-30 广东风华高新科技股份有限公司 含碲玻璃材料及其制备方法和应用
JPWO2014073086A1 (ja) * 2012-11-09 2016-09-08 株式会社日立製作所 接合構造体とその製造方法
WO2014073086A1 (ja) * 2012-11-09 2014-05-15 株式会社 日立製作所 接合構造体とその製造方法
US9824900B2 (en) 2012-11-09 2017-11-21 Hitachi, Ltd. Bonded structure and production method therefor
JP5853106B2 (ja) * 2012-11-09 2016-02-09 株式会社日立製作所 接合構造体とその製造方法
JP2015063445A (ja) * 2013-08-29 2015-04-09 セントラル硝子株式会社 無鉛ガラス及び封着材料
US9815735B2 (en) 2013-08-29 2017-11-14 Central Glass Company, Limited Lead-free glass and sealing material
WO2015029792A1 (ja) * 2013-08-29 2015-03-05 セントラル硝子株式会社 無鉛ガラス及び封着材料
JP2016044101A (ja) * 2014-08-22 2016-04-04 旭硝子株式会社 封着用無鉛ガラス、封着材料、封着材料ペーストおよび封着パッケージ
JP6022070B2 (ja) * 2014-10-02 2016-11-09 Yejガラス株式会社 局所加熱封着用バナジウム系ガラス材とこれを用いたフラットディスプレイ及び該ディスプレイの製造方法
WO2016051577A1 (ja) 2014-10-02 2016-04-07 ヤマト電子株式会社 局所加熱封着用バナジウム系ガラス材とこれを用いたフラットディスプレイ及び該ディスプレイの製造方法
US9988301B2 (en) 2014-10-02 2018-06-05 Yej Glass Co., Ltd. Vanadium-based glass material for local heat sealing, flat display using the same, and method for manufacturing the display
JPWO2016051577A1 (ja) * 2014-10-02 2017-04-27 Yejガラス株式会社 局所加熱封着用バナジウム系ガラス材とこれを用いたフラットディスプレイ及び該ディスプレイの製造方法
JP2016199423A (ja) * 2015-04-09 2016-12-01 旭硝子株式会社 ガラスペーストおよび電子部品
JP2016213182A (ja) * 2015-04-28 2016-12-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. ディスプレイ装置シーリング用組成物、それを含んだ有機発光ディスプレイ装置、及びその製造方法
JP7067854B2 (ja) 2015-04-28 2022-05-16 三星ディスプレイ株式會社 ディスプレイ装置シーリング用組成物、それを含んだ有機発光ディスプレイ装置、及びその製造方法

Also Published As

Publication number Publication date
KR20130025362A (ko) 2013-03-11
US20120321902A1 (en) 2012-12-20
KR101626840B1 (ko) 2016-06-02
CN102918927B (zh) 2015-08-19
EP2525626A4 (en) 2014-11-12
EP2525626B1 (en) 2018-05-02
JP5713993B2 (ja) 2015-05-07
EP2525626A1 (en) 2012-11-21
JPWO2011108115A1 (ja) 2013-06-20
US8766524B2 (en) 2014-07-01
CN102918927A (zh) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5713993B2 (ja) 有機el封着用無鉛ガラス材とこれを用いた有機elディスプレイ及び該ディスプレイの製造方法
JP6022070B2 (ja) 局所加熱封着用バナジウム系ガラス材とこれを用いたフラットディスプレイ及び該ディスプレイの製造方法
TWI482743B (zh) A glass member having a sealing material layer and an electronic device using the same, and a method of manufacturing the same
JP4930897B2 (ja) Bi2O3−B2O3系封着材料
JP2012106891A (ja) 封着用無鉛ガラス、封着材料、封着材料ペースト
JP2010052990A (ja) 封着用無鉛ガラス材とこれを用いた有機elディスプレイパネル
JP5354444B2 (ja) 封着材料
JP6269991B2 (ja) 封着材料層付きガラス基板
JP2010111520A (ja) ビスマス系ガラス粉末の製造方法
JP5440997B2 (ja) 有機elディスプレイ用封着材料
JP4941880B2 (ja) ビスマス系ガラス組成物およびビスマス系封着材料
JP2006143480A (ja) Bi2O3−B2O3系ガラス組成物およびBi2O3−B2O3系封着材料
JP5920513B2 (ja) 封着用無鉛ガラス、封着材料、封着材料ペースト
JP2008308393A (ja) 無鉛低軟化点ガラス、無鉛低軟化点ガラス組成物、無鉛低軟化点ガラスペースト、および蛍光表示管
KR101028340B1 (ko) 저온 연화성 유리 조성물
JP5257829B2 (ja) 封着材料
JP6108285B2 (ja) 電子デバイスの製造方法
KR20240017761A (ko) 유리 조성물, 유리 페이스트, 봉착 패키지 및 유기 일렉트로루미네센스 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064524.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012502950

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010847017

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127019459

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE