WO2014073086A1 - 接合構造体とその製造方法 - Google Patents

接合構造体とその製造方法 Download PDF

Info

Publication number
WO2014073086A1
WO2014073086A1 PCT/JP2012/079060 JP2012079060W WO2014073086A1 WO 2014073086 A1 WO2014073086 A1 WO 2014073086A1 JP 2012079060 W JP2012079060 W JP 2012079060W WO 2014073086 A1 WO2014073086 A1 WO 2014073086A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
resin
bonded structure
mass
base material
Prior art date
Application number
PCT/JP2012/079060
Other languages
English (en)
French (fr)
Inventor
一宗 児玉
内藤 孝
沢井 裕一
正 藤枝
拓也 青柳
雅徳 宮城
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to JP2014545517A priority Critical patent/JP5853106B2/ja
Priority to US14/440,124 priority patent/US9824900B2/en
Priority to PCT/JP2012/079060 priority patent/WO2014073086A1/ja
Priority to TW102137903A priority patent/TWI513782B/zh
Publication of WO2014073086A1 publication Critical patent/WO2014073086A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/481Insulating layers on insulating parts, with or without metallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/4807Ceramic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates to a bonded structure using a resin base material and a manufacturing method thereof.
  • Insulating base materials such as glass and ceramics are used in electrical and electronic parts such as IC packages and image display devices. In recent years, these electrical and electronic parts require properties such as flexibility, light weight, and impact resistance.
  • a resin base material may be used. Conventionally, resin has often been used for printed circuit boards. In contrast to this, wiring, insulating layers, passive elements, active elements, radiators, protective cases, etc. made of metal, ceramics, silicon, resin, etc. Join with objects.
  • the substrate is generally bonded with resin or glass.
  • resin the resin is cured and bonded at a low temperature of about room temperature to about 100 ° C.
  • resin is easy to permeate gas and moisture and has low airtightness.
  • glass is highly airtight because it is difficult for gas and moisture to pass therethrough.
  • Patent Document 1 discloses that V 2 O 5 is 45 to 65 mass% and P 2 O 5 is 10 to 20 mass in terms of oxides of components in the glass composition.
  • Low melting point glass composition containing 10% to 25% by mass of TeO 2 , 5 to 15% by mass of Fe 2 O 3 , and 0 to 10% by mass of MnO 2 , ZnO, WO 3 , MO 3 and BaO in total.
  • a low-melting glass composition having a softening point of 380 ° C. or lower can be provided, and the firing temperature of a sealing glass frit or conductive glass paste using the composition can be 400 ° C. or lower.
  • An object of the present invention is to prevent deterioration of the resin base material of the bonded structure.
  • the present invention provides a bonded structure including two base materials, at least one of which is a resin, and includes either P or Ag, V, and Te, and the two substrates.
  • the oxide formed by softening on the material joins the two substrates.
  • a step of supplying an oxide containing either P or Ag and V and Te to the base material a step of supplying an oxide containing either P or Ag and V and Te to the base material, A step of irradiating the oxide with electromagnetic waves and softening the oxide on the substrate to join the two base materials.
  • the perspective view and sectional drawing of the joining structure body which joined the resin base material and another base material with the oxide The perspective view and sectional drawing of another junction structure.
  • the perspective view and sectional drawing of another junction structure The perspective view and sectional drawing of another junction structure.
  • Sectional drawing of the joining structure at the time of filler addition Sectional drawing of the joining structure at the time of metal addition.
  • Sectional drawing of the joining structure at the time of metal addition Sectional drawing of a joining structure at the time of giving inclination to the thermal expansion coefficient in an oxide.
  • Sectional drawing of a joining structure at the time of giving inclination to the thermal expansion coefficient in an oxide Sectional drawing of a joining structure at the time of giving inclination to the thermal expansion coefficient in an oxide.
  • Sectional drawing of a joining structure at the time of sealing an element in a resin base material Sectional drawing of the package electrical and electronic component which protected the element on the ceramic substrate with the resin case. Sectional drawing of the electrical / electronic component which sealed the semiconductor element on the resin base material with the copper cap-shaped heat sink.
  • the bonded structure is formed by bonding a plurality of base materials, and at least a part of these base materials is a resin base material.
  • the oxide that joins the substrates includes V (vanadium), Te (tellurium), and P (phosphorus). Alternatively, V, Te and Ag (silver) are included.
  • the oxide before joining is in a glass state (glass composition)
  • the oxide after joining is not necessarily maintained in the glass state, and may be in a crystalline state.
  • the glass transition temperature is about 230 to 340 ° C.
  • the softening and flowing temperature is about 300 to 440 ° C. Since this glass composition has high ability to absorb electromagnetic waves and is easily heated and can selectively heat the glass portion, there is little damage to the resin base material of the bonded structure.
  • the glass transition temperature is about 160 to 270 ° C.
  • the softening and flow temperature is about 210 to 370 ° C. Therefore, not only by irradiation with electromagnetic waves but also by other heating means Even when heated, there is little damage to the resin substrate.
  • the glass composition described above can keep the glass structure more stable by further containing any of Fe, Sb, W, Ba, and K in some cases.
  • the inclusion of Fe and Sb increases the absorption of electromagnetic waves and easily generates heat, so that it can be softened and flowed better.
  • the oxide needs to be in a glass state.
  • W, Ba, or K crystallization of the glass composition at the time of electromagnetic wave irradiation can be suppressed.
  • wavelength of the electromagnetic wave to be used 2000 nm or less (laser) or 1000 mm or less (microwave) which the glass composition efficiently absorbs is effective.
  • Te and P are components for vitrification, and by containing these, the glass composition can be easily softened and flowed even by electromagnetic wave irradiation.
  • P is effective also in a low thermal expansion, since the oxide equivalent by P 2 O content of 5 (mass%) of TeO 2 are many and the transition point T g tends to be higher than the content of P 2 O 5 The amount should be less than or equal to the TeO 2 content.
  • the effective composition range of the oxide is that, after satisfying the above conditions, V 2 O 5 is 17 to 50% by mass, TeO 2 is 20 to 33% by mass, P 2 O 5 is 4 to 4% in terms of the following oxides. 12% by mass.
  • V 2 O 5 is 37 to 50% by mass
  • TeO 2 is 20 to 32% by mass
  • P 2 O 5 is 6 to 12% by mass
  • Fe 2 O 3 is 10 to 19%. Mass% is preferred.
  • V 2 O 5 is 17 to 50% by mass
  • TeO 2 is 25 to 40% by mass
  • Ag 2 O is 20 to 50% by mass
  • V 2 O 5 + TeO 2 + Ag 2 O is preferably 85% by mass or more.
  • the glass composition contains Ag, V, and Te
  • the total content of Ag 2 O, V 2 O 5 , and TeO 2 in the oxide state is 85 mass% or more, and the Ag 2 O content is 30 mass%.
  • the V 2 O 5 content is 25 mass% or more, a glass composition having a particularly high resistivity is obtained, which is effective for ensuring insulation between the substrates.
  • a glass composition described above for example, SiO 2, ZrO 2, Al 2 O 3, Nb 2 O 5, Z
  • fillers such as rSiO 4 , Zr 2 (WO 4 ) (PO 4 ) 2 , cordierite, mullite, eucryptite, etc.
  • the thermal expansion coefficient is adjusted to a predetermined value according to the material of the substrate.
  • the bonding strength can be increased, or the strength of the glass composition itself can be increased.
  • the substrates to be joined have a large difference in thermal expansion coefficient, it is possible to increase the joining strength by stacking glass compositions having different thermal expansion coefficients.
  • a conductive material such as Ag, Au, Pt, Cu, Al, Sn, Zn, Bi, or In
  • thermal conductivity between the substrates to be bonded as necessary.
  • electrical conductivity can be imparted.
  • metal particles when metal particles are added as a conductive material, the metal particles plastically deform, so if there is a large thermal expansion coefficient between the resin base material and the other base material, the thermal stress can be relaxed, It is possible to increase the bonding strength.
  • glass compositions described above are lead-free for environmental considerations.
  • the term “lead-free” as used in the present invention means that a prohibited substance in the ROS directive (Restriction of Hazardous Substances: enforced on July 1, 2006) is contained within a specified value or less.
  • FIG. 1 shows a structure in which a resin base material 1 and another base material 2 are joined by a glass composition.
  • the different base material 2 here may be a resin base material or a base material different from a resin such as glass, ceramics, metal, silicon, and carbide.
  • a structure in which the entire surfaces of substrates having the same shape are joined as in (a), a structure in which a space is left inside as in (b), and a structure in which substrates of different sizes are joined together as in (c) , (D), at least one of the structures for joining substrates that are not plate-like may be used.
  • a high temperature such as an electric furnace is used. Although it may be heated in the form of being disposed in the environment, it is effective to selectively heat the glass composition portion using electromagnetic waves in the case of a material having poor heat resistance.
  • the resin substrate is not particularly limited, and may be crystalline or amorphous.
  • the glass composition When the laser is irradiated, the glass composition can be softened and fluidized in a form that suppresses heating of the substrate.
  • one of the substrates is a material having a high thermal conductivity such as a metal or some ceramics
  • a method in which the glass composition is heated by heat conduction of the substrate by irradiating a laser to a region close to the glass composition You can also take In any case, it is important to selectively heat the glass composition so that the resin substrate 1 has a temperature lower than its heat resistance temperature.
  • a laser having a wavelength in the range of 400 to 2000 nm and a microwave having a wavelength in the range of 0.1 to 1000 mm are effective. If the wavelength is a laser having a wavelength of 400 nm or more, the resin of the base material is unlikely to deteriorate. On the other hand, with a laser having a wavelength of 2000 nm or less, even if moisture is contained in the resin of the base material, there is no risk that the moisture will generate heat and the resin will melt. On the other hand, in the case of irradiation with microwaves having a wavelength in the range of 0.1 to 1000 mm, the oxide glass can be selectively heated by absorbing electromagnetic waves by imparting semiconducting conductivity.
  • the microwave transmission source is not particularly limited, and may be a 2.45 GHz band such as a home microwave oven.
  • Table 1 shows the characteristics of the oxide according to the present invention.
  • the glass transition point is shown in the table, and this measuring method is as follows.
  • the prepared glass was pulverized until the volume average particle diameter became 20 ⁇ m or less, and the glass transition point (T g ) was measured by conducting a suggested thermal analysis (DTA) up to 550 ° C. at a heating rate of 5 ° C./min. .
  • DTA thermal analysis
  • Alumina powder was used as a standard sample
  • Al was used as a sample container.
  • FIG. 2 shows a typical DTA curve of the glass composition. As shown in the figure, the glass transition point (T g ) was the starting temperature of the first endothermic peak.
  • the yield point (M g ) is determined as the first endothermic peak temperature
  • the softening point (T s ) is determined as the second endothermic peak temperature
  • the exothermic peak start temperature (T c ) is determined as the crystallization temperature.
  • the softening point T s depends on the glass composition, the softening point T s is about 50 to 100 ° C. higher than the glass transition temperature T g .
  • Table 2 shows characteristics of some typical glass compositions. Although some have a low glass transition temperature, selective heating is practically impossible due to poor electromagnetic wave absorption characteristics, and in a form that reduces the thermal damage of the resin base as described above. Can be bonded only to some high heat-resistant resin substrates.
  • FIG. 3 shows a cross-sectional view of a bonded structure in which a filler is added to the oxide.
  • the filler 4 has a structure in which the filler 4 is dispersed inside the oxide 2.
  • the filler 4 needs to be sufficiently smaller than the thickness of the bonding layer made of the oxide 2.
  • the mixing amount of the filler 4 is preferably 5 to 50 mass%.
  • the amount of the filler 4 is less than 5%, the change in the thermal expansion coefficient of the oxide 2 is slight, and a great effect on the bonding property cannot be expected.
  • the amount of the filler 4 exceeds 50 mass%, the fluidity of the oxide 2 is remarkably lowered and good bonding cannot be expected. Therefore, the amount of the filler 4 is preferably in the range of 5 to 50 mass%.
  • the oxide 2 may contain the conductive material 5.
  • FIG. 4 shows a cross-sectional view of the bonded structure when the metal is added.
  • the conductive material Ag, Au, Pt, Cu, Al, Sn, Zn, Bi, In, and alloys of these elements are conceivable.
  • the thermal conductivity of the glass composition 2 shown in Table 1 is typically about 0.5 W / mK, and the electrical resistivity is typically about 10 7 to 10 11 ⁇ cm. That is, it is a relatively good thermal insulator and an electrical insulator.
  • it may be required to transmit electricity or heat from one substrate to be bonded to the other substrate.
  • by mixing metal particles as the conductive material 5 thermal or electrical conductivity is imparted to the glass composition 2 responsible for bonding.
  • the conductive material 5 needs to be sufficiently smaller than the thickness of the bonding layer made of the glass composition 2.
  • the conductive material 5 softens the glass as shown in FIG. 4 (b).
  • the conductive material 5 is particularly preferably a material having a low melting point such as Sn or a material that can be easily sintered such as Ag.
  • the glass composition 2 has a value about 10 to 50% of the thermal conductivity of Ag 425 W / mK, and about 2 to 10 times the electric resistivity of Ag 4.1 ⁇ cm. As a result, much better thermal or electrical conductivity is obtained as compared with the case where the metal filler 5 is not mixed.
  • the metal particles are plastically deformed, if there is a large coefficient of thermal expansion between the resin base material 1 and the other bonding material, the thermal stress can be relaxed, and also to increase the bonding strength. It is valid. In this application, it is not always necessary that the metal particles are joined by melting or sintering, and the addition amount is preferably about 10 to 50%.
  • the composition of the glass composition 2 in FIG. 1 is such that, in the oxide state, the Ag 2 O content is 30 mass% or less and the V 2 O 5 content is 25 mass% or more (Nos. 11 to 15, 17 to 21, 27 in Table 1). 29, 30), the electrical resistivity of the glass composition can be made 10 9 ⁇ cm or more, which is particularly effective in applications where it is desired to take insulation between the bonding substrates.
  • FIG. 5 shows a schematic diagram of another embodiment.
  • the resin base material 1 and another base material 3 are joined by the oxide 2, and the oxide 2 includes the filler 4.
  • the amount of the filler 4 on the side close to the resin substrate 1 and the amount of the filler 4 on the side close to the substrate 3 are different.
  • the material of the filler 41 on the side close to the base material 3 and the material of the filler 42 on the side close to the resin base material 1 are different.
  • the oxide 2 may contain a resin additive. Thereby, especially bondability with the resin base material 1 may be improved. In addition, the oxide 2 is hardly plastically deformed, and when the difference in thermal expansion coefficient from the base material is large, the bonding strength may be reduced. By mixing a plastically deformed or elastically deformed resin, the base material can be reduced. Even when the difference in thermal expansion coefficient is large, stress relaxation occurs and the reduction in bonding strength can be suppressed.
  • the resin additive is preferably dispersed in the oxide at 5 to 50% by volume.
  • the resin additive in the present invention is not particularly limited, and may be crystalline or amorphous.
  • the oxide 2 may react with the base materials 1 and 2, the filler 4, the conductive material 5, and the resin additive to crystallize. Therefore, even if the glass composition is originally used as a bonding agent, the bonding layer does not need to be amorphous in the final bonding form.
  • glass compositions having the compositions shown in Table 1 were produced.
  • the starting materials were weighed at the oxide-converted mass ratio shown in the table.
  • oxide powder purity 99.9%
  • Ba (PO 3 ) 2 manufactured by Rasae Kogyo Co., Ltd. was used as the Ba source and P source.
  • the starting materials were mixed and placed in a platinum crucible.
  • An alumina crucible was used when the Ag 2 O ratio in the raw material was 40 mass% or more.
  • mixing in consideration of avoiding excessive moisture absorption to the raw material powder, mixing was performed in a crucible using a metal spoon.
  • the crucible containing the raw material mixed powder was placed in a glass melting furnace and heated and melted. The temperature was raised at a rate of 10 ° C./min, and the glass melted at the set temperature (700 to 950 ° C.) was held for 1 hour with stirring. Thereafter, the crucible was taken out from the glass melting furnace, and the glass was cast into a graphite mold heated to 150 ° C. in advance.
  • the cast glass was moved to a strain relief furnace that had been heated to a strain relief temperature in advance, strain was removed by holding for 1 hour, and then cooled to room temperature at a rate of 1 ° C./min.
  • the glass cooled to room temperature was coarsely pulverized to produce a glass composition frit.
  • the frit of the glass composition had an average volume particle diameter of 20 ⁇ m or less, and the glass transition temperature was measured by DTA.
  • the glass transition temperature of each glass composition is as shown in Table 1.
  • the frit of the glass composition produced in Example 1 was used as a paste when producing a bonded structure.
  • the frit of the glass composition was pulverized with a jet mill to an average volume particle size of 2 ⁇ m or less. No. in Table 1
  • a solvent added with 4% resin binder was mixed to form a paste.
  • ethyl cellulose was used as the resin binder
  • butyl carbitol acetate was used as the solvent.
  • Butyl carbitol acetate is no. It does not react as much with 1 to 10 glass compositions.
  • a resin binder is added because only a solvent has a low viscosity and poor applicability.
  • Ethyl cellulose can be volatilized by heating to about 300 ° C. 1 to 10 glass compositions can be removed without softening and flowing. That is, no.
  • the paste using the glass composition of 1 to 10 is applied to the bonding substrate and then heated to about 300 ° C. to remove the solvent and the resin binder.
  • a bonded structure as shown in FIG. 1B between resin substrates is produced by laser heating.
  • two polycarbonate substrates were prepared.
  • the paste of the glass composition produced in Example 2 was apply
  • the glass composition was 20 mass% V 2 O 5 -35 mass% TeO 2 -45 mass% Ag 2 O.
  • the solvent is alpha terpineol.
  • the substrate coated with the paste was heated to 100 ° C. to remove the solvent.
  • the other surface of the substrate on which the paste was applied was placed on the substrate on which the paste was applied, with the coated surface facing down.
  • the laser was scanned along the paste application surface. Each case of 400 nm, 800 nm, and 1100 nm was tested as the wavelength of the laser. In either case, the glass composition softened and flowed and could be firmly bonded without deteriorating the resin base material.
  • various elements 6 can be arranged between the two resin substrates 1 and 3. Moreover, since it is the structure sealed with the two resin base materials 1 and 3 and the glass composition 2, the internal element 6 can be protected from a water
  • a bonded structure between resin substrates is produced by microwave heating.
  • two polyimide substrates were prepared.
  • the paste of the glass composition produced in Example 2 was apply
  • the glass composition was 20 mass% V 2 O 5 -35 mass% TeO 2 -45 mass% Ag 2 O.
  • the solvent is alpha terpineol.
  • the substrate coated with the paste was heated to 100 ° C. to remove the solvent.
  • the polyimide film not coated with the other paste was covered with a polyimide film coated with the paste with the paste coated surface facing down.
  • a composite sheet of glass and resin is formed.
  • This composite sheet is provided with the lightness peculiar to resin and the gas barrier characteristic peculiar to glass, and when this composite sheet is applied to the sealing structure as in Example 3, the internal electrical and electronic parts can be protected.
  • the resin case 8 is bonded to the ceramic substrate 7 by laser heating.
  • an Al 2 O 3 base material and a polyimide case were prepared.
  • a paste of the glass composition produced in al 2 O 3 substrate was 43 mass% V 2 O 5 -30 mass% TeO 2 -15 mass% Fe 2 O 3 -12 mass% P 2 O 5 .
  • an ethyl cellulose resin binder and a butyl carbitol acetate solvent are added.
  • the Al 2 O 3 substrate was heated at 400 ° C. for 10 minutes to remove the resin binder and the solvent, and the glass composition 2 was once softened and fluidized.
  • the pasted portion was laser scanned from above the polyimide case.
  • the wavelength of the laser was 1100 nm.
  • a polyimide case is used for dust and moisture from the outside for a package electrical / electronic component in which an Al 2 O 3 base material is an insulating base material and wirings 9, passive elements 9, active elements 9 and the like are arranged thereon. It plays a role to protect from.
  • typical thermal expansion coefficients of the Al 2 O 3 base material and the polyimide case are 7, 25 ppm / ° C., respectively.
  • the thermal expansion coefficient of the glass composition used in the present Example is 10 ppm / ° C.
  • the polyimide case is relatively flexible, the Al 2 O 3 base material hardly undergoes plastic deformation, and depending on the structure, peeling may occur due to the difference in thermal expansion coefficient between the glass composition 2 and the Al 2 O 3 base material. Therefore, to produce a similar joint structure with respect to the glass composition 2 Zr 2 (WO 4) of 30vol% (PO 4) 2 was added.
  • Zr 2 (WO 4 ) (PO 4 ) 2 Since Zr 2 (WO 4 ) (PO 4 ) 2 has a negative thermal expansion coefficient, it has a role of bringing the thermal expansion coefficient of the glass composition 2 closer to the Al 2 O 3 substrate. It was found that good bonding occurs even when Zr 2 (WO 4 ) (PO 4 ) 2 is added.
  • the filler for adjusting the coefficient of thermal expansion is not necessarily Zr 2 (WO 4 ) (PO 4 ) 2 , and SiO 2 , ZrO 2 , Al 2 O 3 , Nb 2 O 5 , Fillers such as ZrSiO 4 , Zr 2 (WO 4 ) (PO 4 ) 2 , cordierite, mullite, and eucryptite can be used.
  • the glass composition paste to which the filler is added is applied to the Al 2 O 3 substrate and dried, and then the glass composition 2 paste not containing the filler is applied and dried.
  • a method of scanning a laser with a polyimide case covered can also be used.
  • the thermal expansion coefficient can be reduced only on the side close to the Al 2 O 3 base material, and the difference between the thermal expansion coefficients of the polyimide case and the glass composition 2 can be prevented from being widened by the addition of the filler. Can do.
  • the thermal expansion coefficient of the other base material joined to the resin base material is smaller than the thermal expansion coefficient of the resin base material, but the thermal expansion coefficient of the other base material is the thermal expansion coefficient of the resin base material. Even when the coefficient is larger than the coefficient, bonding can be performed in the same manner.
  • the radiator 10 is joined to the resin base material 1 by laser heating in the form as shown in FIG.
  • the glass epoxy resin base material and the copper cap-shaped heat radiator 10 were prepared.
  • the paste of the glass composition produced in Example 2 was apply
  • the glass composition was 20 mass% V 2 O 5 -35 mass% TeO 2 -45 mass% Ag 2 O.
  • a glass composition paste to which 30 vol% Sn or 30 vol% acrylic rubber was added as a thermal stress relaxation material was also tried.
  • the solvent was ⁇ terpineol.
  • the substrate coated with the paste was heated to 100 ° C. to remove the solvent.
  • the copper cap was overlaid on the paste application part, and the laser was scanned along the edge of the copper cap near the base material. The wavelength of the laser was 515 nm.
  • the glass was softened and flowed by laser irradiation, and the copper cap and the base material could be firmly bonded without deterioration of the base material. In particular, the bonding property was better when Sn and acrylic rubber were added.
  • the metal and the resin mixed as the thermal stress relaxation material are not necessarily limited to Sn or acrylic rubber.
  • the embodiment of the present embodiment can be applied to an application in which the semiconductor chip 11 is inserted inside the radiator 10 as shown in FIG. 8 and the heat generated during the operation of the semiconductor chip is quickly released from the surface of the radiator 10.
  • it can be applied to hard disks and the like.
  • the paste of the present embodiment can also be used at the joint portion between the semiconductor chip 11 and the resin base material 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

 接合構造体の樹脂基材の劣化を防止する。少なくともどちらか一方が樹脂である2つの基材を備えた接合構造体において、P又はAgの何れかとVとTeとを含み、前記2枚の基材上で軟化して形成された酸化物が前記2つの基材を接合する。また、少なくともどちらか一方が樹脂である2つの基材を備えた接合構造体の製造方法において、前記基材にP又はAgの何れかとVとTeとを含む酸化物を供給する工程と、前記酸化物に電磁波を照射し前記基板上で軟化した酸化物が前記2つの基材を接合する工程とを備える。

Description

接合構造体とその製造方法
 本発明は、樹脂基材を用いた接合構造体とその製造方法に関する。
 ICパッケージ、画像表示デバイスなどの電気電子部品では、ガラスやセラミックスといった絶縁基材が用いられるが、近年では、これらの電気電子部品に対して、フレキシブル、軽量、耐衝撃などの性質が求められる場合もあり、樹脂基材が使用される場合がある。また、従来からプリント基板には樹脂を用いることが多く、これに対して金属、セラミックス、シリコン、樹脂などの材質から成る配線、絶縁層、受動素子、能動素子、放熱体、保護ケースなどの構造物と接合する。
 基材は一般に、樹脂またはガラスで接合される。樹脂の場合は、常温~100℃程度の低温で樹脂を硬化させて接合する。しかし、樹脂はガスや水分を透過しやすく気密性が低い。一方、ガラスの場合は、ガスや水分を透過しにくいため気密性が高い。比較的低い軟化流動温度を示すガラス組成物として、例えば、特許文献1には、ガラス組成物における成分の酸化物換算で、V25を45~65mass%、P25を10~20mass%、TeO2を10~25mass%、Fe23を5~15mass%、MnO2とZnOとWO3とMO3とBaOとを合計で0~10mass%を含有する低融点ガラス組成物が開示されている。特許文献1によると、380℃以下の軟化点を有する低融点ガラス組成物を提供でき、それを用いた封着用ガラスフリットや導電性ガラスペーストの焼成温度を400℃以下にできるとされている。
特開2010-184852号公報
 しかしながら、特許文献1のペーストを用いても、焼成により樹脂基材が劣化するという課題がある。
 本発明の目的は、接合構造体の樹脂基材の劣化を防止することにある。
 上記課題を解決するために、本発明は、少なくともどちらか一方が樹脂である2つの基材を備えた接合構造体において、P又はAgの何れかとVとTeとを含み、前記2枚の基材上で軟化して形成された酸化物が前記2つの基材を接合することを特徴とする。
 また、少なくともどちらか一方が樹脂である2つの基材を備えた接合構造体の製造方法において、前記基材にP又はAgの何れかとVとTeとを含む酸化物を供給する工程と、前記酸化物に電磁波を照射し前記基板上で軟化した酸化物が前記2つの基材を接合する工程とを備えることを特徴とする。
 本発明によれば、接合構造体の樹脂基材の劣化を防止することができる。
樹脂基材と別の基材とを酸化物によって接合した接合構造体の斜視図と断面図。 他の接合構造体の斜視図と断面図。 他の接合構造体の斜視図と断面図。 他の接合構造体の斜視図と断面図。 ガラス組成物の示差熱分析で得られるDTA曲線の1例。 充填材添加時の接合構造体の断面図。 金属添加時の接合構造体の断面図。 金属添加時の接合構造体の断面図。 酸化物中の熱膨張係数に傾斜をつけた場合の接合構造体の断面図。 酸化物中の熱膨張係数に傾斜をつけた場合の接合構造体の断面図。 樹脂基材内に素子を封止した場合の接合構造体の断面図。 セラミックス基板上の素子を樹脂ケースで保護したパッケージ電気電子部品の断面図。 樹脂基材上の半導体素子を銅キャップ状の放熱体で封止した電気電子部品の断面図。
 接合構造体は複数の基材が接合するものであり、これらの基材のうち少なくとも一部が樹脂基材である。基材同士を接合する酸化物には、V(バナジウム)、Te(テルル)及びP(リン)が含まれる。または、V、Te及びAg(銀)が含まれる。接合前の酸化物はガラス状態(ガラス組成物)であるが、接合後の酸化物は必ずしもガラス状態を保つ必要はなく、結晶の状態となっていても構わない。
 ガラス組成物がV、Te、Pを含む場合には、ガラス転移温度が230~340℃程度、軟化流動する温度が300~440℃程度である。このガラス組成物は電磁波の吸収能が高く容易に加熱され、ガラス部分を選択的に加熱できるため、接合構造体の樹脂基材の損傷が少ない。
 ガラス組成物がAg、V、Teを含む場合には、ガラス転移温度が160~270℃程度、軟化流動する温度が210~370℃程度であるため、電磁波の照射だけでなく他の加熱手段によって加熱しても樹脂基材の損傷が少ない。
 上述したガラス組成物は、場合によってはFe、Sb、W、Ba、Kの何れかを更に含有させることによって、ガラス構造をより安定に保つことが可能になる。また、Fe、Sbを含有させることで電磁波の吸収が大きくなり発熱しやすくなるため、更に良く軟化流動させることができる。軟化流動させるためには、酸化物がガラス状態であることが必要であり、特にW又はBa又はKを含有させることで、電磁波照射時のガラス組成物の結晶化を抑制することができる。
 使用する電磁波の波長としては、このガラス組成物が効率的に吸収する2000nm以下(レーザ)又は1000mm以下(マイクロ波)が有効である。
 Agが含まれていない酸化物の場合は、酸化物換算でV25が最も多く含有されると電磁波を吸収しやすい。またFe23、Sb23を含有させることによって、特に2000nm以下の波長範囲のレーザを吸収しやすくなる。
 TeとPはガラス化させるための成分であり、これらを含むことで電磁波照射によっても容易にガラス組成物を軟化流動させることができる。Pは低熱膨張化にも有効であるが、酸化物換算でP25の含有量(質量%)をTeO2よりも多くすると転移点Tgが高くなりやすいので、P25の含有量をTeO2の含有量以下にするとよい。
 酸化物の有効な組成範囲は、上記条件を満たした上で、次の酸化物換算でV25が17~50質量%、TeO2が20~33質量%、P25が4~12質量%である。レーザ吸収特性が更に良くなる組成範囲として、V25が37~50質量%、TeO2が20~32質量%、P25が6~12質量%、Fe23が10~19質量%が好ましい。
 または、V25が17~50質量%、TeO2が25~40質量%、Ag2Oが20~50質量%であり、V25+TeO2+Ag2Oが85質量%以上が好ましい。
 ガラス組成物がAg、V、Teを含む場合には、酸化物状態でAg2O、V25、TeO2の含有量の合計を85mass%以上とし、なおかつAg2O含有量が30mass%以下、V25含有量が25mass%以上となるようにすることで、特に抵抗率の高いガラス組成物が得られ、基材間の絶縁を確保するのに有効である。
 上述したガラス組成物に対し、例えば、SiO2、ZrO2、Al23、Nb25、Z
rSiO4、Zr2(WO4)(PO42、コージェライト、ムライト、ユークリプタイトなどの充填材を混合することで、基材の材質に応じて熱膨張係数を所定の値に調整して接合強度を高めたり、ガラス組成物自体の強度を高めたりすることが可能である。接合する基材に大きな熱膨張係数差がある場合、熱膨張係数の異なるガラス組成物を重ねることにより、接合強度を高めることが可能である。
 上述したガラス組成物に対し、例えば、Ag、Au、Pt、Cu、Al、Sn、Zn、Bi、Inなどの導電材を混合することによって、必要に応じて接合する基材間の熱伝導性や電気伝導性を付与することが可能になる。また、導電材として金属粒子を加えると、金属粒子は塑性変形するため、樹脂基材ともう一方の基材との間に大きな熱膨張係数がある場合には熱応力を緩和させることができ、接合強度を高めることが可能となる。
 上述したガラス組成物に樹脂添加物を混合することにより、樹脂基材との接合性をより高めることが可能になる。
 なお、上述したガラス組成物はいずれも環境への配慮から無鉛とする。本発明でいう無鉛とは、RоHS指令(Restriction of Hazardous Substances:2006年7月1日施行)における禁止物質を指定値以下の範囲で含有することを容認するものとする。
 以下、本発明の実施形態について図面を参照しながらより詳細に説明する。ただし、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。
 接合構造体の模式図を図1に示す。図1は樹脂基材1と別の基材2とをガラス組成物によって接合した構造である。ここでいう別の基材2とは、樹脂基材であってもよいし、ガラス、セラミックス、金属、珪素、炭化物などの樹脂とは異なる基材であってもよい。(a)のように同一形状の基板の全面を接合する構造、(b)のように内部にスペースを残す形で接合する構造、(c)のように大きさの異なる基板同士を接合する構造、(d)のように少なくとも一方が板状ではない基材を接合する構造のいずれであってもよい。
 接合の際にガラス組成物を加熱して軟化流動させる必要があるが、樹脂基材1(基板を含む)にポリイミドなどの耐熱性に優れる材質を使用している場合は、電気炉などの高温環境に配置する形で加熱してもよいが、耐熱性に劣る材質の場合は電磁波を利用してガラス組成物部分を選択的に加熱することが有効である。
 樹脂基材は特に制限されるところではなく、結晶質あるいは非晶質のいずれであっても良い。例えば、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリスチレン、ポリ酢酸ビニル、ABS樹脂、AS樹脂、アクリル樹脂、フェノール樹脂、ポリアセタール樹脂、ポリイミド、ポリカーボネイト、変性ポリフェニレンエーテル(PPE)、ポリブチレンテレフタレート(PBT)、ポリアリレート、ポリサルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリイミド樹脂、フッ素樹脂、ポリアミドイミド、エポキシ樹脂、ポリエステル、ポリビニルエステル、フッ素ゴム、シリコーンゴム、アクリルゴムなどが使用できる。
 電磁波の波長として、樹脂基材1における吸収率が低くガラス組成物2における吸収率が高いような領域を選定することで、選択的加熱が可能となる。(a)~(c)のような接合形態では、少なくとも一方の基板が電磁波を透過できることが必要となる。この場合、電磁波を透過できる基材側から電磁波を照射することによって、ガラス組成物2が軟化流動して接合が達成される。(d)のような接合形態では、両方の基材が例え電磁波を透過できなかったとしても、レーザーのような照射領域を限定できるような電磁波を利用すると、例えば図中の矢印4のようにレーザー照射すれば基材の加熱を抑制する形でガラス組成物を軟化流動させることができる。あるいは、一方の基材が金属や一部のセラミックスのように熱伝導率の高い材質の場合、ガラス組成物に近い領域にレーザー照射して基材の熱伝導によってガラス組成物を加熱するという方法をとることもできる。いずれにせよ、樹脂基材1がその耐熱温度よりも低い温度となるようにガラス組成物を選択加熱することがポイントとなる。
 使用する電磁波の波長としては、波長が400~2000nmの範囲にあるレーザーや波長が0.1~1000mmの範囲にあるマイクロ波が有効である。波長が400nm以上の波長のレーザーであれば、基材の樹脂が劣化しにくい。一方、2000nm以下の波長のレーザーでは、基材の樹脂に水分が含まれていても、その水分が発熱して樹脂が溶ける恐れがない。一方、波長が0.1~1000mmの範囲にあるマイクロ波の照射では、酸化物ガラスに半導体的な導電性を付与することによって、電磁波を吸収して選択的な加熱をすることができる。なお、マイクロ波の発信源は特に限定されるものではなく、家庭用電子レンジなどの2.45GHz帯のもので構わない。
 表1に本発明に係る酸化物の特性を示す。表中にはガラス転移点が示されているが、この測定方法は次の通りである。作成したガラスは体積平均粒子径が20μm以下になるまで粉砕し、5℃/minの昇温速度で550℃まで示唆熱分析(DTA)を行うことによって、ガラス転移点(Tg)を測定した。標準試料としてアルミナ粉末を、試料容器としてAlを用いた。図2にガラス組成物の代表的なDTA曲線を示す。図中に示すように、ガラス転移点(Tg)は第一吸熱ピークの開始温度とした。この他に、第一吸熱ピーク温度として屈伏点(Mg)、第二吸熱ピーク温度として軟化点(Ts)、結晶化温度として発熱ピークの開始温度(Tc)が求められる。接合温度は、ガラスの粒径、接合時の加圧条件と保持時間などの様々な因子に依存するため一概には規定できないが、少なくとも粘度=107.65 poiseに相当する軟化点Tsよりは高い温度に加熱する必要がある。軟化点Tsはガラス組成にもよるが、ガラス転移温度Tgよりも50~100℃程度高い温度となる。
 例えば、比較例として表2にいくつかの典型的なガラス組成物の特性を示す。一部にガラス転移温度が低いものが存在するものの、電磁波吸収特性が悪いため選択的な加熱は実質的に不可能であり、上述したような樹脂基材の熱的なダメージを軽減した形での接合は一部の高耐熱樹脂基材に対してのみ可能となる。
 図3に酸化物中に充填材が添加された接合構造体の断面図を示す。充填材4は、酸化物2の内部に分散して配置された構造をとる。充填材4は、酸化物2から成る接合層の厚みよりも十分小さくする必要がある。また、充填材4の混合量は、5~50mass%とするのが好ましい。充填材4の量が5%未満のときは、酸化物2の熱膨張係数の変化がわずかであり、接合性に対する大きな効果は期待できない。充填材4の量が50mass%を超えると、酸化物2の流動性が著しく低下し、良好な接合が期待できなくなる。したがって、充填材4の量としては5~50mass%の範囲とするのが好ましい。
 酸化物2は導電材5を含んでいても構わない。図4に金属添加時の接合構造体の断面図を示す。導電材5としては、Ag、Au、Pt、Cu、Al、Sn、Zn、Bi、Inおよびこれらの元素の合金が考えられる。表1に示すガラス組成物2の熱伝導率は典型的には0.5W/mK程度であり、電気抵抗率は典型的には107~1011Ωcm程度である。すなわち、比較的良好な熱的絶縁体であり、電気的絶縁体でもある。一方、用途によっては、接合される一方の基材から他方の基材に電気を伝えたり、熱を伝えたりすることが要求される場合がある。本実施形態では、導電材5として金属粒子を混合することで、接合を担うガラス組成物2に熱的、あるいは電気的な伝導性を付与する。導電材5としては、ガラス組成物2から成る接合層の厚みよりも十分小さくする必要がある。
 図4(a)のように導電材同士を混合するだけで熱的、あるいは電気的な伝導性が付与されるが、より好ましくは、図4(b)のように導電材5がガラスを軟化流動させるための加熱によって溶融または焼結して、導電材粒子同士が結合されると非常に良好な熱伝導率あるいは電気伝導率が得られる。したがって、導電材5としては、Snなどのように低融点のもの、あるいはAgなどのように焼結し易いものが特に好ましい。例えば、Ag粒子を50~95vol%程度入れると、ガラス組成物2は、Agの熱伝導率425W/mKの10~50%、Agの電気抵抗率4.1μΩcmの2~10倍程度の値が得られ、金属充填材5を混合しない場合と比較して格段に良好な熱的、あるいは電気的な伝導性を獲得する。
 一方で、金属粒子は塑性変形するため、樹脂基材1ともう一方の接合材との間に大きな熱膨張係数がある場合には熱応力を緩和させることができ、接合強度を高めるためにも有効である。この用途の場合は、金属粒子同士が溶融あるいは焼結によって接合されることは必ずしも必要ではなく、添加量としても10~50%程度とするのが好ましい。
 図1におけるガラス組成物2の組成を、酸化物状態でAg2O含有量が30mass%以下、V25含有量が25mass%以上(表1のNo.11~15、17~21、27、29、30)とすることで、ガラス組成物の電気抵抗率を109Ωcm以上とすることができるようになり、接合基材間の絶縁を取りたいような用途においては特に有効である。
 図5に別の実施形態の模式図を示す。本実施形態では、樹脂基材1と別の基材3とが酸化物2によって接合されており、なおかつ酸化物2は充填材4を含んでいる。図5(a)に示すように、樹脂基材1に近い側の充填材4の量と、基材3に近い側の充填材4の量が異なる。あるいは、図5(b)に示すように、基材3に近い側の充填材41の材質と、樹脂基材1に近い側の充填材42の材質が異なる。このような構造とすると、一方の基材側の酸化物2の熱膨張係数と、他方の基材側の酸化物2の熱膨張係数を変えることで、特に熱膨張係数が大きく異なる基材同士の接合強度を高めることが可能とある。
 酸化物2は、樹脂添加物を含んでいてもよい。これにより、特に樹脂基材1との接合性が改善される場合がある。また、酸化物2は塑性変形しにくく、基材との熱膨張係数差が大きい場合には接合強度が低下する場合があるが、塑性変形、あるいは弾性変形する樹脂を混合することで、基材との熱膨張係数差が大きい場合でも応力緩和が起こり接合強度の低下を抑制することができる。樹脂添加物は酸化物中に5~50vоl%に分散しているとよい。
 本発明における樹脂添加物は特に制限されるところではなく、結晶質あるいは非晶質のいずれであっても良い。例えば、ポリエチレン、ポリ塩化ビニル、ポリプロピレン、ポリスチレン、ポリ酢酸ビニル、ABS樹脂、AS樹脂、アクリル樹脂、フェノール樹脂、ポリアセタール樹脂、ポリイミド、ポリカーボネイト、変性ポリフェニレンエーテル(PPE)、ポリブチレンテレフタレート(PBT)、ポリアリレート、ポリサルホン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリイミド樹脂、フッ素樹脂、ポリアミドイミド、エポキシ樹脂、ポリエステル、ポリビニルエステル、フッ素ゴム、シリコーンゴム、アクリルゴムなどが使用できる。
 なお、図1~5の実施形態において、酸化物2は基材1、2、充填材4、導電材5、樹脂添加物と反応して結晶化することがあってもよい。したがって、もともとはガラス組成物を接合剤に用いたとしても、最終的な接合形態において接合層が非晶質である必要はない。
 以下、実施例を用いて更に詳細に説明する。ただし、本発明は、ここで取り上げた実施例の記載に限定されることはなく、適宜組み合わせてもよい。
 本実施例では、表1に示した組成のガラス組成物を作製した。表中に示す酸化物換算の質量比で出発原料を評量した。出発原料としては、(株)高純度化学研究所製の酸化物粉末(純度99.9%)を用いた。一部の試料においては、Ba源およびP源としてラサエ業(株)製のBa(PO32を用いた。出発原料を混合して白金るつぼに入れた。原料中のAg2Oの比率が40mass%以上の場合にはアルミナるつぼを用いた。混合にあたっては、原料粉末への余分な吸湿を避けることを考慮して、金属製スプーンを用いて、るつぼ内で混合した。原料混合粉末が入ったるつぼをガラス溶融炉内に設置し、加熱・融解した。10℃/minの昇温速度で昇温し、設定温度(700~950℃)で融解しているガラスを撹拌しながら1時間保持した。その後、るつぼをガラス溶融炉から取り出し、あらかじめ150℃に加熱しておいた黒鉛鋳型にガラスを鋳込んだ。
 次に、鋳込まれたガラスを、あらかじめ歪取り温度に加熱しておいた歪取り炉に移動し、1時間保持により歪を除去した後、1℃/minの速度で室温まで冷却した。室温まで冷却したガラスを粗粉砕し、ガラス組成物のフリットを作製した。ガラス組成物のフリットは平均体積粒径が20μm以下であり、DTAによりガラス転移温度を測定した。各ガラス組成物のガラス転移温度は表1に示した通りである。
 本実施例では、接合構造体を作製するにあたり、実施例1で作製したガラス組成物のフリットをペーストにした。まず、ガラス組成物のフリットをジェットミルで平均体積粒径が2μm以下に粉砕した。表1のNo.1~10のガラス組成物に対しては、4%の樹脂バインダーを添加した溶剤を混合してペースト化した。ここで、樹脂バインダーにはエチルセルロース、溶剤にはブチルカルビトールアセテートを用いた。ブチルカルビトールアセテートは、No.1~10のガラス組成物とそれ程反応することがない。しかし、溶剤だけでは粘度が低く塗布性が悪いため樹脂バインダーを添加している。なお、エチルセルロースは300℃程度に加熱することで揮発させることが可能であり、No.1~10のガラス組成物を軟化流動させることなく除去可能である。すなわち、No.1~10のガラス組成物を用いたペーストは、接合基材に塗布した後、300℃程度に加熱して溶剤と樹脂バインダーを除去して用いる。
 一方、No.11~33のガラス組成物に対しては、溶剤のみを混合してペースト化した。ここで、溶剤にはαテルピネオールを用いた。αテルピネオールは、No.11~33のガラス組成物とそれ程反応することがない上、比較的高い粘度を有するため、樹脂バインダーを添加しなくても良好な塗布性を有する。なお、No.1~10のガラス組成物に対してαテルピネオールは反応するため溶剤としては用いることができない。αテルピネオールは100~200℃程度に加熱すれば揮発させることが可能であり、No.11~33のガラス組成物を軟化流動させることなく除去できる。すなわち、No.11~33のガラス組成物を用いたペーストは、接合基材に塗布した後、200℃程度に加熱して溶媒を除去して用いる。
 本実施例では、樹脂基材同士の図1(b)のような接合構造体をレーザー加熱により作製する。ここでは、2枚のポリカーボネイト基板を用意した。一方のポリカーボネイトフィルムに正方形の辺をなぞるようにして実施例2で作製したガラス組成物のペーストを塗布した。なお、ガラス組成物は、20mass%V25-35mass%TeO2-45mass%Ag2Oとした。溶剤はαテルピネオールである。ペーストを塗布した基板を100℃に加熱して溶剤を除去した。もう一方のペーストを塗布していない基板上に、ペーストを塗布した基板の塗布面を下にして重ねた。ペースト塗布面に沿ってレーザーを走査させた。レーザーの波長として、400nm、800nm、1100nmの各場合を試したが、いずれの場合もガラス組成物は軟化流動し、樹脂基材を劣化させることなく強固に接合することができた。
 本実施例では、図6に示すように、2枚の樹脂基材1、3の間に、様々な素子6を配置することができる。また、2枚の樹脂基材1、3とガラス組成物2によって封止された構造であるため、水分や埃などから内部の素子6を守ることができる。本実施例の形態では、例えば、素子をOLEDとすれば画像表示装置などに応用展開可能である。
 本実施例では、樹脂基材同士の接合構造体をマイクロ波加熱により作製する。ここでは、2枚のポリイミド基板を用意した。図1(a)に示すように、一方のポリイミドフィルム全面に実施例2で作製したガラス組成物のペーストを塗布した。なお、ガラス組成物は、20mass%V25-35mass%TeO2-45mass%Ag2Oとした。溶剤はαテルピネオールである。ペーストを塗布した基板を100℃に加熱して溶剤を除去した。もう一方のペーストを塗布していないポリイミドフィルムに対して、ペースト塗布面を下にしてペーストを塗布したポリイミドフィルムを被せた。四国計測(株)製マイクロリアクターを用い、2.45GHz帯(波長:125mm)のマイクロ波を照射した。その結果、ガラス組成物が軟化流動し、樹脂基材を劣化させることなく強固に接合することができた。
 本実施例では、ガラスと樹脂の複合シートが形成される。本複合シートは、樹脂特有の軽量性とガラス特有のガスバリア性を備え、この複合シートを実施例3のような封止構造に適用すると、内部の電気電子部品を守ることができる。
 本実施例では、図7に示すように、セラミックス基材7に樹脂ケース8をレーザー加熱により接合する。ここでは、Al23基材とポリイミドケースを用意した。Al23基材に正方形の辺をなぞるようにして実施例2で作製したガラス組成物のペーストを塗布した。なお、ガラス組成物は、43mass%V25-30mass%TeO2-15mass%Fe23-12mass%P25とした。ペースト化のために、エチルセルロース樹脂バインダーとブチルカルビトールアセテート溶剤を添加している。次に、Al23基材を400℃10minで加熱して、樹脂バインダーと溶剤を除去するとともに、ガラス組成物2を一度軟化流動させた。ポリイミドケースを被せた後、ペースト塗布部分をポリイミドケースの上からレーザー走査させた。レーザーの波長は1100nmとした。その結果、ポリイミドケースは劣化せず、Al23基材とポリイミドケースとを強固に接合することができた。
 本実施例では、Al23基材を絶縁基材とし、その上に配線9、受動素子9、能動素子9などを配置したパッケージ電気電子部品に対し、ポリイミドケースが外部からの埃や水分から保護する役割を担う。
 また、Al23基材とポリイミドケースの典型的な熱膨張係数がそれぞれ7、25ppm/℃である。また、本実施例で用いたガラス組成物の熱膨張係数は10ppm/℃である。ポリイミドケースは比較的柔軟だが、Al23基材は殆ど塑性変形しないため、構造によってはガラス組成物2とAl23基材界面の熱膨張係数の差異によって剥離が生じる場合がある。そこで、ガラス組成物2に対して30vol%のZr2(WO4)(PO42を添加して同様の接合構造体を作製した。
 Zr2(WO4)(PO42は負の熱膨張係数をもつため、ガラス組成物2の熱膨張係数をAl23基板に近づける役割をもつ。Zr2(WO4)(PO42を添加した場合でも良好な接合が起きることがわかった。なお、熱膨張係数の調整フィラーは必ずしもZr2(WO4)(PO42である必要はなく、基材の種類に応じてSiO2、ZrO2、Al23、Nb25、ZrSiO4、Zr2(WO4)(PO42、コージェライト、ムライト、ユークリプタイトなどの充填材を用いることができる。
 また、今回の場合、一度、充填材を添加したガラス組成物のペーストをAl23基材に塗布して乾燥させた後、充填材を含まないガラス組成物2のペーストを塗布して乾燥させ、さらにポリイミドケースを被せてレーザーを走査させるという方法をとることもできる。この場合、熱膨張係数の低減はAl23基材に近い側だけに留めることができ、充填材の添加によりポリイミドケースとガラス組成物2の熱膨張係数の差が広がるのを防止することができる。
 本実施例では、樹脂基材と接合される他の基材の熱膨張係数が、樹脂基材の熱膨張係数よりも小さいが、他の基材の熱膨張係数が、樹脂基材の熱膨張係数よりも大きい場合でも同様に接合できる。
 本実施例では、樹脂基材1に放熱体10をレーザー加熱により図1(4)のような形態で接合する。ここでは、ガラスエポキシ樹脂基材と銅キャップ状の放熱体10を用意した。ガラスエポキシ基板に円形に実施例2で作製したガラス組成物のペーストを塗布した。なお、ガラス組成物は、20mass%V25-35mass%TeO2-45mass%Ag2Oとした。また、熱応力緩和材として、30vol%のSn、または30vol%のアクリルゴムを添加したガラス組成物のペーストも試した。
 溶剤はαテルピネオールとした。ペーストを塗布した基材を100℃に加熱して溶剤を除去した。銅キャップをペースト塗布部に重ね、銅キャップの基材近傍の縁に沿ってレーザーを走査させた。レーザーの波長は515nmとした。レーザー照射によりガラスが軟化流動して、基材が劣化することなく銅キャップと基材を強固に接合することができた。特に、Sn、アクリルゴムを添加したものの方が接合性は良好であった。熱応力緩和材として混合する金属、樹脂は、必ずしもSnやアクリルゴムに限定する必要はないことは先述した通りである。
 本実施例の形態は、図8のように放熱体10の内側に半導体チップ11を挿入し、半導体チップ動作時に発生する熱を放熱体10の表面から速やかに放出する用途に適用できる。例えば、ハードディスクなどに応用展開できる。また、半導体チップ11と樹脂基材1の接合部分にも本実施例のペーストを使用することができる。
Figure JPOXMLDOC01-appb-T000001
1・・・樹脂基材
2・・・酸化物(ガラス組成物)
3・・・基材
4・・・充填材
41・・・充填材
42・・・充填材
5・・・導電材
6・・・素子
7・・・セラミックス基材
8・・・樹脂ケース
9・・・配線(受動素子、能動素子)
10・・・放熱体
11・・・半導体チップ

Claims (15)

  1.  少なくともどちらか一方が樹脂である2つの基材を備えた接合構造体において、P又はAgの何れかとVとTeとを含み、前記2枚の基材上で軟化して形成された酸化物が前記2つの基材を接合することを特徴とする接合構造体。
  2.  請求項1において、前記酸化物がV、Te、Pを含み、転移点が340℃以下であることを特徴とする接合構造体。
  3.  請求項1において、前記酸化物がV25、TeO2、P25を含み、酸化物換算でV25>TeO2>P25(mass%)であることを特徴とする接合構造体。
  4.  請求項1において、前記酸化物がV、Te、Agを含み、転移点が270℃以下であることを特徴とする接合構造体。
  5.  請求項1において、前記酸化物がV25、TeO2、Ag2Oを含み、酸化物換算でV25+TeO2+Ag2O≧85mass%であることを特徴とする接合構造体。
  6.  請求項1において、前記酸化物は、Fe、Sb、W、Ba、Kのいずれかを含むことを特徴とする接合構造体。
  7.  請求項5において、酸化物換算でV25≧25mass%、Ag2O≦30mass%であることを特徴とする接合構造体。
  8.  請求項1において、前記酸化物は充填材を含み、前記充填材はSiO2、ZrO2、Al23、Nb25、ZrSiO4、Zr2(WO4)(PO42、コージェライト、ムライト、ユークリプタイトのいずれかを含むことを特徴とする接合構造体。
  9.  請求項8において、前記2つの基材の熱膨張係数が異なり、前記2つの基材の間の前記酸化物の熱膨張係数が、熱膨張係数が小さい前記基材側よりも熱膨張係数が大きい前記基材側で大きいことを特徴とする接合構造体。
  10.  請求項1において、前記酸化物が電磁波の照射によって軟化することを特徴とする接合構造体。
  11.  請求項10において、前記電磁波の波長が2000nm以下のレーザー又は0.1-1000mmのマイクロ波であることを特徴とする接合構造体。
  12.  請求項1において、前記酸化物中に5~50vоl%の樹脂添加物が分散していることを特徴とする接合構造体。
  13.  少なくともどちらか一方が樹脂である2つの基材を備えた接合構造体の製造方法において、前記基材にP又はAgの何れかとVとTeとを含む酸化物を供給する工程と、前記酸化物に電磁波を照射し前記基板上で軟化した酸化物が前記2つの基材を接合する工程とを備えることを特徴とする接合構造体の製造方法。
  14.  請求項13において、前記酸化物がV25、TeO2、P25を含み、酸化物換算でV25>TeO2>P25(mass%)であることを特徴とする接合構造体の製造方法。
  15.  請求項13において、前記酸化物がV25、TeO2、Ag2Oを含み、酸化物換算でV25+TeO2+Ag2O≧85質量%であることを特徴とする接合構造体の製造方法。
PCT/JP2012/079060 2012-11-09 2012-11-09 接合構造体とその製造方法 WO2014073086A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014545517A JP5853106B2 (ja) 2012-11-09 2012-11-09 接合構造体とその製造方法
US14/440,124 US9824900B2 (en) 2012-11-09 2012-11-09 Bonded structure and production method therefor
PCT/JP2012/079060 WO2014073086A1 (ja) 2012-11-09 2012-11-09 接合構造体とその製造方法
TW102137903A TWI513782B (zh) 2012-11-09 2013-10-21 A joining structure and a method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/079060 WO2014073086A1 (ja) 2012-11-09 2012-11-09 接合構造体とその製造方法

Publications (1)

Publication Number Publication Date
WO2014073086A1 true WO2014073086A1 (ja) 2014-05-15

Family

ID=50684223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079060 WO2014073086A1 (ja) 2012-11-09 2012-11-09 接合構造体とその製造方法

Country Status (4)

Country Link
US (1) US9824900B2 (ja)
JP (1) JP5853106B2 (ja)
TW (1) TWI513782B (ja)
WO (1) WO2014073086A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050136A (ja) * 2014-08-29 2016-04-11 日立化成株式会社 無鉛低融点ガラス組成物並びにこれを含む低温封止用ガラスフリット、低温封止用ガラスペースト、導電性材料及び導電性ガラスペースト並びにこれらを利用したガラス封止部品及び電気電子部品
WO2016157631A1 (ja) * 2015-03-31 2016-10-06 株式会社日立製作所 複合材組成物、及びそれを用いたペースト剤
WO2017126378A1 (ja) * 2016-01-18 2017-07-27 株式会社日立製作所 無鉛ガラス組成物、ガラス複合材料、ガラスペースト、封止構造体、電気電子部品及び塗装部品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI652694B (zh) * 2014-01-17 2019-03-01 日商納美仕有限公司 導電性糊及使用該導電性糊製造半導體裝置之方法
JP6690607B2 (ja) * 2016-08-03 2020-04-28 信越化学工業株式会社 合成石英ガラスリッド及び光学素子用パッケージ
JP6693441B2 (ja) * 2017-02-27 2020-05-13 オムロン株式会社 電子装置およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270140A (ja) * 1990-06-21 1992-09-25 Johnson Matthey Inc シーリングガラス組成物および導電性成分を含む同組成物
JP2011116619A (ja) * 2009-11-07 2011-06-16 Ohara Inc 複合体及びその製造方法、光触媒機能性部材、及び親水性成部材
WO2011108115A1 (ja) * 2010-03-05 2011-09-09 ヤマト電子株式会社 有機el封着用無鉛ガラス材とこれを用いた有機elディスプレイ及び該ディスプレイの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013697A (en) 1990-06-21 1991-05-07 Johnson Matthey Inc. Sealing glass compositions
DE4128804A1 (de) * 1991-08-30 1993-03-04 Demetron Bleifreies, niedrigschmelzendes glas
JPH05175254A (ja) 1991-12-20 1993-07-13 Nippon Electric Glass Co Ltd 低融点接着組成物
JPH05170481A (ja) * 1991-12-20 1993-07-09 Nippon Electric Glass Co Ltd 低融点封着組成物
US6998776B2 (en) * 2003-04-16 2006-02-14 Corning Incorporated Glass package that is hermetically sealed with a frit and method of fabrication
JP2010052990A (ja) * 2008-08-28 2010-03-11 Yamato Denshi Kk 封着用無鉛ガラス材とこれを用いた有機elディスプレイパネル
JP5414409B2 (ja) * 2009-01-16 2014-02-12 日立粉末冶金株式会社 低融点ガラス組成物、それを用いた低温封着材料及び電子部品
US20130000829A1 (en) * 2010-03-17 2013-01-03 Hanita Coatings R.C.A. Ltd Polymeric substrate with laminated glass layer
JP2012106891A (ja) * 2010-11-18 2012-06-07 Asahi Glass Co Ltd 封着用無鉛ガラス、封着材料、封着材料ペースト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270140A (ja) * 1990-06-21 1992-09-25 Johnson Matthey Inc シーリングガラス組成物および導電性成分を含む同組成物
JP2011116619A (ja) * 2009-11-07 2011-06-16 Ohara Inc 複合体及びその製造方法、光触媒機能性部材、及び親水性成部材
WO2011108115A1 (ja) * 2010-03-05 2011-09-09 ヤマト電子株式会社 有機el封着用無鉛ガラス材とこれを用いた有機elディスプレイ及び該ディスプレイの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050136A (ja) * 2014-08-29 2016-04-11 日立化成株式会社 無鉛低融点ガラス組成物並びにこれを含む低温封止用ガラスフリット、低温封止用ガラスペースト、導電性材料及び導電性ガラスペースト並びにこれらを利用したガラス封止部品及び電気電子部品
CN112174522A (zh) * 2014-08-29 2021-01-05 日立化成株式会社 无铅低熔点玻璃组合物以及使用组合物的玻璃材料和元件
WO2016157631A1 (ja) * 2015-03-31 2016-10-06 株式会社日立製作所 複合材組成物、及びそれを用いたペースト剤
WO2017126378A1 (ja) * 2016-01-18 2017-07-27 株式会社日立製作所 無鉛ガラス組成物、ガラス複合材料、ガラスペースト、封止構造体、電気電子部品及び塗装部品
JPWO2017126378A1 (ja) * 2016-01-18 2018-09-06 株式会社日立製作所 無鉛ガラス組成物、ガラス複合材料、ガラスペースト、封止構造体、電気電子部品及び塗装部品
US10913680B2 (en) 2016-01-18 2021-02-09 Hitachi, Ltd. Lead-free glass composition, glass composite material, glass paste, sealing structure, electrical/electronic component and coated component

Also Published As

Publication number Publication date
US20150279700A1 (en) 2015-10-01
TW201428070A (zh) 2014-07-16
TWI513782B (zh) 2015-12-21
JPWO2014073086A1 (ja) 2016-09-08
US9824900B2 (en) 2017-11-21
JP5853106B2 (ja) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5853106B2 (ja) 接合構造体とその製造方法
TWI567043B (zh) A glass composition, a glass frit containing it, a glass paste containing it, and an electrical and electronic component
JP6434942B2 (ja) ガラス組成物、該ガラス組成物を含むガラスフリット、および該ガラス組成物を含むガラスペースト
Licari et al. Adhesives technology for electronic applications: materials, processing, reliability
WO2014128899A1 (ja) 樹脂封止型電子制御装置
KR102163532B1 (ko) 반도체 장치, 세라믹스 회로 기판 및 반도체 장치의 제조 방법
JP6349543B2 (ja) 冷却構造体および冷却構造体の製造方法
KR101572774B1 (ko) 접합체 및 반도체 모듈
US9245832B2 (en) Semiconductor module
WO2013122126A1 (ja) はんだ接合構造、パワーモジュール、ヒートシンク付パワーモジュール用基板及びそれらの製造方法、並びにはんだ下地層形成用ペースト
KR102265576B1 (ko) 전도성 페이스트 및 그를 사용한 반도체 디바이스의 제조 방법
WO2014119579A1 (ja) ガラスフリット
TW201500327A (zh) 接合材、接合構造體
JP5915233B2 (ja) はんだ接合構造、パワーモジュール、ヒートシンク付パワーモジュール用基板及びそれらの製造方法
CN108780784B (zh) 带Ag基底层的金属部件、带Ag基底层的绝缘电路基板、半导体装置、带散热器的绝缘电路基板及带Ag基底层的金属部件的制造方法
WO2016157631A1 (ja) 複合材組成物、及びそれを用いたペースト剤
JP6677886B2 (ja) 半導体装置
JP2008300792A (ja) 半導体装置およびその製造方法
KR102095225B1 (ko) 혼성집적회로 기술을 이용한 칩형 퓨즈
JP2004335872A (ja) 熱伝導性材料およびそれを用いた熱伝導性接合体とその製造方法
JP2013125779A (ja) はんだ接合構造、パワーモジュール、放熱板付パワーモジュール用基板及び冷却器付パワーモジュール用基板
JPH05174623A (ja) 絶縁シートとそれを使った金属配線板およびそれらの製造方法
CN106046919A (zh) 介电厚膜油墨
JP2017118061A (ja) 回路基板の製造方法、回路基板、および半導体装置
TWI691580B (zh) 接合體之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545517

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14440124

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888114

Country of ref document: EP

Kind code of ref document: A1