WO2011105529A1 - 防食塗料組成物及びその製造方法並びに鋼材の防食方法 - Google Patents

防食塗料組成物及びその製造方法並びに鋼材の防食方法 Download PDF

Info

Publication number
WO2011105529A1
WO2011105529A1 PCT/JP2011/054237 JP2011054237W WO2011105529A1 WO 2011105529 A1 WO2011105529 A1 WO 2011105529A1 JP 2011054237 W JP2011054237 W JP 2011054237W WO 2011105529 A1 WO2011105529 A1 WO 2011105529A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
nitrite
cement
styrene
powder
Prior art date
Application number
PCT/JP2011/054237
Other languages
English (en)
French (fr)
Inventor
勉 戸越
慎二 曽根
幹友 池田
孝雄 山本
Original Assignee
新日本製鐵株式会社
ダイキ工業株式会社
エス・エルテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社, ダイキ工業株式会社, エス・エルテック株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2011531690A priority Critical patent/JP5759898B2/ja
Priority to CN201180011135.2A priority patent/CN102782055B/zh
Priority to KR1020127022043A priority patent/KR101431358B1/ko
Publication of WO2011105529A1 publication Critical patent/WO2011105529A1/ja
Priority to HK13102891.1A priority patent/HK1175491A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/06Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances cement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to an anticorrosion coating composition used as an undercoat material on a steel surface, a method for producing the same, and a method for preventing corrosion of a steel material.
  • Steel structures such as steel structures and steel bridges are premised on long-term use. For this reason, these steel structures have been conventionally surface-coated for the purpose of preventing corrosion and ensuring aesthetics.
  • the coating consists of three layers: a base coat for the purpose of preventing rust, a top coat for the purpose of ensuring weather resistance and aesthetics, and an intermediate coat for improving the adhesion between the base coat and the top coat.
  • the coating life is greatly influenced by the coating material and the use environment, but in a relatively severe environment, there are examples of 6 years for the modified epoxy paint and 10 years for the epoxy urethane paint. Accordingly, a plurality of repaints are required during the service period of the steel structure.
  • iron rust prevention methods As one of iron rust prevention methods, a method is known in which the surface of iron is kept alkaline and passivated. In general, it is said that a passivating layer of Fe 2 O 3 is formed in a pH range of 9 to 12.5, and iron becomes stable.
  • a technique for preventing rust by keeping the iron surface alkaline for example, in Patent Document 1, a compound in which carbon fiber is added to a main material composed of a mixture of white cement and ultrafine silica, and cationic styrene butadiene copolymer
  • An invention of a surface coating agent comprising a water-soluble curing agent composed of a mixture of a coalesced polymer and a cyclohexyl methacrylate copolymer is disclosed.
  • Patent Document 2 discloses an invention of a pollution-free rust-proof coating composition obtained by blending slag, mica, and aluminum phosphomolybdate containing an alkali group generated during a scouring process with respect to a resin solid content. Yes.
  • Patent Document 3 a mortar formed by mixing a polymer cement, an aggregate, water, and a lithium nitrite solution is applied to a predetermined portion of a concrete structure through a mortar spray nozzle.
  • the invention of the mortar spraying method characterized by spraying on the surface is disclosed.
  • a passive film Fe 2 O 3
  • an anion adsorbent is contained in the base conditioning material, so that a nest generated at the interface between the rust layer and the steel material (an anion is generated by the corrosion cell formed on the steel surface due to the corrosion of the steel).
  • An invention of a base material adjustment material for steel that positively removes the anions in the portion is disclosed.
  • JP-A-5-155649 Japanese Patent Laid-Open No. 2002-80786 JP 2007-177567 A JP 2004-299979 A
  • the surface coating agent described in Patent Document 1 uses carbon fiber, which is a high-cost material.
  • the coating thickness 700-800 ⁇ m
  • the pollution-free rust-proof coating composition described in Patent Document 2 is said to be excellent in long-term rust-proof properties, but the passive film on the surface of a steel material formed by components such as slag containing an alkali group It is destroyed by a corrosive factor that enters from a flawed part caused by deterioration or external damage, rust progresses in a short time, and the lifetime is as short as about ten years.
  • the present invention has been made in view of such circumstances, and is intended to reduce the surface treatment compared to the prior art, properly contain nitrite used as a rust inhibitor, reduce the diffusion speed of nitrite, and prevent rust prevention of steel materials. It aims at providing the anticorrosion coating composition which can maintain an effect over a long period of time, its manufacturing method, and the anticorrosion method of steel materials.
  • An anticorrosive coating composition according to the present invention includes a compound containing cement, an inorganic powder material, and an expansion material, a polymer emulsion selected from a styrene / butadiene copolymer emulsion or an acrylic / styrene copolymer emulsion, Contains nitrite.
  • a polymer emulsion selected from a styrene / butadiene copolymer emulsion or an acrylic / styrene copolymer emulsion Contains nitrite.
  • nitrite ions NO 2 ⁇
  • passivated film Fe 2 O 3
  • a solid structure can be constructed by adjusting the mass ratio of the cement to the inorganic powder material to be 1.0 to 1.4.
  • Styrene / butadiene copolymer and acrylic / styrene copolymer both have good adhesion to the substrate, have little dependence on temperature, and have excellent elasticity even at low temperatures and relatively high temperatures. . For this reason, the coating film excellent in water permeability and a weather resistance can be obtained.
  • the synthetic resin of the cationic styrene butadiene copolymer system described in Patent Document 1 can be expected to have a rust prevention effect, but the deformation ability (elongation) of the coating film is 0.4%, and the bending axial force is applied to the steel material. If the elongation at the time of acting is 0.5% or more, there are problems such as cracks in the coating film.
  • the epoxy-type synthetic resin described in Patent Document 4 has a smaller elongation than the synthetic resin of the cationic styrene butadiene copolymer system.
  • the compound of the styrene / butadiene copolymer is changed (reduction in the amount of styrene), and further, the compound has a good compatibility with the emulsion (latex) whose composition is changed. In combination, the coating film with an elongation of 5% or more was successfully obtained.
  • the stability of the coating film is taken into consideration, it is possible to sufficiently follow the deformation of the steel structure by setting the elongation percentage of the coating film formed by the anticorrosive coating composition according to the present invention to 5%.
  • an acryl / styrene copolymer was employed as an anionic synthetic resin in order to promote the flow of nitrite ions (NO 2 ⁇ ) toward the anode.
  • the amount of nitrite (solid content) used in the conventional polymer cement mortar described in Patent Document 3 is increased with respect to the total composition, abnormal setting of the cement occurs. Therefore, the upper limit of the amount of nitrite used is 5% by mass in the case of lithium nitrite and 1.25% by mass in the case of calcium nitrite. However, the amount of nitrite needs to be 2.5% by mass or more in order to maintain a long-term rust-preventing effect as the paint is made.
  • the amount of nitrite is increased by setting the amount of styrene / butadiene copolymer to 5% by mass or more, or by setting the amount of acrylic / styrene copolymer to 6% by mass or more.
  • the coating film was given an alkaline atmosphere with a pH of 11.5 to 12.5, thereby enabling the reduction of the ground treatment and the long-term corrosion prevention.
  • the compound contains an inorganic powder material and an expansion material.
  • the nitrite contained in the anticorrosion coating composition according to the present invention is preferably 2.5% by mass or more.
  • the rust prevention effect is the same as that of an epoxy resin paint, and rust is generated at the crosscut portion in the salt spray test 3000 hours.
  • the amount of nitrite in the present invention is 3% by mass, the amount of nitrite is about 2.5 times that of the conventional paint.
  • the nitrite contained in the anticorrosion coating composition is preferably 7.5% by mass or less.
  • the nitrite contained in the anticorrosion coating composition is preferably 9.0% by mass or less.
  • nitrite exceeds 9.0% by mass, the amount of water when mixed with the acrylic / styrene copolymer increases, and voids in the cement hydrate increase. Along with this, moisture easily enters the voids, and the diffusion of nitrite in the cement hydrate is accelerated. As a result, a long-term rust prevention effect cannot be expected.
  • the anticorrosion coating composition may contain 5 to 18% by mass of the styrene / butadiene copolymer.
  • the styrene / butadiene copolymer is less than 5% by mass, the styrene / butadiene copolymer emulsion is less than 18 parts by mass with respect to 100 parts by mass of the cement, and the elongation and breaking strength of the coating film are not improved.
  • the followability with respect to the deformation is reduced. For this reason, a coating-film crack is easy to generate
  • the anticorrosion coating composition may contain 6 to 24% by mass of the acrylic / styrene copolymer.
  • the acrylic / styrene copolymer is less than 6% by mass, the acrylic / styrene copolymer emulsion is less than 11 parts by mass with respect to 100 parts by mass of the cement, and the elongation and breaking strength of the coating film are not improved. The followability with respect to the deformation is reduced.
  • the cement contained in the anticorrosion coating composition is 26 to 39% by mass
  • the inorganic powder material is 20 to 28% by mass
  • the expansion material is 0.5 to 1.5% by mass.
  • the cement contained in the anticorrosion coating composition is preferably 26% by mass or more and 39% by mass or less.
  • the cement is less than 26% by mass
  • the water cement ratio exceeds 1.4 when the nitrite and the styrene / butadiene copolymer are properly mixed, and the required coating strength cannot be obtained.
  • coating film peeling occurs due to insufficient adhesion strength, and cohesive failure occurs due to insufficient compression strength.
  • the cement contained in the anticorrosion coating composition is preferably 26% by mass or more and 38% by mass or less.
  • the cement is less than 26% by mass, the water cement ratio exceeds 1.0 when the nitrite and the acryl / styrene copolymer are properly mixed, and the required coating strength cannot be obtained. Specifically, coating film peeling occurs due to insufficient adhesion strength, and cohesive failure occurs due to insufficient compression strength.
  • the cement exceeds 38% by mass, the required coating film strength can be expected, but the cement becomes excessive, the shrinkage amount increases, and cracks occur on the coating film surface.
  • the coating film becomes cement-rich and the probability of occurrence of cracks during drying increases. In addition, the amount of water increases and the coating strength cannot be secured.
  • the amount of the inorganic powder exceeds 28% by mass, the amount of aggregate powder is excessively increased, the viscosity of the cement hydrate is decreased, and the adhesive strength of the ground surface is decreased.
  • the effect of the expansion material can be expected when the amount of cement used is appropriate.
  • the expansion material is less than 0.5% by mass, when the amount of styrene / butadiene copolymer or acrylic / styrene copolymer is small, the coating film becomes brittle and cannot cope with shrinkage caused by cement.
  • the water content is preferably 13 to 42% by mass.
  • the water is water in the styrene / butadiene copolymer emulsion and in the aqueous nitrous acid solution. If the water content is less than 13% by mass, 2.5% by mass of nitrite cannot be ensured, and if it exceeds 42% by mass, the nitrite exceeds 7.5% by mass, resulting in an excessive specification, resulting in an increase in cost.
  • the water content is preferably 12 to 43% by mass.
  • the water is water in the acrylic / styrene copolymer emulsion and in the aqueous nitrous acid solution. If the water content is less than 12% by mass, 2.5% by mass of nitrite cannot be ensured. If the water content exceeds 43% by mass, the nitrite exceeds 9.0% by mass, resulting in excessive specifications. Cost increases.
  • the inorganic powder material is one selected from cinnabar powder, calcium carbonate, magnesium silicate, slag powder (steel slag powder, etc.), and clay powder. Or it is 2 or more types.
  • cinnabar powder calcium carbonate, magnesium silicate, slag powder (steel slag powder, etc.), and clay powder.
  • slag powder steel slag powder, etc.
  • clay powder is 2 or more types.
  • the use of clay powder makes it possible to ensure water retention, and the effect is further improved.
  • the nitrite is preferably lithium nitrite.
  • the cement is preferably blast furnace cement.
  • the clinker produced in the cement manufacturing process is mainly composed of alite, belite, aluminate phase, and ferrite phase. The inventors have discovered that the aluminate phase in the clinker reacts with calcium nitrite, causing abnormal setting of the cement. Therefore, in order to prevent abnormal setting of the cement, it was decided to use lithium nitrite as the nitrite when the cement is ordinary Portland cement.
  • blast furnace cement was used to reduce the aluminate phase and prevent abnormal cementation.
  • a blast furnace cement and lithium nitrite are combined, since the setting time is extended, the paint drips during construction, and it becomes difficult to ensure the coating thickness.
  • the anticorrosion coating film formed by the anticorrosion coating composition is selected from a compound containing cement, an inorganic powder material, and an expansion material, and a styrene / butadiene copolymer or an acrylic / styrene copolymer. It is an anticorrosion coating film containing a polymer and nitrite.
  • One aspect of the anticorrosion coating film is an anticorrosion coating film containing a styrene / butadiene copolymer as the polymer, wherein 32.5 to 49% by mass of the cement (cement component) and 25 to 35% by mass of the anticorrosion coating film.
  • An inorganic powder material 0.6 to 1.9% by mass of the expansion material, 6 to 23% by mass of the styrene / butadiene copolymer, 3.1 to 9.4% by mass of the nitrite, It contains 7 to 12% by mass of crystallization water, and the inorganic powder material is one or more selected from cinnabar powder, calcium carbonate, magnesium silicate, slag powder, and clay powder. .
  • an anticorrosion coating film containing an acrylic / styrene copolymer as the polymer, wherein 32.5 to 47.5% by mass of the cement (cement component), 25 to 35 %
  • cement cement component
  • the inorganic powder material contains nitrite and further contains 7.8 to 12% by mass of crystallization water
  • the inorganic powder material is one or two kinds selected from cinnabar powder, calcium carbonate, magnesium silicate, slag powder, and clay powder It is characterized by the above.
  • the content of cement, expansion material, nitrite, etc. represents the content of each raw material component of the coating film, and the content of crystal water depends on the hydration reaction with cement, etc. Corresponds to the amount of water incorporated in the coating.
  • the amount of water evaporated as the anticorrosion coating composition was cured was about 20% of the total mass of the anticorrosion coating composition from the experimental results. Therefore, the component ratio of the anticorrosion coating film is obtained by dividing the component ratio of the anticorrosion coating composition by 0.8.
  • the method for producing an anticorrosive coating composition comprises adding the styrene / butadiene copolymer emulsion or the acrylic / styrene copolymer emulsion to the aqueous nitrite solution when producing the anticorrosive paint composition. And a second step of adding the compound containing the cement, the inorganic powder material, and the expansion material to the mixed solution that has been subjected to the constant temperature pretreatment. It is characterized by that.
  • constant temperature pretreatment means a low-speed stirring for a predetermined time in a state in which a mixed solution obtained by adding a styrene / butadiene copolymer emulsion or an acryl / styrene copolymer emulsion to an aqueous nitrite solution while maintaining a predetermined temperature.
  • the predetermined temperature is preferably 30 to 60 ° C., for example, around 40 ° C.
  • the predetermined time is preferably 3 to 10 minutes, for example, about 5 minutes. It is more preferable to leave the premixed mixture at a constant temperature for 5 to 10 days, for example, about 7 days, and then add the compound to the mixture.
  • the viscosity of the admixture is adjusted to a styrene / butadiene copolymer emulsion or acrylic by pretreating a mixture obtained by adding a styrene / butadiene copolymer emulsion or an acrylic / styrene copolymer emulsion to an aqueous nitrite solution.
  • a styrene / butadiene copolymer emulsion or an acrylic / styrene copolymer emulsion to an aqueous nitrite solution / It becomes possible to reduce to about 1/40 of the viscosity of the styrene copolymer emulsion alone. As a result, significant improvement can be expected with respect to the kneading effect with the compound. In addition, it becomes a long-term stable admixture and can be stored for a long time.
  • the steel material corrosion prevention method removes floating rust on the steel material surface, and then applies an undercoat material comprising the anticorrosive coating composition to the steel material surface to form an undercoat layer, and an elongation of 5% or more.
  • An overcoating material for forming a coating film having a rate is applied on the undercoating layer to form an overcoating layer.
  • the coating-film layer which concerns on this invention is formed from the undercoat layer which consists of the said anti-corrosion coating film, and the top-coat layer which consists of a coating film which has an elongation rate of 5% or more, It is characterized by the above-mentioned.
  • the undercoat layer becomes alkaline (pH 11.5 or more) by the cement contained in the anticorrosion coating composition, a passive film (Fe 2 O 3 ) is formed on the steel material surface, and rusting is prevented. (Alkaline anti-corrosion function).
  • the base material may be adjusted to about 3 types of keren to remove floating rust from the surface of the steel material.
  • the passive film is damaged due to some external factor, nitrite is eluted to reconstruct the passive film (self-repair function).
  • the undercoat layer is provided with flexibility by the styrene / butadiene copolymer or the acrylic / styrene copolymer, and an undercoat layer that can follow the deformation of the steel surface is formed.
  • the elongation rate of the anticorrosive coating film according to the present invention is, as described above, because the elongation when the bending axial force is applied to the steel material is 0.5% or more, and the stability of the coating film is considered.
  • the elongation percentage of the top coat film needs to be 5% or more.
  • the overcoat layer may include at least one selected from an epoxy resin, a urethane resin, a polyurethane resin, an acrylic silicon resin, an acrylic urethane resin, a Halth hybrid resin, and the like, or may be composed of a coating film.
  • the topcoat layer may be a single coating film or may be composed of two or more coating films.
  • the total thickness of the overcoat layer is not particularly limited, but may be, for example, 60 to 130 ⁇ m.
  • it may be composed of a first layer having a layer thickness of 60 to 80 ⁇ m and a second layer having a layer thickness of 20 to 40.
  • it may be composed of a first layer having a layer thickness of 40 to 70 ⁇ m and a second layer having a layer thickness of 30 to 40 ⁇ m.
  • the anticorrosion coating composition of the present invention comprises a compound containing cement, an inorganic powder material, and an expansion material, a styrene / butadiene copolymer emulsion or an acrylic / styrene copolymer emulsion, and a nitrite. It is a composition. In order to make the amount of nitrite 2.5% by mass or more, 5% by mass or more of styrene / butadiene copolymer or 6% by mass or more of acrylic / styrene copolymer emulsion is contained. In addition, the cement amount of the entire composition is set to 26% by mass or more.
  • the coating film was given an alkaline atmosphere with a pH of 11.5 to 12.5, and the surface treatment was reduced and anticorrosion was possible for a long period of time.
  • the cement paste after curing appropriately contains nitrite used as a rust preventive agent, the diffusion speed of nitrite is reduced, and the effect of nitrite can be maintained for a long time.
  • the anticorrosion coating composition when the anticorrosion coating composition is produced, a mixed solution obtained by adding a styrene / butadiene copolymer emulsion or an acrylic / styrene copolymer emulsion to an aqueous nitrite solution in advance is subjected to a constant temperature pretreatment. Therefore, the viscosity of the mixed solution can be reduced to about 1/40 of the viscosity of the styrene / butadiene copolymer emulsion alone or the viscosity of the acrylic / styrene copolymer emulsion alone. As a result, significant improvement can be expected with respect to the kneading effect with the compound.
  • the undercoat layer is alkaline, a passive film is formed on the steel surface, and rusting is prevented. This eliminates the need for advanced substrate adjustment on the steel surface. If the passive film is damaged by any external factor, nitrite will elute and reconstruct the passive film.
  • the undercoat layer is provided with flexibility by the styrene / butadiene copolymer or the acrylic / styrene copolymer, and an undercoat layer that can follow the deformation of the steel surface is formed.
  • the present invention is an anticorrosion coating composition used as a primer on the surface of a steel material.
  • a mixed solution obtained by adding a styrene / butadiene copolymer emulsion or an acrylic / styrene copolymer emulsion to an aqueous nitrite solution and pre-isothermal treatment, It is produced by adding a compound containing cement, an inorganic powder material and an expansion material.
  • the styrene / butadiene copolymer is preferably 5 to 18% by mass and the nitrite is preferably 2.5 to 7.5% by mass.
  • the acrylic / styrene copolymer is 6 to 24% by mass and the nitrite is 2.5 to 9.0% by mass.
  • the compounding ratio is more preferably 50 to 70% by mass based on the total composition.
  • an acrylic / styrene copolymer it is more preferably 50-60% by mass of the total composition.
  • the inorganic powder material is made 20 to 28% by mass, and in order to suppress the SO 3 (sulfur trioxide) amount of the coating film, the expansion material is made 0.5 to 1% by mass. More preferably.
  • Nitrite is a substance that imparts a rust prevention effect. Lithium nitrite, sodium nitrite, potassium nitrite, calcium nitrite, magnesium nitrite, barium nitrite and the like can be used, but lithium nitrite and calcium nitrite have good compatibility with cement.
  • Cement keeps the coating film alkaline and has a function as a binder.
  • Cement is not particularly limited, and various portland cements, various mixed cements, blast furnace cement, fly ash cement, etc. can be used. When calcium nitrite is used as the nitrite, use blast furnace cement to improve fluidity. Is preferred.
  • the inorganic powder material enhances the dispersibility and adhesion of the compound.
  • cinnabar powder such as natural cinnabar and regenerated cinnabar, clay powder or calcium carbonate or slag powder can be used, among which calcium carbonate, magnesium silicate, slag powder and clay powder are selected. It is preferable to use two or more species.
  • the coating thickness cannot be secured, and the coating contracts as the cement hardens. For these reasons, it is necessary to add an inorganic powder material to the anticorrosive coating composition. In this case, a stable coating film cannot be obtained unless the particle size of the inorganic powder material is reduced to about 1/3 of the minimum coating film thickness. Therefore, the particle size distribution of the inorganic powder material is such that the minimum coating thickness is 200 ⁇ m and the ratio of the inorganic powder material of 74 ⁇ m or less is 80% or more.
  • ⁇ Expansion material is used to prevent dry shrinkage of the compound.
  • a commercially available material such as anhydrous gypsum can be used as the expansion material.
  • a water reducing agent for reducing moisture and increasing fluidity, a thickening agent for increasing viscosity, and the like may be added as an admixture.
  • the amount of the admixture is preferably 0.4 to 0.8% by mass, and more preferably 0.6% by mass.
  • the amount of the admixture is preferably 0.3 to 0.6% by mass, and more preferably 0.4% by mass.
  • the expected life of each coating is 30 years, 7 years, 8 years, 10 years, material costs and temporary construction
  • the total cost such as costs, assuming that the total cost when using the anticorrosive coating composition according to the present invention is 1, it is 5.0 for epoxy resin coating, 4.1 for alkali coating, and 5 for heavy anticorrosion coating. 0.0. This also shows that the life cycle cost of a steel structure can be significantly reduced by using the anticorrosion coating composition according to the present invention.
  • the coating film formed on the undercoat layer made of the anticorrosive coating composition is required to have a substrate follow-up property, nitrite elution prevention, and excellent weather resistance.
  • a coating material having high weather resistance will be described here.
  • a topcoat material used for a topcoat layer formed directly on the undercoat layer a two-component mixed paint in which a solution obtained by dissolving an acrylic silicon resin in a terpene-based weak solvent is used as a main agent and an isocyanate is hardened. Can be used.
  • the mixing ratio of the main agent and the curing agent is preferably 2 to 15 parts by mass of the main agent with respect to 1 part by mass of the curing agent.
  • an acrylic silicon resin having excellent weather resistance is used as the main component of the main agent, and by mixing isocyanate as a curing agent, the OH group of the main agent and the isocyanate group of the curing agent are combined to form a coating film. Urethane crosslinks are formed in the molecular structure. Thereby, the molecular structure of a coating film becomes a three-dimensional network structure, and the sealing property of a coating film improves. That is, it is possible to prevent nitrite contained in the undercoat layer from eluting into the topcoat layer.
  • bridge crosslinking
  • crosslinking density ratio of the number of the crosslinking points with respect to the whole structural unit
  • softening a pencil hardness is about H
  • the overcoat layer is required to have excellent weather resistance that can maintain gloss over a long period of time. Therefore, as another example of the topcoat material used for forming the topcoat layer, a two-component mixed paint using a solution obtained by dissolving a Hals hybrid resin in a strong solvent such as toluene or xylene as a main agent and an isocyanate as a curing agent is used. Can be used.
  • the mixing ratio of the main agent and the curing agent is preferably 2 to 15 parts by mass of the main agent with respect to 1 part by mass of the curing agent, as in the case of the top coating material.
  • the Hals hybrid resin which is the main component of the main agent, is an acrylic polyol resin obtained by copolymerizing a hindered amine light stabilizer (Hindered Amine Light Stabilizer) and cyclohexyl methacrylate.
  • the hindered amine light stabilizer (hereinafter referred to as “HALS”) captures radicals generated by ultraviolet rays and reacts with the oxygen in the air when the radicals are generated. The phenomenon of radical generation and deterioration of the coating).
  • cyclohexyl methacrylate has high hydrophobicity in addition to not having a benzene skeleton that easily absorbs sunlight and generates radicals.
  • Hals Hybrid resin chemically binds HALS into the resin to prevent bleed out of HALS, suppresses the auto-oxidative degradation reaction of the coating film for a long time, and the high hydrophobicity of cyclohexyl methacrylate makes the coating film Long life has been achieved.
  • the OH group of the main agent and the isocyanate group of the curing agent are combined to form a urethane bridge in the molecular structure, so the molecular structure of the coating film is a three-dimensional network structure.
  • the sealing property of the coating film is improved.
  • An undercoat layer made of the above-described anticorrosion coating composition is applied to the surface of the steel material that has been prepared to form an undercoat layer.
  • the thickness of the undercoat layer is set to 200 ⁇ m to 650 ⁇ m.
  • the standard drying time is about one day, but it varies depending on environmental conditions such as humidity.
  • a first overcoat layer is formed by applying a solution obtained by dissolving an acrylic silicon resin in a weak solvent and an isocyanate and mixing and stirring on the undercoat layer. At this time, the thickness of the first overcoat layer is set to 60 ⁇ m to 80 ⁇ m. The standard drying time is about one day, but it varies depending on environmental conditions such as humidity.
  • a second topcoat layer is formed by applying a solution obtained by dissolving a Hals hybrid resin in a strong solvent and an isocyanate and mixing the stirred topcoat onto the first topcoat layer. At this time, the thickness of the second overcoat layer is set to 20 ⁇ m to 40 ⁇ m. The standard drying time is about one day, but it varies depending on environmental conditions such as humidity.
  • coating method of undercoat and 1st and 2nd topcoat may be any of brush coating, roller coating, and spray coating. When it rains after application, the next coating is performed after about 3 days.
  • the reference example uses an anti-corrosion coating composition according to the present invention as an undercoat material and an overcoat material having a coating film elongation of less than 5%.
  • an anti-corrosion coating composition according to the present invention as an undercoat material and an overcoat material having a coating film elongation of less than 5%.
  • two test pieces were used, and each test piece was coated with a top coat material, and then a ruler was applied to the surface of the test piece and a cross cut was made with a cutter knife.
  • Examples A1 to A6 used lithium nitrite as the nitrite contained in the primer, and Examples A7 to A11 used calcium nitrite.
  • Examples A1 to A6 ordinary Portland cement was used, and in Examples A7 to A11, blast furnace cement was used.
  • a combination of calcium carbonate and magnesium silicate and clay powder in Examples A1, A3 to A5, a combination of dredged sand powder and clay powder in Example A8, and a slag in Example A11 A combination of powder (iron slag powder) and clay powder, slag powder in Example 2, calcium carbonate and magnesium silicate in Examples A6 and 9, cinnabar powder in Example A7, and clay powder in Example A10 did.
  • the overcoat layer has a two-layer structure composed of two types of topcoat materials different for each example, and the total thickness is set to 80 ⁇ m or 100 ⁇ m.
  • the crosslink density of the topcoat material is a comparative evaluation of the crosslink densities of Examples A1 to A11 with respect to the average value of the first topcoat layer and the second topcoat layer.
  • the elongation percentage of the top coat material is an average value of the first top coat layer and the second top coat layer.
  • Reference Examples A1 to A4 lithium nitrite was used as the nitrite contained in the primer and the cement was ordinary Portland cement.
  • Reference Example A5 calcium nitrite was used as the nitrite contained in the primer, and the cement was blast furnace cement.
  • Reference Examples A1, A4 and A5 are calcium carbonate and magnesium silicate
  • Reference Example A2 is a combination of slag powder and clay powder
  • Reference Example A3 is calcium carbonate and magnesium silicate and clay powder. Each combination was used.
  • reference examples A1 and A2 used epoxy resins
  • reference example A3 used weak solvent silicone epoxy resins
  • reference examples A4 and A5 used modified silicone epoxy resins.
  • Comparative Examples A1 to A3 Mighty CF manufactured by Mighty Chemical Co., Ltd., mainly composed of white cement and ultrafine silica was used.
  • the undercoat material of Comparative Examples A6 and A7 was an alkali paint
  • the undercoat material of Comparative Example A8 was a zinc rich paint
  • the undercoat material of Comparative Example A9 was an epoxy resin paint.
  • Comparative Examples A10 to A12 are paints comprising the same components as in the present invention, but the blending ratio is outside the scope of the present invention.
  • On the other hand, as for the overcoat material of Comparative Examples A1 to A12 only Comparative Example A7 used a chlorinated olefin-based paint, and other Comparative Examples used epoxy resin.
  • Comparative Examples A13, A14, A17 to A21, A23, A24, A29, and A30 lithium nitrite was used as the nitrite contained in the primer, and ordinary Portland cement was used as the cement.
  • Comparative Examples A15, A16, A22, A25 to A28, and A31 to 34 used calcium nitrite as the nitrite contained in the primer and blast furnace cement as the cement.
  • an inorganic type powder material in Comparative Examples A13, A14, A16, A25, and A26, a combination of calcium carbonate and magnesium silicate and clay powder is used, and in Comparative Example A27, a combination of cinnabar powder and clay powder.
  • Comparative Examples A30 and A31 a combination of slag powder and clay powder is used.
  • Comparative Examples A15, A19, A20, and A32 to A34 calcium carbonate and magnesium silicate are used, and Comparative Examples A17 and A18 are used.
  • the overcoat material of Comparative Examples A13 to A34 was a weak solvent acrylic urethane resin, and the thickness was all 180 ⁇ m.
  • each coating-film thickness of Table 2, Table 5, and Table 7 is a measured value with a film thickness meter.
  • a cass spray test was carried out at 35 ° C. for 4 hours, then dried at 60 ° C. and a humidity of 50% for 2 hours, and further a moisture resistance test at a temperature of 50 ° C. and a humidity of 95%.
  • the test for a total of 8 hours that is performed for 2 hours is defined as one cycle, and a plurality of cycles are performed.
  • the cast spray test is a test in which the test solution is changed from salt water to a cast solution in the salt spray test method according to JIS Z 2371.
  • the cast solution is an aqueous solution containing 40 g / L of sodium chloride and 0.205 g / L of cupric chloride and adjusted to pH 3.0 with acetic acid.
  • the moisture resistance test was performed in accordance with JIS K 5600-7-3 moisture resistance (discontinuous condensation method).
  • the combined cycle test was conducted 200 times.
  • the rust generation state (rust prevention effect) on the surface of the two test pieces was evaluated based on the criteria shown in Table 9, with a maximum of 10 points. The average of the evaluation points was obtained.
  • the comprehensive evaluation in Table 4, Table 6, and Table 8 is the result of comprehensively evaluating the rust prevention effect, the workability, the ground followability, and the weather resistance.
  • Example adhesion strength test This test determines the degree of adhesion between the base material and the coating film. This time, it was carried out according to the provisions of JIS A 6203 “Polymer dispersion for cement admixture and re-emulsified powder resin”. Table 12 shows the composition of the anticorrosion coating composition of Example A13.
  • Example adhesion strength of A13 is 1.1 N / mm 2, bond strength of 1.0N JIS A bond strength of 6916 to a defined thin intermediate coating material 0.5 N / mm 2 and a thickness intermediate coating material / Mm 2 is satisfied.
  • [Composite cycle test] A composite cycle test was performed on a test piece in which an undercoat material and an overcoat material were applied to a strip-shaped steel plate that had been subjected to a surface base treatment.
  • Tables 13, 14, and 15 show the material configurations and properties of the topcoat materials of Examples and Reference Examples in which combined cycle tests were performed, and Table 16 shows the test results.
  • Table 17, Table 18, Table 19, and Table 20 show the material configurations and test results of the comparative examples.
  • the reference example uses an anti-corrosion coating composition according to the present invention as an undercoat material and an overcoat material having a coating film elongation of less than 5%.
  • two test pieces were used, and each test piece was coated with a top coat material, and then a ruler was applied to the surface of the test piece and a cross cut was made with a cutter knife.
  • Examples B1 to B6 used lithium nitrite as the nitrite contained in the primer, and Examples B7 to B11 used calcium nitrite.
  • Examples B1 to B6 ordinary Portland cement was used, and in Examples B7 to B11, blast furnace cement was used.
  • inorganic powder materials in Examples B1 and B3 to B5, a combination of calcium carbonate and magnesium silicate and clay powder, in Example B8, a combination of dredged sand powder and clay powder, in Example B11, slag A combination of powder (steel slag powder) and clay powder, slag powder in Example B2, calcium carbonate and magnesium silicate in Examples B6 and B9, cinnabar powder in Example B7, and clay powder in Example B10 did.
  • the overcoat layer has a two-layer structure composed of two types of topcoat materials different for each example, and the total thickness is set to 80 ⁇ m or 100 ⁇ m.
  • the crosslink density of the topcoat material is an average value of the first topcoat layer and the second topcoat layer, and is a comparative evaluation of the crosslink densities of Examples B1 to B11.
  • the elongation percentage of the top coat material is an average value of the first top coat layer and the second top coat layer.
  • Reference Examples B1 to B4 lithium nitrite was used as the nitrite contained in the primer, and the cement was ordinary Portland cement.
  • Reference Example B5 calcium nitrite was used as the nitrite contained in the primer, and the cement was blast furnace cement.
  • Reference Examples B1, B4, and B5 are calcium carbonate and magnesium silicate
  • Reference Example B2 is a combination of slag powder and clay powder
  • Reference Example B3 is calcium carbonate and magnesium silicate and clay powder. Each combination was used.
  • Reference Examples B1 and B2 used epoxy resins
  • Reference Example B3 used weak solvent silicone epoxy resins
  • Reference Examples B4 and B5 used modified silicone epoxy resins.
  • Comparative Examples B1 to B3 For the undercoat material of Comparative Examples B1 to B3, Mighty CF manufactured by Mighty Chemical Co., Ltd., mainly composed of white cement and ultrafine silica was used.
  • the undercoat material of Comparative Examples B6 and B7 was an alkali paint
  • the undercoat material of Comparative Example 8 was a zinc rich paint
  • the undercoat material of Comparative Example B9 was an epoxy resin paint.
  • Comparative Examples B10 to B12 are paints comprising the same components as in the present invention but having a blending ratio outside the scope of the present invention.
  • On the other hand, for the overcoat materials of Comparative Examples B1 to B12 only Comparative Example B7 used a chlorinated olefin-based paint, and the other Comparative Examples used epoxy resins.
  • Comparative Examples B13, B14, B17 to B21, B23, B24, B29, and B30 lithium nitrite was used as the nitrite contained in the primer, and ordinary Portland cement was used as the cement.
  • Comparative Examples B15, B16, B22, B25 to B28, and B31 to B34 calcium nitrite was used as the nitrite contained in the primer and blast furnace cement was used as the cement.
  • inorganic powder materials in Comparative Examples B13, B14, B16, B25, and B26, a combination of calcium carbonate and magnesium silicate and clay powder is used, and in Comparative Example B27, a combination of cinnabar powder and clay powder is used.
  • Comparative Examples B30 and B31 a combination of slag powder and clay powder is used.
  • Comparative Examples B15, B19, B20, and B32 to B34 calcium carbonate and magnesium silicate are used, and Comparative Examples B17 and B18 are used.
  • B28 used cinnabar powder
  • Comparative Examples B21, B22 and B29 used slag powder
  • Comparative Examples B23 and B24 used clay powder.
  • the overcoat material of Comparative Examples B13 to B34 was a weak solvent acrylic urethane resin, and the thickness was all 180 ⁇ m.
  • each coating-film thickness of Table 13, Table 17, and Table 19 is a measured value with a film thickness meter.
  • a cass spray test was carried out at 35 ° C. for 4 hours, then dried at 60 ° C. and a humidity of 50% for 2 hours, and further a moisture resistance test at a temperature of 50 ° C. and a humidity of 95%.
  • the test for a total of 8 hours that is performed for 2 hours is defined as one cycle, and a plurality of cycles are performed.
  • the above-mentioned cast spray test is a test in which the test solution is changed from salt water to a cast solution in the salt spray test method according to JIS Z 2371.
  • the cast solution is an aqueous solution containing 40 g / L of sodium chloride and 0.205 g / L of cupric chloride and adjusted to pH 3.0 with acetic acid.
  • the moisture resistance test was performed in accordance with JIS K 5600-7-3 moisture resistance (discontinuous condensation method).
  • the combined cycle test was conducted 200 times.
  • the rust generation state (rust prevention effect) on the surface of the two test pieces was evaluated based on the criteria shown in Table 21, with a maximum of 10 points. The average of the evaluation points was obtained.
  • the comprehensive evaluation in Table 16, Table 18, and Table 20 is the result of comprehensively evaluating the rust prevention effect, the workability, the ground followability, and the weather resistance.
  • Adhesion strength test This test determines the degree of adhesion between the base material and the coating film. This time, it was carried out according to the provisions of JIS A 6203 “Polymer dispersion for cement admixture and re-emulsified powder resin”. Table 24 shows the composition of the anticorrosion coating composition of Example B13.
  • Implementation adhesion strength of Example B13 is 1.1 N / mm 2, bond strength of 1.0N JIS A bond strength of 6916 to a defined thin intermediate coating material 0.5 N / mm 2 and a thickness intermediate coating material / Mm 2 is satisfied.
  • the coating film formed on the steel material surface using the anticorrosion coating composition of the present invention has an alkaline atmosphere with a pH of 11.5 to 12.5. If a coating film layer having such a coating film as an undercoat layer is formed, a passive film is formed on the steel material surface, and rusting is prevented. Moreover, since the nitrite is appropriately held by the cement paste, the rust preventive effect by the nitrite can be maintained for a long time. Further, the polymer made of styrene / butadiene copolymer or acrylic / styrene copolymer imparts flexibility to the undercoat layer and can follow the deformation of the steel surface. These effects eliminate the need for advanced substrate preparation on the steel surface and enable long-term corrosion protection.

Abstract

 セメントと無機系粉材と膨張材とを含有するコンパウンドと、スチレン/ブタジエン共重合体エマルジョンまたはアクリル/スチレン共重合体エマルジョンから選択される高分子エマルジョンと、亜硝酸塩とを含む防食性組成物。

Description

防食塗料組成物及びその製造方法並びに鋼材の防食方法
 本発明は、鋼材表面の下塗り材として使用される防食塗料組成物及びその製造方法並びに鋼材の防食方法に関する。
 本願は、2010年2月26日に、日本に出願された特願2010-042285号および2010年2月26日に、日本に出願された特願2010-042298号に基づき優先権を主張し、その内容をここに援用する。
 鉄骨建築物や鉄骨橋梁等の鋼構造物は、長期間の使用を前提としている。そのため、これらの鋼構造物には、従来より防食と美観の確保を目的として表面塗装が施されている。通常、塗装は、錆止めを目的とする下塗り塗装と、耐候性と美観の確保を目的とする上塗り塗装と、下塗り塗装と上塗り塗装との付着性を向上させるための中塗り塗装の三層から構成されている。塗装寿命は、塗装材料や使用環境に大きく影響されるが、比較的厳しい環境下では、変性エポキシ系塗料で6年、エポキシウレタン系塗料で10年という例もある。従って、鋼構造物の供用期間中において複数回の塗り替え塗装が必要となる。
 ここで、錆発生のメカニズムについて説明しておく。鉄が雨水などに晒されると、鉄表面に吸着した水分は、鉄元素から電子を取り込み、空気中の酸素と化学反応を起こしてOHを生成する。一方、電子が取られたFe2+は水分中に溶け込み、生成されたOHと結合してFe(OH)となり、酸化されてFeOOH、Fe・nHO、Fe・nHOなどの錆に変化する。
 鉄の防錆方法の一つとして、鉄の表面をアルカリ性に保ち、不動態化する方法が知られている。一般に、鉄は、pH9~12.5の範囲においてFeの不動態層が形成され、安定な状態になるといわれている。鉄表面をアルカリ性に保つことで発錆を防ぐ技術として、例えば特許文献1では、白色セメントと超微粒子シリカとの混合物でなる主材にカーボンファイバーを添加配合したコンパウンドと、カチオン性スチレンブタジエン共重合体とメタクリル酸シクロヘキシル共重合体との混合物でなる水溶性硬化剤とからなる表面塗装剤の発明が開示されている。
 また、特許文献2では、樹脂固形分に対し、精練過程で生成されたアルカリ基を含有したスラグ、マイカ、リンモリブデン酸アルミニュウムを配合してなる無公害防錆被覆組成物の発明が開示されている。
 他方、上記アルカリ防食塗装と異なる防食塗装技術として、特許文献3では、ポリマーセメントと骨材と水と亜硝酸リチウム溶液とを混合してなるモルタルをモルタル吹付ノズルを介してコンクリート構造体の所定個所に吹き付けることを特徴とするモルタル吹付工法の発明が開示されている。この方法では、モルタル中に存在する亜硝酸リチウム(LiNO2)の亜硝酸イオン(NO2 )の作用により下記の反応が起こることで不動態被膜(Fe)が形成され、錆の発生が防止される。
 Fe2++2OH+2NO →2NO+Fe+H
 また、特許文献4では、下地調整材に陰イオン吸着剤を含有させることで、さび層と鋼材の界面に生成するネスト(鋼の腐食で鋼表面に形成された腐食セルにより、陰イオンがアノード部に電気化学的に補足され濃縮したもの)中の陰イオンを積極的に除去する鋼材の下地調整材の発明が開示されている。
特開平5-155649号公報 特開2002-80786号公報 特開2007-177567号公報 特開2004-299979号公報
 しかしながら、特許文献1に記載された表面塗装剤は、高コスト材料であるカーボンファイバーを使用している。さらに、塗膜厚みを厚く(700~800μm)することによって、塗膜の亀裂防止並びに水分と酸素の拡散抑制効果を高め、長寿命化を図っているため、従来のエポキシ塗料の3倍程度の高コストを要する。
 特許文献2に記載された無公害防錆被覆組成物は長期防錆性に優れるとされているが、アルカリ基を含有したスラグ等の成分により形成された鋼材表面の不動態被膜は、塗膜劣化あるいは外的損傷により発生するキズ部分より進入する腐食因子により破壊され、錆が短期間に進行し、寿命が十年程度と短い。
 一方、特許文献3に記載された発明では、不動態被膜が何らかの外的要因により損傷した場合には、亜硝酸イオンの働きにより不動態被膜が再構築されるが、鋼材の腐食防止塗料として塗装した場合、亜硝酸塩が可溶性のため防錆剤が溶出する。このため、長期防食性については問題がある。特許文献4に記載された発明では、水性エポキシ樹脂を混和剤としたセメント系下地調整剤に、セメントとの反応によって消費されないカルシウム・アルミニウム複合水酸化物等の陰イオン吸着剤を含有させ、鋼材の腐食の発生を抑制しているが、長期防食性については明らかにされていない。
 本発明はかかる事情に鑑みてなされたもので、従来に比べて下地処理の低減を図り、防錆剤として使用する亜硝酸塩を適正に封じ込めて亜硝酸塩の拡散スピードを低下させ、鋼材の防錆効果を長期に亘って維持することができる防食塗料組成物及びその製造方法並びに鋼材の防食方法を提供することを目的とする。
 本発明に係る防食塗料組成物は、セメントと無機系粉材と膨張材とを含有するコンパウンドと、スチレン/ブタジエン共重合体エマルジョンまたはアクリル/スチレン共重合体エマルジョンから選択される高分子エマルジョンと、亜硝酸塩とを含んでいる。
 上記構成とすることにより、塗料としての施工性や耐久性が確保される。また、鋼材表面にアルカリ性塗膜が形成されるため、鋼材表面が不動態化され、腐食が進行しない。不動態被膜(Fe)が何らかの外的要因により損傷した場合には、亜硝酸イオン(NO2 )がFe2+及びOHと化学反応を起こして不動態被膜(Fe)を再構築する。このため、従来に比べて大幅に鋼構造物の長寿命化を図ることができる。加えて、無機系粉材に対するセメントの質量比が1.0~1.4となるようにすることで、密実な組織を構築することができる。これにより、亜硝酸塩の拡散スピードが低下し、亜硝酸塩の防錆効果を長期に亘って維持することができる。その結果、鋼構造物の供用期間中における塗り替え回数が減少し、塗り替えに掛かる費用を大幅に低減することができる。一方、無機系粉材に対するセメントの質量比が1.0未満もしくは1.4を超えた場合は、亜硝酸塩の拡散スピードを適正に低下させることはできない。
 スチレン/ブタジエン共重合体、アクリル/スチレン共重合体は、ともに下地への付着性が良好で、しかも温度による依存性が少なく、低温や比較的温度の高い領域でも優れた弾性を有している。このため、耐透水性、耐候性に優れた塗膜を得ることができる。
 特許文献1に記載されているカチオン性スチレンブタジエン共重合体系の合成樹脂は、防錆効果は期待できるが、塗膜の変形能力(伸び)が0.4%であり、鋼材に曲げ軸力が作用した際の伸びが0.5%以上であることからすると、塗膜の亀裂等の問題がある。また、特許文献4に記載されているエポキシ系の合成樹脂は、カチオン性スチレンブタジエン共重合体系の合成樹脂より伸びが小さいと一般的に言われている。
 一方、本発明では、スチレン/ブタジエン共重合体を採用するに当たり、スチレン/ブタジエン共重合体の配合を変更(スチレン量の減少)し、さらに、配合を変更したエマルジョン(ラテックス)に相性の良いコンパウンドと組み合わせることにより、伸び率が5%以上の塗膜を得ることに成功した。因みに、塗膜の安定性を考慮した場合、本発明に係る防食塗料組成物によって形成される塗膜の伸び率として5%とすることで、鋼構造物の変形に十分追従することができる。また、別の構成として、亜硝酸塩イオン(NO2 )が陽極に向かう流れを助長するため、アニオン系の合成樹脂としてアクリル/スチレン共重合体を採用した。
 特許文献3などに記載されている従来のポリマーセメントモルタルにおける亜硝酸塩(固形分)の使用量は、全組成物に対する配合比を大きくするとセメントの異常凝結が起きる。そのため、亜硝酸塩の使用量は、亜硝酸リチウムの場合、5質量%、亜硝酸カルシウムの場合、1.25質量%が使用量の上限とされていた。しかし、塗料化に伴い、長期の防錆効果を維持するには、亜硝酸塩量を2.5質量%以上とする必要がある。このため、本発明では、スチレン/ブタジエン共重合体の量を5質量%以上とすること、またはアクリル/スチレン共重合体の量を6質量%以上とすることで、亜硝酸塩の増量を図った。また、セメント量を26質量%以上とすることで、塗膜にpH11.5~12.5のアルカリ雰囲気をもたせ、下地処理の低減及び長期間の防食を可能とした。また併せて、塗料としての抗張力、伸び追従性、及び付着強さを確保するため、コンパウンドに無機系粉材と膨張材を含有させることとした。
 本発明に係る防食塗料組成物に含まれる前記亜硝酸塩は2.5質量%以上であることが好ましい。
 亜硝酸塩が2.5質量%未満であると、防錆効果がエポキシ樹脂塗料並みとなり、塩水噴霧試験3000時間においてクロスカット部に錆が発生する。例えば、本発明における亜硝酸塩量を3質量%とした場合、亜硝酸塩量は従来塗料の約2.5倍となる。
 高分子エマルジョンとしてスチレン/ブタジエン共重合体エマルジョンを選択する場合、防食塗料組成物に含まれる前記亜硝酸塩は、7.5質量%以下であることが好ましい。
 亜硝酸塩が7.5質量%を超えると、スチレン/ブタジエン共重合体と混和する際の水量が増加し、セメント水和物中の空隙が増加する。これに伴い、空隙に水分が浸入しやすくなり、セメント水和物中の亜硝酸塩の拡散が早くなる。その結果、長期的な防錆効果が期待できなくなる。
 高分子エマルジョンとしてアクリル/スチレン共重合体エマルジョンを選択する場合、防食塗料組成物に含まれる前記亜硝酸塩は9.0質量%以下であることが好ましい。
 亜硝酸塩が9.0質量%を超えると、アクリル/スチレン共重合体と混和する際の水量が増加し、セメント水和物中の空隙が増加する。これに伴い、空隙に水分が浸入しやすくなり、セメント水和物中の亜硝酸塩の拡散が早くなる。その結果、長期的な防錆効果が期待できなくなる。
 本発明では、前記防食塗料組成物には、5~18質量%の前記スチレン/ブタジエン共重合体が含まれていてもよい。スチレン/ブタジエン共重合体が5質量%未満であると、セメント100質量部に対してスチレン/ブタジエン共重合体エマルジョンが18質量部未満となり、塗膜の伸度及び破断強度が向上せず、鋼材の変形に対する追従性が低下する。このため、塗膜亀裂が発生しやすく、亀裂部からの錆が進行する。一方、スチレン/ブタジエン共重合体が18質量%を超えると、塗膜として必要以上の変形能力を有する反面、塗膜付着強度が不足して塗膜剥離が起きる。
 あるいは、前記防食塗料組成物には、6~24質量%の前記アクリル/スチレン共重合体が含まれていてもよい。アクリル/スチレン共重合体が6質量%未満であると、セメント100質量部に対してアクリル/スチレン共重合体エマルジョンが11質量部未満となり、塗膜の伸度及び破断強度が向上せず、鋼材の変形に対する追従性が低下する。このため、塗膜亀裂が発生しやすく、亀裂部からの錆が進行する。一方、アクリル/スチレン共重合体が24質量%を超えると、塗膜として必要以上の変形能力を有する反面、塗膜付着強度が不足して塗膜剥離が起きる。
 さらに、本発明では、前記防食塗料組成物に含まれる前記セメントが26~39質量%、前記無機系粉材が20~28質量%、前記膨張材が0.5~1.5質量%である。
 スチレン/ブタジエン共重合体エマルジョンを選択する場合、前記防食塗料組成物に含まれる前記セメントは、26質量%以上、39質量%以下とすることが好ましい。
 セメントが26質量%未満であると、亜硝酸塩とスチレン/ブタジエン共重合体を適正に混和した際に、水セメント比が1.4を上回り、所要の塗膜強度が得られない。具体的には、付着強度不足から塗膜剥離が起きると共に、圧縮強度不足から凝集破壊が発生する。
 一方、39質量%を超えると、所要の塗膜強度は期待できるが、セメント過多となり、収縮量が増大し塗膜面にひび割れが発生する。
 アクリル/スチレン共重合体エマルジョンを選択する場合、前記防食塗料組成物に含まれる前記セメントは、26質量%以上、38質量%以下とすることが好ましい。
 セメントが26質量%未満であると、亜硝酸塩とアクリル/スチレン共重合体を適正に混和した際に、水セメント比が1.0を上回り、所要の塗膜強度が得られない。具体的には、付着強度不足から塗膜剥離が起きると共に、圧縮強度不足から凝集破壊が発生する。一方、セメントが38質量%を超えると、所要の塗膜強度は期待できるが、セメント過多となり、収縮量が増大し塗膜面にひび割れが発生する。
 無機系粉材が20質量%未満であると、塗膜がセメントリッチになって乾燥中におけるひび割れの発生確率が高くなる。また水量が増加し塗膜強度が確保できなくなる。一方、無機系粉材が28質量%を超えると、骨材粉が多くなり過ぎ、セメント水和物の粘度が低下し、下地面の接着力が低下する。
 膨張材は、適正なセメント使用量の時に、その効果が期待できる。膨張材が0.5質量%未満であると、スチレン/ブタジエン共重合体またはアクリル/スチレン共重合体が少ない場合、塗膜が脆くなり、セメントに起因する収縮に対応できない。逆に、スチレン/ブタジエン共重合体またはアクリル/スチレン共重合体が多い場合、必然的に水量も多くなり、塗膜が軟らかくなり過ぎ、膨張材の効果が期待できない。一方、1.5質量%を超えると、コンパウンド中のSO(三酸化硫黄)量が増加して使用限界値(対セメント質量比で8%)に近づき、膨張ひび割れの原因となる。
 高分子エマルジョンとしてスチレン/ブタジエン共重合体エマルジョンを選択する場合、水分は、13~42質量%であることが好ましい。ここでの水分は、スチレン/ブタジエン共重合体エマルジョン中及び亜硝酸水溶液中の水分である。水分が13質量%未満であると、亜硝酸塩2.5質量%が確保できず、42質量%を超えると、亜硝酸塩が7.5質量%を超え過剰スペックとなり、コストが増大する。
 高分子エマルジョンとしてアクリル/スチレン共重合体エマルジョンを選択する場合、水分は、12~43質量%であることが好ましい。ここでの水分は、アクリル/スチレン共重合体エマルジョン中及び亜硝酸水溶液中の水分である。水分が12質量%未満であると、亜硝酸塩2.5質量%が確保できず、43質量%を超えると、亜硝酸塩が9.0質量%を超え過剰スペックとなり。コストが増大する。
 また、塗膜面の白斑やピンホールの低減を図るため、前記無機系粉材は、硅砂粉、炭酸カルシウム、ケイ酸マグネシウム、スラグ粉末(鉄鋼スラグ粉末等)、及びクレー粉から選ばれる1種又は2種以上である。夏季施工で薄塗り施工の際は、ドライアウト(下地に水分をとられて水和反応が阻害され、硬化不良や接着不良を起こす現象。)を防止するうえでメチルセルローズ系の増粘剤に更にクレー粉を使用することで保水性を確保させることができ、効果が一層向上する。
 また、本発明に係る防食塗料組成物では、前記セメントが普通ポルトランドセメントの場合、前記亜硝酸塩は亜硝酸リチウムであることが好ましい。また、前記亜硝酸塩が亜硝酸カルシウムの場合、前記セメントは高炉セメントであることが好ましい。
 セメント製造過程で生成されるクリンカーは、エーライト、ビーライト、アルミネート相、及びフェライト相を主な構成要素とする。本発明者等は、クリンカー中のアルミネート相が亜硝酸カルシウムと反応し、セメントの異常凝結を引き起こすことを発見した。そこで、セメントの異常凝結を防止するため、セメントが普通ポルトランドセメトの場合、亜硝酸塩には亜硝酸リチウムを使用することとした。また、亜硝酸塩として亜硝酸カルシウムを使用する場合は、高炉セメントを使用してアルミネート相の減量を図り、セメントの異常凝結を防止した。
 なお、高炉セメントと亜硝酸リチウムを組み合わせた場合、凝結時間が延びるため、施工時に塗料が垂れ、塗膜厚を確保することが難しくなる。
 また、上記防食塗料組成物によって形成された、防食塗膜は、セメントと無機系粉材と膨張材とを含有するコンパウンドと、スチレン/ブタジエン共重合体またはアクリル/スチレン共重合体から選択される高分子と、亜硝酸塩とを含む防食塗膜である。
 上記防食塗膜一態様は、前記高分子としてスチレン/ブタジエン共重合体を含有する防食塗膜であって、32.5~49質量%の前記セメント(セメント成分)、25~35質量%の前記無機系粉材、0.6~1.9質量%の前記膨張材、6~23質量%の前記スチレン/ブタジエン共重合体、3.1~9.4質量%の前記亜硝酸塩を含み、さらに7~12質量%の結晶水を含み、前記無機系粉材は、硅砂粉、炭酸カルシウム、ケイ酸マグネシウム、スラグ粉末、及びクレー粉から選ばれる1種又は2種以上であることを特徴としている。
 上記防食塗膜の他の態様は、前記高分子としてアクリル/スチレン共重合体を含有する防食塗膜であって、32.5~47.5質量%の前記セメント(セメント成分)、25~35質量%の前記無機系粉材、0.6~1.9質量%の前記膨張材、7.5~30質量%の前記アクリル/スチレン共重合体、3.1~11.2質量%の前記亜硝酸塩を含み、さらに7.8~12質量%の結晶水を含み、前記無機系粉材は、硅砂粉、炭酸カルシウム、ケイ酸マグネシウム、スラグ粉末、及びクレー粉から選ばれる1種又は2種以上であることを特徴としている。
 上記の塗膜の構成において、セメント、膨張材、亜硝酸塩等の含有量は、塗膜の各原料成分の含有量を表しており、結晶水の含有量は、セメントとの水和反応等により塗膜にとりこまれた水分量に対応している。
 上記いずれの態様においても、防食塗料組成物の硬化に伴って蒸発した水分量は、実験結果より、防食塗料組成物の総質量の約20%であった。因って、防食塗膜の成分比は、防食塗料組成物の成分比を0.8で除したものとなる。
 また、本発明に係る防食塗料組成物の製造方法は、上記防食塗料組成物を製造する際、前記亜硝酸塩の水溶液に前記スチレン/ブタジエン共重合体エマルジョンまたは前記アクリル/スチレン共重合体エマルジョンを加えた混和液を恒温前処理する第一の工程と、恒温前処理した前記混和液に、前記セメントと前記無機系粉材と前記膨張材とを含有する前記コンパウンドを加える第二の工程とを有することを特徴としている。
 ここで、「恒温前処理」とは、亜硝酸塩水溶液にスチレン/ブタジエン共重合体エマルジョンまたはアクリル/スチレン共重合体エマルジョンを加えた混和液を所定温度を維持した状態で所定時間、低速撹拌することをいう。所定温度としては30~60℃、例えば40℃前後、また所定時間としては3~10分、例えば5分間程度が好適である。なお、恒温前処理した混和液を5~10日、例えば7日間程度静置した後、該混和液にコンパウンドを加えるとなお良い。
 本発明では、亜硝酸塩水溶液にスチレン/ブタジエン共重合体エマルジョンまたはアクリル/スチレン共重合体エマルジョンを加えた混和液を恒温前処理することにより、混和液の粘度をスチレン/ブタジエン共重合体エマルジョンまたはアクリル/スチレン共重合体エマルジョン単独の粘度の1/40程度に低減することが可能となる。その結果、コンパウンドとの混練効果に関して大幅な改善が期待できる。しかも、長期的に安定した混和液となり、長期保存も可能となる。
 また、本発明に係る鋼材の防食方法は、鋼材表面の浮き錆を除去した後、上記防食塗料組成物からなる下塗り材を前記鋼材表面に塗布して下塗り層を形成し、5%以上の伸び率を有する塗膜を形成する上塗り材を前記下塗り層の上に塗布して上塗り層を形成することを特徴としている。
 そして、本発明に係る塗膜層は、上記防食塗膜からなる下塗り層と、5%以上の伸び率を有する塗膜からなる上塗り層とをから形成されることを特徴としている。
 ここで、上記伸び率は、日本建築学会編「ポリマーセメント系塗膜防水工事施工指針(案)・同解説」の「参考資料2 ポリマーセメント系塗膜防水材の品質試験方法」に記載されている「3.引張強さおよび破断時の伸び率試験」に準拠した測定法によって求められる値である。
 本発明では、上記防食塗料組成物に含まれるセメントによって下塗り層がアルカリ性(pH11.5以上)となるため、鋼材表面に不動態被膜(Fe)が形成され、発錆が防止される(アルカリ防食機能)。これにより、鋼材表面の高度な素地調整が不要となり、コストを低減することができる。例えば、鋼材の表面より浮き錆を除去する3種ケレン程度の素地調整でよい。不動態被膜が何らかの外的要因により損傷した場合には、亜硝酸塩が溶出して不動態被膜を再構築する(自己修復機能)。加えて、スチレン/ブタジエン共重合体またはアクリル/スチレン共重合体によって下塗り層に柔軟性が付与され、鋼材面の変形に追従することが可能な下塗り層が形成される。
 なお、本発明に係る防食塗膜の伸び率は、前述したように、鋼材に曲げ軸力が作用した際の伸びが0.5%以上であることから、塗膜の安定性を考慮した場合、下塗り層の伸びに上塗り塗膜を追従させるためには、上塗り塗膜の伸び率を5%以上とする必要がある。
 上塗層は、エポキシ樹脂、ウレタン樹脂、ポリウレタン樹脂、アクリルシリコン樹脂、アクリルウレタン樹脂、ハルスハイブリッド樹脂等から選択される一種以上を含むも塗膜から構成されていてもよい。上塗り層は、一層の塗膜でもよく、二層以上の塗膜から構成されていてもよい。
 上塗り層の全体層厚は特に制限されないが、例えば60~130μmであってもよい。例えば、層厚60~80μmの第一層と、層厚20~40の第二層から構成されていてもよい。あるいは、層厚40~70μmの第一層と、層厚30~40μmの第二層から構成されていてもよい。
 本発明の防食塗料組成物は、セメントと無機系粉材と膨張材とを含有するコンパウンドと、スチレン/ブタジエン共重合体エマルジョンまたはアクリル/スチレン共重合体エマルジョンと、亜硝酸塩とを含有する防食塗料組成物である。亜硝酸塩量を2.5質量%以上とするため、5質量%以上のスチレン/ブタジエン共重合体または、6質量%以上のアクリル/スチレン共重合体エマルジョンを含有させる。併せて、組成物全体のセメント量を26質量%以上としている。これにより、塗膜にpH11.5~12.5のアルカリ雰囲気をもたせ、下地処理の低減及び長期間の防食を可能とした。加えて、硬化後のセメントペーストが、防錆剤として使用する亜硝酸塩を適正に封じ込めるので、亜硝酸塩の拡散スピードが低下し、亜硝酸塩の効果を長期に亘って維持することができる。
 また、本発明では、防食塗料組成物を製造する際に、予め亜硝酸塩水溶液にスチレン/ブタジエン共重合体エマルジョンまたはアクリル/スチレン共重合体エマルジョンを加えた混和液を恒温前処理する。そのため、混和液の粘度をスチレン/ブタジエン共重合体エマルジョン単独の粘度またはアクリル/スチレン共重合体エマルジョン単独の粘度の1/40程度に減少させることが可能となる。その結果、コンパウンドとの混練効果に関して大幅な改善が期待できる。
 さらに、本発明では、下塗り層がアルカリ性となるため、鋼材表面に不動態被膜が形成され、発錆が防止される。これにより、鋼材表面の高度な素地調整が不要となる。不動態被膜が何らかの外的要因により損傷した場合には、亜硝酸塩が溶出して不動態被膜を再構築する。加えて、スチレン/ブタジエン共重合体またはアクリル/スチレン共重合体によって下塗り層に柔軟性が付与され、鋼材面の変形に追従することが可能な下塗り層が形成される。
 続いて、本発明を具体化した実施の形態について説明するが、本発明は何ら下記実施の形態に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
[下塗り材]
 本発明は、鋼材表面の下塗り材として使用される防食塗料組成物であり、亜硝酸塩水溶液にスチレン/ブタジエン共重合体エマルジョンまたはアクリル/スチレン共重合体エマルジョンを加えて恒温前処理した混和液に、セメントと無機系粉材と膨張材とを含有するコンパウンドを加えることにより作製される。この際、スチレン/ブタジエン共重合体を5~18質量%、亜硝酸塩を2.5~7.5質量%とすることが好ましい。あるいは、アクリル/スチレン共重合体を6~24質量%、亜硝酸塩を2.5~9.0質量%とすることが好ましい。
 防錆品質を低下させない耐久性を確保し、且つ所定の下地塗装厚(200μm~650μm)を確保するには、スチレン/ブタジエン共重合体を10~18質量%、亜硝酸塩を3~4.5質量%とするか、あるいはアクリル/スチレン共重合体を10~20質量%、亜硝酸塩を4~6.5質量%とすることがより好ましい。なお、亜硝酸塩水溶液にスチレン/ブタジエン共重合体エマルジョンまたはアクリル/スチレン共重合体エマルジョンを加えた混和液を恒温前処理しておくと、亜硝酸塩を容易に増量化することができる。
 スチレン/ブタジエン共重合体を用いる場合、コンパウンドの配合としては、全組成物の50~70質量%とすることがより好ましい。アクリル/スチレン共重合体を用いる場合、全組成物の50~60質量%とすることがより好ましい。
 また、塗膜のひび割れを防止するため、無機系粉材を20~28質量%とすると共に、塗膜のSO(三酸化硫黄)量抑制のため、膨張材を0.5~1質量%とすることがより好ましい。
 亜硝酸塩は、防錆効果を付与する物質である。亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸カルシウム、亜硝酸マグネシウム、亜硝酸バリウムなどが使用できるが、亜硝酸リチウムと亜硝酸カルシウムがセメントとの相性が良い。
 セメントは、塗膜をアルカリ性に保つと共に結合材としての機能を有している。セメントは特に限定されず、各種ポルトランドセメントや各種混合セメント、並びに高炉セメントやフライアッシュセメント等が利用できるが、亜硝酸塩に亜硝酸カルシウムを用いる場合は、流動性を高めるため、高炉セメントを用いることが好ましい。
 無機系粉材は、コンパウンドの分散性と付着性を強化する。無機系粉材としては、天然硅砂や再生硅砂などの硅砂粉、クレー粉あるいは炭酸カルシウムやスラグ粉末などが利用できるが、なかでも炭酸カルシウム、ケイ酸マグネシウム、スラグ粉末、及びクレー粉から選ばれる1種又は2種以上とすることが好ましい。
 コンパウンドがセメントと膨張材のみの場合、塗膜厚が確保できず、またセメント硬化に伴って塗膜が収縮する。これらの理由により、防食塗料組成物には無機系粉材を加える必要がある。この際、無機系粉材の粒度を最小塗膜厚の1/3程度にしないと安定した塗膜にならない。そのため無機系粉材の粒度分布は、最小塗膜厚を200μmとして、74μm以下の無機系粉材の比率が80%以上とする。
 膨張材は、コンパウンドの乾燥収縮を防止するために使用する。膨張材としては、無水石膏など市販のものを使用することができる。
 さらに、上記材料に加えて、水分を減らして流動性を高めるための減水剤や、粘性を増すための増粘剤などを混和剤として添加してもよい。スチレン/ブタジエン共重合体を用いる場合、混和剤の量は、0.4~0.8質量%が好ましく、0.6質量%がより好ましい。アクリル/スチレン共重合体を用いる場合、混和剤の量は、0.3~0.6質量%が好ましく、0.4質量%がより好ましい。
 本発明に係る防食塗料組成物を用いた塗装と、エポキシ樹脂塗装、アルカリ塗装、及び重防食塗装について、各塗装の期待寿命を30年、7年、8年、10年として、材料費や仮設費などの総コストを算出したところ、本発明に係る防食塗料組成物を用いた場合の総コストを1とすると、エポキシ樹脂塗装で5.0、アルカリ塗装で4.1、重防食塗装で5.0となった。このことからも、本発明に係る防食塗料組成物を用いることにより、鋼構造物のライフサイクルコストを大幅に低減できることがわかる。
[上塗り材]
 上記防食塗料組成物からなる下塗り層の上に形成される塗膜には、下地追従性、亜硝酸塩の溶出防止、及び優れた耐候性が求められる。変形能力の高い、エポキシ樹脂、ウレタン樹脂等の組合せでも対応できるが、ここでは耐候性の高い上塗材について述べる。例えば、下塗り層の上に直接形成される上塗り層に使用される上塗り材として、アクリルシリコン樹脂をターペン系の弱溶剤に溶解させた溶液を主剤とし、イソシアネートを硬化剤する2液混合型の塗料を用いることができる。なお、主剤と硬化剤との配合比は、硬化剤1質量部に対して主剤を2~15質量部とすることが好ましい。
 上記上塗り材では、優れた耐候性を有するアクリルシリコン樹脂を主剤の主成分として使用すると共に、イソシアネートを硬化剤として混合することにより、主剤のOH基と硬化剤のイソシアネート基が結合して塗膜の分子構造中にウレタン架橋が形成される。これにより、塗膜の分子構造が三次元的な網目構造となり、塗膜のシール性が向上する。即ち、下塗り層に含まれる亜硝酸塩が上塗り層内に溶出するのを防止することができる。また、ウレタン架橋を形成させる際、架橋密度(全体の構造単位に対する架橋点の数の割合)を低めに設定して軟質化(鉛筆硬度でH程度)することにより、下地追従性を確保する。
 また、上塗り層には、光沢を長期間に亘って保持できる優れた耐候性が求められる。そこで、上塗り層形成に使用される上塗り材の他の例として、ハルスハイブリッド樹脂をトルエンやキシレンなどの強溶剤に溶解させた溶液を主剤とし、イソシアネートを硬化剤とする2液混合型の塗料を用いることができる。主剤と硬化剤との配合比は、上塗り材と同様、硬化剤1質量部に対して主剤を2~15質量部とすることが好ましい。
 主剤の主成分であるハルスハイブリッド樹脂は、ヒンダードアミン系光安定剤(Hindered Amine Light Stabilizer)とメタクリル酸シクロヘキシルとを共重合したアクリルポリオール樹脂である。ヒンダードアミン系光安定剤(以下、「HALS」と呼ぶ。)は、紫外線によって発生するラジカルを捕捉して塗膜の自動酸化劣化反応(ラジカルが一端、発生すると、空気中の酸素と反応して連鎖的にラジカルが発生し、塗膜を劣化させる現象)を抑制する。一方、メタクリル酸シクロヘキシルは、太陽光を吸収してラジカルを発生しやすいベンゼン骨格を持たないことに加えて、疎水性が高い。ハルスハイブリッド樹脂は、HALSを樹脂中に化学結合させてHALSのブリードアウトを防止し、塗膜の自動酸化劣化反応を長期的に抑制すると共に、メタクリル酸シクロヘキシルが有する高い疎水性によって、塗膜の長寿命化を実現している。
 さらに、主剤と硬化剤を混合することにより、主剤のOH基と硬化剤のイソシアネート基が結合して分子構造中にウレタン架橋が形成されるので、塗膜の分子構造が三次元的な網目構造となり、塗膜のシール性が向上する。
[鋼材の防食方法]
 次に、腐食の進んだ既設構造物の塗替えを例に採り、本発明の一実施の形態に係る鋼材の防食方法について説明する。
(1)高圧水発生装置(図示省略)によって15MPa~25MPa程度の水圧に加圧された高圧水をノズルから鋼材表面に向けて噴射し、鋼材表面の素地調整(下地調整)を行う。素地調整の程度は3種ケレン程度(SSPC-SP2もしくはSIS St2と同程度)、即ち、旧塗膜、浮き錆を除去して鋼面を現す程度とし、活膜部分は、粉化物、汚れを落として清浄な面とする。なお、サンドブラストや電動工具を用いて素地調整を行ってもよい。
(2)素地調整された鋼材表面に、前述した防食塗料組成物からなる下塗り材を塗布して下塗り層を形成する。その際、下塗り層の厚さは200μm~650μmとする。乾燥時間の目安は約1日間であるが、湿度等の環境条件で変動する。
(3)アクリルシリコン樹脂を弱溶剤に溶解させた溶液とイソシアネートとを混合して攪拌した上塗り材を下塗り層の上に塗布して第一の上塗り層を形成する。その際、第一の上塗り層の厚さは60μm~80μmとする。乾燥時間の目安は約1日間であるが、湿度等の環境条件で変動する。
(4)ハルスハイブリッド樹脂を強溶剤に溶解させた溶液とイソシアネートとを混合して攪拌した上塗り材を第一の上塗り層の上に塗布して第二の上塗り層を形成する。その際、第二の上塗り層の厚さは20μm~40μmとする。乾燥時間の目安は約1日間であるが、湿度等の環境条件で変動する。
 なお、下塗り並びに第一及び第二の上塗りの各塗布方法は、刷毛塗り、ローラ塗り、吹付塗装のいずれでもよい。また、塗布後に雨が降った場合は、3日程度空けて次の塗装を行う。
 以下、本発明に係る実施例について説明する。
[第一実施例]
 第一実施例では、スチレン/ブタジエン共重合体を用いた。
[複合サイクル試験]
 表面下地処理を施した帯板状の鋼板に下塗り材と上塗り材を塗布した試験片について、複合サイクル試験を行った。複合サイクル試験を行った実施例及び参考例の材料構成及び上塗り材の特性を表1、表2、表3に、その試験結果を表4に示す。また、比較例の材料構成及び試験結果を表5、表6、表7、表8に示す。ここで、参考例は、下塗り材として本発明に係る防食塗料組成物を、塗膜の伸び率が5%未満である上塗り材を使用したものである。
 なお、実施例、参考例、比較例とも試験片は各2枚とし、各試験片とも上塗り材を塗布した後、試験片表面に定規を当ててカッターナイフでクロスカットを入れた。
 実施例A1~A6は、下塗り材に含まれる亜硝酸塩に亜硝酸リチウムを使用し、実施例A7~A11では亜硝酸カルシウムを使用した。また、実施例A1~A6は、セメントを普通ポルトランドセメントとし、実施例A7~A11では高炉セメントを使用した。この際、無機系粉材として、実施例A1、A3~A5では炭酸カルシウム及びケイ酸マグネシウムとクレー粉を組み合わせたもの、実施例A8では硅砂粉とクレー粉を組み合わせたもの、実施例A11ではスラグ粉(鉄鋼スラグ粉)とクレー粉を組み合わせたもの、実施例2ではスラグ粉、実施例A6、9では炭酸カルシウム及びケイ酸マグネシウム、実施例A7では硅砂粉、実施例A10ではクレー粉をそれぞれ使用した。
 一方、上塗り層は、各実施例ごとに異なる2種類の上塗り材による2層構成とし、厚さの合計が80μmもしくは100μmとなるようにした。上塗り材の架橋密度は、第一の上塗り層と第二の上塗り層の平均値について、実施例A1~A11の架橋密度を相対的に評価したものである。同様に、上塗り材の伸び率は、第一の上塗り層と第二の上塗り層の平均値である。
 参考例A1~A4は、下塗り材に含まれる亜硝酸塩に亜硝酸リチウムを使用し、セメントは普通ポルトランドセメントとした。参考例A5は、下塗り材に含まれる亜硝酸塩に亜硝酸カルシウムを使用し、セメントは高炉セメントとした。無機系粉材については、参考例A1、A4、A5は炭酸カルシウム及びケイ酸マグネシウム、参考例A2はスラグ粉とクレー粉を組み合わせたもの、参考例A3は炭酸カルシウム及びケイ酸マグネシウムとクレー粉を組み合わせたものをそれぞれ使用した。一方、上塗り材については、参考例A1、A2はエポキシ樹脂、参考例A3は弱溶剤シリコンエポキシ樹脂、参考例A4、A5は変性シリコンエポキシ樹脂を使用した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 比較例A1~A3の下塗り材には、白色セメントと超微粒子シリカを主成分とする、マイティ化学株式会社製のマイティCFを使用した。比較例A4、A5の下塗り材には、シリコン樹脂と亜鉛粉末を主成分とする、プライメットテクノロジー株式会社製のトモリック(登録商標)を使用した。また、比較例A6、A7の下塗り材はアルカリ塗料、比較例A8の下塗り材はジンクリッチ塗料、比較例A9の下塗り材はエポキシ樹脂塗料とした。比較例A10~A12は、本発明と同じ成分からなるが、配合比率が本発明の範囲外となる塗料である。
 一方、比較例A1~A12の上塗り材については、比較例A7のみ塩素化オレフィン系塗料を使用し、それ以外の比較例はエポキシ樹脂を使用した。
 比較例A13、A14、A17~A21、A23、A24、A29、A30は、下塗り材に含まれる亜硝酸塩に亜硝酸リチウムを、セメントに普通ポルトランドセメントを使用した。比較例A15、A16、A22、A25~A28、A31~34は、下塗り材に含まれる亜硝酸塩に亜硝酸カルシウムを、セメントに高炉セメントを使用した。また、無機系粉材として、比較例A13、A14、A16、A25、A26では炭酸カルシウム及びケイ酸マグネシウムとクレー粉を組み合わせたものを使用し、比較例A27では硅砂粉とクレー粉を組み合わせたものを使用し、比較例A30、A31ではスラグ粉とクレー粉を組み合わせたものを使用し、比較例A15、A19、A20、A32~A34では炭酸カルシウム及びケイ酸マグネシウムを使用し、比較例A17、A18、A28では硅砂粉を使用し、比較例A21、A22、A29ではスラグ粉を使用し、比較例A23、A24ではクレー粉を使用した。
 一方、比較例A13~A34の上塗り材は、弱溶剤アクリルウレタン樹脂とし、厚さは全て180μmとした。
 塗布量については、下塗り材の場合、1.0kg/mとし、上塗り材の場合、0.4~0.5kg/mとした。なお、表2、表5、表7の各塗膜厚は膜厚計による計測値である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 複合サイクル試験は、キャス噴霧試験を35℃下で4時間実施した後、60℃、湿度50%の温湿度下で2時間乾燥させ、さらに50℃、湿度95%の温湿度下にて耐湿試験を2時間実施する合計8時間に及ぶ試験を1サイクルとし、複数サイクル実施するものである。
 上記キャス噴霧試験は、JIS Z 2371による塩水噴霧試験方法において、試験液を塩水からキャス溶液に変更した試験である。キャス溶液は、塩化ナトリウム40g/Lと塩化第二銅0.205g/Lを含み、酢酸でpH3.0に調製した水溶液である。
 また、耐湿試験は、JIS K 5600-7-3耐湿性(不連続結露法)に則って実施した。
 複合サイクル試験は200回実施した。そして、実施例、参考例、比較例とも2枚の試験片表面の錆の発生状態(防錆効果)について、表9に示した基準に基づいて10点満点で評価し、2枚の試験片の評価点の平均を求めた。なお、表4、表6、表8における総合評価は、防錆効果、施工性、並びに下地追従性及び耐候性について総合的に評価した結果である。
Figure JPOXMLDOC01-appb-T000009
 これらの表より以下のことがわかる。
a)実施例は、全て防錆効果が高く、一部施工性が悪いものがあるが、総合的に高い評価を得ている。
b)参考例は、全て防錆効果及び施工性において優れているが、上塗り層の伸び率が5%未満と低いため、下地追従性が悪い。そのため、総合評価は低いものとなっている。
c)比較例は、全て防錆効果が低く、総合評価も低いものとなっている。
d)架橋密度が高く且つ5%以上の伸び率を有する上塗り材を使用した実施例の総合評価が高い結果となっている。即ち、塗膜のシール性と下地追従性を兼ね備えた塗料が上塗り材として望ましいことがわかる。
[混和安定性]
 亜硝酸リチウム水溶液にスチレン/ブタジエン共重合体エマルジョンを加えた混和液と、亜硝酸カルシウム水溶液にスチレン/ブタジエン共重合体エマルジョンを加えた混和液それぞれについて、恒温前処理直後と恒温前処理後7日間静置した後の性状を表10に対比して示す。ここで、亜硝酸水溶液とスチレン/ブタジエン共重合体エマルジョンとの質量比は1:4である。また、粘度は、BH型粘度計を用いて回転数20rpmで計測したものである。同表より、恒温前処理直後と7日間静置後における濃度、粘度、及びpHに関して大きな変化が見られず、性状が安定していることがわかる。
 なお、両混和液の粘度は40~50mPa・sであり、スチレン/ブタジエン共重合体エマルジョン単独の粘度600~800mPa・sに比べて大幅に流動性が向上していることがわかる。
Figure JPOXMLDOC01-appb-T000010
[抗張力試験]
 本試験は、塗膜の抗張力を判断するものである。実施例A12の防食塗料組成物の配合を表11に示す。塗膜の場合、0.5~1.0N/mm2以上の抗張力が必要であるが、実施例A12の抗張力は1.5N/mm2であり、塗膜として十分な抗張力を保有している。
Figure JPOXMLDOC01-appb-T000011
[破断伸度試験]
 本試験は、塗膜の破断伸度を判断するものがある。実施例の配合は抗張力試験時と同じである。母材の変形に追従するには、鋼材の場合、0.5%以上の伸度が必要であるが、実施例の破断伸度は5%であり、塗膜として十分に母材の変形に追従することができる。因みに、従来品の場合、破断伸度は1.4%レベルである。
[付着強さ試験]
 本試験は、母材と塗膜間の接着度合を判断するものである。今回は、JIS A 6203「セメント混和用ポリマーディスパージョン及び再乳化形粉末樹脂」の規定に準じて実施した。実施例A13の防食塗料組成物の配合を表12に示す。実施例A13の付着強さは1.1N/mm2であり、JIS A 6916に規定された薄塗り塗材の付着強さ0.5N/mm2及び厚塗り塗材の付着強さ1.0N/mm2を満足している。
Figure JPOXMLDOC01-appb-T000012
[第二実施例]
 第二実施例では、アクリル/スチレン共重合体を用いて実験を行った。
[複合サイクル試験]
 表面下地処理を施した帯板状の鋼板に下塗り材と上塗り材を塗布した試験片について、複合サイクル試験を行った。複合サイクル試験を行った実施例及び参考例の材料構成及び上塗り材の特性を表13、表14、表15に、その試験結果を表16に示す。また、比較例の材料構成及び試験結果を表17、表18、表19、表20に示す。ここで、参考例は、下塗り材として本発明に係る防食塗料組成物を、塗膜の伸び率が5%未満である上塗り材を使用したものである。
 なお、実施例、参考例、比較例とも試験片は各2枚とし、各試験片とも上塗り材を塗布した後、試験片表面に定規を当ててカッターナイフでクロスカットを入れた。
 実施例B1~B6は、下塗り材に含まれる亜硝酸塩に亜硝酸リチウムを使用し、実施例B7~B11では亜硝酸カルシウムを使用した。また、実施例B1~B6は、セメントを普通ポルトランドセメントとし、実施例B7~B11では高炉セメントを使用した。この際、無機系粉材として、実施例B1、B3~B5では炭酸カルシウム及びケイ酸マグネシウムとクレー粉を組み合わせたもの、実施例B8では硅砂粉とクレー粉を組み合わせたもの、実施例B11ではスラグ粉(鉄鋼スラグ粉)とクレー粉を組み合わせたもの、実施例B2ではスラグ粉、実施例B6、B9では炭酸カルシウム及びケイ酸マグネシウム、実施例B7では硅砂粉、実施例B10ではクレー粉をそれぞれ使用した。
 一方、上塗り層は、各実施例ごとに異なる2種類の上塗り材による2層構成とし、厚さの合計が80μmもしくは100μmとなるようにした。上塗り材の架橋密度は、第一の上塗り層と第二の上塗り層の平均値であると共に、実施例B1~B11の架橋密度を相対的に評価したものである。同様に、上塗り材の伸び率は、第一の上塗り層と第二の上塗り層の平均値である。
 参考例B1~B4は、下塗り材に含まれる亜硝酸塩に亜硝酸リチウムを使用し、セメントは普通ポルトランドセメントとした。参考例B5は、下塗り材に含まれる亜硝酸塩に亜硝酸カルシウムを使用し、セメントは高炉セメントとした。無機系粉材については、参考例B1、B4、B5は炭酸カルシウム及びケイ酸マグネシウム、参考例B2はスラグ粉とクレー粉を組み合わせたもの、参考例B3は炭酸カルシウム及びケイ酸マグネシウムとクレー粉を組み合わせたものをそれぞれ使用した。
 一方、上塗り材については、参考例B1、B2はエポキシ樹脂、参考例B3は弱溶剤シリコンエポキシ樹脂、参考例B4、B5は変性シリコンエポキシ樹脂を使用した。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 比較例B1~B3の下塗り材には、白色セメントと超微粒子シリカを主成分とする、マイティ化学株式会社製のマイティCFを使用した。比較例B4、B5の下塗り材には、シリコン樹脂と亜鉛粉末を主成分とする、プライメットテクノロジー株式会社製のトモリック(登録商標)を使用した。また、比較例B6、B7の下塗り材はアルカリ塗料、比較例8の下塗り材はジンクリッチ塗料、比較例B9の下塗り材はエポキシ樹脂塗料とした。なお、比較例B10~B12は、本発明と同じ成分からなるが、配合比率が本発明の範囲外となる塗料である。
 一方、比較例B1~B12の上塗り材については、比較例B7のみ塩素化オレフィン系塗料を使用し、それ以外の比較例はエポキシ樹脂を使用した。
 比較例B13、B14、B17~B21、B23、B24、B29、B30は、下塗り材に含まれる亜硝酸塩に亜硝酸リチウムを、セメントに普通ポルトランドセメントを使用した。比較例B15、B16、B22、B25~B28、B31~B34は、下塗り材に含まれる亜硝酸塩に亜硝酸カルシウムを、セメントに高炉セメントを使用した。また、無機系粉材として、比較例B13、B14、B16、B25、B26では炭酸カルシウム及びケイ酸マグネシウムとクレー粉を組み合わせたものを使用し、比較例B27では硅砂粉とクレー粉を組み合わせたものを使用し、比較例B30、B31ではスラグ粉とクレー粉を組み合わせたものを使用し、比較例B15、B19、B20、B32~B34では炭酸カルシウム及びケイ酸マグネシウムを使用し、比較例B17、B18、B28では硅砂粉を使用し、比較例B21、B22、B29ではスラグ粉を使用し、比較例B23、B24ではクレー粉を使用した。
 一方、比較例B13~B34の上塗り材は、弱溶剤アクリルウレタン樹脂とし、厚さは全て180μmとした。
 塗布量については、下塗り材の場合、1.0kg/mとし、上塗り材の場合、0.4~0.5kg/mとした。なお、表13、表17、表19の各塗膜厚は膜厚計による計測値である。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 複合サイクル試験は、キャス噴霧試験を35℃下で4時間実施した後、60℃、湿度50%の温湿度下で2時間乾燥させ、さらに50℃、湿度95%の温湿度下にて耐湿試験を2時間実施する合計8時間に及ぶ試験を1サイクルとし、複数サイクル実施するものである。
 上記キャス噴霧試験は、JIS Z 2371による塩水噴霧試験方法において、試験液を塩水からキャス溶液に変更した試験である。キャス溶液は、塩化ナトリウム40g/Lと塩化第二銅0.205g/Lを含み、酢酸でpH3.0に調製した水溶液である。また、耐湿試験は、JIS K 5600-7-3耐湿性(不連続結露法)に則って実施した。
 複合サイクル試験は200回実施した。そして、実施例、参考例、比較例とも2枚の試験片表面の錆の発生状態(防錆効果)について、表21に示した基準に基づいて10点満点で評価し、2枚の試験片の評価点の平均を求めた。なお、表16、表18、表20における総合評価は、防錆効果、施工性、並びに下地追従性及び耐候性について総合的に評価した結果である。
Figure JPOXMLDOC01-appb-T000021
 これらの表より以下のことがわかる。
a)実施例は、全て防錆効果が高く、一部施工性が悪いものがあるが、総合的に高い評価を得ている。
b)参考例は、全て防錆効果及び施工性において優れているが、上塗り層の伸び率が5%未満と低いため、下地追従性が悪い。そのため、総合評価は低いものとなっている。
c)比較例は、全て防錆効果が低く、総合評価も低いものとなっている。
d)架橋密度が高く且つ5%以上の伸び率を有する上塗り材を使用した実施例の総合評価が高い結果となっている。即ち、塗膜のシール性と下地追従性を兼ね備えた塗料が上塗り材として望ましいことがわかる。
[混和安定性]
 亜硝酸リチウム水溶液にアクリル/スチレン共重合体エマルジョンを加えた混和液と、亜硝酸カルシウム水溶液にアクリル/スチレン共重合体エマルジョンを加えた混和液それぞれについて、恒温前処理直後と恒温前処理後7日間静置した後の性状を表22に対比して示す。ここで、亜硝酸水溶液とアクリル/スチレン共重合体エマルジョンとの質量比は3:4である。また、粘度は、BH型粘度計を用いて回転数20rpmで計測したものである。同表より、恒温前処理直後と7日間静置後における濃度、粘度、及びpHに関して大きな変化が見られず、性状が安定していることがわかる。
 なお、両混和液の粘度は40~50mPa・sであり、アクリル/スチレン共重合体エマルジョン単独の粘度1500~1600mPa・sに比べて大幅に流動性が向上していることがわかる。
Figure JPOXMLDOC01-appb-T000022
[抗張力試験]
 本試験は、塗膜の抗張力を判断するものである。実施例B12の防食塗料組成物の配合を表23に示す。塗膜の場合、0.5~1.0N/mm2以上の抗張力が必要であるが、実施例B12の抗張力は1.5N/mm2であり、塗膜として十分な抗張力を保有している。
Figure JPOXMLDOC01-appb-T000023
[破断伸度試験]
 本試験は、塗膜の破断伸度を判断するものがある。実施例の配合は抗張力試験時と同じである。母材の変形に追従するには、鋼材の場合、0.5%以上の伸度が必要であるが、実施例の破断伸度は5%であり、塗膜として十分に母材の変形に追従することができる。因みに、従来品の場合、破断伸度は1.4%レベルである。
[付着強さ試験]
 本試験は、母材と塗膜間の接着度合を判断するものである。今回は、JIS A 6203「セメント混和用ポリマーディスパージョン及び再乳化形粉末樹脂」の規定に準じて実施した。実施例B13の防食塗料組成物の配合を表24に示す。実施例B13の付着強さは1.1N/mm2であり、JIS A 6916に規定された薄塗り塗材の付着強さ0.5N/mm2及び厚塗り塗材の付着強さ1.0N/mm2を満足している。
Figure JPOXMLDOC01-appb-T000024
 本発明の防食塗料組成物を用いて鋼材表面に形成された塗膜は、pH11.5~12.5のアルカリ雰囲気を有する。このような塗膜を下塗層とする塗膜層をい形成すれば、鋼材表面に不動態被膜が形成され、発錆が防止される。また、セメントペーストにより亜硝酸塩が適正に保持されているので、亜硝酸塩による防錆効果を長期に亘って維持することができる。またスチレン/ブタジエン共重合体またはアクリル/スチレン共重合体からなる高分子により、下塗り層に柔軟性が付与され、鋼材面の変形に追従することが可能となる。これらの効果により、鋼材表面の高度な素地調整が不要となり、長時間の防食が可能となる。

Claims (15)

  1.  セメントと無機系粉材と膨張材とを含有するコンパウンドと、スチレン/ブタジエン共重合体を含むエマルジョンまたはアクリル/スチレン共重合体を含むエマルジョンから選択される高分子エマルジョンと、亜硝酸塩とを含む防食性組成物。
  2.  請求項1に記載の防食性組成物であって、前記高分子エマルジョンがスチレン/ブタジエン共重合体エマルジョンであり、
     26~39質量%の前記セメント、20~28質量%の前記無機系粉材、0.5~1.5質量%の前記膨張材、5~18質量%の前記スチレン/ブタジエン共重合体、2.5~7.5質量%の前記亜硝酸塩を含み、
     さらに13~42質量%の水分を含み、前記無機系粉材は、硅砂粉、炭酸カルシウム、ケイ酸マグネシウム、スラグ粉末、及びクレー粉から選ばれる1種又は2種以上であることを特徴とする防食塗料組成物。
  3.  請求項1に記載の防食性組成物であって、前記高分子エマルジョンがアクリル/スチレン共重合体エマルジョンであり、
     26~38質量%の前記セメント、20~28質量%の前記無機系粉剤、0.5~1.5質量%の前記膨張材、6~24質量%の前記アクリル/スチレン共重合体、2.5~9.0質量%の前記亜硝酸塩を含み、
     さらに12~43質量%の水分を含み、前記無機系粉材は、硅砂粉、炭酸カルシウム、ケイ酸マグネシウム、スラグ粉末、及びクレー粉から選ばれる1種又は2種以上であることを特徴とする防食塗料組成物。
  4.  請求項1~3いずれか一項に記載の防食塗料組成物であって、前記セメントが高炉セメント、且つ前記亜硝酸塩が亜硝酸カルシウムである防食塗料組成物。
  5.  請求項1~3いずれか一項に記載の防食塗料組成物であって、前記セメントが普通ポルトランドセメント、且つ前記亜硝酸塩が亜硝酸リチウムである防食塗料組成物。
  6.  請求項1~3のいずれか1項に記載の防食塗料組成物の製造方法であって、
    前記亜硝酸塩の水溶液にスチレン/ブタジエン共重合体エマルジョンまたはアクリル/スチレン共重合体エマルジョンから選択される前記高分子エマルジョンを加えた混和液を恒温前処理する第一の工程と、恒温前処理した前記混和液に、前記セメントと前記無機系粉材と前記膨張材とを含有する前記コンパウンドを加える第二の工程とを有する防食塗料組成物の製造方法。
  7.  請求項4項に記載の防食塗料組成物の製造方法であって、前記亜硝酸塩の水溶液にスチレン/ブタジエン共重合体エマルジョンまたはアクリル/スチレン共重合体エマルジョンから選択される前記高分子エマルジョンを加えた混和液を恒温前処理する第一の工程と、恒温前処理した前記混和液に、前記セメントと前記無機系粉材と前記膨張材とを含有する前記コンパウンドを加える第二の工程とを有する防食塗料組成物の製造方法。
  8.  請求項5項に記載の防食塗料組成物の製造方法であって、前記亜硝酸塩の水溶液にスチレン/ブタジエン共重合体エマルジョンまたはアクリル/スチレン共重合体エマルジョンから選択される前記高分子エマルジョンを加えた混和液を恒温前処理する第一の工程と、恒温前処理した前記混和液に、前記セメントと前記無機系粉材と前記膨張材とを含有する前記コンパウンドを加える第二の工程とを有する防食塗料組成物の製造方法。
  9.  鋼材表面の浮き錆を除去した後、請求項1~3のいずれか1項に記載の防食塗料組成物からなる下塗り材を前記鋼材表面に塗布して下塗り層を形成し、5%以上の伸び率を有する塗膜を形成する上塗り材を前記下塗り層の上に塗布して上塗り層を形成することを特徴とする鋼材の防食方法。
  10.  鋼材表面の浮き錆を除去した後、請求項4に記載の防食塗料組成物からなる下塗り材を前記鋼材表面に塗布して下塗り層を形成し、5%以上の伸び率を有する塗膜を形成する上塗り材を前記下塗り層の上に塗布して上塗り層を形成することを特徴とする鋼材の防食方法。
  11.  鋼材表面の浮き錆を除去した後、請求項5に記載の防食塗料組成物からなる下塗り材を前記鋼材表面に塗布して下塗り層を形成し、5%以上の伸び率を有する塗膜を形成する上塗り材を前記下塗り層の上に塗布して上塗り層を形成することを特徴とする鋼材の防食方法。
  12.  セメントと無機系粉材と膨張材とを含有するコンパウンドと、スチレン/ブタジエン共重合体またはアクリル/スチレン共重合体から選択される高分子と、亜硝酸塩とを含む防食塗膜。
  13.  請求項12に記載の防食塗膜であって、前記高分子がスチレン/ブタジエン共重合体であり、
     32.5~49質量%の前記セメント、25~35質量%の前記無機系粉材、0.6~1.9質量%の前記膨張材、6~23質量%の前記スチレン/ブタジエン共重合体、3.1~9.4質量%の前記亜硝酸塩を含み、
     さらに7~12質量%の結晶水を含み、前記無機系粉材は、硅砂粉、炭酸カルシウム、ケイ酸マグネシウム、スラグ粉末、及びクレー粉から選ばれる1種又は2種以上であることを特徴とする防食塗膜。
  14.  請求項12に記載の防食塗膜であって、前記高分子がアクリル/スチレン共重合体であり、
     32.5~47.5質量%の前記セメント、25~35質量%の前記無機系粉材、0.6~1.9質量%の前記膨張材、7.5~30質量%の前記アクリル/スチレン共重合体、3.1~11.2質量%の前記亜硝酸塩を含み、
     さらに7.8~12質量%の結晶水を含み、前記無機系粉材は、硅砂粉、炭酸カルシウム、ケイ酸マグネシウム、スラグ粉末、及びクレー粉から選ばれる1種又は2種以上であることを特徴とする防食塗膜。
  15.  請求項12~14いずれか一項に記載の防食塗膜からなる下塗り層と、5%以上の伸び率を有する塗膜からなる上塗り層とから形成されることを特徴とする塗膜層。
PCT/JP2011/054237 2010-02-26 2011-02-25 防食塗料組成物及びその製造方法並びに鋼材の防食方法 WO2011105529A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011531690A JP5759898B2 (ja) 2010-02-26 2011-02-25 防食塗料組成物、防食塗料組成物の製造方法、鋼材の防食方法、防食塗膜、塗膜層
CN201180011135.2A CN102782055B (zh) 2010-02-26 2011-02-25 防腐蚀涂料组合物及其制造方法以及钢材的防腐蚀方法
KR1020127022043A KR101431358B1 (ko) 2010-02-26 2011-02-25 방식 도료 조성물 및 그 제조 방법 및 강재의 방식 방법
HK13102891.1A HK1175491A1 (en) 2010-02-26 2013-03-08 Corrosion-proofing coating composition and process for production thereof, and method for prevention of corrosion in steel material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-042298 2010-02-26
JP2010-042285 2010-02-26
JP2010042285 2010-02-26
JP2010042298 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105529A1 true WO2011105529A1 (ja) 2011-09-01

Family

ID=44506927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054237 WO2011105529A1 (ja) 2010-02-26 2011-02-25 防食塗料組成物及びその製造方法並びに鋼材の防食方法

Country Status (6)

Country Link
JP (1) JP5759898B2 (ja)
KR (1) KR101431358B1 (ja)
CN (1) CN102782055B (ja)
HK (1) HK1175491A1 (ja)
TW (1) TWI435920B (ja)
WO (1) WO2011105529A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101235641B1 (ko) * 2012-10-11 2013-02-21 (주)케미우스코리아 방청 무수축 그라우트재
JP2013185674A (ja) * 2012-03-09 2013-09-19 Honda Motor Co Ltd 等速ジョイント用シャフト
WO2019051415A1 (en) 2017-09-11 2019-03-14 Honeywell International Inc. PAINT COMPOSITIONS CONTAINING COPOLYMER FORMULATIONS FOR ENHANCING ADHESION ON METALLIC SUBSTRATES
JP2019116805A (ja) * 2017-12-27 2019-07-18 株式会社アークリエイト 鉄骨構造物コンクリート杭・柱・地中梁接合部一体化柱脚構造
CN112159948A (zh) * 2020-09-28 2021-01-01 泗县金皖泵业有限公司 一种提高潜油电泵电机头耐腐蚀性能的方法
JP2022529017A (ja) * 2019-04-15 2022-06-16 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング ビスマスおよびリチウムを含む、導電性基材のディップコーティングのための水性組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI638076B (zh) * 2017-06-09 2018-10-11 健行學校財團法人健行科技大學 Concrete structure capable of inhibiting corrosion of steel bars, preparation method thereof and maintenance method thereof
CN109836956B (zh) * 2018-04-18 2020-11-03 上海振华重工(集团)常州油漆有限公司 一种水性环氧防锈底漆的制备方法
CN109439077A (zh) * 2018-11-14 2019-03-08 李家权 一种环保水性防锈漆及其应用
US11248140B2 (en) * 2018-12-28 2022-02-15 Beijing Oriental Yuhong Waterproof Technology Co. Ltd. Highly water-resistant, flexible cementitious coating
CN110746167B (zh) * 2019-09-16 2021-09-07 福州市宇心建材科技有限公司 一种防锈环保水泥基材料及其制备方法和应用
WO2024035207A1 (ko) * 2022-08-11 2024-02-15 성균관대학교산학협력단 부식방지 캡슐, 그의 제조방법, 브레이크 패드, 및 그의 제조방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120676A (ja) * 1982-01-14 1983-07-18 Dainippon Toryo Co Ltd セメント含有塗料組成物
JPS62561A (ja) * 1985-06-26 1987-01-06 Nippon Kasei Kk 防錆被覆組成物
JPS63199772A (ja) * 1987-02-17 1988-08-18 Toagosei Chem Ind Co Ltd 防食用組成物
JPH0565427A (ja) * 1991-06-12 1993-03-19 Dainippon Ink & Chem Inc セメント系被覆組成物
JP2003306370A (ja) * 2002-04-17 2003-10-28 Denki Kagaku Kogyo Kk 吹付け材料及びそれを用いた吹付け工法
JP2005067903A (ja) * 2003-08-21 2005-03-17 Railway Technical Res Inst 塩害対策用補修材料及び構造物の補修方法
JP2005104788A (ja) * 2003-09-30 2005-04-21 Taiheiyo Material Kk セメント混和剤及びモルタル・コンクリート組成物
JP2005213135A (ja) * 2004-02-02 2005-08-11 Asahi Kasei Chemicals Corp セメントモルタル用樹脂水分散体及びその組成物
JP2005281037A (ja) * 2004-03-29 2005-10-13 Sumitomo Osaka Cement Co Ltd 導電性ポリマーセメントモルタル及び当該モルタルを用いた電気防食用保護材。
JP2006016261A (ja) * 2004-07-02 2006-01-19 Denki Kagaku Kogyo Kk 吹付け組成物、吹付けペースト、及びそれを用いた防錆処理方法
JP2006273604A (ja) * 2005-03-28 2006-10-12 Denki Kagaku Kogyo Kk 防錆剤組成物およびその防錆処理方法
JP2010053301A (ja) * 2008-08-29 2010-03-11 Daiki Kogyo Kk 防食塗料組成物及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1148067A (zh) * 1995-10-19 1997-04-23 苏州和泰化工有限公司 防腐蚀腻子涂料

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120676A (ja) * 1982-01-14 1983-07-18 Dainippon Toryo Co Ltd セメント含有塗料組成物
JPS62561A (ja) * 1985-06-26 1987-01-06 Nippon Kasei Kk 防錆被覆組成物
JPS63199772A (ja) * 1987-02-17 1988-08-18 Toagosei Chem Ind Co Ltd 防食用組成物
JPH0565427A (ja) * 1991-06-12 1993-03-19 Dainippon Ink & Chem Inc セメント系被覆組成物
JP2003306370A (ja) * 2002-04-17 2003-10-28 Denki Kagaku Kogyo Kk 吹付け材料及びそれを用いた吹付け工法
JP2005067903A (ja) * 2003-08-21 2005-03-17 Railway Technical Res Inst 塩害対策用補修材料及び構造物の補修方法
JP2005104788A (ja) * 2003-09-30 2005-04-21 Taiheiyo Material Kk セメント混和剤及びモルタル・コンクリート組成物
JP2005213135A (ja) * 2004-02-02 2005-08-11 Asahi Kasei Chemicals Corp セメントモルタル用樹脂水分散体及びその組成物
JP2005281037A (ja) * 2004-03-29 2005-10-13 Sumitomo Osaka Cement Co Ltd 導電性ポリマーセメントモルタル及び当該モルタルを用いた電気防食用保護材。
JP2006016261A (ja) * 2004-07-02 2006-01-19 Denki Kagaku Kogyo Kk 吹付け組成物、吹付けペースト、及びそれを用いた防錆処理方法
JP2006273604A (ja) * 2005-03-28 2006-10-12 Denki Kagaku Kogyo Kk 防錆剤組成物およびその防錆処理方法
JP2010053301A (ja) * 2008-08-29 2010-03-11 Daiki Kogyo Kk 防食塗料組成物及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185674A (ja) * 2012-03-09 2013-09-19 Honda Motor Co Ltd 等速ジョイント用シャフト
KR101235641B1 (ko) * 2012-10-11 2013-02-21 (주)케미우스코리아 방청 무수축 그라우트재
WO2019051415A1 (en) 2017-09-11 2019-03-14 Honeywell International Inc. PAINT COMPOSITIONS CONTAINING COPOLYMER FORMULATIONS FOR ENHANCING ADHESION ON METALLIC SUBSTRATES
EP3681958A4 (en) * 2017-09-11 2021-06-02 Honeywell International Inc. PAINT COMPOSITIONS CONTAINING COPOLYMER FORMULATIONS INTENDED TO IMPROVE ADHESION TO METAL SUBSTRATES
JP2019116805A (ja) * 2017-12-27 2019-07-18 株式会社アークリエイト 鉄骨構造物コンクリート杭・柱・地中梁接合部一体化柱脚構造
JP2022529017A (ja) * 2019-04-15 2022-06-16 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング ビスマスおよびリチウムを含む、導電性基材のディップコーティングのための水性組成物
JP7297092B2 (ja) 2019-04-15 2023-06-23 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング ビスマスおよびリチウムを含む、導電性基材のディップコーティングのための水性組成物
CN112159948A (zh) * 2020-09-28 2021-01-01 泗县金皖泵业有限公司 一种提高潜油电泵电机头耐腐蚀性能的方法

Also Published As

Publication number Publication date
CN102782055A (zh) 2012-11-14
KR101431358B1 (ko) 2014-08-19
JP5759898B2 (ja) 2015-08-05
TWI435920B (zh) 2014-05-01
KR20120120350A (ko) 2012-11-01
JPWO2011105529A1 (ja) 2013-06-20
TW201139570A (en) 2011-11-16
CN102782055B (zh) 2015-10-21
HK1175491A1 (en) 2013-07-05

Similar Documents

Publication Publication Date Title
JP5759898B2 (ja) 防食塗料組成物、防食塗料組成物の製造方法、鋼材の防食方法、防食塗膜、塗膜層
KR101744500B1 (ko) 실란커플링제로 표면이 개질된 무기질 충진재를 포함하는 균열보수용 고탄성 퍼티재의 조성물 및 이를 이용한 균열 보수 공법
JP2010053301A (ja) 防食塗料組成物及びその製造方法
KR101744067B1 (ko) 균열과 파임으로 열화된 고층 건축물 및 아파트 외벽의 보수공법
KR101035904B1 (ko) 나노세라믹과 고분자수지를 포함한 콘크리트 중성화 및 염해 방지용 도료 조성물 및 이를 이용한 방수방식공법
KR102196634B1 (ko) 내화학성 및 내구성이 우수하며 내진 성능을 갖는 콘크리트 구조물 보수용 모르타르 조성물 및 이를 이용한 콘크리트 구조물 보수 및 내진 보강 공법
CN102633471A (zh) 一种具有自修复功能的钢材阻锈与防护涂层及其制备方法
KR101736146B1 (ko) 친환경 보호 코팅제 조성물 및 이를 이용한 시공방법
KR102084603B1 (ko) 침투성 표면강화제와 코팅제를 이용한 모체강화층 및 균열보호층을 형성하는 콘크리트 구조물의 보수공법
KR102193762B1 (ko) 속건성 충진보수재를 이용한 콘크리트 구조물의 복합 보수공법
JP4643318B2 (ja) ポリマーセメント系コンクリート表面被覆材及びその施工方法
KR101865092B1 (ko) 방청용 도료 조성물
KR101551842B1 (ko) 콘크리트 구조물의 단면복구용 모르타르를 이용한 단면복구공법
JP2015078288A (ja) 砂壁状水系塗料組成物及びこの施工方法
JP2018059104A (ja) 鋼材防食用下塗り材
JP2015157892A (ja) 鋼材防食用下塗り材、鋼材の防食塗装方法及び防食鋼材
JP2009007578A (ja) エアゾールスプレー缶用防食塗料及びこれを用いた日常簡易補修工法
CN107285673B (zh) 一种水泥基混凝土防水涂料及其制备和使用方法
KR102600824B1 (ko) 작업성이 우수한 고내식성 중성화 방지 친환경 폴리머 몰탈조성물 및 이를 이용한 콘크리트 단면의 보수방법
KR102051586B1 (ko) 세라믹, 섬유 및 수지를 포함한 방수, 방식 및 보강용 도료 조성물, 및 이를이용한 표면보호, 보수 및 보강공법
JP2018188608A (ja) 建築構造物の防水止水および船底の貝殻不着塗装用吸着材の製造方法と、その止水吸着材施工法
CN112852199A (zh) 一种水泥基钢结构防护涂料的制备方法
KR100770632B1 (ko) 고분자 세라믹스 방식재 및 이를 이용한 콘크리트구조물열화 및 중성화 방지공법
KR100991234B1 (ko) 소듐오쏘실리케이트와 황산아연을 이용한 방수기능을 가진 속경성 보수용 모르타르 조성물 및 이를 이용한 보수방법
JP5740909B2 (ja) セメント材料用付着保持材及び該保持材を用いたコンクリート構造物の補修方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011135.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011531690

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127022043

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747485

Country of ref document: EP

Kind code of ref document: A1