WO2011105157A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2011105157A1
WO2011105157A1 PCT/JP2011/051600 JP2011051600W WO2011105157A1 WO 2011105157 A1 WO2011105157 A1 WO 2011105157A1 JP 2011051600 W JP2011051600 W JP 2011051600W WO 2011105157 A1 WO2011105157 A1 WO 2011105157A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
emitting device
orange
semiconductor light
Prior art date
Application number
PCT/JP2011/051600
Other languages
English (en)
French (fr)
Inventor
吉村 健一
浩史 福永
向星 高橋
尚登 広崎
Original Assignee
シャープ株式会社
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 独立行政法人物質・材料研究機構 filed Critical シャープ株式会社
Priority to US13/580,791 priority Critical patent/US8674392B2/en
Priority to JP2012501712A priority patent/JP5791034B2/ja
Priority to EP11747121.9A priority patent/EP2541630B1/en
Publication of WO2011105157A1 publication Critical patent/WO2011105157A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a light emitting device having a phosphor.
  • LEDs light emitting diodes
  • Semiconductor light emitting devices such as light emitting diodes (LEDs) have the advantage of being small in size, consuming little power and being able to stably emit light with high brightness.
  • the movement to replace lighting fixtures using light emitting devices composed of LEDs that emit light is progressing.
  • LED that emits white light for example, there is a combination of a blue LED and a YAG-based phosphor represented by a composition formula of (Y, Gd) 3 (Al, Ga) 5 O 12 .
  • white light is realized by mixing the blue light of the LED and the yellow light emitted from the YAG phosphor of the phosphor.
  • the red component is insufficient due to the light emission characteristics of the YAG phosphor, and it is unsuitable for emitting warm white light that is close to the color of a light bulb required for home lighting fixtures.
  • a light emitting device that can emit a warm red white color by further combining a nitride red phosphor in addition to a blue LED and a YAG phosphor (for example, , See Patent Document 1).
  • a special color rendering index (R9) that exhibits a high color rendering index (Ra), particularly a red color appearance, at a color temperature in a bulb color region of 3,250 K or less. ) Becomes a light emitting device that emits white light having an excellent value.
  • the red phosphor absorbs the fluorescence emitted from the YAG phosphor, the influence of mutual absorption between the phosphors is large, and the light emission efficiency of the light emitting device is significantly reduced.
  • a configuration that suppresses mutual absorption between phosphors, including a yellow or red phosphor whose intensity at a wavelength of 520 nm of the excitation spectrum is 60% or less of the intensity at the peak wavelength of the excitation spectrum is exemplified (for example, Patent Document 2).
  • the present invention has been made in view of the above problems, and an object of the present invention is to realize a light emitting device that exhibits high color rendering and emits white light in a light bulb color region with high efficiency.
  • a light-emitting device is configured using a phosphor and a semiconductor light-emitting element
  • a phosphor having a wider half-value width of an emission spectrum in order to improve color rendering.
  • the present inventor has a half of the green phosphor contrary to such common technical knowledge. It has been found that by reducing the value width, it is possible to realize a light emitting device that exhibits high color rendering and emits white light in a light bulb color region with high efficiency.
  • the present invention is contrary to conventional technical common sense, and thus could not be easily accomplished even by those skilled in the art.
  • the green phosphor exemplified in Patent Document 2 has an emission spectrum half-width of about 65 nm to 120 nm, and the yellow to red phosphor has an emission spectrum half-width of 4 nm to 120 nm. Comparing the half width of the spectrum with the half width of the emission spectrum of the yellow or red phosphor, the half width of the emission spectrum tends to be equal to that of the green phosphor (paragraph [0028] in Patent Document 2, [0030] to [0028]).
  • a semiconductor light emitting device is a semiconductor light emitting device that emits white light in a light bulb color region, and which absorbs the blue light.
  • the orange phosphor has a peak wavelength of an emission spectrum of 590 nm or more and 630 nm or less, and a half of the peak.
  • the value width is 130 nm or more
  • the half-value width of the emission spectrum of the orange phosphor is wider than the half-value width of the emission spectrum of the green phosphor
  • the peak wavelength of the absorption rate of the orange phosphor is 420 nm or more
  • the orange phosphor The absorption rate of the orange phosphor at the peak wavelength of absorption is ABS (MAX)
  • the absorption rate of the orange phosphor at the wavelength of 530 nm is ABS (530).
  • ABS (530) / ABS to (MAX) ⁇ 0.60 It is characterized by satisfying.
  • the orange phosphor has a peak wavelength of an emission spectrum of 590 nm or more and 630 nm or less, a half width of the peak is 130 nm or more, and an emission spectrum of the orange phosphor.
  • the half width of the orange phosphor is wider than the half width of the emission spectrum of the green phosphor, the orange phosphor has a peak absorption wavelength of 420 nm or more, and the orange phosphor has a peak absorption wavelength of the orange phosphor.
  • ABS (MAX) absorption rate
  • ABS (530) absorption rate of the orange phosphor at a wavelength of 530 nm
  • ABS (530) absorption rate of the orange phosphor at a wavelength of 530 nm
  • FIG. 1 It is sectional drawing which shows schematic structure of the semiconductor device which concerns on this Embodiment. It is a graph which shows the chromaticity point area
  • 6 is a graph showing an emission spectrum of the phosphor powder obtained in Production Example 1-2.
  • 6 is a graph showing an excitation spectrum of the phosphor powder obtained in Production Example 1-2.
  • 6 is a graph showing an absorption spectrum of the phosphor powder obtained in Production Example 1-2.
  • 6 is a graph showing the XRD measurement result of the phosphor powder obtained in Production Example 2-1.
  • 6 is a graph showing an emission spectrum of the phosphor powder obtained in Production Example 2-1. It is a graph which shows the XRD measurement result of the fluorescent substance powder obtained in manufacture example 2-2.
  • 6 is a graph showing an emission spectrum of the phosphor powder obtained in Production Example 2-2.
  • 6 is a graph showing an emission spectrum of the phosphor powder obtained in Production Example 2-3.
  • 6 is a graph showing an emission spectrum of the phosphor powder obtained in Production Example 2-4.
  • 4 is a graph showing an emission spectrum of the phosphor powder obtained in Comparative Production Example 1.
  • 4 is a graph showing an emission spectrum of the light emitting device manufactured in Example 1.
  • 6 is a graph showing an emission spectrum of the light emitting device manufactured in Example 2.
  • 6 is a graph showing an emission spectrum of the light emitting device manufactured in Example 3.
  • 10 is a graph showing an emission spectrum of the light emitting device manufactured in Example 4.
  • 10 is a graph showing an emission spectrum of the light emitting device manufactured in Example 5.
  • 10 is a graph showing an emission spectrum of the light emitting device manufactured in Example 6.
  • 10 is a graph showing an emission spectrum of the light emitting device manufactured in Example 7.
  • 10 is a graph showing an emission spectrum of the light emitting device manufactured in Example 8.
  • 10 is a graph showing an emission spectrum of the light emitting device manufactured in Example 9.
  • 10 is a graph showing an emission spectrum of the light emitting device manufactured in Example 10.
  • 6 is a graph showing an emission spectrum of the light emitting device manufactured in Comparative Example 1.
  • 6 is a graph showing an emission spectrum of a light emitting device manufactured in Comparative Example 2. It is a graph which shows the Li density
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a semiconductor device according to the present embodiment.
  • a semiconductor light emitting device 1 is a semiconductor light emitting device 1 that emits white light in a light bulb color region, and a semiconductor light emitting element 2 that emits blue light, and an orange that absorbs the blue light and emits orange light.
  • a phosphor 13 and a green phosphor 14 that absorbs the blue light and emits green light are provided.
  • the orange phosphor 13 has a peak wavelength of an emission spectrum of 590 nm or more and 630 nm or less, and a half width of the peak is 130 nm or more.
  • the orange phosphor 13 has a peak absorption wavelength of 420 nm or more, and the orange phosphor has an absorption rate of ABS (MAX) at a wavelength of 530 nm.
  • ABS (530) the absorption rate of the phosphor is ABS (530)
  • ABS (MAX) ⁇ 0.60 Meet.
  • Patent Document 2 a phosphor that emits light at a longer wave than the green phosphor in the combination of a blue LED, a green phosphor, and a yellow or red phosphor, as in the present invention (in Patent Document 2, yellow to red fluorescence).
  • Patent Document 2 yellow to red fluorescence.
  • the following two points are significantly different from the configuration according to the present invention. .
  • Patent Document 2 defines an excitation (absorption) rate at a wavelength of 520 nm with respect to the maximum value of the excitation (absorption) spectrum
  • the configuration according to the present invention defines an excitation (absorption) rate at a wavelength of 530 nm. ing.
  • the excitation (absorption) peak exists at 350 nm as in Example 3 of Patent Document 2, and the excitation (absorption) efficiency is gentle up to the green wavelength region.
  • a configuration using a decreasing phosphor is also included. In such a configuration, even if the excitation (absorption) intensity of the wavelength in the green light region is low relative to the excitation (absorption) intensity of the wavelength at the excitation peak, the excitation (absorption) of the wavelength in the blue light region that is the actual excitation light is low. ) Since the intensity and the excitation (absorption) intensity of the wavelength in the green light region are close to each other, if the excitation light is absorbed with high efficiency, the absorption of the green light also increases as a result.
  • the orange phosphor according to the present invention has a peak wavelength range of excitation (absorption) spectrum of 420 nm or more, the above-described problems cannot occur.
  • the half-value width of the emission spectrum of the orange phosphor is defined as 130 nm or more, and the half-value width of the emission spectrum of the green phosphor is the emission of the orange phosphor. Since it is defined to be narrower than the half-value width of the spectrum, the green light absorption of the orange phosphor is further suppressed from the configuration of Patent Document 2. For this reason, even if the excitation (absorption) spectrum of the orange phosphor shifts to a longer wavelength side than Patent Document 2, green absorption is sufficiently suppressed. As a result, a light emitting device that exhibits high color rendering properties and emits white light in the light bulb color region with high efficiency can be realized.
  • the “blue light” means light having an emission spectrum peak at a wavelength of 420 to 480 nm
  • the “green light” has an emission spectrum peak at a wavelength of 500 to 550 nm.
  • the term “orange light” means light having an emission spectrum peak at a wavelength of 570 to 630 nm.
  • the “green phosphor” is a substance that emits the green light when excited by the blue light, and the “orange phosphor” means a substance that emits the orange light.
  • the semiconductor light emitting element 2 is placed on a printed wiring board 3 as a base, and the resin frame 4 placed on the printed wiring board 3 is placed inside the resin frame 4.
  • the semiconductor light emitting element 2 is sealed by being filled with a mold resin 5 made of a translucent resin in which the orange phosphor 13 and the green phosphor 14 are dispersed.
  • the semiconductor light emitting device 2 has an InGaN layer 6 as an active layer, and has a p-side electrode 7 and an n-side electrode 8 sandwiching the InGaN layer 6, and the n-side electrode 8 is connected to the printed wiring board 3.
  • a p-side electrode 7 and an n-side electrode 8 sandwiching the InGaN layer 6, and the n-side electrode 8 is connected to the printed wiring board 3.
  • the p-side electrode 7 of the semiconductor light emitting element 2 is electrically connected to a p-electrode portion 11 provided from the top surface to the back surface of the printed wiring board 3 separately from the n-electrode portion 9 described above via a metal wire 12. ing.
  • the semiconductor light emitting device 1 according to the present embodiment is not limited to the structure shown in FIG. 1, and a conventionally known general semiconductor light emitting device structure can be adopted.
  • the semiconductor light emitting device 1 according to the present embodiment is a semiconductor light emitting device that emits white light in a light bulb color region
  • the peak wavelength of light emitted by the semiconductor light emitting device 1 according to the present embodiment is around 600 nm.
  • a wavelength in the vicinity of 630 to 640 nm is important.
  • the emission intensity at the peak wavelength is PI (MAX)
  • the emission intensity at a wavelength 40 nm longer than the peak wavelength is PI (40)
  • White light in the light bulb color region means that the color temperature (TCP) of the emitted light is in the range of 2600K to 3250K, and the chromaticity point of the emitted light is specified in JIS Z9112 shown in FIG. Is within the specified range.
  • the semiconductor light emitting element 2 is a light emitting diode (LED).
  • the semiconductor light emitting element 2 is not limited to a light emitting diode (LED), but a semiconductor laser, an inorganic EL (A conventionally known element that emits blue light, such as an electroluminescence element, can be used.
  • a commercially available product such as manufactured by Cree can be used.
  • the emission peak wavelength of the semiconductor light emitting device 2 is not particularly limited, but is preferably in the range of 420 to 480 nm from the viewpoint of light emission efficiency. Further, from the viewpoint of increasing the excitation efficiency of the phosphor and further raising the Ra and R9 values, it is more preferably in the range of 440 to 470 nm, and particularly high color rendering performance is in the range of 455 nm or more.
  • the orange phosphor 13 has an emission spectrum peak wavelength of 590 nm or more and 630 nm or less, a half width of the peak of 130 nm or more, and absorption of the orange phosphor on the longer wavelength side than 420 nm.
  • the maximum value of the rate is ABS (MAX)
  • the absorption rate of the orange phosphor at a wavelength of 530 nm is ABS (530)
  • the following relationship is given: ABS (530) / ABS (MAX) ⁇ 0.60 Meet.
  • the peak wavelength of the emission spectrum and the half-value width of the peak are within the above ranges, semiconductor light emission having higher color rendering properties when light bulb color light is composed of a mixed color of the semiconductor light emitting element 2 and the green phosphor 14.
  • the device can be realized. Further, when the absorption rate of the orange phosphor 13 satisfies the above condition, the orange phosphor 13 can sufficiently suppress the absorption of green light, and a light emitting device with higher luminous efficiency can be realized.
  • the upper limit of the half width in the emission spectrum of the orange phosphor 13 is not particularly limited, but is preferably 160 nm or less, and more preferably 150 nm or less.
  • the orange phosphor 13 preferably has an excitation peak at 440 nm to 470 nm in its excitation spectrum.
  • the excitation spectrum of the orange phosphor 13 satisfies the above requirements, a light emitting device with higher luminous efficiency can be realized.
  • the orange phosphor 13 is not particularly limited as long as it is an orange phosphor exhibiting an emission spectrum with the above peak wavelength and half width, but is preferably a Ce activated phosphor activated by Ce. This is because Ce has a large spin-orbit splitting at the ground level, so that the Ce-activated phosphor exhibits a wide emission spectrum.
  • Ce-activated phosphor a Ce-activated nitride phosphor or a Ce-activated oxynitride phosphor can be suitably used.
  • Nitride-based phosphors and oxynitride-based phosphors for example, have a stronger matrix covalent bond than oxide-based phosphors and sulfide-based phosphors.
  • the emission intensity is unlikely to decrease.
  • the orange phosphor 13 is represented by the following general formula (1) among the Ce activated nitride phosphor or Ce activated oxynitride phosphor.
  • (1-a-b) (Ln ′ p M (II) ′ (1-p) M (III) ′ M (IV) ′ N 3 ) ⁇ a (M (IV) ′ (3n + 2) / 4 N n O) ⁇ b (A ⁇ M (IV) ′ 2 N 3 )
  • Ln ′ is at least one metal element selected from the group consisting of lanthanoids, Mn and Ti
  • M (II) ′ is one or more elements selected from the group consisting of divalent metal elements other than the Ln ′ element
  • M (III) ′ is one or more elements selected from the group consisting of trivalent metal elements
  • M (IV) ′ is one or more elements selected from the group consisting of tetravalent metal elements
  • A is one or more monovalent metal elements selected from the group consisting
  • the compound having the composition represented by the formula (1) can be obtained, for example, by mixing nitrides or oxides of each constituent metal element at a ratio that achieves a desired composition ratio and firing.
  • CaAlSiN 3 activated by Ce that emits orange light can be exemplified, and it can be produced according to the description of Japanese Patent No. 3837588.
  • the CaAlSiN 3 phase described in Japanese Patent No. 3837588 is used as a base material of a phosphor, a site where the metal element coordinated with Ce is Si and a site where Al is mixed are randomly mixed. Compared with phosphors activated on other base materials, a broader emission spectrum is exhibited.
  • p is 0 ⁇ p ⁇ 0.2, more preferably 0.005 ⁇ p ⁇ 0.1, and a is 0 ⁇ a ⁇ 0.45.
  • 0 ⁇ a ⁇ 0.3 is preferable, 0.002 ⁇ a ⁇ 0.3 is more preferable, and 0.15 ⁇ a ⁇ 0.3 is still more preferable.
  • y is 0 ⁇ y ⁇ 0.2, preferably 0.003 ⁇ y ⁇ 0.2, x is 0 ⁇ x ⁇ 1.0, It is preferable that 0.02 ⁇ x ⁇ 0.4, and more preferably 0.03 ⁇ x ⁇ 0.35.
  • oxygen and Li are contained in the base crystal of the Ce-activated phosphor.
  • the host crystal may contain only one of oxygen and Li, or both, and more preferably both.
  • the Ce-activated phosphor is cCaAlSiN 3.
  • (1-c) LiSi 2 N 3 (4) (Where 0.2 ⁇ c ⁇ 0.8) Is a solid solution crystal in which Ce and oxygen are in solid solution, the peak wavelength of the emission spectrum is longer, the half width is wider, the absorption of green light emission is suppressed, and the orange light emission Is particularly preferable when a light-emitting device that shows white in the light bulb color region is combined with a green phosphor.
  • the Ce-activated phosphor into a solid solution crystal in which Ce and oxygen are dissolved in the crystal having the above composition, for example, it is necessary to include at least one oxide of a constituent metal element in the raw material powder such as CeO 2 There is.
  • the Li concentration in the solid solution crystal in which Ce and oxygen are in solid solution is preferably 4% by weight or less from the viewpoint of luminous efficiency.
  • the semiconductor light emitting element when used for a lighting fixture or the like, it is necessary to pass a larger current than when it is used for an indicator or the like, and the ambient temperature of the semiconductor light emitting element reaches 100 ° C. to 150 ° C.
  • the YAG: Ce phosphor exemplified in Japanese Patent Application Laid-Open No. 2003-321675 has a light emission intensity that is reduced to 50% of room temperature in a high temperature environment at an ambient temperature of 150 ° C. as disclosed in Japanese Patent Application Laid-Open No. 2008-127529. End up.
  • the oxynitride phosphors exemplified in the present specification have excellent light emission characteristics particularly in a high temperature environment.
  • non-patent literature Science and Technology of Advanced Materials 8). (2007) 588-600
  • the light emission intensity of about 85% to 90% of room temperature is maintained even in a high temperature environment of ambient temperature of 100 ° C. to 150 ° C.
  • the phosphor included in the semiconductor light emitting device according to the present embodiment also preferably has a light emission characteristic in a high temperature environment equivalent to the phosphor exemplified in the non-patent document. From such a viewpoint, Ce and oxygen
  • the Ce concentration in the solid solution crystal in which is dissolved is preferably more than 0 wt% and not more than 6 wt%.
  • the Li concentration in the solid solution crystal in which Ce and oxygen are dissolved is preferably 1.5% by weight or more from the viewpoint of widening the half width of the emission spectrum.
  • the wider the half-value width of the emission spectrum of the orange phosphor 13 the higher the color rendering property and the higher the light emission efficiency.
  • the particle size of the orange phosphor 13 is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 5 ⁇ m to 20 ⁇ m.
  • the shape of the particles is preferably single particles rather than aggregates, and specifically, the specific surface area is 1 g / m 2 or less, more preferably 0.4 g / m 2 or less. preferable.
  • techniques such as mechanical pulverization, grain boundary phase removal by acid treatment, annealing treatment, and the like can be used as appropriate.
  • a semiconductor light emitting device combining the Ce-activated CaAlSiN 3 phosphor and the green phosphor is also disclosed in Japanese Patent Application Laid-Open No. 2008-530334, and FIG. 2 of the same publication discloses a Ce-activated CaAlSiN 3 phosphor. Excitation spectra are illustrated. However, the configuration according to the present invention is different from the invention described in Japanese Patent Application Laid-Open No. 2008-530334.
  • the Ce-activated CaAlSiN 3 phosphor disclosed in Japanese Patent Application Laid-Open No. 2008-530334 is compared with the Ce-activated CaAlSiN 3 phosphor exemplified in the present specification in the green light region of the orange phosphor.
  • the excitation efficiency in the light source is high (that is, ABS (530) / ABS (MAX) ⁇ 0.60 is not satisfied), and thus when the light emitting device is constructed, the mutual absorption of the phosphors becomes large, and the light emitting device emits light. Reduces efficiency significantly.
  • the configuration according to the present invention includes an orange phosphor having optimum light emission characteristics and absorption characteristics when a blue LED, a green phosphor, and an orange phosphor are combined.
  • LiSi 2 N 3 (where 0.2 ⁇ c ⁇ 0.8) is used as a specific Ce-activated CaAlSiN 3 phosphor for realizing optimum light emission characteristics and absorption characteristics. It has been found that a solid solution crystal in which Ce and oxygen are in solid solution is suitable for the crystal having the composition of Therefore, it is possible to realize a light emitting device that exhibits high color rendering properties and emits white light in a light bulb color region with high efficiency.
  • the green phosphor 14 has a half-value width of the emission spectrum narrower than that of the orange phosphor 13, and the half-value width of the emission spectrum is more preferably 70 nm or less, and more preferably 55 nm or less. . Further, the lower limit of the half-value width of the emission spectrum of the green phosphor 14 is not particularly limited, but is preferably 15 nm or more, and more preferably 40 nm or more.
  • the green phosphor 14 When the half width of the emission spectrum of the green phosphor 14 is within the above range, the green phosphor is suppressed from being absorbed by the orange phosphor 13, and a light emitting device with higher luminous efficiency can be realized.
  • the green phosphor 14 is not particularly limited as long as the above requirements are satisfied.
  • an Eu-activated oxynitride phosphor is preferably used because it has high stability and excellent temperature characteristics.
  • the Eu-activated BSON phosphor disclosed in Japanese Patent Application Laid-Open No. 2008-138156 and the Eu-activated ⁇ sialon fluorescent material disclosed in Japanese Patent Application Laid-Open No. 2005-255895 are excellent.
  • the body is preferably used.
  • the Eu-activated ⁇ sialon phosphor is particularly excellent in stability and temperature characteristics, and has a particularly narrow emission spectrum and a particularly excellent emission characteristic.
  • Eu-activated ⁇ sialon phosphor specifically, Si 6-z ′ Al z ′ O z ′ N 8-z ′ (However, 0 ⁇ z ′ ⁇ 4.2)
  • a phosphor having the following composition is preferable, and a more preferable range of z ′ is 0 ⁇ z ′ ⁇ 0.5.
  • the Eu-activated ⁇ sialon preferably has an oxygen concentration in the range of 0.1 to 0.6% by weight, more preferably an Al concentration of 0.13 to 0.8% by weight. If the Eu-activated ⁇ sialon phosphor is within these ranges, the half-value width of the emission spectrum tends to be narrower.
  • the Eu-activated ⁇ sialon phosphor disclosed in International Publication No. WO2008 / 062781 has high emission efficiency due to less unnecessary absorption because the damaged phase of the phosphor is removed by post-treatment such as acid treatment after firing. . Furthermore, the Eu-activated ⁇ sialon phosphor exemplified in Japanese Patent Application Laid-Open No. 2008-303331 is preferable because the oxygen concentration is 0.1 to 0.6% by weight, and the half-value width of the emission spectrum becomes narrower.
  • the green phosphor 14 as described above has a light absorption rate of 10 at 600 nm which is a wavelength region which does not contribute to the light emission of the ⁇ sialon phosphor at all and is near the peak wavelength of the orange phosphor. % Or less can be suitably used.
  • the particle diameter of the green phosphor 14 is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 5 ⁇ m to 20 ⁇ m.
  • the shape of the particles is preferably single particles rather than aggregates, and specifically, the specific surface area is 1 g / m 2 or less, more preferably 0.4 g / m 2 or less. preferable.
  • techniques such as mechanical pulverization, grain boundary phase removal by acid treatment, and annealing treatment can be used as appropriate.
  • the green phosphor 14 used in the present embodiment is an Eu-activated oxynitride phosphor and the orange phosphor 13 is a Ce-activated nitride phosphor or a Ce-activated oxynitride phosphor, Since both of these two types of phosphors are nitride-based, the temperature dependency, specific gravity, particle size, etc. of the two types of phosphors are close to each other.
  • the semiconductor light emitting device as described above when the semiconductor light emitting device as described above is formed, the light emitting device can be manufactured with a high yield and is not easily influenced by the surrounding environment.
  • the nitride-based phosphor since the nitride-based phosphor has a strong covalent bond of the host crystal, it is particularly less temperature dependent and is resistant to chemical and physical damage.
  • the mold resin 5 used for sealing the semiconductor light-emitting element 2 is obtained by dispersing the orange phosphor 13 in a translucent resin such as silicone resin or epoxy resin. It is.
  • the dispersion method is not particularly limited, and a conventionally known method can be employed.
  • the mixing ratio of the orange phosphor 13 and the green phosphor 14 to be dispersed is not particularly limited, and can be appropriately determined so as to emit white light in a light bulb color region.
  • the weight ratio of the translucent resin to the orange phosphor 13 and the green phosphor 14 (the weight of the translucent resin / (orange phosphor 13 + green phosphor 14)) can be in the range of 2 to 20.
  • the weight ratio of the green phosphor 14 to the orange phosphor 13 (the weight ratio of the green phosphor 14 / the orange phosphor 13) can be in the range of 0.05 to 1.
  • the printed wiring board 3 the adhesive 10, the metal wire 12, etc. other than the semiconductor light emitting element 2, the orange phosphor 13, the green phosphor 14 and the mold resin 5.
  • a configuration similar to that of the prior art for example, Japanese Patent Application Laid-Open No. 2003-321675, Japanese Patent Application Laid-Open No. 2006-8721, etc.
  • a semiconductor light emitting device that emits blue light, a green phosphor that absorbs the blue light and emits green light, and an orange phosphor that absorbs the blue light and emits orange light, the orange phosphor
  • the peak wavelength of the emission spectrum is not less than 590 nm and not more than 630 nm, the full width at half maximum of the peak is not less than 130 nm, and the maximum value of the absorbance of the orange phosphor on the longer wavelength side than 420 nm is ABS (MAX), wavelength
  • the semiconductor light-emitting device characterized by satisfy
  • the Ce activated nitride phosphor or the Ce activated oxynitride phosphor is represented by the following general formula (1): (1-a-b) (Ln ′ p M (II) ′ (1-p) M (III) ′ M (IV) ′ N 3 ) ⁇ a (M (IV) ′ (3n + 2) / 4 N n O ) ⁇ B (A ⁇ M (IV) ′ 2 N 3 ) (1)
  • Ln ′ is at least one metal element selected from the group consisting of lanthanoids, Mn and Ti
  • M (II) ′ is one or more elements selected from the group consisting of divalent metal elements other than the Ln ′ element
  • M (III) ′ is one or more elements selected from the group consisting of trivalent metal elements
  • M (IV) ′ is one or more elements selected from the group consisting of tetravalent metal elements
  • A is one or more monovalent metal elements selected from the group consisting of Li, Na, and K
  • a, b and n are numbers satisfying 0 ⁇ a, 0 ⁇ b, 0 ⁇ a + b ⁇ 1, 0 ⁇ n, and 0.002 ⁇ (3n + 2) a / 4 ⁇ 0.9)
  • the semiconductor light-emitting device according to (3) which is a solid solution crystal in which Ce and oxygen are dissolved in a crystal having the following composition.
  • the green phosphor preferably has a half width of the emission spectrum of 70 nm or less.
  • the orange phosphor is preferably a Ce-activated nitride-based or oxynitride-based phosphor.
  • the orange phosphor is a Ce activated CaAlSiN 3 phosphor, cCaAlSiN 3 ⁇ (1-c) LiSi 2 N 3 (However, 0.2 ⁇ c ⁇ 0.8) A solid solution crystal in which Ce and oxygen are dissolved in a crystal having the composition
  • the luminous efficiency of the orange light emitter is particularly high, a light emitting device with higher luminous efficiency can be realized.
  • the solid solution crystal preferably contains Ce in a range of 6% by weight or less.
  • the green phosphor preferably has a half-value width of an emission spectrum of 55 nm or less.
  • the green phosphor is preferably an Eu-activated ⁇ sialon phosphor.
  • the Eu-activated ⁇ sialon phosphor is efficiently excited by blue light and emits light that satisfies the requirements of the present invention when excited by blue light.
  • the Eu activated ⁇ sialon preferably has an oxygen concentration in the range of 0.1 wt% to 0.6 wt%.
  • the Eu-activated ⁇ sialon phosphor has an absorptance of 10% or less at 600 nm.
  • Excitation spectrum and emission spectrum were measured by F-4500 (product name, manufactured by Hitachi, Ltd.). The excitation spectrum was measured by scanning the intensity of the emission peak. Each emission spectrum was measured by excitation with light having a wavelength of 450 nm.
  • the absorption spectrum of the phosphor powder was measured using a measurement system that combined a spectrophotometer (product name: MCPD-7000, manufactured by Otsuka Electronics Co., Ltd.) and an integrating sphere.
  • Li concentration and Ce concentration of phosphor powder The Li concentration and Ce concentration of the phosphor powder were measured by ICP (product name: IRIS Advantage, manufactured by Nippon Jarrell-Ash).
  • Powder X-ray diffraction measurement was measured using Cu K ⁇ rays.
  • powder weighing and mixing steps were all performed in a glove box capable of maintaining a nitrogen atmosphere having a moisture content of 1 ppm or less and an oxygen content of 1 ppm or less.
  • the boron nitride crucible containing the mixed powder was set in a graphite resistance heating type electric furnace.
  • the firing atmosphere is evacuated with a diffusion pump, and the temperature is raised from room temperature to 800 ° C. at a rate of 1200 ° C. per hour.
  • nitrogen having a purity of 99.999% by volume is introduced to increase the pressure.
  • the temperature was 0.92 MPa, and the temperature was raised to 600 ° C. per hour up to a firing temperature of 1800 ° C., and kept at the firing temperature of 1800 ° C. for 2 hours.
  • the phosphor powder had a Li concentration of 3.23% by weight and a Ce concentration of 2.40% by weight.
  • the Li concentration by ICP measurement is a value lower than 4.09% by weight of the theoretical composition, and this is considered to be the effect of volatilization of Li during firing and washing with water after firing.
  • the composition of the phosphor obtained in this production example which was obtained from the above Li concentration obtained by ICP measurement, was 0.45CaAlSiN 3 .0.55LiSi 2 N 3 .
  • the phosphor powder is a solid solution crystal in which Ce and oxygen are in solid solution because the raw material powder contains an oxide raw material.
  • the XRD chart shown in FIG. 3 was obtained, and the phosphor powder had a crystal structure having a CaAlSiN 3 phase as a main phase. confirmed. Moreover, as a result of irradiating the phosphor powder with a lamp that emits light having a wavelength of 365 nm, it was confirmed that the phosphor powder emits orange light.
  • FIG. 4 is a graph showing the emission spectrum of the obtained phosphor powder, where the vertical axis represents the emission intensity (arbitrary unit) and the horizontal axis represents the wavelength (nm).
  • FIG. 5 is a graph showing the excitation spectrum of the obtained phosphor powder, where the vertical axis represents excitation intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
  • FIG. 6 is an absorption spectrum of the phosphor powder obtained in this production example.
  • the absorption rate at the peak wavelength of the phosphor of this production example is ABS (MAX), and the absorption rate at a wavelength of 530 nm is ABS (MAX).
  • ABS (MAX) 0.52.
  • powder weighing and mixing steps were all performed in a glove box capable of maintaining a nitrogen atmosphere having a moisture content of 1 ppm or less and an oxygen content of 1 ppm or less.
  • the boron nitride crucible containing the mixed powder was set in a graphite resistance heating type electric furnace.
  • the firing atmosphere is evacuated with a diffusion pump, and the temperature is raised from room temperature to 800 ° C. at a rate of 1200 ° C. per hour.
  • nitrogen having a purity of 99.999% by volume is introduced to increase the pressure.
  • the temperature was set to 0.92 MPa, and the temperature was raised to 600 ° C. per hour up to a firing temperature of 1800 ° C., and kept at the firing temperature of 1800 ° C. for 2 hours.
  • the obtained fired product was washed with water to remove excess Li 3 N, and then coarsely pulverized and then manually pulverized using an alumina mortar to obtain a phosphor powder.
  • the phosphor powder had a Li concentration of 3.19% by weight and a Ce concentration of 4.66% by weight.
  • Li concentration by ICP measurement is a value lower than 4.06% by weight of the theoretical composition, this is considered to be an effect of volatilization of Li during firing and washing with water after firing.
  • the composition of the phosphor obtained in this production example obtained from the above Li concentration obtained by ICP measurement was 0.46CaAlSiN 3 .0.54LiSi 2 N 3 .
  • the phosphor powder is a solid solution crystal in which Ce and oxygen are in solid solution because the raw material powder contains an oxide raw material.
  • the XRD chart shown in FIG. 7 was obtained, and the phosphor powder had a crystal structure having a CaAlSiN 3 phase as a main phase. It could be confirmed. Moreover, as a result of irradiating the phosphor powder with a lamp that emits light having a wavelength of 365 nm, it was confirmed that the phosphor powder emitted orange light.
  • FIG. 8 is a graph showing an emission spectrum of the obtained phosphor powder, where the vertical axis represents the emission intensity (arbitrary unit) and the horizontal axis represents the wavelength (nm).
  • FIG. 9 is a graph showing an excitation spectrum of the obtained phosphor powder, where the vertical axis represents excitation intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
  • FIG. 10 is an absorption spectrum of the phosphor powder obtained in this production example.
  • the absorption rate at the peak wavelength of the phosphor of this production example is ABS (MAX), and the absorption rate at a wavelength of 530 nm is ABS (MAX).
  • ABS (MAX) 0.57.
  • the phosphor powder is a solid solution crystal in which Ce and oxygen are in solid solution because the raw material powder contains an oxide raw material.
  • FIG. 30 shows a graph showing the Li concentration dependence of the luminescence intensity of the obtained various solid solution crystals.
  • the emission intensity tends to increase.
  • the Ce concentration and the Li concentration in the solid solution crystal are out of the above ranges, the decrease in the emission intensity is considered to be due to the fact that the concentration of the element contributing to the emission is too low or the generation of a heterogeneous phase. It is done.
  • FIGS. 31 and FIG. 32 graphs showing the ambient temperature dependence of the emission intensity when excited with light having a wavelength of 450 nm for the various solid solution crystals obtained are shown in FIGS. From FIG. 31 and FIG. 32, it is understood that even if the Li concentration in the solid solution crystal increases, the emission intensity in the high temperature environment does not decrease, but when the Ce concentration increases, the emission intensity in the high temperature environment tends to decrease. It can be seen that the Ce concentration in is preferably 6% by weight or less.
  • the Li concentration is not particularly limited from the viewpoint of light emission intensity in a high temperature environment.
  • FIG. 33 shows the Li concentration dependence of the half-value width of the emission spectrum when the various solid solution crystals are excited with light having a wavelength of 450 nm. From FIG. 33, it can be seen that when the Li concentration is 1.5% by weight or more, the full width at half maximum of the emission spectrum tends to increase.
  • the emission intensity described in this production example was measured using an apparatus combining MCPD-7000 (manufactured by Otsuka Electronics) and an integrating sphere.
  • the crucible is set in a graphite resistance heating type pressure electric furnace, the firing atmosphere is evacuated by a diffusion pump, heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour, and the purity is 99.800 at 800 ° C.
  • the temperature was raised to 1900 ° C. at 500 ° C. per hour, and further maintained at that temperature for 8 hours to obtain a phosphor sample.
  • the obtained phosphor sample was pulverized in an agate mortar to obtain a phosphor sample.
  • the obtained phosphor sample was pulverized with an agate mortar and further treated in a 1: 1 mixed acid of 50% hydrofluoric acid and 70% nitric acid to obtain a phosphor powder.
  • the emission spectrum shown in FIG. 12 was obtained.
  • the vertical axis represents emission intensity (arbitrary unit), and the horizontal axis represents wavelength (nm).
  • the crucible is set in a graphite resistance heating type pressure electric furnace, and the firing atmosphere is evacuated by a diffusion pump, and is heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour.
  • 999 vol% nitrogen was introduced to adjust the pressure to 0.5 MPa, the temperature was raised to 1300 ° C. at 500 ° C. per hour, then raised to 1600 ° C. at 1 ° C. per minute, and held at that temperature for 8 hours.
  • the synthesized sample was pulverized into powder with an agate mortar to obtain a powder sample.
  • the powder fired at 1600 ° C. was pulverized using a silicon nitride mortar and pestle and then naturally dropped into a boron nitride crucible having a diameter of 20 mm and a height of 20 mm.
  • the crucible is set in a graphite resistance heating type pressure electric furnace, and the firing atmosphere is evacuated by a diffusion pump, heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour, and the purity is 99.999% by volume at 800 ° C. Then, the pressure was adjusted to 1 MPa, and then the temperature was increased to 1900 ° C. at 500 ° C. per hour, and the temperature was further maintained for 8 hours to obtain a phosphor sample. The obtained phosphor sample was pulverized with an agate mortar and further treated in a 1: 1 mixed acid of 50% hydrofluoric acid and 70% nitric acid to obtain a phosphor powder.
  • the emission spectrum shown in FIG. 14 was obtained.
  • the vertical axis represents emission intensity (arbitrary unit), and the horizontal axis represents wavelength (nm).
  • oxygen content contained in these synthetic powders was measured using the oxygen-nitrogen analyzer by a combustion method (TC436 type
  • oxygen content was 0.4 weight%.
  • the absorptance of light having a wavelength of 600 nm was measured using MCPD-7000 (manufactured by Otsuka Electronics Co., Ltd.) and found to be 12.5%.
  • the obtained slurry was oven-dried at 100 ° C., and the obtained powder aggregate was pulverized by a dry rolling ball mill using an agate ball and a nylon pot to obtain fine particles having a particle size of about 10 ⁇ m. After filling the obtained fine particles into an alumina crucible and applying compression molding with light weighting, it is fired in air at 1100 ° C. for 3 hours, and the resulting fired body is pulverized with an agate mortar to produce a precursor sample Got.
  • the crucible is set in a graphite resistance heating type pressure electric furnace, the firing atmosphere is evacuated by a diffusion pump, heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour, and the purity is 99.800 at 800 ° C. After introducing 999 vol% nitrogen to a pressure of 1 MPa, the temperature was raised to 1300 ° C. at 500 ° C. per hour and further maintained at that temperature for 2 hours to obtain a phosphor sample.
  • the fired product obtained is pulverized with an agate mortar, filled again into an alumina crucible, lightly applied and compression molded, then fired in a nitrogen atmosphere at 1300 ° C. for 48 hours, and then pulverized with an agate mortar.
  • a phosphor powder was obtained.
  • the emission spectrum shown in FIG. 15 was obtained.
  • the vertical axis represents emission intensity (arbitrary unit), and the horizontal axis represents wavelength (nm).
  • the vertical axis represents emission intensity (arbitrary unit), and the horizontal axis represents wavelength (nm).
  • the obtained pre-fired powder was fired in a reducing atmosphere of N 2 (95%) + H 2 (5%) at 1550 ° C. for 3 hours, and the obtained fired body was pulverized with an agate mortar to obtain a phosphor. A powder was obtained.
  • the vertical axis represents emission intensity (arbitrary unit), and the horizontal axis represents wavelength (nm).
  • ABS (530) / ABS (MAX) when the absorption rate at the peak wavelength of the phosphor obtained in this production example is ABS (MAX) and the absorption rate at the wavelength of 530 nm is ABS (530) 0.82.
  • Examples 1 to 10 The phosphor shown in Table 4 is mixed with a silicone resin (trade name: KER2500, manufactured by Shin-Etsu Silicone Co., Ltd.) at a weight ratio shown in Table 4 and dispersed in the silicone resin, as shown in FIG. Each semiconductor light emitting device of Examples 1 to 10 having the above structure was manufactured.
  • a silicone resin trade name: KER2500, manufactured by Shin-Etsu Silicone Co., Ltd.
  • LED (trade name: EZR, manufactured by Cree) having an emission peak wavelength shown in Table 4 was used as the semiconductor light emitting element.
  • the mixing ratio with the mold resin and the peak wavelength of the LED were adjusted so that the color temperature of each light-emitting device was a light bulb color.
  • 18 to 27 show emission spectra of the semiconductor light emitting device exemplified in this example, and Table 5 shows various characteristics of each semiconductor light emitting device.
  • LED (trade name: EZR, manufactured by Cree) having an emission peak wavelength shown in Table 4 was used as the semiconductor light emitting element.
  • the mixing ratio with the mold resin and the peak wavelength of the LED were adjusted so that the color temperature of each light-emitting device was a light bulb color.
  • the emission spectra of the semiconductor light emitting devices illustrated in FIGS. 18 to 29 were measured with a spectrophotometer (product name: MCPD-7000, manufactured by Otsuka Electronics), and the indices shown in Tables 5 and 6 were measured. Calculation was based on the emission spectrum.
  • the luminous efficiency (luminous intensity) of the semiconductor light emitting device was measured using a measuring system that combined a spectrophotometer (product name: MCPD-7000, manufactured by Otsuka Electronics Co., Ltd.) and an integrating sphere.
  • the light emission characteristics of each light emitting device will be compared with Tables 5 and 6.
  • the light emitting devices of Examples 1 to 10 show higher values for both Ra and R9 than the light emitting devices of Comparative Examples 1 and 2, and are suitable for general lighting such as home lighting. I understand that. This is because in the light-emitting devices manufactured in Examples 1 to 10, the fluorescent spectrum of the phosphor satisfies the requirements of the present invention. In particular, since the light emitting devices of Examples 1 to 10 have a wide half-value width of the orange phosphor, the index of the red component is improved.
  • the examples 4 and 5 the examples 6 and 7, and the examples 8 and 9
  • the LED peak wavelength is compared. It can be seen that the color rendering property is higher at 460 nm than at 450 nm. From this, it was confirmed in the present invention that the color rendering properties are better when the peak wavelength of the LED is 455 nm or more.
  • the semiconductor light emitting devices of the example and the comparative example are compared.
  • the orange phosphor does not satisfy the requirements of the present invention, the half-value width of the emission spectrum of the green phosphor is wider than that of the orange phosphor, and the absorption of green light by the orange phosphor is particularly large. Then the light intensity is particularly low.
  • the peak wavelengths of the orange phosphor and the green phosphor are the same, and only the half width of the green phosphor is different.
  • the half width of the green phosphor is wide, the color rendering property tends to decrease with the light intensity. That is, in the present invention, it is understood that the narrow half-value width of the green phosphor is advantageous not only in terms of luminous intensity but also in terms of color rendering properties.
  • the orange phosphor is ABS (530) / ABS. It can be seen that the luminous efficiency is increased by satisfying the requirement of (MAX) ⁇ 0.6.
  • LED (trade name: EZR, manufactured by Cree) having an emission peak wavelength of 460 nm was used as the semiconductor light emitting element.
  • FIG. 34 is a graph showing the relationship between the luminous efficiency and the orange phosphor ABS (530) / ABS (MAX) ABS (530) for each of the obtained semiconductor devices and the semiconductor devices of Examples 1 and 3. .
  • the semiconductor light emitting device of the present invention emits light bulb color light having high luminous efficiency and high Ra and R9. For this reason, it can be used suitably for various lighting fixtures such as household lighting, medical lighting, and vehicular lamps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

 高い演色性を示し、かつ高効率に電球色領域の白色光を発する発光装置を実現する。本発明の半導体発光装置(1)は、青色光を発する半導体発光素子(2)と、当該青色光を吸収して緑色光を発する緑色蛍光体(14)と、当該青色光を吸収して橙光を発する橙色蛍光体(13)とを備え、橙色蛍光体(13)は、発光スペクトルのピーク波長が590nm以上630nm以下であり、当該ピークの半値幅が130nm以上であり、橙色蛍光体(13)の発光スペクトルの半値幅は、緑色蛍光体(14)の発光スペクトルの半値幅より広く、橙色蛍光体(13)の吸収率のピーク波長が420nm以上であり、橙色蛍光体(13)の吸収率のピーク波長における橙色蛍光体(13)の吸収率をABS(MAX)、波長530nmにおける橙色蛍光体(13)の吸収率をABS(530)としたときに、ABS(530)/ABS(MAX)<0.60を満たす。

Description

発光装置
 本発明は、蛍光体を備えた発光装置に関するものである。
 発光ダイオード(LED)等の半導体発光素子は、小型で消費電力が少なく、高輝度の発光を安定に行なうことができるという利点を有しており、近年白熱灯等の照明器具を、白色光を発するLEDからなる発光装置を用いた照明器具に置き換える動きが進んでいる。白色光を発するLEDとしては、例えば青色LEDと(Y,Gd)(Al,Ga)12の組成式で示されるYAG系蛍光体を組み合わせたものがある。
 上記構成の発光装置では、LEDの青色光と蛍光体のYAG蛍光体から発せられる黄色光との混色により白色光を実現している。この構成では、YAG蛍光体の発光特性から赤色成分が足りず、家庭用照明器具等で求められる電球色に近い温かみのある白色光を発することには不向きである。
 そこで、青色LEDとYAG系蛍光体とに加えて窒化物系の赤色蛍光体を更に組み合わせることにより、赤みを帯びた暖色系の白色を発することが実現可能な発光装置が開示されている(例えば、特許文献1参照)。
 特許文献1に例示される構成にすることにより、3,250K以下の電球色領域の色温度において、高い演色性評価指数(Ra)を示し、特に赤色の見え方を示す特殊演色評価数(R9)が優れた値を示す白色光を発する発光装置可能となる。
 しかし、上記構成では、赤色蛍光体がYAG系蛍光体から発する蛍光を吸収するため、蛍光体間の相互吸収の影響が大きく、発光装置の発光効率が著しく低下してしまう。
 そのような状況の中、青色LEDと、波長500nm以上540nm未満の範囲に発光ピークを有する光を発光する緑色蛍光体と、波長575~650nmの範囲に発光ピークを有する光を発光し、かつ、励起スペクトルの波長520nmにおける強度が、該励起スペクトルのピーク波長における強度の60%以下である黄色ないし赤色蛍光体とを含む、蛍光体間の相互吸収を抑制する構成が例示されている(例えば、特許文献2参照)。
日本国公開特許公報「特開2003-321675号公報(2003年11月14日公開)」 日本国公開特許公報「特開2008-244468号公報(2008年10月 9日公開)」
 しかしながら、上記特許文献2に記載の構成と比べて、演色性を悪化させることなく、より高効率に電球色領域の白色光を発する発光装置が望まれている。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、高い演色性を示し、かつ高効率に電球色領域の白色光を発する発光装置を実現することにある。
 本発明者は上記課題を解決するために鋭意検討を行い、蛍光体と半導体発光素子とを用いた発光装置の試作を繰り返し行った。その結果、特許文献2に例示されるような、緑色蛍光体と黄色ないし赤色蛍光体の組み合わせにおいて、蛍光体の相互吸収を抑制する構成とする場合、緑色蛍光体の発光スペクトルの半値幅が、黄色ないし赤色蛍光体の発光スペクトルの半値幅より狭く、かつ黄色ないし赤色蛍光体の発光スペクトルの半値幅が所定値以上であると、蛍光体の相互吸収がより抑制され、Ra及びR9をより向上させ得ることを見出した。
 その結果、所定のピーク波長及び当該ピークの半値幅を有する橙色蛍光体を、所定のピークの半値幅を有する緑色蛍光体及び青色LEDと組み合わせることにより上記課題を解決できることを見出し、本発明を完成するに至った。
 尚、蛍光体と半導体発光素子とを用いて発光装置を構成させる場合において、従来、演色性を向上させるには発光スペクトルの半値幅がより広い蛍光体を用いることが技術常識であった。しかし、本発明者は、発光スペクトルの半値幅が広い橙色蛍光体と緑色蛍光体とを組み合わせて電球色光を発する発光装置を構成する場合において、このような技術常識に反して緑色蛍光体の半値幅を狭くすることによって、高い演色性を示し、かつ高効率に電球色領域の白色光を発する発光装置を実現することができることを見出した。このように、本発明は、従来の技術常識に反するものであるため、当業者であっても容易には成し得ることはできなかった。
 例えば、特許文献2に例示される緑色蛍光体は、発光スペクトルの半値幅が約65nm~120nmであり、黄色ないし赤色蛍光体の発光スペクトルの半値幅は4nm~120nmであり、緑色蛍光体の発光スペクトルの半値幅と、黄色ないし赤色蛍光体の発光スペクトルの半値幅を比較すると、同等か、緑色蛍光体の方が発光スペクトルの半値幅が広い傾向にある(特許文献2の段落〔0028〕、〔0030〕~〔0028〕参照)。
 即ち、本発明に係る半導体発光装置は、上記課題を解決するために、電球色領域の白色光を発する半導体発光装置であって、青色光を発する半導体発光素子と、当該青色光を吸収して緑色光を発する緑色蛍光体と、当該青色光を吸収して橙光を発する橙色蛍光体とを備え、上記橙色蛍光体は、発光スペクトルのピーク波長が590nm以上630nm以下であり、当該ピークの半値幅が130nm以上であり、橙色蛍光体の発光スペクトルの半値幅は、緑色蛍光体の発光スペクトルの半値幅より広く、上記橙色蛍光体の吸収率のピーク波長が420nm以上であり、上記橙色蛍光体の吸収率のピーク波長における、上記橙色蛍光体の吸収率をABS(MAX)、波長530nmにおける、上記橙色蛍光体の吸収率をABS(530)としたときに以下の関係
  ABS(530)/ABS(MAX)<0.60
を満たすことを特徴としている。
 上記構成によれば、より高いRa、R9を示し、更に橙色蛍光体により緑色光の吸収が充分に抑制され、電球色領域の白色光を発する発光効率の高い発光装置を提供することができるという効果を奏する。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
 本発明に係る半導体発光装置は、以上のように、上記橙色蛍光体は、発光スペクトルのピーク波長が590nm以上630nm以下であり、当該ピークの半値幅が130nm以上であり、橙色蛍光体の発光スペクトルの半値幅は、緑色蛍光体の発光スペクトルの半値幅より広く、上記橙色蛍光体の吸収率のピーク波長が420nm以上であり、上記橙色蛍光体の吸収率のピーク波長における、上記橙色蛍光体の吸収率をABS(MAX)、波長530nmにおける、上記橙色蛍光体の吸収率をABS(530)としたときに以下の関係
  ABS(530)/ABS(MAX)<0.60
を満たすことを特徴としている。
 このため、高いRa及びR9を示し、高効率に電球色領域の白色光を発する半導体発光装置を提供することができるという効果を奏する。
本実施の形態に係る半導体装置の概略構成を示す断面図である。 JIS Z9112に規定される電球色の色度点領域を示すグラフである。 製造例1-1で得られた蛍光体粉末のXRD測定結果を示すグラフである。 製造例1-1で得られた蛍光体粉末の発光スペクトルを示すグラフである。 製造例1-1で得られた蛍光体粉末の励起スペクトルを示すグラフである。 製造例1-1で得られた蛍光体粉末の吸収スペクトルを示すグラフである。 製造例1-2で得られた蛍光体粉末のXRD測定結果を示すグラフである。 製造例1-2で得られた蛍光体粉末の発光スペクトルを示すグラフである。 製造例1-2で得られた蛍光体粉末の励起スペクトルを示すグラフである。 製造例1-2で得られた蛍光体粉末の吸収スペクトルを示すグラフである。 製造例2-1で得られた蛍光体粉末のXRD測定結果を示すグラフである。 製造例2-1で得られた蛍光体粉末の発光スペクトルを示すグラフである。 製造例2-2で得られた蛍光体粉末のXRD測定結果を示すグラフである。 製造例2-2で得られた蛍光体粉末の発光スペクトルを示すグラフである。 製造例2-3で得られた蛍光体粉末の発光スペクトルを示すグラフである。 製造例2-4で得られた蛍光体粉末の発光スペクトルを示すグラフである。 比較製造例1で得られた蛍光体粉末の発光スペクトルを示すグラフである。 実施例1で作製した発光装置の発光スペクトルを示すグラフである。 実施例2で作製した発光装置の発光スペクトルを示すグラフである。 実施例3で作製した発光装置の発光スペクトルを示すグラフである。 実施例4で作製した発光装置の発光スペクトルを示すグラフである。 実施例5で作製した発光装置の発光スペクトルを示すグラフである。 実施例6で作製した発光装置の発光スペクトルを示すグラフである。 実施例7で作製した発光装置の発光スペクトルを示すグラフである。 実施例8で作製した発光装置の発光スペクトルを示すグラフである。 実施例9で作製した発光装置の発光スペクトルを示すグラフである。 実施例10で作製した発光装置の発光スペクトルを示すグラフである。 比較例1で作製した発光装置の発光スペクトルを示すグラフである。 比較例2で作製した発光装置の発光スペクトルを示すグラフである。 Ceと酸素とが固溶した固溶体結晶の、発光強度のLi濃度依存性を示すグラフである。 Ceと酸素とが固溶した固溶体結晶の、波長450nmの光で励起した際における発光強度の周辺温度依存性を示すグラフである。 Ceと酸素とが固溶した固溶体結晶の、波長450nmの光で励起した際における発光強度の周辺温度依存性を示すグラフである。 Ceと酸素とが固溶した固溶体結晶の、波長450nmの光で励起した際における発光スペクトルの半値幅のLi濃度依存性を示すグラフである。 半導体装置の発光効率と、橙色蛍光体のABS(530)/ABS(MAX)との関係を示すグラフである。
 本発明の実施の一形態について説明すれば、以下の通りである。尚、本明細書では、範囲を示す「A~B」はA以上B以下であることを示す。また、本明細書で挙げられている各種物性は、特に断りの無い限り後述する実施例に記載の方法により測定した値を意味する。
 図1は、本実施の形態に係る半導体装置の概略構成を示す断面図である。
 本実施の形態に係る半導体発光装置1は、電球色領域の白色光を発する半導体発光装置1であって、青色光を発する半導体発光素子2と、当該青色光を吸収して橙光を発する橙色蛍光体13と、当該青色光を吸収して緑色光を発する緑色蛍光体14とを備える。
 そして、上記橙色蛍光体13は、発光スペクトルのピーク波長が590nm以上630nm以下であり、当該ピークの半値幅が130nm以上である。また、上記橙色蛍光体13の吸収率のピーク波長が420nm以上であり、上記橙色蛍光体の吸収率のピーク波長における、上記橙色蛍光体の吸収率をABS(MAX)、波長530nmにおける、上記橙色蛍光体の吸収率をABS(530)としたときに以下の関係
  ABS(530)/ABS(MAX)<0.60
を満たす。
 尚、上記特許文献2では、青色LEDと緑色蛍光体と黄色ないし赤色蛍光体との組み合わせで、本発明と同様に、緑色蛍光体より長波で発光する蛍光体(特許文献2では黄色ないし赤色蛍光体としているが、以後便宜上「橙色蛍光体」と記する場合がある)による緑色光の吸収を抑制する構成を例示しているが、本発明に係る構成とは以下に示す二点が大きく異なる。
(1)特許文献2の構成では、橙色蛍光体の励起(吸収)スペクトルのピーク波長の範囲を規定していない。
(2)特許文献2では励起(吸収)スペクトルの最大値に対して波長520nmの励起(吸収)率を規定しているが、本発明に係る構成では波長530nmの励起(吸収)率を規定している。
 上記(1)の点については、特許文献2の構成では、特許文献2の実施例3のように励起(吸収)ピークが350nmに存在し、緑色の波長域まで励起(吸収)効率がなだらかに低下する蛍光体を用いる構成も含まれることになる。このような構成では、例え、励起ピークにおける波長の励起(吸収)強度に対する緑色光領域における波長の励起(吸収)強度が低くても、実際の励起光である青色光領域における波長の励起(吸収)強度と緑色光領域における波長の励起(吸収)強度とが近い値を取るため、励起光を高効率に吸収させようとすると、結果として緑色光の吸収も大きくなってしまう。
 これに対して、本発明に係る橙色蛍光体は、励起(吸収)スペクトルのピーク波長の範囲が420nm以上であるため、上記のような問題は生じえない。
 上記(2)の点については、本発明に係る構成では、橙色蛍光体の発光スペクトルの半値幅を130nm以上と規定しており、かつ緑色蛍光体の発光スペクトルの半値幅が橙色蛍光体の発光スペクトルの半値幅より狭くなるように規定しているため、特許文献2の構成より橙色蛍光体の緑色光吸収が更に抑制されることになる。このため、橙色蛍光体の励起(吸収)スペクトルが特許文献2より長波長側にシフトしても充分緑色吸収が抑制される。その結果、高い演色性を示し、かつ高効率に電球色領域の白色光を発する発光装置を実現することができる。
 尚、本明細書において、上記「青色光」とは、波長420~480nmに発光スペクトルのピークを持つ光を意味し、上記「緑色光」とは、波長500~550nmに発光スペクトルのピークを持つ光を意味し、上記「橙光」とは、波長570~630nmに発光スペクトルのピークを持つ光を意味する。また、上記「緑色蛍光体」とは上記青色光により励起されて上記緑色光を発光する物質であり、上記「橙色蛍光体」とは、上記橙光を発光する物質を意味する。
 本実施の形態に係る半導体発光装置1は、基体としてのプリント配線基板3上に、半導体発光素子2が載置され、同じくプリント配線基板3上に載置された樹脂枠4の内側に、上記橙色蛍光体13及び上記緑色蛍光体14を分散させた透光性樹脂からなるモールド樹脂5が充填されて、半導体発光素子2が封止されている。
 上記半導体発光素子2は、活性層としてInGaN層6を有し、InGaN層6を挟んで、p側電極7及びn側電極8を有しており、このn側電極8が、プリント配線基板3の上面から背面にかけて設けられたn電極部9に、導電性を有する接着剤10を介して電気的に接続されている。また、半導体発光素子2のp側電極7は、上述したn電極部9とは別途プリント配線基板3の上面から背面にかけて設けられたp電極部11に金属ワイヤ12を介して電気的に接続されている。
 尚、本実施の形態に係る半導体発光装置1は、図1に示した構造に限定されるものではなく、従来公知の一般的な半導体発光装置の構造を採用することができる。
 また、本実施の形態に係る半導体発光装置1は、電球色領域の白色光を発する半導体発光装置であるため、本実施の形態に係る半導体発光装置1が発光する光のピーク波長は600nm付近となる。ここで、照明器具において赤色の見え方を示す実用上重要な指標であるR9を向上させるためには630~640nm付近の波長が重要となる。このような観点からは、ピーク波長における発光強度をPI(MAX)、当該ピーク波長より40nm長波長における発光強度をPI(40)としたときに以下の関係
  PI(40)/PI(MAX)>0.70
を満たすことがより好ましい。
 尚、「電球色領域の白色光」であるとは、発光する光の色温度(TCP)が2600K~3250Kの範囲内であり、発光する光の色度点が図2に示すJIS Z9112に規定される範囲内にあることを意味する。
 (I)半導体発光素子
 本実施の形態では、上記半導体発光素子2は発光ダイオード(LED)であるが、上記半導体発光素子2としては発光ダイオード(LED)に限定されず、半導体レーザ、無機EL(electroluminescence)素子等の青色光を発する従来公知の素子を使用することができる。尚、LEDは、例えば、Cree社製等の市販品を用いることができる。
 上記半導体発光素子2の発光ピーク波長は特には限定されないが、発光効率の観点から420~480nmの範囲内であることが好ましい。また、蛍光体の励起効率をより高く、更にはRa、R9値をより高くする観点から、440~470nmの範囲内であることがより好ましく、455nm以上であると特に高い演色性能を示す。
 (II)橙色蛍光体
 上記橙色蛍光体13は、発光スペクトルのピーク波長が590nm以上630nm以下であり、当該ピークの半値幅が130nm以上であり、420nmより長波長側における、上記橙色蛍光体の吸収率の最大値をABS(MAX)、波長530nmにおける、上記橙色蛍光体の吸収率をABS(530)としたときに以下の関係
  ABS(530)/ABS(MAX)<0.60
を満たす。
 発光スペクトルのピーク波長、及び当該ピークの半値幅が上記範囲であることにより、上記半導体発光素子2と緑色蛍光体14との混色で電球色光を構成した際に、より高い演色性を有する半導体発光装置が実現可能となる。また、橙色蛍光体13の吸収率が上記条件を満たすことにより、橙色蛍光体13により緑色光の吸収が充分に抑制され、より発光効率の高い発光装置が実現可能となる。
 橙色蛍光体13の発光スペクトルにおける上記半値幅の上限については、特には限定されないが、160nm以下であることが好ましく、150nm以下であることがより好ましい。
 上記橙色蛍光体13は、その励起スペクトルにおいて440nm~470nmに励起ピークを有することが好ましい。橙色蛍光体13の励起スペクトルが上記要件を満たすことによってより発光効率の高い発光装置が実現可能となる。
 上記橙色蛍光体13としては、上記ピーク波長及び半値幅の発光スペクトルを示す橙色蛍光体であれば特には限定されないが、Ceにより賦活されるCe賦活蛍光体であることが好ましい。Ceは基底準位のスピン軌道分裂が大きいため、Ce賦活蛍光体は幅広い発光スペクトルを示すからである。
 上記Ce賦活蛍光体として具体的には、Ce賦活窒化物系蛍光体、又はCe賦活酸窒化物系蛍光体を好適に用いることができる。窒化物系蛍光体や酸窒化物系蛍光体は、例えば、酸化物系蛍光体や硫化物系蛍光体と比較して、母体の共有結合性が強いため、母体の安定性が高く高温環境下でも発光強度が低下し難い。
 また、上記橙色蛍光体13は、上記Ce賦活窒化物蛍光体又はCe賦活酸窒化物蛍光体の中でも、下記一般式(1)
(1-a-b)(Ln’M(II)’(1-p)M(III)’M(IV)’N)・a(M(IV)’(3n+2)/4O)・b(A・M(IV)’)   …(1)
(式中、Ln’は、ランタノイド、Mn及びTiからなる群から選ばれる少なくとも1種の金属元素であり、
M(II)’はLn’元素以外の2価の金属元素からなる群から選ばれる1種又は2種以上の元素であり、
M(III)’は3価の金属元素からなる群から選ばれる1種又は2種以上の元素であり、
M(IV)’は4価の金属元素からなる群から選ばれる1種又は2種以上の元素であり、
Aは、Li、Na、及びKからなる群から選ばれる1種類以上の1価の金属元素であり、pは0≦p≦0.2を満足する数であり、
a、b及びnは、0≦a、0≦b、a+b>0、0≦n、及び0.002≦(3n+2)a/4≦0.9を満足する数である)
で表される化学組成を有する、Ceを含有した結晶相を含有する蛍光体であることが好ましい。
 式(1)で表される組成を有する化合物は、例えば、各構成金属元素の窒化物若しくは酸化物を、所望の組成比となるような比率で混合し、焼成することにより得ることができる。
 式(1)で示される代表的な組成としては、橙色の発光をする、Ceにより賦活したCaAlSiNが例示でき、特許第3837588号の記載に準じて製造することができる。特許第3837588号に記載されているCaAlSiN相は、蛍光体の母体として用いた場合、Ceに配位する金属元素がSiであるサイトとAlであるサイトとがランダムに混在しており、Ceを他の母体に賦活した蛍光体と比較してより幅広い発光スペクトルを示す。
 また、下記式(2)(3)
  (1-a)(CeCa1-pAlSiN)・aSiO       …(2)
  (1-x)(Ce(Ca、Sr)1-yAlSiN)・xLiSi …(3)
で示される組成が例示でき、特開2007-231245号の記載に準じて製造することができる。
 ここで、上記式(2)において、pは、0<p≦0.2であり、0.005<p≦0.1であることがより好ましく、aは0≦a≦0.45であり、0≦a≦0.3であることが好ましく、0.002≦a≦0.3であることがより好ましく、0.15≦a≦0.3であることが更に好ましい。
 また、上記式(3)において、yは、0<y≦0.2であり、0.003<y≦0.2であることが好ましく、xは、0<x<1.0であり、0.02≦x≦0.4であることが好ましく、0.03≦x≦0.35であることがより好ましい。
 ここで、橙色発光させる観点から、Ce賦活蛍光体の母体結晶中に酸素とLiとを含むことが好ましい。この場合、母体結晶中には、酸素とLiとの何れか1つのみが含まれてもよいし、両方含まれてもよく、両方に含まれることがより好ましい。当該Ce賦活蛍光体に、酸素、Li、又は酸素及びLiの両方が含まれる場合、発光スペクトル、吸収率、励起スペクトルが上記要件を満たし、当該Ce賦活CaAlSiN蛍光体の発光効率が高くなる。
 中でも、上記Ce賦活蛍光体が、
  cCaAlSiN・(1-c)LiSi   …(4)
(式中、0.2≦c≦0.8である)
の組成を有する結晶に、Ceと酸素とが固溶した固溶体結晶である場合は、より発光スペクトルのピーク波長が長波長でありかつ半値幅が広く、緑色発光の吸収が抑制され、かつ橙色発光の発光効率が特に高いため、緑色蛍光体と組み合わせて電球色領域の白色を示す発光装置を構成する際はより好ましい。
 上記Ce賦活蛍光体を上記組成を有する結晶にCeと酸素とが固溶した固溶体結晶とするためには、例えば、CeOのように構成金属元素の酸化物を少なくとも1種類原料粉末に含む必要がある。
 Ceと酸素とが固溶した上記固溶体結晶におけるLi濃度は、発光効率の観点から4重量%以下であることが好ましい。
 また、半導体発光素子を照明器具等に用いる場合、インジケータ等に用いる場合と比較して大電流を流す必要があり、半導体発光素子の周辺温度は100℃~150℃にも達する。例えば、特開2003-321675号公報に例示されるYAG:Ce蛍光体は、特開2008-127529に開示されるように周辺温度150℃の高温環境において室温の50%まで発光強度が低下してしまう。このような従来の蛍光体に対し、本願明細書において例示されている酸窒化物系蛍光体は、特に高温環境での発光特性が優れており、例えば非特許文献(Science and Technology of Advanced Materials 8 (2007)588-600)に例示されるように、周辺温度100℃~150℃の高温環境においても室温の85%~90%程度の発光強度を維持する。
 本実施の形態に係る半導体発光装置が備える蛍光体も上記非特許文献に例示される蛍光体と同等の高温環境での発光特性を有することが好ましく、そのような観点からは、Ceと酸素とが固溶した上記固溶体結晶におけるCe濃度は、0重量%を超え、6重量%以下が好ましい。
 更には、Ceと酸素とが固溶した上記固溶体結晶におけるLi濃度は、発光スペクトルの半値幅を広くする観点から1.5重量%以上であることが好ましい。本実施の形態に係る半導体発光装置においては、橙色蛍光体13の発光スペクトルの半値幅が広い程、高い演色性を有し、発光効率が高い発光装置を実現することが可能となる。
 上記橙色蛍光体13の粒径は1μm~50μmであることが好ましく、5μm~20μmであることが更に好ましい。また、粒子の形状としては、凝集体であるよりも単独の粒子であることが好ましく、具体的には比表面積が1g/m以下、より好ましくは0.4g/m以下であることが好ましい。このような粒径調整、粒子形状調整には、機械的粉砕、酸処理による粒界相除去、アニール処理等の技術を適宜用いることができる。
 尚、上記Ce賦活CaAlSiN蛍光体と緑色蛍光体とを組み合わせた半導体発光装置は、特開2008-530334号公報においても開示されており、同公報の図2にはCe賦活CaAlSiN蛍光体の励起スペクトルが例示されている。しかしながら、本発明に係る構成は、特開2008-530334号公報に記載の発明とは異なる。
 具体的には、特開2008-530334号公報に開示されているCe賦活CaAlSiN蛍光体は、本明細書において例示されるCe賦活CaAlSiN蛍光体と比較して、橙色蛍光体の緑色光領域での励起効率が高い(即ち、ABS(530)/ABS(MAX)<0.60を満たさない)ため、発光装置を構成した際は蛍光体の相互吸収が大きくなってしまい、発光装置の発光効率を著しく低下させる。
 これに対して、本発明に係る構成では、青色LEDと緑色蛍光体と橙色蛍光体を組み合わせた際の最適な発光特性及び吸収特性を有する橙色蛍光体を備えている。特に、最適な発光特性及び吸収特性を実現するための具体的なCe賦活CaAlSiN蛍光体として、cCaAlSiN・(1-c)LiSi(式中、0.2≦c≦0.8である)の組成を有する結晶に、Ceと酸素とが固溶した固溶体結晶が好適であることを見出している。このため、高い演色性を示し、かつ高効率に電球色領域の白色光を発する発光装置を実現することができる。
 (III)緑色蛍光体
 上記緑色蛍光体14は、発光スペクトルの半値幅が上記橙色蛍光体13より狭く、発光スペクトルの半値幅が70nm以下であることがより好ましく、55nm以下であるものが更に好ましい。また、上記緑色蛍光体14の発光スペクトルの半値幅の下限は、特には限定されないが、15nm以上が好ましく、40nm以上がより好ましい。
 緑色蛍光体14の発光スペクトルの半値幅が上記範囲であると、橙色蛍光体13による緑色光の吸収が抑制され、発光効率が更に高い発光装置を実現し得る。
 上記のような緑色蛍光体14としては、上記要件を満たしていれば特には限定されないが、例えば、安定性が高く温度特性に優れるため、Eu賦活酸窒化物系蛍光体が好適に用いられる。
 更には、Eu賦活酸窒化物系蛍光体の中でも発光効率に優れる、特開2008-138156号公報に示されるEu賦活BSON蛍光体や、特開2005-255895号公報に示されるEu賦活βサイアロン蛍光体が好適に用いられる。
 上記緑色蛍光体14として例示した中でも、特にEu賦活βサイアロン蛍光体は、安定性及び温度特性に優れ、また、発光スペクトルの半値幅が特に狭く優れた発光特性を示す。
 上記Eu賦活BSON蛍光体として具体的には、
Bay’Eux’Siu’v’w’
(但し、0≦y’≦3、1.6≦y’+x’≦3、5≦u’≦7、9<v’<15、0<w’≦4)
の組成を有する蛍光体が好ましく、上記y’、x’、u’、v’、w’の更に好ましい範囲は、1.5≦y’≦3、2≦y’+x’≦3、5.5≦u’≦7、10<v’<13、1.5<w’≦4である。
 また、上記Eu賦活βサイアロン蛍光体として具体的には、
Si6-z’Alz’z’8-z’
(但し、0<z’<4.2)
の組成を有する蛍光体が好ましく、上記z’の更に好ましい範囲は、0<z’<0.5である。
 また、上記Eu賦活βサイアロンは、酸素濃度が0.1~0.6重量%の範囲であるものが好ましく、Al濃度が0.13~0.8重量%であることがより好ましい。Eu賦活βサイアロン蛍光体がこれら範囲内であれば、より発光スペクトルの半値幅が狭くなる傾向がある。
 尚、国際公開WO2008/062781号に開示されるEu賦活βサイアロン蛍光体は、焼成後に酸処理等の後処理により蛍光体のダメージ相が取り除かれているため、不要な吸収が少なく発光効率が高い。更に、特開2008-303331号公報に例示されるEu賦活βサイアロン蛍光体は、酸素濃度が0.1~0.6重量%であるため、より発光スペクトルの半値幅が狭くなり好ましい。
 上記のような緑色蛍光体14として、より具体的には、βサイアロン蛍光体の発光に全く寄与しない波長域であり、かつ上記橙色蛍光体のピーク波長付近である600nmにおける光の吸収率が10%以下であるものを好適に用いることができる。
 上記緑色蛍光体14の粒径は1μm~50μmであることが好ましく、5μm~20μmであることが更に好ましい。また、粒子の形状としては、凝集体であるよりも単独の粒子であることが好ましく、具体的には比表面積が1g/m以下、より好ましくは0.4g/m以下であることが好ましい。このような粒径調整、粒子形状調整には、機械的粉砕、酸処理による粒界相除去、アニール処理等の技術を適宜用いることができる。
 本実施の形態において用いられる緑色蛍光体14がEu賦活酸窒化物系蛍光体であり、かつ橙色蛍光体13がCe賦活窒化物系蛍光体、又はCe賦活酸窒化物系蛍光体である場合、これら2種類の蛍光体の何れもが窒化物系となるので、2種類の蛍光体の温度依存性、比重、粒径等が近い値となる。
 このため、上記のような半導体発光装置を形成した際に、歩留まり良く製造することが可能で、周囲環境に影響され難い高い信頼性の発光装置となる。加えて、窒化物系蛍光体は母体結晶の共有結合性が強いため、特に温度依存性が少なく、化学的、物理的ダメージにも強い。
 (IV)モールド樹脂
 上記半導体発光装置1において、半導体発光素子2の封止に用いるモールド樹脂5は、例えば、シリコーン樹脂、エポキシ樹脂等の透光性樹脂に上記橙色蛍光体13を分散させたものである。当該分散方法としては、特には限定されず、従来公知の方法を採用することができる。
 分散させる橙色蛍光体13及び緑色蛍光体14の混合比率は、特に制限されず、電球色領域の白色光を発するように適宜決定することができる。例えば、橙色蛍光体13及び緑色蛍光体14に対する透光性樹脂の重量比(透光性樹脂の重量/(橙色蛍光体13+緑色蛍光体14))で2~20の範囲内とすることができる。更には、橙色蛍光体13に対する緑色蛍光体14の重量比(緑色蛍光体14/橙色蛍光体13の重量比)で0.05~1の範囲内とすることができる。
 (V)その他
 本実施の形態に係る半導体発光装置1において、半導体発光素子2、橙色蛍光体13、緑色蛍光体14及びモールド樹脂5以外の、プリント配線基板3や接着剤10、金属ワイヤ12等については、従来技術(例えば、特開2003-321675号公報、特開2006-8721号公報等)と同様の構成を採用することができ、従来技術と同様の方法により製造することができる。
 以上説明した本発明は、以下のように言い換えることもできる。即ち、
 (1)青色光を発する半導体発光素子と、当該青色光を吸収して緑色光を発する緑色蛍光体と、当該青色光を吸収して橙光を発する橙色蛍光体とを備え、上記橙色蛍光体は、発光スペクトルのピーク波長が590nm以上630nm以下であり、当該ピークの半値幅が130nm以上であり、420nmより長波長側における、上記橙色蛍光体の吸収率の最大値をABS(MAX)、波長530nmにおける、上記橙色蛍光体の吸収率をABS(530)としたときに以下の関係
  ABS(530)/ABS(MAX)<0.60
を満たすことを特徴とする半導体発光装置。
 (2)上記緑色蛍光体は、発光スペクトルの半値幅が70nm以下であることを特徴とする(1)に記載の半導体発光装置。
 (3)上記橙色蛍光体は、Ce賦活窒化物系もしくは酸窒化物系蛍光体である(1)に記載の半導体発光装置。
 (4)上記Ce賦活窒化物系蛍光体、又は上記Ce賦活酸酸窒化物系蛍光体は、下記一般式(1)
(1-a-b)(Ln’M(II)’(1-p)M(III)’M(IV)’N)・a(M(IV)’(3n+2)/4O)・b(A・M(IV)’)  …(1)
(式中、Ln’は、ランタノイド、Mn及びTiからなる群から選ばれる少なくとも1種の金属元素であり、
M(II)’はLn’元素以外の2価の金属元素からなる群から選ばれる1種又は2種以上の元素であり、
M(III)’は3価の金属元素からなる群から選ばれる1種又は2種以上の元素であり、
M(IV)’は4価の金属元素からなる群から選ばれる1種又は2種以上の元素であり、
Aは、Li、Na、及びKからなる群から選ばれる1種類以上の1価の金属元素であり、pは0<p≦0.2を満足する数であり、
a、b及びnは、0≦a、0≦b、0<a+b<1、0≦n、及び0.002≦(3n+2)a/4≦0.9を満足する数である)
で表される化学組成を有する結晶相を含有するCe賦活CaAlSiN3蛍光体であり、
cCaAlSiN・(1-c)LiSi
(但し、0.2≦c≦0.8)
の組成を有する結晶にCeと酸素とが固溶した固溶体結晶であることを特徴とする(3)に記載の半導体発光装置。
 (5)上記固溶体結晶は、Ceを6重量%以下の範囲で含有することを特徴とする(4)に記載の半導体発光装置。
 (6)記緑色蛍光体は、発光スペクトルの半値幅が55nm以下であることを特徴とする(2)に記載の半導体発光装置。
 (7)上記緑色蛍光体はEu賦活βサイアロン蛍光体であることを特徴とする(7)に記載の半導体発光装置。
 (8)上記Eu賦活βサイアロンは、酸素濃度が0.1~0.6重量%の範囲であることを特徴とする(7)に記載の半導体発光装置。
 (9)上記Eu賦活βサイアロン蛍光体の600nmにおける吸収率が10%以下である(7)に記載の半導体発光装置。
 本発明に係る半導体発光装置では、上記緑色蛍光体は、発光スペクトルの半値幅が70nm以下であることが好ましい。
 上記構成によれば、より高いRa、R9を示し、更に橙色蛍光体により緑色光の吸収が充分に抑制され、発光効率の高い発光装置が実現可能となる。
 本発明に係る半導体発光装置では、上記橙色蛍光体は、Ce賦活窒化物系若しくは酸窒化物系蛍光体であることが好ましい。
 本発明に係る半導体発光装置では、上記橙色蛍光体は、Ce賦活CaAlSiN蛍光体であり、
cCaAlSiN・(1-c)LiSi
(但し、0.2≦c≦0.8)
の組成を有する結晶に、Ceと酸素とが固溶した固溶体結晶であることが好ましい。
 上記構成によれば、橙色発光体の発光効率が特に高くなるため、より発光効率の高い発光装置が実現可能となる。
 本発明に係る半導体発光装置では、上記固溶体結晶は、Ceを6重量%以下の範囲で含有することが好ましい。
 上記構成によれば、発光効率が高く、温度特性に優れる発光装置が実現可能となる。
 本発明に係る半導体発光装置では、記緑色蛍光体は、発光スペクトルの半値幅が55nm以下であることが好ましい。
 上記構成によれば、より高いRa、R9を示し、更に橙色蛍光体により緑色光の吸収が充分に抑制され、発光効率の高い発光装置が実現可能となる。
 本発明に係る半導体発光装置では、上記緑色蛍光体はEu賦活βサイアロン蛍光体であることが好ましい。
 Eu賦活βサイアロン蛍光体は、青色光によって効率的に励起され、かつ青色光による励起で本発明の要件を満たす発光を示す。
 本発明に係る半導体発光装置では、上記Eu賦活βサイアロンは、酸素濃度が0.1重量%~0.6重量%の範囲であることが好ましい。
 本発明に係る半導体発光装置では、上記Eu賦活βサイアロン蛍光体の600nmにおける吸収率が10%以下であることが好ましい。
 上記構成によれば、緑色蛍光体による橙色光の不要な吸収が抑制され、発光装置の発光効率が向上する。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 〔励起スペクトル及び発光スペクトル〕
 励起スペクトル及び発光スペクトルは、F-4500(製品名、日立製作所製)によって測定した。励起スペクトルは、発光ピークの強度をスキャンして測定した。また、各発光スペクトルは、波長450nmの光で励起して測定した。
 〔吸収スペクトル〕
 蛍光体粉末の吸収スペクトルは、分光光度計(製品名:MCPD-7000、大塚電子製)と積分球を組み合わせた測定系を用いて測定した。
 〔蛍光体粉末のLi濃度及びCe濃度〕
 蛍光体粉末のLi濃度及びCe濃度は、ICP(製品名:IRIS Advantage、日本ジャーレル・アッシュ社製)により測定した。
 〔粉末X線回折測定〕
 粉末X線回折測定(XRD)は、CuのKα線を用いて測定した。
 〔蛍光体の作製〕
 (製造例1-1:橙色蛍光体の作製1)
 0.3CaAlSiN・0.7LiSi組成の結晶を母体結晶として、これにCeを賦活した蛍光体を合成した。
 具体的には、Ce0.0033Li0.1157Ca0.0496Al0.0496Si0.2810.00500.4959の理論組成式の化合物を得るべく、Si:67.3重量%、AlN:10.4重量%、LiN:6.9重量%、Ca:12.5重量%、CeO:2.92重量%の組成比率で、全量が2gとなるように原料粉末を秤量し、メノウ乳棒と乳鉢で10分間混合した。この際、Ceの仕込み重量比率は2.4重量%であった。その後、得られた混合物を窒化ホウ素製のるつぼに自然落下させて充填した(体積充填率38%)。
 尚、粉末の秤量、混合の各工程は全て、水分1ppm以下、酸素1ppm以下の窒素雰囲気を保持することができるグローブボックス中で行った。
 その後、この混合粉末を入れた窒化ホウ素製のるつぼを、黒鉛抵抗加熱方式の電気炉にセットした。焼成の操作は、まず、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時1200℃の速度で昇温し、800℃において、純度が99.999体積%の窒素を導入して圧力を0.92MPaとし、1800℃の焼成温度まで、毎時600℃で昇温し、1800℃の焼成温度で2時間保持して行った。
 焼成後、得られた焼成体から余分なLiNを水洗で取り除き、次いで、粗粉砕の後、アルミナ製乳鉢を用いて手で粉砕して、蛍光体粉末を得た。
 また、当該蛍光体粉末のLi濃度は3.23重量%であり、Ce濃度は2.40重量%であった。
 ここで、ICP測定によるLi濃度は理論組成の4.09重量%より低い値であるが、これは焼成中におけるLiの揮発や、焼成後の水洗による影響であると考えられる。ICP測定により得られた上記Li濃度から求めた、本製造例で得られた蛍光体の組成は、0.45CaAlSiN・0.55LiSiであった。
 尚、上記蛍光体粉末は、原料粉末に酸化物原料を含むため、Ceと酸素とが固溶した固溶体結晶である。
 得られた蛍光体粉末について、粉末X線回折測定(XRD)を行なったところ、図3に示すXRDチャートが得られ、蛍光体粉末は、CaAlSiN相を主相とする結晶構造を有することが確認された。また、蛍光体粉末に、波長365nmの光を発するランプで照射した結果、橙色に発光することが確認された。
 図4は、得られた蛍光体粉末の発光スペクトルを示すグラフであり、縦軸は発光強度(任意単位)、横軸は波長(nm)である。また、図5は、得られた蛍光体粉末の励起スペクトルを示すグラフであり、縦軸は励起強度(任意単位)、横軸は波長(nm)である。
 図4に示す発光スペクトルの色度座標は(u’,v’)=(0.282,0.556)、ピーク波長は600nm、半値幅は142nmであった。
 また、図6は本製造例で得られた蛍光体粉末の吸収スペクトルであり、本製造例の蛍光体の吸収率のピーク波長における吸収率をABS(MAX)、波長530nmにおける吸収率をABS(530)とした場合のABS(530)/ABS(MAX)=0.52であった。
 (製造例1-2:橙色蛍光体の作製2)
 0.3CaAlSiN・0.7LiSi組成の結晶を母体結晶として、これにCeを賦活した蛍光体を合成した。
 具体的には、Ce0.066Li0.1148Ca0.0492Al0.0492Si0.27870.00980.4918の理論組成式の化合物を得るべく、Si:65.4重量%、AlN:10.1重量%、LiN:6.7重量%、Ca:12.2重量%、CeO:5.66重量%の組成比率で、全量が2gとなるように原料粉末を秤量し、メノウ乳棒と乳鉢で10分間混合した。この際、Ceの仕込み重量比率は4.6重量%であった。その後、得られた混合物を窒化ホウ素製のるつぼに自然落下させて充填した(体積充填率38%)。
 尚、粉末の秤量、混合の各工程は全て、水分1ppm以下、酸素1ppm以下の窒素雰囲気を保持することができるグローブボックス中で行った。
 その後、この混合粉末を入れた窒化ホウ素製のるつぼを、黒鉛抵抗加熱方式の電気炉にセットした。焼成の操作は、まず、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時1200℃の速度で昇温し、800℃において、純度が99.999体積%の窒素を導入して圧力を0.92MPaとし、1800℃の焼成温度まで、毎時600℃で昇温し、1800℃の焼成温度で2時間保持して行った。焼成後、得られた焼成体は余分なLiNを水洗で取り除き、次いで、粗粉砕の後、アルミナ乳鉢を用いて手で粉砕して蛍光体粉末を得た。
 また、当該蛍光体粉末のLi濃度は3.19重量%であり、Ce濃度は4.66重量%であった。
 ここで、ICP測定によるLi濃度は理論組成の4.06重量%より低い値であるが、これは焼成中におけるLiの揮発や、焼成後の水洗による影響であると考えられる。ICP測定により得られた上記Li濃度から求めた、本製造例で得られた蛍光体の組成は、0.46CaAlSiN・0.54LiSiであった。
 尚、上記蛍光体粉末は、原料粉末に酸化物原料を含むため、Ceと酸素とが固溶した固溶体結晶である。
 得られた蛍光体粉末について、粉末X線回折測定(XRD)を行なったところ、図7に示すXRDチャートが得られ、蛍光体粉末は、CaAlSiN相を主相とする結晶構造を有することが確認できた。また、蛍光体粉末に、波長365nmの光を発するランプで照射した結果、橙色に発光することが確認できた。
 図8は、得られた蛍光体粉末の発光スペクトルを示すグラフであり、縦軸は発光強度(任意単位)、横軸は波長(nm)である。また、図9は、得られた蛍光体粉末の励起スペクトルを示すグラフであり、縦軸は励起強度(任意単位)、横軸は波長(nm)である。
 図8に示す発光スペクトルの色度座標は(u’,v’)=(0.297,0.554)、ピーク波長は606nm、半値幅は146nmであった。
 また、図10は本製造例で得られた蛍光体粉末の吸収スペクトルであり、本製造例の蛍光体の吸収率のピーク波長における吸収率をABS(MAX)、波長530nmにおける吸収率をABS(530)とした場合のABS(530)/ABS(MAX)=0.57であった。
 (製造例1-3-1~1-3-11:橙色蛍光体の作製3)
 Si、AlN、LiN、Ca、CeOを表1に示す組成比率によって混合することにより、Ce濃度及びLi濃度を変化させた、Ceと酸素とが固溶した各種固溶体結晶を合成した。ICPによって得られたCe濃度及びLi濃度を表2に、ICP測定により得られたLi濃度から求めた各蛍光体の組成を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 尚、上記蛍光体粉末は、原料粉末に酸化物原料を含むため、Ceと酸素とが固溶した固溶体結晶である。
 得られた各種固溶体結晶について、発光強度のLi濃度依存性を示すグラフを図30に示す。
 図30に示すように、固溶体結晶におけるLi濃度が4重量%以下であれば、発光強度が高くなる傾向にある。ここで、固溶体結晶におけるCe濃度及びLi濃度が上記範囲を外れた場合に発光強度が低下するのは、発光に寄与する元素の濃度が低すぎることや、異相が生成すること等に起因すると考えられる。
 次に、得られた各種固溶体結晶について、波長450nmの光で励起した際の発光強度の周辺温度依存性を示すグラフを図31及び図32に示す。図31及び図32から、固溶体結晶におけるLi濃度が高くなっても高温環境における発光強度は低下しないが、Ce濃度が高くなると、高温環境における発光強度が低下する傾向にあることが分かり、固溶体結晶におけるCe濃度は6重量%以下が好ましいことが分かる。ここで、高温環境における発光強度の観点からは、Li濃度は特に限定されないことが分かる。
 また、図33に上記各種固溶体結晶を波長450nmの光で励起した際における発光スペクトルの半値幅のLi濃度依存性を示す。図33より、Li濃度が1.5重量%以上で、発光スペクトルの半値幅が特に増大する傾向にあることが分かる。
 尚、本製造例で述べた発光強度はMCPD-7000(大塚電子製)と積分球とを組み合わせた装置を用いて測定した。
 (製造例2-1:Eu賦活βサイアロン蛍光体の調製1)
 Si6-z’Alz’z’8-z’で表される組成式において、z’=0.23のものにEuが0.09at.%賦活されたEu賦活βサイアロン蛍光体を得るべく、α型窒化ケイ素粉末95.82重量%、窒化アルミニウム粉末3.37重量%及び酸化ユーロピウム粉末0.81重量%の組成となるように秤量し、窒化ケイ素焼結体製の乳鉢と乳棒とを用い、10分以上混合し粉体凝集体を得た。この粉体凝集体を直径20mm、高さ20mmの大きさの窒化ホウ素製のるつぼに自然落下させて入れた。
 次に、上記るつぼを、黒鉛抵抗加熱方式の加圧電気炉にセットし、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.999体積%の窒素を導入して圧力を1MPaとした後、毎時500℃で1900℃まで昇温し、更にその温度で8時間保持して、蛍光体試料を得た。得られた蛍光体試料をメノウ製乳鉢で粉砕し、蛍光体試料を得た。得られた蛍光体試料をメノウ製乳鉢によって粉砕し、更に50%フッ化水素酸と70%硝酸の1:1混酸中で処理し、蛍光体粉末を得た。
 当該蛍光体粉末について、粉末X線回折測定(XRD)を行なったところ、図11に示すXRDチャートが得られ、当該蛍光体粉末から得られたチャートは全てβ型サイアロン構造であることを示した。また、当該蛍光体粉末に、波長365nmの光を発するランプで照射した結果、緑色に発光することを確認した。
 得られたEu賦活βサイアロン蛍光体の粉末の発光スペクトルを測定した結果、図12に示される発光スペクトルが得られた。図12において縦軸は発光強度(任意単位)、横軸は波長(nm)である。図12に示す発光スペクトルの色度座標は(u’,v’)=(0.129,0.570)、ピーク波長は540nm、半値幅は53nmであった。
 また、燃焼法による酸素窒素分析計(LECO社製TC436型)を用いて、これらの合成粉末中に含まれる酸素量を測定したところ、酸素含有量は1.12重量%であった。また、MCPD-7000(大塚電子製)を用いて波長600nmの光の吸収率を測定した結果、9.1%であった。
 (製造例2-2:Eu賦活βサイアロン蛍光体の調整2)
 Si6-z’Alz’z’8-z’で表される組成式において、z’=0.06のものにEuが0.10at.%賦活されたEu賦活βサイアロン蛍光体を得るべく、45μmの篩を通した金属Si粉末93.59重量%、窒化アルミニウム粉末5.02重量%及び酸化ユーロピウム粉末1.39重量%の組成となるように所定量秤量し、窒化ケイ素焼結体製の乳鉢と乳棒とを用い、10分以上混合し粉体凝集体を得た。この粉体凝集体を直径20mm、高さ20mmの大きさの窒化ホウ素製のるつぼに自然落下させて入れた。
 次に、該るつぼを、黒鉛抵抗加熱方式の加圧電気炉にセットし、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.999体積%の窒素を導入して圧力を0.5MPaとし、毎時500℃で1300℃まで昇温し、その後毎分1℃で1600℃まで昇温し、その温度で8時間保持した。合成した試料をメノウ製乳鉢によって粉末に粉砕し、粉末試料を得た。
 次に、これらの粉末に再度加熱処理を施した。1600℃で焼成した粉末を窒化ケイ素製の乳鉢と乳棒を用いて粉砕した後に、直径20mm、高さ20mmの大きさの窒化ホウ素製のるつぼに自然落下させて入れた。
 該るつぼを、黒鉛抵抗加熱方式の加圧電気炉にセットし、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.999体積%の窒素を導入して圧力を1MPaとした後、毎時500℃で1900℃まで昇温し、更にその温度で8時間保持して、蛍光体試料を得た。得られた蛍光体試料をメノウ製乳鉢によって粉砕し、更に50%フッ化水素酸と70%硝酸の1:1混酸中で処理し、蛍光体粉末を得た。
 当該蛍光体粉末について粉末X線回折測定(XRD)を行なったところ、図13に示すXRDチャートが得られ、当該蛍光体粉末から得られたチャートは全てβ型サイアロン構造であることを示した。また、当該蛍光体粉末に、波長365nmの光を発するランプで照射した結果、緑色に発光することを確認した。
 得られたEu賦活βサイアロン蛍光体の粉末の発光スペクトルを測定した結果、図14に示される発光スペクトルが得られた。図14において縦軸は発光強度(任意単位)、横軸は波長(nm)である。図14に示す発光スペクトルの色度座標は(u’,v’)=(0.110,0.577)、ピーク波長は528nm、半値幅は51nmであった。また、燃焼法による酸素窒素分析計(LECO社製TC436型)を用いて、これらの合成粉末中に含まれる酸素量を測定したところ、酸素含有量は0.4重量%であった。また、MCPD-7000(大塚電子製)を用いて波長600nmの光の吸収率を測定した結果12.5%であった。
 (製造例2-3:Eu賦活BSON蛍光体の調整)
 β型窒化ケイ素粉末17.12重量%、酸化ケイ素粉末29.32重量%、炭酸バリウム粉末50.75重量%、及び酸化ユーロピウム粉末2.81重量%の組成となるようにメノウ製乳鉢と乳棒を用いて混合し、粉体混合物50gを得た。得られた粉体混合物を150ccのエタノール中でメノウ製ボールとナイロンポットとを用いた転動ボールミルにより混合し、スラリーを得た。
 得られたスラリーを100℃でオーブン乾燥し、得られた粉体凝集体をメノウ製ボールとナイロンポットとを用いた乾式の転動ボールミルにより粉砕し、粒径10μm程度の微粒子を得た。得られた微粒子をアルミナルツボに充填し軽く加重を加えて圧縮成型した後、空気中で1100℃、3時間の条件で焼成し、得られた焼成体をメノウ製乳鉢により粉砕して前駆体試料を得た。
 次に、上記るつぼを、黒鉛抵抗加熱方式の加圧電気炉にセットし、拡散ポンプにより焼成雰囲気を真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.999体積%の窒素を導入して圧力を1MPaとした後、毎時500℃で1300℃まで昇温し、更にその温度で2時間保持して、蛍光体試料を得た。
 得られた焼成物をメノウ製乳鉢によって粉砕し、再度アルミナルツボに充填し軽く加重を加えて圧縮成型した後、窒素雰囲気で1300℃、48時間の条件で焼成し、その後、メノウ製乳鉢により粉砕して蛍光体粉末を得た。
 当該蛍光体粉末について、粉末X線回折測定(XRD)を行なったところ、当該蛍光体粉末から得られたチャートは全てBSON構造であることを示した。また、当該蛍光体粉末に、波長365nmの光を発するランプで照射した結果、緑色に発光することを確認した。
 得られたEu賦活BSON蛍光体の粉末の発光スペクトルを測定した結果、図15に示される発光スペクトルが得られた。図15において縦軸は発光強度(任意単位)、横軸は波長(nm)である。図15に示す発光スペクトルの色度座標は(u’,v’)=(0.116,0.566)、ピーク波長は528nm、半値幅は69nmであった。また、MCPD-7000(大塚電子製)を用いて波長600nmの光の吸収率を測定した結果10.4%であった。
 (製造例2-4:Ce賦活LuAl12蛍光体の調整)
 Lu粉末63.7重量%、CeO粉末6.1重量%、Al粉末30.2重量%を所定の組成となるように空気中で秤量し、更に焼成助剤としてBaFを所定量添加してメノウ製ボールとナイロンポットとを用いた転動ボールミルにより混合し、粉体混合物を得た。得られた混合物を石英ルツボに充填し、N(95%)+H(5%)の還元雰囲気で1400℃、5時間の条件で焼成し、得られた焼成体をメノウ製乳鉢により粉砕して蛍光体粉末を得た。
 得られたCe賦活LuAl12蛍光体粉末に、波長365nmの光を発するランプで照射した結果、緑色に発光することを確認した。該粉末の発光スペクトルを測定した結果、図16に示される発光スペクトルが得られた。
 図16において縦軸は発光強度(任意単位)、横軸は波長(nm)である。図16に示す発光スペクトルの色度座標は(u’,v’)=(0.191,0.566)、ピーク波長は540nm、半値幅は110nmであった。また、MCPD-7000(大塚電子製)を用いて波長600nmの光の吸収率を測定した結果9.3%であった。
 (比較製造例1:Eu賦活Sr2.5Ba0.5SiO蛍光体の作製)
 SrCO粉末68.29重量%、BaCO粉末18.48重量%、Eu粉末1.98重量%、SiO粉末11.25重量%を所定の組成となるように空気中で秤量し、メノウ製ボールとナイロンポットとを用いた転動ボールミルにより混合し、粉体混合物を得た。得られた混合物を石英ルツボに充填し、N雰囲気下で1400℃、3時間の条件で予備焼成した後、得られた粉体焼結体をメノウ製乳鉢により粉砕して予備焼成粉を得た。得られた予備焼成粉を、N(95%)+H(5%)の還元雰囲気で1550℃、3時間の条件で焼成し、得られた焼成体をメノウ製乳鉢により粉砕して蛍光体粉末を得た。
 得られたSr2.5Ba0.5SiO:Eu蛍光体粉末に、波長365nmの光を発するランプで照射した結果、橙色に発光することを確認した。該粉末の発光スペクトルを測定した結果、図17に示される発光スペクトルが得られた。
 図17において縦軸は発光強度(任意単位)、横軸は波長(nm)である。図17に示す発光スペクトルの色度座標は(u’,v’)=(0.334,0.549)、ピーク波長は600nm、半値幅は82nmであった。また、本製造例で得られた蛍光体の吸収率のピーク波長における吸収率をABS(MAX)、波長530nmにおける吸収率をABS(530)とした場合のABS(530)/ABS(MAX)=0.82であった。
 〔半導体発光装置の作製〕
 <実施例1~10>
 表4に示す蛍光体を、表4に示す重量比率でシリコーン樹脂(商品名:KER2500、信越シリコーン社製)と混合して当該シリコーン樹脂中に分散させたモールド樹脂を用いて、図1に示した構造を有する、実施例1~10の各半導体発光装置を作製した。
 尚、半導体発光素子として、表4に示す発光ピーク波長を有するLED(商品名:EZR、Cree社製)を用いた。
 ここで、各発光装置の色温度は電球色となるようにモールド樹脂との混合比率及びLEDのピーク波長を調整した。図18~図27に本実施例で例示する半導体発光装置の発光スペクトルを、表5に各半導体発光装置の諸特性を示す。
 <比較例1、2>
 表4に示す蛍光体を、表4に示す重量比率でシリコーン樹脂(商品名:KER2500、信越シリコーン社製)と混合して当該シリコーン樹脂中に分散させたモールド樹脂を用いて、図1に示した構造を有する、比較例1、2の各半導体発光装置を作製した。
 尚、半導体発光素子として、表4に示す発光ピーク波長を有するLED(商品名:EZR、Cree社製)を用いた。
 ここで、各発光装置の色温度は電球色となるようにモールド樹脂との混合比率及びLEDのピーク波長を調整した。
 尚、図18~図29に例示する半導体発光装置の発光スペクトルは、分光光度計(製品名:MCPD-7000、大塚電子製)により測定し、表5,6に示される各指数は測定された発光スペクトルに基づいて計算した。また、半導体発光装置の発光効率(光度)は、分光光度計(製品名:MCPD-7000、大塚電子製)と積分球とを組み合わせた測定系を用いて測定した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表4及び6に示すように、実施例1~10に示す半導体発光装置は、本発明における蛍光体の発光スペクトルにおける要件を満たすことがわかる。
 次に、表5、6により各発光装置の発光特性を比較する。まず、演色性に着目すると、実施例1~10の発光装置は比較例1,2の発光装置と比べてRa、R9共に高い値を示しており、家庭用照明等の一般照明用に適していることが分かる。これは、実施例1~10で作製した発光装置では、蛍光体の蛍光スペクトルが上記本発明の要件を満たしていることに起因する。特に、実施例1~10の発光装置は橙色蛍光体の半値幅が広いため、赤色成分の指標が改善している。
 更に、実施例2及び3、実施例4及び5、実施例6及び7、実施例8及び9のように蛍光体の構成が同じでLEDのピーク波長のみが異なるものを比較すると、LEDピーク波長が450nmのものより460nmのものの方が高い演色性を示すことがわかる。このことから、本発明においてLEDのピーク波長が455nm以上であるとより良い演色性を示すことが確認された。
 次に、発光装置の発光効率(光度)に着目し、実施例及び比較例の半導体発光装置を比較する。比較例2は橙色蛍光体が本発明の要件を満たしておらず、緑色蛍光体の発光スペクトルの半値幅が橙色蛍光体より広く、橙色蛍光体による緑色光の吸収が特に大きいため、比較例2では光度が特に低くなっている。
 また、比較例1及び2や、実施例1及び10や、実施例5及び9のように、橙色蛍光体及び緑色蛍光体のピーク波長がそれぞれ同じで、緑色蛍光体の半値幅のみが異なる場合、緑色蛍光体の半値幅が広いと演色性が光度と共に低下傾向にある。即ち、本発明においては緑色蛍光体の半値幅が狭いことは、光度のみならず、演色性の面でも有利であることがわかる。
 更には、橙色蛍光体以外の構成が同じである、実施例1,3と比較例1との比較、及び実施例10と比較例2との比較において、橙色蛍光体がABS(530)/ABS(MAX)<0.6の要件を満たすことによって、発光効率が高くなることがわかる。
 <実施例11~13、比較例3~4>
 表7に示す蛍光体を、表7に示す重量比率でシリコーン樹脂(商品名:KER2500、信越シリコーン社製)と混合して当該シリコーン樹脂中に分散させたモールド樹脂を用いて、図1に示した構造を有する各半導体発光装置を作製した。
 尚、半導体発光素子として、460nmの発光ピーク波長を有するLED(商品名:EZR、Cree社製)を用いた。
Figure JPOXMLDOC01-appb-T000007
 得られた各半導体装置、並びに実施例1及び3の半導体装置について、発光効率と、橙色蛍光体のABS(530)/ABS(MAX)ABS(530)との関係を示すグラフを図34に示す。
 図34に示すように、半導体装置の発光効率は、橙色蛍光体のABS(530)/ABS(MAX)ABS(530)0.60以上となると急に低下することが確認された。
 今回開示された実施の形態及び実施例は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 本発明の半導体発光素子は、発光効率が高く、高いRa及びR9を示す、電球色光を発する。このため、家庭用照明、医療用照明、車両用灯具等の各種照明器具に好適に使用することができる。
 1  半導体発光装置
 2  発光素子
13  橙色蛍光体
14  緑色蛍光体

Claims (9)

  1.  電球色領域の白色光を発する半導体発光装置であって、
     青色光を発する半導体発光素子と、
     当該青色光を吸収して緑色光を発する緑色蛍光体と、
     当該青色光を吸収して橙光を発する橙色蛍光体とを備え、
     上記橙色蛍光体は、発光スペクトルのピーク波長が590nm以上630nm以下であり、当該ピークの半値幅が130nm以上であり、
     橙色蛍光体の発光スペクトルの半値幅は、緑色蛍光体の発光スペクトルの半値幅より広く、
     上記橙色蛍光体の吸収率のピーク波長が420nm以上であり、
     上記橙色蛍光体の吸収率のピーク波長における、上記橙色蛍光体の吸収率をABS(MAX)、波長530nmにおける、上記橙色蛍光体の吸収率をABS(530)としたときに以下の関係
      ABS(530)/ABS(MAX)<0.60
    を満たすことを特徴とする半導体発光装置。
  2.  上記緑色蛍光体は、発光スペクトルの半値幅が70nm以下であることを特徴とする請求項1に記載の半導体発光装置。
  3.  上記橙色蛍光体は、Ce賦活窒化物系若しくは酸窒化物系蛍光体である請求項1に記載の半導体発光装置。
  4.  上記橙色蛍光体は、Ce賦活CaAlSiN蛍光体であり、
    cCaAlSiN・(1-c)LiSi
    (但し、0.2≦c≦0.8)
    の組成を有する結晶に、Ceと酸素とが固溶した固溶体結晶であることを特徴とする請求項1に記載の半導体発光装置。
  5.  上記固溶体結晶は、Ceを6重量%以下の範囲で含有することを特徴とする請求項4に記載の半導体発光装置。
  6.  記緑色蛍光体は、発光スペクトルの半値幅が55nm以下であることを特徴とする請求項2に記載の半導体発光装置。
  7.  上記緑色蛍光体はEu賦活βサイアロン蛍光体であることを特徴とする請求項6に記載の半導体発光装置。
  8.  上記Eu賦活βサイアロンは、酸素濃度が0.1重量%~0.6重量%の範囲であることを特徴とする請求項7に記載の半導体発光装置。
  9.  上記Eu賦活βサイアロン蛍光体の600nmにおける吸収率が10%以下であることを特徴とする請求項8に記載の半導体発光装置。
PCT/JP2011/051600 2010-02-26 2011-01-27 発光装置 WO2011105157A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/580,791 US8674392B2 (en) 2010-02-26 2011-01-27 Light-emitting device
JP2012501712A JP5791034B2 (ja) 2010-02-26 2011-01-27 発光装置
EP11747121.9A EP2541630B1 (en) 2010-02-26 2011-01-27 Light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010043107 2010-02-26
JP2010-043107 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105157A1 true WO2011105157A1 (ja) 2011-09-01

Family

ID=44506578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051600 WO2011105157A1 (ja) 2010-02-26 2011-01-27 発光装置

Country Status (4)

Country Link
US (1) US8674392B2 (ja)
EP (1) EP2541630B1 (ja)
JP (1) JP5791034B2 (ja)
WO (1) WO2011105157A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053054A (ja) * 2011-09-06 2013-03-21 National Institute For Materials Science 電子伝導性を有するリチウムケイ素窒化物及びその製造方法
EP2608282A1 (en) * 2011-12-19 2013-06-26 Panasonic Corporation Illumination apparatus
JP2013163723A (ja) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk 蛍光体及び発光装置
JP2013163722A (ja) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk 蛍光体及び発光装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473815B (zh) 2009-07-02 2015-04-29 夏普株式会社 发光装置
JP5783512B2 (ja) 2010-07-26 2015-09-24 シャープ株式会社 発光装置
JP2012246462A (ja) * 2011-05-31 2012-12-13 Sharp Corp 発光装置
WO2014026486A1 (zh) * 2012-08-17 2014-02-20 Qian Zhiqiang 白光led发光装置
KR102477353B1 (ko) 2015-08-06 2022-12-16 삼성전자주식회사 적색 형광체, 백색 발광장치 및 조명 장치
KR102452484B1 (ko) * 2017-08-11 2022-10-11 삼성전자주식회사 발광소자 패키지 및 발광소자 패키지 모듈

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321675A (ja) 2002-04-26 2003-11-14 Nichia Chem Ind Ltd 窒化物蛍光体及びその製造方法
JP2005255895A (ja) 2004-03-12 2005-09-22 National Institute For Materials Science 蛍光体とその製造方法
JP2006008721A (ja) 2003-11-26 2006-01-12 National Institute For Materials Science 蛍光体と蛍光体を用いた発光器具
JP2007180483A (ja) * 2005-11-30 2007-07-12 Sharp Corp 発光装置
JP2007231245A (ja) 2005-05-24 2007-09-13 National Institute For Materials Science 蛍光体及びその利用
WO2008062781A1 (fr) 2006-11-20 2008-05-29 Denki Kagaku Kogyo Kabushiki Kaisha Substance fluorescente et son procédé de fabrication, et dispositif électroluminescent
JP2008127547A (ja) * 2006-11-24 2008-06-05 Sharp Corp 蛍光体およびその製造方法、ならびに発光装置
JP2008127529A (ja) 2006-11-24 2008-06-05 Nippon Steel Corp 室炉式コークス炉構造及び室炉式コークス炉の構築方法
JP2008138156A (ja) 2006-02-02 2008-06-19 Mitsubishi Chemicals Corp 複合酸窒化物蛍光体、それを用いた発光装置、画像表示装置、照明装置及び蛍光体含有組成物、並びに、複合酸窒化物
JP2008530334A (ja) 2005-02-21 2008-08-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 放射線源および発光物質を含む照明系
JP2008244468A (ja) 2007-02-28 2008-10-09 Toshiba Lighting & Technology Corp 発光装置
JP2008303331A (ja) 2007-06-08 2008-12-18 Sharp Corp 蛍光体、発光装置および画像表示装置
WO2011002087A1 (ja) * 2009-07-02 2011-01-06 シャープ株式会社 発光装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003221442A1 (en) 2002-03-22 2003-10-08 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
JP4756261B2 (ja) 2005-01-27 2011-08-24 独立行政法人物質・材料研究機構 蛍光体とその製造方法および発光器具
CN101175835B (zh) 2005-05-24 2012-10-10 三菱化学株式会社 荧光体及其应用
JP2007134606A (ja) 2005-11-11 2007-05-31 Matsushita Electric Ind Co Ltd 白色光源
KR100735453B1 (ko) 2006-02-22 2007-07-04 삼성전기주식회사 백색 발광 장치
JP5594924B2 (ja) 2006-11-22 2014-09-24 三菱化学株式会社 蛍光体、蛍光体含有組成物、発光装置、画像表示装置、照明装置、及び蛍光体の製造方法
KR100930171B1 (ko) * 2006-12-05 2009-12-07 삼성전기주식회사 백색 발광장치 및 이를 이용한 백색 광원 모듈
JP2008244469A (ja) * 2007-02-28 2008-10-09 Toshiba Lighting & Technology Corp 発光装置
JP2008250254A (ja) 2007-03-30 2008-10-16 Brother Ind Ltd 光学フィルタ、合波器、光源装置及び画像表示装置
US9279079B2 (en) * 2007-05-30 2016-03-08 Sharp Kabushiki Kaisha Method of manufacturing phosphor, light-emitting device, and image display apparatus
JP2009049267A (ja) 2007-08-22 2009-03-05 Toshiba Corp 半導体発光素子及びその製造方法
JP2009073914A (ja) 2007-09-20 2009-04-09 Koito Mfg Co Ltd 緑色発光蛍光体とそれを用いた発光モジュール
US8158026B2 (en) * 2008-08-12 2012-04-17 Samsung Led Co., Ltd. Method for preparing B-Sialon phosphor
JP3150457U (ja) 2009-02-27 2009-05-21 岡谷電機産業株式会社 カラー発光ダイオード
CN102348778B (zh) 2009-03-26 2014-09-10 独立行政法人物质·材料研究机构 荧光体、其制造方法、发光器具以及图像显示装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321675A (ja) 2002-04-26 2003-11-14 Nichia Chem Ind Ltd 窒化物蛍光体及びその製造方法
JP2006008721A (ja) 2003-11-26 2006-01-12 National Institute For Materials Science 蛍光体と蛍光体を用いた発光器具
JP3837588B2 (ja) 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 蛍光体と蛍光体を用いた発光器具
JP2005255895A (ja) 2004-03-12 2005-09-22 National Institute For Materials Science 蛍光体とその製造方法
JP2008530334A (ja) 2005-02-21 2008-08-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 放射線源および発光物質を含む照明系
JP2007231245A (ja) 2005-05-24 2007-09-13 National Institute For Materials Science 蛍光体及びその利用
JP2007180483A (ja) * 2005-11-30 2007-07-12 Sharp Corp 発光装置
JP2008138156A (ja) 2006-02-02 2008-06-19 Mitsubishi Chemicals Corp 複合酸窒化物蛍光体、それを用いた発光装置、画像表示装置、照明装置及び蛍光体含有組成物、並びに、複合酸窒化物
WO2008062781A1 (fr) 2006-11-20 2008-05-29 Denki Kagaku Kogyo Kabushiki Kaisha Substance fluorescente et son procédé de fabrication, et dispositif électroluminescent
JP2008127529A (ja) 2006-11-24 2008-06-05 Nippon Steel Corp 室炉式コークス炉構造及び室炉式コークス炉の構築方法
JP2008127547A (ja) * 2006-11-24 2008-06-05 Sharp Corp 蛍光体およびその製造方法、ならびに発光装置
JP2008244468A (ja) 2007-02-28 2008-10-09 Toshiba Lighting & Technology Corp 発光装置
JP2008303331A (ja) 2007-06-08 2008-12-18 Sharp Corp 蛍光体、発光装置および画像表示装置
WO2011002087A1 (ja) * 2009-07-02 2011-01-06 シャープ株式会社 発光装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, vol. 8, 2007, pages 588 - 600
See also references of EP2541630A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053054A (ja) * 2011-09-06 2013-03-21 National Institute For Materials Science 電子伝導性を有するリチウムケイ素窒化物及びその製造方法
EP2608282A1 (en) * 2011-12-19 2013-06-26 Panasonic Corporation Illumination apparatus
US8773009B2 (en) 2011-12-19 2014-07-08 Panasonic Corporation Illumination apparatus to reduce insect attractancy
JP2013163723A (ja) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk 蛍光体及び発光装置
JP2013163722A (ja) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk 蛍光体及び発光装置

Also Published As

Publication number Publication date
JP5791034B2 (ja) 2015-10-07
EP2541630A4 (en) 2015-06-03
JPWO2011105157A1 (ja) 2013-06-20
US8674392B2 (en) 2014-03-18
EP2541630A1 (en) 2013-01-02
EP2541630B1 (en) 2017-05-31
US20120319155A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP5676653B2 (ja) 半導体発光装置
JP5791034B2 (ja) 発光装置
JP5450625B2 (ja) 発光装置
US6765237B1 (en) White light emitting device based on UV LED and phosphor blend
KR101178054B1 (ko) β-사이알론 형광체 제조방법
JP5777032B2 (ja) 発光装置
KR101575531B1 (ko) 발광 물질
JP5127965B2 (ja) 蛍光体およびそれを用いた発光装置
JP5216330B2 (ja) 放射線源および発光物質を含む照明系
JP5634352B2 (ja) 蛍光体、発光装置および蛍光体の製造方法
JP2007326914A (ja) 酸窒化物蛍光体および発光装置
WO2006113656A1 (en) Red phosphor for led based lighting
JP2009516774A (ja) 照明用途において使用するための電荷補償窒化物蛍光体
JP2010268004A (ja) 赤色蛍光体およびそれを用いた発光装置
JP2008028042A (ja) 発光装置
JP2015157919A (ja) 蛍光体、発光装置、および蛍光体の製造方法
KR101603007B1 (ko) 형광체
JP5783512B2 (ja) 発光装置
JP4948015B2 (ja) アルミン酸系青色蛍光体およびそれを用いた発光装置
WO2013108782A1 (ja) 酸窒化物系蛍光体およびこれを用いた発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747121

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13580791

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012501712

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011747121

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011747121

Country of ref document: EP