WO2011105078A1 - 光モジュール - Google Patents

光モジュール Download PDF

Info

Publication number
WO2011105078A1
WO2011105078A1 PCT/JP2011/001039 JP2011001039W WO2011105078A1 WO 2011105078 A1 WO2011105078 A1 WO 2011105078A1 JP 2011001039 W JP2011001039 W JP 2011001039W WO 2011105078 A1 WO2011105078 A1 WO 2011105078A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
groove
optical
fiber
optical fiber
Prior art date
Application number
PCT/JP2011/001039
Other languages
English (en)
French (fr)
Inventor
忠寛 山路
信行 朝日
博之 柳生
豊 衣笠
卓也 松本
努武 新保
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to US13/580,238 priority Critical patent/US8768122B2/en
Priority to JP2012501679A priority patent/JP5690324B2/ja
Priority to CN201180010281.3A priority patent/CN102834754B/zh
Priority to EP11747047.6A priority patent/EP2541295B1/en
Priority to KR1020127022890A priority patent/KR20120123125A/ko
Publication of WO2011105078A1 publication Critical patent/WO2011105078A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3684Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier
    • G02B6/3692Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier with surface micromachining involving etching, e.g. wet or dry etching steps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Definitions

  • the present invention relates to an optical module that transmits or receives an optical signal.
  • an optical module described in Patent Document 1 As a conventional optical module, an optical module described in Patent Document 1 is known.
  • this optical module as shown in FIG. 18, two V grooves 31 and 32 having different shapes are formed on a substrate 30.
  • a clad portion 33b of an optical fiber 33 is fixed.
  • the clad portion 33b is positioned by the rising slope portion 36 at the boundary portion between the V grooves 31 and 32.
  • a mirror (reflection surface) 34 is formed at the tip of the other V-groove 32.
  • the mirror 34 changes the optical axis of the core portion 33 a of the optical fiber 33.
  • the light receiving element 35 mounted on the substrate 30 receives an optical signal from the optical fiber 33.
  • the distance from the tip 33c of the core 33a of the optical fiber 33 to the mirror 34 is long. For this reason, the luminous flux emitted from the core portion 33a spreads, and there is a problem that the optical coupling efficiency is lowered.
  • An object of the present invention is to provide an optical module in which the optical coupling efficiency is improved regardless of whether the optical signal from the optical fiber is received by the light receiving element or the optical signal from the light emitting element is received by the optical fiber. is there.
  • the present invention provides a substrate in which at least one first groove and a second groove having a substantially V-shaped cross section deeper than the first groove are continuously formed on the surface.
  • An internal waveguide provided in the first groove of the substrate, an optical path conversion mirror provided at the tip of the first groove, and a surface of the substrate so as to face the mirror And an optical element that emits an optical signal to the core part of the internal waveguide through the mirror part or receives an optical signal from the core part of the internal waveguide through the mirror part.
  • An optical module comprising an optical fiber having a fiber clad portion installed in the second groove and a fiber core portion optically connected to the core portion of the internal waveguide is provided. is there.
  • the core part of the internal waveguide has a width of both side surfaces of the core part from the mirror part toward a connection end part of the optical fiber with the fiber core part. It can be set as the structure which has the slope which becomes thin gradually.
  • the core part of the internal waveguide has a width of both side surfaces of the core part from the connection end part of the optical fiber to the fiber core part toward the mirror part. It can be set as the structure which has the slope which becomes thin gradually.
  • the width of the core portion of the internal waveguide can be configured to be narrower than the width of the upper end of the first groove.
  • the width is substantially the same as the width of the fiber core portion. it can.
  • the first groove may have a substantially trapezoidal cross section, and the bottom surface of the first groove may be wider than the core portion of the internal waveguide.
  • a third groove having a substantially V-shaped cross-section deeper than the second groove is formed on the surface of the substrate continuously to the second groove, and an optical fiber coating portion is formed in the third groove. It can be set as the structure installed.
  • the substrate may be installed on another substrate having a size larger than that of the substrate, and the optical fiber coating may be fixed to the separate substrate.
  • a third groove having a substantially V-shaped cross section deeper than the second groove is formed on the surface of the substrate continuously to the second groove, and the third groove is covered with an optical fiber.
  • the optical fiber can be installed on another substrate having a size larger than that of the substrate, and the coating portion of the optical fiber can be fixed to the other substrate.
  • the substrate is installed on another substrate having a size larger than that of the substrate, a covering is fixed to the outer periphery of the coating portion of the optical fiber, and the covering of the optical fiber is fixed on the separate substrate. be able to.
  • Each of the plurality of first grooves may be separated from each other and disposed on the substrate.
  • an internal waveguide having a core portion is provided in the first groove of the substrate, and the fiber core portion of the optical fiber installed in the second groove of the substrate is optically connected to the core portion of the internal waveguide.
  • the optical element is a light emitting element
  • an optical signal is emitted to the core part of the internal waveguide via the mirror part.
  • the optical element is a light receiving element
  • the optical element is output from the core part of the internal waveguide via the mirror part. The optical signal is received.
  • both of the light flux emitted from the light emitting element and the light flux emitted from the fiber core portion of the optical fiber Does not spread. Accordingly, optical signal transmission loss between the tip of the fiber core portion of the optical fiber and the mirror portion is almost eliminated, and the optical coupling efficiency is improved.
  • FIG. 1 is a schematic side view of an optical module according to an embodiment of the present invention.
  • 2A and 2B are views showing a first substrate of the light emitting side optical module of FIG. 1, in which FIG. 2A is a side cross-sectional view, FIG. 2B is a cross-sectional view taken along a line II in FIG. c) is a sectional view taken along line II-II in FIG.
  • FIG. 3A is a perspective view showing a first substrate, and FIG. 3B is a perspective view in which an internal waveguide is formed.
  • 4A and 4B are diagrams illustrating a first substrate, in which FIG. 4A is a perspective view in which a light emitting element is mounted, and FIG. 4B is a perspective view in which an optical fiber is inserted.
  • FIG. 4A is a perspective view in which a light emitting element is mounted
  • FIG. 4B is a perspective view in which an optical fiber is inserted.
  • FIG. 4A is a perspective view in which a
  • FIG. 5A is a perspective view in which the holding block is fixed to the first substrate
  • FIG. 5B is a perspective view of the optical fiber.
  • Fig.7 (a) is a perspective view
  • FIG.7 (b) is front sectional drawing.
  • Fig.9 (a) is a perspective view
  • FIG.9 (b) is side sectional drawing.
  • FIG.10 (a) is a top view
  • FIG.10 (b) is front sectional drawing of Fig.10 (a)
  • FIG.10 (c) is a top view of another modification, respectively.
  • Fig.11 (a) is a top view
  • FIG.11 (b) is front sectional drawing of Fig.11 (a)
  • FIG.11 (c) is a top view of another modification, respectively.
  • FIG. 1 is a schematic side view of an optical module according to the present invention.
  • 2A to 2C are views showing the first substrate 1 of the light-emitting side optical module of FIG. 1, FIG. 2A being a side sectional view, and FIG. 2B being FIG.
  • FIG. 2C is a cross-sectional view taken along the line II-II of FIG. 2A.
  • 3A and 3B are views showing the first substrate 1, FIG. 3A is a perspective view, and FIG. 3B is a perspective view in which an internal waveguide is formed.
  • 4A and 4B are views showing the first substrate 1, FIG. 4A is a perspective view in which the light emitting element 12a is mounted, and FIG. 4B is a perspective view in which the optical fiber 2 is inserted.
  • FIG. 5 is a perspective view in which the holding block 24 is fixed.
  • an optical module includes a first substrate (mount substrate) 1 that is a substrate on the light emitting side, a first substrate (mount substrate) 3 that is a substrate on the light receiving side, and the first substrates 1 and 3 optically. And an optical fiber 2 coupled to the optical fiber.
  • the vertical direction (the direction of arrow Y) in FIG. 1 is the vertical direction (height direction)
  • the direction orthogonal to the paper surface is the left-right direction (width direction), the left side in FIG. It is called the back.
  • the first substrates 1 and 3 need to be rigid.
  • an efficiency of a predetermined ratio or more is required for the optical transmission from the light emitting element to the light receiving element, so that the optical element can be mounted with high accuracy and position fluctuation during use can be minimized.
  • a silicon (Si) substrate is employed as the first substrates 1 and 3 in this embodiment.
  • the first substrates 1 and 3 are silicon substrates
  • the first substrates 1 and 3 can be etched on the surface with high precision using the crystal orientation of silicon. Using this groove, it is possible to form a highly accurate mirror portion 15 (described later).
  • An internal waveguide 16 (described later) can be formed inside the groove. Moreover, the flatness of the silicon substrate is good.
  • the first substrates 1 and 3 are respectively installed on the surface (upper surface) of a second substrate (another substrate, for example, an interposer substrate) 6 having a larger size.
  • Connectors 7 for electrically connecting to other circuit devices are respectively attached to the back surface (lower surface) of each second substrate 6.
  • a light emitting element 12a that converts an electrical signal into an optical signal is mounted with bumps 12c (see FIG. 2) with the light emitting surface facing downward.
  • An IC substrate (signal processing unit) 4a on which an IC circuit for transmitting an electrical signal to the light emitting element 12a is formed is mounted on the surface of the second substrate 6.
  • a surface emitting laser (VCSEL (Vertical Cavity Surface Emitting Laser)) that is a semiconductor laser is employed as the light emitting element 12a.
  • the light emitting element 12a may be an LED or the like.
  • the IC substrate 4a is a driver IC that drives the VCSEL, and is disposed in the vicinity of the light emitting element 12a.
  • the light emitting element 12 a and the IC substrate 4 a are connected to a wiring pattern formed on the surface of the first substrate 1 and the surface of the second substrate 6.
  • the surface of the first substrate 1 has a first groove (waveguide forming groove) 1a having a substantially trapezoidal cross-section and a cross-sectional shape deeper than the first groove 1a.
  • a V-shaped second groove 1b is formed continuously in the front-rear direction.
  • an optical path changing mirror 15 for bending the optical path by 90 degrees is formed at a position directly below the light emitting element 12a.
  • an internal waveguide 16 that is optically coupled to the light emitting element 12a of the first substrate 1 is provided.
  • the internal waveguide 16 extends from the mirror portion 15 in the direction of the second groove 1b, and is slightly retracted from the rear end portion 1d of the first groove 1a to the mirror portion 15 side.
  • the internal waveguide 16 includes a core portion 17 having a substantially square cross section with a high refractive index through which light propagates, and a cladding portion 18 having a refractive index lower than that.
  • the left and right surfaces (both side surfaces) of the core portion 17 are covered with the cladding portion 18.
  • the upper surface of the core portion 17 is also thinly covered with the cladding portion 18.
  • a light emitting element 12a is mounted at a predetermined position on the surface of the first substrate 1 on which the internal waveguide 16 is provided.
  • the space between the light emitting element 12a and the core portion 17 is filled with an adhesive optical transparent resin 13 as shown in FIG.
  • the basic structure of the first substrate 3 on the light receiving side is the same as that of the first substrate 1 on the light emitting side.
  • a light receiving element 12b that converts an optical signal into an electrical signal is mounted on the surface (upper surface) of the first substrate 3 on the light receiving side with bumps with the light receiving surface facing downward.
  • an IC substrate (signal processing unit) 4b on which an IC circuit for transmitting an electric signal to the light receiving element 12b is formed is mounted on the surface of the second substrate 6.
  • a PD is adopted, and the IC substrate 4b is an element such as a TIA (Trans-impedance Amplifier) that performs current / voltage conversion.
  • TIA Trans-impedance Amplifier
  • the first substrate 1 on the light emitting side, the first substrate 3 on the light receiving side, and the IC substrates 4a and 4b are respectively shielded by a shield case 8 attached to the surface of the second substrate 6.
  • the optical fiber 2 passes through the through hole 8 a of the shield case 8.
  • the optical fiber 2 optically connects the core portion 17 of the internal waveguide 16 of the first substrate 1 on the light emitting side and the core portion 17 of the internal waveguide 16 of the first substrate 3 on the light receiving side. It has a fiber core portion 21 that can be connected to the inside.
  • the optical fiber 2 is a cord type that includes a fiber core portion 21, a fiber cladding portion 22 that surrounds the outer periphery of the fiber core portion 21, and a covering portion 23 that covers the outer periphery of the fiber cladding portion 22.
  • the fiber core portion 21, the fiber clad portion 22, and the covering portion 23 are arranged concentrically, and the optical fiber 2 constituted by these has a circular cross section.
  • the optical fiber 2 passes through the through hole 8 a of the shield case 8, and the covering portion 23 is peeled off near the second groove 1 b of the first substrate 1. Therefore, the fiber clad portion 22 is exposed in the peeled portion.
  • a fiber cladding portion 22 of the optical fiber 2 is installed in the second groove 1b of the first substrate 1, and the boundary with the first groove 1a.
  • the fiber clad part 22 is positioned by the rising slope part.
  • optical coupling is performed in a positioning state in which the optical axes of the core portion 17 of the internal waveguide 16 of the first substrate 1 and the fiber core portion 21 of the optical fiber 2 coincide.
  • the gap between the end face of the core portion 17 of the internal waveguide 16 of the first substrate 1 and the end face of the fiber core portion 21 of the optical fiber 2 is in the range of 0 to 200 ⁇ m.
  • the preferred range depends on the size of the cores 17 and 21, but in general, the gap is preferably 0 to 60 ⁇ m.
  • a holding block 24 is disposed on the upper portion of the fiber cladding portion 22 of the optical fiber 2.
  • the space between the presser block 24 and the second groove 1b is filled with the adhesive 14.
  • the portion of the optical fiber 2 on the distal end side of the fiber clad portion 22 is pressed against the second groove 1b by the press block 24.
  • This tip side portion is bonded and fixed to the first substrate 1 together with the pressing block 24 by the adhesive 14.
  • the internal waveguide 16 including the core portion 17 and the clad portion 18 is provided in the first groove 1 a of the first substrate 1. Further, the fiber core portion 21 of the optical fiber 2 installed in the second groove 1 b of the first substrate 1 is optically connected to the core portion 17 of the internal waveguide 16. Then, in the first substrate 1 on the light emitting side in which the optical element is the light emitting element 12a, an optical signal is emitted to the core part 17 of the internal waveguide 16 through the mirror part 15, and the light receiving side in which the optical element is the light receiving element 12b. In the first substrate 3, the optical signal from the core portion 17 of the internal waveguide 16 is received via the mirror portion 15.
  • the internal waveguide 16 is interposed between the tip of the fiber core portion 21 of the optical fiber 2 and the mirror portion 15, the light flux emitted from the light emitting element 12 a and the fiber core portion 21 of the optical fiber 2. None of the emitted light beam spreads. Therefore, the optical signal transmission loss between the tip of the fiber core portion 21 of the optical fiber 2 and the mirror portion 15 is almost eliminated, and the optical coupling efficiency is improved.
  • the core portion 17 of the internal waveguide 16 is formed when the core portion 17 is formed, as shown in FIG.
  • patterning photocuring
  • unnecessary reflection on the bottom surface is eliminated. Therefore, in this case, a highly accurate core shape can be obtained.
  • the first groove 1a which is a waveguide forming groove of the first substrate 1
  • the core portion 17 has a substantially square cross section.
  • the left and right surfaces of the core portion 17 are covered with the clad portion 18.
  • the internal waveguide 16 is not limited to this type.
  • the first groove 1a of the first substrate 1 has a substantially V-shaped cross section that is shallower than the second groove 1b.
  • the part 17 may be formed in a substantially pentagonal cross-sectional shape adapted to the first groove 1 a, and both the left and right sides of the core part 17 may be covered with the clad part 18.
  • the core portion 17 having a substantially inverted triangular cross section may be formed by filling the entire first groove 1a in which the silicon oxide film (corresponding to the clad portion 18) 40 is filled with the core resin.
  • the light beam from the light emitting element 12a spreads in the width direction at the core portion 17, and a part of the light beam is an optical fiber. There is a possibility that the second fiber core portion 21 may not be reached.
  • the width W1 of the core portion 17 does not necessarily have to be substantially the same as the width W2 of the fiber core portion 21, and may be narrower than the width W3 of the upper end of the first groove 1a. These are the same even when the core portion 17 has a substantially square cross section as shown in FIG.
  • the core portion 17 of the internal waveguide 16 is a fiber core of the optical fiber 2 from the mirror portion 15 in the first substrate 1 on the light emitting side whose optical element is the light emitting element 12a. It can be formed in a slope shape such that the width W of both side surfaces 17a gradually decreases linearly toward the connection end with the portion 21. Further, the both side surfaces 17a can be formed in a stepped straight slope shape as shown in FIG. 10C or a curved slope shape as shown in FIG. 10D.
  • the core portion 17 of the internal waveguide 16 is the fiber core portion of the optical fiber 2 as shown in FIGS. 21 can be formed in a slope shape such that the width W of both side surfaces 17a gradually decreases linearly from the connecting end portion 21 toward the mirror portion 15.
  • the both side surfaces 17a can be formed in a stepped straight slope shape as shown in FIG. 11C or a curved slope shape as shown in FIG.
  • the core portion 17 of the internal waveguide 16 is tapered (that is, the shape becomes narrower toward the front), and is emitted from the light emitting element 12a.
  • the luminous flux is converged.
  • the core part 17 of the internal waveguide 16 is narrowed backward (that is, a shape that becomes narrower toward the rear) to be emitted from the fiber core part 21 of the optical fiber 2. Converged light flux. Accordingly, in any case, the optical coupling efficiency is further improved.
  • a third groove 1c having a substantially V-shaped cross section deeper than the second groove 1b is formed continuously with the second groove 1b. Is formed.
  • the covering portion 23 of the optical fiber 2 can be installed in the third groove 1c.
  • the covering portion 23 of the optical fiber 2 can also be installed in the third groove 1c of the first substrate 1, the stress from the optical fiber 2 is concentrated on the boundary portion with the covering portion 23 of the fiber cladding portion 22. Can be prevented.
  • the covering part 23 is bonded and fixed to the third groove 1c with an adhesive, the fixing strength of the optical fiber 2 is improved. Even if a bending force or a pulling force is applied to the optical fiber 2 from the outside of the module, the optical coupling efficiency with the internal waveguide 16 is not affected, so that the optical coupling efficiency does not decrease.
  • the adhesive 20 is built up on the surface of the second substrate 6 (that is, provided so as to protrude upward).
  • the covering portion 23 of the optical fiber 2 can be fixed to the second substrate 6.
  • the fixing strength of the optical fiber 2 is improved. Further, even if a bending force or a pulling force acts on the optical fiber 2 from the outside of the module, the optical coupling efficiency with the internal waveguide 16 is not affected, so that the optical coupling efficiency does not decrease. Furthermore, if a structure in which the covering portion 23 of the optical fiber 2 is installed and fixed in the third groove 1c of the first substrate 1 is used in combination, the fixing strength is further improved.
  • the covering portion 23 and the covering body 25 of the optical fiber 2 are fixed to the second substrate 6 with the adhesive 20. can do.
  • the covering 25 is set to have an outer diameter capable of maintaining the optical fiber 2 in parallel with the substrates 1 and 6. Note that the covering 25 is not limited to the one fitted into the covering 23 as long as it covers the outer periphery of the covering 23.
  • the covering portion 23 is a layer having a thickness of about 5 to 10 ⁇ m formed of, for example, a UV curable resin, and the covering body 25 is made of, for example, PVC, nylon, or a thermoplastic polyester elastomer (for example, Hytrel (registered trademark)).
  • the single core is formed with an outer diameter of about 900 microns.
  • the covering 25 can be installed on the second substrate 6 and fixed to the second substrate 6 together with the covering portion 23 of the optical fiber 2.
  • the fixing strength of the optical fiber 2 is improved.
  • the optical coupling efficiency with the internal waveguide 16 is not affected, so that the optical coupling efficiency does not decrease.
  • the fixing strength is further improved.
  • the bending of the optical fiber 2 due to its own weight can be suppressed by the thickness of the covering 25, and the optical fiber 2 can be fixed in parallel to the substrates 1 and 6.
  • the covering 25 is a short type (for example, 20 to 40 mm) that fits into the covering portion 23 at the front and rear portions of the through hole 8a in order to protect against bending of the covering portion 23 of the optical fiber 2 that goes out from the through hole 8a of the shield case 8. Length). Moreover, the covering 25 has a long type that covers the entire length of the covering 23 that connects the modules in order to protect the entire strength of the optical fiber 2 and to cope with flame retardancy.
  • the first groove 1a and the second groove 1b can be formed by anisotropic etching of silicon. According to this, groove processing utilizing the crystal orientation of silicon is possible, the first groove 1a can form a highly accurate mirror shape, and the second groove 1b can reduce misalignment of the installation of the optical fiber 2. Can do.
  • a photosensitive resin can be used as the material of the internal waveguide 16. According to this, compared with the inorganic internal waveguide formed repeatedly by ion doping or deposition, it is cheap and easy to form.
  • a silicon oxide film can be formed on the surface of the first substrate 1 including the inside of the first groove 1a, so that the refractive index of the core portion 17 of the internal waveguide 16 can be made larger than that of the silicon oxide film. According to this, the internal waveguide 16 can be easily formed by filling the first groove 1 a with the material that becomes the core portion 17 of the internal waveguide 16.
  • FIG. 14 (b) a plurality of first grooves 1a and a plurality of second grooves 1b are formed, and a plurality of first grooves 1a are arranged in parallel and a plurality of second grooves. You may make it arrange
  • a plurality of first grooves having a substantially trapezoidal cross section are formed on the surface of the first substrate 1 as shown in FIG. Waveguide-forming grooves) 1 a are arranged in parallel in a state where they are separated from each other by the material of the first substrate 1.
  • a plurality of second grooves 1b having a substantially V-shaped cross section deeper than the first groove 1a are formed on the surface of the first substrate 1 continuously from the end of each first groove 1a in the front-rear direction. Has been.
  • an optical path changing mirror 15 is formed at the tip of each first groove 1a.
  • an internal waveguide 16 that optically couples with the light emitting element 12a corresponding to each first groove 1a is provided inside each first groove 1a.
  • the internal waveguide 16 includes a core portion 17 having a substantially square cross section with a high refractive index through which light propagates, and a cladding portion 18 having a refractive index lower than that. As shown in FIG. 14B, the left and right surfaces (both side surfaces) of the core portion 17 are covered with the cladding portion 18. Further, the clad portion 18 is thinly covered on the upper surface of the core portion 17.
  • each of the first grooves 1a is formed. It is possible to suppress leakage (crosstalk) of the optical signal passing through to the adjacent first groove 1a.
  • the interval P between the core portions 17 of the adjacent internal waveguides 16 is not particularly limited in the present invention, and can be arbitrarily set.
  • the interval P between the core portions 17 may be set to about 250 ⁇ m.
  • the size of the second groove 1b is not particularly limited in the present invention. Considering that the outer diameter of the most commonly used thin optical fiber is 125 ⁇ m, the size of the second groove 1 b is the size corresponding to the optical fiber having the outer diameter of the cladding portion 22 of about 125 ⁇ m. It may be set. In order to suppress crosstalk, it is desirable to separate the second groove 1b from the adjacent second groove 1b as shown in FIG.
  • the entire surface of the substrate 1 that is, the surface of the first groove 1a and the shielding.
  • An oxide film layer 34 is formed on the entire surface of the portion 30.
  • the shielding part 30 is a part that protrudes upward between the first grooves 1a in the substrate 1 and shields the scattered component a of the reflected light of the mirror part 15 between the first grooves 1a from leaking.
  • the oxide film layer 34 can reflect the optical signal so as not to leak out of the first groove 1a, and can also suppress the leakage of the scattered component a of the reflected light from the mirror unit 15. According to this configuration, since the oxide film layer 34 becomes a reflection layer that reflects an optical signal, leakage (crosstalk) of the optical signal can be further suppressed. Strictly speaking, an optical signal composed of infrared light or the like has a property of passing through the substrate 1 composed of silicon while being attenuated, but the optical signal is reflected by the oxide film layer 34 as described above. As a result, the crosstalk suppression effect can be improved.
  • the optical module shown in FIG. 16 includes a shielding portion protruding upward in the structure in which the oxide film layer 34 is formed on the surface of the substrate 1 as shown in FIG.
  • the removal portion 32 is formed by partially removing the oxide film layer 34 on the surface of 30.
  • the light absorber 35 along the shielding part 30 is arranged on the surface of the shielding part 30 protruding upward from the first substrate 1.
  • the light absorber 35 for example, opaque acrylic or epoxy resin is used. According to this configuration, when the leaked light d that is multiple-reflected between the optical element 11 having the light emitting part 12a and the clad part 18 is generated, the leaked light d is absorbed by the light absorber 35 and the light leakage is prevented. Can be blocked.
  • the optical element 11 is not limited to an integrated array, and the light emitting element 12a may be separated, or the light emitting element 12a and the light receiving element 12b may be mounted together.
  • the plurality of mirror portions 15 are not necessarily arranged on the same line.
  • the length of the first groove 1a and the internal waveguide 16 is different from that of the adjacent channel, and the mirror portion 15 and the light emitting element 12a or 12b are arranged. By arranging them offset, the crosstalk suppression effect can be further improved.
  • At least one first groove and a second groove having a substantially V-shaped cross section deeper than the first groove are continuously formed on the surface.
  • an optical fiber having a fiber core portion optically connected to the clad portion and the core portion of the internal waveguide.
  • an internal waveguide having a core portion is provided in the first groove of the substrate, and the fiber core portion of the optical fiber installed in the second groove of the substrate is optically connected to the core portion of the internal waveguide. ing.
  • the optical element is a light emitting element
  • an optical signal is emitted to the core part of the internal waveguide via the mirror part.
  • the optical element is a light receiving element
  • the optical element is output from the core part of the internal waveguide via the mirror part. The optical signal is received.
  • both of the light flux emitted from the light emitting element and the light flux emitted from the fiber core portion of the optical fiber Does not spread. Therefore, the optical signal propagation loss between the tip of the fiber core portion of the optical fiber and the mirror portion is almost eliminated in any direction, so that the optical coupling efficiency is improved.
  • the core portion of the internal waveguide gradually narrows on both side surfaces of the core portion from the mirror portion toward the connection end with the fiber core portion of the optical fiber when the optical element is a light emitting element. It can be set as the structure which has such a slope.
  • the optical element is a light emitting element
  • the light beam emitted from the light emitting element is converged by tapering the core portion of the internal waveguide. Therefore, the optical coupling efficiency is further improved.
  • the width of the both side surfaces of the core part gradually decreases from the connecting end part to the fiber core part of the optical fiber toward the mirror part. It can be set as the structure which has such a slope.
  • the optical element is a light receiving element
  • the light beam emitted from the fiber core part of the optical fiber is converged by making the core part of the internal waveguide narrower. Therefore, the optical coupling efficiency is further improved.
  • the width of the core portion of the internal waveguide may be narrower than the width of the upper end of the first groove.
  • the width of the core portion of the internal waveguide is the same as the width of the upper end of the first groove, the light beam from the optical element spreads in the width direction at the core portion, and a part of the light beam is an optical fiber. There is a risk that it will not reach the fiber core. Therefore, the width of the core portion is narrower than the width of the upper end of the first groove, preferably approximately the same width as the width of the fiber core portion, so that almost all of the light beam can reach the fiber core portion of the optical fiber. As a result, the optical coupling efficiency is improved.
  • the first groove may have a substantially trapezoidal cross section, and the bottom surface of the first groove may be wider than the core portion of the internal waveguide.
  • the bottom surface of the first groove is made wider than the core portion of the internal waveguide, it is unnecessary at the bottom surface when patterning (photocuring) the core portion of the internal waveguide when forming the core portion. Therefore, a highly accurate core shape can be obtained.
  • the V groove is as shown in Patent Document 1, there is a concern that the light is reflected and the patterning accuracy is significantly lowered.
  • a third groove having a substantially V-shaped cross section deeper than the second groove is formed on the surface of the substrate, and an optical fiber covering portion is provided in the third groove. Can be configured.
  • the coated portion of the optical fiber can also be installed in the third groove of the first substrate, it is possible to prevent the stress from the optical fiber from concentrating on the boundary portion with the coated portion of the fiber clad portion.
  • the substrate may be installed on another substrate having a size larger than that of the substrate, and the coating portion of the optical fiber may be fixed to the other substrate.
  • the coating portion of the optical fiber can be installed and fixed on another substrate, the fixing strength of the optical fiber is improved. Also, even if bending force or tensile force acts on the optical fiber from the outside of the module, the optical coupling efficiency with the internal waveguide is not lowered because the optical coupling portion with the internal waveguide is not affected.
  • the substrate is installed on another substrate having a size larger than that of the substrate, a covering body is fixed to the outer periphery of the coating portion of the optical fiber, and the covering body is fixed to the separate substrate. be able to.
  • the covering can be installed and fixed on another substrate, the fixing strength of the optical fiber is improved. Also, even if bending force or tensile force acts on the optical fiber from the outside of the module, the optical coupling efficiency with the internal waveguide is not lowered because the optical coupling portion with the internal waveguide is not affected.
  • the optical fiber can be fixed in parallel to each substrate by suppressing the deflection due to the weight of the optical fiber by the thickness of the covering. As a result, stress is hardly generated in the optical coupling portion with the internal waveguide, so that the optical coupling efficiency is not easily lowered.
  • each of the plurality of first grooves may be separated from each other and disposed on the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 光ファイバーからの光信号を受光素子で受ける構成、および発光素子からの光信号を光ファイバーで受ける構成のいずれであっても、光結合効率が向上する光モジュールを提供する。光モジュールは、表面において、第1溝(1a)と前記第1溝(1a)よりも深い断面形状が略V字形状の第2溝(1b)とが連続して形成された基板(1)と、前記基板(1)の第1溝(1a)内に設けられた内部導波路(16)とを備えている。また、光モジュールは、第1溝(1a)の先端部に設けられた光路変換用のミラー部(15)と、前記ミラー部(15)と対向するように基板(1)の表面に実装され、ミラー部(15)を介して内部導波路(16)のコア部(17)に光信号を出射する発光素子(12a)とを備えている。さらに、光モジュールは、第2溝(1b)内にファイバークラッド部(22)が設置され、内部導波路(16)のコア部(17)と光学的に接続されるファイバーコア部(21)を有する光ファイバー(2)を備えている。

Description

光モジュール
 本発明は、光信号を送信あるいは受信する光モジュールに関する。
 従来の光モジュールとしては、特許文献1に記載されている光モジュールが知られている。この光モジュールでは、図18に示すように、基板30に形状の異なる2つのV溝31,32が形成されている。一方のV溝31には、光ファイバー33のクラッド部33bが固定されている。クラッド部33bは、V溝31,32の境部分の立ち上がり傾斜部36によって位置決めされている。他方のV溝32の先端には、ミラー(反射面)34が形成されている。このミラー34によって、光ファイバー33のコア部33aの光軸が変えられる。そして、基板30に実装される受光素子35は、光ファイバー33からの光信号を受光する。
特開平9-54228号
 しかしながら、上記の光モジュールでは、光ファイバー33のコア部33aの先端33cからミラー34までの距離が長い。そのため、コア部33aから出射された光束が広がるので、光結合効率が低下するという問題があった。
 本発明は、前記問題を解消するためになされたものである。本発明の目的は、光ファイバーからの光信号を受光素子で受ける構成、および発光素子からの光信号を光ファイバーで受ける構成のいずれであっても、光結合効率が向上する光モジュールを提供することである。
 前記課題を解決するために、本発明は、表面において、少なくとも1本の第1溝と前記第1溝よりも深い断面形状が略V字形状の第2溝とが連続して形成された基板と、前記基板の前記第1溝内に設けられた内部導波路と、前記第1溝の先端部に設けられた光路変換用のミラー部と、前記ミラー部と対向するように前記基板の表面に実装され、前記ミラー部を介して前記内部導波路の前記コア部に光信号を出射し、若しくは前記ミラー部を介して前記内部導波路の前記コア部からの光信号を受光する光素子と、前記第2溝内に設置されたファイバークラッド部および前記内部導波路の前記コア部と光学的に接続されるファイバーコア部を有する光ファイバーを備えたことを特徴とする光モジュールを提供するものである。
 前記内部導波路の前記コア部は、前記光素子が発光素子である場合において、前記ミラー部から前記光ファイバーの前記ファイバーコア部との接続端部に向かって、前記コア部の両側面の幅が徐々に細くなるような斜面を有する構成とすることができる。
 前記内部導波路の前記コア部は、前記光素子が受光素子である場合において、前記光ファイバーの前記ファイバーコア部との接続端部から前記ミラー部に向かって、前記コア部の両側面の幅が徐々に細くなるような斜面を有する構成とすることができる。
 前記内部導波路の前記コア部の幅は、前記第1溝の上端の幅よりも狭い構成とすることができ、好ましくは、前記ファイバーコア部の幅と略同幅である構成とすることができる。
 前記第1溝は断面形状が略台形状であり、前記第1溝の底面は前記内部導波路の前記コア部よりも幅が広い構成とすることができる。
 前記基板の前記表面に、前記第2溝に連続して、前記第2溝よりも深い断面形状が略V字形状の第3溝が形成され、前記第3溝には、光ファイバーの被覆部が設置される構成とすることができる。
 前記基板は、前記基板よりもサイズが大きい別基板に設置され、前記別基板に、前記光ファイバーの被覆部が固定されている構成とすることができる。
 また、前記基板の前記表面に、前記第2溝に連続して、前記第2溝よりも深い断面形状が略V字形状の第3溝が形成され、前記第3溝には、光ファイバーの被覆部が設置される構成において、前記基板よりもサイズが大きい別基板に設置され、前記別基板に、前記光ファイバーの前記被覆部が固定されている構成とすることができる。
 前記基板は、前記基板よりもサイズが大きい別基板に設置され、前記光ファイバーの被覆部の外周に被覆体が固定されて、前記別基板に、前記光ファイバーの被覆体が固定されている構成とすることができる。
 複数の前記第1溝の各々は、互いに分離して前記基板に配置されている構成とすることができる。
 本発明によれば、基板の第1溝にコア部を有する内部導波路を設け、基板の第2溝内に設置した光ファイバーのファイバーコア部を内部導波路のコア部と光学的に接続するようにしている。そして、光素子が発光素子である場合においてミラー部を介して内部導波路のコア部に光信号を出射し、光素子が受光素子である場合においてミラー部を介して内部導波路のコア部からの光信号を受光するようになる。
 このように、光ファイバーのファイバーコア部の先端とミラー部との間に内部導波路を介在させているから、発光素子から出射された光束、および光ファイバーのファイバーコア部から出射された光束のいずれも広がらない。したがって、光ファイバーのファイバーコア部の先端とミラー部との間の光信号の伝搬ロスがほとんど無くなるため、光結合効率が向上するようになる。
本発明の実施形態に係る光モジュールの概略側面図である。 図1の発光側の光モジュールの第1基板を示す図であり、図2(a)は側面断面図、図2(b)は図2(a)のI-I線断面図、図2(c)は図2(a)のII-II線断面図である。 第1基板を示す図であり、図3(a)は斜視図、図3(b)は内部導波路を形成した斜視図である。 第1基板を示す図であり、図4(a)は発光素子を実装した斜視図、図4(b)は光ファイバーを挿入した斜視図である。 図5(a)は第1基板に押さえブロックを固定した斜視図、図5(b)は光ファイバーの斜視図である。 第1溝の底面と内部導波路のコア部との関係を示す正面断面図である。 第1変形例の第1基板を示す図であり、図7(a)は斜視図、図7(b)は正面断面図である。 第2変形例の第1基板の正面断面図である。 第3変形例の第1基板を示す図であり、図9(a)は斜視図、図9(b)は側面断面図である。 発光素子側の内部導波路のコア部の変形例を示す図であり、図10(a)は平面図、図10(b)は図10(a)の正面断面図、図10(c)、(d)はそれぞれ別変形例の平面図である。 受光素子側の内部導波路のコア部の変形例を示す図であり、図11(a)は平面図、図11(b)は図11(a)の正面断面図、図11(c)、(d)はそれぞれ別変形例の平面図である。 第2基板に光ファイバーの被覆部を接着固定した第1例の側面断面図である。 第2基板に光ファイバーの被覆部を接着固定した第2例の側面断面図である。 本発明の他の実施形態である第1基板を示す図であり、図14(a)は斜視図、図14(b)は正面断面図である。 本発明のさらに他の実施形態である第1基板を示す図であり、基板表面全体に酸化膜層が形成された第1基板の断面図である。 本発明のさらに他の実施形態である第1基板を示す図であり、基板の表面に形成された酸化膜層を遮蔽部の表面だけ部分的に除去することによって除去部分が形成された第1基板の断面図である。 本発明のさらに他の実施形態である第1基板を示す図であり、遮蔽部に光吸収体が配置された第1基板の断面図である。 特許文献1の光モジュールを示す図であり、図18(a)は側面断面図、図18(b)は正面断面図である。
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。図1は本発明に係る光モジュールの概略側面図である。図2(a)~(c)は図1の発光側の光モジュールの第1基板1を示す図であり、図2(a)は側面断面図、図2(b)は図2(a)のI-I線断面図、図2(c)は図2(a)のII-II線断面図である。図3(a)~(b)は第1基板1を示す図であり、図3(a)は斜視図、図3(b)は内部導波路を形成した斜視図である。図4(a)~(b)は第1基板1を示す図であり、図4(a)は発光素子12aを実装した斜視図、図4(b)は光ファイバー2を挿入した斜視図である。図5は押さえブロック24を固定した斜視図である。
 図1において、光モジュールは、発光側の基板である第1基板(マウント基板)1と、受光側の基板である第1基板(マウント基板)3と、この第1基板1,3を光学的に結合する光ファイバー2とを備えている。なお、以下の説明においては、図1の上下方向(矢印Yの方向)を上下方向(高さ方向)、紙面と直交する方向を左右方向(幅方向)、図1の左側を前方、右側を後方という。
 実装時の熱の影響や使用環境による応力の影響を避けるために、第1基板1、3には、剛性が必要である。また、光伝送の場合には、発光素子から受光素子までの光伝送のために所定割合以上の効率が必要になるので、光素子を高精度に実装することや使用中の位置変動を極力抑制する必要がある。このため、第1基板1,3として、本実施形態ではシリコン(Si)基板が採用されている。
 第1基板1、3がシリコン基板であれば、第1基板1、3は、シリコンの結晶方位を利用して表面に高精度のエッチング溝加工が可能である。この溝を利用して高精度なミラー部15(後述)を形成することが可能である。この溝の内部に内部導波路16(後述)を形成することが可能になる。また、シリコン基板の平坦性は、良好である。
 第1基板1,3は、それよりもサイズが大きい第2基板(別基板、例えば、インタポーザ基板)6の表面(上面)にそれぞれ設置されている。各第2基板6の裏面(下面)には、他の回路装置に電気的に接続するためのコネクタ7がそれぞれ取付けられている。
 第1基板1の表面(上面)には、電気信号を光信号に変換する発光素子12aが発光面を下向きとしてバンプ12c(図2参照)で実装されている。また、第2基板6の表面には、この発光素子12aに電気信号を送信するためのIC回路が形成されたIC基板(信号処理部)4aが実装されている。
 発光素子12aとして、本実施形態では、半導体レーザである面発光レーザ〔VCSEL(Vertical Cavity Surface Emitting Laser)〕が採用されている。この発光素子12aはLED等でもよい。
 IC基板4aは、前記VCSELを駆動するドライバICであり、発光素子12aの近傍に配設されている。そして、発光素子12aおよびIC基板4aは、第1基板1の表面と第2基板6の表面に形成された配線パターンに接続されている。
 第1基板1の表面には、図3(a)に示すように、断面形状が略台形状の第1溝(導波路形成用溝)1aと、第1溝1aよりも深い断面形状が略V字形状の第2溝1bが前後方向に連続して形成されている。
 第1溝1aの先端部には、発光素子12aの真下となる位置に、光路を90度屈曲させるための光路変換用のミラー部15が形成されている。
 第1基板1の第1溝1a内には、図3(b)に示すように、第1基板1の発光素子12aと光学的に結合する内部導波路16が設けられている。この内部導波路16は、ミラー部15から第2溝1bの方向に延在していて、第1溝1aの後端部1dからミラー部15側に少し後退している。
 内部導波路16は、光が伝播する屈折率の高い断面略正方形状のコア部17と、それよりも屈折率の低いクラッド部18とから構成されている。
 図2(c)のように、コア部17の左右の両面(両側面)は、クラッド部18で覆われている。また、図示されていないが、コア部17の上面も、クラッド部18で薄く覆われている。
 図4(a)に示されるように、内部導波路16が設けられた第1基板1の表面の所定位置には、発光素子12aが実装されている。この発光素子12aとコア部17との間の空間には、図2(a)に示されるように、接着性の光学透明樹脂13が充填されている。
 図1に戻って、受光側の第1基板3について説明する。この受光側の第1基板3の基本的な構成は、発光側の第1基板1と同様に構成されている。ただし、受光側の第1基板3の表面(上面)に、光信号を電気信号に変換する受光素子12bが受光面を下向きとしてバンプで実装されている。また、第2基板6の表面に、この受光素子12bに電気信号を送信するためのIC回路が形成されたIC基板(信号処理部)4bが実装されている点で、発光側の第1基板1と異なる。この受光素子12bとしては、PDが採用されており、IC基板4bは、電流・電圧の変換を行うTIA(Trans-impedance Amplifier)などの素子である。
 発光側の第1基板1と受光側の第1基板3およびIC基板4a,4bは、第2基板6の表面に取付けられたシールドケース8によってそれぞれシールドされている。光ファイバー2は、シールドケース8の貫通孔8aを貫通している。
 次に、光ファイバー2を説明する。光ファイバー2は、図1および図5に示すように、発光側の第1基板1の内部導波路16のコア部17と受光側の第1基板3の内部導波路16のコア部17とを光学的に結合可能なファイバーコア部21を内部に有している。光ファイバー2は、ファイバーコア部21と、このファイバーコア部21の外周を包囲するファイバークラッド部22と、このファイバークラッド部22の外周を被覆する被覆部23とで構成されるコードタイプである。このファイバーコア部21とファイバークラッド部22と被覆部23は、同心状に配置され、これらで構成される光ファイバー2は、円形断面を有する。
 光ファイバー2は、図1に示されるように、シールドケース8の貫通孔8aを貫通しており、第1基板1の第2溝1bの手前付近で被覆部23が剥がされている。したがって、この剥がされた部分において、ファイバークラッド部22が露出されている。
 図2(a)(c)および図4(b)に示されるように、第1基板1の第2溝1bには、光ファイバー2のファイバークラッド部22が設置され、第1溝1aとの境部分の立ち上がり傾斜部によって、ファイバークラッド部22は、位置決めされている。このときに、第1基板1の内部導波路16のコア部17と光ファイバー2のファイバーコア部21の光軸が一致した位置決め状態で光学的に結合される。
 第1基板1の内部導波路16のコア部17の端面と光ファイバー2のファイバーコア部21の端面との間の隙間は、0~200μmの範囲である。好適な範囲は両コア部17,21の大きさに依るが、一般的には、隙間は0~60μmが好ましい。
 第1基板1の上側には、図2(a)および図5に示されるように、光ファイバー2のファイバークラッド部22の上部には押えブロック24が配置されている。この押えブロック24と第2溝1bとの間の空間には、接着剤14が充填されている。
 このように、光ファイバー2のファイバークラッド部22の先端側の部位は、押えブロック24によって第2溝1bに押え付けられた状態となっている。この先端側の部位は、押えブロック24とともに第1基板1に接着剤14によって接着固定される。
 前記のように構成した光モジュールでは、第1基板1の第1溝1aにおいて、コア部17とクラッド部18とからなる内部導波路16が設けられている。また、第1基板1の第2溝1b内に設置された光ファイバー2のファイバーコア部21は、内部導波路16のコア部17と光学的に接続されている。そして、光素子が発光素子12aである発光側の第1基板1では、ミラー部15を介して内部導波路16のコア部17に光信号を出射し、光素子が受光素子12bである受光側の第1基板3では、ミラー部15を介して内部導波路16のコア部17からの光信号を受光する。
 このように、光ファイバー2のファイバーコア部21の先端とミラー部15との間に内部導波路16が介在しているから、発光素子12aから出射された光束、および光ファイバー2のファイバーコア部21から出射された光束のいずれもが広がることがない。したがって、光ファイバー2のファイバーコア部21の先端とミラー部15との間の光信号の伝搬ロスがほとんど無くなるため、光結合効率が向上する。
 また、第1溝1aの底面を内部導波路16のコア部17よりも広い幅にすれば、図6に示されるように、コア部17の成形時において、内部導波路16のコア部17をパターニング(光硬化)する際、底面での不要な反射がなくなる。したがって、この場合、高精度なコア形状を得ることができる。
 図1~図6に示される実施形態の内部導波路16では、第1基板1の導波路形成用溝である第1溝1aを断面略台形状とし、コア部17を断面略正方形状として、コア部17の左右の両面がクラッド部18で覆われている。
 しかしながら、内部導波路16は、このタイプに限られるものではない。例えば、図7(a)(b)に示す内部導波路16のように、第1基板1の第1溝1aは、第2溝1bよりも浅い断面形状が略V字形状に形成され、コア部17は、第1溝1aに適合した断面略五角形形状に形成されて、コア部17の左右の両面がクラッド部18で覆われてもよい。
 また、図8に示す内部導波路16のように、第1基板1の表面とともに第1溝1a内の表面にも絶縁のためのシリコン酸化膜40が形成されている場合には、このシリコン酸化膜40がコア部17よりも屈折率の低いクラッド部18として機能する。したがって、シリコン酸化膜(クラッド部18に相当)40が形成された第1溝1a内の全体にコア用樹脂を充填することにより、断面略逆三角形状のコア部17を形成してもよい。
 図8に示される内部導波路16では、第1溝1a内の全体がコア部17となることから、発光素子12aからの光束がコア部17で幅方向に広がって、光束の一部が光ファイバー2のファイバーコア部21に至らないおそれがある。
 そこで、図7(b)に示されるように、コア部17の幅W1をファイバーコア部21の幅W2と略同幅とすることで、光束のほぼ全部を光ファイバー2のファイバーコア部21に至らせることができるので、光結合効率が向上する。なお、コア部17の幅W1は、必ずしもファイバーコア部21の幅W2と略同幅とする必要はなく、第1溝1aの上端の幅W3よりも狭いものであればよい。これらのことは、図2(c)に示されるように、コア部17が断面略正方形状のものでも同様である。
 内部導波路16のコア部17は、光素子が発光素子12aである発光側の第1基板1では、図10(a)(b)に示されるように、ミラー部15から光ファイバー2のファイバーコア部21との接続端部に向かって、両側面17aの幅Wが直線的に徐々に細くなるような斜面状に形成することができる。また、両側面17aは、図10(c)に示されるような段階的な直線の斜面状、あるいは図10(d)に示されるような曲線の斜面状に形成することもできる。
 逆に、光素子が受光素子12bである受光側の第1基板3では、図11(a)(b)に示されるように、内部導波路16のコア部17は、光ファイバー2のファイバーコア部21との接続端部からミラー部15に向かって、両側面17aの幅Wが直線的に徐々に細くなるような斜面状に形成するこができる。また、両側面17aは、図11(c)に示されるような段階的な直線の斜面状、あるいは図11(d)に示されるような曲線の斜面状に形成することもできる。
 このようにすれば、光素子が発光素子12aのときは、内部導波路16のコア部17を先細り(すなわち、前方へ行くにしたがって細くなる形状)とすることによって、発光素子12aから出射された光束が収束される。また、光素子が受光素子12bのときは、内部導波路16のコア部17を後細り(すなわち、後方へ行くにしたがって細くなる形状)とすることによって、光ファイバー2のファイバーコア部21から出射された光束が収束される。したがって、いずれの場合でも光結合効率がより向上するようになる。
 図9(a)(b)に示すように、第1基板1の表面には、第2溝1bに連続して、第2溝1bよりも深い断面形状が略V字形状の第3溝1cが形成されている。その第3溝1cには、光ファイバー2の被覆部23が設置されることが可能である。
 このようにすれば、光ファイバー2の被覆部23も第1基板1の第3溝1cに設置できるから、ファイバークラッド部22の被覆部23との境界部分に光ファイバー2からの応力が集中するのを防止することができる。
 ファイバークラッド部22と同様に、被覆部23を第3溝1cに接着剤で接着固定すれば、光ファイバー2の固定強度が向上する。また、モジュール外部から光ファイバー2に曲げ力や引っ張り力が作用しても、内部導波路16との光結合部に影響しないために、光結合効率が低下することがない。
 また、被覆部23が第3溝1cに接着固定されない場合には、図12に示すように、第2基板6の表面に肉盛り(すなわち、上方へ突出するように付与)された接着剤20によって、光ファイバー2の被覆部23が第2基板6に固定されることが可能である。
 このようにすれば、光ファイバー2の被覆部23を第2基板6に設置して固定できるから、光ファイバー2の固定強度が向上する。また、モジュール外部から光ファイバー2に曲げ力や引っ張り力が作用しても、内部導波路16との光結合部に影響しないために、光結合効率が低下しなくなる。さらに、光ファイバー2の被覆部23を第1基板1の第3溝1cに設置して固定する構造を併用すれば、より固定強度が向上する。
 図13に示すように、光ファイバー2の被覆部23にチューブ状の被覆体25が嵌め込まれる場合には、第2基板6に、光ファイバー2の被覆部23と被覆体25とを接着剤20で固定することができる。この被覆体25は、各基板1,6に光ファイバー2を平行状態に維持できる外径に設定されている。なお、被覆体25は、被覆部23の外周を覆うものであれば、被覆部23に嵌め込むものに限らない。
 被覆部23は、例えばUV硬化性樹脂で形成された厚さ5~10μm程度の層であり、被覆体25は、例えばPVCやナイロン、または熱可塑性ポリエステルエラストマー(例えば、ハイトレル(登録商標))で形成され、単心では外径が900ミクロン程度のものである。
 このように構成すれば、被覆体25は、第2基板6に設置され、光ファイバー2の被覆部23とともに第2基板6に固定されることが可能である。それによって、光ファイバー2の固定強度が向上する。また、モジュール外部から光ファイバー2に曲げ力や引っ張り力が作用しても、内部導波路16との光結合部に影響しないために、光結合効率が低下しなくなる。さらに、光ファイバー2の被覆部23を第1基板1の第3溝1cに設置して固定する構造を併用すれば、より固定強度が向上する。加えて、光ファイバー2の自重による撓みを被覆体25の厚みによって抑制することができ、光ファイバー2を各基板1,6に平行状態で固定できる。それによって、光ファイバー2と内部導波路16との光結合部に応力が発生しにくいので、光結合効率が低下しにくくなる。なお、第2基板6に被覆体25のみを接着剤20で固定しても、同様の作用効果を奏することができる。
 被覆体25は、シールドケース8の貫通孔8aから外部に出る光ファイバー2の被覆部23の曲げに対する保護のために、貫通孔8aの前後部分の被覆部23に嵌め込む短いタイプ(例えば20~40mm長さ)がある。また、被覆体25は、光ファイバー2の全体の強度保護および難燃対応のために、モジュール間を繋ぐ被覆部23の全長を覆う長いタイプがある。
 前記実施形態において、ミラー部15の傾斜角度を45度とすれば、光結合効率が良好になる。
 また、第1基板1がシリコン(Si)製であれば、第1溝1aと第2溝1bは、シリコンの異方性エッチングで形成することができる。これによれば、シリコンの結晶方位性を利用した溝加工が可能であり、第1溝1aでは高精度なミラー形状を形成でき、第2溝1bでは光ファイバー2の設置の位置ずれを低減することができる。
 また、内部導波路16の材料として感光性樹脂を用いることができる。これによれば、イオンドープや堆積法を繰り返して形成する無機内部導波路と比較すると、安価で形成が容易となる。
 さらに、第1溝1aの内部を含む第1基板1の表面にシリコン酸化膜を形成して、内部導波路16のコア部17の屈折率をシリコン酸化膜よりも大きくすることができる。これによれば、第1溝1aに内部導波路16のコア部17となる材料を充填することで、容易に内部導波路16を形成することができる。
 また、上記実施形態では、1つの基板上に第1溝および第2溝がそれぞれ1本ずつ形成された例が示されているが、本発明はこれに限定されるものではなく、図14(a)および図14(b)に示されるように、第1溝1aおよび第2溝1bをそれぞれ複数本ずつ形成し、複数本の第1溝1aを平行に配置するとともに複数本の第2溝1bを平行に配置するようにしてもよい。
 図14(a)および図14(b)に示される光モジュールでは、第1基板1の表面には、図14(a)に示すように、断面形状が略台形状の複数の第1溝(導波路形成用溝)1aが、互いに第1基板1の材料によって分離された状態で平行に配置されている。
 さらに、第1基板1の表面には、第1溝1aよりも深い断面形状が略V字形状の複数の第2溝1bが、各第1溝1aの端部から前後方向に連続して形成されている。
 各々の第1溝1aの先端部には、図14(a)に示すように、光路変換用のミラー部15が形成されている。各々の第1溝1aの内部には、図14(b)に示すように、各々の第1溝1aに対応する発光素子12aと光学的に結合する内部導波路16が設けられている。
 内部導波路16は、光が伝播する屈折率の高い断面略正方形状のコア部17と、それよりも屈折率の低いクラッド部18とから構成されている。図14(b)に示すように、コア部17の左右の両面(両側面)は、クラッド部18で覆われている。また、コア部17の上面には、クラッド部18が薄く覆われている。
 図14(a)および図14(b)に示される構成では、複数の第1溝1aが互いに第1基板1の材料によって分離された状態で配置されているので、第1溝1aの各々を通る光信号が隣接する第1溝1aへ漏洩(クロストーク)することを抑制することが可能である。
 また、図14(b)に示されるように、隣接する内部導波路16のコア部17の間隔Pは、本発明ではとくに限定するものではなく、任意に設定することが可能である。例えば、従来公知の光ファイバーアレイの光ファイバーが250μm間隔で配置される場合が多いことを考慮して、コア部17の間隔Pは250μm程度に設定してもよい。
 第2溝1bの大きさについても、本発明ではとくに限定するものではない。最も汎用的に用いられる細径の光ファイバーの外径が125μmであることを考慮して、第2溝1bの大きさは、クラッド部22の外径が125μm程度である光ファイバーに対応する大きさに設定してもよい。なおクロストークの抑制のためには、図14のように第2溝1bについても隣接する第2溝1bと分離することが望ましい。
 さらに、本発明のさらに他の実施形態として、図15に示される光モジュールでは、第1溝1aが複数本配置された構造において、基板1の表面全体(すなわち、第1溝1aの表面および遮蔽部30の表面の全体)に酸化膜層34が形成されている。遮蔽部30は、基板1における第1溝1aの間において上向きに突出した部分であり、第1溝1aの間のミラー部15の反射光の散乱成分aが漏洩しないように遮蔽する。
酸化膜層34は、光信号を第1溝1aの外へ漏洩しないように反射させることが可能であり、ミラー部15の反射光の散乱成分aの漏洩も抑制することが可能である。この構成によれば、酸化膜層34が光信号を反射する反射層となるので、光信号の漏洩(クロストーク)をより抑制できる。赤外光などからなる光信号は、厳密にいえば、シリコンなどからなる基板1を減衰しながら透過する性質を有しているが、上記のように、光信号を酸化膜層34で反射することによって、クロストーク抑制効果を向上するができる。
 なお、図15では、光の経路を視認しやすいように、発光部12aを有する光素子11と基板1との隙間が誇張して大きく図示されているが、実際には、この隙間は微小なものであり、大きなクロストークは発生しない。以下、図16~17についても同様である。
 さらに、本発明のさらに他の実施形態として、図16に示される光モジュールは、図15に示されるように酸化膜層34が基板1の表面に形成された構造において、上向きに突出した遮蔽部30の表面の酸化膜層34が部分的に除去されることによって、除去部分32が形成されている。この構成によれば、発光部12aを有する光素子11とクラッド部18との間を多重反射する漏洩光dが発生した場合、この漏洩光dを酸化膜層34の除去部分32から第1基板1に吸収させることができる。
 さらに、本発明のさらに他の実施形態として、図17に示される光モジュールでは、第1基板1の上向きに突出した遮蔽部30の表面に、この遮蔽部30に沿った光吸収体35が配置されている。光吸収体35としては、例えば不透光性のアクリル若しくはエポキシ樹脂が用いられる。この構成によれば、発光部12aを有する光素子11とクラッド部18との間を多重反射する漏洩光dが発生した場合、この漏洩光dを光吸収体35によって吸収させて光の漏洩を遮断することができる。
また光素子11は一体アレイ状のものに限らず、発光素子12aがそれぞれ分離したものでもよいし、発光素子12aと受光素子12bを併載したものでもよい。さらに複数のミラー部15は必ずしも同一線上に配置する必要はなく、例えば、第一溝1aおよび内部導波路16の長さを隣接するチャンネルと異なるようにし、ミラー部15および発光素子12aまたは12bをオフセットして配置することで、クロストーク抑制効果をさらに向上できる。
 以上のように、本実施形態の光モジュールは、表面において、少なくとも1本の第1溝と前記第1溝よりも深い断面形状が略V字形状の第2溝とが連続して形成された基板と、この基板の第1溝内に設けられた内部導波路と、第1溝の先端部に設けられた光路変換用のミラー部と、このミラー部と対向するように基板の表面に実装され、ミラー部を介して内部導波路のコア部に光信号を出射し、若しくはミラー部を介して内部導波路のコア部からの光信号を受光する光素子と、前記第2溝内に設置されたクラッド部および内部導波路のコア部と光学的に接続されるファイバーコア部を有する光ファイバーを備えたことを特徴とするものである。
 これによれば、基板の第1溝にコア部を有する内部導波路を設け、基板の第2溝内に設置した光ファイバーのファイバーコア部を内部導波路のコア部と光学的に接続するようにしている。そして、光素子が発光素子である場合においてミラー部を介して内部導波路のコア部に光信号を出射し、光素子が受光素子である場合においてミラー部を介して内部導波路のコア部からの光信号を受光する。
 このように、光ファイバーのファイバーコア部の先端とミラー部との間に内部導波路を介在させているから、発光素子から出射された光束、および光ファイバーのファイバーコア部から出射された光束のいずれも広がらない。したがって、光ファイバーのファイバーコア部の先端とミラー部との間の光信号の伝搬ロスが何れの方向においてもほとんど無くなるため、光結合効率が向上する。
 また、前記内部導波路のコア部は、光素子が発光素子である場合において、ミラー部から光ファイバーのファイバーコア部との接続端部に向かって、前記コア部の両側面の幅が徐々に細くなるような斜面を有する構成とすることができる。
 これによれば、光素子が発光素子のときは、内部導波路のコア部を先細りとすることで、発光素子から出射された光束が収束されるようになる。したがって、光結合効率がより向上する。
 また、前記内部導波路のコア部は、光素子が受光素子である場合において、光ファイバーのファイバーコア部との接続端部からミラー部に向かって、前記コア部の両側面の幅が徐々に細くなるような斜面を有する構成とすることができる。
 これによれば、光素子が受光素子のときは、内部導波路のコア部を後細りとすることで、光ファイバーのファイバーコア部から出射された光束が収束されるようになる。したがって、光結合効率がより向上する。
 また、前記内部導波路のコア部の幅は、第1溝の上端の幅よりも狭い構成とすることができる。
 これによれば、内部導波路のコア部の幅が第1溝の上端の幅と同じである場合には、光素子からの光束がコア部で幅方向に広がって、光束の一部が光ファイバーのファイバーコア部に至らないおそれがある。そこで、コア部の幅を第1溝の上端の幅よりも狭く、好ましくは、ファイバーコア部の幅と略同幅とすることで、光束のほぼ全部を光ファイバーのファイバーコア部に至らせることができるので、光結合効率が向上する。
 また、前記第1溝は断面形状が略台形状で、第1溝の底面は内部導波路のコア部よりも幅が広い構成とすることができる。
 これによれば、第1溝の底面を内部導波路のコア部よりも広い幅にしたから、コア部の成形時に、内部導波路のコア部をパターニング(光硬化)する際、底面での不要な反射がなくなるので、高精度なコア形状を得ることができる。因みに、特許文献1に示されるようなV溝であると、光が反射してパターニング精度が著しく低下する懸念がある。
 また、前記基板の表面に、第2溝に連続して、第2溝よりも深い断面形状が略V字形状の第3溝が形成され、前記第3溝には、光ファイバーの被覆部が設置される構成とすることができる。
 これによれば、光ファイバーの被覆部も第1基板の第3溝に設置できるから、ファイバークラッド部の被覆部との境界部分に光ファイバーからの応力が集中するのを防止することができる。
 また、前記基板は、この基板よりもサイズが大きい別基板に設置され、この別基板に、前記光ファイバーの被覆部が固定されている構成とすることができる。
 これによれば、光ファイバーの被覆部を別基板に設置して固定できるから、光ファイバーの固定強度が向上する。また、モジュール外部から光ファイバーに曲げ力や引っ張り力が作用しても、内部導波路との光結合部に影響しないために、光結合効率が低下しなくなる。
 また、前記基板は、この基板よりもサイズが大きい別基板に設置され、前記光ファイバーの被覆部の外周に被覆体が固定されて、前記別基板に、前記被覆体が固定されている構成とすることができる。
 これによれば、被覆体を別基板に設置して固定できるから、光ファイバーの固定強度が向上する。また、モジュール外部から光ファイバーに曲げ力や引っ張り力が作用しても、内部導波路との光結合部に影響しないために、光結合効率が低下しなくなる。加えて、光ファイバーの自重による撓みを被覆体の厚みで抑制して、光ファイバーを各基板に平行状態で固定できる。それによって、内部導波路との光結合部に応力が発生しにくいので、光結合効率が低下しにくくなる。
 また、複数の前記第1溝の各々は、互いに分離して前記基板に配置されている構成とすることができる。
 これによれば、複数の第1溝1aが互いに分離された状態で配置されているので、第1溝1aの各々を通る光信号が漏れて隣接する第1溝1aを通る光信号へ影響を与える現象、いわゆるクロストークの発生を抑えることが可能である。また、それによって、各々の第1溝1aにおける光結合効率が高くなる。
1   第1基板
1a  第1溝
1b  第2溝
1c  第3溝
2   光ファイバー
6   第2基板(別基板)
12a 発光素子(光素子)
12b 受光素子(光素子)
15  ミラー部
16  内部導波路
17  コア部
18  クラッド部
21  ファイバーコア部
22  ファイバークラッド部
23  被覆部
25  被覆体
W1~W3 幅

Claims (10)

  1.  表面において、少なくとも1本の第1溝と前記第1溝よりも深い断面形状が略V字形状の第2溝とが連続して形成された基板と、
     前記基板の第1溝内に設けられた内部導波路と、
     前記第1溝の先端部に設けられた光路変換用のミラー部と、
     前記ミラー部と対向するように前記基板の前記表面に実装され、前記ミラー部を介して前記内部導波路の前記コア部に光信号を出射し、若しくは前記ミラー部を介して前記内部導波路の前記コア部からの光信号を受光する光素子と、
     前記第2溝内に設置されたファイバークラッド部および前記内部導波路の前記コア部と光学的に接続されるファイバーコア部を有する光ファイバーと
    を備えたことを特徴とする光モジュール。
  2.  前記内部導波路の前記コア部は、前記光素子が発光素子である場合において、前記ミラー部から前記光ファイバーの前記ファイバーコア部との接続端部に向かって、前記コア部の両側面の幅が徐々に細くなるような斜面を有することを特徴とする請求項1に記載の光モジュール。
  3.  前記内部導波路の前記コア部は、前記光素子が受光素子である場合において、前記光ファイバーの前記ファイバーコア部との接続端部から前記ミラー部に向かって、前記コア部の両側面の幅が徐々に細くなるような斜面を有することを特徴とする請求項1に記載の光モジュール。
  4.  前記内部導波路の前記コア部の幅は、前記第1溝の上端の幅よりも狭いことを特徴とする請求項1~3のいずれか一項に記載の光モジュール。
  5.  前記第1溝は断面形状が略台形状であり、前記第1溝の底面は前記内部導波路の前記コア部よりも幅が広いことを特徴とする請求項1~4のいずれか一項に記載の光モジュール。
  6.  前記基板の前記表面に、前記第2溝に連続して、前記第2溝よりも深い断面形状が略V字形状の第3溝が形成され、
     前記第3溝には、前記光ファイバーの被覆部が設置されていることを特徴とする請求項1~5のいずれか一項に記載の光モジュール。
  7.  前記基板は、前記基板よりもサイズが大きい別基板に設置され、前記別基板に、前記光ファイバーの被覆部が固定されていることを特徴とする請求項1~5のいずれか一項に記載の光モジュール。
  8.  前記基板は、前記基板よりもサイズが大きい別基板に設置され、前記別基板に、前記光ファイバーの前記被覆部が固定されていることを特徴とする請求項6に記載の光モジュール。
  9.  前記基板は、前記基板よりもサイズが大きい別基板に設置され、前記光ファイバーの被覆部の外周に被覆体が固定されて、前記別基板に、前記被覆体が固定されていることを特徴とする請求項1~6のいずれか一項に記載の光モジュール。
  10.  複数の前記第1溝の各々は、互いに分離して前記基板に配置されている、請求項1~9のいずれか一項に記載の光モジュール。
PCT/JP2011/001039 2010-02-23 2011-02-23 光モジュール WO2011105078A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/580,238 US8768122B2 (en) 2010-02-23 2011-02-23 Optical module
JP2012501679A JP5690324B2 (ja) 2010-02-23 2011-02-23 光モジュール
CN201180010281.3A CN102834754B (zh) 2010-02-23 2011-02-23 光模块
EP11747047.6A EP2541295B1 (en) 2010-02-23 2011-02-23 Optical module
KR1020127022890A KR20120123125A (ko) 2010-02-23 2011-02-23 광 모듈

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-036777 2010-02-23
JP2010036777 2010-02-23
JP2010-215529 2010-09-27
JP2010215529 2010-09-27

Publications (1)

Publication Number Publication Date
WO2011105078A1 true WO2011105078A1 (ja) 2011-09-01

Family

ID=44506507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001039 WO2011105078A1 (ja) 2010-02-23 2011-02-23 光モジュール

Country Status (6)

Country Link
US (1) US8768122B2 (ja)
EP (1) EP2541295B1 (ja)
JP (1) JP5690324B2 (ja)
KR (1) KR20120123125A (ja)
CN (1) CN102834754B (ja)
WO (1) WO2011105078A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057718A (ja) * 2011-09-07 2013-03-28 Panasonic Corp 光モジュール
JP2016099573A (ja) * 2014-11-25 2016-05-30 株式会社フジクラ 光モジュールの製造方法
JP2019086767A (ja) * 2017-11-06 2019-06-06 パナソニックIpマネジメント株式会社 光モジュール構造体

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919573B2 (ja) * 2011-09-07 2016-05-18 パナソニックIpマネジメント株式会社 光モジュール
CN103984062B (zh) * 2013-02-08 2015-10-14 源杰科技股份有限公司 光电模块及光电模块的封装工艺
US9246592B2 (en) 2013-08-19 2016-01-26 International Business Machines Corporation Structured substrate for optical fiber alignment
JP6414839B2 (ja) * 2013-09-27 2018-10-31 日東電工株式会社 光電気混載基板およびその製法
CN104898216B (zh) * 2015-06-24 2016-09-21 苏州洛合镭信光电科技有限公司 一种用于板间互联的小型化并行光收发引擎
CN104898215B (zh) * 2015-06-24 2017-03-22 苏州洛合镭信光电科技有限公司 一种用于板间互联的简便耦合并行光收发引擎
US9798088B2 (en) * 2015-11-05 2017-10-24 Globalfoundries Inc. Barrier structures for underfill blockout regions
WO2018076308A1 (en) * 2016-10-29 2018-05-03 Huawei Technologies Co., Ltd. Optical device and method for fabricating the same
US10641976B2 (en) * 2017-02-23 2020-05-05 Ayar Labs, Inc. Apparatus for optical fiber-to-photonic chip connection and associated methods
CN109752804B (zh) * 2017-11-06 2020-11-10 松下知识产权经营株式会社 光模块构造体
JP6623332B2 (ja) * 2018-03-20 2019-12-25 国立研究開発法人産業技術総合研究所 光コネクタ及びこれを搭載する機器
KR102599968B1 (ko) * 2019-03-13 2023-11-10 한국전자통신연구원 광원 소자
CN114868060A (zh) * 2019-12-25 2022-08-05 古河电气工业株式会社 光学装置及光学装置的制造方法
JPWO2022044707A1 (ja) * 2020-08-28 2022-03-03

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029183A (ja) * 1988-03-03 1990-01-12 American Teleph & Telegr Co <Att> オプトエレクトロニック・デバイス用サブアセンブリ
JPH0688925A (ja) * 1991-08-30 1994-03-29 American Teleph & Telegr Co <Att> 光学組立体とその形成方法
JPH08264748A (ja) * 1995-03-27 1996-10-11 Furukawa Electric Co Ltd:The 光導波路集積回路装置及びその製造方法
JPH0954228A (ja) 1995-08-16 1997-02-25 Oki Electric Ind Co Ltd 光受信モジュール
JP2000294835A (ja) * 1999-04-02 2000-10-20 Nec Corp 光半導体モジュール及びその製造方法
JP2002359426A (ja) * 2001-06-01 2002-12-13 Hitachi Ltd 光モジュール及び光通信システム
JP2003207691A (ja) * 2002-01-15 2003-07-25 Seiko Epson Corp 光モジュール、光伝達装置及び光モジュール用基板
JP2007003622A (ja) * 2005-06-21 2007-01-11 Matsushita Electric Ind Co Ltd 光送信モジュール、光受信モジュール及び光送受信システム
JP2008091516A (ja) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd 光電気変換装置
JP2008209514A (ja) * 2007-02-23 2008-09-11 Sony Corp 光伝送モジュール

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987769B1 (en) * 1998-09-18 2003-05-02 Sumitomo Electric Industries, Ltd. Photodiode module
JP2000241642A (ja) 1999-02-17 2000-09-08 Sumitomo Electric Ind Ltd 光送受信モジュール
JP4582489B2 (ja) * 2000-01-21 2010-11-17 住友電気工業株式会社 発光装置
US20010053260A1 (en) * 2000-03-13 2001-12-20 Toshiyuki Takizawa Optical module and method for producing the same, and optical circuit device
JP4134499B2 (ja) * 2000-08-07 2008-08-20 住友電気工業株式会社 光学装置
JP3921940B2 (ja) * 2000-12-07 2007-05-30 住友電気工業株式会社 光送受信モジュール
JP2002261300A (ja) * 2000-12-25 2002-09-13 Sumitomo Electric Ind Ltd 光受信器
JPWO2002063730A1 (ja) * 2001-02-05 2004-06-10 住友電気工業株式会社 光送信器
US20020110328A1 (en) * 2001-02-14 2002-08-15 Bischel William K. Multi-channel laser pump source for optical amplifiers
JP2003008141A (ja) * 2001-06-26 2003-01-10 Sumitomo Electric Ind Ltd 発光デバイス、光モジュール、及びファイバスタブ部品
KR100439088B1 (ko) * 2001-09-14 2004-07-05 한국과학기술원 상호 자기 정렬된 다수의 식각 홈을 가지는 광결합 모듈및 그 제작방법
EP1321791A2 (en) 2001-12-04 2003-06-25 Matsushita Electric Industrial Co., Ltd. Optical package substrate, optical device, optical module, and method for molding optical package substrate
US20030161603A1 (en) 2002-02-27 2003-08-28 Nadeau Mary J. Receiver optical bench formed using passive alignment
EP1376170A3 (en) * 2002-06-19 2004-12-29 Matsushita Electric Industrial Co., Ltd. Optical waveguide, optical module, and method for producing same module
KR100481978B1 (ko) 2004-03-05 2005-04-14 엘에스전선 주식회사 경사면을 가진 광섬유를 이용한 광 송수신 모듈 및 그제조방법
JP2006065163A (ja) * 2004-08-30 2006-03-09 Omron Corp 光導波路装置
US20090067799A1 (en) 2006-04-26 2009-03-12 Mitsumi Electric Co. Ltd. Optical Device and Optical Device Manufacturing Method
JP4925902B2 (ja) * 2007-04-12 2012-05-09 信越化学工業株式会社 光導波路装置および光導波路装置の製造方法
JP4886627B2 (ja) 2007-07-31 2012-02-29 株式会社東芝 光結合デバイス
JP2009198804A (ja) * 2008-02-21 2009-09-03 Sony Corp 光モジュール及び光導波路
JP4577376B2 (ja) * 2008-02-21 2010-11-10 ソニー株式会社 光導波路の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029183A (ja) * 1988-03-03 1990-01-12 American Teleph & Telegr Co <Att> オプトエレクトロニック・デバイス用サブアセンブリ
JPH0688925A (ja) * 1991-08-30 1994-03-29 American Teleph & Telegr Co <Att> 光学組立体とその形成方法
JPH08264748A (ja) * 1995-03-27 1996-10-11 Furukawa Electric Co Ltd:The 光導波路集積回路装置及びその製造方法
JPH0954228A (ja) 1995-08-16 1997-02-25 Oki Electric Ind Co Ltd 光受信モジュール
JP2000294835A (ja) * 1999-04-02 2000-10-20 Nec Corp 光半導体モジュール及びその製造方法
JP2002359426A (ja) * 2001-06-01 2002-12-13 Hitachi Ltd 光モジュール及び光通信システム
JP2003207691A (ja) * 2002-01-15 2003-07-25 Seiko Epson Corp 光モジュール、光伝達装置及び光モジュール用基板
JP2007003622A (ja) * 2005-06-21 2007-01-11 Matsushita Electric Ind Co Ltd 光送信モジュール、光受信モジュール及び光送受信システム
JP2008091516A (ja) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd 光電気変換装置
JP2008209514A (ja) * 2007-02-23 2008-09-11 Sony Corp 光伝送モジュール

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057718A (ja) * 2011-09-07 2013-03-28 Panasonic Corp 光モジュール
JP2016099573A (ja) * 2014-11-25 2016-05-30 株式会社フジクラ 光モジュールの製造方法
WO2016084833A1 (ja) * 2014-11-25 2016-06-02 株式会社フジクラ 光モジュールの製造方法
JP2019086767A (ja) * 2017-11-06 2019-06-06 パナソニックIpマネジメント株式会社 光モジュール構造体
JP7113325B2 (ja) 2017-11-06 2022-08-05 パナソニックIpマネジメント株式会社 光モジュール構造体

Also Published As

Publication number Publication date
EP2541295A4 (en) 2015-08-19
US20120321250A1 (en) 2012-12-20
JPWO2011105078A1 (ja) 2013-06-20
EP2541295B1 (en) 2017-12-13
KR20120123125A (ko) 2012-11-07
US8768122B2 (en) 2014-07-01
JP5690324B2 (ja) 2015-03-25
CN102834754A (zh) 2012-12-19
CN102834754B (zh) 2015-11-25
EP2541295A1 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
JP5690324B2 (ja) 光モジュール
JP5919573B2 (ja) 光モジュール
JP6399365B2 (ja) 光電変換アセンブリの構造
US9046668B2 (en) Optical module
TWI507753B (zh) Lens parts and light modules with their light
JP5309416B2 (ja) 光モジュール
JP2013057720A (ja) 光モジュール
JP2013024738A (ja) 活線検出装置
JP2006201499A (ja) 光通信モジュール
JP2007072199A (ja) 光モジュールおよび光伝送装置
JP5879541B2 (ja) 光モジュール
JP5849220B2 (ja) 光モジュール
JP4101691B2 (ja) 光送信モジュール
JP2008015040A (ja) 光導波路および光モジュール
JP2008134444A (ja) 光モジュール及び光導波路構造体
JPWO2018042984A1 (ja) 光接続構造
JP5647485B2 (ja) 光モジュール
JP5654316B2 (ja) 光モジュール
JP2011048072A (ja) 光トランシーバ及び光アクティブケーブル
JP2013003549A (ja) 光モジュール
JP2013140211A (ja) 光モジュール
JP2011053303A (ja) 光素子モジュール、光トランシーバ及び光アクティブケーブル
JP5314587B2 (ja) 光モジュール
JP4911026B2 (ja) 光伝送アセンブリ
JP5206592B2 (ja) 光モジュール及び光導波路構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010281.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501679

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011747047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13580238

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127022890

Country of ref document: KR

Kind code of ref document: A