WO2011104985A1 - 電流推定回路 - Google Patents

電流推定回路 Download PDF

Info

Publication number
WO2011104985A1
WO2011104985A1 PCT/JP2010/072985 JP2010072985W WO2011104985A1 WO 2011104985 A1 WO2011104985 A1 WO 2011104985A1 JP 2010072985 W JP2010072985 W JP 2010072985W WO 2011104985 A1 WO2011104985 A1 WO 2011104985A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage
capacitor
circuit
inductor
Prior art date
Application number
PCT/JP2010/072985
Other languages
English (en)
French (fr)
Inventor
西川 幸廣
Original Assignee
富士電機システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機システムズ株式会社 filed Critical 富士電機システムズ株式会社
Priority to JP2012501654A priority Critical patent/JP5316976B2/ja
Priority to CN201080036031.2A priority patent/CN102577061B/zh
Priority to US13/390,100 priority patent/US8773111B2/en
Publication of WO2011104985A1 publication Critical patent/WO2011104985A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a current flowing through the inductor in a switching power supply device that converts the voltage of an AC or DC input power source into a desired DC output voltage by using the energy storage and discharge action of the inductor when the switch element is turned on and off.
  • the present invention relates to a current estimation circuit for estimating.
  • Some switching power supply devices control the input current and output current by detecting the current flowing through the inductor.
  • a power factor correction circuit that controls an AC input current in a sine wave shape and suppresses a harmonic current flowing out to an AC power source as shown in Patent Document 1 is known.
  • FIG. 10 is a circuit diagram showing a conventional example of a power factor correction circuit having the same configuration as that of the power factor correction circuit disclosed in Patent Document 1.
  • this conventional example which is a step-up chopper type power factor correction circuit
  • the output of the AC power supply 1 is rectified by the full-wave rectifier 3, and the output voltage of the rectifier 3 is applied to the MOSFET 5 via the inductor 4.
  • the inductor 4 stores and discharges energy as the MOSFET 5 is turned on and off, and supplies the released energy to the smoothing capacitor 7 via the diode 6.
  • a voltage corresponding to the current flowing through the inductor 4 (inductor current) is generated at both ends of the current detection resistor 10.
  • the terminal voltage of the smoothing capacitor 7, that is, the DC output voltage output from the output terminals 2 a and 2 b is divided by a voltage dividing circuit including resistors 103 and 104. Therefore, the voltage error amplifier 105 detects an error of the divided voltage with respect to the reference voltage 106, and outputs an error signal indicating the error.
  • the output voltage of the rectifier 3, which is a positive voltage is divided by a voltage dividing circuit including resistors 101 and 102.
  • Multiplier 107 performs an operation of multiplying the divided voltage by the error signal, and outputs the operation result as a current command.
  • the current error amplifier 108 detects an error of the inductor current with respect to the current command, and outputs an error signal indicating the error. Therefore, the PWM comparator 110 compares the error signal with the carrier signal 109 and outputs a gate control signal having a duty ratio corresponding to the magnitude of the error signal.
  • the gate control signal is input to the gate of the MOSFET 5 through the gate driver 111. Therefore, the MOSFET 5 is controlled to turn on and off so that the inductor current matches the current command. As a result, the DC output voltage is controlled to be a voltage defined by the reference voltage 106, and the inductor current The average value is controlled in a sine wave shape.
  • the voltage error amplifier 105 and the current error amplifier 108 are provided with phase compensation elements, respectively, but these are omitted in FIG.
  • An inverting amplifier circuit for adjusting the polarity and magnitude of the signal input to the inverting input terminal of the current error amplifier 108 is provided between the current detection resistor 10 and the inverting input terminal of the current error amplifier 108. This is also omitted.
  • the control as described above is called average current control, and even when there is a mixed mode in which there is a period in which the inductor current becomes zero every switching cycle and a continuous mode in which the inductor current does not become zero every switching cycle. There is an advantage that the distortion of the AC input current is small.
  • FIG. 11 shows a conventional example using relatively inexpensive ACCT (AC current transformer) 8, 8a as current detection means.
  • ACCT AC current transformer
  • the current flowing through the MOSFET 5 is detected by the ACCT 8
  • the current flowing through the diode 6 is detected by the ACCT 8a, and these currents are synthesized in the current detection circuit 300a. Therefore, a signal corresponding to the current flowing through the inductor 4 is output from the current detection circuit 300a.
  • FIG. 12 shows a configuration example of the current detection circuit 300a.
  • the current detection circuit 300a includes a voltage limiter including Zener diodes 301a and 302a provided between the secondary windings of the ACCT8, a voltage limiter including Zener diodes 305a and 306a provided between the secondary windings of the ACCT8a, and the ACCT8. 8a, diodes 303a and 307a for rectifying the output signals, respectively, and a resistor 304a connected between the cathode connection point (signal combining point) of these diodes 303a and 307a and the ground point, and the signal combining point A signal voltage corresponding to the current flowing from the inductor 4 to the inductor 4 is output.
  • Patent Document 2 describes a technique for estimating an inductor current of a DC / DC converter using ACCT and charging / discharging of a capacitor.
  • the conventional example shown in FIG. 11 can reduce power loss due to current detection, but uses two ACCTs 8 and 8a, and thus causes inconveniences such as an increase in the number of components and an increase in component mounting space. Furthermore, in this conventional circuit, the surge voltage generated when the MOSFET 5 is turned off increases due to the inductance of the primary winding of the ACCT 8 and 8a and the inductance of the wiring connecting the ACCT 8 and 8a. As a result, the switching loss increases, and as a result, the purpose of improving the conversion efficiency may not be achieved.
  • the technique described in Patent Document 2 is based on the premise that the inductance value of the inductor is constant. In other words, the inductor current during the off period can be calculated with relatively high accuracy under such a premise.
  • the inductance value of the inductor depends on the DC superimposition (DC component) even if the change width of the current flowing through the inductor is the same, that is, the (maximum value ⁇ minimum value) of the current is the same. In general, the inductance value decreases as the DC superposition amount increases.
  • the technique described in Patent Document 2 cannot cope with such a change in inductance value, and thus it is difficult to stably estimate the current flowing through the inductor.
  • the present invention has been made in view of such a situation, and is capable of reducing the cost, reducing the size, and suppressing the switching loss.
  • the current flowing through the inductor is highly accurate regardless of the change in the inductance value of the inductor. It is an object of the present invention to provide a current estimation circuit capable of estimating the current.
  • the present invention relates to a current that estimates an electric current flowing through an inductor in a switching power supply device that converts an AC or DC input voltage into a DC output voltage by using an energy storage and discharge action of the inductor when the switch element is turned on and off.
  • the estimation circuit detects a current flowing through the switch element and outputs a corresponding signal voltage, and a capacitor charged by the signal voltage from the current detection means, Means for calculating an increase rate of the terminal voltage of the capacitor; an instantaneous value detection means for detecting an absolute value of the instantaneous value of the input voltage and an instantaneous value of the DC output voltage; an increase rate of the terminal voltage of the capacitor; Based on the absolute value of the instantaneous value of the input voltage and the instantaneous value of the DC output voltage, And means for calculating the rate of decrease in the terminal voltage of the serial capacitors, the OFF period of the switching element, and discharging means for the terminal voltage of the capacitor discharging the capacitor so as to decrease with the decrease rate, the.
  • the current flowing through the inductor can be estimated from the terminal voltage of the capacitor.
  • the current detection unit may include a current transformer.
  • this current transformer for example, an AC current transformer is used.
  • a discharge blocking circuit for blocking a discharge current from the capacitor may be provided between the current detection means and the capacitor.
  • the discharge blocking circuit may include a diode that blocks the discharge current.
  • the discharge prevention circuit may include a switch circuit that is turned on and off at a timing when the switch element is turned on and off.
  • a differentiation circuit is used as a means for calculating the increase rate of the terminal voltage of the capacitor.
  • the differentiating circuit can have a configuration using the capacitor as a differential operation element.
  • the differentiating circuit includes an operational amplifier in which one end of the capacitor is connected to an inverting input terminal, a reference potential is input to the non-inverting input terminal of the operational amplifier, and the inverting input terminal and the output terminal of the operational amplifier are connected to each other. It can be set as the structure by which resistance was connected between.
  • Voltage selection means for selecting a higher one of the signal voltage from the current detection means and the terminal voltage of the capacitor as a voltage for estimating the current flowing through the inductor can be further provided. Further, the voltage selection means selects a reference voltage corresponding to the signal voltage from the current detection means being zero or a terminal voltage of the capacitor, whichever is higher, as a voltage for estimating the current flowing through the inductor. You can also Voltage selection means for selecting a higher one of the reference voltage corresponding to the signal voltage from the current detection means being zero and the terminal voltage of the capacitor as the voltage for estimating the current flowing through the inductor is further provided. be able to.
  • the increase rate of the terminal voltage of the capacitor is + di / dt
  • the absolute value of the instantaneous value of the input voltage is vin
  • the instantaneous value of the DC output voltage is vo
  • (+ di / dt) ⁇ (vo ⁇ vin) / vin The reduction rate of the terminal voltage of the capacitor may be calculated by calculating
  • the current detecting means for detecting the inductor current in the off period is unnecessary. Therefore, the cost can be reduced and the size can be reduced, and the inductance of the wiring related to the current detecting means can be reduced, and the switching loss caused by the wiring inductance can be suppressed. Furthermore, according to the present invention, when the increase rate of the current flowing through the switch element is changed due to a change in the inductance value of the inductor, the capacitor is discharged at a decrease rate commensurate with the changed increase rate. Even if the inductance value changes, the current flowing through the inductor can be accurately estimated.
  • (A) shows a waveform diagram for explaining the operation of the current estimation circuit of FIG. 8 in the continuous mode
  • FIG. 1 is a circuit diagram of a step-up chopper type power factor correction circuit shown as a configuration example of a switching power supply device to which a current estimation circuit according to the present invention is applied.
  • the same or common elements as those shown in FIG. 11 are given the same numbers. In the following, description of the same or common elements will be omitted.
  • the current flowing through the diode 6, that is, the current flowing through the inductor 4 during the off period of the MOSFET 5 is detected by the ACCT 8a which is an AC current transformer.
  • the ACCT 8a is deleted.
  • the current detection circuit 300 includes a voltage limiter composed of Zener diodes 301 and 302 connected in series between the secondary windings of the ACCT 8, a diode 303 that rectifies the output signal of the ACCT 8, and a cathode between the cathode of the diode 303 and a ground point. And a resistor 304 connected to.
  • the current detection circuit 300 outputs a signal corresponding to the current flowing through the inductor 4 during the ON period of the MOSFET 5.
  • the voltage limiter is provided to make the exciting current for exciting the iron core of the ACCT 8 substantially zero during the off-period of the MOSFET 5.
  • the current estimation circuit 200 includes a discharge prevention circuit 400 including an operational amplifier (operational amplifier) 401 and a diode 402, a capacitor 201 connected between the output terminal of the discharge prevention circuit 400 and a ground point, and a terminal voltage of the capacitor 201.
  • a sample and hold circuit 202 for holding the output signal value of the differentiator circuit 500, a sample and hold circuit 202 connected to the differentiator circuit 500, and an output of the sample and hold circuit 202.
  • a multiplier 203 for multiplying the output of the multiplier 206 and a voltage controlled current source 204 controlled by the output of the multiplier 203 are provided.
  • the discharge prevention circuit 400 functions as a voltage follower and outputs a voltage equal to the input, and the charge of the capacitor 201 is discharged to the discharge prevention circuit 400 and the current detection circuit 300 side, that is, the charge of the capacitor 201. Is prevented by the diode 402 from being discharged through the output terminal of the operational amplifier 401.
  • the absolute value of the instantaneous value of the input voltage (the output voltage of the rectifier 3 in the embodiment of FIG. 1) is vin
  • the instantaneous value of the DC output voltage output from the terminals 2a and 2b is vo
  • a divided voltage having a voltage value vin ′ corresponding to the instantaneous value vin of the input voltage is output from the voltage dividing circuit including the resistor 101 and the resistor 102 shown in FIG. 1, and the resistor shown in FIG.
  • a divided voltage having a voltage value vo ′ corresponding to the instantaneous value vo of the DC output voltage is output from the voltage dividing circuit composed of the resistor 103 and the resistor 104.
  • the values of the resistors 101 to 104 are set so that the voltage dividing ratios of the two voltage dividing circuits are equal.
  • the output voltage vis of the current detection circuit 300 shown in FIG. 1 is input to the discharge prevention circuit 400 shown in FIG. Therefore, during the period in which the MOSFET 5 is on, the capacitor 201 in FIG. 3 is charged with a voltage having the same waveform as the waveform of the output voltage vis of the current detection circuit 300. At this time, the peak value of the terminal voltage of the capacitor 201 corresponds to the initial value of the current flowing through the inductor 4 when the MOSFET 5 is turned off.
  • the differentiation circuit 500 differentiates the terminal voltage value vs of the capacitor 201 and outputs a signal indicating the current increase rate (+ di / dt) of the current flowing through the inductor 4 while the MOSFET 5 is on.
  • the sample and hold circuit 202 reads the value of the current increase rate (+ di / dt) based on the output signal vpwm of the PWM comparator 110 shown in FIG. 1 that defines the period during which the MOSFET 5 is on, and the MOSFET 5 is turned off. The value is retained for the period during
  • the subtractor 205 performs an operation (vo′ ⁇ vin ′) for subtracting the voltage value vin ′ corresponding to the instantaneous value vin from the voltage value vo ′ corresponding to the instantaneous value vo, and the divider 206 Then, the calculation (vo'-vin ') / vin' for dividing the subtraction result (vo'-vin ') by the voltage value vin' is executed. As is clear from the equation (4), the proportionality coefficient (vo ⁇ vin) / vin is obtained by the calculation in the divider 206.
  • the calculation of the equation (3) is performed by multiplying the value of the current increase rate (+ di / dt) held in the sample and hold circuit 202 by the proportional coefficient (vo ⁇ vin) / vin.
  • a reduction rate ( ⁇ di / dt) of the current flowing through the inductor 4 during the period in which the MOSFET 5 is off is obtained.
  • the voltage control current source 204 discharges the capacitor 201 in accordance with the decrease rate ( ⁇ di / dt) during the off period of the MOSFET 5. Thereby, the decreasing rate of the terminal voltage value vs of the capacitor 201 coincides with the decreasing rate of the current flowing through the inductor 4 during the OFF period of the MOSFET 5.
  • the terminal voltage value vs of the capacitor 201 increases at an increase rate according to the current increase rate (+ di / dt) during the ON period of the MOSFET 5, and reaches the current decrease rate ( ⁇ di / dt) during the OFF period of the MOSFET 5. It will decrease at the same decrease rate.
  • the terminal voltage value vs of the capacitor 201 corresponds to the current flowing through the inductor 4, the inductor 5 is off during the off period of the MOSFET 5 even though the ACCT 8a shown in FIG. 11 is not used. 4 can be estimated from the terminal voltage value vs of the capacitor 201.
  • FIG. 4A shows a waveform diagram for explaining the operation of the current estimation circuit 200 in a continuous mode (a mode in which the inductor current does not become zero every switching cycle), and FIG. The waveform diagram for demonstrating operation
  • (a) shows the waveform of the output signal vpwm of the PWM comparator 110 (see FIG. 1) that defines the ON period and the OFF period of the MOSFET 5, and
  • the waveform (see the solid line) and the waveform of the terminal voltage of the capacitor 201 (see the dotted line) during the off-period of the MOSFET 5 (c) illustrate the waveform of the current flowing through the inductor 4, respectively.
  • the terminal voltage vs of the capacitor 201 increases and decreases in the same manner as the inductor current iL, and therefore corresponds to the inductor current iL. Therefore, in this embodiment, the value of the inductor current iL is estimated from the value of the terminal voltage vs of the capacitor 201 output from the current estimation circuit 200.
  • the terminal voltage vs of the capacitor 201 corresponding to the inductor current iL is input to the error amplifier 18 as shown in FIG.
  • FIG. 5 shows another configuration example of the current estimation circuit 200.
  • the capacitor 201 shown in FIG. 3 is eliminated by using the differentiation circuit 500a having the exemplified configuration.
  • the differentiation circuit 500a has a well-known configuration including an input capacitor 501, a feedback resistor 502, and an operational amplifier 503, and the input capacitor 501 is also used as a substitute means for the capacitor 201.
  • One end of the input capacitor 501 is connected to an inverting input terminal of an operational amplifier (operational amplifier) 503, a ground potential which is a reference potential is input to a non-inverting input terminal of the operational amplifier 503, and a feedback resistor 502 is connected to an inverting input terminal of the operational amplifier 503. Connected between output terminals.
  • the charging current i of the capacitor 501 flows through the path of the discharge prevention circuit 400 ⁇ the capacitor 501 ⁇ the resistor 502 ⁇ the output terminal of the operational amplifier 503.
  • the capacitance of the capacitor 501 is C 501
  • the differentiation circuit 500a operates as described above. As described above, the inverting terminal of the operational amplifier 503 becomes a ground potential due to an imaginary short. Therefore, according to the current estimation circuit 200, the charge / discharge operation of the capacitor 501 which is a component of the differentiation circuit 500a is the same as that of the capacitor 201, so that the capacitor 501 also has the function of the capacitor 201. As a result, the number of capacitors used can be reduced.
  • the differentiation circuit 500a has a known configuration in which an input resistor 504 is connected in series to a capacitor 501 of the differentiation circuit shown in FIG. 5, and a feedback capacitor 505 is connected in parallel to a feedback resistor 502 of the circuit.
  • the differentiation circuit 500 provided in the current estimation circuit 200 shown in FIG. 3 can also have the configuration illustrated in FIGS. 5 and 6.
  • the discharge prevention circuit 400 shown in FIG. 7 includes a voltage follower circuit 401a using an operational amplifier and a switch circuit 402a connected to an output terminal of the voltage follower circuit 401a in order to avoid the above-described disadvantages. .
  • the switch circuit 402a is controlled using the output signal vpwm of the PWM comparator 110 (see FIG. 1), that is, the switch circuit 402a is turned on at the timing when the MOSFET 5 is turned on, and the MOSFET 5 is turned off. Since the switch circuit 402a is turned off at the timing, the above-described disadvantage that the capacitor 201 is charged or discharged due to the influence of the junction capacitance of the diode 402 and the reverse recovery characteristic is avoided.
  • a switch circuit 402a having a circuit configuration in which the parasitic capacitance is smaller than the capacitance of the capacitor 201 and the capacitor 501, and further, the charge change of the capacitor 201 and the capacitor 501 due to the on / off operation is small. .
  • FIG. 8 shows a configuration example of a current estimation circuit 200 incorporated in a control circuit using the single power source.
  • the discharge prevention circuit 400b of the current estimation circuit 200 includes an operational amplifier 401b, a switch circuit 402b connected in series to the output terminal of the operational amplifier 401b, and a voltage dividing resistor having one end connected to the non-inverting input terminal of the operational amplifier 401b. 403b, 404b, a resistor 405b having one end connected to the inverting input terminal of the operational amplifier 401b, and a resistor 406b connected between the inverting input terminal of the operational amplifier 401b and the output terminal.
  • a bias voltage Vbias1 is applied to the discharge prevention circuit 400b via a resistor 405b, and a bias voltage Vbias2 (set to an arbitrary value larger than the bias voltage Vbias1) is applied via a voltage dividing resistor 403b. ing. The voltage vis is input through the voltage dividing resistor 404b.
  • the differentiating circuit 500b of the current estimating circuit 200 has the same configuration as the differentiating circuit 500a shown in FIG. 5, but the bias voltage Vbias1 is applied as a reference potential to the non-inverting input terminal of the operational amplifier 503b.
  • a feedback resistor 502b corresponding to the feedback resistor 502 in FIG. 5 is connected between the inverting input terminal and the output terminal of the operational amplifier 503b.
  • the voltage dividing ratio of the voltage dividing resistors 403b and 404b is adjusted so that the voltage at the non-inverting input terminal of the operational amplifier 401b becomes Vbias1 when the output signal vis of the current detection circuit 300 shown in FIG. When the signal value vis is zero, the output voltage visb of the operational amplifier 401b becomes zero.
  • the maximum value circuit 207 compares the terminal voltage vsb of the capacitor 501b with the output voltage visb of the operational amplifier 401b, and outputs vsb as the voltage vs indicating the inductor current when vsb ⁇ visb, and visb when vsb ⁇ visb. Is output as a voltage vs indicating the inductor current.
  • FIG. 9A shows a waveform diagram for explaining the operation of the current estimation circuit 200 shown in FIG. 8 in the continuous mode (a mode in which the inductor current does not become zero every switching cycle).
  • the symbol vsb indicates the terminal voltage of the capacitor 501b.
  • the switch circuit 402b is turned on, the voltage vsb naturally matches the output voltage visb of the operational amplifier 401b.
  • the voltages vsb, visb, and vs change with the bias voltage Vbias1 as a reference potential.
  • the discharge prevention circuit 400b including the switch circuit 402b is used, the following state occurs. That is, as shown in the waveform diagram of FIG. 9B, in the intermittent mode, the inductor current iL becomes zero during the OFF period of the MOSFET 5. At this time, since the switch circuit 402b is off, the terminal voltage vsb of the capacitor 501b is equal to the voltage visb on the input side of the switch circuit 402b (when the switch circuit 402b is off), as shown in FIG. The voltage visb is smaller than the bias voltage Vbias1).
  • the maximum value circuit 207 outputs visb as the voltage vs indicating the inductor current when vsb ⁇ visb. Therefore, by providing the maximum value circuit 207, it is possible to avoid the above inconvenience that the inductor current is estimated to be a negative current.
  • the configuration using the single power source can also be applied to the current estimation circuit 200 shown in FIGS. In that case, the diode 402 can be regarded as a switch circuit.
  • the bias voltage Vbias1 is replaced with the signal visb as a reference voltage when the signal voltage of the signal vis from the current detection circuit 300 is zero.
  • One input signal of the maximum value circuit 207 can also be used.
  • the AC voltage from the AC power supply 1 is used as the input voltage of the present invention, and the full-wave rectified input is used as the input to the switching power supply device.
  • the present invention is not limited to this.
  • a DC voltage of a DC power source such as a battery may be used as the input voltage of the present invention.
  • the embodiment is a switching power supply device that is not a power factor correction circuit.
  • the booster circuit is taken as an example.
  • the idea of the present invention is not limited to this, and can be applied to a step-down circuit, a polarity reversal circuit, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

 コストダウン、小形化およびスイッチング損失の抑制を図れ、かつ、インダクタのインダクタンス値の変化によらずインダクタ電流を高精度に推定することが可能な電流推定回路を提供する。電流検出手段(8)でスイッチ素子(5)に流れる電流を検出し、それに対応する信号電圧によってキャパシタ(201)を充電する。キャパシタの端子電圧の増加率、入力電源電圧の瞬時値の絶対値および直流出力電圧の瞬時値に基づいて、スイッチ素子(5)のオフ期間におけるキャパシタの端子電圧の減少率を算出し、スイッチ素子(5)のオフ期間にその減少率でキャパシタの端子電圧が減少するようにキャパシタを放電させる。インダクタ(4)に流れる電流をキャパシタの端子電圧から推定する。

Description

電流推定回路
 この発明は、スイッチ素子のオン、オフに伴うインダクタのエネルギー蓄積、放出作用を利用して交流または直流の入力電源の電圧を所望の直流出力電圧に変換するスイッチング電源装置において、前記インダクタに流れる電流を推定する電流推定回路に関するものである。
 スイッチング電源装置には、インダクタに流れる電流を検出して入力電流や出力電流を制御するものがある。特許文献1に示すような、交流入力電流を正弦波状に制御して交流電源に流出する高調波電流を抑制する力率改善回路などがその一例として知られている。
 図10は、特許文献1に示された力率改善回路と同様の構成をもつ力率改善回路の従来例を示す回路図である。昇圧チョッパ型の力率改善回路であるこの従来例では、交流電源1の出力が全波整流器3によって整流され、この整流器3の出力電圧がインダクタ4を介してMOSFET5に印加される。インダクタ4は、MOSFET5のオン、オフに伴ってエネルギーを蓄積、放出し、その放出エネルギーをダイオード6を介して平滑キャパシタ7に供給する。このとき、電流検出抵抗10の両端には、インダクタ4に流れる電流(インダクタ電流)に対応した電圧が発生する。
 つぎに、力率が改善されるようにMOSFET5をオンオフ制御する制御回路100について説明する。上記平滑キャパシタ7の端子電圧、つまり、出力端子2a、2bから出力される直流出力電圧は、抵抗103、104からなる分圧回路によって分圧される。そこで、電圧誤差増幅器105は、基準電圧106に対する上記分圧された電圧の誤差を検出し、その誤差を示す誤差信号を出力する。
 一方、正電圧である整流器3の出力電圧は、抵抗101、102からなる分圧回路によって分圧される。乗算器107は、この分圧された電圧に上記誤差信号を乗じる演算を実行し、その演算結果を電流指令として出力する。電流誤差増幅器108は、この電流指令に対する上記インダクタ電流の誤差を検出し、その誤差を示す誤差信号を出力する。そこで、PWMコンパレータ110は、この誤差信号とキャリア信号109とを比較し、この誤差信号の大きさに対応するデューティ比のゲート制御信号を出力する。
 上記ゲート制御信号は、ゲートドライバ111を介してMOSFET5のゲートに入力される。したがって、MOSFET5は、インダクタ電流が上記電流指令に一致するようにそのオンオフタイミングが制御され、その結果、直流出力電圧が基準電圧106で規定される電圧になるように制御されるとともに、インダクタ電流の平均値が正弦波状に制御されることになる。なお、電圧誤差増幅器105および電流誤差増幅器108には位相補償要素がそれぞれ設けられているが、図10ではこれらが省略されている。また、電流検出抵抗10と電流誤差増幅器108の反転入力端子の間には、電流誤差増幅器108の反転入力端子に入力される信号の極性と大きさを調整するための反転増幅回路が設けられるが、これも省略されている。
 上述のような制御は平均電流制御と呼ばれ、スイッチングサイクル毎にインダクタ電流が零となる期間が存在する断続モードや、スイッチングサイクル毎にインダクタ電流が零にならない連続モードが混在している場合でも交流入力電流の歪みが小さいというメリットがある。
 ところで、上記のようにインダクタ電流を電流検出抵抗10で検出した場合、大容量のスイッチング電源装置になるほどこの電流検出抵抗10の電力損失が大きくなって、変換効率が低下するという不都合を生じる。この対策として、電流検出抵抗10の代わりにホール素子を内蔵したDCCT(DCカレント・トランス)などを用いて電力損失を低減することが考えられるが、DCCTは比較的高価なため、これを用いた場合、装置のコストアップを招く。
 図11は、電流検出手段として比較的安価なACCT(ACカレント・トランス)8、8aを使用した従来例を示す。この従来例では、ACCT8によってMOSFET5に流れる電流が検出されるとともに、ACCT8aによってダイオード6に流れる電流が検出され、それらの電流が電流検出回路300aにおいて合成される。したがって、電流検出回路300aからはインダクタ4に流れる電流に対応する信号が出力される。
 図12に電流検出回路300aの構成例を示す。この電流検出回路300aは、ACCT8の二次巻線間に設けたツェナーダイオード301a、302aからなる電圧リミッタと、ACCT8aの二次巻線間に設けたツェナーダイオード305a、306aからなる電圧リミッタと、ACCT8、8aの出力信号をそれぞれ整流するダイオード303a、307aと、これらのダイオード303a、307aのカソード接続点(信号合成点)と接地点との間に接続された抵抗304aとを備え、上記信号合成点からインダクタ4に流れる電流に対応した信号電圧が出力される。
 一方、特許文献2には、ACCTとキャパシタの充放電を使ってDC/DCコンバータのインダクタ電流を推定する技術が記載されている。
特開2007-209130号公報(図5) 特開2003-348830号公報
 図11に示す従来例は、電流検出に伴う電力損失は低減できるものの、2つのACCT8、8aを使用するので、部品点数の増加、部品実装スペースの増大等の不都合を生じる。さらに、この従来回路では、ACCT8、8aの一次側巻線のインダクタンスおよび該ACCT8、8a相互を接続する配線のインダクタンスの影響で、MOSFET5がターンオフする際に発生するサージ電圧が増大するため、MOSFET5のスイッチング損失が増加して、結果的に変換効率を向上するという目的を達成することができなくなるおそれがある。
 一方、特許文献2に記載の技術は、インダクタのインダクタンス値が一定であることを前提とするものである。すなわち、そのような前提下でオフ期間のインダクタ電流を比較的高精度に演算することができるものである。
 しかしながら、インダクタの種類によっては、電流が増加するほどインダクタンス値が低下するものが存在する。例えば、芯材としてダストコアを用いたものなどは、電流の増加に伴ってインダクタンス値が低下する傾向を示す。
 また、インダクタのインダクタンス値は、該インダクタを流れる電流の変化幅が同じであっても、つまり、該電流の(最大値-最小値)が同じであっても、直流重畳分(DC成分)によって変化し、一般的には、この直流重畳分が大きいほどインダクタンス値が低くなる。
 特許文献2に記載の技術では、このようなインダクタンス値の変化に対応できないので、インダクタに流れる電流を安定に推定することが困難である。
 この発明は、このような状況に鑑みてなされたものであり、コストダウン、小形化およびスイッチング損失の抑制を図れ、かつ、インダクタのインダクタンス値の変化によらず、該インダクタに流れる電流を高精度に推定することが可能な電流推定回路を提供することを目的としている。
 本発明は、スイッチ素子のオン、オフに伴うインダクタのエネルギー蓄積、放出作用を利用して交流または直流の入力電圧を直流出力電圧に変換するスイッチング電源装置において、前記インダクタに流れる電流を推定する電流推定回路であって、上記目的を達成するために、前記スイッチ素子に流れる電流を検出して対応する信号電圧を出力する電流検出手段と、前記電流検出手段からの信号電圧によって充電されるキャパシタと、前記キャパシタの端子電圧の増加率を算出する手段と、前記入力電圧の瞬時値の絶対値および前記直流出力電圧の瞬時値を検出する瞬時値検出手段と、前記キャパシタの端子電圧の増加率、前記入力電圧の瞬時値の絶対値および前記直流出力電圧の瞬時値に基づいて、前記スイッチ素子のオフ期間における前記キャパシタの端子電圧の減少率を算出する手段と、前記スイッチ素子のオフ期間において、前記キャパシタの端子電圧が前記減少率に従って減少するように前記キャパシタを放電させる放電手段と、を備える。この構成によれば、前記インダクタに流れる電流を前記キャパシタの端子電圧から推定することができる。
 前記電流検出手段は、カレント・トランスを備えることができる。そして、このカレント・トランスとしては、例えば、ACカレント・トランスが用いられる。
 前記電流検出手段と前記キャパシタとの間に、該キャパシタからの放電電流を阻止する放電阻止回路を設けてもよい。この放電阻止回路は、前記放電電流を阻止するダイオードを備えることができる。また、前記放電阻止回路は、前記スイッチ素子がオンおよびオフになるタイミングでオンおよびオフされるスイッチ回路を備えてもよい。
 前記キャパシタの端子電圧の増加率を算出する手段として、例えば微分回路が使用される。この微分回路には、前記キャパシタを微分演算要素として使用した構成を持たせることができる。この微分回路は、前記キャパシタの一端が反転入力端子に接続された演算増幅器を有し、該演算増幅器の非反転入力端子には基準電位が入力され、前記演算増幅器の反転入力端子と出力端子の間に抵抗が接続されている構成とすることができる。
 前記電流検出手段からの信号電圧と前記キャパシタの端子電圧のいずれか高いほうの電圧を、前記インダクタに流れる電流を推定する電圧として選択する電圧選択手段を更に備えることができる。また、前記電圧選択手段は、電流検出手段からの信号電圧が零のときに相当する基準電圧と、前記キャパシタの端子電圧のいずれか高い方の電圧を前記インダクタに流れる電流を推定する電圧として選択することもできる。
 前記電流検出手段からの信号電圧が零のときに相当する基準電圧と、前記キャパシタの端子電圧のいずれか高い方の電圧を前記インダクタに流れる電流を推定する電圧として選択する電圧選択手段を更に備えることができる。
 前記キャパシタの端子電圧の増加率を+di/dt、前記入力電圧の瞬時値の絶対値をvin,前記直流出力電圧の瞬時値をvoとすると、(+di/dt)・(vo-vin)/vinを計算することにより前記キャパシタの端子電圧の減少率を算出するようにしてもよい。
 この発明によれば、スイッチ素子に流れる電流を用いて該スイッチ素子のオフ期間におけるインダクタ電流を推定できるため、このオフ期間におけるインダクタ電流を検出する電流検出手段が不要である。したがって、コストダウンと小形化を図ることができるとともに、電流検出手段に関係する配線のインダクタンスを低減して、この配線インダクタンスに起因したスイッチング損失を抑制することができる。
 さらに、この発明によれば、インダクタのインダクタンス値の変化によってスイッチ素子に流れる電流の増加率が変化した場合に、その変化した増加率に見合った減少率でキャパシタが放電されることになるので、上記インダクタンス値が変化してもインダクタに流れる電流を精度良く推定することが可能である。
この発明に係る電流推定回路が適用されるスイッチング電源装置の構成例を示す回路図である。 電流検出回路の具体例を示す回路図である。 電流推定回路の具体例を示す回路図である。 (A)は連続モードにおける図3の電流推定回路の動作を説明するための波形図を示し、(B)は断続モードにおける同回路の動作を説明するための波形図を示す。 電流推定回路の他の構成例を示す回路図である。 微分回路の他の構成例を示す回路図である。 放電阻止回路の他の構成例を示す回路図である。 電流推定回路の別の構成例を示す回路図である。 (A)は連続モードにおける図8の電流推定回路の動作を説明するための波形図を示し、(B)は断続モードにおける同回路の動作を説明するための波形図を示す。 第1の従来例を示す回路図である。 第2の従来例を示す回路図である。 図11の従来例における電流検出回路の具体例を示す回路図である。
 図1は、この発明に係る電流推定回路が適用されるスイッチング電源装置の構成例として示した昇圧チョッパ型の力率改善回路の回路図である。なお、図1では、図11に示す要素と同一もしく共通する要素に同一の番号を付してある。以下においては、上記同一もしく共通する要素についての説明を省略する。
 図11に示す従来例では、ダイオード6に流れる電流、つまり、MOSFET5のオフ期間においてインダクタ4に流れる電流をACカレント・トランスであるACCT8aによって検出している。しかし、この発明の実施形態では、制御回路100に追加した図1に示す電流推定回路200によって上記オフ期間でのインダクタを推定するようにしているので、ACCT8aが削除されている。
 まず、図2を参照して、ACCT8に接続された電流検出回路300の具体例について説明する。この電流検出回路300は、ACCT8の二次巻線間に直列接続されたツェナーダイオード301、302からなる電圧リミッタと、ACCT8の出力信号を整流するダイオード303と、このダイオード303のカソードと接地点間に接続された抵抗304とを備える。この電流検出回路300からは、MOSFET5のオン期間においてインダクタ4に流れる電流に対応した信号が出力される。なお、上記電圧リミッタは、ACCT8の鉄心を励磁する励磁電流をMOSFET5のオフ期間においてほぼ零にするために設けられている。
 次に、図3を参照して、電流推定回路200の具体例について説明する。この電流推定回路200は、オペアンプ(演算増幅器)401およびダイオード402を備える放電阻止回路400と、この放電阻止回路400の出力端子と接地点間に接続されたキャパシタ201と、このキャパシタ201の端子電圧を微分する微分回路500と、この微分回路500の出力信号値を保持するサンプル・ホールド回路202と、微分回路500に接続されたサンプル・ホールド回路202と、このサンプル・ホールド回路202の出力に除算器206の出力を乗じる乗算器203と、この乗算器203の出力で制御される電圧制御電流源204と、を備えている。ここで、放電阻止回路400はボルテージフォロアとして機能して入力と等しい電圧を出力するとともに、キャパシタ201の電荷が放電阻止回路400および電流検出回路300側に放電されることを、すなわちキャパシタ201の電荷がオペアンプ401の出力端子を介して放電されるのをダイオード402により阻止する機能を果たすものである。
 ここで、入力電圧の瞬時値の絶対値(図1の実施形態では整流器3の出力電圧)をvin、端子2a、2bから出力される直流出力電圧の瞬時値をvo、インダクタ4のインダクタンス値をL、MOSFET5がオンしている期間にインダクタ4に流れる電流の電流増加率を(+di/dt)とすると、この電流増加率は下記(1)式のように表される。
+di/dt=vin/L  (1)
 また、MOSFET5がオフしている期間にインダクタ4に流れる電流の減少率を(-di/dt)とすると、この電流減少率は下記(2)式のように表される。
-di/dt=(vo-vin)/L  (2)
 (1)、(2)式からLを消去すると下記(3)式が得られる。
-di/dt={(vo-vin)/vin}×(+di/dt) (3)
 この(3)式から明らかなように、上記電流減少率(-di/dt)は、上記電流増加率(+di/dt)に比例係数(vo-vin)/vinを乗じることによって求めることができる。
 一方、図1に示す抵抗101と抵抗102からなる分圧回路からは、上記入力電圧の瞬時値vinに対応する電圧値vin’を有した分圧電圧が出力され、また、図1に示す抵抗103と抵抗104からなる分圧回路からは、上記直流出力電圧の瞬時値voに対応する電圧値vo’を有した分圧電圧が出力される。
 この実施形態では、上記両分圧回路の分圧比が等しくなるように抵抗101~104の値を設定してある。したがって、(3)式の比例係数(vo-vin)と上記各分圧回路の出力電圧値vin’、vo’とには下記(4)式の関係が成立することになる。
(vo-vin)/vin=(vo’-vin’)/vin’ (4)
 ところで、図3に示す放電阻止回路400には、図1に示す電流検出回路300の出力電圧visが入力される。したがって、MOSFET5がオンしている期間では、図3のキャパシタ201が上記電流検出回路300の出力電圧visの波形と同形の波形をもつ電圧によって充電される。このとき、キャパシタ201の端子電圧のピーク値は、MOSFET5がオフする際にインダクタ4に流れる電流の初期値に相当することになる。
 微分回路500は、上記キャパシタ201の端子電圧値vsを微分して、MOSFET5がオンしている期間にインダクタ4に流れる電流の電流増加率(+di/dt)を示す信号を出力する。サンプル・ホールド回路202は、MOSFET5がオンしている期間を規定する図1に示すPWMコンパレータ110の出力信号vpwmに基づいて、上記電流増加率(+di/dt)の値を読み込み、MOSFET5がオフしている期間はその値を保持する。
 一方、減算器205では、上記瞬時値vinに対応する電圧値vin’を上記瞬時値voに対応する電圧値vo’から減じる演算(vo’-vin’)が実行され、また、除算器206では、上記減算結果(vo’-vin’)を電圧値vin’で除する演算(vo’-vin’)/vin’が実行される。(4)式から明らかなように、除算器206での演算によって比例係数(vo-vin)/vinが求められることになる。
 乗算器203では、サンプル・ホールド回路202に保持された上記電流増加率(+di/dt)の値に比例係数(vo-vin)/vinを乗じる(3)式の演算が実行され、これによって、MOSFET5がオフしている期間にインダクタ4に流れる電流の減少率(-di/dt)が求められる。
 電圧制御電流源204は、MOSFET5のオフ期間に上記減少率(-di/dt)に従ってキャパシタ201を放電させる。これにより、キャパシタ201の端子電圧値vsの減少率は、MOSFET5のオフ期間にインダクタ4に流れる電流の減少率と一致することになる。
 つまり、キャパシタ201の端子電圧値vsは、MOSFET5のオン期間に上記電流増加率(+di/dt)に従った増加率で増加し、MOSFET5のオフ期間に上記電流減少率(-di/dt)に従った減少率で減少することになる。
 このように、この実施形態によれば、キャパシタ201の端子電圧値vsがインダクタ4に流れる電流に対応するので、図11に示すACCT8aを使用していないにもかかわらず、MOSFET5のオフ期間にインダクタ4に流れる電流をキャパシタ201の端子電圧値vsから推定することが可能である。
 図4(A)は、連続モード(スイッチングサイクル毎にインダクタ電流が零になることはないモード)における電流推定回路200の動作を説明するための波形図を示し、図4(B)は、断続モード(スイッチングサイクル毎にインダクタ電流が零になるモード)における同回路200の動作を説明するための波形図を示す。
 これらの図において、(a)はMOSFET5のオン期間およびオフ期間を規定するPWMコンパレータ110(図1参照)の出力信号vpwmの波形を、(b)はMOSFET5のオン期間におけるキャパシタ201の端子電圧の波形(実線参照)およびMOSFET5のオフ期間におけるキャパシタ201の端子電圧の波形(点線参照)を、(c)はインダクタ4に流れる電流の波形をそれぞれ例示している。
 この図4から明らかなように、キャパシタ201の端子電圧vsは、インダクタ電流iLと同様の形態で増加、減少するので、インダクタ電流iLに対応することになる。そこで、この実施形態では、電流推定回路200から出力されるキャパシタ201の端子電圧vsの値からインダクタ電流iLの値を推定するようにしている。なお、インダクタ電流iLに対応するキャパシタ201の端子電圧vsは、図1に示すように前記誤差増幅器18に入力される。
 図5は、電流推定回路200の別の構成例を示す。この電流推定回路200では、例示した構成の微分回路500aを使用することによって図3に示すキャパシタ201を削除している。
 微分回路500aは、入力キャパシタ501、帰還抵抗502およびオペアンプ503を備える周知の構成を有し、入力キャパシタ501が上記キャパシタ201の代用手段としても活用される。入力キャパシタ501の一端はオペアンプ(演算増幅器)503の反転入力端子に接続され、オペアンプ503の非反転入力端子には基準電位である接地電位が入力され、帰還抵抗502はオペアンプ503の反転入力端子と出力端子の間に接続されている。
 ここで、図1に示す電流検出回路300の出力電圧visが上昇中であるとすると、キャパシタ501は放電阻止回路400を介して端子電圧がvis(=vs)となるように充電される。このとき、キャパシタ501の充電電流iは、放電阻止回路400→キャパシタ501→抵抗502→オペアンプ503の出力端子という経路で流れる。そして、キャパシタ501の静電容量をC501とすると、(1/C501)∫idt=vsという関係が成立するので、キャパシタ501の充電電流iは電圧vis(=vs)の微分値に相当することになる。
 一方、オペアンプ503の反転入力端子は、イマジナリショートにより接地電位(0ボルト)におかれるので、帰還抵抗502の抵抗値をR502とすると、オペアンプ503の出力電圧-i・R502も電圧vis(=vs)の微分値に比例した値となる。
 微分回路500aは上記のように動作する。そして、上記のように、オペアンプ503の反転端子はイマジナリショートにより接地電位となる。それゆえ、この電流推定回路200よれば、微分回路500aの構成要素であるキャパシタ501の充放電動作が前記キャパシタ201のそれと同様となるので、キャパシタ501がキャパシタ201の機能をも合わせ持つことになるので、キャパシタの使用個数を削減することが可能になる。
 上記微分回路500aに代えて、図6に示すような構成を持つ微分回路を適用しても良い。この微分回路500aは、図5に示す微分回路のキャパシタ501に入力抵抗504を直列接続するとともに、同回路の帰還抵抗502に帰還キャパシタ505を並列接続した周知の構成を有している。
 なお、図3に示す電流推定回路200に設けられている微分回路500も、図5、図6に例示したような構成を持たせることができる。
 ところで、図3、図5に示す放電阻止回路400では、キャパシタ201、501の容量値が小さい場合、ダイオード402の接合容量や逆回復特性の影響でMOSFET5(図1参照)のオンオフのタイミングでキャパシタ201、501が充電もしくは放電されることがあり、その場合、電流推定回路200の出力電圧vsとインダクタ4に流れる電流とが正確に対応しなくなる。
 図7に示す放電阻止回路400は、以上のような不都合を回避するため、オペアンプを用いたボルテージフォロア回路401aと、このボルテージフォロア回路401aの出力端子に接続したスイッチ回路402aとによって構成されている。
 この放電阻止回路400では、PWMコンパレータ110(図1参照)の出力信号vpwmを用いてスイッチ回路402aが制御されるので、つまり、MOSFET5がオンになるタイミングでスイッチ回路402aがオンされ、MOSFET5がオフになるタイミングでスイッチ回路402aがオフされるので、ダイオード402の接合容量や逆回復特性の影響でキャパシタ201が充電もしくは放電されるという上記の不都合が回避される。
 なお、スイッチ回路402aには、その寄生容量がキャパシタ201やキャパシタ501の容量よりも小さく、さらには、そのオンオフ動作に伴うキャパシタ201やキャパシタ501の電荷変化が小さい回路構成のものを選ぶことが望ましい。
 ところで、図1に示した制御回路100では、通常、制御電源として正負の電源が使用されるが、電源構成の簡素化を図るために、制御電源として単電源を使用することも可能である。制御電源として単電源を使用する場合には、制御の基準電位をバイアスされた電圧とするのが一般的である。
 図8に上記単電源を使用する制御回路に組み込まれる電流推定回路200の構成例を示す。この電流推定回路200の放電阻止回路400bは、オペアンプ401bと、このオペアンプ401bの出力端子に直列接続されたスイッチ回路402bと、オペアンプ401bの非反転入力端子にそれぞれの一端が接続された分圧抵抗403b、404bと、オペアンプ401bの反転入力端子に一端が接続された抵抗405bと、オペアンプ401bの反転入力端と出力端子との間に接続した抵抗406bとを備えている。
 上記放電阻止回路400bには、抵抗405bを介してバイアス電圧Vbias1が印加されるとともに、分圧抵抗403bを介してバイアス電圧Vbias2(バイアス電圧Vbias1よりも大きな任意の値に設定される)が印加されている。なお、前記電圧visは、分圧抵抗404bを介して入力される。
 一方、この電流推定回路200の微分回路500bは、図5に示す微分回路500aと同等の構成を有するものの、オペアンプ503bの非反転入力端子に基準電位としてバイアス電圧Vbias1が印加される。また、図5の帰還抵抗502に相当する帰還抵抗502bが、オペアンプ503bの反転入力端子と出力端子の間に接続されている。
 上記分圧抵抗403b、404bの分圧比は、図1に示す電流検出回路300の出力信号visが零の場合にオペアンプ401bの非反転入力端子の電圧がVbias1となるように調整され、これによって、上記信号値visが零の場合にオペアンプ401bの出力電圧visbが零になる。
 最大値回路207は、キャパシタ501bの端子電圧vsbと、オペアンプ401bの出力電圧visbとを比較し、vsb≧visbの場合にvsbをインダクタ電流を示す電圧vsとして出力し、vsb<visbの場合にvisbをインダクタ電流を示す電圧vsとして出力する。
 図9(A)は、連続モード(スイッチングサイクル毎にインダクタ電流が零になることはないモード)における図8に示す電流推定回路200の動作を説明するための波形図を示し、図9(B)は、断続モード(スイッチングサイクル毎にインダクタ電流が零になるモード)における同回路200の動作を説明するための波形図を示す。なお、図9において、符号vsbはキャパシタ501bの端子電圧を示している。上記スイッチ回路402bがオンしたときには、当然、上記電圧vsbがオペアンプ401bの出力電圧visbと一致することになる。
 この図9に示すように、上記電圧vsb、visbおよびvsは、バイアス電圧Vbias1を基準電位として変化する。
 ここで最大値回路207を設けた理由について説明する。スイッチ回路402bを含む放電阻止回路400bを使用する場合、次のような状態を生じる。すなわち、図9(B)の波形図に示すように、断続モードにおいては、MOSFET5のオフ期間にインダクタ電流iLが零になる。このとき、スイッチ回路402bがオフしていることから、(c)図に示すように、キャパシタ501bの端子電圧vsbがスイッチ回路402bの入力側の電圧visb(スイッチ回路402bがオフしているときの電圧visbはバイアス電圧Vbias1に等しい。)よりも小さくなる。
 端子電圧vsbからインダクタ電流を推定しようとすると、上記のような状態においては、見かけ上、インダクタ電流が負の電流であるように推定されることになる。最大値回路207は、上記したように、vsb<visbの場合にvisbをインダクタ電流を示す電圧vsとして出力する。したがって、最大値回路207を設けることによって、インダクタ電流が負の電流であるように推定されるという上記の不都合を回避することができる。
 なお、上記単電源を用いる構成は、図3、図5に示す電流推定回路200にも適用することができる。その場合、ダイオード402をスイッチ回路と看做すことができる。
 また、図9(A)、図9(B)から明らかなように、バイアス電圧Vbias1を、電流検出回路300からの信号visの信号電圧が零のときの基準電圧として信号visbに置き換えて、前記最大値回路207の一方の入力信号とすることもできる。
 また、上述の実施の形態においては、交流電源1からの交流電圧を本発明の入力電圧とし、これを全波整流したものをスイッチング電源装置への入力としたが、これに限定されるものではなく、バッテリーなどの直流電源の直流電圧を本発明の入力電圧としてもよい。この場合、実施の形態は力率改善回路ではないスイッチング電源装置となる。
 さらに、上述の実施の形態においては、昇圧回路を例にとりあげたが、本発明の思想はこれに限定されるものではなく、降圧回路や極性逆転型回路などにも適用することができる。
 1 交流電源
 2a,2b 直流出力端子
 3 全波整流器
 4 インダクタ
 5 MOSFET
 6 ダイオード
 7 平滑キャパシタ
 8,8a ACCT
 100 制御回路
 101,102,103,104 抵抗
 105 電圧誤差増幅器
 106 基準電圧
 107 乗算器
 108 電流誤差増幅器
 109 キャリア信号
 110 PWMコンパレータ
 111 ゲートドライバ
 200 電流推定回路
 201 キャパシタ
 202 サンプル・ホールド回路
 203 乗算器
 204 電圧制御電流源
 205 減算器
 206 除算器
 207 最大値回路
 300 電流検出回路
 400,400b 放電阻止回路
 401,401b オペアンプ(演算増幅器)
 401a ボルテージフォロア回路
 402 ダイオード
 402a,402b スイッチ回路
 403b,404b,405b,406b 抵抗
 500,500a,500b 微分回路
 501,501b,505 キャパシタ
 502,502b,504 抵抗
 503,503b オペアンプ(演算増幅器)

Claims (12)

  1.  スイッチ素子のオン、オフに伴うインダクタのエネルギー蓄積、放出作用を利用して交流または直流の入力電圧を直流出力電圧に変換するスイッチング電源装置において、前記インダクタに流れる電流を推定する電流推定回路であって、
     前記スイッチ素子に流れる電流を検出して対応する信号電圧を出力する電流検出手段と、
     前記電流検出手段からの信号電圧によって充電されるキャパシタと、
     前記キャパシタの端子電圧の増加率を算出する手段と、
     前記入力電圧の瞬時値の絶対値および前記直流出力電圧の瞬時値を検出する瞬時値検出手段と、
     前記キャパシタの端子電圧の増加率、前記入力電圧の瞬時値の絶対値および前記直流出力電圧の瞬時値に基づいて、前記スイッチ素子のオフ期間における前記キャパシタの端子電圧の減少率を算出する手段と、
     前記スイッチ素子のオフ期間において、前記キャパシタの端子電圧が前記減少率に従って減少するように前記キャパシタを放電させる放電手段と、を備え、
     前記インダクタに流れる電流を前記キャパシタの端子電圧から推定することを特徴とする電流推定回路。
  2.  前記電流検出手段は、カレント・トランスを備えることを特徴とする請求項1に記載の電流推定回路。
  3.  前記カレント・トランスはACカレント・トランスであることを特徴とする請求項2に記載の電流推定回路。
  4.  前記電流検出手段と前記キャパシタとの間に、該キャパシタからの放電電流を阻止する放電阻止回路を設けたことを特徴とする請求項1~3のいずれかに記載の電流推定回路。
  5.  前記放電阻止回路は、前記放電電流を阻止するダイオードを備えることを特徴とする請求項4に記載の電流推定回路。
  6.  前記放電阻止回路は、前記スイッチ素子がオンおよびオフになるタイミングでオンおよびオフされるスイッチ回路を備えることを特徴とする請求項4に記載の電流推定回路。
  7.  前記キャパシタの端子電圧の増加率を算出する手段が微分回路であることを特徴とする請求項1ないし6のいずれかに記載の電流推定回路。
  8.  前記微分回路は、前記キャパシタを微分演算要素として使用した構成を有することを特徴とする請求項7に記載の電流推定回路。
  9.  前記微分回路は前記キャパシタの一端が反転入力端子に接続された演算増幅器を有し、該演算増幅器の非反転入力端子には基準電位が入力され、前記演算増幅器の反転入力端子と出力端子の間に抵抗が接続されていることを特徴とする請求項8に記載の電流推定回路。
  10.  前記電流検出手段からの信号電圧と前記キャパシタの端子電圧のいずれか高い方の電圧を前記インダクタに流れる電流を推定する電圧として選択する電圧選択手段を更に備えることを特徴とする請求項1ないし9のいずれかに記載の電流推定回路。
  11.  前記電流検出手段からの信号電圧が零のときに相当する基準電圧と、前記キャパシタの端子電圧のいずれか高い方の電圧を前記インダクタに流れる電流を推定する電圧として選択する電圧選択手段を更に備えることを特徴とする請求項1ないし9のいずれかに記載の電流推定回路。
  12.  前記キャパシタの端子電圧の増加率を+di/dt、前記入力電圧の瞬時値の絶対値をvin,前記直流出力電圧の瞬時値をvoとすると、(+di/dt)・(vo-vin)/vinを計算することにより前記キャパシタの端子電圧の減少率を算出することを特徴とする請求項1に記載の電流推定回路。
PCT/JP2010/072985 2010-02-25 2010-12-21 電流推定回路 WO2011104985A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012501654A JP5316976B2 (ja) 2010-02-25 2010-12-21 電流推定回路
CN201080036031.2A CN102577061B (zh) 2010-02-25 2010-12-21 电流估计电路
US13/390,100 US8773111B2 (en) 2010-02-25 2010-12-21 Current estimation circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-040285 2010-02-25
JP2010040285 2010-02-25

Publications (1)

Publication Number Publication Date
WO2011104985A1 true WO2011104985A1 (ja) 2011-09-01

Family

ID=44506420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072985 WO2011104985A1 (ja) 2010-02-25 2010-12-21 電流推定回路

Country Status (4)

Country Link
US (1) US8773111B2 (ja)
JP (1) JP5316976B2 (ja)
CN (1) CN102577061B (ja)
WO (1) WO2011104985A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070697A (ja) * 2013-09-27 2015-04-13 東芝ライテック株式会社 電源回路及び照明装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5964072B2 (ja) * 2012-02-09 2016-08-03 ミネベア株式会社 力率改善回路
CN102710118B (zh) * 2012-06-28 2014-10-29 成都芯源系统有限公司 一种功率因数校正电路及其控制电路和方法
CN103825446B (zh) * 2012-11-16 2016-12-21 上海儒竞电子科技有限公司 交流直流变换器的有桥功率因数控制器
TWI501516B (zh) * 2013-01-31 2015-09-21 Leadtrend Tech Corp 偵測電源轉換器平均輸出電流的裝置及相關的方法
US9455631B2 (en) 2013-09-06 2016-09-27 Infineon Technologies Austria Ag Current estimation for a converter
US9178424B2 (en) * 2013-10-09 2015-11-03 Texas Instruments Deutschland Gmbh Switched mode DCDC converter efficiency improvement by adaptive driver stage
CN204131392U (zh) * 2013-12-20 2015-01-28 成都芯源系统有限公司 一种升压功率因数校正变换电路及其控制电路
CN103840666B (zh) * 2014-03-14 2016-07-06 上海电力学院 带有电感电流斜率补偿的开关电源固定导通时间控制器
US9419627B2 (en) 2014-05-08 2016-08-16 Intersil Americas LLC Current synthesizer correction
US9502961B2 (en) * 2014-07-15 2016-11-22 Stmicroelectonics S.R.L. Control circuit implementing a related method for controlling a switching power factor corrector, a PFC and an AC/DC converter
EP3224937A4 (en) * 2014-10-24 2019-01-09 Texas Instruments Incorporated ADAPTIVE CONTROL DEVICE FOR VOLTAGE CONVERTERS
JP6592978B2 (ja) * 2015-06-12 2019-10-23 富士電機株式会社 スイッチング電源用制御icにおける入力前置回路および該入力前置回路を有するスイッチング電源制御装置
US9960675B2 (en) * 2015-11-05 2018-05-01 Semiconductor Components Industries, Llc Feed-forward control system with current estimator
CN106771472B (zh) * 2015-11-23 2023-09-19 意法半导体研发(深圳)有限公司 用于测量传递给负载的平均电感器电流的方法和设备
US10075065B2 (en) 2016-04-15 2018-09-11 Emerson Climate Technologies, Inc. Choke and EMI filter circuits for power factor correction circuits
US10656026B2 (en) 2016-04-15 2020-05-19 Emerson Climate Technologies, Inc. Temperature sensing circuit for transmitting data across isolation barrier
US10763740B2 (en) * 2016-04-15 2020-09-01 Emerson Climate Technologies, Inc. Switch off time control systems and methods
US10277115B2 (en) 2016-04-15 2019-04-30 Emerson Climate Technologies, Inc. Filtering systems and methods for voltage control
US10770966B2 (en) 2016-04-15 2020-09-08 Emerson Climate Technologies, Inc. Power factor correction circuit and method including dual bridge rectifiers
US9933842B2 (en) 2016-04-15 2018-04-03 Emerson Climate Technologies, Inc. Microcontroller architecture for power factor correction converter
US10305373B2 (en) 2016-04-15 2019-05-28 Emerson Climate Technologies, Inc. Input reference signal generation systems and methods
US10284132B2 (en) 2016-04-15 2019-05-07 Emerson Climate Technologies, Inc. Driver for high-frequency switching voltage converters
US9965928B2 (en) 2016-04-15 2018-05-08 Emerson Climate Technologies, Inc. System and method for displaying messages in a column-by-column format via an array of LEDs connected to a circuit of a compressor
CN108663558B (zh) * 2017-03-29 2020-06-23 株式会社村田制作所 一种pfc设备及其电流检测方法和电流检测装置
CN108303579B (zh) * 2018-01-26 2020-08-25 成都芯源系统有限公司 一种电压检测电路和方法
US10862389B1 (en) 2019-10-04 2020-12-08 Raytheon Company Multiple-output non-isolated active line filter
US10727732B1 (en) * 2019-10-04 2020-07-28 Raytheon Company Active line filter utilizing input current regulation
CN112379323B (zh) * 2020-11-05 2022-10-21 山东山大电力技术股份有限公司 一种基于罗氏线圈特性的等效模拟发生器及电子设备
CN112947218B (zh) * 2021-03-02 2022-11-15 江苏润石科技有限公司 一种检流放大器的精度提升电路与方法
WO2023060396A1 (en) * 2021-10-11 2023-04-20 Aes Global Holdings Pte Ltd. Conduction mode switching for switching mode power supply

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182416A (ja) * 1995-12-20 1997-07-11 Oohira Denshi Kk カレントトランスを用いた同期整流回路
JP2000032743A (ja) * 1998-07-09 2000-01-28 Matsushita Electric Works Ltd 電源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3706810B2 (ja) * 2001-05-23 2005-10-19 株式会社ルネサステクノロジ Dc−dcコンバータとその制御回路
JP2003348830A (ja) * 2002-05-27 2003-12-05 Fuji Electric Co Ltd 電流検出方法
JP2003102177A (ja) * 2002-09-17 2003-04-04 Hitachi Ltd 電力変換器の制御方法
US6844710B2 (en) * 2002-11-12 2005-01-18 O2Micro International Limited Controller for DC to DC converter
US7425819B2 (en) * 2005-06-16 2008-09-16 Microsemi Corporation Slope compensation circuit
JP4811036B2 (ja) * 2006-02-02 2011-11-09 富士電機株式会社 電力変換装置のpwm制御回路
KR101569903B1 (ko) * 2008-06-25 2015-11-18 페어차일드코리아반도체 주식회사 스위치 제어 장치 및 이를 포함하는 컨버터
CN102318174B (zh) * 2009-02-19 2014-06-04 皇家飞利浦电子股份有限公司 不连续dc-dc电压转换器中的输出电流感测方法
US8368361B2 (en) * 2009-09-30 2013-02-05 Cirrus Logic, Inc. Switching power converter controller with direct current transformer sensing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182416A (ja) * 1995-12-20 1997-07-11 Oohira Denshi Kk カレントトランスを用いた同期整流回路
JP2000032743A (ja) * 1998-07-09 2000-01-28 Matsushita Electric Works Ltd 電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070697A (ja) * 2013-09-27 2015-04-13 東芝ライテック株式会社 電源回路及び照明装置

Also Published As

Publication number Publication date
US8773111B2 (en) 2014-07-08
JPWO2011104985A1 (ja) 2013-06-17
JP5316976B2 (ja) 2013-10-16
CN102577061A (zh) 2012-07-11
CN102577061B (zh) 2015-03-04
US20120313646A1 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5316976B2 (ja) 電流推定回路
JP5182375B2 (ja) Pfcコンバータ
JP5170096B2 (ja) Pfcコンバータ
US8427853B2 (en) Power factor correction converter including operation mode determination unit
US9071155B2 (en) Switching power supply apparatus including a plurality of outputs
KR101004498B1 (ko) 충전장치
US9048751B2 (en) Power supply circuit with ripple compensation
JP6909052B2 (ja) 制御装置
US20130051084A1 (en) Dc-dc converter
US10491136B2 (en) Bridge-less type electric power conversion device having current detection circuit of current transformer type
US9160238B2 (en) Power converter with current feedback loop
US9543836B2 (en) Control device of a power conversion circuit
US20110194316A1 (en) Switching power supply device
JP5790889B2 (ja) スイッチング電源装置およびac−dc電力変換システム
WO2017208743A1 (ja) バッテリ充電装置
JP4854556B2 (ja) 電源装置
JP2021002901A (ja) 電力変換装置
JP4985385B2 (ja) Dc−dcコンバータの制御方法、およびdc−dcコンバータ
EP0665632B1 (en) Switching power source apparatus
JP2015019509A (ja) 電力変換装置
JP3874291B2 (ja) 電源装置
JP6048150B2 (ja) 絶縁型スイッチング電源装置
KR101907157B1 (ko) 플라이백 컨버터의 구동제어 장치
JP2002125367A (ja) 電源装置
JP6884637B2 (ja) 電気回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036031.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846648

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501654

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13390100

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846648

Country of ref document: EP

Kind code of ref document: A1