WO2011104838A1 - 光送信器 - Google Patents

光送信器 Download PDF

Info

Publication number
WO2011104838A1
WO2011104838A1 PCT/JP2010/052948 JP2010052948W WO2011104838A1 WO 2011104838 A1 WO2011104838 A1 WO 2011104838A1 JP 2010052948 W JP2010052948 W JP 2010052948W WO 2011104838 A1 WO2011104838 A1 WO 2011104838A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
bias
modulation degree
dither
Prior art date
Application number
PCT/JP2010/052948
Other languages
English (en)
French (fr)
Inventor
吉田 剛
杉原 隆嗣
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012501574A priority Critical patent/JP5318278B2/ja
Priority to PCT/JP2010/052948 priority patent/WO2011104838A1/ja
Priority to CN201080064701.1A priority patent/CN102783054B/zh
Priority to US13/576,276 priority patent/US20120288284A1/en
Priority to EP10846503.0A priority patent/EP2541806B1/en
Publication of WO2011104838A1 publication Critical patent/WO2011104838A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50575Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5059Laser transmitters using external modulation using a feed-forward signal generated by analysing the optical or electrical input
    • H04B10/50595Laser transmitters using external modulation using a feed-forward signal generated by analysing the optical or electrical input to control the modulator DC bias

Definitions

  • the present invention relates to an optical transmitter that converts an electrical signal into an optical signal and transmits the optical signal.
  • Patent Documents 1 and 2 and Non-Patent Document 1 execute bias control for binary signals. That is, an arbitrary optical waveform including an analog optical waveform such as an orthogonal frequency division multiplexing (OFDM) signal, a multilevel modulation signal such as 16QAM (Quadrature Amplitude Modulation) or 64QAM, and a pre-equalization signal is used. There is a problem that this method cannot be applied to bias control in an application that is generated and operated by changing the characteristics of the optical waveform.
  • OFDM orthogonal frequency division multiplexing
  • 16QAM Quadrature Amplitude Modulation
  • 64QAM Quadrature Amplitude Modulation
  • FIG. 5 is an explanatory diagram showing the extinction characteristic of the MZ type optical modulator.
  • the MZ type optical modulator by changing the voltage applied to the electrode, the refractive index of the optical waveguide changes, and the phase of the optical signal changes.
  • an arbitrary optical signal can be generated at the output stage of the optical modulator.
  • the point at which the output light level is minimum with respect to the applied voltage is defined as the Null point
  • the point at which the output light level is maximum is defined as the Peak point.
  • the voltage difference necessary to obtain the adjacent Null point and Peak point is defined as V ⁇ .
  • V ⁇ the voltage difference necessary to obtain the adjacent Null point and Peak point
  • a BPSK (Binary Phase-Shift Keying) signal the amplitude of an RF (Radio Frequency) signal is set to 2 V ⁇ between adjacent Peak points ( 2V ⁇ sweep).
  • a ratio of the amplitude of the RF signal to V ⁇ or a ratio to 2V ⁇ is referred to as a modulation degree. Since the BPSK signal normally sweeps by 2V ⁇ , the ratio to 2V ⁇ is defined as the modulation degree. Therefore, when the amplitude of the RF signal is 2V ⁇ , the modulation degree is 100%.
  • the BPSK signal can be obtained by adjusting the bias so that it can be swept by V ⁇ to the left and right around the Null point shown in FIG. This is referred to as “controlling the bias to a null point”.
  • the bias In many modulation methods other than the intensity modulation method, the bias must be controlled to a null point.
  • the present invention is premised on controlling the bias to a null point.
  • FIG. 6 is an explanatory diagram showing a histogram of the modulator driving signal at the time of generating the BPSK signal together with the extinction characteristic of the MZ type optical modulator shown in FIG.
  • FIG. 6 shows that when the bias is controlled at the Null point, most of the signal components are present at the Peak point.
  • FIG. 7 shows the relationship between the bias deviation (Bias Voltage Error) and the average light output level P AVE when the modulation degree is 100%.
  • FIG. 7 shows that the average light output level P AVE is maximized when the bias is set to the Null point, and the average light output level P AVE is minimized when the bias is set to the Peak point.
  • a minute known dither signal may be superimposed on the bias signal, and the level change of the output light from the optical modulator may be monitored.
  • the level change ⁇ P AVE of the output light is expressed in a form obtained by differentiating the horizontal axis of FIG. 7, as shown in FIG. In FIG. 8, the bias converges to either the Peak point or the Null point by using the level change ⁇ P AVE of the output light as an error signal and changing the bias voltage so that ⁇ P AVE ⁇ 0.
  • the peak point and the null point have different inclination polarities when the level change ⁇ P AVE of the output light is zero-crossed, so that the level change ⁇ P AVE of the output light and the bias control direction are appropriately associated with each other.
  • the bias can be converged to the Null point.
  • ⁇ P AVE > the bias is controlled in the direction of increasing the bias voltage
  • ⁇ P AVE ⁇ 0 the bias is controlled in the direction of decreasing the bias voltage, so that the bias is null. Converge to a point.
  • the MZ type optical modulator is driven by the above-described analog waveform (OFDM signal, multi-level modulation signal, pre-equalization signal), the histogram of the modulator driving signal shown in FIG. Or, as shown in FIG. At this time, even if the amplitude between adjacent Peak points of the RF signal is 2V ⁇ as in FIG. 6, the modulation degree appears to be lowered on average.
  • OFDM signal multi-level modulation signal
  • pre-equalization signal the histogram of the modulator driving signal shown in FIG. Or, as shown in FIG. At this time, even if the amplitude between adjacent Peak points of the RF signal is 2V ⁇ as in FIG. 6, the modulation degree appears to be lowered on average.
  • this average modulation degree (hereinafter referred to as “average modulation degree”) is 50%, the relationship between the bias deviation shown in FIG. 8 and the level change ⁇ P AVE of the output light is shown in FIG. Will change. That is, even if the bias is changed, the average light output level P AVE does not change, and it is impossible to execute the bias control by the method of superimposing the dither signal on the bias signal.
  • the control sensitivity becomes maximum when the average modulation degree is 0% and 100%, and becomes minimum when the average modulation degree is 50%.
  • the bias control method disclosed in Patent Document 3 provides a countermeasure against the convergence point change depending on the modulation degree described above.
  • the target signal is a carrier-suppressed RZ (CSRZ: Carrier-suppressed Return-to-return-to-to).
  • CSRZ Carrier-suppressed Return-to-return-to-to.
  • -Zero) Bias in an application that generates an arbitrary optical waveform including an analog optical waveform, such as an OFDM signal, a multi-level modulation signal, and a pre-equalized signal, and changes the characteristics of the optical waveform. There is a problem that this method cannot be applied to the control.
  • the bias control method disclosed in Patent Document 4 corrects the convergence point of bias control for analog optical waveform generation such as OFDM signal, multilevel modulation signal, pre-equalization signal, etc. This is a solution to the problem of the intensity modulation signal having the optimum bias point between the Null point and the Peak point, and the bias is changed to the Null point. There is a problem that the problem is not solved about what is controlled.
  • the present invention has been made to solve the above-described problems, and is an optical transmission that generates an arbitrary optical waveform including an analog optical waveform, such as an OFDM signal, a multilevel modulation signal, and a pre-equalization signal. It is an object of the present invention to provide an optical transmitter that can easily control a bias to a null point for an application that dynamically changes a driving waveform of an optical modulator.
  • An optical transmitter is an optical transmitter that generates an arbitrary optical waveform by modulating light from a light source with an optical modulator using a data sequence that is an electrical signal, and an output of the optical modulator
  • a light intensity detecting means for detecting light intensity
  • a data signal generating means for generating a data series
  • an average modulation degree calculating means for calculating an average modulation degree of the data series based on the data series
  • a light intensity detecting means for performing bias control on the optical modulator based on the detected intensity of output light and the average modulation degree of the data series calculated by the average modulation degree calculation means.
  • the bias control means for performing bias control on the optical modulator is the output of the optical modulator detected by the light intensity detection means. Based on the light intensity and the average modulation degree of the data series calculated by the average modulation degree calculation means, the bias control for the optical modulator is executed. Therefore, an optical transmitter that generates an arbitrary optical waveform including an analog optical waveform, such as an OFDM signal, a multilevel modulation signal, and a pre-equalization signal, and an application that dynamically changes the driving waveform of the optical modulator. Therefore, it is possible to obtain an optical transmitter that can easily control the bias to the Null point.
  • an analog optical waveform such as an OFDM signal, a multilevel modulation signal, and a pre-equalization signal
  • FIG. 1 It is a block block diagram which shows the optical transmitter which concerns on Embodiment 1 of this invention. It is a sequence diagram which shows the process which produces
  • FIG. 1 It is a block block diagram which shows the optical transmitter which concerns on Embodiment 1 of this invention. It is a sequence diagram which shows the process which produces
  • FIG. 6 is an explanatory diagram showing a histogram of a modulator driving signal at the time of generating a BPSK signal together with the extinction characteristic of the MZ type optical modulator shown in FIG. 5. It is explanatory drawing which shows the relationship between a bias shift
  • FIG. 1 is a block diagram showing an optical transmitter according to Embodiment 1 of the present invention.
  • this optical transmitter includes an MZ type optical modulator 100, a data signal generation unit (data signal generation means) 201, an I-ch (In-phase channel) modulator driver 202A, a Q-ch (Quadrature-phase). channel) modulator driver 202B, current-voltage converter 203, analog-to-digital converter (ADC) 204, digital-to-analog converter (DAC) 205A for I-chDC.
  • ADC analog-to-digital converter
  • DAC digital-to-analog converter
  • Q-ch DC DAC 205B Phase DC DAC 205C, I-ch dither DAC 206A, Q-ch dither DAC 206B, I-ch DC dither adder 207A, Q-ch DC dither adder 207B, an error signal polarity selection unit 208 (average modulation degree calculation means), and a bias control unit 300.
  • the MZ type optical modulator 100 includes optical waveguides 101A to 101J, an I-ch data modulation electrode 102A, a Q-ch data modulation electrode 102B, an I-ch bias electrode 103A, a Q-ch bias electrode 103B, a phase bias electrode 103C, and A monitor PD (Photo detector) (light intensity detecting means) 104 is provided.
  • monitor PD Photo detector
  • the bias controller 300 includes an I-ch dither signal generator 301A, a Q-ch dither signal generator 301B, a dither signal multiplier 302, an I-ch error signal generator 303A, a Q-ch error signal generator 303B, and a phase error.
  • a signal generation unit 303C, an I-ch control signal generation unit 304A, a Q-ch control signal generation unit 304B, and a phase control signal generation unit 304C are provided.
  • the data signal generation unit 201 generates a data signal indicating an arbitrary data series as an electrical signal.
  • the data signal to be generated is not limited to a binary signal, and may be an analog electrical waveform such as an OFDM signal, a multilevel modulation signal, or a pre-equalization signal.
  • the data signal generation unit 201 outputs an I-ch component of the generated data signal to the I-ch modulator driver 202A, and outputs a Q-ch component to the Q-ch modulator driver 202B.
  • the information of the data signal thus output is output to the error signal polarity selection unit 208.
  • the I-ch modulator driver 202A amplifies the I-ch data signal from the data signal generation unit 201 to a voltage sufficient for driving the modulator, and outputs it to the I-ch data modulation electrode 102A.
  • the Q-ch modulator driver 202B amplifies the Q-ch data signal from the data signal generation unit 201 to a voltage sufficient for driving the modulator, and outputs it to the Q-ch data modulation electrode 102B.
  • the error signal polarity selection unit 208 roughly recognizes the average modulation degree of the data signal based on the data signal information from the data signal generation unit 201.
  • the error signal polarity selection unit 208 generates a polarity selection signal for selecting polarity inversion or non-inversion of the error signal for bias control according to the recognized average modulation degree, and generates an I-ch error signal.
  • the error signal polarity selection unit 208 performs the biasing.
  • a polarity selection signal designating non-inversion of polarity is output so that normally converges to the null point.
  • the error signal polarity selection unit 208 selects the polarity that specifies polarity inversion so that the bias normally converges to the null point. Output a signal.
  • the non-inverted polarity is the polarity that the bias converges to the Null point when the average modulation degree is 100%
  • the inverted polarity is the bias that converges to the Peak point when the average modulation degree is 100%. Polarity.
  • the error signal polarity selection unit 208 changes the polarity of the error signal for bias control in accordance with the average modulation degree, but actually, for example, a table is provided instead of recognizing the average modulation degree. It can be considered.
  • the relationship between the pre-equalization amount and the average modulation degree is a monotone function. It is conceivable to output a polarity selection signal designating non-inversion of polarity when the value is larger than the value, and outputting a polarity selection signal designating polarity inversion when the pre-equalization amount is smaller than a threshold value.
  • the current-voltage conversion unit 203 converts the detection current from the monitor PD 104 that outputs a detection current corresponding to the light intensity into a voltage, performs DC component removal, amplification processing, and the like, and outputs the voltage to the ADC 204.
  • the ADC 204 converts the voltage signal from the current-voltage conversion unit 203 from an analog signal to a digital signal, and outputs the signal to the I-ch error signal generation unit 303A, the Q-ch error signal generation unit 303B, and the Phase error signal generation unit 303C. .
  • the I-ch dither signal generation unit 301A generates a periodic signal (I-ch dither signal) that alternately takes positive polarity and negative polarity, and generates a dither signal multiplication unit 302, an I-ch error signal generation unit 303A, and an I- Output to the ch dither DAC 206A.
  • the Q-ch dither signal generator 301B generates a periodic signal (Q-ch dither signal) that alternately takes positive and negative polarities, and generates a dither signal multiplier 302, a Q-ch error signal generator 303B, and a Q- Output to the ch dither DAC 206B.
  • the dither signal multiplier 302 calculates an exclusive logical product of the I-ch dither signal from the I-ch dither signal generator 301A and the Q-ch dither signal from the Q-ch dither signal generator 301B. The result is output to the phase error signal generator 303C.
  • the I-ch error signal generation unit 303A calculates the product of the digital voltage signal from the ADC 204 and the I-ch dither signal from the I-ch dither signal generation unit 301A, and represents the I ⁇ ch represented by the following equation (1).
  • a ch error signal e_I is generated.
  • I (a, b) indicates the current output from the monitor PD 104
  • a indicates I-ch dither
  • b indicates Q-ch dither
  • p indicates that the dither is on the positive side
  • N indicates that the dither is on the negative electrode positive side
  • 0 indicates that the dither is not superimposed.
  • the I-ch error signal generation unit 303A outputs the I-ch error signal e_I as it is to the I-ch control signal generation unit 304A. . Further, if the polarity selection signal from the error signal polarity selection unit 208 is designated to be inverted, the I-ch error signal generation unit 303A inverts the polarity of the I-ch error signal e_I to generate the I-ch control signal generation unit 304A. Output to.
  • the Q-ch error signal generation unit 303B calculates the product of the digital voltage signal from the ADC 204 and the Q-ch dither signal from the Q-ch dither signal generation unit 301B, and Q-ch represented by the following equation (2).
  • a ch error signal e_Q is generated.
  • the Q-ch error signal generation unit 303B outputs the Q-ch error signal e_Q as it is to the Q-ch control signal generation unit 304B. .
  • the Q-ch error signal generation unit 303B inverts the polarity of the Q-ch error signal e_Q to generate a Q-ch control signal generation unit 304B. Output to.
  • the phase error signal generation unit 303C calculates the product of the digital voltage signal from the ADC 204 and the operation result of the exclusive logical product from the dither signal multiplication unit 302, and generates a phase error signal e_P expressed by the following equation (3). It is generated and output to the phase control signal generator 304C as it is.
  • Equation (3) as described above, by setting the dither period of the I-ch dither signal to be an integral multiple of the dither period of the Q-ch dither signal, I (p, p), I (p, n), I (n, p) and I (n, n) occur with equal probability.
  • the I-ch control signal generation unit 304A Based on the I-ch error signal e_I from the I-ch error signal generation unit 303A, the I-ch control signal generation unit 304A generates, for example, proportional-integral control to generate an I-ch DC bias signal, Output to the I-ch DC DAC 205A. Based on the Q-ch error signal e_Q from the Q-ch error signal generator 303B, the Q-ch control signal generator 304B generates a Q-ch DC bias signal by executing, for example, proportional-integral control, Output to the Q-chDC DAC 205B.
  • the phase control signal generation unit 304C generates a phase DC bias signal by executing, for example, proportional integration control based on the phase error signal e_P from the phase error signal generation unit 303C, and outputs the phase DC bias signal to the phase DC DAC 205C.
  • the I-ch DC DAC 205A converts the I-ch DC bias signal from the I-ch control signal generation unit 304A from a digital signal to an analog signal and outputs the analog signal to the I-ch DC / dither adder 207A.
  • the Q-ch DC DAC 205B converts the Q-ch DC bias signal from the Q-ch control signal generation unit 304B from a digital signal to an analog signal and outputs the analog signal to the Q-ch DC / dither adder 207B.
  • the PhaseDC DAC 205C converts the Phase DC bias signal from the Phase control signal generation unit 304C from a digital signal to an analog signal, and outputs the analog Phase DC bias signal to the Phase bias electrode 103C as a Phase bias signal.
  • the I-ch dither DAC 206A converts the I-ch dither signal from the I-ch dither signal generation unit 301A from a digital signal to an analog signal and outputs the analog signal to the I-ch DC / dither adder 207A.
  • the Q-ch dither DAC 206B converts the Q-ch dither signal from the Q-ch dither signal generator 301B from a digital signal to an analog signal, and outputs the analog signal to the Q-ch DC / dither adder 207B.
  • the I-ch DC / dither adder 207A adds the I-ch DC bias signal from the I-ch DC DAC 205A and the I-ch dither signal from the I-ch dither DAC 206A, and adds the result to the I-ch A bias signal is output to the I-ch bias electrode 103A.
  • the Q-ch DC / dither adder 207B adds the Q-ch DC bias signal from the Q-ch DC DAC 205B and the Q-ch dither signal from the Q-ch dither DAC 206B, and adds the addition result to the Q-ch.
  • a bias signal is output to the Q-ch bias electrode 103B.
  • the MZ type optical modulator 100 modulates, for example, light input from a wavelength variable light source (not shown) provided outside based on various electric signals input from the outside, and outputs it as an optical signal.
  • the light input from the wavelength variable light source to the MZ type optical modulator 100 is first input to the optical waveguide 101A.
  • the optical waveguide 101A is branched into an optical waveguide 101B and an optical waveguide 101C, and light passing through the optical waveguide 101A is branched into the optical waveguide 101B and the optical waveguide 101C.
  • the optical waveguide 101B is branched into an optical waveguide 101D and an optical waveguide 101E, and light passing through the optical waveguide 101B is branched into the optical waveguide 101D and the optical waveguide 101E.
  • the optical waveguide 101C is branched into an optical waveguide 101F and an optical waveguide 101G, and light passing through the optical waveguide 101C is branched into the optical waveguide 101F and the optical waveguide 101G.
  • the I-ch data modulation electrode 102A performs data modulation on the light passing through the optical waveguide 101D and the optical waveguide 101E based on the I-ch data signal from the I-ch modulator driver 202A.
  • the I-ch bias electrode 103A phase-modulates the light passing through the optical waveguide 101D and the optical waveguide 101E based on the I-ch bias signal from the I-ch DC / dither adder 207A. Light subjected to data modulation and optical phase control in the optical waveguide 101D and the optical waveguide 101E is combined and input to the optical waveguide 101H.
  • the Q-ch data modulation electrode 102B performs data modulation on the light passing through the optical waveguide 101F and the optical waveguide 101G based on the Q-ch data signal from the Q-ch modulator driver 202B.
  • the Q-ch bias electrode 103B phase-modulates light passing through the optical waveguide 101F and the optical waveguide 101G based on the Q-ch bias signal from the Q-ch DC / dither adder 207B.
  • Light subjected to data modulation and optical phase control in the optical waveguide 101F and the optical waveguide 101G are combined and input to the optical waveguide 101I.
  • the phase bias electrode 103C phase-modulates light passing through the optical waveguide 101H and the optical waveguide 101I based on the phase bias signal from the PhaseDC DAC 205C.
  • Light subjected to optical phase control in the optical waveguide 101H and the optical waveguide 101I is combined and input to the optical waveguide 101J, and is output to the outside as an optical signal.
  • the monitor PD 104 detects the leaked light when combined by the optical waveguide 101J and outputs a detection current corresponding to the intensity of the light.
  • the I-ch DC bias signal from the I-ch control signal generation unit 304A, the Q-ch DC bias signal from the Q-ch control signal generation unit 304A, and the phase control signal generation unit 304C from The phase DC bias signal is optimized. This is defined as initial withdrawal.
  • each bias voltage of I-ch, Q-ch, and Phase is held at a provisionally optimized value and transits to an arbitrary electric waveform input state.
  • a desired arbitrary electric waveform is input to the MZ type optical modulator 100.
  • the state transits to the error signal polarity designation state.
  • the error signal polarity selection unit 208 In the error signal polarity designation state, the error signal polarity selection unit 208 roughly recognizes the average modulation degree of an arbitrary electric waveform. When the average modulation degree is 50% or more, the error signal polarity selecting unit 208, the I-ch error signal generating unit 303A, and the Q-ch error signal generating unit 303B are set so that the polarity with respect to the error signal is not inverted. In contrast, a polarity selection signal designating non-inversion of polarity is output. As a result, the polarities of the I-ch error signal e_I and the Q-ch error signal e_Q are made non-inverted and the bias is normally directed to the null point.
  • the error signal polarity selection unit 208 when the average modulation degree is less than 50%, the error signal polarity selection unit 208 generates the I-ch error signal generation unit 303A and the Q-ch error signal generation so that the polarity with respect to the error signal is inverted. A polarity selection signal designating polarity inversion is output to the unit 303B. As a result, the polarities of the I-ch error signal e_I and the Q-ch error signal e_Q are reversed and the bias is normally directed to the null point. After the polarity of the error signal is normalized, a transition is made to the basic loop (operation control state).
  • each bias voltage of I-ch, Q-ch, and Phase is controlled in order.
  • dither is superimposed only on the bias terminal of I-ch and only on the bias terminal of Q-ch, respectively, and in the control step of Phase, I-ch and Q-ch are superimposed. Dithers with different periods are simultaneously superimposed on the ⁇ ch bias terminal.
  • the dither period of the I-ch dither signal and the dither period of the Q-ch dither signal are integer multiples (for example, the dither period of the I-ch dither signal is twice the dither period of the Q-ch dither signal). It shall have.
  • the bias control unit that performs bias control on the optical modulator is the optical modulator detected by the light intensity detection unit. Based on the intensity of the output light and the average modulation degree of the data series calculated by the average modulation degree calculation means, the bias control for the optical modulator is executed. Therefore, an optical transmitter that generates an arbitrary optical waveform including an analog optical waveform, such as an OFDM signal, a multilevel modulation signal, and a pre-equalization signal, and an application that dynamically changes the driving waveform of the optical modulator. Therefore, it is possible to obtain an optical transmitter that can easily control the bias to the Null point.
  • an analog optical waveform such as an OFDM signal, a multilevel modulation signal, and a pre-equalization signal
  • FIG. FIG. 3 is a block diagram showing an optical transmitter according to Embodiment 2 of the present invention.
  • the optical transmitter includes a driver gain control unit 209 (average modulation degree calculation means, modulation degree control means) in addition to the optical transmitter shown in FIG.
  • driver gain control unit 209 average modulation degree calculation means, modulation degree control means
  • the data signal generation unit 201 generates a data signal indicating an arbitrary data series as an electrical signal.
  • the data signal to be generated is not limited to a binary signal, and may be an analog electrical waveform such as an OFDM signal, a multilevel modulation signal, or a pre-equalization signal.
  • the data signal generation unit 201 outputs an I-ch component of the generated data signal to the I-ch modulator driver 202A, and outputs a Q-ch component to the Q-ch modulator driver 202B.
  • the data signal information is output to the error signal polarity selector 208 and the driver gain controller 209.
  • the driver gain control unit 209 roughly recognizes the average modulation degree of the data signal based on the data signal information from the data signal generation unit 201. Also, the driver gain control unit 209 generates a gain control signal for controlling the amplification gain of the I-ch modulator driver 202A and the Q-ch modulator driver 202B according to the recognized average modulation degree, and I ⁇ The data is output to the ch modulator driver 202A and the Q-ch modulator driver 202B. At this time, it is conceivable that the amplification gain of the driver is controlled so that the average modulation degree is sufficiently smaller than 50%, for example, about 30%.
  • the I-ch modulator driver 202A amplifies the I-ch data signal from the data signal generation unit 201 according to the amplification gain determined by the gain control signal from the driver gain control unit 209, and performs I-ch data modulation. Output to the electrode 102A.
  • the Q-ch modulator driver 202B amplifies the Q-ch data signal from the data signal generation unit 201 according to the amplification gain determined by the gain control signal from the driver gain control unit 209, and Q-ch data modulation Output to the electrode 102B.
  • the driver gain control unit 209 changes the amplification gain of the driver according to the average modulation degree, but actually, for example, a table may be provided instead of recognizing the average modulation degree. .
  • a table may be provided instead of recognizing the average modulation degree.
  • the relationship between the pre-equalization amount and the average modulation degree is a monotonic function, so the pre-equalization amount, the I-ch modulator driver 202A, and the Q-ch modulator
  • the relationship with the waveform adjustment terminal of the driver 202B may be held in a table.
  • the error signal polarity selection unit 208 and the driver gain control unit 209 may be configured integrally.
  • the driver gain control unit 209 In the modulation degree control state, the driver gain control unit 209 roughly recognizes the average modulation degree of an arbitrary electric waveform. At this time, from the driver gain control unit 209 to the I-ch modulator driver 202A and the Q-ch modulator driver 202B, the average modulation degree is sufficiently smaller than 50%, for example, about 30%. A gain control signal for controlling the amplification gain is output. After the driver amplification gain is controlled, a transition is made to the error signal polarity designation state.
  • the modulation degree control means outputs the data output to the data modulation electrode of the optical modulator based on the average modulation degree of the data series calculated by the average modulation degree calculation means.
  • the average modulation degree is controlled by controlling the amplification gain of the driver for amplifying the series. Therefore, an optical transmitter that generates an arbitrary optical waveform including an analog optical waveform, such as an OFDM signal, a multilevel modulation signal, and a pre-equalization signal, and an application that dynamically changes the driving waveform of the optical modulator. Therefore, it is possible to obtain an optical transmitter that can easily control the bias to the null point.
  • the MZ type optical modulator 100 is a two-parallel MZ type optical modulator, which is a single electrode, a zero chirp type, and a monitor PD 104 built-in.
  • the present invention is not limited to this, and the present invention includes electrodes on both the optical waveguide 101D and the optical waveguide 101E, both the optical waveguide 101F and the optical waveguide 101G, and both the optical waveguide 101H and the optical waveguide 101I.
  • the present invention can also be applied to an optical modulator that realizes zero chirp by pull driving.
  • the single MZ type optical modulator can be applied by eliminating the Q-ch control part and the Phase control part.
  • an I-ch control part, a Q-ch control part, and a Phase control part can also be applied by preparing orthogonal polarization components.
  • an optical modulator that does not incorporate the monitor PD 104 it is necessary to insert an optical coupler that branches light at the output end of the modulator and to attach the monitor PD externally.
  • the DC bias signal needs to be controllable by a level conversion circuit (not shown) within a range that can cover the bias shift standard in the end-of-life of the modulator. is there.
  • the I-ch light is adjusted during the DC bias adjustment of the I-ch and Q-ch.
  • the optical phase difference at the time of combining the signal and the Q-ch optical signal changes, and there is a risk of adversely affecting the bias control as it is.
  • the DC bias signal is single-phase driven, the optical phase shift caused when adjusting the DC bias of the I-ch and Q-ch is appropriately corrected by adjusting the phase terminal, so that it is equivalent to the differential drive. Can be controlled.
  • the series of controls shown in the first and second embodiments can be easily executed using a microcontroller.
  • the dither cycle of the dither signal may be several tens to several hundreds Hz, for example.
  • the bias control method shown in Non-Patent Document 1 one of the output signals from the driver is used for control, so that a high-speed RF main signal is used for control. The difficulty level will be high.
  • the bias control since the bias control uses only the low frequency signal without using the RF main signal, the circuit configuration can be simplified.
  • an arbitrary electric waveform for driving the optical modulator has a histogram that is symmetrical with respect to the average level in the order of 10 to 100 msec.
  • it is desirable to control so that the initial lock point of the bias is the closest point from 0V.
  • 100 MZ type optical modulator 101A to 101I optical waveguide, 102A I-ch data modulation electrode, 102B Q-ch data modulation electrode, 103A I-ch bias electrode, 103B Q-ch bias electrode, 103C Phase bias electrode, 201 data Signal generator, 202A I-ch modulator driver, 202B Q-ch modulator driver, 203 current voltage converter, 204 ADC, 205A I-chDC DAC, 205B Q-chDC DAC, 205C PhaseDC DAC, 206A I -Ch dither DAC, 206B Q-ch dither DAC, 207A I-chDC dither adder, 207B Q-chDC dither adder, 208 error signal polarity selector, 209 driver gain controller, 300 by Control unit, 301A I-ch dither signal generator, 301B Q-ch dither signal generator, 302 dither signal multiplier, 303A I-ch error signal generator, 303B Q-ch error signal generator,

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 アナログ的な光波形を含む任意の光波形を生成する光送信器であって、容易にバイアスをNull点に制御することができる光送信器を得る。電気信号であるデータ系列を用いて、光源からの光を光変調器で変調し、任意の光波形を生成する光送信器であって、光変調器の出力光の強度を検出する光強度検出手段と、データ系列を生成するデータ信号生成手段と、データ系列に基づいて、データ系列の平均変調度を演算する平均変調度演算手段と、光強度検出手段で検出された出力光の強度および平均変調度演算手段で演算されたデータ系列の平均変調度に基づいて、光変調器に対するバイアス制御を実行するバイアス制御手段とを備えたものである。

Description

光送信器
 この発明は、電気信号を光信号に変換して送信する光送信器に関する。
 Mach-Zehnder(MZ)型光変調器を用いて光源からの光を変調する場合には、光変調器に対するバイアス電圧の制御が重要である。バイアス電圧は、一度最適化されたとしても、温度変化や経年変化の影響を受けて最適点からシフトすることが知られている。バイアス電圧が最適点からシフトすると、安定した光信号を送信することができなくなる。そこで、光変調器に対するバイアス電圧の最適点の自動追尾を実行するバイアス制御方式が提案されている(例えば、特許文献1~4、非特許文献1参照)。
特開平5-152504号公報 特開2008-92172号公報 特開2007-171548号公報 特開2008-236512号公報
秋山祐一、他4名、「RZ-DQPSK変調器のバイアス制御方式の検討」、信学技報、OCS2008-80、pp.167-170、2008年
 しかしながら、従来技術には、以下のような課題がある。
 特許文献1、2および非特許文献1に示されたバイアス制御方式は、2値信号に対するバイアス制御を実行するものである。すなわち、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)信号、16QAM(Quadrature Amplitude Modulation)または64QAMのような多値変調信号や予等化信号といった、アナログ的な光波形を含む任意の光波形を生成し、その光波形の特徴を変化させて運用するアプリケーションにおけるバイアス制御には、この方式を適用することができないという問題がある。
 以下、図面を参照しながら、上記の問題について詳細に説明する。
 図5は、MZ型光変調器の消光特性を示す説明図である。MZ型光変調器では、電極に印加する電圧を変化させることにより、光導波路の屈折率が変化し、光信号の位相が変化する。この特徴を用いることにより、光変調器の出力段で任意の光信号を生成することができる。ここで、印加電圧に対して、出力光レベルが最小となる点をNull点と定義し、出力光レベルが最大となる点をPeak点と定義する。
 また、隣接するNull点とPeak点とをそれぞれ得るのに必要な電圧差をVπと定義する。従来の2値駆動のMZ型光変調器では、例えばBPSK(Binary Phase-Shift Keying)信号を得るために、RF(Radio Frequency)信号の振幅を、隣接するPeak点の間で2Vπに設定する(2Vπ掃引する)。RF信号の振幅のVπに対する比、または2Vπに対する比を変調度と称する。BPSK信号では、通常、2Vπ掃引するので、2Vπに対する比を変調度と定義する。したがって、RF信号の振幅が2Vπである場合に、変調度は100%となる。
 すなわち、図5に示したNull点を中心として、左右にVπずつ掃引できるようにバイアスを調整することにより、BPSK信号を得ることができる。このことを、「バイアスをNull点に制御する」と称する。
 なお、強度変調方式以外の多くの変調方式において、バイアスは、Null点に制御されなければならない。また、本願発明は、バイアスをNull点に制御することを前提としている。
 図6は、BPSK信号生成時の変調器駆動信号のヒストグラムを、図5に示したMZ型光変調器の消光特性とともに示す説明図である。図6より、バイアスがNull点に制御されている場合には、信号成分のほとんどがPeak点に存在することが分かる。
 続いて、変調度が100%である場合のバイアスずれ(Bias Voltage Error)と平均光出力レベルPAVEとの関係を図7に示す。図7より、バイアスをNull点とした場合に平均光出力レベルPAVEが最大となり、バイアスをPeak点とした場合に平均光出力レベルPAVEが最小となることが分かる。
 また、バイアス制御を実行するためには、例えばバイアス信号に微小な既知のディザ信号を重畳し、光変調器からの出力光のレベル変化をモニタすればよい。このとき、出力光のレベル変化ΔPAVEは、図8に示されるように、図7の横軸を微分した形で表される。図8において、出力光のレベル変化ΔPAVEを誤差信号とし、ΔPAVE→0となるようにバイアス電圧を変化させることにより、バイアスがPeak点およびNull点の何れかに収束する。
 ここで、Peak点とNull点とでは、出力光のレベル変化ΔPAVEがゼロクロスする際の傾き極性が互いに異なるので、出力光のレベル変化ΔPAVEとバイアス制御方向との対応付けを適切に行うことにより、バイアスをNull点に収束させることができる。
 例えば、図8においては、ΔPAVE>0の場合にバイアス電圧を大きくする方向にバイアスを制御し、ΔPAVE<0の場合にバイアス電圧を小さくする方向にバイアスを制御することにより、バイアスがNull点に収束する。
 一方、上述したアナログ的な波形(OFDM信号、多値変調信号、予等化信号)によりMZ型光変調器を駆動する場合には、図6に示した変調器駆動信号のヒストグラムが、図9または図10に示されるように変化する。このとき、RF信号の隣接するPeak点間での振幅が、図6のものと同様に2Vπであっても、変調度が平均的に低下して見えることとなる。
 この平均的な変調度(以下、「平均変調度」と称する)が50%である場合には、図8に示したバイアスずれと出力光のレベル変化ΔPAVEとの関係が、図11に示されるように変化する。すなわち、バイアスを変化させても平均光出力レベルPAVEが変化しなくなり、バイアス信号にディザ信号を重畳する方法では、バイアス制御を実行することが不可能となる。
 また、平均変調度が50%未満である場合には、図8に示したバイアスずれと出力光のレベル変化ΔPAVEとの関係が、図12に示されるように変化する。すなわち、図8に示した特性と極性が反転する。また、制御感度は、平均変調度が0%および100%の場合に最大となり、平均変調度が50%の場合に最小となる。
 以上、説明したように、アナログ的な光波形を含む任意の光波形を生成する(アナログ的な光波形生成)場合には、一度バイアスがNull点に制御されたとしても、例えば予等化信号の等化量をトラッキングするようなアプリケーションにおいて、そのヒストグラムが変化するときに、バイアスがPeak点に向けて制御される危険性や、制御感度不足によってバイアスが不安定になる恐れがある。バイアスがPeak点に収束した場合や、バイアスが不安定になった場合には、出力光の光波形が所望の光波形から大きく逸脱し、通信断が引き起こされる恐れがある。
 また、特許文献3に示されたバイアス制御方式は、上述した変調度に依存した収束点変化に対する対策を施すものであるが、対象とする信号が搬送波抑圧RZ(CSRZ:Carrier-Suppressed Return-to-Zero)信号であり、OFDM信号、多値変調信号、予等化信号といった、アナログ的な光波形を含む任意の光波形を生成し、その光波形の特徴を変化させて運用するアプリケーションにおけるバイアス制御には、この方式を適用することができないという問題がある。
 また、特許文献4に示されたバイアス制御方式は、OFDM信号、多値変調信号、予等化信号といったアナログ的な光波形生成に対するバイアス制御の収束点を補正することにより、上述した平均変調度に依存した収束点変化に対処するものであるが、これは、Null点とPeak点との中間にバイアス最適点を有する強度変調信号について課題の解決を図ったものであり、バイアスをNull点に制御するものについて課題の解決を図ったものではないという問題がある。
 この発明は、上記のような課題を解決するためになされたものであり、OFDM信号、多値変調信号、予等化信号といった、アナログ的な光波形を含む任意の光波形を生成する光送信器であって、光変調器の駆動波形を動的に変化させるアプリケーションのための、容易にバイアスをNull点に制御することができる光送信器を得ることを目的とする。
 この発明に係る光送信器は、電気信号であるデータ系列を用いて、光源からの光を光変調器で変調し、任意の光波形を生成する光送信器であって、光変調器の出力光の強度を検出する光強度検出手段と、データ系列を生成するデータ信号生成手段と、データ系列に基づいて、データ系列の平均変調度を演算する平均変調度演算手段と、光強度検出手段で検出された出力光の強度および平均変調度演算手段で演算されたデータ系列の平均変調度に基づいて、光変調器に対するバイアス制御を実行するバイアス制御手段とを備えたものである。
 この発明に係る光送信器によれば、任意の光波形を生成する光送信器において、光変調器に対するバイアス制御を実行するバイアス制御手段は、光強度検出手段で検出された光変調器の出力光の強度と、平均変調度演算手段で演算されたデータ系列の平均変調度とに基づいて、光変調器に対するバイアス制御を実行する。
 そのため、OFDM信号、多値変調信号、予等化信号といった、アナログ的な光波形を含む任意の光波形を生成する光送信器であって、光変調器の駆動波形を動的に変化させるアプリケーションのための、容易にバイアスをNull点に制御することができる光送信器を得ることができる。
この発明の実施の形態1に係る光送信器を示すブロック構成図である。 この発明の実施の形態1に係る光送信器において、任意の光波形を生成する処理を示すシーケンス図である。 この発明の実施の形態2に係る光送信器を示すブロック構成図である。 この発明の実施の形態2に係る光送信器において、任意の光波形を生成する処理を示すシーケンス図である。 MZ型光変調器の消光特性を示す説明図である。 BPSK信号生成時の変調器駆動信号のヒストグラムを、図5に示したMZ型光変調器の消光特性とともに示す説明図である。 変調度が100%である場合のバイアスずれと平均光出力レベルとの関係を示す説明図である。 変調度が100%である場合のバイアスずれと出力光のレベル変化との関係を示す説明図である。 アナログ的な光波形によりMZ型光変調器を駆動する場合における変調器駆動信号のヒストグラムを、MZ型光変調器の消光特性とともに示す説明図である。 アナログ的な光波形によりMZ型光変調器を駆動する場合における変調器駆動信号の別のヒストグラムを、MZ型光変調器の消光特性とともに示す説明図である。 変調度が50%である場合のバイアスずれと出力光のレベル変化との関係を示す説明図である。 変調度が50%未満である場合のバイアスずれと出力光のレベル変化との関係を示す説明図である。
 以下、この発明の光送信器の好適な実施の形態につき図面を用いて説明するが、各図において同一、または相当する部分については、同一符号を付して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1に係る光送信器を示すブロック構成図である。
 図1において、この光送信器は、MZ型光変調器100、データ信号生成部(データ信号生成手段)201、I-ch(In-phase channel)変調器ドライバ202A、Q-ch(Quadrature-phase channel)変調器ドライバ202B、電流電圧変換部203、アナログ・デジタル変換器(ADC:Analog-to-Digital Converter)204、I-chDC用デジタル・アナログ変換器(DAC:Digital-to-Analog Converter)205A、Q-chDC用DAC205B、PhaseDC用DAC205C、I-chディザ用DAC206A、Q-chディザ用DAC206B、I-chDC・ディザ加算器207A、Q-chDC・ディザ加算器207B、誤差信号極性選択部208(平均変調度演算手段)、およびバイアス制御部300を備えている。
 MZ型光変調器100は、光導波路101A~101J、I-chデータ変調電極102A、Q-chデータ変調電極102B、I-chバイアス電極103A、Q-chバイアス電極103B、Phaseバイアス電極103C、およびモニタPD(Photo detector)(光強度検出手段)104を有している。
 バイアス制御部300は、I-chディザ信号生成部301A、Q-chディザ信号生成部301B、ディザ信号乗算部302、I-ch誤差信号生成部303A、Q-ch誤差信号生成部303B、Phase誤差信号生成部303C、I-ch制御信号生成部304A、Q-ch制御信号生成部304B、およびPhase制御信号生成部304Cを有している。
 以下、この光送信器の各部位の機能について説明する。
 データ信号生成部201は、任意のデータ系列を示すデータ信号を電気信号で生成する。なお、生成するデータ信号は、2値信号に限定されず、OFDM信号、多値変調信号、予等化信号といった、アナログ的な電気波形であってもよい。
 また、データ信号生成部201は、生成したデータ信号のうち、I-ch成分をI-ch変調器ドライバ202Aに出力し、Q-ch成分をQ-ch変調器ドライバ202Bに出力するとともに、生成したデータ信号の情報を誤差信号極性選択部208に出力する。
 I-ch変調器ドライバ202Aは、データ信号生成部201からのI-chデータ信号を変調器駆動に十分な電圧まで増幅し、I-chデータ変調電極102Aに出力する。
 Q-ch変調器ドライバ202Bは、データ信号生成部201からのQ-chデータ信号を変調器駆動に十分な電圧まで増幅し、Q-chデータ変調電極102Bに出力する。
 誤差信号極性選択部208は、まず、データ信号生成部201からのデータ信号の情報に基づいて、データ信号の平均変調度を概略認識する。また、誤差信号極性選択部208は、認識した平均変調度に応じて、バイアス制御用の誤差信号の極性の反転または非反転を選択するための極性選択信号を生成し、I-ch誤差信号生成部303AおよびQ-ch誤差信号生成部303Bに出力する。
 具体的には、データ信号においてピーク電力対平均電力比(PAPR:Peak-to-Average Power Ratio)が小さく、平均変調度が50%以上である場合には、誤差信号極性選択部208は、バイアスが正常にNull点に収束するように、極性の非反転を指定した極性選択信号を出力する。
 また、データ信号においてPAPRが大きく、平均変調度が50%未満である場合には、誤差信号極性選択部208は、バイアスが正常にNull点に収束するように、極性の反転を指定した極性選択信号を出力する。
 ただし、非反転極性とは、平均変調度が100%である場合にバイアスがNull点に収束する極性とし、反転極性とは、平均変調度が100%である場合にバイアスがPeak点に収束する極性とする。
 ここで、誤差信号極性選択部208は、平均変調度に応じてバイアス制御用の誤差信号の極性を変化させるが、実際には、逐次平均変調度を認識するのではなく、例えばテーブルを設けておくことが考えられる。
 例えば、予等化信号に対するバイアス制御であれば、予等化量と平均変調度との関係は、単調関数となるので、ある予等化量をしきい値として、予等化量がしきい値よりも大きい場合に極性の非反転を指定した極性選択信号を出力し、予等化量がしきい値よりも小さい場合に極性の反転を指定した極性選択信号を出力することが考えられる。
 電流電圧変換部203は、光の強度に応じた検出電流を出力するモニタPD104からの検出電流を電圧に変換するとともに、直流成分除去、増幅処理等を実行して、ADC204に出力する。
 ADC204は、電流電圧変換部203からの電圧信号をアナログ信号からデジタル信号に変換して、I-ch誤差信号生成部303A、Q-ch誤差信号生成部303BおよびPhase誤差信号生成部303Cに出力する。
 I-chディザ信号生成部301Aは、正極性と負極性とを交互にとる周期信号(I-chディザ信号)を生成し、ディザ信号乗算部302、I-ch誤差信号生成部303AおよびI-chディザ用DAC206Aにそれぞれ出力する。
 Q-chディザ信号生成部301Bは、正極性と負極性とを交互にとる周期信号(Q-chディザ信号)を生成し、ディザ信号乗算部302、Q-ch誤差信号生成部303BおよびQ-chディザ用DAC206Bにそれぞれ出力する。
 ここで、例えばI-chディザ信号のディザ周期をQ-chディザ信号のディザ周期の2倍(整数倍)としておくことにより、後述するPhase誤差信号を容易に生成することができるようになる。
 ディザ信号乗算部302は、I-chディザ信号生成部301AからのI-chディザ信号と、Q-chディザ信号生成部301BからのQ-chディザ信号との排他的論理積を演算し、演算結果をPhase誤差信号生成部303Cへ出力する。
 I-ch誤差信号生成部303Aは、ADC204からのデジタル電圧信号とI-chディザ信号生成部301AからのI-chディザ信号との積を演算し、次式(1)で表されるI-ch誤差信号e_Iを生成する。
  e_I∝I(p,0)-I(n,0)・・(1)
 式(1)において、I(a,b)はモニタPD104から出力される電流を示し、aはI-chのディザを示し、bはQ-chのディザを示し、pはディザが正極性側にあることを示し、nはディザが負極正側にあることを示し、0はディザが重畳されていないことを示す。
 また、I-ch誤差信号生成部303Aは、誤差信号極性選択部208からの極性選択信号が非反転指定であれば、I-ch誤差信号e_IをそのままI-ch制御信号生成部304Aに出力する。また、I-ch誤差信号生成部303Aは、誤差信号極性選択部208からの極性選択信号が反転指定であれば、I-ch誤差信号e_Iの極性を反転してI-ch制御信号生成部304Aに出力する。
 Q-ch誤差信号生成部303Bは、ADC204からのデジタル電圧信号とQ-chディザ信号生成部301BからのQ-chディザ信号との積を演算し、次式(2)で表されるQ-ch誤差信号e_Qを生成する。
  e_Q∝I(0,p)-I(0,n)・・(2)
 また、Q-ch誤差信号生成部303Bは、誤差信号極性選択部208からの極性選択信号が非反転指定であれば、Q-ch誤差信号e_QをそのままQ-ch制御信号生成部304Bに出力する。また、Q-ch誤差信号生成部303Bは、誤差信号極性選択部208からの極性選択信号が反転指定であれば、Q-ch誤差信号e_Qの極性を反転してQ-ch制御信号生成部304Bに出力する。
 Phase誤差信号生成部303Cは、ADC204からのデジタル電圧信号とディザ信号乗算部302からの排他的論理積の演算結果との積を演算し、次式(3)で表されるPhase誤差信号e_Pを生成して、そのままPhase制御信号生成部304Cに出力する。
  e_P∝I(p,p)-I(p,n)-{I(n,p)-I(n,n)}・・(3)
 式(3)において、上述したように、I-chディザ信号のディザ周期をQ-chディザ信号のディザ周期の整数倍としておくことにより、I(p,p)、I(p,n)、I(n,p)、I(n,n)が等確率で生じる。
 I-ch制御信号生成部304Aは、I-ch誤差信号生成部303AからのI-ch誤差信号e_Iに基づいて、例えば比例積分制御を実行することでI-ch用DCバイアス信号を生成し、I-chDC用DAC205Aに出力する。
 Q-ch制御信号生成部304Bは、Q-ch誤差信号生成部303BからのQ-ch誤差信号e_Qに基づいて、例えば比例積分制御を実行することでQ-ch用DCバイアス信号を生成し、Q-chDC用DAC205Bに出力する。
 Phase制御信号生成部304Cは、Phase誤差信号生成部303CからのPhase誤差信号e_Pに基づいて、例えば比例積分制御を実行することでPhase用DCバイアス信号を生成し、PhaseDC用DAC205Cに出力する。
 I-chDC用DAC205Aは、I-ch制御信号生成部304AからのI-ch用DCバイアス信号をデジタル信号からアナログ信号に変換し、I-chDC・ディザ加算器207Aに出力する。
 Q-chDC用DAC205Bは、Q-ch制御信号生成部304BからのQ-ch用DCバイアス信号をデジタル信号からアナログ信号に変換し、Q-chDC・ディザ加算器207Bに出力する。
 PhaseDC用DAC205Cは、Phase制御信号生成部304CからのPhase用DCバイアス信号をデジタル信号からアナログ信号に変換し、アナログのPhase用DCバイアス信号をPhaseバイアス信号としてPhaseバイアス電極103Cに出力する。
 I-chディザ用DAC206Aは、I-chディザ信号生成部301AからのI-chディザ信号をデジタル信号からアナログ信号に変換し、I-chDC・ディザ加算器207Aに出力する。
 Q-chディザ用DAC206Bは、Q-chディザ信号生成部301BからのQ-chディザ信号をデジタル信号からアナログ信号に変換し、Q-chDC・ディザ加算器207Bに出力する。
 I-chDC・ディザ加算器207Aは、I-chDC用DAC205AからのI-ch用DCバイアス信号と、I-chディザ用DAC206AからのI-chディザ信号とを加算し、加算結果をI-chバイアス信号としてI-chバイアス電極103Aに出力する。
 Q-chDC・ディザ加算器207Bは、Q-chDC用DAC205BからのQ-ch用DCバイアス信号と、Q-chディザ用DAC206BからのQ-chディザ信号とを加算し、加算結果をQ-chバイアス信号としてQ-chバイアス電極103Bに出力する。
 MZ型光変調器100は、例えば外部に設けられた波長可変光源(図示せず)から入力された光を、外部から入力される各種電気信号に基づいて変調し、光信号として出力する。波長可変光源からMZ型光変調器100に入力された光は、まず、光導波路101Aに入力される。
 光導波路101Aは、光導波路101Bと光導波路101Cとに分岐しており、光導波路101Aを通過する光は、光導波路101Bと光導波路101Cとに分岐される。
 光導波路101Bは、光導波路101Dと光導波路101Eとに分岐しており、光導波路101Bを通過する光は、光導波路101Dと光導波路101Eとに分岐される。
 光導波路101Cは、光導波路101Fと光導波路101Gとに分岐しており、光導波路101Cを通過する光は、光導波路101Fと光導波路101Gとに分岐される。
 I-chデータ変調電極102Aは、I-ch変調器ドライバ202AからのI-chデータ信号に基づいて、光導波路101Dおよび光導波路101Eを通過する光をデータ変調する。また、I-chバイアス電極103Aは、I-chDC・ディザ加算器207AからのI-chバイアス信号に基づいて、光導波路101Dおよび光導波路101Eを通過する光を位相変調する。
 光導波路101Dおよび光導波路101Eにおいてデータ変調および光位相制御を受けた光は、合波されて光導波路101Hに入力される。
 Q-chデータ変調電極102Bは、Q-ch変調器ドライバ202BからのQ-chデータ信号に基づいて、光導波路101Fおよび光導波路101Gを通過する光をデータ変調する。また、Q-chバイアス電極103Bは、Q-chDC・ディザ加算器207BからのQ-chバイアス信号に基づいて、光導波路101Fおよび光導波路101Gを通過する光を位相変調する。
 光導波路101Fおよび光導波路101Gにおいてデータ変調および光位相制御を受けた光は、合波されて光導波路101Iに入力される。
 Phaseバイアス電極103Cは、PhaseDC用DAC205CからのPhaseバイアス信号に基づいて、光導波路101Hおよび光導波路101Iを通過する光を位相変調する。
 光導波路101Hおよび光導波路101Iにおいて光位相制御を受けた光は、合波されて光導波路101Jに入力され、光信号として外部に出力される。
 モニタPD104は、光導波路101Jで合波される際の漏れ光を検出し、光の強度に応じた検出電流を出力する。
 続いて、図2のシーケンス図を参照しながら、この発明の実施の形態1に係る光送信器において、任意の光波形を生成する処理について説明する。
 まず、アナログ的な光波形ではない、従来の2値駆動波形または既知信号を利用して、I-ch、Q-ch、Phaseの各バイアス電圧の仮最適化を実行する。
 具体的には、I-ch制御信号生成部304AからのI-ch用DCバイアス信号、Q-ch制御信号生成部304AからのQ-ch用DCバイアス信号、およびPhase制御信号生成部304CからのPhase用DCバイアス信号が最適化される。これを初期引込と定義する。
 初期引込状態におけるバイアス電圧の仮最適化は、後述する基本ループにおけるバイアス電圧の制御と同一内容の制御が実行される。
 初期引込後、I-ch、Q-ch、Phaseの各バイアス電圧は、仮最適化された値に保持され、任意電気波形入力状態に遷移する。
 任意電気波形入力状態では、MZ型光変調器100に、所望する任意の電気波形が入力される。
 任意の電気波形がMZ型光変調器100に入力された後、誤差信号極性指定状態に遷移する。
 誤差信号極性指定状態では、誤差信号極性選択部208により、任意の電気波形の平均変調度が概略認識される。
 平均変調度が50%以上である場合には、誤差信号に対する極性を非反転とするように、誤差信号極性選択部208から、I-ch誤差信号生成部303AおよびQ-ch誤差信号生成部303Bに対して、極性の非反転を指定した極性選択信号が出力される。これにより、I-ch誤差信号e_IおよびQ-ch誤差信号e_Qの極性を非反転とし、バイアスを正常にNull点に向かわせる。
 逆に、平均変調度が50%未満である場合には、誤差信号に対する極性を反転とするように、誤差信号極性選択部208から、I-ch誤差信号生成部303AおよびQ-ch誤差信号生成部303Bに対して、極性の反転を指定した極性選択信号が出力される。これにより、I-ch誤差信号e_IおよびQ-ch誤差信号e_Qの極性を反転とし、バイアスを正常にNull点に向かわせる。
 誤差信号の極性が正常化された後、基本ループ(運用制御状態)に遷移する。
 基本ループでは、I-ch、Q-ch、Phaseの各バイアス電圧が順番に制御される。
 ここで、I-chおよびQ-chの各制御ステップでは、それぞれI-chのバイアス端子のみ、およびQ-chのバイアス端子のみにディザが重畳され、Phaseの制御ステップでは、I-chおよびQ-chのバイアス端子に、同時に異なる周期のディザが重畳される。
 なお、I-chディザ信号のディザ周期とQ-chディザ信号のディザ周期とは、整数倍(例えば、I-chディザ信号のディザ周期がQ-chディザ信号のディザ周期の2倍)の関係を有するものとする。
 また、基本ループにおいて、任意の光波形の特徴を変化させる要求がある場合には、再び任意電気波形入力状態に遷移する。
 以上のように、実施の形態1によれば、任意の光波形を生成する光送信器において、光変調器に対するバイアス制御を実行するバイアス制御手段は、光強度検出手段で検出された光変調器の出力光の強度と、平均変調度演算手段で演算されたデータ系列の平均変調度とに基づいて、光変調器に対するバイアス制御を実行する。
 そのため、OFDM信号、多値変調信号、予等化信号といった、アナログ的な光波形を含む任意の光波形を生成する光送信器であって、光変調器の駆動波形を動的に変化させるアプリケーションのための、容易にバイアスをNull点に制御することができる光送信器を得ることができる。
 実施の形態2.
 図3は、この発明の実施の形態2に係る光送信器を示すブロック構成図である。
 図3において、この光送信器は、図1に示した光送信器に加えて、ドライバ利得制御部209(平均変調度演算手段、変調度制御手段)を備えている。なお、その他の構成は、図1と同様なので、説明を省略する。
 以下、この光送信器の各部位の機能について説明する。なお、実施の形態1と同様の機能については、説明を省略する。
 データ信号生成部201は、任意のデータ系列を示すデータ信号を電気信号で生成する。なお、生成するデータ信号は、2値信号に限定されず、OFDM信号、多値変調信号、予等化信号といった、アナログ的な電気波形であってもよい。
 また、データ信号生成部201は、生成したデータ信号のうち、I-ch成分をI-ch変調器ドライバ202Aに出力し、Q-ch成分をQ-ch変調器ドライバ202Bに出力するとともに、生成したデータ信号の情報を誤差信号極性選択部208およびドライバ利得制御部209に出力する。
 ドライバ利得制御部209は、まず、データ信号生成部201からのデータ信号の情報に基づいて、データ信号の平均変調度を概略認識する。また、ドライバ利得制御部209は、認識した平均変調度に応じて、I-ch変調器ドライバ202AおよびQ-ch変調器ドライバ202Bの増幅利得を制御するための利得制御信号を生成し、I-ch変調器ドライバ202AおよびQ-ch変調器ドライバ202Bに出力する。
 このとき、ドライバの増幅利得は、平均変調度が50%よりも十分に小さい、例えば30%程度になるように制御されることが考えられる。
 I-ch変調器ドライバ202Aは、データ信号生成部201からのI-chデータ信号を、ドライバ利得制御部209からの利得制御信号によって決定される増幅利得に応じて増幅し、I-chデータ変調電極102Aに出力する。
 Q-ch変調器ドライバ202Bは、データ信号生成部201からのQ-chデータ信号を、ドライバ利得制御部209からの利得制御信号によって決定される増幅利得に応じて増幅し、Q-chデータ変調電極102Bに出力する。
 ここで、ドライバ利得制御部209は、平均変調度に応じてドライバの増幅利得を変化させるが、実際には、逐次平均変調度を認識するのではなく、例えばテーブルを設けておくことが考えられる。
 例えば、予等化信号に対するバイアス制御であれば、予等化量と平均変調度との関係は、単調関数となるので、予等化量とI-ch変調器ドライバ202AおよびQ-ch変調器ドライバ202Bの波形調整端子との関係をテーブルに保持しておけばよい。
 なお、誤差信号極性選択部208とドライバ利得制御部209とを一体的に構成してもよい。
 続いて、図4のシーケンス図を参照しながら、この発明の実施の形態2に係る光送信器において、任意の光波形を生成する処理について説明する。なお、実施の形態1と同様の処理については、説明を省略する。
 まず、任意の電気波形がMZ型光変調器100に入力された後、変調度制御状態に遷移する。
 変調度制御状態では、ドライバ利得制御部209により、任意の電気波形の平均変調度が概略認識される。
 このとき、平均変調度を50%よりも十分に小さく、例えば30%程度とするように、ドライバ利得制御部209から、I-ch変調器ドライバ202AおよびQ-ch変調器ドライバ202Bに対して、増幅利得を制御するための利得制御信号が出力される。
 ドライバの増幅利得が制御された後、誤差信号極性指定状態に遷移する。
 以上のように、実施の形態2によれば、変調度制御手段は、平均変調度演算手段で演算されたデータ系列の平均変調度に基づいて、光変調器のデータ変調電極に出力されるデータ系列を増幅するためのドライバの増幅利得を制御することにより、平均変調度を制御する。
 そのため、OFDM信号、多値変調信号、予等化信号といった、アナログ的な光波形を含む任意の光波形を生成する光送信器であって、光変調器の駆動波形を動的に変化させるアプリケーションのための、より容易にバイアスをNull点に制御することができる光送信器を得ることができる。
 なお、上記実施の形態1、2において、MZ型光変調器100は、2並列MZ型光変調器であって、単一電極、ゼロチャープ型、モニタPD104内蔵のものを仮定している。
 しかしながら、これに限定されず、本発明は、光導波路101Dおよび光導波路101Eの双方、光導波路101Fおよび光導波路101Gの双方、並びに光導波路101Hおよび光導波路101Iの双方にそれぞれ電極を備え、プッシュ・プル駆動によりゼロチャープを実現する光変調器に対しても適用可能である。
 また、シングルMZ型光変調器に対しては、Q-ch制御部分およびPhase制御部分を排除することにより、適用可能となる。
 また、偏波多重型の2並列MZ変調器に対しては、I-ch制御部分、Q-ch制御部分およびPhase制御部分を、直交偏波成分についても用意することにより、適用可能となる。
 また、モニタPD104を内蔵していない光変調器については、変調器の出力端に光を分岐する光カプラを挿入するとともに、モニタPDを外付けする必要がある。
 また、上記実施の形態1、2において、DCバイアス信号は、レベル変換回路(図示せず)により、変調器のEnd-of-Lifeでのバイアスシフト規格をカバーできる範囲で制御可能とする必要がある。
 なお、デュアル駆動型の光変調器を用いて、回路構成を簡略化するためにDCバイアス信号を単相駆動とすると、I-chおよびQ-chのDCバイアス調整中に、I-chの光信号とQ-chの光信号とを合波する際の光位相差が変化してしまい、そのままではバイアス制御に悪影響を与える恐れがある。
 そのため、DCバイアス信号を単相駆動とする場合には、I-chおよびQ-chのDCバイアス調整時に生じる光位相のずれを、Phase端子の調整により適宜補正することにより、差動駆動と同等の制御が可能となる。
 また、上記実施の形態1、2に示した一連の制御は、マイクロコントローラを用いて容易に実行することができる。
 ここで、ディザ信号のディザ周期は、例えば数10~数100Hzとすればよい。
 非特許文献1に示されたバイアス制御方式では、ドライバからの出力信号のうち、片側の信号を制御に使用しているので、高速のRF主信号を制御に用いるという点で、回路構成上の難易度が高くなると考えられる。これに対して、本願発明では、バイアス制御については、RF主信号を使用せず低周波の信号のみを使用するので、回路構成を簡単にすることができる。
 また、上記実施の形態1、2において、光変調器を駆動する任意の電気波形は、10~100msecオーダでは、平均レベルに対して対称なヒストグラムを有することが望ましい。
 また、光変調器のバイアス電圧の最適点の経年変化に対応するためには、バイアスの初期ロック点が、0Vから最も近い点となるように制御することが望ましい。
 100 MZ型光変調器、101A~101I 光導波路、102A I-chデータ変調電極、102B Q-chデータ変調電極、103A I-chバイアス電極、103B Q-chバイアス電極、103C Phaseバイアス電極、201 データ信号生成部、202A I-ch変調器ドライバ、202B Q-ch変調器ドライバ、203 電流電圧変換部、204 ADC、205A I-chDC用DAC、205B Q-chDC用DAC、205C PhaseDC用DAC、206A I-chディザ用DAC、206B Q-chディザ用DAC、207A I-chDC・ディザ加算器、207B Q-chDC・ディザ加算器、208 誤差信号極性選択部、209 ドライバ利得制御部、300 バイアス制御部、301A I-chディザ信号生成部、301B Q-chディザ信号生成部、302 ディザ信号乗算部、303A I-ch誤差信号生成部、303B Q-ch誤差信号生成部、303C Phase誤差信号生成部、304A I-ch制御信号生成部、304B Q-ch制御信号生成部、304C Phase制御信号生成部。

Claims (5)

  1.  電気信号であるデータ系列を用いて、光源からの光を光変調器で変調し、任意の光波形を生成する光送信器であって、
     前記光変調器の出力光の強度を検出する光強度検出手段と、
     前記データ系列を生成するデータ信号生成手段と、
     前記データ系列に基づいて、前記データ系列の平均変調度を演算する平均変調度演算手段と、
     前記光強度検出手段で検出された前記出力光の強度および前記平均変調度演算手段で演算された前記データ系列の平均変調度に基づいて、前記光変調器に対するバイアス制御を実行するバイアス制御手段と、
     を備えた光送信器。
  2.  前記平均変調度演算手段で演算された前記データ系列の平均変調度に基づいて、前記光変調器のデータ変調電極に出力される前記データ系列を増幅するためのドライバの増幅利得を制御することにより、前記平均変調度を制御する変調度制御手段
     をさらに備えた請求項1に記載の光送信器。
  3.  前記光変調器は、2並列MZ型光変調器であり、前記2並列MZ型光変調器の一方のチャネルをI-ch、他方のチャネルをQ-ch、光位相調整部をPhaseとしたとき、
     前記バイアス制御手段は、
     I-chバイアス制御時には、I-chのバイアス端子のみに、正および負の2極性を交互にとる微小かつ矩形の既知信号であるディザを重畳し、
     Q-chバイアス制御時には、Q-chのバイアス端子のみに前記ディザを重畳し、
     Phaseバイアス制御時には、I-chおよびQ-chのバイアス端子に、同時に異なる周期の前記ディザを重畳し、
     I-ch誤差信号e_Iは、e_I∝I(p,0)-I(n,0)であり、
     Q-ch誤差信号e_Qは、e_Q∝I(0,p)-I(0,n)であり、
     Phase誤差信号e_Pは、e_P∝I(p,p)-I(p,n)-{I(n,p)-I(n,n)}であり、
     前記I-ch誤差信号、前記Q-ch誤差信号および前記Phase誤差信号に基づいて、I-ch制御信号、Q-ch制御信号およびPhase制御信号を生成して前記バイアス制御を実行し、
     これらの式中、I(a,b)は光強度検出手段から出力される電流を示し、aはI-chのディザを示し、bはQ-chのディザを示し、pはディザが正極性側にあることを示し、nはディザが負極正側にあることを示し、0はディザが重畳されていないことを示す
     請求項1または請求項2に記載の光送信器。
  4.  前記任意の光波形を生成するために、
     前記バイアス制御手段は、2値駆動波形または既知信号を前記光変調器に入力した状態で、請求項3に記載のバイアス制御を実行する初期引込処理を実行し、
     前記データ信号生成手段は、前記初期引込処理の後に、所望する任意の電気波形を前記光変調器に入力する任意電気波形入力処理を実行し、
     前記平均変調度演算手段は、前記任意電気波形入力処理の後に、前記任意の電気波形の平均変調度を概略認識し、前記平均変調度に応じて、バイアス制御用の誤差信号の極性の反転または非反転を指定する誤差信号極性指定処理を実行し、
     前記バイアス制御手段は、前記誤差信号極性指定処理の後に、請求項3に記載のバイアス制御を実行する運用制御処理を実行し、
     前記運用制御処理において、前記任意の光波形の特徴を変化させる要求がある場合に、前記データ信号生成手段が、再度前記任意電気波形入力処理を実行する
     光送信器。
  5.  前記変調度制御手段は、前記任意電気波形入力処理の後に、前記任意の電気波形の平均変調度を概略認識し、前記平均変調度に応じて、前記光変調器のデータ変調電極に出力される前記データ系列を増幅するためのドライバの増幅利得を制御する変調度制御処理を実行する
     請求項4に記載の光送信器。
PCT/JP2010/052948 2010-02-25 2010-02-25 光送信器 WO2011104838A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012501574A JP5318278B2 (ja) 2010-02-25 2010-02-25 光送信器
PCT/JP2010/052948 WO2011104838A1 (ja) 2010-02-25 2010-02-25 光送信器
CN201080064701.1A CN102783054B (zh) 2010-02-25 2010-02-25 光发送器
US13/576,276 US20120288284A1 (en) 2010-02-25 2010-02-25 Optical transmitter
EP10846503.0A EP2541806B1 (en) 2010-02-25 2010-02-25 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052948 WO2011104838A1 (ja) 2010-02-25 2010-02-25 光送信器

Publications (1)

Publication Number Publication Date
WO2011104838A1 true WO2011104838A1 (ja) 2011-09-01

Family

ID=44506285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052948 WO2011104838A1 (ja) 2010-02-25 2010-02-25 光送信器

Country Status (5)

Country Link
US (1) US20120288284A1 (ja)
EP (1) EP2541806B1 (ja)
JP (1) JP5318278B2 (ja)
CN (1) CN102783054B (ja)
WO (1) WO2011104838A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128165A (ja) * 2010-12-15 2012-07-05 Mitsubishi Electric Corp 光送信機、光通信システムおよび光送信方法
JP2013110620A (ja) * 2011-11-22 2013-06-06 Mitsubishi Electric Corp 光送信器、光通信システムおよび光送信方法
CN103226251A (zh) * 2012-01-31 2013-07-31 住友大阪水泥股份有限公司 光调制器
JP2014013387A (ja) * 2012-07-04 2014-01-23 Fujitsu Ltd 光送信機に用いられる自動バイアス制御方法及び装置
JP2014022871A (ja) * 2012-07-17 2014-02-03 Mitsubishi Electric Corp 光送信機
WO2014041629A1 (ja) 2012-09-12 2014-03-20 三菱電機株式会社 光送信器およびdcバイアス制御方法
JP2015114499A (ja) * 2013-12-12 2015-06-22 三菱電機株式会社 光送信器および光送信器の制御方法
JP2016075878A (ja) * 2014-10-09 2016-05-12 富士通株式会社 光送信器、光変調器の制御方法、及び、光変調器の制御装置
JP2016527552A (ja) * 2013-07-31 2016-09-08 日本電気株式会社 信号生成装置及び信号生成方法
WO2017130882A1 (ja) * 2016-01-28 2017-08-03 日本電気株式会社 光送信機およびその制御方法
US10200131B2 (en) 2012-08-06 2019-02-05 Skorpios Technologies, Inc. Method and system for the monolithic integration of circuits for monitoring and control of RF signals
US10234704B2 (en) 2016-09-29 2019-03-19 Fujitsu Optical Components Limited Optical module that includes optical modulator and bias control method for optical modulator
US10998978B1 (en) 2019-11-06 2021-05-04 Fujitsu Optical Components Limited Optical transmission apparatus and bias control method

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267330B2 (en) * 2008-08-20 2016-02-23 Foro Energy, Inc. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods
WO2011030763A1 (ja) * 2009-09-08 2011-03-17 日本電信電話株式会社 光信号送信器、及びバイアス電圧制御方法
JP5724546B2 (ja) * 2011-03-31 2015-05-27 富士通オプティカルコンポーネンツ株式会社 光送信機および光波形補償方法
WO2013114628A1 (ja) * 2012-02-03 2013-08-08 富士通株式会社 光送信器および光変調器のバイアス制御方法
CN102710336B (zh) * 2012-05-22 2015-08-12 武汉电信器件有限公司 应用于mz调制器的工作点控制装置及方法
US9344194B2 (en) * 2013-02-21 2016-05-17 Fujitsu Limited System and method for monitoring and control of an optical modulator for an M-QAM transmitter
CN103346842B (zh) * 2013-06-09 2016-06-29 桂林电子科技大学 控制双平行mzm调制器输出光强的反馈控制系统和方法
US9496962B1 (en) * 2013-06-27 2016-11-15 Clariphy Communications, Inc. Systems and methods for biasing optical modulating devices
US9281898B2 (en) * 2014-02-19 2016-03-08 Futurewei Technologies, Inc. Mach-Zehnder modulator bias control for arbitrary waveform generation
US9467227B2 (en) * 2014-03-13 2016-10-11 Luxtera, Inc. Method and system for an optical connection service interface
JP6059678B2 (ja) * 2014-04-11 2017-01-11 日本電信電話株式会社 光変調装置、及び光変調方法
WO2016033812A1 (zh) * 2014-09-05 2016-03-10 华为技术有限公司 一种光时域反射计及其对光纤进行检测的方法
WO2016092666A1 (ja) * 2014-12-11 2016-06-16 三菱電機株式会社 光送信器
US10205528B2 (en) * 2015-03-20 2019-02-12 Nec Corporation Optical transmitter and optical communication method
JP2017116746A (ja) * 2015-12-24 2017-06-29 富士通株式会社 光送信器及び制御方法
JP6627640B2 (ja) * 2016-05-16 2020-01-08 富士通株式会社 光送信機
CN109196408B (zh) * 2016-06-02 2021-09-17 三菱电机株式会社 光调制装置以及光调制装置的控制方法
US10042190B2 (en) * 2016-06-10 2018-08-07 Futurewei Technologies, Inc. Second order detection of two orthogonal dithers for I/Q modulator bias control
CN106483684B (zh) * 2016-11-18 2019-07-05 北京交通大学 基于石墨烯栅层微细光纤的电光任意波形发生器
US10401655B2 (en) * 2016-12-16 2019-09-03 Elenion Technologies, Llc Bias control of optical modulators
US10341022B2 (en) * 2016-12-28 2019-07-02 Zte Corporation Optical pulse amplitude modulation transmission using digital pre-compensation
US10509243B2 (en) * 2017-03-15 2019-12-17 Elenion Technologies, Llc Bias control of optical modulators
US10509295B2 (en) * 2017-03-15 2019-12-17 Elenion Technologies, Llc Bias control of optical modulators
CN108667520B (zh) * 2017-03-31 2020-12-29 富士通株式会社 光发射机调制器的偏置控制装置及方法、光发射机
US10790910B2 (en) * 2018-12-22 2020-09-29 Intel Corporation Optical modulator-based transmission control
CN112769492A (zh) * 2019-10-21 2021-05-07 富士通株式会社 监控直流偏置抖动信号的调制深度的方法、装置和光发射机
US11604369B2 (en) * 2021-03-19 2023-03-14 Sumitomo Electric Industries, Ltd. Bias control method of optical modulator and optical transmission module
JP2022191807A (ja) * 2021-06-16 2022-12-28 富士通オプティカルコンポーネンツ株式会社 光送信機、光トランシーバ、及び光変調器のバイアス制御方法
JP2023051413A (ja) * 2021-09-30 2023-04-11 富士通オプティカルコンポーネンツ株式会社 光コヒーレント送受信機及び光変調器の消光方法
CN114978338B (zh) * 2022-05-11 2023-11-21 中国电子科技集团公司第二十九研究所 一种光载射频信号高速bpsk相位调制电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142504A (ja) 1991-11-19 1993-06-11 Fujitsu Ltd 光送信機
JPH05206944A (ja) * 1992-01-24 1993-08-13 Sanyo Electric Co Ltd 電気−光変換装置の光変調度自動調整装置
JP2003283432A (ja) * 2002-03-26 2003-10-03 Fujitsu Ltd 光変調器の駆動制御装置および駆動制御方法
JP2004309511A (ja) * 2003-04-01 2004-11-04 Hitachi Cable Ltd 光送信器
JP2007133176A (ja) * 2005-11-10 2007-05-31 Mitsubishi Electric Corp 光変調器およびそのバイアス制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546152B2 (ja) * 1993-06-15 1996-10-23 日本電気株式会社 光変調増幅器
DE10048434A1 (de) * 2000-09-29 2002-04-18 Siemens Ag Verfahren zum Regeln des Arbeitpunktes eines Modulators und Verfahren zum Regeln des Arbeitsbereiches eines Modulators sowie zugehörige Ansteuereinheiten
JP3851836B2 (ja) * 2002-04-19 2006-11-29 富士通株式会社 波長多重伝送システム及び波長多重伝送装置
US7184671B2 (en) * 2003-09-16 2007-02-27 Opnext, Inc. Optical transmission controller
JP4922594B2 (ja) * 2005-05-23 2012-04-25 富士通株式会社 光送信装置、光受信装置、およびそれらを含む光通信システム
US7630651B2 (en) * 2005-10-21 2009-12-08 Fujitsu Limited Method and apparatus for controlling bias point of optical transmitter
JP4910388B2 (ja) * 2005-12-22 2012-04-04 株式会社日立製作所 光変調装置、光送信器、及び光伝送装置
JP5405716B2 (ja) * 2006-09-29 2014-02-05 富士通株式会社 光送信機
JP4934557B2 (ja) * 2007-09-27 2012-05-16 株式会社日立製作所 4値位相変調器
US7733193B2 (en) * 2007-11-01 2010-06-08 Ciena Corporation Systems and methods for DQPSK modulator control using selectively inserted dither tone
US8184991B2 (en) * 2008-03-12 2012-05-22 Farina Joseph P Ditherless optical modulator control
JP2010028741A (ja) * 2008-07-24 2010-02-04 Yokogawa Electric Corp 光送信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142504A (ja) 1991-11-19 1993-06-11 Fujitsu Ltd 光送信機
JPH05206944A (ja) * 1992-01-24 1993-08-13 Sanyo Electric Co Ltd 電気−光変換装置の光変調度自動調整装置
JP2003283432A (ja) * 2002-03-26 2003-10-03 Fujitsu Ltd 光変調器の駆動制御装置および駆動制御方法
JP2004309511A (ja) * 2003-04-01 2004-11-04 Hitachi Cable Ltd 光送信器
JP2007133176A (ja) * 2005-11-10 2007-05-31 Mitsubishi Electric Corp 光変調器およびそのバイアス制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUICHI AKIYAMA ET AL.: "A study of bias control method for RZ-DQPSK modulator", TECHNICAL REPORT OF IEICE, OCS2008-80, 2008, pages 167 - 170

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128165A (ja) * 2010-12-15 2012-07-05 Mitsubishi Electric Corp 光送信機、光通信システムおよび光送信方法
JP2013110620A (ja) * 2011-11-22 2013-06-06 Mitsubishi Electric Corp 光送信器、光通信システムおよび光送信方法
CN103226251A (zh) * 2012-01-31 2013-07-31 住友大阪水泥股份有限公司 光调制器
JP2014013387A (ja) * 2012-07-04 2014-01-23 Fujitsu Ltd 光送信機に用いられる自動バイアス制御方法及び装置
JP2014022871A (ja) * 2012-07-17 2014-02-03 Mitsubishi Electric Corp 光送信機
EP2880764B1 (en) * 2012-08-06 2019-10-23 Skorpios Technologies, Inc. Method and system for the monolithic integration of circuits for monitoring and control of rf signals
US10200131B2 (en) 2012-08-06 2019-02-05 Skorpios Technologies, Inc. Method and system for the monolithic integration of circuits for monitoring and control of RF signals
EP2896988A4 (en) * 2012-09-12 2016-03-30 Mitsubishi Electric Corp OPTICAL TRANSMITTER AND METHOD FOR DC POWER SUPPLY CONTROL
JPWO2014041629A1 (ja) * 2012-09-12 2016-08-12 三菱電機株式会社 光送信器およびdcバイアス制御方法
US9641257B2 (en) 2012-09-12 2017-05-02 Mitsubishi Electric Corporation Optical transmitter and DC bias control method
CN104620162A (zh) * 2012-09-12 2015-05-13 三菱电机株式会社 光发送器和dc偏置控制方法
WO2014041629A1 (ja) 2012-09-12 2014-03-20 三菱電機株式会社 光送信器およびdcバイアス制御方法
JP2016527552A (ja) * 2013-07-31 2016-09-08 日本電気株式会社 信号生成装置及び信号生成方法
JP2015114499A (ja) * 2013-12-12 2015-06-22 三菱電機株式会社 光送信器および光送信器の制御方法
JP2016075878A (ja) * 2014-10-09 2016-05-12 富士通株式会社 光送信器、光変調器の制御方法、及び、光変調器の制御装置
WO2017130882A1 (ja) * 2016-01-28 2017-08-03 日本電気株式会社 光送信機およびその制御方法
US10234704B2 (en) 2016-09-29 2019-03-19 Fujitsu Optical Components Limited Optical module that includes optical modulator and bias control method for optical modulator
US10998978B1 (en) 2019-11-06 2021-05-04 Fujitsu Optical Components Limited Optical transmission apparatus and bias control method

Also Published As

Publication number Publication date
EP2541806B1 (en) 2018-03-28
CN102783054B (zh) 2015-02-25
JPWO2011104838A1 (ja) 2013-06-17
CN102783054A (zh) 2012-11-14
JP5318278B2 (ja) 2013-10-16
EP2541806A1 (en) 2013-01-02
EP2541806A4 (en) 2013-10-02
US20120288284A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5318278B2 (ja) 光送信器
EP2530855B1 (en) Optical transmitter, control method for the same, and optical transmission system
CN103248432B (zh) 光发射器和用于控制光调制器的偏置的方法
US9859985B2 (en) Optical transmitter, optical transmission system and optical communication control method
JP5724792B2 (ja) 光送信器、光通信システムおよび光送信方法
EP2282423B1 (en) Multi-value optical transmitter
JP5506575B2 (ja) 光変調器、光送信装置およびバイアス調整方法
US9853736B2 (en) Optical transmitter and bias control method for optical modulator
JP6271106B1 (ja) 光変調装置および光変調装置の制御方法
WO2013114628A1 (ja) 光送信器および光変調器のバイアス制御方法
WO2017126546A1 (ja) 光送信器およびその制御方法
JP2013110620A (ja) 光送信器、光通信システムおよび光送信方法
Yoshida et al. A study on automatic bias control for arbitrary optical signal generation by dual-parallel Mach-Zehnder modulator
JP4884338B2 (ja) 光変調器ドライバ調整装置及び調整方法
JP2017116746A (ja) 光送信器及び制御方法
JP6486178B2 (ja) マッハツェンダ型光変調器の駆動制御装置
JP2008242283A (ja) 光変調装置及び光送信装置
JP2021076651A (ja) 光送信装置およびバイアス制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064701.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846503

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501574

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13576276

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010846503

Country of ref document: EP