WO2016033812A1 - 一种光时域反射计及其对光纤进行检测的方法 - Google Patents

一种光时域反射计及其对光纤进行检测的方法 Download PDF

Info

Publication number
WO2016033812A1
WO2016033812A1 PCT/CN2014/086080 CN2014086080W WO2016033812A1 WO 2016033812 A1 WO2016033812 A1 WO 2016033812A1 CN 2014086080 W CN2014086080 W CN 2014086080W WO 2016033812 A1 WO2016033812 A1 WO 2016033812A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
code sequence
compensation
sequence
time domain
Prior art date
Application number
PCT/CN2014/086080
Other languages
English (en)
French (fr)
Inventor
罗小东
黄延穗
邓宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14901067.0A priority Critical patent/EP3190723B1/en
Priority to PCT/CN2014/086080 priority patent/WO2016033812A1/zh
Priority to CN201480081315.1A priority patent/CN106797249B/zh
Publication of WO2016033812A1 publication Critical patent/WO2016033812A1/zh
Priority to US15/449,133 priority patent/US10063314B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3118Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR using coded light-pulse sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3145Details of the optoelectronics or data analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to the field of optical communications, and more particularly to an optical time domain reflectometer and a method for detecting the optical fiber.
  • WDM Widelength Division Multiplexing
  • WDM is a method of transmitting multiple beams of different wavelengths simultaneously on a single fiber by using multiple lasers.
  • Technology To ensure the quality of service data in the optical communication process, an OTDR (Optical Time Domain Reflectometer) is used to detect the loss of the physical link in the WDM network.
  • the OTDR is an optical signal used in the optical fiber.
  • the precision optoelectronic integrated instrument made by the backscattering generated by the transmission is widely used in the maintenance and construction of the optical cable line, and can measure the length of the optical fiber, the transmission attenuation of the optical fiber, the joint attenuation and the fault location. .
  • the basic principle of conventional OTDR measurement fiber transmission attenuation is:
  • the transmitting end of the OTDR sends a single pulse, which is electrooptically modulated and then enters the fiber. After Rayleigh scattering and Fresnel reflection, the receiving end of the OTDR receives the light from the fiber. The optical signal, thereby obtaining the loss of the fiber link.
  • the single pulse cannot be transmitted together with the service signal, so that the loss of the fiber link cannot be detected in real time.
  • the basic principle of multi-pulse OTDR measurement fiber transmission attenuation is:
  • the transmitting end of the OTDR sends a set of PN (Pseudo-Noise, Pseudo-Noise) code sequences, and the PN code sequence and the service signal are modulated and transmitted together, so that the pair can be realized.
  • Real-time detection of fiber links Further, in order to reduce the influence of the service signal on the correlation of the PN code sequence, the OTDR can also modulate the PN code sequence and the service signal in different frequency bands, and use the filter to distinguish different frequency components at the receiving end to reduce the service data. Interaction between the PN code sequence and the PN code sequence.
  • Embodiments of the present invention provide an optical time domain reflectometer and a method for detecting the optical fiber.
  • the compensation data is used to perform real-time detection on the optical time domain reflectometer. Compensation can reduce the influence of service signals on the correlation of PN code sequences without adding additional hardware cost and additional data service bandwidth, so that a more accurate fiber attenuation curve can be obtained, and the detection of optical time domain reflectometer can be improved. Precision.
  • an embodiment of the present invention provides an optical time domain reflectometer, including a service signal generator, a signal coupler connected to a service signal generator, an electro-optic modulator connected to the signal coupler, and an electro-optic modulator.
  • a digital signal processor coupled to the service signal generator, the signal coupler, and the analog to digital converter, for receiving a service signal generated by the traffic signal generator, generating compensation data and a PN code sequence, and transmitting the PN code sequence to the signal coupler And receiving the sample signal sent by the analog-to-digital converter, and calculating the first fiber function according to the compensation data, the PN code sequence, and the sample signal; wherein the compensation data is used to reduce the interference of the service signal on the PN code sequence;
  • the signal is a signal sent from the analog-to-digital converter after the service signal modulated with the PN code sequence is returned through the optical fiber.
  • the digital signal processor is specifically configured to: generate a PN code sequence, and send the PN code sequence to the signal coupler; receive the sample signal sent by the analog to digital converter; Reading a second fiber function; receiving a service signal generated by the service signal generator, and generating a compensation sequence according to the service signal; performing operations on the compensation sequence, the second fiber function, and the PN code sequence to generate compensation data; and according to the compensation data, the PN a code sequence and a sample signal, calculating a first fiber function;
  • the second fiber function is a fiber function stored in the digital signal processor;
  • the sum of the sequence and the traffic signal is a non-zero constant.
  • the digital signal processor specifically includes:
  • a PN code sequence generator coupled to the signal coupler for generating a PN code sequence and transmitting the PN code sequence to the signal coupler, the compensation data generator and the calculator;
  • a signal memory connected to the analog-to-digital converter, configured to receive and store the sample signal sent by the analog-to-digital converter, and send the sample signal to the adder;
  • a compensation data generator connected to the service signal generator and the PN code sequence generator, configured to receive the service signal sent by the service signal generator, the PN code sequence sent by the PN code sequence generator, and the second fiber sent by the fiber function memory a function, wherein the second fiber function is a fiber function stored in the fiber function memory, and generates compensation data according to the service signal, the PN code sequence, and the second fiber function, and sends the compensation data to the adder;
  • An adder connected to the signal memory and the compensation data generator, configured to add the compensation data and the sample signal, and send the operation result to the calculator;
  • a calculator connected to the adder and the PN code sequence generator, configured to receive an operation result obtained by adding the compensation data sent by the adder and the sample signal, and a PN code sequence sent by the PN code sequence generator, and according to The operation result obtained by adding the compensation data and the sample signal and the PN code sequence, calculating the first fiber function, and transmitting the first fiber function to the fiber function memory, so that the fiber function memory replaces the second fiber function with the first fiber function ;
  • a fiber function memory coupled to both the calculator and the compensation data generator for storing a second fiber function and a first fiber function transmitted by the calculator, and transmitting a second fiber function to the compensation data generator.
  • the compensation data generator specifically includes:
  • a compensation sequence generator connected to the service signal generator, configured to receive a service signal sent by the service signal generator, generate a compensation sequence according to the service signal, and send the compensation sequence to the compensation data operator;
  • a compensation data operator connected to both the compensation sequence generator and the PN code sequence generator, And receiving a compensation sequence sent by the compensation sequence generator, a PN code sequence sent by the PN code sequence generator, and a second fiber function sent by the fiber function memory, and performing operations on the compensation sequence, the PN code sequence, and the second fiber function to generate Compensation data, send compensation data to the adder.
  • the compensation data operator includes:
  • a compensation data multiplier connected to the compensation sequence generator and the PN code sequence generator for receiving the compensation sequence transmitted by the compensation sequence generator, the PN code sequence transmitted by the PN code sequence generator, and the compensation sequence and the PN code sequence Do a multiplication operation and send the result of the operation to the compensation data convolver;
  • a compensation data convolver connected to the compensation data multiplier, the adder, and the fiber function memory, for receiving the operation result obtained by multiplying the compensation sequence transmitted by the compensation data multiplier and the PN code sequence, and the transmission by the fiber function memory
  • the second fiber function performs a convolution operation on the operation result obtained by multiplying the compensation sequence and the PN code sequence with the second fiber function to obtain compensation data, and sends the compensation data to the adder.
  • the compensation data operator includes:
  • a compensation data adder connected to the compensation sequence generator and the PN code sequence generator for receiving the compensation sequence transmitted by the compensation sequence generator, the PN code sequence transmitted by the PN code sequence generator, and the compensation sequence and the PN code sequence Do the addition, and send the result of the operation to the compensation data convolver;
  • a compensation data convolver connected to the compensation data adder, the adder, and the fiber function memory, for receiving the operation result obtained by adding the compensation sequence sent by the compensation data adder and the PN code sequence, and the fiber function memory
  • the second fiber function performs a convolution operation on the operation result obtained by adding the compensation sequence and the PN code sequence and the second fiber function to obtain compensation data, and sends the compensation data to the adder.
  • the transmitter is specifically a circulator or a coupler.
  • an embodiment of the present invention provides a method for detecting an optical fiber by using an optical time domain reflectometer, and the optical time domain reflectometer according to the first aspect, comprising: The optical time domain reflectometer obtains the service signal, the compensation data, and the PN code sequence; the optical time domain reflectometer calculates the first fiber function according to the service signal, the compensation data, and the PN code sequence; wherein the compensation data is used to reduce the service signal to the PN Interference of the code sequence.
  • the method for obtaining a service signal by an optical time domain reflectometer includes:
  • the optical time domain reflectometer generates a service signal
  • the method for obtaining compensation data by the optical time domain reflectometer includes:
  • the optical time domain reflectometer generates a compensation sequence according to the service signal, wherein the sum of the compensation sequence and the service signal is a non-zero constant;
  • the optical time domain reflectometer obtains a second fiber function, wherein the second fiber function is a fiber function stored in the optical time domain reflectometer;
  • the optical time domain reflectometer performs operations on the compensation sequence, the second fiber function, and the PN code sequence to generate compensation data
  • the method for obtaining a PN code sequence by an optical time domain reflectometer includes:
  • An optical time domain reflectometer generates the PN code sequence.
  • the optical time domain reflectometer performs operations on the compensation sequence, the second fiber function, and the PN code sequence to generate compensation data, and specifically includes:
  • the optical time domain reflectometer multiplies the compensation sequence and the PN code sequence, and performs convolution operation on the operation result obtained by multiplying the compensation sequence and the PN code sequence with the second fiber function to generate compensation data; or
  • the optical time domain reflectometer performs an addition operation on the compensation sequence and the PN code sequence, and performs convolution operation on the operation result obtained by adding the compensation sequence and the PN code sequence to the second fiber function to generate compensation data.
  • the optical time domain reflectometer calculates the first fiber function according to the service signal, the compensation data, and the PN code sequence, and specifically includes:
  • the optical time domain reflectometer modulates the PN code sequence onto the traffic signal to obtain a service signal modulated with the PN code sequence, and transmits the service signal modulated with the PN code sequence to
  • the optical fiber receives the signal returned from the optical fiber and performs photoelectric detection and analog-to-digital conversion to obtain a sample-like signal;
  • the optical time domain reflectometer adds the compensation data and the sample signal
  • the optical time domain reflectometer performs a correlation operation on the operation result obtained by adding the compensation data and the sample signal to the PN code sequence to obtain a first fiber function.
  • the method After the optical time domain reflectometer calculates the first fiber function according to the sample signal, the compensation data, the PN code sequence, and the second fiber function, the method also includes:
  • the optical time domain reflectometer replaces the second fiber function with a first fiber function.
  • Embodiments of the present invention provide an optical time domain reflectometer and a method for detecting an optical fiber.
  • the optical time domain reflectometer includes a service signal generator, a signal coupler connected to the service signal generator, and an electro-optic light coupled to the signal coupler.
  • a modulator a transmitter coupled to the electro-optic modulator, a photodetector coupled to the transmitter, and an analog to digital converter coupled to the photodetector, further comprising: a signal generator, a signal coupler, and an analog to digital converter
  • the connected digital signal processor is configured to receive the service signal generated by the service signal generator, generate the compensation data and the PN code sequence, send the PN code sequence to the signal coupler, and receive the sample signal sent by the analog to digital converter, according to the compensation
  • the data, the PN code sequence, and the sample-like signal are used to calculate the first fiber function.
  • the digital signal processor receives the service signal generated by the traffic signal generator, and generates the compensation data and the PN code sequence, sends the generated PN code sequence to the signal coupler, and receives the analog to digital converter.
  • the sample-like signal calculates a first fiber function based on the compensation data, the PN code sequence, and the sample-like signal. That is, the digital signal processor can compensate the received signal in real time, and reduce the influence of the service signal on the correlation of the PN code sequence without adding additional hardware cost and additional data service bandwidth, thereby obtaining more accurate
  • the fiber function enhances the detection accuracy of the optical time domain reflectometer.
  • FIG. 1 is a schematic structural diagram of an optical time domain reflectometer according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an optical time domain reflectometer according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram 4 of an optical time domain reflectometer according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical time domain reflectometer according to an embodiment of the present invention.
  • FIG. 6 is an error compensation device according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart 1 of a method for detecting an optical fiber by using an optical time domain reflectometer according to an embodiment of the present invention
  • FIG. 8 is a schematic flowchart 2 of a method for detecting an optical fiber by using an optical time domain reflectometer according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an optical time domain reflectometer, including a service signal generator 10 and a signal coupler 20 connected to the service signal generator 10 .
  • An electro-optic modulator 30 connected to the signal coupler 20, a transmitter 40 connected to the electro-optic modulator 30, and a photodetector connected to the transmitter 40 a detector 50, an analog to digital converter 60 coupled to the photodetector 50, the optical time domain reflectometer further comprising:
  • a digital signal processor 70 coupled to the traffic signal generator 10, the signal coupler 20, and the analog to digital converter 60 is configured to receive the traffic signal generated by the traffic signal generator 10, generate compensation data and a PN code sequence, and transmit the PN.
  • the code sequence is coupled to the signal coupler 20 and receives the sample-like signal transmitted by the analog-to-digital converter 60 so that the first fiber function can be calculated based on the compensation data, the PN code sequence, and the sample-like signal.
  • the compensation data is used to reduce the interference of the service signal to the PN code sequence, and the specific calculation process of the compensation data is described in detail in the following embodiments.
  • the PN code sequence is a set of coding sequences composed of 0 and 1 having autocorrelation properties similar to white noise, and has good autocorrelation.
  • the service signal generator 10 is configured to generate a service signal, and send the generated service signal to the signal coupler 20 and the digital signal processor 70.
  • the signal coupler 20 receives the service signal sent by the service signal generator 10 and the PN code sequence transmitted by the digital signal processor, and couples the service signal and the PN code sequence, so that the PN code sequence can be modulated into the service. On the signal, and can control the modulation depth of the PN code sequence.
  • the modulation depth of the PN code sequence refers to the magnitude of the amplitude of the PN code sequence relative to the amplitude of the modulated signal.
  • the modulated signal is sent to the electro-optic modulator 30.
  • the method for coupling the service signal and the PN code sequence by the signal coupler 20 may be to multiply or add the service signal and the PN code sequence on the circuit, or to modulate the PN code sequence by the external modulation optical device. On an optical carrier with a traffic signal.
  • the invention is not limited thereto.
  • the transmitter 40 can be a circulator or a coupler.
  • the transmitter 40 receives the modulated traffic signal sent by the electro-optic modulator 30 and transmits it to the optical fiber; and simultaneously receives the signal returned by the optical fiber and sends it to the photodetector 50. For subsequent signal processing by the optical time domain reflectometer.
  • the transmitter 40 of the present invention can function as a transmission and reception isolation. Therefore, any device having a transmission and reception isolation function can be used as a transmitter. The present invention does not limit this.
  • the photodetector 50 photoelectrically converts the optical signal reflected from the optical fiber received by the transmitter 40, amplifies and filters it, and then sends it to the analog to digital converter 60.
  • the photodetection module 50 also filters and amplifies the received weak optical signal.
  • the electro-optic modulator 30 converts the electrical signal into an optical signal so that the signal can be transmitted in the optical fiber; the photodetector 50 converts the optical signal reflected from the optical fiber into an electrical signal to facilitate subsequent A signal processor processes the electrical signal.
  • analog to digital converter 60 receives the electrical signal transmitted by the photodetector 50 and samples it, and sends the sampled signal to the digital signal processor 70.
  • the digital signal processor 70 is configured to generate a PN code sequence and compensation data, and receive the sample signal sent by the analog-to-digital converter 60.
  • the digital signal processor 70 performs real-time compensation on the sample signal according to the compensation data. Therefore, the influence of the traffic signal on the correlation of the PN code sequence is reduced, and the detection accuracy of the optical time domain reflectometer is improved.
  • the digital signal processor is specifically configured to: generate a PN code sequence, and send the PN code sequence to the signal coupler; receive the sample signal sent by the analog to digital converter; read the second fiber function; and receive the service signal generator Generating a service signal, and generating a compensation sequence according to the service signal; performing operations on the compensation sequence, the second fiber function, and the PN code sequence to generate compensation data; and calculating the first fiber function according to the compensation data, the PN code sequence, and the sample signal
  • the second fiber function is a fiber function stored in the digital signal processor; the sum of the compensation sequence and the traffic signal is a non-zero constant.
  • the digital signal processor 70 specifically includes: a PN code sequence generator 700 connected to the signal coupler 20, and a signal connected to the analog to digital converter 60.
  • the generator 700 is connected to a calculator 702, and a fiber function memory 705 connected to both the calculator 702 and the compensation data generator 701.
  • the PN code sequence generator 700 is configured to generate a PN code sequence, and send the generated PN code sequence to the signal coupler 20, so that the signal coupler 20 can modulate the PN code sequence onto the service signal.
  • the PN code sequence generator 700 transmits the PN code sequence to the compensation data generator 701 so that the compensation data generator 701 generates compensation data based on the traffic signal and the PN code sequence; and the PN code sequence generator 700 also sets the PN code.
  • the sequence is sent to the final calculator 702, which eliminates the effect of the traffic signal on the correlation of the PN code sequence based on the nature of the correlation operation to obtain a first fiber function.
  • the first fiber function is an attenuation curve characterizing the fiber in the current state.
  • the calculator 702 calculates the first fiber function according to the compensation data, the PN code sequence and the sample signal, and sends the first fiber function to After the fiber function memory 705, the fiber function memory 705 stores the first fiber function, replacing the second fiber function previously stored in the fiber function memory 705 with the first fiber function.
  • the second fiber function just stored is used, so that the calculated error becomes smaller and smaller.
  • the process of generating the sample signal is as follows: after the service signal and the PN code sequence are coupled by the signal coupler 20, the signal is converted by the electro-optic modulator 30, and transmitted to the optical fiber through the transmitter 40, and then photoelectrically detected.
  • the device 50 receives the optical signal reflected from the optical fiber, converts the photoelectric signal, and sends the electrical signal to the analog-to-digital converter 60 to perform signal sampling to obtain a sample-like signal. Therefore, the signal stored in the signal memory 703 is a sample signal.
  • the signal memory 703 is configured to receive and store the sample signal sent by the analog to digital converter 60.
  • the signal memory 703 receives the sample signal transmitted from the analog to digital converter 60, and sends the sample signal to the adder 704 for operation.
  • the compensation data generator 701 is configured to generate data according to the service signal.
  • the service signal transmitted by the processor 10, the PN code sequence transmitted by the PN code sequence generator 700, and the second fiber function transmitted by the fiber function memory 705 generate compensation data of the sample signal, and the generated compensation data is sent to the adder 704. Operation.
  • the adder 704 is configured to add the compensation data and the sample signal, and send the operation result to the calculator 702.
  • the calculator 702 is configured to receive an operation result obtained by adding the compensation data sent by the adder 704 and the sample signal, and a PN code sequence sent by the PN code sequence generator 700, and according to the compensation data and The operation result of the sample signal and the PN code sequence are used to calculate the first fiber function, and the generated first fiber function is sent to the fiber function memory 705 as a fiber function for the next operation.
  • the fiber function memory 705 is configured to store the first fiber function sent by the calculator 702 and send the second fiber function to the compensation data generator 701.
  • the second fiber function pre-stored by the fiber function memory 705 can be an ideal fiber function for offline testing or a fiber function for the last online measurement.
  • the invention is not limited thereto.
  • the compensation data generator 701 specifically includes: a compensation sequence generator 7010 connected to the service signal generator 10, configured to receive a service signal sent by the service signal generator 10, and generate a compensation sequence according to the service signal. Transmitting a compensation sequence to the compensation data operator 7011, wherein the sum of the compensation sequence and the traffic signal is a non-zero constant; a compensation data operator 7011 coupled to both the compensation sequence generator 7010 and the PN code sequence generator 700 for receiving The compensation sequence sent by the compensation sequence generator 7010, the PN code sequence transmitted by the PN code sequence generator 700, and the second fiber function transmitted by the fiber function memory 705, and the compensation sequence, the second fiber function, and the PN code sequence are calculated to generate The compensation data is sent to the adder 704.
  • the compensation sequence generator 7010 generates a compensation sequence for the received service signal.
  • the service signal be D.
  • the N data bits in the service signal D can be used as a processing unit, and the N bits are integrated to generate a new value.
  • the service signal D can generate K/N new ones. The value is generated according to the K/N values, so that the processing amount of the data can be reduced by N times, thereby improving the operation efficiency.
  • the compensation data operator 7011 may further include: a compensation data adder c connected to both the compensation sequence generator 7010 and the PN code sequence generator 700, for receiving the compensation sequence generator. 7010, the compensation sequence, the PN code sequence sent by the PN code sequence generator 700, and the addition sequence of the compensation sequence and the PN code sequence, and the operation result is sent to the compensation data convolver d, the compensation data convolver d and
  • the compensation data adder c and the fiber function memory 705 and the adder 704 are both connected to receive the operation result obtained by adding the compensation sequence sent by the compensation data adder c and the PN code sequence, and the second transmission by the fiber function memory 705.
  • the optical fiber function performs a convolution operation on the operation result obtained by adding the compensation sequence and the PN code sequence to the second fiber function to obtain compensation data, and transmits the compensation data to the adder 704.
  • the compensation data operator 7011 specifically includes: a compensation data multiplier a connected to both the compensation sequence generator 7010 and the PN code sequence generator 700 for receiving the transmission sent by the compensation sequence generator 7010. Compensating the PN code sequence transmitted by the PN code sequence generator 700, multiplying the compensation sequence and the PN code sequence, and transmitting the operation result to the compensation data convolver b, compensating the data convolver b and compensating the data multiplication
  • a fiber function memory 705 and an adder 704 are both connected to receive an operation result obtained by multiplying the compensation sequence transmitted by the compensation data multiplier a and the PN code sequence, and a second fiber function sent by the fiber function memory 705, The convolution operation is performed on the operation result obtained by multiplying the compensation sequence and the PN code sequence with the second fiber function to obtain compensation data, and the compensation data is sent to the adder 704.
  • the working principle of the optical time domain reflectometer provided by the embodiment of the present invention is described by taking the working flow of the optical time domain reflectometer and the signal flow direction as an example.
  • A be the correlation gain
  • B be the second fiber function
  • C be the PN code sequence
  • D be the service signal
  • ⁇ 0 is the compensation sequence of
  • @ is the convolution operator
  • is the correlation operator, where ⁇ is in mathematics
  • the upper represents the inverse operator, where D is used to represent any compensation sequence of D.
  • the sum of the service signal D and its compensation sequence D is a non-zero constant E, E may be all 1 or other reasonable constants.
  • E the compensation sequence ⁇ D is the negation of 0 and 1 of the service signal D.
  • the compensation sequence D is generated by the compensation sequence generator 7010.
  • the compensation sequence generated by the compensation sequence generator 7010 to generate the service signal D may be obtained directly from the service signal through the electrical domain, or may be obtained through additional Photoelectric detection, obtained from the optical domain.
  • the present invention does not limit how to generate the compensation sequence ⁇ D of the traffic signal D.
  • the output signal obtained after the input signal is transmitted back from the fiber is the result of convolution operation between the input signal and the actual fiber function of the fiber.
  • the actual fiber function of the fiber is assumed to be the first. Two fiber functions.
  • the compensation data operator 7011 of the optical time domain reflectometer includes the compensation data multiplier a and the compensation data convolver b, the principle of the linear system can be obtained:
  • the compensation data operator 7011 includes the compensation data adder c and the compensation data convolver d
  • the principle of the linear system can be obtained:
  • the compensation data operator 701 1 of the optical time domain reflectometer includes a compensation data adder c and a compensation data convolver d
  • the compensation data operator 701 1 of the optical time domain reflectometer includes a compensation data multiplier a
  • the compensation data convolver b is simpler to calculate, and the compensation data multiplier a and the compensation data convolver b are generally selected when the process permits.
  • An optical time domain reflectometer provided by an embodiment of the present invention includes a service signal generator, a signal coupler connected to the service signal generator, an electro-optic modulator connected to the signal coupler, and a transmitter connected to the electro-optic modulator, a photodetector coupled to the transmitter, an analog to digital converter coupled to the photodetector, the optical time domain reflectometer further comprising: digital signal processing coupled to the service signal generator, the signal coupler, and the analog to digital converter And generating a compensation data and a PN code sequence, and receiving the sample signal sent by the analog to digital converter, and calculating the first fiber function according to the compensation data, the PN code sequence and the sample signal.
  • the digital signal processor receives the service signal generated by the traffic signal generator, and generates the compensation data and the PN code sequence, sends the generated PN code sequence to the signal coupler, and receives the analog to digital converter.
  • the sample-like signal calculates a first fiber function based on the compensation data, the PN code sequence, and the sample-like signal. That is, the digital signal processor can compensate the received signal in real time, and reduce the influence of the service signal on the correlation of the PN code sequence without adding additional hardware cost and additional data service bandwidth, thereby obtaining more accurate
  • the fiber function enhances the detection accuracy of the optical time domain reflectometer.
  • the embodiment of the invention further provides an error compensation device, as shown in FIG. 6, which is a schematic structural diagram of the error compensation device.
  • the error compensating device includes the optical time domain reflectometer shown in the above embodiment and an optical fiber connected to the optical time domain reflectometer. Based on the description of the above embodiment, the error compensation device receives the service signal generated by the traffic signal generator, and generates the compensation data and the PN code sequence, sends the generated PN code sequence to the signal coupler, and receives the analog-to-digital converter.
  • the sample-like signal calculates a first fiber function based on the compensation data, the PN code sequence, and the sample-like signal.
  • the digital signal processor can compensate the received signal in real time, and reduce the influence of the randomness of the service signal on the correlation of the PN code sequence without adding additional hardware cost and additional data service bandwidth.
  • a more accurate fiber function which improves the detection accuracy of the optical time domain reflectometer.
  • the embodiment of the invention provides a method for detecting an optical fiber by using an optical time domain reflectometer.
  • the method for detecting the optical fiber is applied to the optical time domain reflectometer described in the second embodiment as an example.
  • the schematic diagram of the method for detecting the optical fiber by using the optical time domain reflectometer is as shown in FIG. 7, and includes:
  • the optical time domain reflectometer obtains a service signal, a compensation data, and a PN code sequence. It should be noted that the optical time domain reflectometer generates a service signal and a PN code sequence, thereby generating a compensation sequence according to the service signal, according to the compensation sequence, the PN code sequence, and the second fiber stored in the optical function memory of the optical time domain reflectometer. The function generates compensation data to compensate the sigma-like signals reflected from the fiber in real time. Optical time domain reflectometer acquires service signal, compensation data and PN code
  • the optical time domain reflectometer calculates the first fiber function according to the service signal, the compensation data, and the PN code sequence.
  • the optical time domain reflectometer calculates the first fiber function according to the service signal, the compensation data, and the PN code sequence.
  • the optical time domain reflectometer modulates the PN code sequence onto the service signal to obtain a modulated PN code.
  • the sequence of the service signal, and then the service signal modulated with the PN code sequence is sent to the optical fiber, and receives the signal returned from the optical fiber, and performs photoelectric detection and analog-to-digital conversion to obtain a sample-like signal; the optical time domain reflectometer compensates the data and ⁇ The sample signal is added; the optical time domain reflectometer performs a correlation operation on the operation result obtained by adding the compensation data and the sample signal to the PN code sequence to obtain a first fiber function.
  • the time domain reflectometer calculates the first fiber optic function according to the service signal, the compensation data and the PN code sequence.
  • the embodiment of the invention provides a method for detecting the optical fiber by using the optical time domain reflectometer, including: optical time domain reflectometer acquisition service Signal, compensation data, and PN code sequence; The optical time domain reflectometer calculates a first fiber function based on the traffic signal, the compensation data, and the PN code sequence.
  • the optical time domain reflectometer obtains the service signal, the compensation data, and the PN code sequence, and performs real-time compensation on the received sample signal according to the compensation data without adding additional hardware cost and additional data service bandwidth.
  • the influence of the traffic signal on the correlation of the PN code sequence is reduced, and a more accurate fiber function is obtained, thereby improving the detection accuracy of the optical time domain reflectometer.
  • the embodiment of the invention provides a method for detecting an optical fiber by using an optical time domain reflectometer.
  • the method for detecting the optical fiber is applied to the optical time domain reflectometer described in the second embodiment as an example.
  • the schematic diagram of the method for detecting the optical fiber by using the optical time domain reflectometer is as shown in FIG. 8, and includes:
  • the S201 optical time domain reflectometer obtains the traffic signal, the compensation data, and the PN code sequence. Specifically, the method for obtaining the service signal by the optical time domain reflectometer generates a service signal for the service signal generator in the optical time domain reflectometer.
  • the method of acquiring the PN code sequence by the optical time domain reflectometer generates a PN code sequence for the PN code sequence generator in the optical time domain reflectometer.
  • optical time domain reflectometer generates the service signal and the PN code sequence in an unordered manner, and can be set according to the hardware condition of the actual device, which is not limited by the present invention.
  • the method for obtaining the compensation data by the optical time domain reflectometer specifically includes: S201 a
  • the optical time domain reflectometer generates a compensation sequence according to the service signal.
  • the sum of the compensation sequence and the service signal is a non-zero constant.
  • the generated compensation sequence is stored in the compensation sequence generator of the optical time domain reflectometer.
  • the S201b optical time domain reflectometer acquires a second fiber function.
  • the second fiber function is a fiber function stored in a fiber function memory of the optical time domain reflectometer.
  • the second fiber function is used to generate compensation data with the compensation sequence and the PN code sequence.
  • the S201c optical time domain reflectometer generates compensation data for the compensation sequence, the second fiber function, and the PN code sequence.
  • the optical time domain reflectometer performs operations on the compensation sequence, the second fiber function, and the PN code sequence to generate compensation data, specifically including S201 c0 and S201c l.
  • the S201c0 optical time domain reflectometer multiplies the compensation sequence and the PN code sequence, and performs a convolution operation on the operation result obtained by multiplying the compensation sequence and the P N code sequence with the second fiber function to generate compensation data.
  • the multiplication of the compensation sequence and the PN code sequence is performed by the compensation data multiplier in the optical time domain reflectometer. Then, the operation result of the compensation data multiplier is convoluted with the second fiber function to obtain compensation data. Specifically, the convolution operation is performed by a convolver in the optical time domain reflectometer.
  • the S201c l optical time domain reflectometer performs an addition operation on the compensation sequence and the PN code sequence, and performs a convolution operation on the operation result obtained by adding the compensation sequence and the P N code sequence and the second fiber function to generate compensation data.
  • the addition of the compensation sequence and the PN code sequence is performed by a compensation data adder in the optical time domain reflectometer. Then, the operation result of the compensation data adder and the second fiber function are convoluted to obtain compensation data. Specifically, the convolution operation is performed by a convolver in the optical time domain reflectometer.
  • the S202 optical time domain reflectometer calculates the first fiber function based on the traffic signal, the compensation data, and the PN code sequence.
  • the step of calculating the first fiber function according to the service signal, the compensation data, and the PN code sequence according to the optical time domain reflectometer specifically includes S202a-S202c.
  • the S202a optical time domain reflectometer modulates the PN code sequence onto the service signal to obtain a service signal modulated with the PN code sequence, and transmits the service signal modulated with the PN code sequence To the fiber, the signal returned from the fiber is received and photoelectrically detected and analog-to-digital converted to obtain a sample-like signal.
  • sample signal obtained by the optical time domain reflectometer refers to the service signal
  • the PN code sequence is coupled by the signal coupler of the optical time domain reflectometer, and then converted by the electro-optical modulator of the optical time domain reflectometer, and transmitted to the optical fiber through the optical time domain reflectometer transmitter, and then photoelectrically detected.
  • the device receives the optical signal reflected from the optical fiber, converts the photoelectric signal, and sends the electrical signal to an analog-to-digital converter of the optical time domain reflectometer to perform signal sampling to obtain a sample-like signal.
  • the process of modulating the PN code sequence onto the traffic signal is performed by a signal coupler of the optical time domain reflectometer.
  • the signal coupler can control the modulation depth of the PN code sequence.
  • the modulation depth of the PN code sequence is the same as that in the first embodiment, and will not be described again.
  • the S202b optical time domain reflectometer adds the compensation data and the sample signal.
  • the addition of the compensation data and the sample signal is performed by an adder in the optical time domain reflectometer.
  • the optical time domain reflectometer performs a correlation operation on the operation result obtained by adding the compensation data and the sample signal to the PN code sequence to obtain a first fiber function.
  • the process of performing the correlation between the operation result obtained by adding the compensation data and the sample signal and the PN code sequence is performed by a calculator of the optical time domain reflectometer, and the calculator specifically performs the correlation operation.
  • the influence of the traffic signal on the correlation of the PN code sequence can be reduced, thereby obtaining a relatively accurate first fiber function. It should be added that the fiber function obtained by the correlation operation of the calculator of the optical time domain reflectometer is called the first fiber function.
  • the S203 optical time domain reflectometer replaces the second fiber optic function with the first fiber function.
  • the first fiber function calculated by the optical time domain reflectometer by the above fiber detecting method is used to characterize the attenuation curve of the fiber in the current state, and the fiber function stored in the optical time domain reflectometer is replaced by the first fiber function.
  • the second fiber function in the memory the next time the real-time calculation is used, the latest fiber function is used to compensate the data. In this way, the error of the fiber function obtained by the method of detecting the fiber can be made smaller and smaller.
  • Embodiments of the present invention provide a method for detecting an optical fiber by using an optical time domain reflectometer, including: an optical time domain reflectometer acquiring a service signal, a compensation data, and a PN code sequence; and an optical time domain reflectometer according to the service signal and the compensation data. And the PN code sequence, the first fiber function is calculated.
  • the optical time domain reflectometer obtains the service signal, the compensation data, and the PN code sequence, and compensates the sample signal in real time by using the compensation data, and the method for detecting the optical fiber by using the optical time domain reflectometer can be
  • the effect of the service signal on the correlation of the PN code sequence is reduced without adding additional hardware cost and additional data service bandwidth, thereby obtaining a more accurate first fiber function and improving the detection accuracy of the optical time domain reflectometer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Communication System (AREA)

Abstract

一种光时域反射计及其对光纤进行检测的方法,涉及光通信领域,能够减少业务信号对PN码序列相关性的影响,提升光时域反射计的检测精度。光时域反射计包括:业务信号生成器(10),与业务信号生成器(10)连接的信号耦合器(20),与信号耦合器(20)连接的电光调制器(30),与电光调制器(30)连接的传输器(40),与传输器(40)连接的光电检测器(50),与光电检测器(50)连接的模数转换器(60),光时域反射计还包括:与业务信号生成器(10)、信号耦合器(20)和模数转换器(60)均连接的数字信号处理器(70),用于生成补偿数据和PN码序列,并接收模数转换器发送的采样信号,根据补偿数据、PN码序列和采样信号,计算第一光纤函数。

Description

一种光时域反射计及其对光纤进行检测的方法 技术领域
本发明涉及光通信领域,尤其涉及一种光时域反射计及其对光纤 进行检测的方法。
背景技术
随着光通信技术的快速发展, WDM ( Wavelength Division Multiplexing, 波分复用) 网络的应用也越来越广泛, 其中, WDM是一种 利用多个激光器在单条光纤上同时发送多束不同波长激光的技术。 为了保 证光通信过程中业务数据的质量, 需要用 OTDR ( Optical Time Domain Reflectometer, 光时域反射计) 对 WDM 网络中物理链路的损耗情况进行 检测, 其中, OTDR是一种利用光信号在光纤中传输所产生的背向散射而 制成的精密的光电一体化仪表, 被广泛应用于光缆线路的维护、施工之中, 可进行光纤长度、 光纤的传输衰减、 接头衰减和故障定位等的测量。
常规的 OTDR测量光纤传输衰减的基本原理为: OTDR的发射端发 送一个单脉冲, 该单脉冲经过电光调制后进入光纤, 经过瑞利散射和菲涅 尔反射, OTDR的接收端接收从光纤射出的光信号, 从而得到光纤链路的 损耗情况。 但是由于发送的单脉冲的功率较大, 为了不影响业务信号的正 常检测, 单脉冲不能和业务信号一起传输, 从而不能实时检测光纤链路的 损耗情况。 而多脉冲 OTDR测量光纤的传输衰减的基本原理为: OTDR的 发射端发送一组 PN ( Pseudo-Noise, 伪噪声)码序列, 并将 PN码序列和 业务信号调制在一起传输, 从而可以实现对光纤链路的实时检测。 进一步 地, 为了降低业务信号对 PN码序列相关性的影响, OTDR还能够将 PN码 序列和业务信号调制在不同的频段, 在接收端用滤波器对不同的频率成分 进行区分, 以降低业务数据和 PN码序列之间的相互影响。
然而, 由于业务信号和 PN 码序列都属于基带信号, 在低频部分会 相互影响, 从而会破坏 PN码序列的相关性, 严重影响 OTDR的性能, 产 生较大的检测误差。 因此, 需要将业务信号调制到高频, 与 PN码序列在 频域进行区分, 但是这样会提高业务信号的传输速率, 需要相应的硬件也 能满足业务信号提升后的速率, 增加了不必要的硬件成本和带宽浪费。 发明内容
本发明的实施例提供一种光时域反射计及其对光纤进行检测的 方法, 通过获取补偿数据、 业务信号和 PN 码序列, 釆用补偿数据 对光时域反射计的釆样信号进行实时补偿, 能够在不增加额外的硬 件成本和额外的数据业务带宽的情况下, 减少业务信号对 PN 码序 列相关性的影响, 从而可以得到更加准确的光纤衰减曲线, 提升光 时域反射计的检测精度。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 本发明实施例提供一种光时域反射计, 包括业务信 号生成器, 与业务信号生成器连接的信号耦合器, 与信号耦合器连 接的电光调制器, 与电光调制器连接的传输器, 与传输器连接的光 电检测器, 与光电检测器连接的模数转换器, 所述光时域反射计还 包括:
与业务信号生成器、 信号耦合器和模数转换器均连接的数字信 号处理器, 用于接收业务信号生成器生成的业务信号, 生成补偿数 据和 PN码序列,发送 PN码序列至信号耦合器, 并接收模数转换器发送 的釆样信号, 根据补偿数据、 PN码序列和釆样信号, 计算第一光纤 函数; 其中, 补偿数据用于减小业务信号对 PN 码序列的干扰; 釆 样信号为调制有 PN 码序列的业务信号经过光纤返回后, 从模数转 换器发出的信号。
在第一种可能的实现方式中, 根据第一方面, 数字信号处理器, 具体用于: 生成 PN码序列, 并发送 PN码序列至信号耦合器; 接收模数 转换器发送的釆样信号; 读取第二光纤函数; 接收业务信号生成器生 成的业务信号, 并根据业务信号生成补偿序列; 对补偿序列、 第二 光纤函数和 PN码序列做运算, 生成补偿数据; 并根据补偿数据、 PN 码序列和釆样信号, 计算第一光纤函数;
其中, 第二光纤函数为存储在数字信号处理器内的光纤函数; 补偿 序列与业务信号的和为非零的常数。
在第二种可能的实现方式中, 根据第一方面或第一种可能的实 现方式, 数字信号处理器, 具体包括:
与信号耦合器连接的 PN码序列生成器, 用于生成 PN码序列, 并 发送 PN码序列至信号耦合器、 补偿数据生成器和计算器;
与模数转换器连接的信号存储器, 用于接收并存储模数转换器 发送的釆样信号, 并发送釆样信号至加法器;
与业务信号生成器和 PN 码序列生成器均连接的补偿数据生成 器, 用于接收业务信号生成器发送的业务信号、 PN 码序列生成器发 送的 PN码序列和光纤函数存储器发送的第二光纤函数, 其中, 第二光纤 函数为存储在光纤函数存储器内的光纤函数, 并根据业务信号、 PN码序 列和第二光纤函数生成补偿数据, 并发送补偿数据至加法器;
与信号存储器和补偿数据生成器均连接的加法器, 用于对补偿 数据与釆样信号做加法运算, 并将运算结果发送至计算器;
与加法器和 PN码序列生成器均连接的计算器, 用于接收加法器 发送的补偿数据与釆样信号做加法运算得到的运算结果,以及 PN码 序列生成器发送的 PN码序列,并根据补偿数据与釆样信号做加法运算 得到的运算结果和 PN码序列, 计算第一光纤函数, 并发送第一光纤 函数至光纤函数存储器, 以使得光纤函数存储器用第一光纤函数替 换第二光纤函数;
与计算器和补偿数据生成器均连接的光纤函数存储器, 用于存 储第二光纤函数和计算器发送的第一光纤函数, 并发送第二光纤函 数至补偿数据生成器。
在第三种可能的实现方式中, 根据第二种可能的实现方式, 所 述补偿数据生成器, 具体包括:
与业务信号生成器连接的补偿序列生成器, 用于接收业务信号 生成器发送的业务信号, 并根据业务信号生成补偿序列, 发送补偿 序列至补偿数据运算器;
与补偿序列生成器和 PN码序列生成器均连接的补偿数据运算器, 用于接收补偿序列生成器发送的补偿序列、 PN码序列生成器发送的 PN 码序列和光纤函数存储器发送的第二光纤函数, 并对补偿序列、 PN码序 列和第二光纤函数做运算, 生成补偿数据, 发送补偿数据至加法器。
在第四种可能的实现方式中, 根据第二种可能的实现方式或第 三种可能的实现方式, 所述补偿数据运算器, 具体包括:
与补偿序列生成器和 PN码序列生成器均连接的补偿数据乘法器, 用于接收补偿序列生成器发送的补偿序列、 PN码序列生成器发送的 PN 码序列, 并对补偿序列与 PN码序列做乘法运算, 并将运算结果发送给补 偿数据卷积器;
与补偿数据乘法器、 加法器和光纤函数存储器均连接的补偿数据卷 积器, 用于接收补偿数据乘法器发送的补偿序列与 PN码序列做乘法运 算得到的运算结果, 以及光纤函数存储器发送的第二光纤函数, 并对补 偿序列与 P N码序列做乘法运算得到的运算结果和第二光纤函数做卷积 运算, 得到补偿数据, 将补偿数据发送至加法器。
在第五种可能的实现方式中, 根据第二种可能的实现方式或第 三种可能的实现方式, 所述补偿数据运算器, 具体包括:
与补偿序列生成器和 PN码序列生成器均连接的补偿数据加法器, 用于接收补偿序列生成器发送的补偿序列、 PN码序列生成器发送的 PN 码序列, 并对补偿序列与 PN码序列做加法运算, 并将运算结果发送给补 偿数据卷积器;
与补偿数据加法器、 加法器和光纤函数存储器均连接的补偿数据卷 积器, 用于接收补偿数据加法器发送的补偿序列与 PN码序列做加法运 算得到的运算结果, 以及光纤函数存储器发送的第二光纤函数, 并对补 偿序列与 PN码序列做加法运算得到的运算结果和第二光纤函数做卷积 运算, 得到补偿数据, 将补偿数据发送至加法器。
在第六种可能的实现方式中, 根据第一方面, 所述传输器, 具 体为环形器或者耦合器。
第二方面, 本发明实施例提供一种釆用光时域反射计对光纤进 行检测的方法, 应用于如第一方面所述的光时域反射计, 包括: 光时域反射计获取业务信号、 补偿数据和 PN码序列; 光时域反射计根据业务信号、 补偿数据和 PN码序列, 计算第一 光纤函数; 其中, 补偿数据用于减小业务信号对 PN码序列的干扰。
在第一种可能的实现方式中, 根据第二方面,
光时域反射计获取业务信号的方法, 具体包括:
光时域反射计生成业务信号;
光时域反射计获取补偿数据的方法, 具体包括:
光时域反射计根据业务信号生成补偿序列, 其中, 补偿序列与 业务信号的和为非零的常数;
光时域反射计获取第二光纤函数, 其中, 第二光纤函数为存储在光 时域反射计内的光纤函数;
光时域反射计对补偿序列、 第二光纤函数和 PN 码序列做运算, 生成补偿数据;
光时域反射计获取 PN码序列的方法, 具体包括:
光时域反射计生成所述 PN码序列。
在第二种可能的实现方式中, 根据第一种可能的实现方式, 所 述光时域反射计对补偿序列、 第二光纤函数和 PN码序列做运算, 生成 补偿数据, 具体包括:
光时域反射计对补偿序列和 PN 码序列故乘法运算, 并对补偿序 列与 PN 码序列做乘法运算得到的运算结果和第二光纤函数做卷积运 算, 生成补偿数据; 或者,
光时域反射计对补偿序列和 PN 码序列 丈加法运算, 并对补偿序 列与 PN 码序列做加法运算得到的运算结果和第二光纤函数做卷积运 算, 生成补偿数据。
在第三种可能的实现方式中, 根据第二方面, 所述光时域反射 计根据业务信号、 补偿数据和 PN码序列, 计算第一光纤函数, 具体 包括:
光时域反射计将 PN码序列调制到业务信号上, 得到调制有 PN 码序列的业务信号, 并将所述调制有 PN 码序列的业务信号发送至 光纤, 接收从光纤返回的信号并进行光电检测和模数转换, 得到釆 样信号;
光时域反射计对补偿数据和釆样信号做加法运算;
光时域反射计对补偿数据和釆样信号做加法运算得到的运算结 果和 PN码序列做相关运算, 得到第一光纤函数。
在第四种可能的实现方式中, 根据第二方面, 在所述光时域反 射计根据釆样信号、 补偿数据、 PN码序列和第二光纤函数, 计算第一 光纤函数后, 所述方法还包括:
光时域反射计用第一光纤函数替换第二光纤函数。
本发明实施例提供一种光时域反射计及其对光纤进行检测的方 法, 光时域反射计包括业务信号生成器, 与业务信号生成器连接的 信号耦合器, 与信号耦合器连接的电光调制器, 与电光调制器连接 的传输器, 与传输器连接的光电检测器, 与光电检测器连接的模数 转换器, 还包括: 与业务信号生成器、 信号耦合器和模数转换器均 连接的数字信号处理器, 用于接收业务信号生成器生成的业务信号, 生成补偿数据和 PN码序列,发送 PN码序列至信号耦合器, 并接收模数 转换器发送的釆样信号, 根据补偿数据、 PN码序列和釆样信号, 计 算第一光纤函数。
基于上述实施例的描述, 数字信号处理器接收业务信号生成器 生成的业务信号, 并生成补偿数据和 PN码序列, 将生成的 PN码序列 发送至信号耦合器, 并接收模数转换器发送的釆样信号, 根据补偿数 据、 PN码序列和釆样信号, 计算第一光纤函数。 即数字信号处理器 可以对接收到的釆样信号进行实时补偿, 在不增加额外的硬件成本 和额外的数据业务带宽的情况下, 减少业务信号对 PN 码序列相关 性的影响, 得到更加准确的光纤函数, 从而提升光时域反射计的检 测精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1 为本发明实施例提供的一种光时域反射计的结构示意图 图 2 为本发明实施例提供的一种光时域反射计的结构示意图 图 3 为本发明实施例提供的一种光时域反射计的结构示意图 图 4 为本发明实施例提供的一种光时域反射计的结构示意图 四;
图 5 为本发明实施例提供的一种光时域反射计的结构示意图 五;
图 6为本发明实施例提供的一种误差补偿装置;
图 7 为本发明实施例提供的一种釆用光时域反射计对光纤进行 检测的方法的流程示意图一;
图 8 为本发明实施例提供的一种釆用光时域反射计对光纤进行 检测的方法的流程示意图二。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
实施例一
本发明实施例提供一种光时域反射计, 如图 1 所示, 为一种光 时域反射计的结构示意图, 包括业务信号生成器 10 , 与业务信号生 成器 10连接的信号耦合器 20 , 与信号耦合器 20连接的电光调制器 30 , 与电光调制器 30连接的传输器 40 , 与传输器 40连接的光电检 测器 50 , 与光电检测器 50连接的模数转换器 60 , 所述光时域反射 计还包括:
与业务信号生成器 10、 信号耦合器 20和模数转换器 60均连接 的数字信号处理器 70 , 用于接收业务信号生成器 10 生成的业务信 号, 生成补偿数据和 PN码序列, 并发送 PN码序列至信号耦合器 20, 并接收模数转换器 60发送的釆样信号, 从而可以根据补偿数据、 PN 码序列和釆样信号, 计算第一光纤函数。
其中, 补偿数据用于减小业务信号对 PN 码序列的干扰, 补偿 数据的具体计算过程在下述实施例进行详细描述。
需要补充的是, PN码序列是一组具有与白噪声类似的自相关性 质的 0和 1所构成的编码序列, 具有良好的自相关性。
需要说明的是, 业务信号生成器 10 , 用来产生业务信号, 并将 产生的业务信号发送至信号耦合器 20和数字信号处理器 70。
还需要说明的是, 信号耦合器 20 , 接收业务信号生成器 10发 送的业务信号以及数字信号处理器发送的 PN 码序列, 将业务信号 和 PN码序列进行耦合, 使得 PN码序列能够调制到业务信号上, 并 且可以控制 PN码序列的调制深度。 其中, PN码序列的调制深度是 指 PN 码序列的幅度相对于调制后信号幅度的大小。 最后, 将调制 后的信号发送至电光调制器 30。
具体的, 信号耦合器 20将业务信号和 PN码序列进行耦合的方 法可以是在电路上将业务信号和 PN 码序列相乘或者相加, 也可以 是通过外调制光器件将 PN码序列调制到带有业务信号的光载波上。 本发明对此不做限制。
需要说明的是, 电光调制器 30 , 接收信号耦合器 20发送的调 制有 PN码序列的业务信号, 将调制有 PN码序列的业务信号进行电 光转换, 然后通过传输器 40发送到光纤。
需要补充的是, 传输器 40 可以为环形器或者耦合器。 传输器 40 接收电光调制器 30 发送的调制完成的业务信号, 并将其发送到 光纤; 同时接收经过光纤返回的信号, 将其发送到光电检测器 50 , 以便光时域反射计进行后续信号处理。 本发明所述的传输器 40能够 起到收发隔离的作用, 因此任何具有收发隔离作用的器件都可以作 为传输器, 本发明对此不做限制。
还需要说明的是, 光电检测器 50 , 将传输器 40接收到的从光 纤中反射回来的光信号进行光电转换, 并进行放大和滤波, 然后发 送至模数转换器 60。
具体的, 信号经过光纤传输后, 信号能量会有部分损失, 为了 提高后续数字信号处理的精度, 光电检测模块 50还会对接收到的微 弱光信号进行滤波和放大处理。
需要补充的是, 电光调制器 30是将电信号转换为光信号, 以使 得信号可以在光纤中传输; 光电检测器 50是把从光纤中反射回来的 光信号转换为电信号, 以方便后续各种信号处理器对电信号进行处 理。
还需要说明的是, 模数转换器 60 , 接收光电检测器 50发送的 电信号, 并对其进行釆样, 将釆样得到的信号发送至数字信号处理 器 70。
还需要说明的是, 数字信号处理器 70 , 用来产生 PN码序列和 补偿数据, 并接收模数转换器 60发送的釆样信号, 数字信号处理器 70根据补偿数据对釆样信号进行实时补偿,从而减少业务信号对 PN 码序列相关性的影响, 提升光时域反射计的检测精度。
进一步的, 数字信号处理器, 具体用于: 生成 PN码序列, 并发 送 PN码序列至信号耦合器; 接收模数转换器发送的釆样信号; 读取第 二光纤函数; 接收业务信号生成器生成的业务信号, 并根据业务信号 生成补偿序列; 对补偿序列、 第二光纤函数和 PN码序列做运算, 生成 补偿数据; 并根据补偿数据、 PN码序列和釆样信号, 计算第一光纤 函数; 其中, 第二光纤函数为存储在数字信号处理器内的光纤函数; 补 偿序列与业务信号的和为非零的常数。
其中, 数字信号处理器 70 , 如图 2所示, 具体包括: 与信号耦 合器 20连接的 PN码序列生成器 700, 与模数转换器 60连接的信号 存储器 703 , 与业务信号生成器 10和 PN码序列生成器 700均连接的 补偿数据生成器 701 , 与信号存储器 703 和补偿数据生成器 701 均 连接的加法器 704 , 与加法器 704和 PN码序列生成器 700均连接的计 算器 702 , 与计算器 702和补偿数据生成器 701 均连接的光纤函数 存储器 705。
需要说明的是, PN码序列生成器 700 , 用于生成 PN码序列, 并将生成的 PN码序列发送至信号耦合器 20 , 这样, 信号耦合器 20 才可以将 PN码序列调制到业务信号上; 同时, PN码序列生成器 700 将 PN码序列发送至补偿数据生成器 701 , 以便补偿数据生成器 701 根据业务信号和 PN码序列生成补偿数据;并且 PN码序列生成器 700 还会将 PN码序列发送至最终的计算器 702 , 计算器 702根据相关运 算的性质消除业务信号对 PN 码序列相关性的影响, 得到第一光纤 函数。
需要补充的是, 第一光纤函数是表征当前状态下光纤的衰减曲 线, 每当计算器 702根据所述补偿数据、 PN码序列和釆样信号计算 出第一光纤函数并发送第一光纤函数至光纤函数存储器 705 后, 光 纤函数存储器 705 都会存储第一光纤函数, 用第一光纤函数替换之 前存储在光纤函数存储器 705 中的第二光纤函数。 当进行下次计算 时就釆用刚存入的第二光纤函数, 这样计算的误差就会越来越小。
需要说明是, 釆样信号的产生过程为: 业务信号和 PN 码序列 通过信号耦合器 20耦合后, 再经过电光调制器 30进行信号的转换, 并通过传输器 40发送至光纤, 再由光电检测器 50接收从光纤反射 回来的光信号, 并进行光电信号的转换, 再将电信号发送至模数转 换器 60 , 进行信号的釆样, 从而得到釆样信号。 因此, 信号存储器 703 中存储的信号就是釆样信号。
需要说明的是, 信号存储器 703 , 用于接收并存储模数转换器 60发送的釆样信号。 信号存储器 703 在接收模数转换器 60发送的 釆样信号, 并将釆样信号发送至加法器 704进行运算。
还需要说明的是, 补偿数据生成器 701 , 用于根据业务信号生 成器 10发送的业务信号、 PN码序列生成器 700发送的 PN码序列和 光纤函数存储器 705 发送的第二光纤函数生成釆样信号的补偿数 据, 并将生成的补偿数据发送至加法器 704进行运算。
还需要说明的是, 加法器 704 , 用于对补偿数据与釆样信号做 加法运算, 并将运算结果发送至计算器 702。
还需要说明的是, 计算器 702 , 用于接收加法器 704发送的补 偿数据与釆样信号做加法运算得到的运算结果, 以及 PN码序列生成 器 700发送的 PN 码序列, 并根据补偿数据与釆样信号的运算结果和 PN码序列, 计算第一光纤函数, 并将生成的第一光纤函数发送至光 纤函数存储器 705作为下一次运算的光纤函数。
还需要说明的是, 光纤函数存储器 705 , 用于存储计算器 702 发送的第一光纤函数, 并发送第二光纤函数至补偿数据生成器 701。
需要补充的是, 光纤函数存储器 705预存的第二光纤函数可以 是离线测试的较理想的光纤函数, 也可以是上次在线测量的光纤函 数。 本发明对此不做限制。
如图 3 所示, 补偿数据生成器 701 , 具体包括: 与业务信号生 成器 10连接的补偿序列生成器 7010 , 用于接收业务信号生成器 10 发送的业务信号, 并根据业务信号生成补偿序列, 发送补偿序列至 补偿数据运算器 7011 ,其中,补偿序列与业务信号的和为非零的常数; 与补偿序列生成器 7010和 PN码序列生成器 700均连接的补偿数据 运算器 7011 , 用于接收补偿序列生成器 7010 发送的补偿序列、 PN 码序列生成器 700发送的 PN码序列和光纤函数存储器 705发送的第二光 纤函数, 并对补偿序列、 第二光纤函数和 PN码序列做运算, 生成补偿 数据, 发送补偿数据至加法器 704。
需要补充的是, 补偿序列生成器 7010 , 对接收到的业务信号生 成补偿序列。 设业务信号为 D , 对于业务信号 D速率较高, 数据量 比较大的场景, 可以将业务信号 D中的 N个数据比特为一个处理单 元, 将这 N个比特 丈积分, 产生一个新的值, 假设一个 PN码序列 周期内的数据比特个数为 K , 那么业务信号 D就可以产生 K/N个新 的值, 根据这 K/N个值生成补偿序列, 这样数据的处理量就可以下 降 N倍, 从而提高运算效率。
可选的, 如图 4所示, 补偿数据运算器 7011 , 还可以具体包括: 与补偿序列生成器 7010和 PN码序列生成器 700均连接的补偿数据 加法器 c , 用于接收补偿序列生成器 7010发送的补偿序列、 PN码序 列生成器 700发送的 PN码序列,并对补偿序列与 PN码序列做加法运算, 并将运算结果发送给补偿数据卷积器 d , 补偿数据卷积器 d与补偿数据 加法器 c和光纤函数存储器 705 以及加法器 704均连接, 用于接收补 偿数据加法器 c发送的补偿序列与 PN码序列做加法运算得到的运算结 果, 以及光纤函数存储器 705发送的第二光纤函数, 并对补偿序列与 PN 码序列做加法运算得到的运算结果和第二光纤函数做卷积运算, 得到补 偿数据, 将补偿数据发送至加法器 704。
优选的, 如图 5所示, 补偿数据运算器 7011 , 具体包括: 与补 偿序列生成器 7010和 PN码序列生成器 700均连接的补偿数据乘法 器 a , 用于接收补偿序列生成器 7010发送的补偿序列、 PN码序列生 成器 700发送的 PN码序列 , 并对补偿序列与 PN码序列做乘法运算, 并 将运算结果发送给补偿数据卷积器 b , 补偿数据卷积器 b与补偿数据 乘法器 a和光纤函数存储器 705 以及加法器 704均连接, 用于接收补 偿数据乘法器 a发送的补偿序列与 PN码序列做乘法运算得到的运算结 果, 以及光纤函数存储器 705发送的第二光纤函数, 并对补偿序列与 PN 码序列做乘法运算得到的运算结果和第二光纤函数做卷积运算, 得到补 偿数据, 将补偿数据发送至加法器 704。
具体的, 以实际应用中光时域反射计的工作流程以及信号流向 为例, 对本发明实施例所提供的光时域反射计的工作原理进行说明。
设 A 为相关增益, B 为第二光纤函数, C 为 PN 码序列, D 为业务信号, ~0为 0的补偿序列, @为卷积运算符, Θ为相关运 算符, 其中, ~在数学上表示取反运算符, 此处, 用 D表示 D的任 意补偿序列。
需要说明的是, 相关增益 A为系统进行相关运算时产生的固有 增益。
需要说明的是, 业务信号 D 和它的补偿序列 D 的和为一个非 零的常数 E, E可以为全 1也可以为其他合理的常数。 比如 E=l, 那 么补偿序列 ~D就是业务信号 D的 0和 1取反。
进一步的, 补偿序列 D是补偿序列生成器 7010生成的, 具体 的, 补偿序列生成器 7010生成业务信号 D的补偿序列 ~D可以是通 过电域, 直接由业务信号得到, 也可以是通过额外的光电检测, 从 光域上得到。 本发明对如何产生业务信号 D 的补偿序列 ~D 不做限 制。
需要补充的是, 在线性系统中, 输入信号从光纤中发射回来后 得到的输出信号, 就是输入信号和光纤的实际光纤函数做卷积运算 的结果, 此处, 假设光纤的实际光纤函数为第二光纤函数。
当光时域反射计的补偿数据运算器 7011 包括补偿数据乘法器 a 和补偿数据卷积器 b时, 由线性系统的原理可以得到:
C&((DXC)®B)+C&((~ DxC)®B)
^CQ((D+~ D)xC)®B
= C0(ExC)®fi
^ExAxB 上式通过光时域反射计的补偿数据生成器 701对从光纤反射回 来的釆样信号进行补偿, 消除业务信号对 PN码序列相关性的影响 , 上式的结果中, E和 A都是固定值, 因此通过运算就可以得到更加 准确的第一光纤函数 B。
当补偿数据运算器 7011包括补偿数据加法器 c和补偿数据卷积 器 d时, 由线性系统的原理可以得到:
CQ((D + C)®B) + CQ((~ D + C)®B)
^CQ(D+~ D + 2C)®B
= C0(E + 2C)®fi
^CQE®B + CQ2C®B
«2Αχβ
需要补充的是, 由于 COE®fi的结果远远小于 C02C®fi的结果, 因此, 可以将 c O E ® fi的结果忽略不计, 上式最后结果约等于 χ β。 上式通过光时域反射计的补偿数据生成器 701对从光纤反射回 来的釆样信号进行补偿, 消除业务信号对 ΡΝ码序列相关性的影响。 上式的结果中, 2Α是固定值, 因此通过运算就可以得到更加准确的 光纤函数 Β。
优选地,相较于光时域反射计的补偿数据运算器 701 1 包括补偿 数据加法器 c和补偿数据卷积器 d ,光时域反射计的补偿数据运算器 701 1包括补偿数据乘法器 a和补偿数据卷积器 b在计算上较为简便, 在工艺允许的情况下, 一般选择补偿数据乘法器 a 和补偿数据卷积 器 b。
本发明实施例提供的一种光时域反射计, 包括业务信号生成器, 与业务信号生成器连接的信号耦合器, 与信号耦合器连接的电光调 制器, 与电光调制器连接的传输器, 与传输器连接的光电检测器, 与光电检测器连接的模数转换器, 所述光时域反射计还包括: 与业 务信号生成器、信号耦合器和模数转换器均连接的数字信号处理器, 用于生成补偿数据和 PN码序列,并接收模数转换器发送的釆样信号, 根据补偿数据、 PN码序列和釆样信号, 计算第一光纤函数。
基于上述实施例的描述, 数字信号处理器接收业务信号生成器 生成的业务信号, 并生成补偿数据和 PN码序列, 将生成的 PN码序列 发送至信号耦合器, 并接收模数转换器发送的釆样信号, 根据补偿数 据、 PN码序列和釆样信号, 计算第一光纤函数。 即数字信号处理器 可以对接收到的釆样信号进行实时补偿, 在不增加额外的硬件成本 和额外的数据业务带宽的情况下, 减少业务信号对 PN 码序列相关 性的影响, 得到更加准确的光纤函数, 从而提升光时域反射计的检 测精度。
实施例二
本发明实施例还提供一种误差补偿装置, 如图 6所示, 为误差 补偿装置的结构示意图。 该误差补偿装置包括上述实施例所示的光 时域反射计以及与光时域反射计连接的光纤。 基于上述实施例的描述, 该误差补偿装置接收业务信号生成器 生成的业务信号, 并生成补偿数据和 PN码序列, 将生成的 PN码序列 发送至信号耦合器, 并接收模数转换器发送的釆样信号, 根据补偿数 据、 PN码序列和釆样信号, 计算第一光纤函数。 即数字信号处理器 可以对接收到的釆样信号进行实时补偿, 在不增加额外的硬件成本 和额外的数据业务带宽的情况下, 减少业务信号的随机性对 PN 码 序列相关性的影响, 得到更加准确的光纤函数, 从而提升光时域反 射计的检测精度。
实施例三
本发明实施例提供一种釆用光时域反射计对光纤进行检测的方 法, 本实施例以该检测光纤的方法应用于实施例二中所述的光时域 反射计为例进行说明。 该釆用光时域反射计对光纤进行检测的方法 的流程示意图如图 7所示, 包括:
5101、 光时域反射计获取业务信号、 补偿数据和 PN码序列。 需要说明的是, 光时域反射计生成业务信号和 PN码序列, 从而根据 业务信号生成补偿序列,根据补偿序列、 PN码序列和存储在光时域反射计 的光纤函数存储器中的第二光纤函数生成补偿数据, 对从光纤反射回来的 釆样信号进行实时补偿。 光时域反射计获取业务信号、 补偿数据和 PN码
5102、 光时域反射计根据业务信号、 补偿数据和 PN码序列, 计 算第一光纤函数。
需要说明的是, 光时域反射计根据业务信号、 补偿数据和 PN 码序列, 计算第一光纤函数的过程为: 光时域反射计将 PN码序列调 制到业务信号上, 得到调制有 PN码序列的业务信号, 然后将调制有 PN码序列的业务信号发送至光纤, 并接收从光纤返回的信号, 进行 光电检测和模数转换, 得到釆样信号; 光时域反射计对补偿数据和 釆样信号做加法运算; 光时域反射计对补偿数据和釆样信号做加法 运算得到的运算结果和 PN码序列做相关运算, 得到第一光纤函数。 从 而可以用第一光纤函数替换第二光纤函数, 使得下次的计算误差变小。 光 时域反射计根据业务信号、 补偿数据和 PN码序列, 计算第一光纤函 本发明实施例提供一种釆用光时域反射计对光纤进行检测的方 法, 包括: 光时域反射计获取业务信号、 补偿数据和 PN码序列; 光 时域反射计根据业务信号、 补偿数据和 PN码序列, 计算第一光纤函 数。
基于上述实施例的描述, 光时域反射计获取业务信号、 补偿数 据和 PN码序列, 根据补偿数据对接收到的釆样信号进行实时补偿, 在不增加额外的硬件成本和额外的数据业务带宽的情况下, 减少业 务信号对 PN 码序列相关性的影响, 得到更加准确的光纤函数, 从 而提升光时域反射计的检测精度。
实施例四
本发明实施例提供一种釆用光时域反射计对光纤进行检测的方 法, 本实施例以该检测光纤的方法应用于实施例二中所述的光时域 反射计为例进行说明。 该釆用光时域反射计对光纤进行检测的方法 的流程示意图如图 8所示, 包括:
S201 光时域反射计获取业务信号、 补偿数据和 PN码序列。 具体的, 光时域反射计获取业务信号的方法为光时域反射计中 的业务信号生成器生成业务信号。
具体的, 光时域反射计获取 PN 码序列的方法为光时域反射计 中的 PN码序列生成器生成 PN码序列。
需要说明的是, 光时域反射计生成业务信号和 PN 码序列没有 先后顺序, 可以根据实际装置的硬件条件进行设置, 本发明对此不 做限制。
又具体的, 光时域反射计获取补偿数据的方法具体包括: S201 a 光时域反射计根据业务信号生成补偿序列。
其中, 补偿序列与业务信号的和为非零的常数。 生成的补偿序列存 储在光时域反射计的补偿序列生成器内。
S201b 光时域反射计获取第二光纤函数。 其中, 第二光纤函数为存储在光时域反射计的光纤函数存储器内的光 纤函数。 第二光纤函数用于和补偿序列以及 PN码序列生成补偿数据。
S201c 光时域反射计对补偿序列、 第二光纤函数和 PN码序列 丈 运算, 生成补偿数据。
具体的, 光时域反射计对所述补偿序列、 第二光纤函数和 PN码 序列做运算, 生成补偿数据, 具体包括 S201 c0和 S201c l。
S201c0 光时域反射计对补偿序列和 PN 码序列故乘法运算, 并 对补偿序列与 P N码序列做乘法运算得到的运算结果和第二光纤函数做 卷积运算, 生成补偿数据。
需要说明的是, 补偿序列和 PN 码序列做乘法运算是由光时域 反射计中的补偿数据乘法器完成的。 然后, 将补偿数据乘法器的运 算结果和第二光纤函数做卷积运算, 从而得到补偿数据。 具体的, 卷积运算是由光时域反射计中的卷积器完成的。
S201c l 光时域反射计对补偿序列和 PN 码序列 丈加法运算, 并 对补偿序列与 P N码序列做加法运算得到的运算结果和第二光纤函数做 卷积运算, 生成补偿数据。
需要说明的是, 补偿序列和 PN 码序列做加法运算是由光时域 反射计中的补偿数据加法器完成的。 然后, 将补偿数据加法器的运 算结果和第二光纤函数做卷积运算, 从而得到补偿数据。 具体的, 卷积运算是由光时域反射计中的卷积器完成的。
需要说明的是, S201c0和 S201c l所表示的步骤是择一进行的。 这两种方式都可以生成补偿数据, 其中, 优选的方式为 S201c0中的 方式。
S202 光时域反射计根据业务信号、 补偿数据和 PN码序列, 计 算第一光纤函数。
具体的, 光时域反射计根据业务信号、 补偿数据和 PN码序列, 计算第一光纤函数的步骤具体包括 S202a-S202c。
S202a 光时域反射计将 PN码序列调制到业务信号上, 得到调 制有 PN码序列的业务信号, 并将调制有 PN码序列的业务信号发送 至光纤, 接收从光纤返回的信号并进行光电检测和模数转换, 得到 釆样信号。
需要说明是, 光时域反射计获取到的釆样信号是指业务信号和
PN码序列通过光时域反射计的信号耦合器耦合后, 再经过光时域反 射计的电光调制器进行信号的转换, 并通过光时域反射计的传输器 发送至光纤, 再由光电检测器接收从光纤反射回来的光信号, 并进 行光电信号的转换, 再将电信号发送至光时域反射计的模数转换器, 进行信号的釆样, 从而得到釆样信号。
具体的, 将 PN 码序列调制到业务信号上的过程是由光时域反 射计的信号耦合器完成的。 其中, 信号耦合器可以控制 PN 码序列 的调制深度。 PN码序列的调制深度与实施例一中的定义一致, 在此 不再赘述。
S202b 光时域反射计对补偿数据和釆样信号做加法运算。
具体的, 对补偿数据和釆样信号做加法运算是通过光时域反射 计中的加法器完成的。
S 202 c、光时域反射计对补偿数据和釆样信号做加法运算得到的 运算结果和 PN码序列做相关运算, 得到第一光纤函数。
具体的, 对补偿数据和釆样信号做加法运算得到的运算结果和 PN 码序列做相关运算的过程是由光时域反射计的计算器完成的, 该计算 器具体完成的是相关运算。
通过该相关运算, 可以减少业务信号对 PN码序列相关性的影响, 从 而得到比较准确的第一光纤函数。 需要补充的是, 由光时域反射计的计算 器通过相关运算得到的光纤函数称为第一光纤函数。
S203 光时域反射计用所述第一光纤函数替换所述第二光纤函 数。
具体的, 光时域反射计通过上述光纤的检测方法计算得到的第 一光纤函数, 表征了当前状态下光纤的衰减曲线, 用该第一光纤函 数替换存储在光时域反射计中的光纤函数存储器中的第二光纤函 数, 在下次实时计算时, 就使用最新的光纤函数进行补偿数据的计 算, 这样可以使得使用该检测光纤的方法获得的光纤函数的误差越 来越小。
本发明实施例提供一种釆用光时域反射计对光纤进行检测的方 法, 包括: 光时域反射计获取业务信号、 补偿数据和 PN码序列; 光 时域反射计根据业务信号、 补偿数据和 PN码序列, 计算第一光纤函 数。
基于上述实施例的描述, 光时域反射计获取到业务信号、 补偿 数据和 PN 码序列, 用补偿数据对釆样信号进行实时补偿, 该釆用 光时域反射计对光纤进行检测的方法可以在不增加额外的硬件成本 和额外的数据业务带宽的情况下, 减小业务信号对 PN 码序列相关 性的影响, 从而得到更加准确的第一光纤函数, 提升光时域反射计 的检测精度。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种光时域反射计, 包括业务信号生成器, 与所述业务信号 生成器连接的信号耦合器, 与所述信号耦合器连接的电光调制器, 与 所述电光调制器连接的传输器, 与所述传输器连接的光电检测器, 与 所述光电检测器连接的模数转换器, 其特征在于, 所述光时域反射计 还包括:
与所述业务信号生成器、所述信号耦合器和所述模数转换器均连 接的数字信号处理器, 用于接收所述业务信号生成器生成的业务信 号,生成补偿数据和 PN码序列,发送所述 PN码序列至所述信号耦合器, 并接收所述模数转换器发送的釆样信号, 根据所述补偿数据、 所述 PN 码序列和所述釆样信号, 计算第一光纤函数;
其中, 所述补偿数据用于减小所述业务信号对所述 PN码序列的 干扰; 所述釆样信号为调制有所述 P N码序列的业务信号经过光纤返 回后, 从所述模数转换器发出的信号。
2、 根据权利要求 1 所述的光时域反射计, 其特征在于, 所述数 字信号处理器, 具体用于:
生成所述 PN码序列, 并发送所述 PN码序列至所述信号耦合器; 接 收所述模数转换器发送的釆样信号; 读取第二光纤函数; 接收所述业务 信号生成器生成的所述业务信号, 并根据所述业务信号生成补偿序 列; 对所述补偿序列、 所述第二光纤函数和所述 PN码序列做运算, 生 成所述补偿数据; 并根据所述补偿数据、 所述 PN 码序列和所述釆样 信号, 计算第一光纤函数;
其中, 所述第二光纤函数为存储在所述数字信号处理器内的光纤函 数; 所述补偿序列与所述业务信号的和为非零的常数。
3、 根据权利要求 1或 2所述的光时域反射计, 其特征在于, 所 述数字信号处理器, 具体包括:
与所述信号耦合器连接的 PN码序列生成器,用于生成 PN码序列, 并发送所述 PN码序列至所述信号耦合器、 补偿数据生成器和计算器; 与所述模数转换器连接的信号存储器,用于接收并存储所述模数 转换器发送的所述釆样信号, 并发送所述釆样信号至加法器; 与所述业务信号生成器和所述 PN 码序列生成器均连接的补偿数 据生成器, 用于接收所述业务信号生成器发送的业务信号、 所述 PN 码序列生成器发送的 PN码序列和光纤函数存储器发送的第二光纤函数, 其中, 所述第二光纤函数为存储在所述光纤函数存储器内的光纤函数, 并 根据所述业务信号、 所述 PN码序列和所述第二光纤函数生成补偿数 据, 并发送所述补偿数据至所述加法器;
与所述信号存储器和所述补偿数据生成器均连接的加法器, 用于 对所述补偿数据与所述釆样信号做加法运算, 并将所述运算结果发送 至所述计算器;
与所述加法器和所述 PN码序列生成器均连接的所述计算器, 用于 接收所述加法器发送的所述补偿数据与所述釆样信号做加法运算得 到的运算结果, 以及所述 PN码序列生成器发送的 PN码序列, 并根据 所述补偿数据与所述釆样信号做加法运算得到的运算结果和所述 PN 码序列, 计算第一光纤函数, 并发送所述第一光纤函数至光纤函数存 储器, 以使得所述光纤函数存储器用所述第一光纤函数替换所述第二 光纤函数;
与所述计算器和所述补偿数据生成器均连接的所述光纤函数存 储器, 用于存储第二光纤函数和所述计算器发送的所述第一光纤函 数, 并发送所述第二光纤函数至所述补偿数据生成器。
4、 根据权利要求 3所述的光时域反射计, 其特征在于, 所述补 偿数据生成器, 具体包括:
与所述业务信号生成器连接的补偿序列生成器,用于接收所述业 务信号生成器发送的业务信号, 并根据所述业务信号生成补偿序列, 发送所述补偿序列至补偿数据运算器;
与所述补偿序列生成器和所述 PN码序列生成器均连接的补偿数据 运算器, 用于接收所述补偿序列生成器发送的所述补偿序列、 所述 PN 码序列生成器发送的 PN码序列和光纤函数存储器发送的第二光纤函数, 并对所述补偿序列、 所述 PN码序列和所述第二光纤函数做运算, 生成 补偿数据, 发送所述补偿数据至所述加法器。
5、 根据权利要求 3或 4所述的光时域反射计, 其特征在于, 所 述补偿数据运算器, 具体包括:
与所述补偿序列生成器和所述 PN码序列生成器均连接的补偿数据 乘法器, 用于接收所述补偿序列生成器发送的所述补偿序列、 所述 PN 码序列生成器发送的 PN码序列, 并对所述补偿序列与所述 PN码序列做 乘法运算, 并将运算结果发送给补偿数据卷积器;
与所述补偿数据乘法器、 所述加法器和所述光纤函数存储器均连接 的补偿数据卷积器,用于接收所述补偿数据乘法器发送的所述补偿序列与 所述 P N码序列做乘法运算得到的运算结果, 以及所述光纤函数存储器 发送的第二光纤函数, 并对所述补偿序列与所述 PN码序列做乘法运算 得到的运算结果和所述第二光纤函数做卷积运算, 得到补偿数据, 将所述 补偿数据发送至加法器。
6、 根据权利要求 3或 4所述的光时域反射计, 其特征在于, 所 述补偿数据运算器, 具体包括:
与所述补偿序列生成器和所述 PN码序列生成器均连接的补偿数据 加法器, 用于接收所述补偿序列生成器发送的所述补偿序列、 所述 PN 码序列生成器发送的 PN码序列, 并对所述补偿序列与所述 PN码序列做 加法运算, 并将运算结果发送给补偿数据卷积器;
与所述补偿数据加法器、 所述加法器和所述光纤函数存储器均连接 的补偿数据卷积器,用于接收所述补偿数据加法器发送的所述补偿序列与 所述 PN码序列做加法运算得到的运算结果, 以及所述光纤函数存储器 发送的第二光纤函数, 并对所述补偿序列与所述 PN码序列做加法运算 得到的运算结果和所述第二光纤函数做卷积运算, 得到补偿数据, 将所述 补偿数据发送至加法器。
7、 根据权利要求 1 所述的光时域反射计, 其特征在于, 所述传 输器, 具体为环形器或者耦合器。
8、 一种釆用光时域反射计对光纤进行检测的方法, 应用于如权 利要求 1-7所述的光时域反射计, 其特征在于, 包括: 光时域反射计获取业务信号、 补偿数据和 PN码序列; 所述光时域反射计根据所述业务信号、 所述补偿数据和所述 PN 码序列, 计算第一光纤函数;
其中, 所述补偿数据用于减小所述业务信号对所述 PN码序列的 干扰。
9、 根据权利要求 8所述的釆用光时域反射计对光纤进行检测的 方法, 其特征在于,
所述光时域反射计获取所述业务信号的方法, 具体包括: 所述光时域反射计生成所述业务信号;
所述光时域反射计获取所述补偿数据的方法, 具体包括: 所述光时域反射计根据所述业务信号生成补偿序列, 其中, 所述 补偿序列与所述业务信号的和为非零的常数;
所述光时域反射计获取第二光纤函数, 其中, 所述第二光纤函数为 存储在所述光时域反射计内的光纤函数;
所述光时域反射计对所述补偿序列、所述第二光纤函数和所述 PN 码序列做运算, 生成补偿数据;
所述光时域反射计获取所述 PN码序列的方法, 具体包括: 所述光时域反射计生成所述 PN码序列。
10、根据权利要求 9所述的釆用光时域反射计对光纤进行检测的 方法, 其特征在于, 所述光时域反射计对所述补偿序列、 所述第二光 纤函数和所述 PN码序列做运算, 生成补偿数据, 具体包括:
所述光时域反射计对所述补偿序列和所述 PN码序列做乘法运算, 并对所述补偿序列与所述 PN码序列做乘法运算得到的运算结果和所述 第二光纤函数做卷积运算, 生成补偿数据; 或者,
所述光时域反射计对所述补偿序列和所述 PN码序列 加法运算, 并对所述补偿序列与所述 PN码序列做加法运算得到的运算结果和所述 第二光纤函数做卷积运算, 生成补偿数据。
11、 根据权利要求 10所述的釆用光时域反射计对光纤进行检测 的方法, 其特征在于, 所述光时域反射计根据所述业务信号、 所述补 偿数据和所述 PN码序列, 计算第一光纤函数, 具体包括: 所述光时域反射计将所述 PN码序列调制到所述业务信号上, 得 到调制有 PN码序列的业务信号, 并将所述调制有 PN码序列的业务 信号发送至光纤, 接收从光纤返回的信号并进行光电检测和模数转 换, 得到釆样信号;
所述光时域反射计对所述补偿数据和所述釆样信号做加法运算; 所述光时域反射计对所述补偿数据和所述釆样信号做加法运算 得到的运算结果和所述 PN码序列做相关运算, 得到第一光纤函数。
12、根据权利要求 8所述的釆用光时域反射计对光纤进行检测的 方法, 其特征在于, 在所述光时域反射计根据所述业务信号、 所述补 偿数据、 所述 PN码序列和第二光纤函数, 计算第一光纤函数后, 所述 方法还包括:
所述光时域反射计用所述第一光纤函数替换所述第二光纤函数。
PCT/CN2014/086080 2014-09-05 2014-09-05 一种光时域反射计及其对光纤进行检测的方法 WO2016033812A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14901067.0A EP3190723B1 (en) 2014-09-05 2014-09-05 Optical time domain reflectometer and method thereof for detecting optical fiber
PCT/CN2014/086080 WO2016033812A1 (zh) 2014-09-05 2014-09-05 一种光时域反射计及其对光纤进行检测的方法
CN201480081315.1A CN106797249B (zh) 2014-09-05 2014-09-05 一种光时域反射计及其对光纤进行检测的方法
US15/449,133 US10063314B2 (en) 2014-09-05 2017-03-03 Optical time domain reflectometer and method for detecting optical fiber by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086080 WO2016033812A1 (zh) 2014-09-05 2014-09-05 一种光时域反射计及其对光纤进行检测的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/449,133 Continuation US10063314B2 (en) 2014-09-05 2017-03-03 Optical time domain reflectometer and method for detecting optical fiber by using the same

Publications (1)

Publication Number Publication Date
WO2016033812A1 true WO2016033812A1 (zh) 2016-03-10

Family

ID=55439055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086080 WO2016033812A1 (zh) 2014-09-05 2014-09-05 一种光时域反射计及其对光纤进行检测的方法

Country Status (4)

Country Link
US (1) US10063314B2 (zh)
EP (1) EP3190723B1 (zh)
CN (1) CN106797249B (zh)
WO (1) WO2016033812A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296786B2 (en) * 2020-04-07 2022-04-05 Nec Corporation Constant amplitude coded DFOS using out-of-band signaling
CN113834631B (zh) * 2020-06-23 2023-03-03 华为技术有限公司 一种光纤测量方法、系统及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6708004B1 (en) * 1998-12-01 2004-03-16 Tyco Telecommunications (Us) Inc. Method and apparatus for reducing crosstalk between a monitoring channel and a data channel in a WDM optical communication system
US20080077343A1 (en) * 2006-09-08 2008-03-27 Johansson Leif A Implementation of coded optical time-domain reflectometry
CN101917226A (zh) * 2010-08-23 2010-12-15 中兴通讯股份有限公司 一种在无源光网络中进行光纤故障诊断的方法及光线路终端
CN102158280A (zh) * 2011-04-02 2011-08-17 王健 在传输数据的光信号中调制叠加otdr测试信号的方法和otdr的测试方法
CN102725976A (zh) * 2012-03-27 2012-10-10 华为技术有限公司 光纤测试方法、装置和无源光网络系统
CN102761363A (zh) * 2011-04-27 2012-10-31 华为海洋网络有限公司 一种光时域反射仪信号检测方法及装置
CN103326775A (zh) * 2012-03-22 2013-09-25 中兴通讯股份有限公司 光网络故障在线检测方法及装置
US8606117B1 (en) * 2010-05-20 2013-12-10 Adtran, Inc. Systems and methods for unobtrusively testing optical fibers
CN203719675U (zh) * 2014-02-13 2014-07-16 上海温光自动化技术有限公司 基于编码脉冲光信号的otdr装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061718A1 (ja) * 2008-11-27 2010-06-03 ニューブレクス株式会社 分布型光ファイバセンサ
JP5123876B2 (ja) * 2009-03-03 2013-01-23 富士通テレコムネットワークス株式会社 Wdm伝送システムとwdm伝送システムの光信号対雑音比算出方法及びwdm伝送装置
US8299417B2 (en) * 2009-06-23 2012-10-30 Infinera Corporation Variable optical attentuator (VOA) having an absorber for receiving residual light outputfrom the VOA
WO2011104838A1 (ja) * 2010-02-25 2011-09-01 三菱電機株式会社 光送信器
CN102506912A (zh) * 2011-09-29 2012-06-20 北京航空航天大学 一种光纤分布式扰动传感器
US8818199B2 (en) 2012-02-06 2014-08-26 Adtran, Inc. Correlation systems and methods with error compensation
US9281898B2 (en) * 2014-02-19 2016-03-08 Futurewei Technologies, Inc. Mach-Zehnder modulator bias control for arbitrary waveform generation
WO2016134545A1 (zh) * 2015-02-28 2016-09-01 华为技术有限公司 一种补偿光时域反射仪发端信号误差的方法和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6708004B1 (en) * 1998-12-01 2004-03-16 Tyco Telecommunications (Us) Inc. Method and apparatus for reducing crosstalk between a monitoring channel and a data channel in a WDM optical communication system
US20080077343A1 (en) * 2006-09-08 2008-03-27 Johansson Leif A Implementation of coded optical time-domain reflectometry
US8606117B1 (en) * 2010-05-20 2013-12-10 Adtran, Inc. Systems and methods for unobtrusively testing optical fibers
CN101917226A (zh) * 2010-08-23 2010-12-15 中兴通讯股份有限公司 一种在无源光网络中进行光纤故障诊断的方法及光线路终端
CN102158280A (zh) * 2011-04-02 2011-08-17 王健 在传输数据的光信号中调制叠加otdr测试信号的方法和otdr的测试方法
CN102761363A (zh) * 2011-04-27 2012-10-31 华为海洋网络有限公司 一种光时域反射仪信号检测方法及装置
CN103326775A (zh) * 2012-03-22 2013-09-25 中兴通讯股份有限公司 光网络故障在线检测方法及装置
CN102725976A (zh) * 2012-03-27 2012-10-10 华为技术有限公司 光纤测试方法、装置和无源光网络系统
CN203719675U (zh) * 2014-02-13 2014-07-16 上海温光自动化技术有限公司 基于编码脉冲光信号的otdr装置

Also Published As

Publication number Publication date
US20170180042A1 (en) 2017-06-22
EP3190723A1 (en) 2017-07-12
US10063314B2 (en) 2018-08-28
CN106797249A (zh) 2017-05-31
EP3190723B1 (en) 2018-11-07
EP3190723A4 (en) 2017-09-13
CN106797249B (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
US9960845B2 (en) In-band optical-link monitoring for a WDM network
CN107517080B (zh) 一种光功率检测方法、装置、设备及光模块
EP3414542B1 (en) Optical time domain reflectometry
CN104009795A (zh) Otdr光路检测装置及方法
CN110178320B (zh) 高分辨率线路监测方法和使用该方法的光通信系统
US10263697B2 (en) Method and apparatus for monitoring chromatic dispersion in optical communications network
CN108390718A (zh) 光纤通信系统中光信噪比的测量装置及方法
JP2018524889A (ja) プラグ接続可能な光モジュールの較正
WO2016033812A1 (zh) 一种光时域反射计及其对光纤进行检测的方法
CN102620761A (zh) 一种基于自外差探测的远距离光纤布拉格光栅传感方法和装置
CN102694593B (zh) 一种光无源器件的谱特性的测试方法
CN203929276U (zh) 一种基于共振技术的光信号检测处理系统
WO2024098766A1 (zh) 一种同频共用光纤通信感知一体化系统
CN102957477B (zh) 信号检测方法和光信号接收系统
JP2017108408A (ja) フィルタリング特性の測定装置、前置等化器、及び光通信機器
CN107171716B (zh) 一种基于相关编码的在线链路监测系统及方法
US10135524B2 (en) Method and apparatus for compensating for signal error at transmit end of optical time domain reflectometer
CN113970368A (zh) 基于双声光调制器串联实现光学下变频的分布式光纤振动声波传感系统
CN110366058B (zh) 一种onu端口测试电路、装置和系统
JP4900288B2 (ja) 光アクセスシステム及び該光アクセスシステムにおける位相変調周波数の決定方法
CN102281104B (zh) 一种光纤在线测试装置及方法
CN114650096B (zh) 光路自适应色散补偿方法、光模块和波分复用系统
Sharma et al. Performance Analysis of Optical Fiber Communication System based on BER and Power Budget model using different Modulation Formats
Vasylkivsky et al. Improving the Information Security of Modern Telecommunications Networks
US20130201473A1 (en) Polarization mode dispersion measurement by observation of data-bearing signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014901067

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014901067

Country of ref document: EP