WO2024098766A1 - 一种同频共用光纤通信感知一体化系统 - Google Patents

一种同频共用光纤通信感知一体化系统 Download PDF

Info

Publication number
WO2024098766A1
WO2024098766A1 PCT/CN2023/102068 CN2023102068W WO2024098766A1 WO 2024098766 A1 WO2024098766 A1 WO 2024098766A1 CN 2023102068 W CN2023102068 W CN 2023102068W WO 2024098766 A1 WO2024098766 A1 WO 2024098766A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical fiber
optical
sensing
transmission
Prior art date
Application number
PCT/CN2023/102068
Other languages
English (en)
French (fr)
Inventor
闫连山
何海军
邹喜华
蒋林
易安林
潘炜
Original Assignee
西南交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南交通大学 filed Critical 西南交通大学
Publication of WO2024098766A1 publication Critical patent/WO2024098766A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers

Definitions

  • the present invention belongs to optical fiber communication technology, and in particular to an integrated system for sensing optical fiber communication using the same frequency.
  • fiber-optic communication networks have exploded.
  • fiber-optic communication networks have become ubiquitous. Using only optical networks for data transmission can no longer meet current needs, and there is an urgent need to open up more new functions for huge optical networks.
  • Distributed fiber-optic sensing technology has received widespread attention and extensive research due to its high sensitivity, anti-electromagnetic interference, and long-distance fully distributed measurement.
  • phase-sensitive optical time-domain reflectometry technology has been well applied in oil and gas pipelines, structural health monitoring, high-speed rail speed measurement and positioning, high-speed rail perimeter protection, earthquake monitoring, distributed acoustic wave detection and other fields and has received good feedback.
  • fiber optic sensing systems and fiber optic communication systems are very similar. Many of the devices (lasers, modulators, detectors) used in the two are the same, especially the same transmission media (single-mode fiber, multi-mode fiber, etc.). In addition, many technologies in fiber optic communication are also applied to distributed fiber optic sensing to improve the performance of fiber optic sensing systems. Therefore, distributed fiber optic sensing and fiber optic communication are highly compatible, and distributed fiber optic sensing technology can be easily integrated into existing optical communication networks.
  • the present invention provides an integrated system for co-frequency shared optical fiber communication perception.
  • the present invention provides a co-frequency shared optical fiber communication sensing integrated system, in which the transmission optical signal and the sensing detection light are generated by the same laser, and the transmission performance and sensing performance of the system are changed by adjusting the transmission signal modulation power.
  • the remote end uses direct detection (single detector) to obtain the transmission signal, and the local end uses heterodyne coherent detection to obtain the sensing signal.
  • the specific structure is as follows:
  • the continuous light output by the continuous wave laser is divided into two paths after passing through the 90:10 fiber coupler A. 90% of the continuous light in the upper branch is adjusted by the polarization controller A and then injected into the Mach-Zehnder modulator A.
  • the Mach-Zehnder modulator A works in carrier suppression modulation. In the control mode, the Mach-Zehnder modulator A is driven by the linear frequency modulation signal generated by the arbitrary waveform generator to generate a linear frequency modulation optical sideband.
  • the output light of the Mach-Zehnder modulator A is amplified by the erbium-doped fiber amplifier A and then passes through the optical filter to retain only the +1-order or -1-order sideband, and all other optical signals are removed; the linear frequency modulation optical carrier output by the optical filter is injected into the Mach-Zehnder modulator B after the polarization state is adjusted by the polarization controller B.
  • the Mach-Zehnder modulator B is driven by the transmission signal generated by the other port of the arbitrary waveform generator.
  • the output optical signal of the Mach-Zehnder modulator B compensates for the loss of optical power through the erbium-doped fiber amplifier B.
  • the transmission light is then injected into the optical fiber through the optical fiber circulator.
  • the optical signal output from the far end of the optical fiber is converted into an electrical signal by a photoelectric detector, and is collected by a data acquisition device for digital signal processing.
  • the scattered light generated in the optical fiber is output through the 3 ports of the circulator, and the output continuous light is coupled through the continuous light output by the optical fiber coupler B with a splitting ratio of 1:1 and the 10% output arm of the optical fiber coupler A.
  • the 10% output arm of the optical fiber coupler A is used as the local light, and the two output arms of the optical fiber coupler B are respectively injected into the two input ends of the balanced detector for photoelectric conversion.
  • the electrical signal output by the balanced detector is collected by a data acquisition card for post-processing.
  • the system uses a linear frequency modulated optical carrier as both an optical carrier of a pulse amplitude modulation transmission signal and a detection light of a distributed optical fiber sensor.
  • system communication signal and the distributed sensing signal are detected and demodulated at the remote end and the local end, respectively.
  • the distributed sensing signal adopts heterodyne coherent detection to acquire the signal, and only the Rayleigh scattering signal corresponding to the linear frequency modulated optical carrier is retained in the signal detection.
  • the system is simple.
  • the system only uses a single-wavelength laser as the light source.
  • the system is highly integrated, simple, easy to implement, and easy to adjust.
  • the entire system can flexibly adjust the system communication and distributed sensing performance simply by adjusting the carrier-sideband power ratio, greatly improving the flexibility of the system and covering more application scenarios.
  • the integrated system sensing part can flexibly adjust the spatial resolution and frequency response of the system by simply changing the demodulation parameters during the data processing process, which provides better flexibility for different application scenarios.
  • FIG. 1 is a system structure diagram of the present invention.
  • FIG2 shows the transmission performance test results of the present invention, and compares them with the traditional single-frequency optical carrier PAM4 transmission system, wherein: (a) the two bit error rate response curves respectively show the performance change of the traditional single-frequency optical carrier as the transmission power increases, and the transmission performance change of the proposed integrated solution as the transmission power increases; (b) the change of the back-Stokes optical power of the traditional solution and the proposed solution as the transmission power increases; (c) the transmission performance of the traditional solution at different receiving powers at the optimal transmission power (9dBm), and the transmission performance of the proposed solution at different receiving powers at the optimal transmission power (16dBm).
  • FIG3 is a test result of the distributed vibration performance of the present invention, wherein: (a) is the vibration response distance on the entire optical fiber link - Time distribution diagram; (b) is the phase standard deviation curve corresponding to Figure a, where the vibration position and its standard deviation can be clearly seen; (c) is the measured vibration signal; (d) is the frequency spectrum corresponding to the time domain signal in Figure c.
  • Figure 4 shows the result graphs corresponding to changing the frequency response enhancement factor, including: (a) time domain graph of 3kHz and 21kHz vibration signals; (b) spectrum graph corresponding to Figure a; (c) relationship between different frequency response enhancement factors and measurement accuracy.
  • Figure 5 shows the change in sensing performance before and after loading the communication transmission coding, including: (a) the change in vibration response before and after loading the transmission signal; (b) the change in signal-to-noise ratio and phase variance before and after loading the transmission signal; (c) the impact of loading transmission signals with different bit rates on sensing performance, including signal-to-noise ratio and phase variance.
  • the present invention provides a co-frequency shared optical fiber communication perception integrated system, as shown in FIG1 , which consists of two parts: an optical path and a circuit.
  • the continuous light output by the continuous wave laser 1 is divided into two paths after passing through a 90:10 optical fiber coupler A2. 90% of the continuous light in the upper branch is adjusted by a polarization controller A3 and then injected into a Mach-Zehnder modulator A4.
  • the Mach-Zehnder modulator A4 works in a carrier suppression modulation mode.
  • the Mach-Zehnder modulator A4 is driven by a linear frequency modulation signal generated by an arbitrary waveform generator 5 to generate a linear frequency modulation optical sideband.
  • the output light of the Mach-Zehnder modulator A4 is amplified by an erbium-doped fiber amplifier A6 and then passed through an optical filter 7 to retain only the +1st or -1st order sidebands, and remove all other optical signals.
  • the linear frequency modulation optical carrier output by the optical filter 7 is injected into a Mach-Zehnder modulator B9 after the polarization state is adjusted by a polarization controller B8.
  • the Mach-Zehnder modulator B9 is driven by a transmission signal generated by another port of the arbitrary waveform generator 5.
  • the output optical signal of the Mach-Zehnder modulator B9 is compensated for the loss of optical power by the erbium-doped fiber amplifier B10, and then the transmission light is injected into the optical fiber 12 through the optical fiber circulator 11.
  • the optical signal output from the far end of the optical fiber 12 is converted into an electrical signal by the photodetector 13, and is collected by the data acquisition device 14 for digital signal processing; the scattered light generated in the optical fiber 12 is output through the 3 ports of the circulator 11, and the output continuous light is coupled through the continuous light output by the optical fiber coupler B15 with a splitting ratio of 1:1 and the 10% output arm of the optical fiber coupler A2.
  • the 10% output arm of the optical fiber coupler A2 is used as local light, and the two output arms of the optical fiber coupler B15 are respectively injected into the two input ends of the balanced detector 16 for photoelectric conversion.
  • the electrical signal output by the balanced detector 16 is collected by the data acquisition card 17 for post-processing.
  • the bandwidth of the optical filter 7 is determined according to the linear frequency modulation bandwidth and needs to be larger than the bandwidth; in addition, the rising edge and falling edge of the filter should be as short as possible, and the out-of-band suppression ratio should be greater than 40 dB.
  • the electrical domain bandwidth of the photodetector 13 is usually selected to be above 15 GHz.
  • the bandwidth needs to be greater than the bandwidth of the modulated signal generated by the arbitrary waveform generator; for a 28 Gbaud signal after shaping filtering, the bandwidth can be compressed to 15 GHz.
  • 28 Gbaud is the current mainstream transmission bit rate, so this value is usually above 15 GHz.
  • the electrical domain bandwidth of the balanced detector 16 is determined by the bandwidth of the linear frequency modulated optical carrier and the frequency difference between the linear frequency modulated optical carrier and the local oscillator light. For example, if the frequency offset is 1 GHz and the linear frequency modulated optical bandwidth is 2 GHz, then the detector bandwidth must be greater than 3 GHz.
  • the present invention provides a co-frequency shared optical fiber communication sensing integrated system, which:
  • a co-frequency shared optical fiber communication sensing integrated system uses a linear frequency modulated optical carrier to replace the traditional single-frequency optical carrier, the linear frequency modulated optical carrier is used as both the carrier of the transmission signal and the detection light of the distributed optical fiber sensing system.
  • the remote transmission signal uses direct detection to convert the optical signal into an electrical signal, and the local end uses heterodyne coherent detection to obtain the sensing signal.
  • the arbitrary waveform generator generates a linear frequency modulation waveform and modulates it onto the Mach-Zehnder modulator.
  • A is the amplitude of the optical carrier
  • is the angular frequency of the light source output
  • f0 is the offset frequency of the linear frequency modulation signal
  • k is the chirp rate of the linear frequency modulation signal, which is equal to B/ Tp , where B and Tp are the bandwidth and period of the linear frequency modulation signal, respectively.
  • the transmission signal is loaded onto the generated linear frequency modulated optical carrier, and the expression of the optical signal to be transmitted is:
  • x(t) is the modulation phase generated by the transmission code, which is equal to ⁇ V X (t)/V ⁇
  • V X (t) is the signal voltage
  • V ⁇ is the half-wave voltage of the modulator.
  • bias phase which is determined by the voltage value applied to the modulator.
  • the transmission signal is converted into an electrical signal by direct detection at the far end.
  • the electrical signal expression is:
  • the sensing signal obtained is:
  • a matched filter corresponding to s dc (t) is generated in the digital domain, and a convolution operation is performed with the obtained sensor signal to demodulate the sensor signal.
  • the demodulated signal is:
  • FIG2 The comparison of transmission performance test results between the present invention and the traditional transmission-only system is shown in FIG2 .
  • the test was performed using 24.5 km optical fiber at a rate of 56 Gbit/s.
  • the two bit error rate response curves in FIG2(a) respectively show the changes in transmission performance of the traditional and proposed integrated solutions as the transmission power increases;
  • the two curves in FIG2(b) respectively show the changes in back-Stokes optical power of the traditional and proposed solutions as the transmission power increases;
  • the two curves in FIG2(c) respectively show the transmission performance of different receiving powers at the optimal transmission power (9 dBm) of the traditional solution and the optimal transmission power (16 dBm) of the proposed solution.
  • Figure 3 The distributed vibration performance test results of the present invention are shown in Figure 3, where Figure 3(a) is the vibration response distance-time distribution curve on the entire optical fiber link; Figure 3(b) is the corresponding phase standard deviation curve; Figure 3(c) is the time domain curve of the measured vibration signal; and Figure 3(d) is the corresponding frequency spectrum.
  • Figure 4 is the result diagram corresponding to changing the frequency response enhancement factor.
  • Figure 4(a) is the time domain curve of 3kHz and 21kHz vibration signals;
  • Figure 4(b) is the corresponding spectrum diagram;
  • Figure 4(c) is the relationship curve between different frequency response enhancement factors and measurement accuracy.
  • Figure 5 shows the change in sensing performance before and after the communication transmission coding is loaded.
  • Figure 5(a) shows the change in vibration response before and after the transmission signal is loaded;
  • Figure 5(b) shows the change in signal-to-noise ratio and phase variance before and after the transmission signal is loaded;
  • Figure 5(c) shows the impact of loading transmission signals with different bit rates on the sensing performance, including signal-to-noise ratio and phase variance.
  • the present invention provides a simple, compact and efficient integrated system for co-frequency shared optical fiber communication perception, which solves the shortcomings of the existing integrated system in practical applications.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种同频共用光纤通信感知一体化系统,具体为:由光路检测和电路解调两部分组成,整个系统由连续波激光器,光纤耦合器,偏振控制器,马赫曾德尔调制器,任意波形发生器,掺铒光纤放大器,光滤波器,光纤环形器,光纤,光电探测器,数据采集设备,平衡探测器,数据采集卡组成;传输光信号和传感探测光由同一激光器产生,通过调节传输信号调制功率改变系统的传输性能和传感性能,远端采用直接探测获得传输信号,本地端用外差相干探测获得传感信号。本发明提供了一种简单、紧凑、高效率的同频共用光纤通信感知一体化系统,解决现有一体化系统在实际应用中的不足。

Description

一种同频共用光纤通信感知一体化系统 技术领域
本发明属于光纤通信技术,尤其涉及一种同频共用光纤通信感知一体化系统。
背景技术
在过去几十年中,随着大数据,云计算,物联网,工业互联网,数字化转型等快速发展,光纤通信网络呈爆炸式增长。当前,光纤通信网络已经呈现出无处不在的状态,仅用光网络进行数据传输已经不能满足当下需求,亟需为庞大光网络开辟更多新功能。分布式光纤传感技术由于其灵敏度高,抗电磁干扰,长距离全分布式测量等优点,受到了广泛关注和大量研究。在众多分布式光纤传感技术中,相位敏感光时域反射技术在油气管道,结构健康监测,高铁测速、定位,高铁周界防护,地震监测,分布式声波探测等领域均有很好的应用并获得了良好的反馈。
事实上,光纤传感系统和光纤通信系统具有很高的相似性,二者采用的很多器件(激光器,调制器,探测器)均相同,尤其是采用相同的传输介质(单模光纤,多模光纤等)。此外,光纤通信中的很多技术也应用到分布式光纤传感中来提升光纤传感系统的性能。因此,分布式光纤传感与光纤通信具有很强的兼容性,可以很容易将分布式光纤传感技术集成到现有光通信网络中去。
基于此,少数研究人员开展了通信感知一体化系统的研究,将相位敏感光时域反射技术集成到现用光纤网络中,并实现了现场测试。但目前的集成方案均采用波分复用和频分复用的方式,这些集成方式仅仅共用物理介质(光纤),本质上仍然是两个独立的系统,因此具有集成度低,系统复杂,传输效率低等缺点。为了提高一体化系统集成度以及传输传感效率,亟需突破这一限制条件。目前,在提高光纤通信感知一体化系统的集成度,获得更加紧凑,更加高效的系统研究方面没有任何相应的技术手段。
发明内容
鉴于现有一体化系统复杂度高,效率低等缺点,本发明提供一种同频共用光纤通信感知一体化系统。
本发明的一种同频共用光纤通信感知一体化系统,传输光信号和传感探测光由同一激光器产生,通过调节传输信号调制功率改变系统的传输性能和传感性能,远端采用直接探测(单个探测器)获得传输信号,本地端用外差相干探测获得传感信号,具体结构为:
连续波激光器输出的连续光经90:10的光纤耦合器A后分为两路,上支路90%的连续光经偏振控制器A调节后注入到马赫曾德尔调制器A,马赫曾德尔调制器A工作在载波抑制调 制模式下,马赫曾德尔调制器A由任意波形发生器产生的线性调频信号驱动产生线性调频光边带,马赫曾德尔调制器A输出光经掺铒光纤放大器A放大后通过光滤波器仅保留+1阶或-1阶边带,去除其余所有光信号;光滤波器输出的线性调频光载波经偏振控制器B调节偏振态后注入到马赫曾德尔调制器B,马赫曾德尔调制器B由任意波形发生器另一端口产生的传输信号驱动,马赫曾德尔调制器B输出光信号通过掺铒光纤放大器B补偿光功率的损耗后经光纤环形器将传输光注入光纤中,光纤远端输出光信号用光电探测器转换为电信号,并用数据采集设备采集后做数字信号处理;光纤中产生的散射光经环形器的3口输出,输出的连续光通过分光比为1:1的光纤耦合器B和光纤耦合器A的10%输出臂输出的连续光耦合,光纤耦合器A的10%输出臂作为本地光,光纤耦合器B两个输出臂分别注入平衡探测器两个输入端进行光电转化,平衡探测器输出的电信号用数据采集卡采集后进行后期处理。
进一步的,系统采用线性调频光载波既作为脉冲幅度调制传输信号的光载波,同时作为分布式光纤传感的探测光。
进一步的,系统通信信号和分布式传感信号分别在远端和本地端探测和解调。
进一步的,分布式传感信号采用外差相干探测获取信号,在信号检测中仅保留线性调频光载波对应的瑞利散射信号。
本发明的有益技术效果为:
(1)系统简单,系统仅采用一个单波长激光器作为光源,系统高度集成,简单、易实现、易调节。
(2)整个系统采用频谱共用方法实现通信感知一体化系统,具有很高的频谱效率。
(3)整个系统可以仅仅通过调节载波边带功率比灵活地调节系统通信和分布式传感性能,极大地提高系统的灵活性,覆盖更多的应用场景。
(4)集成系统传感部分仅在数据处理过程中通过改变解调参数,就可以灵活地调节系统的空间分辨率和频率响应,针对不同的应用场景具有更好的灵活性。
附图说明
图1为本发明的系统结构图。
图2为本发明传输性能测试结果,并与传统单频光载波PAM4传输系统进行比较,其中:(a)两条误码率响应曲线分别为传统单频光载波随发射功率增加时的性能变化,以及所提出一体化方案传输性能随发射功率的变化;(b)传统方案和所提方案随着发射功率增加时,背向斯托克斯光功率的变化;(c)传统方案最佳发射功率(9dBm)时不同接收功率的传输性能,以及所提方案最佳发射功率(16dBm)时不同接收功率的传输性能。
图3为本发明分布式振动性能测试结果,其中:(a)为整个光纤链路上的振动响应距离- 时间分布图;(b)为图a对应的相位标准差曲线,可以清楚的看到振动位置及其标准差;(c)为所测得的振动信号;(d)为图c时域信号对应的频谱。
图4为改变频率响应提升因子对应的结果图,其中:(a)3kHz和21kHz振动信号的时域图;(b)图a对应的频谱图;(c)不同频率响应提升因子与测量精度之间的关系。
图5为加载通信传输编码前后的传感性能变化结果图,其中:(a)加载传输信号前后的振动响应变化;(b)加载传输信号前后的信噪比和相位方差变化;(c)加载不同比特率传输信号对传感性能的影响,包括信噪比和相位方差。
具体实施方式
下面结合附图和具体实施例对本发明做进一步详细说明。
本发明的一种同频共用光纤通信感知一体化系统,如图1所示,由光路和电路两部分组成。连续波激光器1输出的连续光经90:10的光纤耦合器A2后分为两路,上支路90%的连续光经偏振控制器A3调节后注入到马赫曾德尔调制器A4,马赫曾德尔调制器A4工作在载波抑制调制模式下,马赫曾德尔调制器A4由任意波形发生器5产生的线性调频信号驱动产生线性调频光边带,马赫曾德尔调制器A4输出光经掺铒光纤放大器A6放大后通过光滤波器7仅保留+1阶或-1阶边带,去除其余所有光信号;光滤波器7输出的线性调频光载波经偏振控制器B8调节偏振态后注入到马赫曾德尔调制器B9,马赫曾德尔调制器B9由任意波形发生器5另一端口产生的传输信号驱动,马赫曾德尔调制器B9输出光信号通过掺铒光纤放大器B10补偿光功率的损耗后经光纤环形器11将传输光注入光纤12中,光纤12远端输出光信号用光电探测器13转换为电信号,并用数据采集设备14采集后做数字信号处理;光纤12中产生的散射光经环形器11的3口输出,输出的连续光通过分光比为1:1的光纤耦合器B15和光纤耦合器A2的10%输出臂输出的连续光耦合,光纤耦合器A2的10%输出臂作为本地光,光纤耦合器B15两个输出臂分别注入平衡探测器16两个输入端进行光电转化,平衡探测器16输出的电信号用数据采集卡17采集后进行后期处理。
实施时,光滤波器7带宽根据线性调频带宽决定,且需要大于该带宽;此外,滤波器的上升沿和下降沿应该尽可能短,且带外抑制比大于40dB。
实施时,光电探测器13电域带宽通常选择15GHz以上。带宽需大于任意波形发生器产生的调制信号的带宽;对于经过成形滤波的28Gbaud信号带宽可以压缩到15GHz,28Gbaud是当前较为主流的传输码率,因此该值通常为15GHz以上。
实施时,平衡探测器16电域带宽由线性调频光载波的带宽以及其与本振光的频差共同决定。例如频率偏置为1GHz,线性调频光带宽为2GHz,那么探测器带宽需大于3GHz。
本发明的一种同频共用光纤通信感知一体化系统,:
一种同频共用光纤通信感知一体化系统,光路采用线性调频光载波来替换传统的单频光载波,该线性调频光载波既作为传输信号的载波,同时作为分布式光纤传感系统的探测光,远端传输信号采用直接探测将光信号转换为电信号,本地端采用外差相干探测获得传感信号,其原理分析如下:
任意波形发生器产生线性调频波形并将其调制到马赫曾德尔调制器上,调制器工作在载波抑制模式下,产生的线性调频光载波表达式为:
E(t)=Aexp[jωt+j2πf0t+jπkt2]     (1)
式中,A为光载波的幅度,ω是光源输出光的角频率,f0是线性调频信号的偏置频率,k是线性调频信号的啁啾率,等于B/Tp,B和Tp分别是线性调频信号的带宽和周期。
将传输信号加载到生成的线性调频光载波上,待传输的光信号表达式为:
其中,x(t)为传输码对应生成的调制相位,等于πVX(t)/Vπ,VX(t)是信号电压,Vπ是调制器的半波电压,是偏置相位,由加载到调制器上的电压值决定,通常情况下,传输信号在远端采用直接探测转换为电信号,电信号表达式为:
在上式中,是光电探测器的转换系数,其中|2x(t)|通常需要小于0.4以获得不失真的传输码(即:|x(t)|≤0.2)。通过以上分析可知,采用线性调频光载波的传输信号与传统数据传输相同的探测以及解调方法实现。
此外,上式中与码字相关的表达式可以通过泰勒展开简化,展开后的EX(t)表达式为:
上式可以分解为直流分量和交流分量,
EX(t)=Edc(t)+Eac(t)        (5-1)

在传感信号解调时,仅解调直流分量Edc(t)产生的背向瑞利散射光,散射光表达式为:
经相干探测后,获得的传感信号为:
其中,
在数字域产生一个与sdc(t)对应的匹配滤波器,并与获得的传感信号做卷积运算解调传感信号,解调得到的信号为:
通过以上分析可知,可以从线性调频光载波的传输信号中提取出有效的传感信号。综上所述,上述理论分析证明了本发明从原理上是可行的。
本发明与传统仅有传输的系统的传输性能测试结果对比如图2所示,采用24.5km光纤,56Gbit/s速率进行测试,图2(a)中两条误码率响应曲线分别为传统和所提出一体化方案随发射功率增加时传输性能的变化;图2(b)中两条曲线分别为传统方案和所提方案随着发射功率增加时背向斯托克斯光功率的变化;图2(c)中两条曲线分别为传统方案最佳发射功率(9dBm)和所提方案最佳发射功率(16dBm)时不同接收功率的传输性能。
本发明分布式振动性能测试结果如图3所示,图3(a)为整个光纤链路上的振动响应距离-时间分布曲线;图3(b)为对应的相位标准差曲线;图3(c)为所测得振动信号时域曲线;图3(d)为对应的频谱。
图4为改变频率响应提升因子对应的结果图,图4(a)为3kHz和21kHz振动信号的时域曲线;图4(b)为对应的频谱图;图4(c)为不同频率响应提升因子与测量精度之间的关系曲线。
图5为加载通信传输编码前后的传感性能变化结果图,图5(a)为加载传输信号前后的振动响应变化;图5(b)为加载传输信号前后的信噪比和相位方差变化;图5(c)为加载不同比特率传输信号对传感性能的影响,包括信噪比和相位方差。
综上,本发明提供了一种简单、紧凑、高效率的同频共用光纤通信感知一体化系统,解决现有一体化系统在实际应用中的不足。

Claims (4)

  1. 一种同频共用光纤通信感知一体化系统,其特征在于,传输光信号和传感探测光由同一激光器产生,通过调节传输信号调制功率改变系统的传输性能和传感性能,远端采用直接探测获得传输信号,本地端用外差相干探测获得传感信号,具体结构为:
    连续波激光器(1)输出的连续光经90:10的光纤耦合器A(2)后分为两路,上支路90%的连续光经偏振控制器A(3)调节后注入到马赫曾德尔调制器A(4),马赫曾德尔调制器A(4)工作在载波抑制调制模式下,马赫曾德尔调制器A(4)由任意波形发生器(5)产生的线性调频信号驱动产生线性调频光边带,马赫曾德尔调制器A(4)输出光经掺铒光纤放大器A(6)放大后通过光滤波器(7)仅保留+1阶或-1阶边带,去除其余所有光信号;光滤波器(7)输出的线性调频光载波经偏振控制器B(8)调节偏振态后注入到马赫曾德尔调制器B(9),马赫曾德尔调制器B(9)由任意波形发生器(5)另一端口产生的传输信号驱动,马赫曾德尔调制器B(9)输出光信号通过掺铒光纤放大器B(10)补偿光功率的损耗后经光纤环形器(11)将传输光注入光纤(12)中,光纤(12)远端输出光信号用光电探测器(13)转换为电信号,并用数据采集设备(14)采集后做数字信号处理;光纤(12)中产生的散射光经环形器(11)的3口输出,输出的连续光通过分光比为1:1的光纤耦合器B(15)和光纤耦合器A(2)的10%输出臂输出的连续光耦合,光纤耦合器A(2)的10%输出臂作为本地光,光纤耦合器B(15)两个输出臂分别注入平衡探测器(16)两个输入端进行光电转化,平衡探测器(16)输出的电信号用数据采集卡(17)采集后进行后期处理。
  2. 根据权利要求1所述的一种同频共用光纤通信感知一体化系统,其特征在于,系统采用线性调频光载波既作为脉冲幅度调制传输信号的光载波,同时作为分布式光纤传感的探测光。
  3. 根据权利要求1所述的一种同频共用光纤通信感知一体化系统,其特征在于,系统通信信号和分布式传感信号分别在远端和本地端探测和解调。
  4. 根据权利要求3所述的一种同频共用光纤通信感知一体化系统,其特征在于,所述分布式传感信号采用外差相干探测获取信号,在信号检测中仅保留线性调频光载波对应的瑞利散射信号。
PCT/CN2023/102068 2022-11-10 2023-06-25 一种同频共用光纤通信感知一体化系统 WO2024098766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211407497.X 2022-11-10
CN202211407497.XA CN115913378B (zh) 2022-11-10 2022-11-10 一种同频共用光纤通信感知一体化系统

Publications (1)

Publication Number Publication Date
WO2024098766A1 true WO2024098766A1 (zh) 2024-05-16

Family

ID=86493280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102068 WO2024098766A1 (zh) 2022-11-10 2023-06-25 一种同频共用光纤通信感知一体化系统

Country Status (2)

Country Link
CN (1) CN115913378B (zh)
WO (1) WO2024098766A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115913378B (zh) * 2022-11-10 2024-04-05 西南交通大学 一种同频共用光纤通信感知一体化系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450540A (zh) * 2018-08-10 2019-03-08 电子科技大学 一种可调谐双通带微波光子滤波器实现装置及方法
CN109974760A (zh) * 2019-01-24 2019-07-05 西南交通大学 一种基于布里渊相移解调的布里渊光时域分析系统
WO2021093181A1 (zh) * 2019-11-13 2021-05-20 天津大学 异构双边带啁啾脉冲的差分cotdr分布式声传感装置及方法
CN113390445A (zh) * 2021-05-18 2021-09-14 广东工业大学 一种灵敏度增强的分布式布里渊光纤弯曲传感器
CN115913378A (zh) * 2022-11-10 2023-04-04 西南交通大学 一种同频共用光纤通信感知一体化系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8135288B2 (en) * 2009-02-03 2012-03-13 The Boeing Company System and method for a photonic system
CN103091072B (zh) * 2012-12-25 2015-09-09 南京航空航天大学 基于光单边带调制的光器件测量方法、测量装置
CN103674082B (zh) * 2013-12-06 2015-12-02 何祖源 一种基于四波混频过程的高空间分辨率光频域反射计系统
CN105490738B (zh) * 2016-01-05 2017-10-03 上海交通大学 基于频率合成的光频域反射方法及系统
CN109724529B (zh) * 2019-01-04 2020-08-18 重庆大学 基于多斜坡辅助的大动态范围布里渊快速测量系统
CN115200691A (zh) * 2021-04-09 2022-10-18 中国科学院上海光学精密机械研究所 一种少模光纤分布式声传感系统及其信号处理方法
CN113447110B (zh) * 2021-06-10 2022-08-30 天津大学 一种分布式光纤振动传感系统及其相位载波解调方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450540A (zh) * 2018-08-10 2019-03-08 电子科技大学 一种可调谐双通带微波光子滤波器实现装置及方法
CN109974760A (zh) * 2019-01-24 2019-07-05 西南交通大学 一种基于布里渊相移解调的布里渊光时域分析系统
WO2021093181A1 (zh) * 2019-11-13 2021-05-20 天津大学 异构双边带啁啾脉冲的差分cotdr分布式声传感装置及方法
CN113390445A (zh) * 2021-05-18 2021-09-14 广东工业大学 一种灵敏度增强的分布式布里渊光纤弯曲传感器
CN115913378A (zh) * 2022-11-10 2023-04-04 西南交通大学 一种同频共用光纤通信感知一体化系统

Also Published As

Publication number Publication date
CN115913378A (zh) 2023-04-04
CN115913378B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
JP6698164B2 (ja) 周波数合成に基づいた光周波数領域反射方法及びシステム
CN113447110B (zh) 一种分布式光纤振动传感系统及其相位载波解调方法
CN103837166B (zh) 光程差匹配的远程光纤干涉系统相位噪声抑制方法与装置
CN107132027B (zh) 光器件宽带频率响应值的测量方法及装置
CN111238551B (zh) 分布式相位敏感光时域反射仪传感系统及相位提取方法
WO2021057025A1 (zh) 一种基于混频的光电探测器频响测量方法及装置
AU2020102296A4 (en) A distributed optical fiber sensing system based on heterodyne detection technology
CN111678583B (zh) 一种光源噪声改善的光纤振动测量装置及方法
WO2024098766A1 (zh) 一种同频共用光纤通信感知一体化系统
CN110617854B (zh) 高阶相位调制瑞利botda温度/应变测量方法及装置
CN108827447B (zh) 一种异频双脉冲cotdr传感装置和方法
CN104330104A (zh) 一种干涉型传感器臂长差的测量装置
CN109974756B (zh) 基于差分相位脉冲发射和时域合并的φ-otdr技术
CN112923959B (zh) 一种提升相位敏感光时域反射计传感距离的系统
CN104363047A (zh) 基于双通道马赫曾德尔调制器的光矢量网络分析仪系统
CN116592986A (zh) 一种动态应变范围可调的光纤分布式声波传感装置
CN212030564U (zh) 一种光源频移校准辅助通道结构及光纤振动测量装置
CN211926897U (zh) 一种光源噪声改善前馈结构及光纤振动测量装置
CN112187347B (zh) 一种用于测量光纤长度的装置和方法
CN114485905A (zh) 一种基于不同脉宽光信号的分布式光纤振动与应变传感方法
CN111238550B (zh) 一种数字调制式扫频的光频域反射计系统
CN113390449A (zh) 一种光纤传感装置
CN113985367A (zh) 一种雷达信号瞬时频率测量方法和装置
CN114353685A (zh) 基于混沌布里渊相位谱的高频动态应变测量装置和方法
CN114095083B (zh) 基于微波光子载波抑制的微波源相位噪声测量系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887463

Country of ref document: EP

Kind code of ref document: A1