WO2011099437A1 - ハイブリッド建設機械の制御システム - Google Patents

ハイブリッド建設機械の制御システム Download PDF

Info

Publication number
WO2011099437A1
WO2011099437A1 PCT/JP2011/052494 JP2011052494W WO2011099437A1 WO 2011099437 A1 WO2011099437 A1 WO 2011099437A1 JP 2011052494 W JP2011052494 W JP 2011052494W WO 2011099437 A1 WO2011099437 A1 WO 2011099437A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pump
output
electric motor
motor
Prior art date
Application number
PCT/JP2011/052494
Other languages
English (en)
French (fr)
Inventor
治彦 川崎
祐弘 江川
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010029345A external-priority patent/JP5265595B2/ja
Priority claimed from JP2010072560A external-priority patent/JP5398614B2/ja
Priority to US13/512,863 priority Critical patent/US8655558B2/en
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to CN201180003453.4A priority patent/CN102482867B/zh
Priority to KR1020127008486A priority patent/KR101368031B1/ko
Priority to DE112011100518T priority patent/DE112011100518T5/de
Publication of WO2011099437A1 publication Critical patent/WO2011099437A1/ja
Priority to US14/109,260 priority patent/US9026297B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers

Definitions

  • This invention relates to a control system for a hybrid construction machine provided with a sub-pump that rotates with the driving force of an electric motor.
  • JP2009-235717A discloses a control system for a hybrid construction machine.
  • the discharge oil of the variable capacity sub pump is joined to the discharge side of the variable capacity main pump, and the sub pump is driven by the electric motor.
  • the tilt angle of the main pump is controlled by the action of pilot pressure generated according to the operation amount of the operation valve.
  • the assist force of the sub pump with respect to the main pump is set in advance so as to be most efficient corresponding to the pilot pressure.
  • the assist force of the sub-pump corresponds to the pilot pressure of the main pump, but it is set in advance, so that even if the work conditions such as light work and heavy work change, Assist power does not change. Therefore, the assist pump outputs more than necessary even during light work, and battery consumption increases.
  • the electric motor is driven by the power of the battery, and the life of the battery is proportional to the cumulative amount of consumed power. Therefore, if more power is consumed than necessary during light work, the life of the battery is shortened accordingly.
  • An object of the present invention is to control the output of an electric motor that is a drive source of a sub pump in a control system of a hybrid construction machine in accordance with a work state such as a light work or a heavy work, thereby reducing battery consumption, It is to extend the life.
  • a control system for a hybrid construction machine a main pump having a variable capacity, a circuit system connected to the main pump and having a plurality of operation valves, and a tilt angle of the main pump.
  • a regulator that controls the pilot flow path that is provided in the circuit system and that guides the pilot pressure generated when one of the plurality of operation valves is switched to the regulator, an electric motor, and a discharge of the main pump
  • a variable displacement sub-pump connected to the side and driven by the output of the electric motor, a regulator provided in the sub-pump for controlling the tilt angle of the sub-pump, and provided in the pilot flow path for detecting the pilot pressure
  • a pressure sensor connected to the pressure sensor, and the sub sensor according to a pressure signal from the pressure sensor
  • a controller that controls the regulator of the motor, detects the output of the main pump, and controls the output of the electric motor based on a prestored table according to the output of the main pump. Is done.
  • the assist force of the electric motor can be controlled in response to a work state such as a light work or a heavy work. Battery consumption is reduced.
  • FIG. 1 is a hydraulic circuit diagram showing an embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the displacement of the assist motor and the pressure due to the return oil of the boom cylinder.
  • FIG. 3 is a graph showing the relationship between the relief flow rate of the relief valve and the pressure due to the return oil of the boom cylinder.
  • FIG. 4 is a flowchart showing the control contents of the controller.
  • the embodiment shown in FIG. 1 is a control system for a power shovel.
  • the control system includes variable capacity first and second main pumps MP1 and MP2.
  • a first circuit system is connected to the first main pump MP1, and a second circuit system is connected to the second main pump MP2.
  • the first circuit system includes an operation valve 1 for controlling the swing motor RM, an operation valve 2 for controlling an arm cylinder (not shown), an operation valve 3 for controlling the boom cylinder BC, and a spare (not shown) in order from the upstream side.
  • An operation valve 4 for controlling the attachment and an operation valve 5 for controlling a left travel motor (not shown) are connected.
  • Each of the operation valves 1 to 5 is connected to the first main pump MP1 via the neutral flow path 6 and the parallel path 7.
  • a pilot pressure generating mechanism 8 is provided downstream of the operation valve 5 in the neutral flow path 6.
  • the pilot pressure generating mechanism 8 generates a high pilot pressure if the flow rate flowing therethrough is large, and generates a low pilot pressure if the flow rate is small.
  • the neutral flow path 6 guides all or part of the fluid discharged from the first main pump MP1 to the tank T when all the operation valves 1 to 5 are in the neutral position or in the vicinity of the neutral position. In this case, since the flow rate that passes through the pilot pressure generating mechanism 8 also increases, a high pilot pressure is generated.
  • a pilot flow path 9 is connected to the pilot pressure generating mechanism 8.
  • the pilot flow path 9 is connected to a regulator 10 that controls the tilt angle of the first main pump MP1.
  • the regulator 10 controls the discharge amount of the first main pump MP1 in inverse proportion to the pilot pressure.
  • the first pressure sensor 11 is connected to the pilot flow path 9.
  • the pressure signal detected by the first pressure sensor 11 is input to the controller C.
  • the second circuit system includes, in order from the upstream side, an operation valve 12 for controlling a right traveling motor (not shown), an operation valve 13 for controlling a bucket cylinder (not shown), an operation valve 14 for controlling a boom cylinder BC, and An operation valve 15 for controlling an arm cylinder (not shown) is connected.
  • the operation valve 14 is provided with a sensor 14a that detects an operation direction and an operation amount thereof.
  • the operation valves 12 to 15 are connected to the second main pump MP2 via the neutral flow path 16.
  • the operation valve 13 and the operation valve 14 are connected to the second main pump MP2 through the parallel passage 17.
  • a pilot pressure generating mechanism 18 is provided downstream of the operation valve 15 in the neutral flow path 16.
  • the pilot pressure generating mechanism 18 functions in the same manner as the pilot pressure generating mechanism 8.
  • a pilot flow path 19 is connected to the pilot pressure generating mechanism 18.
  • the pilot flow path 19 is connected to a regulator 20 that controls the tilt angle of the second main pump MP2.
  • the regulator 20 controls the discharge amount of the second main pump MP2 in inverse proportion to the pilot pressure. Therefore, when the flow of the neutral flow path 16 becomes zero by full stroke of the operation valves 12 to 15, in other words, when the pilot pressure generated by the pilot pressure generating mechanism 18 becomes zero, the second main pump MP2 The discharge amount is kept at the maximum.
  • the second pressure sensor 21 is connected to the pilot flow path 19.
  • the pressure signal detected by the second pressure sensor 21 is input to the controller C.
  • the first and second main pumps MP1 and MP2 rotate coaxially with the driving force of one engine E.
  • the engine E is provided with a generator 22.
  • the generator 22 rotates with the surplus output of the engine E and generates power.
  • the electric power generated by the generator 22 is charged to the battery 24 via the battery charger 23.
  • the battery charger 23 can charge the battery 24 even when connected to a normal household power supply 25. That is, the battery charger 23 can be connected to another independent power source.
  • the passages 26 and 27 communicating with the turning motor RM are connected to the actuator port of the operation valve 1 connected to the first circuit system.
  • Brake valves 28 and 29 are connected to both passages 26 and 27, respectively.
  • the brake valve 28 or 29 functions as a relief valve.
  • the passages 26 and 27 are equal to or higher than the set pressure, the brake valves 28 and 29 are opened to guide the high-pressure side fluid to the low-pressure side. If the operation valve 1 is returned to the neutral position while the swing motor RM is rotating, the actuator port of the operation valve 1 is closed. Even if the actuator port of the operation valve 1 is closed, the swing motor RM continues to rotate with the inertial energy, and the swing motor RM pumps by rotating with the inertial energy.
  • a closed circuit is constituted by the passages 26 and 27, the turning motor RM, and the brake valve 28 or 29, and the inertia energy is converted into heat energy by the brake valve 28 or 29.
  • the pressure fluid from the second main pump MP2 is supplied to the piston side chamber 31 of the boom cylinder BC via the passage 30.
  • the return fluid from the rod side chamber 32 is returned to the tank T via the passage 33, and the boom cylinder BC extends.
  • a proportional solenoid valve 34 whose opening degree is controlled by the controller C is provided.
  • the proportional solenoid valve 34 is kept in the fully open position in its normal state.
  • variable displacement sub-pump SP that assists the outputs of the first and second main pumps MP1 and MP2 will be described.
  • the sub pump SP is rotated by the driving force of the electric motor MG that also serves as a generator.
  • the variable capacity assist motor AM also rotates coaxially by the driving force of the electric motor MG.
  • An inverter I is connected to the electric motor MG.
  • a controller C is connected to the inverter I, and the controller C can control the rotation speed and the like of the electric motor MG.
  • ⁇ Tilt angles of sub pump SP and assist motor AM are controlled by regulators 35 and 36.
  • the regulators 35 and 36 are controlled by the output signal of the controller C.
  • the discharge passage 37 is connected to the sub pump SP.
  • the discharge passage 37 branches into a first joining passage 38 that joins the discharge side of the first main pump MP1 and a second joining passage 39 that joins the discharge side of the second main pump MP2.
  • First and second proportional electromagnetic throttle valves 40 and 41 whose opening degree is controlled by an output signal of the controller C are provided in the first and second joining passages 38 and 39, respectively.
  • connection passage 42 is connected to the assist motor AM.
  • the connection passage 42 is connected to the passages 26 and 27 connected to the turning motor RM via the junction passage 43 and the check valves 44 and 45.
  • the junction passage 43 is provided with an electromagnetic switching valve 46 that is controlled to open and close by the controller C.
  • a pressure sensor 47 is provided between the electromagnetic switching valve 46 and the check valves 44 and 45 to detect the pressure at the time of turning of the turning motor RM or the pressure at the time of braking. The pressure signal of the pressure sensor 47 is input to the controller C.
  • a safety valve 48 is provided at a position of the merging passage 43 on the downstream side of the electromagnetic switching valve 46 with respect to the flow from the turning motor RM to the connection passage 42.
  • the safety valve 48 maintains the pressure in the passages 26 and 27 and prevents the turning motor RM from running away when a failure occurs in the connection passage 42 and the junction passage 43 such as the electromagnetic switching valve 46.
  • a passage 49 communicating with the connection passage 42 is provided between the boom cylinder BC and the proportional solenoid valve 34.
  • the passage 49 is provided with an electromagnetic opening / closing valve 50 controlled by the controller C.
  • the passage 42 is provided with a passage 51 that communicates with the regulator 36 that controls the tilt angle of the assist motor AM.
  • a relief valve 52 is provided in the passage 51.
  • a throttle 53 is provided on the upstream side of the relief valve 52.
  • the relief valve 52 substantially reduces the pressure override by providing a throttle 53 on the upstream side.
  • the reason why the pressure override is substantially deteriorated is to gradually increase the relief flow rate as shown by the solid line in FIG. That is, when the pressure due to the return oil of the boom cylinder BC increases in the connection passage 42, if the relief valve 52 increases its relief flow rate as shown by the broken line in FIG. 3, the boom cylinder BC is stopped without a sense of incongruity. It is because it becomes impossible.
  • the assist flow rate of the sub pump SP is set in advance according to the pressure signals of the first and second pressure sensors 11 and 21, and among them, the controller C determines the tilt angle and assist of the sub pump SP.
  • Each control is carried out by determining how to control the tilt angle of the motor AM, the rotational speed of the electric motor MG, and the like to be most efficient.
  • controller C of this embodiment detects the output of the first and second main pumps MP1 and MP2, and determines whether it is operated in the light work state or the heavy work state from the output state. presume.
  • the controller C estimates the output from the discharge pressure and the discharge flow rate of the first and second main pumps MP1 and MP2.
  • the discharge amounts of the first and second main pumps MP1 and MP2 may be directly measured by a flow rate detector (not shown), but the displacement volume per rotation of the first and second main pumps MP1 and MP2 It may be estimated from the rotational speed at that time.
  • the table shown in FIG. 4 is stored in the controller C in advance.
  • This table is data of assist correction coefficients corresponding to the outputs of the first and second main pumps MP1 and MP2.
  • the assist correction coefficient is 1 in the heavy work state and less than 1 in the light work state.
  • the controller C estimates the outputs of the first and second main pumps MP1 and MP2, specifies the assist correction coefficient according to the values, and filters the assist correction coefficient with a low-pass filter to calculate the assist flow power correction command value. To do. Then, the controller C controls the output of the electric motor MG that drives the sub pump SP based on the assist flow rate power correction command value.
  • a correction command is issued by suppressing the output fluctuation of the first and second main pumps MP1 and MP2 by a low-pass filter, and the electric motor Control is performed while suppressing rapid changes in MG.
  • the operation valves 1 to 5 of the first circuit system When the operation valves 1 to 5 of the first circuit system are maintained at the neutral position, the entire amount of fluid discharged from the first main pump MP1 is guided to the tank T via the neutral flow path 6 and the pilot pressure generating mechanism 8. It is burned.
  • the pilot pressure generated there becomes high and a relatively high pilot pressure is also introduced into the pilot flow path 9.
  • the regulator 10 is operated by the action of the high pilot pressure guided to the pilot flow path 9, and the discharge amount of the first main pump MP1 is kept to a minimum.
  • the high pilot pressure signal in this case is input from the first pressure sensor 11 to the controller C.
  • the pilot pressure generating mechanism 18 generates a relatively high pilot pressure as in the case of the first circuit system, and the high pressure is regulated by the regulator. 20 and the discharge amount of the second main pump MP2 is kept to a minimum. In this case, a high pilot pressure signal is input from the second pressure sensor 21 to the controller C.
  • the controller C determines that the first and second main pumps MP1 and MP2 maintain the minimum discharge amount. Then, the regulators 35 and 36 are controlled, and the tilt angles of the sub pump SP and the assist motor AM are made zero or minimum.
  • the controller C may stop the rotation of the electric motor MG or may continue the rotation. .
  • the electric motor MG When stopping the rotation of the electric motor MG, there is an effect that power consumption can be saved. If the electric motor MG continues to rotate, the sub-pump SP and the assist motor AM also continue to rotate, so there is an effect that the shock at the start of the sub-pump SP and the assist motor AM can be reduced. In any case, whether the electric motor MG is to be stopped or continues to rotate is determined according to the use and use situation of the construction machine.
  • the flow rate flowing through the neutral flow path 6 or 16 decreases according to the operation amount, and accordingly, the pilot pressure generating mechanism The pilot pressure generated at 8 or 18 is reduced. If the pilot pressure decreases, the first main pump MP1 or the second main pump MP2 increases the tilt angle to increase the discharge amount.
  • the controller C When increasing the discharge amount of the first main pump MP1 or the second main pump MP2, the controller C always keeps the electric motor MG rotated. That is, when the electric motor MG is stopped when the discharge amounts of the first and second main pumps MP1 and MP2 are minimum, the controller C detects that the pilot pressure has decreased and restarts the electric motor MG. Start.
  • the controller C calculates the total output of the first and second main pumps MP1 and MP2, and determines whether it is higher or lower than the reference value. If it is lower than the light work reference value, it is determined that the first and second main pumps MP1 and MP2 are driven in a light work state. If it is higher than the heavy work reference value, the first and second main pumps MP1 and MP2 are It is determined that the vehicle is driven in the heavy work state, and is determined to be driven in the intermediate state between the light work and the heavy work.
  • Controller C calculates an assist flow power correction command value corresponding to each work state, and controls the output of electric motor MG based on the assist flow power correction command value.
  • the controller C drives the electric motor MG by multiplying a preset correction coefficient smaller than that in the heavy work.
  • the controller C controls the opening degree of the first and second proportional electromagnetic throttle valves 40 and 41 according to the pressure signals of the first and second pressure sensors 11 and 21, and apportions the discharge amount of the sub-pump SP. Supply to 2 circuit system.
  • controller C can control the tilt angle of the sub-pump SP and the opening degrees of the first and second proportional electromagnetic throttle valves 40 and 41 only by the pressure signals of the two first and second pressure sensors 11 and 21, the pressure sensor The number can be reduced.
  • one passage 26 communicates with the first main pump MP1 and the other passage 27 Communicates with the tank T to rotate the turning motor RM.
  • the turning pressure is kept at the set pressure of the brake valve 28.
  • the other passage 27 communicates with the first main pump MP1 and the one passage 26 communicates with the tank T, thereby rotating the turning motor RM. Also in this case, the turning pressure is maintained at the set pressure of the brake valve 29.
  • the pressure sensor 47 detects the turning pressure or the brake pressure, and the pressure signal is input to the controller C.
  • the controller C detects a pressure lower than the set pressure of the brake valves 28 and 29 within a range that does not affect the turning or braking operation of the turning motor RM, the controller C opens the electromagnetic switching valve 46 from the closed position. Switch to position.
  • the electromagnetic switching valve 46 is switched to the open position, the pressure fluid guided to the turning motor RM flows into the merge passage 43 and is supplied to the assist motor AM via the safety valve 48 and the connection passage 42.
  • the controller C controls the tilt angle of the assist motor AM according to the pressure signal from the pressure sensor 47. It is as follows.
  • the turning motor RM cannot be turned or braked.
  • the controller C controls the load of the turning motor RM while controlling the tilt angle of the assist motor AM. That is, the controller C controls the tilt angle of the assist motor AM so that the pressure detected by the pressure sensor 47 becomes substantially equal to the turning pressure or the brake pressure of the turning motor RM.
  • the assist motor AM obtains a rotational force
  • the rotational force acts on the electric motor MG that rotates coaxially.
  • the rotational force of the assist motor AM acts as an assist force for the electric motor MG. Therefore, the power consumption of the electric motor MG can be reduced by the amount of the rotational force of the assist motor AM.
  • the rotational force of the sub pump SP can be assisted by the rotational force of the assist motor AM.
  • the assist motor AM and the sub pump SP are combined to exert a pressure conversion function.
  • the fluid pressure flowing into the connection passage 42 is always lower than the pump discharge pressure.
  • the assist motor AM and the sub-pump SP exhibit a pressure increasing function.
  • the output of the assist motor AM is determined by the product of the displacement volume Q1 per rotation and the pressure P1 at that time.
  • the output of the sub pump SP is determined by the product of the displacement volume Q2 per revolution and the discharge pressure P2.
  • the sub pump SP can maintain a predetermined discharge pressure by the output of the assist motor AM.
  • the fluid pressure from the turning motor RM can be increased and discharged from the sub pump SP.
  • the tilt angle of the assist motor AM is controlled so as to keep the pressure in the passages 26 and 27 at the turning pressure or the brake pressure. Therefore, when the fluid from the turning motor RM is used, the tilt angle of the assist motor AM is inevitably determined. In order to exhibit the pressure conversion function while the tilt angle of the assist motor AM is determined, the tilt angle of the sub pump SP is controlled.
  • the controller C closes the electromagnetic switching valve 46 based on the pressure signal from the pressure sensor 47, The swing motor RM is not affected.
  • the safety valve 48 functions to prevent the pressure in the passages 26 and 27 from becoming unnecessarily low, thereby preventing the turning motor RM from running away.
  • the controller C determines whether the operator is going to raise or lower the boom cylinder BC.
  • the controller C keeps the proportional solenoid valve 34 in a normal state. In other words, the proportional solenoid valve 34 is kept in the fully open position.
  • the controller C controls the rotational speed of the electric motor MG and the tilt angle of the sub-pump SP so as to ensure a predetermined discharge amount from the sub-pump SP. To do.
  • the controller C calculates the lowering speed of the boom cylinder BC requested by the operator according to the operation amount of the operation valve 14, and the proportional electromagnetic The valve 34 is closed and the electromagnetic on-off valve 50 is switched to the open position.
  • the controller C sets a flow rate higher than the flow rate consumed by the assist motor AM based on the operation amount of the operation valve 14, the tilt angle of the assist motor AM, the rotation speed of the electric motor MG, and the like.
  • the opening degree of the proportional solenoid valve 34 is controlled so as to return to, and the lowering speed of the boom cylinder BC required by the operator is maintained.
  • the assist motor AM When the fluid is supplied to the assist motor AM, the assist motor AM rotates.
  • the rotational force of the assist motor AM acts on the electric motor MG that rotates coaxially.
  • the rotational force of the assist motor AM acts as an assist force for the electric motor MG. Therefore, power consumption can be reduced by the amount of rotational force of the assist motor AM.
  • the assist motor AM and the sub pump SP exhibit a pressure conversion function.
  • the pressure of the boom cylinder BC increases and the braking action increases, so that the motor does not run away.
  • the braking distance can be shortened, and the operator's operation will not be uncomfortable.
  • the assist motor AM may take some time for the assist motor AM to lower the displacement volume, and in this case, the pressure in the connection passage 42 slightly increases. However, since the relief valve 52 is set so that the relief function can be exhibited at the same time, the torque of the assist motor AM does not exceed the absorption torque of the generator due to the switching delay of the electromagnetic on-off valve 50.
  • the braking force can be increased without shock to the boom cylinder BC.
  • the fluid from the turning motor RM and the return fluid from the boom cylinder BC merge in the connection passage 42 and are supplied to the assist motor AM. .
  • connection passage 42 increases, the pressure on the merge passage 43 side also increases accordingly. Even if the pressure becomes higher than the swing pressure or the brake pressure of the swing motor RM, the check valves 44 and 45 are present, so that the swing motor RM is not affected.
  • the controller C closes the electromagnetic switching valve 46 based on the pressure signal from the pressure sensor 47.
  • the tilt angle of the assist motor AM is determined based on the required lowering speed of the boom cylinder BC regardless of the turning pressure or the brake pressure. Just decide.
  • the output of the sub pump SP can be assisted by the output of the assist motor AM, and the flow rate discharged from the sub pump SP is apportioned by the first and second proportional electromagnetic throttle valves 40 and 41 to obtain the first and second circuits. Can be supplied to the grid.
  • the tilt angle of the sub-pump SP is set to zero and the load is almost unloaded, and the assist motor AM is rotated in order to rotate the electric motor MG. If the necessary output is maintained, the electric motor MG can exhibit the power generation function by using the output of the assist motor AM.
  • power can be generated by the generator 22 using the output of the engine E, or the electric motor MG can be generated using the assist motor AM.
  • the generated power is stored in the battery 24.
  • the battery 24 can be stored using the household power supply 25, the electric power of the electric motor MG can be procured widely.
  • the assist motor AM is rotated using the fluid from the turning motor RM and the boom cylinder BC, and the sub pump SP and the electric motor MG can be assisted by the output of the assist motor AM. The energy loss between them is minimized.
  • the output of the electric motor MG can be controlled according to the heavy work state from the light work state, the output of the electric motor MG can be made relatively small especially in light work such as ground leveling. Accordingly, the battery consumption is reduced, and the life of the battery can be extended as much as the power consumption is reduced.
  • the storage capacity of the mounted battery can be reduced and the battery can be made smaller.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Transportation (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

 コントローラは、圧力センサーに接続する。コントローラは、圧力センサーからの圧力信号に応じてサブポンプのレギュレータを制御し、メインポンプの出力を検出してメインポンプの出力に応じてあらかじめ記憶されたテーブルに基づいて電動モータの出力を制御する。

Description

ハイブリッド建設機械の制御システム
 この発明は、電動機の駆動力で回転するサブポンプを備えたハイブリッド建設機械の制御システムに関する。
 JP2009-235717Aはハイブリッド建設機械の制御システムを開示している。
 この従来の制御システムでは、可変容量のメインポンプの吐出側に可変容量のサブポンプの吐出油を合流させ、サブポンプを電動モータで駆動する。メインポンプは操作弁の操作量に応じて発生するパイロット圧の作用でその傾転角が制御される。
 メインポンプに対するサブポンプのアシスト力は、パイロット圧に対応して最も効率的になるようにあらかじめ設定されている。
 この従来の制御システムでは、サブポンプのアシスト力が、メインポンプのパイロット圧に対応しているが、あらかじめ設定されているので、例えば、軽作業や重作業などの作業状態が変化しても、そのアシスト力が変わらない。そのために、アシストポンプは、軽作業時にも必要以上の出力をしてしまい、バッテリー消費が大きくなる。
 電動モータは、バッテリーの電力で駆動し、バッテリーの寿命は、消耗した電力の累積量に比例するので、軽作業時に必要以上の電力を消費すれば、その分、バッテリーの寿命も短くなる。
 この発明の目的は、ハイブリッド建設機械の制御システムにおいて、サブポンプの駆動源である電動モータの出力を、軽作業や重作業などの作業状態に対応して制御し、バッテリー消費を少なくし、バッテリーの寿命を延ばすことである。
 本発明のある態様によれば、ハイブリッド建設機械の制御システムであって、可変容量のメインポンプと、前記メインポンプに接続され、複数の操作弁を有する回路系統と、前記メインポンプの傾転角を制御するレギュレータと、前記回路系統に設けられ、前記複数の操作弁のいずれかを切り換え操作した場合に発生するパイロット圧を前記レギュレータに導くパイロット流路と、電動モータと、前記メインポンプの吐出側に接続され、前記電動モータの出力で駆動する可変容量のサブポンプと、前記サブポンプに設けられ、前記サブポンプの傾転角を制御するレギュレータと、前記パイロット流路に設けられ、前記パイロット圧を検出する圧力センサーと、前記圧力センサーに接続し、前記圧力センサーからの圧力信号に応じて前記サブポンプの前記レギュレータを制御し、前記メインポンプの出力を検出して前記メインポンプの出力に応じてあらかじめ記憶されたテーブルに基づいて前記電動モータの出力を制御するコントローラと、を備える制御システムが提供される。
 上記態様によれば、例えば、軽作業あるいは重作業などの作業状態に対応して、電動モータのアシスト力を制御できるので、軽作業時に必要以上のアシスト力を発揮することがなくなり、その分、バッテリー消費が少なくなる。
 軽作業時に電動モータの出力を相対的に小さくできるので、バッテリーの寿命を延ばすこともできる。
 本発明の実施形態及び本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、本発明の実施形態を示す油圧回路図である。 図2は、アシストモータの押しのけ容積とブームシリンダの戻り油による圧力との関係を示したグラフである。 図3は、リリーフ弁のリリーフ流量とブームシリンダの戻り油による圧力との関係を示したグラフである。 図4は、コントローラの制御内容を示すフローチャートである。
 図1に示した実施形態は、パワーショベルの制御システムである。制御システムは、可変容量の第1、2メインポンプMP1、MP2を備える。第1メインポンプMP1には第1回路系統が接続され、第2メインポンプMP2には第2回路系統が接続される。
 第1回路系統には、上流側から順に、旋回モータRMを制御する操作弁1、図示していないアームシリンダを制御する操作弁2、ブームシリンダBCを制御する操作弁3、図示していない予備用アタッチメントを制御する操作弁4および図示していない左走行用モータを制御する操作弁5が接続される。
 各操作弁1~5のそれぞれは、中立流路6およびパラレル通路7を介して第1メインポンプMP1に接続される。
 中立流路6の操作弁5の下流側にはパイロット圧生成機構8を設けている。パイロット圧生成機構8はそこを流れる流量が多ければ高いパイロット圧を生成し、その流量が少なければ低いパイロット圧を生成する。
 中立流路6は、操作弁1~5のすべてが中立位置もしくは中立位置近傍にある場合は、第1メインポンプMP1から吐出された流体の全部または一部をタンクTに導く。この場合は、パイロット圧生成機構8を通過する流量も多くなるので、高いパイロット圧が生成される。
 操作弁1~5がフルストロークの状態で切り換えられると、中立流路6が閉ざされて流体の流通がなくなる。この場合は、パイロット圧生成機構8を流れる流量がほとんどなくなり、パイロット圧はゼロを保つ。
 ただし、操作弁1~5の操作量によっては、ポンプ吐出量の一部がアクチュエータに導かれ、一部が中立流路6からタンクTに導かれるので、パイロット圧生成機構8は、中立流路6に流れる流量に応じたパイロット圧を生成する。言い換えると、パイロット圧生成機構8は、操作弁1~5の操作量に応じたパイロット圧を生成する。
 パイロット圧生成機構8にはパイロット流路9が接続される。パイロット流路9は、第1メインポンプMP1の傾転角を制御するレギュレータ10に接続される。レギュレータ10は、パイロット圧と逆比例して第1メインポンプMP1の吐出量を制御する。操作弁1~5がフルストロークして中立流路6の流れがゼロになった場合、言い換えるとパイロット圧生成機構8が発生するパイロット圧がゼロになった場合に、第1メインポンプMP1の吐出量が最大に保たれる。
 パイロット流路9には第1圧力センサー11が接続される。第1圧力センサー11で検出した圧力信号はコントローラCに入力される。
 第2回路系統には、上流側から順に、図示していない右走行用モータを制御する操作弁12、図示していないバケットシリンダを制御する操作弁13、ブームシリンダBCを制御する操作弁14および図示していないアームシリンダを制御する操作弁15が接続される。操作弁14には、その操作方向および操作量を検出するセンサー14aが設けられる。
 各操作弁12~15は、中立流路16を介して第2メインポンプMP2に接続される。操作弁13および操作弁14はパラレル通路17を介して第2メインポンプMP2に接続される。
 中立流路16の操作弁15の下流側にはパイロット圧生成機構18が設けられる。パイロット圧生成機構18は、パイロット圧生成機構8と全く同様に機能する。
 パイロット圧生成機構18にはパイロット流路19が接続される。パイロット流路19は、第2メインポンプMP2の傾転角を制御するレギュレータ20に接続される。レギュレータ20は、パイロット圧と逆比例して第2メインポンプMP2の吐出量を制御する。したがって、操作弁12~15をフルストロークして中立流路16の流れがゼロになった場合、言い換えるとパイロット圧生成機構18が発生するパイロット圧がゼロになった場合は、第2メインポンプMP2の吐出量が最大に保たれる。
 パイロット流路19には第2圧力センサー21が接続される。第2圧力センサー21で検出された圧力信号はコントローラCに入力される。
 第1、2メインポンプMP1、MP2は、一つのエンジンEの駆動力で同軸回転する。エンジンEにはジェネレータ22が設けられる。ジェネレータ22はエンジンEの余剰出力で回転し、発電する。ジェネレータ22が発電した電力は、バッテリーチャージャー23を介してバッテリー24に充電される。
 バッテリーチャージャー23は、通常の家庭用の電源25に接続した場合にも、バッテリー24に電力を充電できる。つまり、バッテリーチャージャー23は、別の独立系電源にも接続可能である。
 第1回路系統に接続する操作弁1のアクチュエータポートには、旋回モータRMに連通する通路26、27が接続される。両通路26、27のそれぞれにはブレーキ弁28、29が接続される。操作弁1を図示の中立位置に保っている場合は、アクチュエータポートが閉じられて旋回モータRMは停止状態を維持する。
 この状態から操作弁1を例えば図面右側位置に切り換えると、一方の通路26が第1メインポンプMP1に接続され、他方の通路27がタンクTに連通する。したがって、通路26から圧力流体が供給されて旋回モータRMが回転し、旋回モータRMからの戻り流体が通路27を介してタンクTに戻される。
 操作弁1を逆に左側位置に切り換えると、今度は、通路27にポンプ吐出流体が供給され、通路26がタンクTに連通し、旋回モータRMは逆転する。
 旋回モータRMを駆動している場合は、ブレーキ弁28あるいは29がリリーフ弁の機能を発揮する。通路26、27が設定圧以上になった場合は、ブレーキ弁28、29が開弁して高圧側の流体を低圧側に導く。旋回モータRMを回転している状態で、操作弁1を中立位置に戻せば、操作弁1のアクチュエータポートが閉じられる。操作弁1のアクチュエータポートが閉じられても、旋回モータRMはその慣性エネルギーで回転し続け、旋回モータRMが慣性エネルギーで回転することによって、旋回モータRMがポンプ作用をする。この場合は、通路26、27、旋回モータRM、ブレーキ弁28あるいは29で閉回路が構成され、ブレーキ弁28あるいは29によって、慣性エネルギーが熱エネルギーに変換される。
 操作弁14を中立位置から図面右側位置に切り換えると、第2メインポンプMP2からの圧力流体は、通路30を経由してブームシリンダBCのピストン側室31に供給される。ロッド側室32からの戻り流体は通路33を経由してタンクTに戻され、ブームシリンダBCは伸長する。
 反対に、操作弁14を図面左方向に切り換えると、第2メインポンプMP2からの圧力流体は、通路33を経由してブームシリンダBCのロッド側室32に供給される。ピストン側室31からの戻り流体は通路30を経由してタンクTに戻され、ブームシリンダBCは収縮する。操作弁3は、操作弁14と連動して切り換る。
 ブームシリンダBCのピストン側室31と操作弁14とを結ぶ通路30には、コントローラCで開度が制御される比例電磁弁34が設けられる。比例電磁弁34はそのノーマル状態で全開位置を保つようにしている。
 次に、第1、2メインポンプMP1、MP2の出力をアシストする可変容量のサブポンプSPについて説明する。
 サブポンプSPは、発電機兼用の電動モータMGの駆動力で回転する。電動モータMGの駆動力によって、可変容量のアシストモータAMも同軸回転する。電動モータMGにはインバータIが接続される。インバータIにはコントローラCが接続され、コントローラCで電動モータMGの回転速度等を制御することができる。
 サブポンプSPおよびアシストモータAMの傾転角はレギュレータ35、36で制御され。レギュレータ35、36は、コントローラCの出力信号で制御される。
 サブポンプSPには吐出通路37が接続される。吐出通路37は、第1メインポンプMP1の吐出側に合流する第1合流通路38と、第2メインポンプMP2の吐出側に合流する第2合流通路39とに分岐する。第1、2合流通路38、39のそれぞれには、コントローラCの出力信号で開度が制御される第1、2比例電磁絞り弁40、41が設けられる。
 アシストモータAMには接続用通路42が接続される。接続用通路42は、合流通路43およびチェック弁44、45を介して、旋回モータRMに接続した通路26、27に接続される。合流通路43にはコントローラCで開閉制御される電磁切換弁46が設けられる。電磁切換弁46とチェック弁44、45との間には、旋回モータRMの旋回時の圧力あるいはブレーキ時の圧力を検出する圧力センサー47が設けられる。圧力センサー47の圧力信号はコントローラCに入力される。
 合流通路43の、旋回モータRMから接続用通路42への流れに対して電磁切換弁46よりも下流側となる位置には、安全弁48が設けられる。安全弁48は、例えば電磁切換弁46など、接続用通路42、合流通路43などに故障が生じた場合に、通路26、27の圧力を維持して旋回モータRMが逸走するのを防止する。
 ブームシリンダBCと比例電磁弁34との間には、接続用通路42に連通する通路49が設けられる。通路49にはコントローラCで制御される電磁開閉弁50が設けられる。
 通路42にはアシストモータAMの傾転角を制御するレギュレータ36に連通する通路51が設けられる。通路51にはリリーフ弁52が設けられる。リリーフ弁52の上流側には絞り53が設けられる。
 通路42に連通したレギュレータ36は、例えば通路42に導かれたブームシリンダBCの戻り油による圧力が大きくなると、図2に示すように、その1回転当たりの押し除け容積Dを小さくする。したがって、アシストモータAMに作用するトルクTがT=(D・P)/2πとすると、レギュレータ36は、圧力Pが上がった場合に、押し除け容積Dを小さくして、トルクTを電動機吸収トルク以下に保つ。
 リリーフ弁52は、上流側に絞り53を設けることによって、実質的に圧力オーバーライドを悪くさせている。圧力オーバーライドを実質的に悪くしたのは、図3の実線で示したように、リリーフ流量が徐々に大きくなるようにするためである。つまり、接続用通路42にブームシリンダBCの戻り油による圧力が上昇した場合に、リリーフ弁52が図3の破線で示すようにそのリリーフ流量を一気に大きくすると、ブームシリンダBCを違和感なく停止させることができなくなるからである。
 また、この実施形態では、第1、2圧力センサー11、21の圧力信号に応じてサブポンプSPのアシスト流量を予め設定しておき、その中で、コントローラCが、サブポンプSPの傾転角、アシストモータAMの傾転角、電動モータMGの回転速度などをどのように制御したら最も効率的かを判断してそれぞれの制御を実施する。
 ただし、この実施形態のコントローラCは、第1、2メインポンプMP1、MP2の出力を検出し、その出力状態から軽作業状態で操作されているのか、あるいは重作業状態で操作されているのかを推定する。
 すなわち、コントローラCは、第1、2メインポンプMP1、MP2の吐出圧とその吐出流量からその出力を推定する。第1、2メインポンプMP1、MP2の吐出量は、それを図示していない流量検出器で直接計測してもよいが、第1、2メインポンプMP1、MP2の1回転当たりの押し除け容積と、その時の回転速度から推測してもよい。
 さらに、コントローラCには、図4に示すテーブルがあらかじめ記憶されている。このテーブルは、第1、2メインポンプMP1、MP2の出力に対応するアシスト修正係数のデータである。アシスト修正係数は、重作業状態の場合は1とし、軽作業状態の場合は1未満である。
 コントローラCは、第1、2メインポンプMP1、MP2の出力を推定して、その値に応じたアシスト修正係数を特定し、アシスト修正係数をローパスフィルターでフィルタリングしてアシスト流量パワー修正指令値を演算する。そして、コントローラCは、アシスト流量パワー修正指令値に基づいてコントローラCはサブポンプSPを駆動する電動モータMGの出力を制御する。
 掘削作業など、作業内容によって第1、2メインポンプMP1、MP2の出力が大きく変動するので、ローパスフィルターによって、第1、2メインポンプMP1、MP2の出力変動を抑えて修正指令を出し、電動モータMGの急激な変化を抑えて制御する。
 第1回路系統の操作弁1~5が中立位置を保っていれる場合は、第1メインポンプMP1から吐出する流体の全量が中立流路6およびパイロット圧生成機構8を経由してタンクTに導かれる。第1メインポンプMP1の吐出全量がパイロット圧生成機構8を流れる場合には、そこで生成されるパイロット圧が高くなり、パイロット流路9にも相対的に高いパイロット圧が導かれる。パイロット流路9に導かれた高いパイロット圧の作用で、レギュレータ10が動作し、第1メインポンプMP1の吐出量が最小に保たれる。この場合の高いパイロット圧の圧力信号は、第1圧力センサー11からコントローラCに入力される。
 第2回路系統の操作弁12~15が中立位置に保っている場合も、第1回路系統の場合と同様にパイロット圧生成機構18が相対的に高いパイロット圧が生成され、その高い圧力がレギュレータ20に作用し、第2メインポンプMP2の吐出量が最小に保たれる。この場合の高いパイロット圧の圧力信号は、第2圧力センサー21からコントローラCに入力される。
 第1、2圧力センサー11、21からコントローラCに相対的に高い圧力信号が入力されると、コントローラCは、第1、2メインポンプMP1、MP2が最小吐出量を維持しているものと判定してレギュレータ35、36を制御し、サブポンプSPおよびアシストモータAMの傾転角をゼロもしくは最小にする。
 コントローラCは、第1、2メインポンプMP1、MP2の吐出量が最小である旨の信号を受信した場合に、電動モータMGの回転を停止してもよいし、その回転を継続させてもよい。
 電動モータMGの回転を止める場合は、消費電力を節約できるという効果がある。電動モータMGを回転し続けた場合は、サブポンプSPおよびアシストモータAMも回転し続けるので、サブポンプSPおよびアシストモータAMの起動時のショックを少なくできるという効果がある。いずれにしても、電動モータMGを止めるかあるいは回転し続けるかは、当該建設機械の用途や使用状況に応じて決められる。
 上記の状況で第1回路系統あるいは第2回路系統のいずれかの操作弁を切り換えれば、その操作量に応じて中立流路6あるいは16を流れる流量が少なくなり、それにともなってパイロット圧生成機構8あるいは18で生成されるパイロット圧が低くなる。パイロット圧が低くなれば、それにともなって第1メインポンプMP1あるいは第2メインポンプMP2は、その傾転角を大きくして吐出量を増大させる。
 第1メインポンプMP1あるいは第2メインポンプMP2の吐出量を増大させる場合には、コントローラCは、電動モータMGを常に回転した状態に保つ。つまり、第1、2メインポンプMP1、MP2の吐出量が最小の場合に電動モータMGを停止した場合には、コントローラCは、パイロット圧が低くなったことを検知して、電動モータMGを再起動させる。
 この場合、コントローラCは、第1、2メインポンプMP1、MP2の合計出力を演算して、それが基準値よりも高いか低いかを判定する。軽作業基準値よりも低ければ、第1、2メインポンプMP1、MP2が軽作業状態で駆動していると判定し、重作業基準値よりも高ければ、第1、2メインポンプMP1、MP2が重作業状態で駆動していると判定し、軽作業と重作業の間は中間状態で駆動していると判定する。
 コントローラCは、それぞれの作業状態に応じたアシスト流量パワー修正指令値を演算し、アシスト流量パワー修正指令値に基づいて電動モータMGの出力を制御する。
 したがって、コントローラCは、重作業において電動モータMGの指令に修正係数=1を乗じて電動モータMGを駆動する。軽作業では、コントローラCは、重作業のときよりも小さいあらかじめ設定した修正係数を乗じて電動モータMGを駆動する。軽作業と重作業の中間域では、コントローラCは、あらかじめ設定した小さい修正係数と修正係数=1との間の修正係数を乗じて電動モータMGを駆動する。
 コントローラCは、第1、2圧力センサー11、21の圧力信号に応じて、第1、2比例電磁絞り弁40、41の開度を制御し、サブポンプSPの吐出量を按分して、第1、2回路系統に供給する。
 2つの第1、2圧力センサー11、21の圧力信号だけで、コントローラCが、サブポンプSPの傾転角および第1、2比例電磁絞り弁40、41の開度を制御できるので、圧力センサーの数を少なくできる。
 第1回路系統に接続した旋回モータRMを駆動するために、操作弁1を左右いずれか、例えば図面右側位置に切り換えると、一方の通路26が第1メインポンプMP1に連通し、他方の通路27がタンクTに連通して、旋回モータRMを回転させる。この場合、旋回圧はブレーキ弁28の設定圧に保たれる。操作弁1を図面左方向に切り換えれば、他方の通路27が第1メインポンプMP1に連通し、一方の通路26がタンクTに連通して、旋回モータRMを回転させる。この場合も旋回圧はブレーキ弁29の設定圧に保たれる。
 旋回モータRMが旋回している最中に操作弁1を中立位置に切り換えると、通路26、27間で閉回路が構成され、ブレーキ弁28あるいは29が閉回路のブレーキ圧を維持し、慣性エネルギーを熱エネルギーに変換する。
 圧力センサー47は旋回圧あるいはブレーキ圧を検出し、その圧力信号はコントローラCに入力される。コントローラCは、旋回モータRMの旋回あるいはブレーキ動作に影響を及ぼさない範囲内であって、ブレーキ弁28、29の設定圧よりも低い圧力を検出した場合に、電磁切換弁46を閉位置から開位置に切り換える。電磁切換弁46が開位置に切り換れば、旋回モータRMに導かれた圧力流体は、合流通路43に流れ、安全弁48および接続用通路42を経由してアシストモータAMに供給される。
 コントローラCは、圧力センサー47からの圧力信号に応じて、アシストモータAMの傾転角を制御する。それは次のとおりである。
 通路26あるいは27の圧力は、旋回動作あるいはブレーキ動作に必要な圧力に保たれていなければ、旋回モータRMを旋回させたり、あるいはブレーキをかけたりできない。
 そこで、通路26あるいは27の圧力を、旋回圧あるいはブレーキ圧に保つために、コントローラCはアシストモータAMの傾転角を制御しながら、旋回モータRMの負荷を制御する。つまり、コントローラCは、圧力センサー47で検出される圧力が旋回モータRMの旋回圧あるいはブレーキ圧とほぼ等しくなるように、アシストモータAMの傾転角を制御する。
 アシストモータAMが回転力を得れば、その回転力は、同軸回転する電動モータMGに作用する。アシストモータAMの回転力は、電動モータMGに対するアシスト力として作用する。したがって、アシストモータAMの回転力の分だけ、電動モータMGの消費電力を少なくすることができる。
 アシストモータAMの回転力でサブポンプSPの回転力をアシストすることもできる。この場合、アシストモータAMとサブポンプSPとが相まって圧力変換機能を発揮させる。
 つまり、接続用通路42に流入する流体圧はポンプ吐出圧よりも必ず低い。この低い圧力を利用してサブポンプSPに高い吐出圧を維持させるために、アシストモータAMおよびサブポンプSPとによって増圧機能を発揮させる。
 すなわち、アシストモータAMの出力は、1回転当たりの押しのけ容積Q1とその時の圧力P1の積で決まる。サブポンプSPの出力は1回転当たりの押しのけ容積Q2と吐出圧P2の積で決まる。この実施形態では、アシストモータAMとサブポンプSPとが同軸回転するので、Q1×P1=Q2×P2が成立しなければならない。そこで、例えば、アシストモータAMの上記押しのけ容積Q1をサブポンプSPの押しのけ容積Q2の3倍すなわちQ1=3Q2にしたとすれば、上記等式が3Q2×P1=Q2×P2となる。この式から両辺をQ2で割れば、3P1=P2が成り立つ。
 したがって、サブポンプSPの傾転角を変えて、押しのけ容積Q2を制御すれば、アシストモータAMの出力で、サブポンプSPに所定の吐出圧を維持させることができる。言い換えると、旋回モータRMからの流体圧を増圧してサブポンプSPから吐出させることができる。
 ただし、アシストモータAMの傾転角は、通路26、27の圧力を旋回圧あるいはブレーキ圧に保つように制御される。したがって、旋回モータRMからの流体を利用する場合には、アシストモータAMの傾転角は必然的に決められる。アシストモータAMの傾転角が決められた中で、圧力変換機能を発揮させるためには、サブポンプSPの傾転角を制御する。
 接続用通路42、合流通路43などの圧力が何らかの原因で、旋回圧あるいはブレーキ圧よりも低くなった場合は、圧力センサー47からの圧力信号に基づいて、コントローラCは電磁切換弁46を閉じ、旋回モータRMに影響を及ぼさないようにする。
 接続用通路42に流体の漏れが生じた場合は、安全弁48が機能して通路26、27の圧力が必要以上に低くならないようにし、旋回モータRMの逸走を防止する。
 次に、操作弁14およびそれに連動して第1回路系統の操作弁3を切り換えて、ブームシリンダBCを制御する場合について説明する。
 ブームシリンダBCを作動させるために、操作弁14およびそれに連動する操作弁3を切り換えると、センサー14aによって、操作弁14の操作方向とその操作量が検出される。操作信号はコントローラCに入力される。
 センサー14aの操作信号に応じて、コントローラCは、オペレータがブームシリンダBCを上昇させようとしているのか、あるいは下降させようとしているのかを判定する。ブームシリンダBCを上昇させるための信号がコントローラCに入力されれば、コントローラCは比例電磁弁34をノーマル状態に保つ。言い換えると、比例電磁弁34を全開位置に保つ。この場合には、サブポンプSPから所定の吐出量が確保されるように、コントローラCは、電磁開閉弁50を図示の閉位置に保ち、電動モータMGの回転速度やサブポンプSPの傾転角を制御する。
 ブームシリンダBCを下降させる信号がセンサー14aからコントローラCに入力されると、コントローラCは、操作弁14の操作量に応じて、オペレータが求めているブームシリンダBCの下降速度を演算し、比例電磁弁34を閉じて、電磁開閉弁50を開位置に切り換える。
 比例電磁弁34を閉じて電磁開閉弁50を開位置に切り換えれば、ブームシリンダBCの戻り流体の全量がアシストモータAMに供給される。しかし、アシストモータAMで消費する流量が、オペレータが求めた下降速度を維持するために必要な流量よりも少なければ、ブームシリンダBCはオペレータが求めた下降速度を維持できない。この場合には、コントローラCは、操作弁14の操作量、アシストモータAMの傾転角や電動モータMGの回転速度などをもとにして、アシストモータAMが消費する流量以上の流量をタンクTに戻すように比例電磁弁34の開度を制御し、オペレータが求めるブームシリンダBCの下降速度を維持する。
 アシストモータAMに流体が供給されると、アシストモータAMが回転する。アシストモータAMの回転力は、同軸回転する電動モータMGに作用する。アシストモータAMの回転力は、電動モータMGに対するアシスト力として作用する。したがって、アシストモータAMの回転力の分だけ、消費電力を少なくできる。
 電動モータMGに対して電力を供給せず、アシストモータAMの回転力だけで、サブポンプSPを回転させることもできる。この場合は、アシストモータAMおよびサブポンプSPが圧力変換機能を発揮する。
 電磁開閉弁50を開位置に切り換えた状態で、オペレータがブームシリンダBCの下降を急停止させるために、操作弁3、14を急激に中立位置に戻すと、電磁開閉弁50が追従できずに切り換え遅れが生じることがある。
 電磁開閉弁50に切り換え遅れが生じると、ブームシリンダBCの戻り油の多くが接続用通路42に流れ込む。戻り油の圧力はレギュレータ36に作用するので、アシストモータAMの1回転当たりの押し除け容積を小さくし、そのトルクを電動モータMGの吸収トルク以内に抑えることができる。
 アシストモータAMのトルクが、電動モータMGの吸収トルク以内に抑えられるので、ブームシリンダBCの圧力が上昇し、ブレーキ作用が増大するため逸走しない。制動距離を短くでき、オペレータの操作に違和感を与えることがなくなる。
 アシストモータAMがその押し除け容積を下げるまでに多少の時間がかかる場合があり、この場合は、接続用通路42の圧力が多少上昇する。しかし、リリーフ弁52が同時にリリーフ機能を発揮できるように設定しているので、電磁開閉弁50の切り換え遅れによって、アシストモータAMのトルクが、発電機の吸収トルク以上にはならない。
 しかも、リリーフ弁52は絞り53によって実質的に圧力オーバーライドが悪くなっているので、ブームシリンダBCに対してはショックなしに制動力を大きくできる。
 次に、旋回モータRMの旋回作動とブームシリンダBCの下降作動とを同時に行う場合について説明する。
 旋回モータRMを旋回させながら、ブームシリンダBCを下降させる場合は、旋回モータRMからの流体と、ブームシリンダBCからの戻り流体とが、接続用通路42で合流してアシストモータAMに供給される。
 接続用通路42の圧力が上昇すれば、それにともなって合流通路43側の圧力も上昇する。その圧力が旋回モータRMの旋回圧あるいはブレーキ圧よりも高くなったとしても、チェック弁44、45があるので、旋回モータRMには影響を及ぼさない。
 接続用通路42側の圧力が旋回圧あるいはブレーキ圧よりも低くなれば、コントローラCは、圧力センサー47からの圧力信号に基づいて電磁切換弁46を閉じる。
 したがって、旋回モータRMの旋回動作とブームシリンダBCの下降動作とを同時に行う場合は、旋回圧あるいはブレーキ圧にかかわりなく、ブームシリンダBCの必要下降速度を基準にしてアシストモータAMの傾転角を決めればよい。
 いずれにしても、アシストモータAMの出力で、サブポンプSPの出力をアシストでき、サブポンプSPから吐出された流量を、第1、2比例電磁絞り弁40、41で按分して、第1、2回路系統に供給できる。
 アシストモータAMを駆動源として電動モータMGを発電機として使用する場合には、サブポンプSPの傾転角をゼロにしてほぼ無負荷状態にし、アシストモータAMには、電動モータMGを回転させるために必要な出力を維持しておけば、アシストモータAMの出力を利用して、電動モータMGに発電機能を発揮させることができる。
 この実施形態では、エンジンEの出力を利用してジェネレータ22で発電したり、アシストモータAMを利用して電動モータMGに発電させたりすることができる。発電した電力はバッテリー24に蓄電される。しかしながら、この実施形態では家庭用の電源25を利用してバッテリー24に蓄電できるようにしているので、電動モータMGの電力を多岐にわたって調達することができる。
 この実施形態では、旋回モータRMやブームシリンダBCからの流体を利用してアシストモータAMを回転させ、アシストモータAMの出力でサブポンプSPや電動モータMGをアシストできるので、回生動力を利用するまでの間のエネルギーロスが最小限に抑えられる。
 軽作業状態から重作業状態に応じて電動モータMGの出力を制御できるので、特に、地ならしなどの軽作業では、電動モータMGの出力を相対的に小さくできる。したがって、バッテリー消費が小さくなり、消費電力が少なくなった分、バッテリーの寿命を延ばすことができる。
 場合によっては、搭載するバッテリーの蓄電容量を小さくし、バッテリーを小型化することもできる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的に限定する趣旨ではない。
 本願は日本国特許庁に2010年2月12日に出願された特願2010-29345号及び2010年3月26日に出願された特願2010-72560号に基づく優先権を主張し、これら出願の全ての内容は参照により本明細書に組み込まれる。
 パワーショベルなどのハイブリッド建設機械に利用可能である。

Claims (3)

  1.  ハイブリッド建設機械の制御システムであって、
     可変容量のメインポンプと、
     前記メインポンプに接続され、複数の操作弁を有する回路系統と、
     前記メインポンプの傾転角を制御するレギュレータと、
     前記回路系統に設けられ、前記複数の操作弁のいずれかを切り換え操作した場合に発生するパイロット圧を前記レギュレータに導くパイロット流路と、
     電動モータと、
     前記メインポンプの吐出側に接続され、前記電動モータの出力で駆動する可変容量のサブポンプと、
     前記サブポンプに設けられ、前記サブポンプの傾転角を制御するレギュレータと、
     前記パイロット流路に設けられ、前記パイロット圧を検出する圧力センサーと、
     前記圧力センサーに接続し、前記圧力センサーからの圧力信号に応じて前記サブポンプの前記レギュレータを制御し、前記メインポンプの出力を検出して前記メインポンプの出力に応じてあらかじめ記憶されたテーブルに基づいて前記電動モータの出力を制御するコントローラと、
    を備える制御システム。
  2.  請求項1に記載の制御システムであって、
     前記コントローラは、前記テーブルに基づいて出力された前記出力制御値をフィルタリングし、前記フィルタリングされた前記出力制御値に基づき前記電動モータの出力を制御する、
    制御システム。
  3.  請求項1に記載の制御システムであって、
     前記テーブルは、重作業から軽作業に応じた出力制御値を保持し、
     前記コントローラは、前記メインポンプの出力に応じて重作業かあるいは軽作業かを判定し、作業状態に応じた前記出力制御値に基づいて前記電動モータを制御する、
    制御システム。
PCT/JP2011/052494 2010-02-12 2011-02-07 ハイブリッド建設機械の制御システム WO2011099437A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/512,863 US8655558B2 (en) 2010-02-12 2011-02-02 Control system for hybrid construction machine
CN201180003453.4A CN102482867B (zh) 2010-02-12 2011-02-07 混合动力建筑机械的控制系统
KR1020127008486A KR101368031B1 (ko) 2010-02-12 2011-02-07 하이브리드 건설 기계의 제어 시스템
DE112011100518T DE112011100518T5 (de) 2010-02-12 2011-02-07 Steuersystem für eine Hybrid-Baumnaschine
US14/109,260 US9026297B2 (en) 2010-02-12 2013-12-17 Control system for hybrid construction machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-029345 2010-02-12
JP2010029345A JP5265595B2 (ja) 2010-02-12 2010-02-12 ハイブリッド建設機械の制御装置
JP2010-072560 2010-03-26
JP2010072560A JP5398614B2 (ja) 2010-03-26 2010-03-26 ハイブリッド建設機械の制御装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/512,863 A-371-Of-International US8655558B2 (en) 2010-02-12 2011-02-02 Control system for hybrid construction machine
US14/109,260 Continuation US9026297B2 (en) 2010-02-12 2013-12-17 Control system for hybrid construction machine

Publications (1)

Publication Number Publication Date
WO2011099437A1 true WO2011099437A1 (ja) 2011-08-18

Family

ID=44367711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052494 WO2011099437A1 (ja) 2010-02-12 2011-02-07 ハイブリッド建設機械の制御システム

Country Status (5)

Country Link
US (2) US8655558B2 (ja)
KR (1) KR101368031B1 (ja)
CN (1) CN102482867B (ja)
DE (1) DE112011100518T5 (ja)
WO (1) WO2011099437A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8655558B2 (en) * 2010-02-12 2014-02-18 Kayaba Industry Co., Ltd. Control system for hybrid construction machine
JP5984571B2 (ja) * 2012-08-09 2016-09-06 Kyb株式会社 ハイブリッド建設機械の制御装置
KR102067838B1 (ko) * 2013-03-25 2020-01-17 두산인프라코어 주식회사 건설기계의 유압시스템
KR101847760B1 (ko) 2014-04-03 2018-04-10 히다찌 겐끼 가부시키가이샤 건설 기계
JP6152473B2 (ja) 2014-05-16 2017-06-21 日立建機株式会社 作業機械の圧油エネルギ回生装置
CN104196927B (zh) * 2014-08-08 2018-04-27 徐州五洋科技股份有限公司 一种下运带式输送机盘式制动器控制装置
US9765499B2 (en) 2014-10-22 2017-09-19 Caterpillar Inc. Boom assist management feature
WO2016093393A1 (ko) * 2014-12-10 2016-06-16 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 유압 회로
WO2017056200A1 (ja) * 2015-09-29 2017-04-06 日立建機株式会社 作業機械の圧油エネルギ回生装置
NO343276B1 (en) * 2016-11-30 2019-01-14 Impact Solutions As A method of controlling a prime mover and a plant for controlling the delivery of a pressurized fluid in a conduit
US11987949B2 (en) 2017-08-30 2024-05-21 Topcon Positioning Systems, Inc. Method and apparatus for machine operator command attenuation
CN107859671A (zh) * 2017-12-11 2018-03-30 徐州工程学院 一种负载敏感多路阀试验装置及试验方法
US11828040B2 (en) * 2019-09-27 2023-11-28 Topcon Positioning Systems, Inc. Method and apparatus for mitigating machine operator command delay

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329086A (ja) * 1996-06-13 1997-12-22 Yutani Heavy Ind Ltd バッテリ駆動の作業機械
JP2001003397A (ja) * 1999-06-25 2001-01-09 Kobe Steel Ltd ハイブリッド建設機械の制御装置
JP2007262978A (ja) * 2006-03-28 2007-10-11 Shin Caterpillar Mitsubishi Ltd ハイブリッド作業機械の出力制御装置及びハイブリッド作業機械の出力制御方法
JP2007327527A (ja) * 2006-06-06 2007-12-20 Kayaba Ind Co Ltd エネルギー回生型動力装置
JP2008057687A (ja) * 2006-08-31 2008-03-13 Kayaba Ind Co Ltd 油圧制御装置
JP2009235717A (ja) * 2008-03-26 2009-10-15 Kayaba Ind Co Ltd ハイブリッド建設機械の制御装置
JP2009236191A (ja) * 2008-03-26 2009-10-15 Kayaba Ind Co Ltd ハイブリッド建設機械の制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60037740T2 (de) * 1999-06-25 2009-01-15 Kobelco Construction Machinery Co., Ltd., Hiroshima Hybridbaumaschine und steuervorrichtung für diese baumaschine
JP4489258B2 (ja) * 2000-07-17 2010-06-23 日立建機株式会社 建設機械の電子制御システム
US7302320B2 (en) * 2001-12-21 2007-11-27 Oshkosh Truck Corporation Failure mode operation for an electric vehicle
JP2004150304A (ja) * 2002-10-29 2004-05-27 Komatsu Ltd エンジンの制御装置
JP4024192B2 (ja) 2003-09-08 2007-12-19 株式会社小松製作所 ハイブリッド作業機械の駆動制御装置
JP4171467B2 (ja) * 2005-01-20 2008-10-22 株式会社小松製作所 建設機械の制御モード切換装置および建設機械
US8712639B2 (en) * 2006-08-30 2014-04-29 Ford Global Technologies Integrated control system for stability control of yaw, roll and lateral motion of a driving vehicle using an integrated sensing system to determine longitudinal velocity
JP2008121659A (ja) * 2006-10-20 2008-05-29 Kobelco Contstruction Machinery Ltd ハイブリッド作業機械
US8978798B2 (en) * 2007-10-12 2015-03-17 Odyne Systems, Llc Hybrid vehicle drive system and method and idle reduction system and method
US8049460B2 (en) * 2007-07-18 2011-11-01 Tesla Motors, Inc. Voltage dividing vehicle heater system and method
JP5314906B2 (ja) * 2008-02-29 2013-10-16 ニチユ三菱フォークリフト株式会社 作業用車両の制御方法および作業用車両
JP5337935B2 (ja) 2008-07-28 2013-11-06 株式会社高尾 遊技機
JP5131115B2 (ja) 2008-09-22 2013-01-30 富士通株式会社 表示システムおよび表示装置
CN102282376B (zh) * 2009-01-16 2014-12-10 住友重机械工业株式会社 混合式工作机械及其控制方法
US8655558B2 (en) * 2010-02-12 2014-02-18 Kayaba Industry Co., Ltd. Control system for hybrid construction machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329086A (ja) * 1996-06-13 1997-12-22 Yutani Heavy Ind Ltd バッテリ駆動の作業機械
JP2001003397A (ja) * 1999-06-25 2001-01-09 Kobe Steel Ltd ハイブリッド建設機械の制御装置
JP2007262978A (ja) * 2006-03-28 2007-10-11 Shin Caterpillar Mitsubishi Ltd ハイブリッド作業機械の出力制御装置及びハイブリッド作業機械の出力制御方法
JP2007327527A (ja) * 2006-06-06 2007-12-20 Kayaba Ind Co Ltd エネルギー回生型動力装置
JP2008057687A (ja) * 2006-08-31 2008-03-13 Kayaba Ind Co Ltd 油圧制御装置
JP2009235717A (ja) * 2008-03-26 2009-10-15 Kayaba Ind Co Ltd ハイブリッド建設機械の制御装置
JP2009236191A (ja) * 2008-03-26 2009-10-15 Kayaba Ind Co Ltd ハイブリッド建設機械の制御装置

Also Published As

Publication number Publication date
CN102482867A (zh) 2012-05-30
US9026297B2 (en) 2015-05-05
US20140107880A1 (en) 2014-04-17
KR20120061954A (ko) 2012-06-13
CN102482867B (zh) 2014-12-17
US8655558B2 (en) 2014-02-18
US20120245782A1 (en) 2012-09-27
DE112011100518T5 (de) 2012-11-29
KR101368031B1 (ko) 2014-02-26

Similar Documents

Publication Publication Date Title
WO2011099437A1 (ja) ハイブリッド建設機械の制御システム
JP5078692B2 (ja) ハイブリッド建設機械の制御装置
JP5419572B2 (ja) ハイブリッド建設機械の制御装置
JP5511425B2 (ja) ハイブリッド建設機械の制御装置
JP5489563B2 (ja) ハイブリッド建設機械の制御装置
JP5078693B2 (ja) ハイブリッド建設機械の制御装置
JP5355493B2 (ja) ハイブリッド建設機械
JP5258341B2 (ja) ハイブリッド建設機械の制御装置
WO2010128645A1 (ja) ハイブリッド建設機械の制御装置
JP5317517B2 (ja) ハイブリッド建設機械の制御装置
JP4942699B2 (ja) ハイブリッド建設機械の制御装置
WO2011145432A1 (ja) ハイブリッド作業機械
JP5197479B2 (ja) ハイブリッド建設機械
JP5398614B2 (ja) ハイブリッド建設機械の制御装置
JP5265595B2 (ja) ハイブリッド建設機械の制御装置
JP5078694B2 (ja) ハイブリッド建設機械の制御装置
WO2011096404A1 (ja) 建設機械の充電装置
JP2009275872A (ja) ハイブリッド建設機械の制御装置
JP5197478B2 (ja) ハイブリッド建設機械
JP5213524B2 (ja) ハイブリッド建設機械の制御装置
JP2013145059A (ja) 建設機械の制御方法及び制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003453.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127008486

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13512863

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111005180

Country of ref document: DE

Ref document number: 112011100518

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742181

Country of ref document: EP

Kind code of ref document: A1