WO2011093147A1 - セルロース及びポリ乳酸を含有する組成物の製造方法 - Google Patents

セルロース及びポリ乳酸を含有する組成物の製造方法 Download PDF

Info

Publication number
WO2011093147A1
WO2011093147A1 PCT/JP2011/050546 JP2011050546W WO2011093147A1 WO 2011093147 A1 WO2011093147 A1 WO 2011093147A1 JP 2011050546 W JP2011050546 W JP 2011050546W WO 2011093147 A1 WO2011093147 A1 WO 2011093147A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
cellulose
dispersion
resin composition
cellulose fiber
Prior art date
Application number
PCT/JP2011/050546
Other languages
English (en)
French (fr)
Inventor
智春 多喜田
寿人 林
雅昭 小澤
容督 河西
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2011551800A priority Critical patent/JP5660333B2/ja
Publication of WO2011093147A1 publication Critical patent/WO2011093147A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/06Cellulose hydrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers

Definitions

  • the present invention relates to a method for producing a composition containing cellulose and polylactic acid, and more specifically, a composite resin in which cellulose fibers are dispersed in polylactic acid, and the uniform dispersibility of the fibers and ease of processing of a molded body Relates to a method for producing an improved composition.
  • cellulose is abundant in existing quantities, is a resource that is biodegradable and has a low environmental impact, has excellent properties as a material, such as high crystallinity, high tensile strength, and low coefficient of thermal expansion. It is a material expected from the future.
  • One method for effectively utilizing cellulose is to use it as a reinforcing material.
  • a blend of inorganic fibers such as glass has been used.
  • a resin molded body in which inorganic fibers are blended has a problem that a residue derived from the inorganic fibers is generated during incineration, and thus must be disposed of by landfill processing or the like. If plant fibers such as bamboo, hemp, kenaf, etc., which have relatively high strength, can be effectively used as reinforcing materials, these will eventually be decomposed into water and carbon dioxide, which will lead to the solution of the above problems. Yes.
  • polylactic acid which is a plant-derived biodegradable resin
  • polylactic acid is inferior in heat resistance if it is amorphous, and has the disadvantage that the elastic modulus does not improve even if it is crystallized.
  • the combination of materials is considered effective.
  • polylactic acid itself is a plant-derived material, it is preferable to use plant natural fibers in the reinforcing material. From this viewpoint, several patents relating to composite resins of cellulose and polylactic acid have been proposed. .
  • Patent Document 1 discloses a molded product in which a polylactic acid resin and powdered cellulose (average particle diameter: 1 to 60 ⁇ m) are melt-mixed and combined.
  • Patent Document 2 proposes a material that combines bacterial cellulose and polylactic acid in a powder form after disaggregating the produced bacterial cellulose (filtering with a 150 mesh filter) and then lyophilizing after substitution with acetone and cyclohexane.
  • Patent Document 3 discloses a material in which microfibrillated cellulose obtained by immersing and dehydrating commercially available microfibrillated cellulose (fiber diameter: 0.01 to 10 ⁇ m) in acetone is combined with polylactic acid using a dispersant. Has been proposed.
  • the composite resin material composed of cellulose and polylactic acid it is preferable to use a refined cellulose in consideration of the adhesiveness at the interface between the polylactic acid and the fiber and the appearance of the molded body.
  • a cellulose drying process is involved, and the process becomes complicated, and cellulose fiber-containing resin on an industrial scale. It was difficult to produce a molded product.
  • a composite resin material in which cellulose and polylactic acid are simply melted and mixed cellulose often appears in a granular form after molding, and there has been a demand for providing a resin composition that provides a molded article with an excellent appearance. .
  • the present invention has been made in view of such circumstances, and more easily in the complexing of cellulose fiber and polylactic acid, a composite resin having high uniform dispersibility of cellulose fiber in polylactic acid and excellent moldability.
  • the manufacturing method which obtains is provided.
  • the present inventors have dissolved polylactic acid in an organic solvent dispersion of fine cellulose fibers and removed the solvent in a state where the resin is uniformly dissolved. As a result, it was found that a composite resin excellent in dispersibility of cellulose fibers in polylactic acid was obtained, and a molded article excellent in surface appearance could be easily produced from the composite resin, and the present invention was achieved.
  • the present invention provides a step of preparing a dispersion in which finely divided cellulose fibers are dispersed in an organic solvent capable of dissolving polylactic acid, dissolving polylactic acid in the dispersion in which the cellulose fibers are dispersed,
  • This invention relates to a method for producing a cellulose fiber-containing resin composition, which comprises the steps of: preparing an organic solvent from the polylactic acid solution.
  • the organic solvent removal step is preferably performed according to a reprecipitation method, or preferably according to a solvent concentration method.
  • the micronized cellulose fiber is preferably a cellulose fiber having a fiber diameter of 0.001 to 1 ⁇ m, and it is particularly preferable to use a cellulose fiber prepared by a wet pulverization method.
  • the organic solvent is dimethyl sulfoxide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, toluene, 1,4-dioxane, N, N-dimethylformamide, tetrahydrofuran, 1,3-dioxolane or chloroform. Is preferred.
  • the cellulose fiber is dispersed in dimethyl sulfoxide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, toluene, 1,4-dioxane or N, N-dimethylformamide. It is preferable to heat the dispersed liquid at a temperature of 60 to 150 ° C. to dissolve the polylactic acid.
  • a resin composition having high uniform dispersibility of cellulose fibers in polylactic acid and excellent moldability can be produced regardless of the cellulose species used. Further, according to the present invention, a resin composition having high uniform dispersibility of cellulose fibers and excellent moldability can be easily produced on an industrial scale. Furthermore, according to the present invention, it is possible to produce a resin composition capable of producing a molded article having excellent surface appearance and excellent bending elastic modulus and impact strength.
  • FIG. 1 is a polarization micrograph observing the dispersion state of cellulose fibers in the resin composition prepared in Example 4.
  • FIG. 2 is a polarization micrograph observing the dispersion state of cellulose fibers in the resin composition prepared in Example 5.
  • FIG. 3 is a polarization micrograph observing the dispersion state of cellulose fibers in the resin composition prepared in Example 6.
  • FIG. 4 is a polarization micrograph observing the dispersion state of cellulose fibers in the resin composition prepared in Example 7.
  • FIG. 5 is a polarization micrograph observing the dispersion state of cellulose fibers in the resin composition prepared in Example 8.
  • FIG. 6 is a polarization micrograph observing the dispersion state of cellulose fibers in the resin composition prepared in Example 9.
  • FIG. 1 is a polarization micrograph observing the dispersion state of cellulose fibers in the resin composition prepared in Example 4.
  • FIG. 2 is a polarization micrograph observing the dispersion state of cellulose fibers
  • FIG. 7 is a polarization micrograph observing the dispersion state of cellulose fibers in the resin composition prepared in Example 10.
  • FIG. 8 is a polarization micrograph observing the dispersion state of cellulose fibers in the resin composition prepared in Comparative Example 1.
  • FIG. 9 is a polarization micrograph observing the dispersion state of cellulose fibers in the resin composition prepared in Comparative Example 2.
  • FIG. 10 is a polarization micrograph observing the dispersion state of cellulose fibers in the resin composition prepared in Comparative Example 3.
  • the method for producing a cellulose fiber-containing resin composition of the present invention comprises (a) a step of preparing a dispersion in which finely divided cellulose fibers are dispersed in an organic solvent capable of dissolving polylactic acid, and (b) the cellulose fibers A step of dissolving polylactic acid in the dispersed dispersion to prepare a polylactic acid solution, and (c) a step of removing an organic solvent from the polylactic acid solution.
  • Examples of the cellulose used in the dispersion liquid in which the cellulose fibers used in the present invention are dispersed include cellulose made from pulp, bacterial cellulose, and squirt cellulose.
  • cellulose fibers pulverized and refined are used.
  • the pulverization method of cellulose is not particularly limited, but it is preferable to refine the cellulose using a wet pulverization method as disclosed in JP-A-2005-270891. That is, cellulose is pulverized by injecting and colliding a dispersion liquid in which cellulose is dispersed from a pair of nozzles at a high pressure. For example, by using a high-pressure pulverizer manufactured by Sugino Machine Co., Ltd. Can be implemented.
  • the fiber diameter of the cellulose fiber thus refined is 0.001 to 1 ⁇ m.
  • the dispersion of cellulose fibers refined by using the wet pulverization method is an aqueous dispersion
  • it can be easily made into a dispersion of cellulose fibers in an organic solvent using, for example, a solvent replacement method.
  • a solvent replacement method an organic solvent having a relatively high boiling point that can easily replace the aqueous dispersion with the organic solvent dispersion and dissolve polylactic acid is preferable.
  • a low boiling point organic solvent that can dissolve polylactic acid, such as tetrahydrofuran, 1,3-dioxolane, and chloroform, may be used.
  • the dispersion in which the cellulose fibers used in the present invention are dispersed is not limited to those obtained by solvent replacement from the aqueous dispersion, but is prepared directly as an organic solvent dispersion without solvent replacement. Can be used. In this case, it is preferable to use dimethyl sulfoxide because a desired dispersion liquid in which fine cellulose fibers are dispersed can be obtained.
  • the polylactic acid used in the present invention includes a homopolymer or copolymer of polylactic acid.
  • the arrangement pattern of the copolymer may be any of random copolymer, alternating copolymer, block copolymer, and graft copolymer. Further, it may be a blend polymer with other resin mainly composed of polylactic acid homopolymer or copolymer. Examples of other resins include biodegradable resins other than polylactic acid, general-purpose thermoplastic resins, and general-purpose thermoplastic engineering plastics.
  • the polylactic acid is not particularly limited, and examples thereof include those obtained by ring-opening polymerization of lactide and those obtained by direct polycondensation of D-form, L-form, racemate, etc. of lactic acid. Any of lactic acid, poly-L-lactic acid, a copolymer of D-lactic acid and L-lactic acid, and a mixture of poly-D-lactic acid and poly-L-lactic acid may be used. As a mixture of poly-D-lactic acid and poly-L-lactic acid, stereocomplex type polylactic acid exhibits higher heat resistance than poly-D-lactic acid or poly-L-lactic acid.
  • the number average molecular weight of polylactic acid is generally about 10,000 to 500,000.
  • polylactic acid obtained by crosslinking with a crosslinking agent using heat, light, radiation or the like can be used.
  • 1,4-dioxane, N, N-dimethylformamide or the like it is desirable to heat the dispersion to a temperature at which polylactic acid dissolves (depending on the organic solvent used). Since the decomposition of polylactic acid is promoted as it is heated to a higher temperature, the dispersion is heated at a temperature of 40 ° C. or higher, preferably 60 ° C. or higher and 150 ° C.
  • polylactic acid dissolves at room temperature, so heating is unnecessary.
  • ⁇ (C) Process> The step of removing the organic solvent from the polylactic acid solution thus obtained is carried out by (i) reprecipitation method or (ii) solvent concentration method.
  • the solvent used for reprecipitation is not particularly limited as long as it is a poor solvent for polylactic acid.
  • methanol, ethanol, and water can be used.
  • the polylactic acid solution is preferably added dropwise to a poor solvent in a state where the polylactic acid is completely dissolved.
  • the resin thus precipitated is preferably vacuum-dried at 40 to 80 ° C. to produce a cellulose fiber-containing resin composition.
  • a cellulose fiber-containing resin composition is produced by concentrating a polylactic acid solution as it is at 60 to 150 ° C. under reduced pressure.
  • the resin composition obtained by the production method of the present invention can contain a known inorganic filler.
  • the inorganic filler include glass fiber, carbon fiber, talc, mica, silica, kaolin, clay, wollastonite, glass beads, glass flake, potassium titanate, calcium carbonate, calcium phosphate, magnesium sulfate, titanium oxide and the like.
  • the shape of these inorganic fillers may be any of fibrous, granular, plate-like, needle-like, spherical, and powder. These inorganic fillers can be used within 300 parts by mass with respect to 100 parts by mass of polylactic acid.
  • the resin composition obtained by the manufacturing method of this invention can contain a well-known flame retardant.
  • the flame retardant include halogen flame retardants such as bromine compounds and chlorine compounds, melamine flame retardants, antimony flame retardants such as antimony trioxide and antimony pentoxide, aluminum hydroxide, magnesium hydroxide and silicone compounds.
  • examples thereof include inorganic flame retardants, red phosphorus, phosphoric acid esters, phosphorous flame retardants such as ammonium polyphosphate, phosphazene, and fluorine resins such as PTFE. These flame retardants can be used within 200 parts by mass with respect to 100 parts by mass of polylactic acid.
  • heat stabilizers In addition to the above components, heat stabilizers, light stabilizers, UV absorbers, antioxidants, impact modifiers, antistatic agents, pigments, colorants, mold release agents, lubricants, plasticizers, compatibilizers, foaming Agents, fragrances, antibacterial and antifungal agents, other various fillers, and various additives usually used in the production of general synthetic resins can also be used in combination with the resin composition obtained by the production method of the present invention.
  • various molded products can be easily produced by using conventional molding methods such as general injection molding, blow molding, vacuum molding, compression molding, etc. Can do.
  • Example 1 Preparation of aqueous dispersion of cellulose fiber
  • aqueous cellulose fiber dispersions (1) to (3) were prepared.
  • a 0.7 mass% pulp-derived cellulose fiber aqueous dispersion was prepared.
  • Example 2 Preparation of cellulose fiber / dimethyl sulfoxide dispersion
  • 150 g of dimethyl sulfoxide was added to 150 g of the 0.7 mass% pulp-derived cellulose fiber aqueous dispersion prepared in Example 1 (1) and stirred, and water was completely distilled off by concentration to obtain pulp-derived cellulose fiber / dimethyl. 81.5 g of a sulfoxide dispersion was prepared.
  • Example 3 Preparation of cellulose fiber / N, N-dimethylacetamide dispersion
  • 100 g of N, N-dimethylacetamide was added to 100 g of the 0.4 mass% bacterial cellulose fiber aqueous dispersion prepared in Example 1 (3), and the water was completely distilled off by concentration to give bacterial cellulose fiber N, N-.
  • 34 g of dimethylacetamide dispersion was prepared.
  • Example 4 Preparation of resin composition by solvent concentration method (1)
  • 6.8 g of polylactic acid (LACEA [registered trademark] H-100, manufactured by Mitsui Chemicals, Inc.) was added to 61.0 g of the pulp-derived cellulose fiber / dimethyl sulfoxide dispersion prepared in Example 2 (1) and heated to 110 ° C. Then, polylactic acid was dissolved by stirring. Dimethyl sulfoxide was distilled off by concentrating the solution under reduced pressure while heating at 110 ° C. to prepare 7.21 g of a resin composition of pulp-derived cellulose fiber and polylactic acid.
  • LACEA registered trademark] H-100, manufactured by Mitsui Chemicals, Inc.
  • Example 5 Preparation of resin composition by solvent concentration method (2)
  • 1.0 g of polylactic acid (LACEA [registered trademark] H-100, manufactured by Mitsui Chemicals, Inc.) is added to 4.0 g of the pulp-derived microcrystalline cellulose fiber / dimethyl sulfoxide dispersion prepared in Example 2 (2), and dimethyl is added.
  • a small amount of sulfoxide was added, and the mixture was heated to 110 ° C. and stirred to dissolve polylactic acid. This solution was heated at 110 ° C. and concentrated under reduced pressure to distill off dimethyl sulfoxide, thereby producing 0.69 g of a resin composition of pulp-derived microcrystalline cellulose fibers and polylactic acid.
  • Example 6 Preparation of resin composition by solvent concentration method (3)
  • LACEA registered trademark] H-100, manufactured by Mitsui Chemicals, Inc.
  • Example 7 Preparation of resin composition by solvent concentration method (4)
  • polylactic acid was dissolved by stirring. This solution was heated at 80 ° C. and concentrated under reduced pressure to distill away N, N-dimethylacetamide, thereby producing 0.30 g of a resin composition of bacterial cellulose fiber and polylactic acid.
  • Example 8 Preparation of resin composition by reprecipitation method (1)
  • 50 g of N, N-dimethylacetamide and 4.5 g of polylactic acid (LACEA [registered trademark] H-100, manufactured by Mitsui Chemicals, Inc.) were added to 50 g of the pulp-derived cellulose fiber / dimethyl sulfoxide dispersion prepared in Example 2 (1).
  • polylactic acid was dissolved by heating to 100 ° C. and stirring. 20 g of this solution was reprecipitated in 50 g of methanol, and the precipitated resin was filtered and vacuum dried at 40 ° C. to prepare 0.85 g of a resin composition of pulp-derived cellulose fibers and polylactic acid.
  • N, N-dimethylacetamide was used, but a resin composition of pulp-derived cellulose fiber and polylactic acid can be produced without using N, N-dimethylacetamide.
  • Example 9 Preparation of resin composition by reprecipitation method (2)] 2.6 g of polylactic acid (LACEA [registered trademark] H-100, manufactured by Mitsui Chemicals, Inc.) is added to 50 g of the bacterial cellulose fiber / dimethyl sulfoxide dispersion prepared in Example 2 (3), and the mixture is heated to 110 ° C. and stirred. As a result, polylactic acid was dissolved. This solution was reprecipitated in 200 g of methanol, and the precipitated resin was filtered and vacuum dried at 40 ° C. to prepare 2.70 g of a resin composition of bacterial cellulose fiber and polylactic acid.
  • LACEA registered trademark] H-100, manufactured by Mitsui Chemicals, Inc.
  • Example 10 Preparation of resin composition by reprecipitation method (3)
  • polylactic acid LACEA [registered trademark] H-100, manufactured by Mitsui Chemicals, Inc.
  • LACEA registered trademark
  • H-100 manufactured by Mitsui Chemicals, Inc.
  • Example 11 Preparation of resin composition by reprecipitation method (4)
  • a pulp-derived cellulose fiber / dimethyl sulfoxide dispersion prepared in the same manner as in Example 2 (1) 4.5 kg of polylactic acid (LACEA [registered trademark] H-100, manufactured by Mitsui Chemicals, Inc.) was added, and 100 The polylactic acid was dissolved by heating to ° C and stirring. 54.5 kg of this solution was reprecipitated in 500 kg of methanol, and the precipitated resin was filtered and vacuum dried at 40 ° C. to produce 4.8 kg of a resin composition of pulp-derived cellulose fibers and polylactic acid.
  • LACEA registered trademark
  • H-100 manufactured by Mitsui Chemicals, Inc.
  • This dispersion was dropped into 50 g of methanol and filtered, followed by vacuum drying at 40 ° C. to produce 0.98 g of a pulp-derived cellulose fiber and polylactic acid mixture.
  • 0.4 g of this mixture and 3.6 g of polylactic acid (Ingeo (registered trademark) 3001D, manufactured by Nature Works) were kneaded at 185 ° C., 50 rpm, 5 minutes in a lab plast mill (manufactured by Toyo Seiki Seisakusho), and derived from pulp 4.0 g of a resin composition of cellulose fiber and polylactic acid was produced.
  • a cellulose fiber / cyclohexane dispersion was freeze-dried at 0 ° C. or lower to obtain powdery cellulose fibers.
  • 0.2 g of this powdery cellulose fiber and 3.8 g of polylactic acid were used at 185 ° C., 50 rpm using Labo Plast Mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.). Kneading for 5 minutes produced 4.0 g of a resin composition of pulp-derived cellulose fiber and polylactic acid.
  • Sample preparation method Polylactic acid (Ingeo (registered trademark) 3001D manufactured by Nature Works) was added to each of the resin compositions prepared in Examples 4 to 6, Example 8, Example 10, and Comparative Examples 2 and 3. Using a Laboplast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.), melt kneading (185 ° C., 50 rpm, 5 minutes) was performed to prepare a resin composition containing 1% by mass of cellulose fiber in polylactic acid. This resin composition was molded by hot pressing (185 ° C.) to produce a film having a thickness of about 200 ⁇ m.
  • Ingeo (registered trademark) 3001D manufactured by Nature Works) was added to each of the resin compositions prepared in Examples 4 to 6, Example 8, Example 10, and Comparative Examples 2 and 3.
  • melt kneading 185 ° C., 50 rpm, 5 minutes
  • This resin composition was molded by hot pressing (185 ° C.) to produce a film having a thickness
  • the films produced using the resin compositions of Examples 4 to 6, Example 8, and Example 10 were not found to have agglomerates in the molded product visually. A molded product having an excellent appearance could be formed.
  • the films produced using the resin compositions of Comparative Examples 1 to 3 were found to have inferior surface appearance because microscopic or millimeter agglomerates were observed in the molded product by visual observation. It was.
  • the test piece (1) using the resin composition prepared in Example 11 has a flexural modulus as compared with the test piece (2) using only polylactic acid not containing the resin composition. Improved impact strength.
  • the test piece (3) using the unpulverized pulp-derived cellulose-containing resin composition is improved in both the flexural modulus and impact strength compared to the test piece (2), but the cellulose fiber refined by wet grinding.
  • the test piece (1) using the resin composition containing a greater degree of improvement in physical properties was obtained. It can be said that the above results show that the use of refined cellulose fibers provides the effect of improving the flexural modulus and impact strength, which are mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

【課題】セルロースファイバーとポリ乳酸の複合化においてより簡便に、ポリ乳酸中のセルロースファイバーの均一分散性が高く、且つ成形性に優れる複合樹脂を得る製造方法を提供すること。 【解決手段】ポリ乳酸を溶解可能な有機溶媒中に微細化されたセルロースファイバーが分散した分散液を準備する工程、前記セルロースファイバーが分散した分散液にポリ乳酸を溶解して、ポリ乳酸溶液を調製する工程、及び前記ポリ乳酸溶液から有機溶媒を除去する工程を含む、セルロースファイバー含有樹脂組成物の製造方法。

Description

セルロース及びポリ乳酸を含有する組成物の製造方法
 本発明は、セルロース及びポリ乳酸を含有する組成物の製造方法に関し、詳細にはポリ乳酸中にセルロースファイバーが分散された複合樹脂であって、該ファイバーの均一分散性並びに成形体の加工容易性が改良された組成物の製造方法に関する。
 自然環境保護の観点からこれまで未利用の資源を有効活用する研究が盛んに行われている。中でもセルロースは、現存量が豊富であること、生分解性を有し環境負荷が低い資源であること、高い結晶化度、高い引張強度、低い熱膨張率など、材料として優れた性質を持つことなどから今後期待される材料である。
 セルロースを有効活用する方法の一つとして補強材としての利用が挙げられる。従来では、樹脂成形体の機械的強度を高めるために、ガラス等の無機繊維を配合したものが用いられている。しかし、無機繊維が配合された樹脂成形体は、焼却時に無機繊維に由来する残渣が発生するため、埋め立て処理等により廃棄せざるを得ない点が問題となっている。補強材として相対的に強度の高い竹、麻、ケナフ等の植物繊維を有効利用できるなら、これらは最終的に水と二酸化炭素に分解されるため、上記の問題の解消につながるとして注目されている。
 ところで植物由来の生分解性樹脂であるポリ乳酸は、非晶質であると耐熱性に劣り、結晶化させても弾性率が向上しないという不利点を有することから、これら物性を補うための補強材の併用が有効であると考えられる。ポリ乳酸それ自体が植物由来材料であることから、その補強材においても植物性天然繊維を使用することが好ましく、この観点から、セルロースとポリ乳酸との複合樹脂に関する特許がいくつか提案されている。
 例えば特許文献1には、ポリ乳酸系樹脂と粉末状セルロース(平均粒径:1~60μm)を溶融混合し、複合化させた成形品が開示されている。
 特許文献2には、産生したバクテリアセルロースを離解処理(150メッシュフィルタで濾過)した後、アセトン、シクロヘキサン置換後に凍結乾燥し、粉状にしたバクテリアセルロースとポリ乳酸とを複合化させた材料が提案されている。
 また特許文献3には、市販のミクロフィブリル化セルロース(繊維径:0.01~10μm)をアセトンに浸漬して脱水したミクロフィブリル化セルロースを、分散剤を用いてポリ乳酸と複合化させた材料が提案されている。
 ところで、セルロースとポリ乳酸からなる複合樹脂材料において、ポリ乳酸と繊維の界面の接着性や、成形体の外観を考慮すると、セルロースを微細化したものを使用することが好ましい。しかしながら、これまで提案された上記技術では、粉末状セルロース又はミクロフィブリル化セルロースとポリ乳酸との複合化において、セルロースの乾燥工程を伴い、工程が煩雑なものとなり、工業スケールでのセルロースファイバー含有樹脂成形品の作製は困難なものとされていた。
 また、単にセルロースとポリ乳酸とを溶融・混合した複合樹脂材料では、成形後にセルロースが粒状に表出することが度々あり、優れた外観の成形品をもたらす樹脂組成物の提供が求められていた。
 本発明は、このような事情に鑑みてなされたものであり、セルロースファイバーとポリ乳酸の複合化においてより簡便に、ポリ乳酸中のセルロースファイバーの均一分散性が高く、且つ成形性に優れる複合樹脂を得る製造方法を提供するものである。
 本発明者らは、上記の課題を解決する為に鋭意検討を進めた結果、微細化されたセルロースファイバーの有機溶媒分散液にポリ乳酸を溶解し、樹脂が均一に溶解した状態で溶媒を除去することにより、ポリ乳酸中のセルロースファイバーの分散性に優れた複合樹脂が得られ、且つ、該複合樹脂から表面外観に優れた成形体を容易に製造できることを見出し、本発明に到達した。
 すなわち、本発明はポリ乳酸を溶解可能な有機溶媒中に微細化されたセルロースファイバーが分散した分散液を準備する工程、前記セルロースファイバーが分散した分散液にポリ乳酸を溶解して、ポリ乳酸溶液を調製する工程、及び前記ポリ乳酸溶液から有機溶媒を除去する工程を含む、セルロースファイバー含有樹脂組成物の製造方法に関する。
 前記有機溶媒の除去工程は、再沈殿法に従い行うことが好ましく、あるいは、溶媒濃縮法に従い行うことが好ましい。
 前記微細化されたセルロースファイバーは、繊維径が0.001乃至1μmのセルロースファイバーであることが好ましく、特に、湿式粉砕法により調製されたセルロースファイバーを用いることが好ましい。
 前記有機溶媒は、ジメチルスルホキシド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド、テトラヒドロフラン、1,3-ジオキソラン又はクロロホルムであることが好ましい。
 さらに前記ポリ乳酸溶液を調製する工程において、該セルロースファイバーがジメチルスルホキシド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、トルエン、1,4-ジオキサン又はN,N-ジメチルホルムアミド中に分散した分散液を60乃至150℃の温度で加熱し、ポリ乳酸を溶解することが好ましい。
 本発明によれば、使用するセルロース種によらずに、ポリ乳酸中のセルロースファイバーの均一分散性が高く、且つ成形性に優れる樹脂組成物を製造することができる。
 また本発明によれば、セルロースファイバーの均一分散性が高く、且つ成形性に優れる樹脂組成物を簡便に、しかも工業的スケールで製造することができる。
 さらに本発明によれば、表面外観に優れ、しかも曲げ弾性率及び衝撃強度に優れた成形体を製造することができる樹脂組成物を製造することができる。
図1は実施例4で調製した樹脂組成物におけるセルロースファイバーの分散状態を観察した偏光顕微鏡写真である。 図2は実施例5で調製した樹脂組成物におけるセルロースファイバーの分散状態を観察した偏光顕微鏡写真である。 図3は実施例6で調製した樹脂組成物におけるセルロースファイバーの分散状態を観察した偏光顕微鏡写真である。 図4は実施例7で調製した樹脂組成物におけるセルロースファイバーの分散状態を観察した偏光顕微鏡写真である。 図5は実施例8で調製した樹脂組成物におけるセルロースファイバーの分散状態を観察した偏光顕微鏡写真である。 図6は実施例9で調製した樹脂組成物におけるセルロースファイバーの分散状態を観察した偏光顕微鏡写真である。 図7は実施例10で調製した樹脂組成物におけるセルロースファイバーの分散状態を観察した偏光顕微鏡写真である。 図8は比較例1で調製した樹脂組成物におけるセルロースファイバーの分散状態を観察した偏光顕微鏡写真である。 図9は比較例2で調製した樹脂組成物におけるセルロースファイバーの分散状態を観察した偏光顕微鏡写真である。 図10は比較例3で調製した樹脂組成物におけるセルロースファイバーの分散状態を観察した偏光顕微鏡写真である。
 本発明のセルロースファイバー含有樹脂組成物の製造方法は、(a)ポリ乳酸を溶解可能な有機溶媒中に微細化されたセルロースファイバーが分散した分散液を準備する工程、(b)前記セルロースファイバーが分散した分散液にポリ乳酸を溶解して、ポリ乳酸溶液を調製する工程、及び(c)前記ポリ乳酸溶液から有機溶媒を除去する工程を含む。
<(a)工程>
 本発明で使用するセルロースファイバーが分散した分散液に用いるセルロースとしては、例えばパルプ、バクテリアセルロース、ホヤセルロースを原料とするセルロースが挙げられる。
 本発明においては、これらセルロースを粉砕し、微細化されたセルロースファイバーを用いる。セルロースの粉砕法は特に限定されないが、特開2005-270891号公報に開示されるような湿式粉砕法を用いて微細化することが好ましい。すなわち、セルロースを分散させた分散液を、一対のノズルから高圧でそれぞれ噴射して衝突させることにより、セルロースを粉砕するものであって、例えば(株)スギノマシン製の高圧粉砕装置を用いることにより実施できる。
 こうして微細化されたセルロースファイバーの繊維径は、0.001乃至1μmである。
 湿式粉砕法を用いることにより微細化されたセルロースファイバーの分散液が水分散液である場合、例えば溶媒置換法を用いて、容易に有機溶媒中のセルロースファイバーの分散液とすることができる。
 溶媒置換法を用いる場合、水分散液から容易に有機溶媒分散液に置換でき、ポリ乳酸を溶解できる比較的沸点の高い有機溶媒が好ましく、例えばジメチルスルホキシド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド等が挙げられ、特にジメチルスルホキシド、N,N-ジメチルアセトアミドなどの水との親和性及びセルロースとの親和性の高い溶媒が好ましい。なお、テトラヒドロフラン、1,3-ジオキソラン、クロロホルム等の、ポリ乳酸を溶解できる低沸点有機溶媒を使用してもよい。
 なお、本発明で使用するセルロースファイバーが分散した分散液は、水分散液から溶媒置換をおこなって得られたものに限定されず、溶媒置換を経ずに直接有機溶媒分散液として調製したものを用いることができる。この場合、ジメチルスルホキシドを用いると、微細化されたセルロースファイバーが分散した所望の分散液が得られるため、好ましい。
<(b)工程>
 本発明で使用するポリ乳酸は、ポリ乳酸のホモポリマー又はコポリマーを含む。ポリ乳酸がコポリマーの場合、コポリマーの配列様式はランダムコポリマー、交互コポリマー、ブロックコポリマー、グラフトコポリマーのいずれであっても良い。また、ポリ乳酸のホモポリマー又はコポリマーを主体とした、他樹脂とのブレンドポリマーであっても良い。他樹脂とは、ポリ乳酸以外の生分解性樹脂、汎用の熱可塑性樹脂、汎用の熱可塑性エンジニアリングプラスチックなどが挙げられる。
 ポリ乳酸としては特に限定されるものではないが、例えばラクチドを開環重合させたものや、乳酸のD体、L体、ラセミ体などを直接重縮合させたものが挙げられ、ポリ-D-乳酸、ポリ-L-乳酸、D-乳酸とL-乳酸のコポリマー、ポリ-D-乳酸とポリ-L-乳酸の混合物のいずれでもよい。当該ポリ-D-乳酸とポリ-L-乳酸の混合物として、ステレオコンプレックス型ポリ乳酸は、ポリ-D-乳酸又はポリ-L-乳酸よりも高耐熱性を示す。ポリ乳酸の数平均分子量は、一般に10,000から500,000程度である。またポリ乳酸を熱、光、放射線などを利用して架橋剤で架橋させたものも使用できる。
 前記ポリ乳酸を、(a)工程で準備したセルロースファイバーが分散した分散液に溶解させる際、有機溶媒として前述のジメチルスルホキシド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド等を用いた場合には、ポリ乳酸が溶解する温度(使用する有機溶媒によって異なる)まで、該分散液を加熱することが望ましい。高温に加熱するほどポリ乳酸の分解が促進されることから、40℃以上、好ましくは60℃以上で、150℃以下の温度で該分散液を加熱し、ポリ乳酸を溶解させ、ポリ乳酸溶液を調製することが好ましい。一方、有機溶媒として前述のテトラヒドロフラン、1,3-ジオキソラン又はクロロホルムを用いた場合、室温でポリ乳酸が溶解するため、加熱は不要である。
<(c)工程>
 こうして得られたポリ乳酸溶液から有機溶媒を除去する工程は、(i)再沈殿法、或いは、(ii)溶媒濃縮法により、実施される。
 (i)再沈殿法を用いる場合、再沈殿に用いる溶媒はポリ乳酸の貧溶媒であれば特に制限はなく、例えばメタノール、エタノール及び水を用いることができる。
 再沈殿を行う際、ポリ乳酸が完全に溶解している状態で、貧溶媒に該ポリ乳酸溶液を滴下することが好ましい。
 こうして析出した樹脂を、好ましくは40乃至80℃にて、真空乾燥させることにより、セルロースファイバー含有樹脂組成物を製造する。
 また、(ii)溶媒濃縮法を用いる場合、ポリ乳酸が完全に溶解している状態で溶媒を留去することが好ましい。具体的には60乃至150℃で、ポリ乳酸溶液をそのまま減圧濃縮させることにより、セルロースファイバー含有樹脂組成物を製造する。
<その他添加剤>
 本発明の製造方法により得られる樹脂組成物は、公知の無機充填剤を含有し得る。無機充填剤としては、例えば、ガラス繊維、炭素繊維、タルク、マイカ、シリカ、カオリン、クレー、ウオラストナイト、ガラスビーズ、ガラスフレーク、チタン酸カリウム、炭酸カルシウム、リン酸カルシウム、硫酸マグネシウム、酸化チタン等が挙げられる。これらの無機充填剤の形状は、繊維状、粒状、板状、針状、球状、粉末のいずれでもよい。これらの無機充填剤は、ポリ乳酸100質量部に対して、300質量部以内で使用できる。
 また、本発明の製造方法により得られる樹脂組成物は、公知の難燃剤を含有し得る。難燃剤としては、例えば、臭素化合物、塩素化合物等のハロゲン系難燃剤、メラミン系難燃剤、三酸化アンチモン、五酸化アンチモン等のアンチモン系難燃剤、水酸化アルミニウム、水酸化マグネシウム、シリコーン化合物等の無機系難燃剤、赤リン、リン酸エステル類、ポリリン酸アンモニウム、フォスファゼン等のリン系難燃剤、PTFE等のフッ素樹脂等が挙げられる。これらの難燃剤は、ポリ乳酸100質量部に対して、200質量部以内で使用できる。
 さらに上記成分以外にも、熱安定剤、光安定剤、紫外線吸収剤、酸化防止剤、衝撃改良剤、帯電防止剤、顔料、着色剤、離型剤、滑剤、可塑剤、相溶化剤、発泡剤、香料、抗菌抗カビ剤、その他の各種充填剤、一般的な合成樹脂の製造時に通常使用される各種添加剤も、本発明の製造方法により得られる樹脂組成物に併用することができる。
 本発明の製造方法により得られる樹脂組成物を成形する場合、一般の射出成形、ブロー成形、真空成形、圧縮成形等の慣用の成形法を使用することによって、各種成形品を容易に製造することができる。
[実施例1:セルロースファイバー水分散液の調製]
 特開2005-270891号公報に開示された「多糖類の湿式粉砕方法」の手順に準拠し、以下の通り(1)~(3)のセルロースファイバー水分散液を作製した。
(1)市販パルプ由来セルロース(Celite社製 Fibra-Cell BH-100)10gに水740gを加え分散させた後、(株)スギノマシン製高圧粉砕装置を用いて200MPaにて100回粉砕処理を行い、0.7質量%パルプ由来セルロースファイバー水分散液を作製した。
(2)市販パルプ由来微結晶セルロース(フナコシ(株)製 カラムクロマトグラフィー用 フナセル粉末II)15gに水1,235gを加え分散させた後、(株)スギノマシン製高圧粉砕装置を用いて200MPaにて100回粉砕処理を行い、1.0質量%パルプ由来微結晶セルロースファイバー水分散液を作製した。
(3)バクテリアセルロース(PT.NIRAMAS UTAMA社製)に水を加え家庭用ミキサーで粉砕した後、(株)スギノマシン製高圧粉砕装置を用いて200MPaにて30回粉砕処理を行い、0.4質量%バクテリアセルロースファイバー水分散液を作製した。
[実施例2:セルロースファイバー・ジメチルスルホキシド分散液の調製]
(1)実施例1(1)で作製した0.7質量%パルプ由来セルロースファイバー水分散液150gにジメチルスルホキシド150gを加え撹拌し、濃縮により完全に水を留去し、パルプ由来セルロースファイバー・ジメチルスルホキシド分散液81.5gを作製した。
(2)実施例1(2)で作製した1.0質量%パルプ由来微結晶セルロースファイバー水分散液50gにジメチルスルホキシド50gを加え撹拌し、濃縮により完全に水を留去し、パルプ由来微結晶セルロースファイバー・ジメチルスルホキシド分散液28.5gを作製した。
(3)実施例1(3)で作製した0.4質量%バクテリアセルロースファイバー水分散液200gにジメチルスルホキシド200gを加え撹拌し、濃縮により完全に水を留去し、バクテリアセルロースファイバー・ジメチルスルホキシド分散液170gを作製した。
[実施例3:セルロースファイバー・N,N-ジメチルアセトアミド分散液の調製]
 実施例1(3)で作製した0.4質量%バクテリアセルロースファイバー水分散液100gにN,N-ジメチルアセトアミド100gを加え、濃縮により完全に水を留去し、バクテリアセルロースファイバー・N,N-ジメチルアセトアミド分散液34gを作製した。
[実施例4:溶媒濃縮法による樹脂組成物の調製(1)]
 実施例2(1)で作製したパルプ由来セルロースファイバー・ジメチルスルホキシド分散液61.0gにポリ乳酸(三井化学(株)製 LACEA〔登録商標〕H-100)6.8gを加え、110℃に加熱し撹拌することによりポリ乳酸を溶解させた。この溶液を110℃で加熱下、減圧濃縮することによりジメチルスルホキシドを留去し、パルプ由来セルロースファイバーとポリ乳酸との樹脂組成物7.21gを作製した。
[実施例5:溶媒濃縮法による樹脂組成物の調製(2)]
 実施例2(2)で作製したパルプ由来微結晶セルロースファイバー・ジメチルスルホキシド分散液4.0gにポリ乳酸(三井化学(株)製 LACEA〔登録商標〕H-100)1.0gを加え、さらにジメチルスルホキシドを少量添加し110℃に加熱し撹拌することによりポリ乳酸を溶解させた。この溶液を110℃で加熱下、減圧濃縮することによりジメチルスルホキシドを留去し、パルプ由来微結晶セルロースファイバーとポリ乳酸との樹脂組成物0.69gを作製した。
[実施例6:溶媒濃縮法による樹脂組成物の調製(3)]
 実施例2(3)で作製したバクテリアセルロースファイバー・ジメチルスルホキシド分散液160gにポリ乳酸(三井化学(株)製 LACEA〔登録商標〕H-100)17.8gを加え、110℃に加熱し撹拌することによりポリ乳酸を溶解させた。この溶液を110℃で加熱下、減圧濃縮することによりジメチルスルホキシドを留去し、バクテリアセルロースファイバーとポリ乳酸との樹脂組成物18.4gを作製した。
[実施例7:溶媒濃縮法による樹脂組成物の調製(4)]
 実施例3で作製したバクテリアセルロースファイバー・N,N-ジメチルアセトアミド分散液4.5gにポリ乳酸(三井化学(株)製 LACEA〔登録商標〕H-100)0.50gを加え、80℃に加熱し撹拌することによりポリ乳酸を溶解させた。この溶液を80℃で加熱下、減圧濃縮することによりN,N-ジメチルアセトアミドを留去し、バクテリアセルロースファイバーとポリ乳酸との樹脂組成物0.30gを作製した。
[実施例8:再沈法による樹脂組成物の調製(1)]
 実施例2(1)で作製したパルプ由来セルロースファイバー・ジメチルスルホキシド分散液50gにN,N-ジメチルアセトアミド50gとポリ乳酸(三井化学(株)製 LACEA〔登録商標〕H-100)4.5gを加え、100℃に加熱し撹拌することによりポリ乳酸を溶解させた。この溶液20gをメタノール50gに再沈殿させ、析出した樹脂をろ過、40℃で真空乾燥を行い、パルプ由来セルロースファイバーとポリ乳酸との樹脂組成物0.85gを作製した。
 本実施例ではN,N-ジメチルアセトアミドを使用したが、用いなくてもパルプ由来セルロースファイバーとポリ乳酸との樹脂組成物を作製することができる。
[実施例9:再沈法による樹脂組成物の調製(2)]
 実施例2(3)で作製したバクテリアセルロースファイバー・ジメチルスルホキシド分散液50gにポリ乳酸(三井化学(株)製 LACEA〔登録商標〕H-100)2.6gを加え、110℃に加熱し撹拌することによりポリ乳酸を溶解させた。この溶液をメタノール200gに再沈殿させ、析出した樹脂をろ過、40℃で真空乾燥を行い、バクテリアセルロースファイバーとポリ乳酸との樹脂組成物2.70gを作製した。
[実施例10:再沈法による樹脂組成物の調製(3)]
 実施例3で作製したバクテリアセルロースファイバー・N,N-ジメチルアセトアミド分散液50gにポリ乳酸(三井化学(株)製 LACEA〔登録商標〕H-100)2.6gを加え、110℃に加熱し撹拌することによりポリ乳酸を溶解させた。この溶液をメタノール200gに再沈殿させ、析出した樹脂をろ過、40℃で真空乾燥を行い、バクテリアセルロースファイバーとポリ乳酸との樹脂組成物2.78gを作製した。
[実施例11:再沈法による樹脂組成物の調製(4)]
 実施例2(1)と同様の方法にて作製したパルプ由来セルロースファイバー・ジメチルスルホキシド分散液50kgにポリ乳酸(三井化学(株)製 LACEA〔登録商標〕H-100)4.5kgを加え、100℃に加熱し撹拌することによりポリ乳酸を溶解させた。この溶液54.5kgをメタノール500kgに再沈殿させ、析出した樹脂をろ過、40℃で真空乾燥を行い、パルプ由来セルロースファイバーとポリ乳酸との樹脂組成物4.8kgを作製した。
[比較例1:湿式粉砕セルロースファイバー水分散液を用いた樹脂組成物の調製]
 市販パルプ由来セルロース(Celite社製 Fibra-Cell BH-100)10gに水740gを加え分散させた後、(株)スギノマシン製高圧粉砕装置を用いて200MPaにて100回粉砕処理を行い、1.0質量%パルプ由来セルロースファイバー水分散液を作製した。
 この水分散液10gにポリ乳酸(ネイチャーワークス社製 Ingeo〔登録商標〕3001D)を910mg加え、室温で撹拌した。この分散液をメタノール50gに滴下、ろ過した後、40℃で真空乾燥を行い、パルプ由来セルロースファイバーとポリ乳酸の混合物0.98gを作製した。この混合物0.4gとポリ乳酸(ネイチャーワークス社製 Ingeo〔登録商標〕3001D)3.6gをラボプラストミル((株)東洋精機製作所製)で185℃、50rpm、5分間混練を行い、パルプ由来セルロースファイバーとポリ乳酸との樹脂組成物4.0gを作製した。
[比較例2:未粉砕処理のセルロースを用いた樹脂組成物の調製]
 ジメチルスルホキシド9.9gに市販パルプ由来セルロース(Celite社製 Fibra-Cell BH-100)102mgとポリ乳酸(ネイチャーワークス社製 Ingeo〔登録商標〕3001D)896mgを加え、100℃で加熱し撹拌することによりポリ乳酸を溶解させた。本比較例では、湿式粉砕処理を行わなかった。なお、本比較例で使用したセルロースの平均繊維径は20μm、平均繊維長は60μmである。
 この溶液をメタノール50gに再沈殿させ、析出した樹脂をろ過、40℃で真空乾燥を行い、パルプ由来セルロースとポリ乳酸との樹脂組成物888mgを作製した。
[比較例3:湿式粉砕・凍結乾燥セルロースファイバーを用いた樹脂組成物の調製]
 市販パルプ由来セルロース(Celite社製 Fibra-Cell BH-100)10gに水740gを加え分散させた後、(株)スギノマシン製高圧粉砕装置を用いて200MPaにて100回粉砕処理を行い、1.0質量%パルプ由来セルロースファイバー水分散液を作製した。
 この水分散液を透析にてアセトンと溶媒置換を行い、セルロースファイバー・アセトン分散液を作製した。その後、アセトンからシクロヘキサンへ溶媒置換を行い、セルロースファイバー・シクロヘキサン分散液を作製した。このセルロースファイバー・シクロヘキサン分散液を0℃以下で凍結乾燥を行うことにより粉状のセルロースファイバーを得た。
 次に、この粉状のセルロースファイバー0.2gとポリ乳酸(ネイチャーワークス社製 Ingeo〔登録商標〕3001D)3.8gをラボプラストミル((株)東洋精機製作所製)を用いて185℃、50rpm、5分間混練を行い、パルプ由来セルロースファイバーとポリ乳酸との樹脂組成物4.0gを作製した。
[偏光顕微鏡による観察]
 実施例4乃至実施例10及び比較例1乃至比較例3で調製した各樹脂組成物について、偏光顕微鏡を用いてセルロースファイバーの分散状態を観察した。結果を図1乃至図7及び図8乃至図10に示す。
 なお、偏光顕微鏡写真の撮影条件は以下の通りである。
<測定装置>(株)ニコン製 偏光顕微鏡 ECLIPSE LV100POL
<測定条件>185℃に樹脂組成物を加熱し、溶融状態を観察、倍率200倍
 図1乃至図10中、白く輝度の高い部分は、セルロースの存在を示している。
 図1乃至図7に示すように、実施例4乃至実施例10で調製した各樹脂組成物は、ポリ乳酸へのセルロースファイバーの分散性が高いことが観察された。一方、比較例1乃至比較例3で調製した樹脂組成物(図8乃至図10)は実施例に比べてセルロースが凝集し、均一分散性に劣るとする結果となった。
[外観評価]
試料作製方法:
 上記実施例4乃至実施例6、実施例8、実施例10並びに比較例2及び比較例3で作製した各樹脂組成物に、ポリ乳酸(ネイチャーワークス社製 Ingeo〔登録商標〕3001D)を加え、ラボプラストミル((株)東洋精機製作所製)を用いて、溶融混練(185℃、50rpm、5分)を行い、ポリ乳酸中にセルロースファイバーを1質量%含む樹脂組成物を作製した。この樹脂組成物をホットプレス(185℃)により成形し、膜厚が約200μmのフィルムを作製した。なお、比較例1で作製した樹脂組成物はポリ乳酸中にセルロースファイバーを1質量%含むため、ポリ乳酸を新たに加えることなく、当該樹脂組成物をそのままホットプレスにより成形した。
評価方法:目視による外観評価
評価基準:○:成形品中に凝集塊なし
     △:成形品中にマイクロ単位の凝集塊を確認
     ×:成形品中にミリ単位の凝集塊を確認
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、表2に示すとおり、実施例4乃至実施例6、実施例8及び実施例10の樹脂組成物を用いて作製したフィルムは、目視にて成形品中に凝集塊は認められず、優れた外観を有する成形品を形成することができた。
 一方、比較例1乃至比較例3の樹脂組成物を用いて作製したフィルムは、目視にて成形品中にマイクロ単位或いはミリ単位の凝集塊が認められ、表面外観に劣るとする結果が得られた。
[機械的特性評価用試験片(1)の作製]
 上記実施例11で作製した樹脂組成物に、ポリ乳酸(ネイチャーワークス社製 Ingeo〔登録商標〕3001D)を加え、二軸押出機((株)テクノベル製 KZW15-30TGN)を用いて、バレル温度185℃で溶融混練を行い、ポリ乳酸中にセルロースファイバーを1質量%含む樹脂組成物を得た。
 次いで、得られた樹脂組成物を、射出成形機(住友重機械工業(株)製 SE18S)を用い、シリンダー温度185℃で溶融させて、30℃の金型内へ射出した。15秒保持し樹脂を硬化させた後、金型から成形品(長さ80mm×幅10mm×厚み4mm)を取り出すことにより、試験片(1)を作製した。
[機械的特性評価用試験片(2)の作製]
 セルロースファイバー含有樹脂組成物を用いない以外は上記[機械的特性評価用試験片(1)の作製]と同様の方法で、ポリ乳酸(ネイチャーワークス社製 Ingeo〔登録商標〕3001D)を射出成形して、試験片(2)を作製した。
[機械的特性評価用試験片(3)の作製]
 セルロースファイバー含有樹脂組成物の代わりに市販パルプ由来セルロース(Celite社製 Fibra-Cell BH-100)を湿式粉砕処理することなく用いた以外は上記“試験片(1)の作製”と同様の方法で、当該パルプ由来セルロースとポリ乳酸(ネイチャーワークス社製 Ingeo〔登録商標〕3001D)を溶融混練し、得られた樹脂組成物(ポリ乳酸中にセルロースを1質量%含む)を射出成形して、試験片(3)を作製した。
[機械的特性評価]
評価方法:万能材料試験機(インストロン社製 model5582)を使い、JIS K7171に準じ、曲げ速度2mm/分で曲げ試験を行った。また、衝撃試験機(CEAST社製6546、2Jハンマー)を使い、JIS K 7110に準じてアイゾット衝撃試験(エッジワイズ、ノッチ無し)を行った。各試験片の締め付けトルクは6Nmとした。
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、実施例11で作製した樹脂組成物を用いた試験片(1)は、該樹脂組成物を含まないポリ乳酸のみを用いた試験片(2)と比較して曲げ弾性率、衝撃強度が向上した。また、未粉砕のパルプ由来セルロース含有樹脂組成物を用いた試験片(3)は、試験片(2)より曲げ弾性率、衝撃強度ともに向上が見られるが、湿式粉砕により微細化されたセルロースファイバーを含有する樹脂組成物を用いた試験片(1)の方が物性の向上の度合はより大きい結果が得られた。以上の結果は、微細化されたセルロースファイバーを使用することにより、機械的特性である曲げ弾性率及び衝撃強度が向上するという効果が得られる点を示すものであると言える。
特開2005-145028号公報 特開平11-241027号公報 特開2007-238812号公報

Claims (7)

  1. ポリ乳酸を溶解可能な有機溶媒中に微細化されたセルロースファイバーが分散した分散液を準備する工程、
    前記セルロースファイバーが分散した分散液にポリ乳酸を溶解して、ポリ乳酸溶液を調製する工程、及び
    前記ポリ乳酸溶液から有機溶媒を除去する工程
    を含む、セルロースファイバー含有樹脂組成物の製造方法。
  2. 前記有機溶媒の除去工程は、再沈殿法に従い行う、請求項1に記載の製造方法。
  3. 前記有機溶媒の除去工程は、溶媒濃縮法に従い行う、請求項1に記載の製造方法。
  4. 前記微細化されたセルロースファイバーは、繊維径が0.001乃至1μmのセルロースファイバーである、請求項1に記載の製造方法。
  5. 前記微細化されたセルロースファイバーは、湿式粉砕法により調製されたセルロースファイバーである、請求項4に記載の製造方法。
  6. 前記有機溶媒は、ジメチルスルホキシド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、トルエン、1,4-ジオキサン、N,N-ジメチルホルムアミド、テトラヒドロフラン、1,3-ジオキソラン又はクロロホルムである、請求項1に記載の製造方法。
  7. 前記ポリ乳酸溶液を調製する工程において、該セルロースファイバーがジメチルスルホキシド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、トルエン、1,4-ジオキサン又はN,N-ジメチルホルムアミド中に分散した分散液を60乃至150℃の温度で加熱し、これにポリ乳酸を溶解することを含む、請求項1に記載の製造方法。
PCT/JP2011/050546 2010-01-28 2011-01-14 セルロース及びポリ乳酸を含有する組成物の製造方法 WO2011093147A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011551800A JP5660333B2 (ja) 2010-01-28 2011-01-14 セルロース及びポリ乳酸を含有する組成物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010017095 2010-01-28
JP2010-017095 2010-01-28

Publications (1)

Publication Number Publication Date
WO2011093147A1 true WO2011093147A1 (ja) 2011-08-04

Family

ID=44319139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050546 WO2011093147A1 (ja) 2010-01-28 2011-01-14 セルロース及びポリ乳酸を含有する組成物の製造方法

Country Status (2)

Country Link
JP (1) JP5660333B2 (ja)
WO (1) WO2011093147A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124301A (ja) * 2011-12-14 2013-06-24 Nissan Chem Ind Ltd 樹脂組成物及びその成形体
CN103172876A (zh) * 2011-12-26 2013-06-26 东丽纤维研究所(中国)有限公司 一种聚乳酸微球及其制备方法
JP2014105217A (ja) * 2012-11-22 2014-06-09 Sekisui Chem Co Ltd 複合樹脂組成物及び複合樹脂組成物の製造方法
JP2015183153A (ja) * 2014-03-26 2015-10-22 荒川化学工業株式会社 セルロース繊維/樹脂複合組成物の製造方法、該複合組成物、成形用樹脂組成物及び樹脂成形物
WO2016143439A1 (ja) * 2015-03-06 2016-09-15 国立大学法人大阪大学 バクテリアセルロースとポリマーとを含む多孔質体およびその製造方法
JP2019085584A (ja) * 2019-02-19 2019-06-06 大阪瓦斯株式会社 混練組成物及びその製造方法並びに複合体
JP2019172891A (ja) * 2018-03-29 2019-10-10 大阪瓦斯株式会社 バイオマス樹脂組成物
JP2019172876A (ja) * 2018-03-29 2019-10-10 日清ファルマ株式会社 ふすま含有熱可塑性樹脂組成物及びその製造方法
CN110818920A (zh) * 2019-11-15 2020-02-21 东北林业大学 一种纤维素纳米晶/聚乳酸复合材料及其制备方法和应用
CN111684129A (zh) * 2017-12-04 2020-09-18 纳诺洛斯有限公司 由微生物纤维素生产粘胶原液的方法
JPWO2021246418A1 (ja) * 2020-06-02 2021-12-09

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612755A (ja) * 1984-06-04 1986-01-08 ポリサー リミテツド 有機重合体に繊維材を混入する方法
JP2004050482A (ja) * 2002-07-17 2004-02-19 Kenji Nakajima 植物由来材料製成形品の製造方法とその成形品
JP2006206913A (ja) * 2003-07-30 2006-08-10 Mitsubishi Plastics Ind Ltd 射出成形体とその製造方法、並びに、射出成形体に用いられるペレット
JP2009029927A (ja) * 2007-07-26 2009-02-12 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法及び成形体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861500B2 (ja) * 1998-04-23 2006-12-20 大日本インキ化学工業株式会社 生分解性ポリエステルからなる自己水分散性粒子の製法
JP4570855B2 (ja) * 2003-06-11 2010-10-27 東邦化学工業株式会社 生分解性ポリエステル系樹脂微粒子及びその製造方法
JP4013870B2 (ja) * 2003-07-08 2007-11-28 関西ティー・エル・オー株式会社 脂肪族ポリエステル組成物の製造方法
JP5119432B2 (ja) * 2006-07-19 2013-01-16 国立大学法人京都大学 強度の向上したミクロフィブリル化セルロース含有樹脂成形体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612755A (ja) * 1984-06-04 1986-01-08 ポリサー リミテツド 有機重合体に繊維材を混入する方法
JP2004050482A (ja) * 2002-07-17 2004-02-19 Kenji Nakajima 植物由来材料製成形品の製造方法とその成形品
JP2006206913A (ja) * 2003-07-30 2006-08-10 Mitsubishi Plastics Ind Ltd 射出成形体とその製造方法、並びに、射出成形体に用いられるペレット
JP2009029927A (ja) * 2007-07-26 2009-02-12 Toyota Boshoku Corp 熱可塑性樹脂組成物の製造方法及び成形体の製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124301A (ja) * 2011-12-14 2013-06-24 Nissan Chem Ind Ltd 樹脂組成物及びその成形体
CN103172876A (zh) * 2011-12-26 2013-06-26 东丽纤维研究所(中国)有限公司 一种聚乳酸微球及其制备方法
JP2014105217A (ja) * 2012-11-22 2014-06-09 Sekisui Chem Co Ltd 複合樹脂組成物及び複合樹脂組成物の製造方法
JP2015183153A (ja) * 2014-03-26 2015-10-22 荒川化学工業株式会社 セルロース繊維/樹脂複合組成物の製造方法、該複合組成物、成形用樹脂組成物及び樹脂成形物
WO2016143439A1 (ja) * 2015-03-06 2016-09-15 国立大学法人大阪大学 バクテリアセルロースとポリマーとを含む多孔質体およびその製造方法
CN111684129A (zh) * 2017-12-04 2020-09-18 纳诺洛斯有限公司 由微生物纤维素生产粘胶原液的方法
EP3721008A4 (en) * 2017-12-04 2021-09-08 Nanollose Limited METHODS FOR PRODUCING A SOLUTION OF VISCOSE FROM MICROBIAL CELLULOSE
JP2019172891A (ja) * 2018-03-29 2019-10-10 大阪瓦斯株式会社 バイオマス樹脂組成物
JP2019172876A (ja) * 2018-03-29 2019-10-10 日清ファルマ株式会社 ふすま含有熱可塑性樹脂組成物及びその製造方法
JP7163046B2 (ja) 2018-03-29 2022-10-31 大阪瓦斯株式会社 バイオマス樹脂組成物
JP2019085584A (ja) * 2019-02-19 2019-06-06 大阪瓦斯株式会社 混練組成物及びその製造方法並びに複合体
CN110818920A (zh) * 2019-11-15 2020-02-21 东北林业大学 一种纤维素纳米晶/聚乳酸复合材料及其制备方法和应用
CN110818920B (zh) * 2019-11-15 2021-03-16 东北林业大学 一种纤维素纳米晶/聚乳酸复合材料及其制备方法和应用
JPWO2021246418A1 (ja) * 2020-06-02 2021-12-09
JP7276608B2 (ja) 2020-06-02 2023-05-18 株式会社村田製作所 ナノファイバーを有して成るシートおよびその製造方法

Also Published As

Publication number Publication date
JPWO2011093147A1 (ja) 2013-05-30
JP5660333B2 (ja) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5660333B2 (ja) セルロース及びポリ乳酸を含有する組成物の製造方法
JP5975222B2 (ja) 繊維状樹脂補強剤の製造方法
KR101921130B1 (ko) 셀룰로오스의 미세화 방법, 셀룰로오스 나노파이버, 마스터배치 및 수지 조성물
Yang et al. Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly (lactic) acid films: Effect of cellulose nanocrystals and a masterbatch process
JP5030667B2 (ja) ミクロフィブリル化セルロース複合樹脂及びその製造方法
JP5673931B2 (ja) 混合物及びセルロースファイバー分散組成物並びにそれらの製造方法
Dehghani et al. Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites
JP5969262B2 (ja) グラフトポリマー修飾セルロースファイバーの製造方法
CN113088055A (zh) 一种高性能聚乙醇酸基复合材料及其制备方法
Orue et al. The effect of sisal fiber surface treatments, plasticizer addition and annealing process on the crystallization and the thermo-mechanical properties of poly (lactic acid) composites
JP6016317B2 (ja) 樹脂組成物の製造方法及び成形体の製造方法
US20160002466A1 (en) Microstructured composite material, method for the production thereof, moulded articles made thereof and also purposes of use
Chow et al. Effects of SEBS-g-MAH on the properties of injection moulded poly (lactic acid)/nano-calcium carbonate composites.
JP6486428B2 (ja) セルロースで強化された樹脂組成物の製造方法
JP6075521B2 (ja) 樹脂組成物の製造方法
JP6422539B1 (ja) セルロース配合樹脂組成物の製造方法
WO2019150907A1 (ja) セルロース系繊維マスターバッチ、セルロース系繊維含有樹脂組成物、及びこれらの製造方法、並びにセルロース系繊維含有樹脂組成物の成形体
VP et al. Fabrication and characterization of bionanocomposites based on poly (lactic acid), banana fiber and nanoclay
CN105694398A (zh) 一种聚乳酸改性材料及其制备方法
Gwon et al. Preparation and characteristics of cellulose acetate based nanocomposites reinforced with cellulose nanocrystals (CNCs)
JP6486429B2 (ja) セルロース充填樹脂組成物の製造方法
JP7442098B2 (ja) バイオマスファイバー樹脂複合体
JP2019044165A (ja) セルロース充填樹脂組成物の製造方法
WO2020202712A1 (ja) 熱可塑性樹脂組成物
JP7296238B2 (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551800

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736862

Country of ref document: EP

Kind code of ref document: A1