WO2011083817A1 - 誘導加熱コイル、加工部材の製造装置および製造方法 - Google Patents

誘導加熱コイル、加工部材の製造装置および製造方法 Download PDF

Info

Publication number
WO2011083817A1
WO2011083817A1 PCT/JP2011/050093 JP2011050093W WO2011083817A1 WO 2011083817 A1 WO2011083817 A1 WO 2011083817A1 JP 2011050093 W JP2011050093 W JP 2011050093W WO 2011083817 A1 WO2011083817 A1 WO 2011083817A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
induction heating
steel pipe
heating coil
metal material
Prior art date
Application number
PCT/JP2011/050093
Other languages
English (en)
French (fr)
Inventor
信宏 岡田
富澤 淳
直明 嶋田
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP11731815.4A priority Critical patent/EP2523530B1/en
Priority to AU2011204165A priority patent/AU2011204165B2/en
Priority to JP2011549018A priority patent/JP5403071B2/ja
Priority to EA201290608A priority patent/EA024314B1/ru
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to MX2012007911A priority patent/MX339779B/es
Priority to CA2786460A priority patent/CA2786460C/en
Priority to BR112012016758A priority patent/BR112012016758B1/pt
Priority to ES11731815.4T priority patent/ES2597027T3/es
Priority to KR1020127020189A priority patent/KR101404386B1/ko
Priority to CN201180012755.8A priority patent/CN102792771B/zh
Priority to IN6264DEN2012 priority patent/IN2012DN06264A/en
Publication of WO2011083817A1 publication Critical patent/WO2011083817A1/ja
Priority to US13/542,883 priority patent/US9604272B2/en
Priority to ZA2012/05734A priority patent/ZA201205734B/en
Priority to US15/140,527 priority patent/US10406581B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/16Auxiliary equipment, e.g. for heating or cooling of bends
    • B21D7/162Heating equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/16Auxiliary equipment, e.g. for heating or cooling of bends
    • B21D7/165Cooling equipment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/103Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor
    • H05B6/104Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor metal pieces being elongated like wires or bands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention provides an induction heating coil, a manufacturing member manufacturing apparatus, and a manufacturing method.
  • the present invention provides, for example, an induction heating coil that is suitably used when manufacturing a hardened steel material such as a hardened steel pipe, a manufacturing apparatus for a processed member including the induction heating coil, and a manufacturing method for a processed member using the induction heating coil.
  • a hardened steel material such as a hardened steel pipe
  • a manufacturing apparatus for a processed member including the induction heating coil and a manufacturing method for a processed member using the induction heating coil.
  • Metal strength members, reinforcing members or structural members are used in automobiles and various machines. These members are required to have high strength, light weight, and small size. Conventionally, these members have been manufactured by welding a stamped steel product, punching a thick steel plate, or forging an aluminum alloy. The weight reduction and miniaturization achieved by these manufacturing methods have reached their limits.
  • Non-Patent Document 1 These members are manufactured by, for example, a hydroform disclosed in Non-Patent Document 1 in order to further reduce weight and size.
  • Hydroform is complicated by supplying high-pressure machining fluid to the inside of the metal pipe placed inside the mold to bulge and deform the metal pipe and deform the metal pipe along the inner surface of the mold. A molded product having a shape is manufactured. Since hydroform is cold work, it is difficult to form a material with low ductility such as a tensile strength of 780 MPa or more into a complicated shape. Since a hydroform usually requires three steps of bending, preforming and hydroforming, the process becomes relatively complicated. Furthermore, the hydroform has a large processing machine and is relatively expensive.
  • FIG. 6 is an explanatory view showing an outline of the manufacturing apparatus 0.
  • the metal tube 1 in the following description, an example in which the metal tube is a steel tube
  • the feed mechanism 3 feeds the steel pipe 1 from the upstream side toward the downstream side.
  • the manufacturing apparatus 0 manufactures the bending member 8 by bending the steel pipe 1 downstream of the support mechanism 2.
  • the induction heating coil 5 Downstream of the support mechanism 2, the induction heating coil 5 rapidly induction-heats the steel pipe 1 sent in the axial direction to a partially quenchable temperature range (Ac 3 points or more).
  • the water cooling mechanism 6 rapidly cools the steel pipe 1 immediately downstream of the induction heating coil 5.
  • a high temperature portion 1 a that moves in the axial direction of the steel pipe 1 is partially formed in the steel pipe 1 between the induction heating coil 5 and the water cooling mechanism 6.
  • the deformation resistance of the high temperature part 1a is significantly smaller than the deformation resistance of other parts.
  • the movable roller die 4 has at least one pair of roll pairs 4a.
  • the roll pair 4a supports the steel pipe 1 while feeding it.
  • the movable roller die 4 gives a bending moment to the high temperature portion 1a by moving in a two-dimensional or three-dimensional direction while supporting the steel pipe 1 in a region downstream of the water cooling mechanism 6.
  • the manufacturing apparatus 0 performs a bending process on the steel pipe 1 with high work efficiency by a simple process using relatively inexpensive components 2 to 6, and has a desired shape and high strength (for example, a tensile strength of 780 MPa or more).
  • the bending member 8 is manufactured.
  • the induction heating is performed in order to heat the heated member uniformly in the circumferential direction. This is performed while rotating the member around the central axis.
  • the manufacturing apparatus 0 induction-heats the steel pipe 1 by the induction heating coil 5 while feeding the steel pipe 1 in the axial direction without rotating. For this reason, it is difficult to heat the steel pipe 1 uniformly in the circumferential direction.
  • the heating power in induction heating is determined by the ampere turn (ATurn), which is the product of the current value (A) passed through the induction heating coil 5 and the number of turns of the induction heating coil 5 (Turn).
  • the manufacturing device 0 can process the steel pipe 1 with high accuracy.
  • the heating width in the axial direction of the steel pipe 1 is preferably as narrow as possible in order to further increase the accuracy of bending by the manufacturing apparatus 0. This heating width becomes wider as the number of turns of the induction heating coil 5 increases. For this reason.
  • the number of turns of the induction heating coil 5 is preferably as small as possible in order to narrow the heating width.
  • the current value that can be passed through one induction heating coil 5 depends on the material and the cross-sectional area, and is generally about 10000 A at the maximum. For this reason, the number of turns of the induction heating coil 5 may have to be 2 or more when more energy is required to achieve both high productivity and good dimensional accuracy.
  • FIG. 7 is an explanatory view showing an example of the induction heating coil 5 based on the conventional technical idea.
  • FIG. 7A is a perspective view of the induction heating coil 5.
  • FIG. 7B shows the induction heating coil 5 in which the main body 9-1 of the first winding and the main body 9-2 of the second winding are drawn by extending the distance in the direction parallel to the axial direction of the steel pipe 1. It is a perspective view which shows the structure of the heating coil 5 clearly.
  • FIG.7 (c) is explanatory drawing which shows the projection of the induction heating coil 5 to the axial direction of the steel pipe 1, a solid line arrow shows the electric current flow in the main body 9-1 of the 1st volume, and a broken line arrow shows the 2nd volume. The current flow in the main body 9-2 is shown.
  • FIG. 7D is an explanatory diagram showing an example of a temperature distribution by a numerical analysis simulation of the steel pipe 1 heated using the induction heating coil 5.
  • the induction heating coil 5 has annular main bodies 9-1 and 9-2.
  • the main bodies 9-1 and 9-2 are arranged around the steel pipe 1 and away from the steel pipe 1.
  • the main body 9-1 has an insulating portion 9-1a formed by sandwiching an insulating plate
  • the main body 9-2 has an insulating portion 9-2a formed by sandwiching the insulating plate.
  • the two insulating portions 9-1a and 9-2a are provided between electrodes 9-3a and 9-3b for supplying an alternating current to the main bodies 9-1 and 9-2. Provided.
  • the alternating current supplied to the main body 9-1 through one electrode 9-3a flows through the main body 9-1.
  • the current flowing through the main body 9-1 flows in the order of the main body 9-2 and the electrode 9-3b.
  • a magnetic flux is generated inside the main bodies 9-1 and 9-2. Since the flowing current is alternating current, the magnitude and direction of the magnetic flux change. For this reason, an eddy current is induced in the steel pipe 1 so as to generate a magnetic flux that cancels the change in the magnetic flux.
  • This eddy current generates Joule heat due to the electric resistance of the steel pipe 1, and thereby induction heating is performed in which the steel pipe 1 is heated. Due to the so-called skin effect, the heat generation of the steel pipe 1 is concentrated on the surface layer of the steel pipe 1 as the frequency of the supplied alternating current is higher.
  • the main body 9-1 of the first roll and the main body 9-2 of the second roll It is necessary to provide a coil connection portion 9-4 for connecting the two. Therefore, two insulating portions 9-1a and 9-2a made of an insulating plate are provided.
  • the coil has a spiral shape, it is possible for those skilled in the art to connect the first roll body 9-1 and the second roll body 9-2 as close as possible to the object to be heated and at the shortest distance. It is common sense.
  • the region S (between the insulating portions 9-1a and 9-2a) where the coil connecting portion 9-4 is arranged is arranged.
  • Current flows in the axial direction of the steel pipe 1.
  • the region S since the current flowing in the circumferential direction is one direction, the number of turns of the induction heating coil 5 is substantially one.
  • the remaining region other than the region S the current flowing in the circumferential direction is in two directions, so the number of turns of the induction heating coil 5 is substantially two.
  • the number of turns of the induction heating coil 5 is not the same with respect to the circumferential positions of the main bodies 9-1 and 9-2.
  • the steel pipe 1 is induction-heated using the induction heating coil 5
  • a temperature difference in the circumferential direction of the steel pipe 1 is inevitably generated.
  • the inside of the induction heating coil 5 is conveyed while the non-rotating steel pipe 1 made of ordinary steel having an outer diameter (diameter) of 31.8 mm and a wall thickness of 1.8 mm is rotated in the axial direction at a conveying speed of 80 mm / sec.
  • induction heating by passing as shown in FIG.
  • An object of the present invention is to provide an induction heating coil capable of heating a metal material such as a steel pipe uniformly in the circumferential direction and stably in a narrow range in the axial direction.
  • an induction heating coil capable of heating a metal material such as a steel pipe uniformly in the circumferential direction and stably in a narrow range in the axial direction.
  • the configuration of the induction heating coil according to the present invention is as illustrated in FIG. 1, and (i) a first insulation that surrounds the outer periphery of the long metal material 1 in the circumferential direction and is arranged away from the metal material 1.
  • a first one-turn coil body 11 having a portion 11b and a first electric conductor; and (ii) an inner periphery shape substantially the same as the inner periphery shape of the first one-turn coil body 11,
  • a second one-turn coil provided with a second insulating portion 12b and a second electric conductor disposed in parallel with the first one-turn coil body 11 in the axial direction of the metal material 1 away from the metal material 1
  • a main body connection that connects the main body 12 and (iii) a first adjacent portion 11c adjacent to the first insulating portion 11b in the circumferential direction and a second adjacent portion 12c adjacent to the second insulating portion 12b in the circumferential direction.
  • the inner circumferential relationship of the coil length L0 of the induction heating coil in the effective coil length Le is, (L0-Le) / L0 is 0.05 or less.
  • Inner coil length (Inner-Coil-Length) L0 means one round of the inner surface of the first one-turn coil body 11 or the second one-turn coil body 12 (including an insulating portion).
  • Effective-Coil-Length Le means that the first electric conductor and the second electric conductor are in a cross section perpendicular to the relative movement direction of the induction heating coil 10 with respect to the metal material 1.
  • the inner circumferential length of the region that overlaps (overlaps) when the electric conductor is projected that is, the inner circumferential length at which the substantial number of turns in the circumferential direction is equal to the number of turns of the entire coil.
  • the inner peripheral coil length is 2 ⁇ R for a circular coil having an inner diameter R, and 2 ⁇ (a + b) for a rectangular coil having an inner short side a and an inner long side b.
  • the effective coil length Le is “2 ⁇ R ⁇ L1 ⁇ subtracting the sum (L1 + L2) of the circumferential lengths L1 and L2 of the two insulating portions 11b and 12b from the inner peripheral coil length L0. L2 ".
  • the present invention desirably has at least a first one-turn coil body and a second one-turn coil body that surround the outer periphery of a long metal material that is a heated object in the circumferential direction, and is not accompanied by rotation.
  • a heating coil that inductively heats the metal material while moving relative to the long metal material, and a substantial number of coil turns when the coil is projected in a direction of movement relative to the metal material , Ln / L0 is 0.05 or less, where Ln is the coil inner circumference length of the region that is less than the total number of turns of the coil and L0 is the projected inner circumference length of L0. It is an induction heating coil.
  • the first adjacent portion 11c and the second adjacent portion 12c are present at different positions in the cross section, specifically, the first one-turn coil body 11 or It is desirable that the second one-turn coil body 12 is present at a position 5 to 45 degrees away from the central angle of the second one-turn coil body 12.
  • the induction heating coil according to the present invention has a shape that is significantly different from the shape conceived by the common knowledge of those skilled in the art. That is, the present invention has been completed as a result of placing the highest importance on the uniform number of coil windings in the circumferential direction without enlarging the total coil length or increasing the distance between the coil and the object to be heated. Therefore, an unexpected effect of uniformly heating the outer periphery of the non-rotating object to be heated can be obtained.
  • the present invention relates to the induction heating coil 10 and the induction heating coil 10 while moving relative to the metal material 1 together with the induction heating coil 10.
  • the present invention relates to the axial direction of the metal material 1 relative to the long metal material 1 that does not rotate the induction heating coil 10 around the central axis.
  • the metal material 1 that is induction-heated by the induction heating coil 10 is cooled by the cooling mechanism 23 that moves relative to the metal material 1 together with the induction heating coil 10 while induction-heating the metal material 1 while moving to
  • a bending moment is applied to the high temperature portion 1a.
  • the metal material 1 is a hollow steel material having a closed cross-sectional shape, for example, a steel pipe.
  • FIG. 1 is an explanatory view showing an example of an induction heating coil according to the present invention
  • FIG. 1 (a) is a perspective view of the induction heating coil
  • FIG. 1 (b) is a first view of the induction heating coil
  • FIG. 1C is a perspective view showing the structure of the induction heating coil in an easy-to-understand manner by drawing a space between the one-turn coil body and the second one-turn coil body in a direction parallel to the axial direction of the steel pipe.
  • FIG. 1 is an explanatory view showing the projection of the induction heating coil in the axial direction of the steel pipe
  • FIG. 1D is an explanatory view showing an example of the temperature distribution by the numerical analysis simulation of the steel pipe heated using the induction heating coil. .
  • FIG. 2 is an explanatory view schematically showing a processing member manufacturing apparatus to which the induction heating coil according to the present invention is applied.
  • 3 (a) and 3 (b) are explanatory views showing the positional relationship between the induction heating coil and the steel pipe according to the present invention, and FIG. 3 (a) shows the first one-turn coil body and This is a case where the distance between the second one-turn coil body and the steel pipe is uniformly 3.0 mm, and FIG. 3B shows the insulating portions of the first one-turn coil body and the second one-turn coil body, respectively.
  • FIG. 4 is a graph showing the temperature distribution in the axial direction when the steel pipe is heated by the induction heating coil according to the present invention.
  • FIG. 5 is a graph showing the temperature distribution in the axial direction when the steel pipe is heated by the induction heating coil according to the comparative example.
  • FIG. 6 is an explanatory diagram showing an outline of the bending apparatus disclosed in Patent Document 1. As shown in FIG. FIG. 7 is an explanatory view showing an example of an induction heating coil based on a conventional technical idea, FIG.
  • FIG. 7 (a) is a perspective view of the induction heating coil
  • FIG. 7 (b) is an induction heating coil
  • FIG. 7 (c) is a perspective view showing the structure of the induction heating coil in an easy-to-understand manner by drawing the main body of the first roll and the main body of the second roll in a direction parallel to the axial direction of the steel pipe. It is explanatory drawing which shows the projection of the induction heating coil to the axial direction of a steel pipe
  • FIG.7 (d) is explanatory drawing which shows an example of the temperature distribution by the numerical analysis simulation of the steel pipe heated using the induction heating coil.
  • the present invention is not limited to the case where the metal material is a steel pipe.
  • the present invention is applied to a hollow metal member having a closed cross-sectional shape.
  • a hollow metal material having a cross-sectional shape of a rectangle, an ellipse, an oval, a polygon, a combination of a polygon and a circle, or a cross-sectional shape of a combination of a polygon and an ellipse is exemplified as the hollow member.
  • FIG. 1 is an explanatory diagram showing an example of an induction heating coil 10 according to the present invention.
  • FIG. 1A is a perspective view of the induction heating coil 10
  • FIG. 1B is a steel pipe 1 of the first one-turn coil body 11 and the second one-turn coil body 12 of the induction heating coil 10.
  • FIG. 1C is a perspective view showing the structure of the induction heating coil 10 in an easy-to-understand manner by drawing the space in the direction parallel to the axial direction of the steel tube 1.
  • FIG. 1C is a projection of the induction heating coil 10 in the axial direction of the steel pipe 1.
  • FIG. 1D is an explanatory diagram showing an example of a temperature distribution by a numerical analysis simulation of the steel pipe 1 heated using the induction heating coil 10.
  • the top design in the legend indicates that the temperature is over 950 ° C. and below 1000 ° C.
  • the second design from the top indicates that it is above 900 ° C. and below 950 ° C.
  • the bottom design shows that it is 550 ° C or lower.
  • the induction heating coil 10 induction-heats the steel pipe 1 while moving relative to the steel pipe 1 in the axial direction of the steel pipe 1.
  • the induction heating coil 10 includes a first one-turn coil body 11 and a second one-turn coil body 12.
  • the induction heating coil 10 is substantially the same as including the first heating coil 11 of one turn and the second heating coil 12 of one turn.
  • the long steel pipe 1 is fed in the axial direction without rotating around the central axis.
  • the first one-turn coil body 11 is made of a copper alloy and has an annular outer shape.
  • the first one-turn coil body 11 includes a first electric conductor and a first insulating portion 11b in a part of the circumferential direction.
  • the first insulating portion 11b is desirably thin.
  • the thickness of the first insulating portion 11b is exemplified to be about 1 to 2 mm in order to ensure insulation.
  • the first one-turn coil body 11 is disposed around the steel pipe 1 at a predetermined distance from the steel pipe 1 and covering the entire circumference of the steel pipe 1.
  • the electrode 13a is provided on the first adjacent portion 11c of the first electric conductor located next to the first insulating portion 11b.
  • the alternating current supplied from the electrode 13a to the first one-turn coil body 11 circulates around the first electric conductor of the first one-turn coil body 11, and then passes through the main body connecting portion 14 described later.
  • a magnetic flux is generated inside the first one-turn coil body 11. Since the flowing current is an alternating current, the magnitude and direction of the magnetic flux change, and the eddy current is induced in the steel pipe 1 so as to generate a magnetic flux that cancels the change in the magnetic flux.
  • induction heating is performed in which the eddy current generates Joule heat due to the electric resistance of the steel pipe 1, thereby heating the steel pipe 1.
  • the second one-turn coil body 12 is made of a copper alloy and has an annular outer shape.
  • the second one-turn coil body 12 includes a second electric conductor and a second insulating portion 12b in a part of the circumferential direction.
  • the thickness of the second insulating portion 12b is desirably thin. In order to ensure insulation, the thickness of the second insulating portion 12b is exemplified to be about 1 to 2 mm.
  • the second one-turn coil body 12 is arranged around the steel pipe 1 at a predetermined distance from the steel pipe 1 and covering the entire circumference of the steel pipe 1.
  • the second one-turn coil body 12 is arranged in a row with the first one-turn coil body 11 in the axial direction of the steel pipe 1.
  • the second one-turn coil body 12 has the same inner peripheral shape as the inner periphery shape of the first one-turn coil body 11. Further, the second one-turn coil body 12 has the same outer peripheral shape as that of the first one-turn coil body 11.
  • the electrode 13c is provided on the second adjacent portion 12c of the second electric conductor, which is located next to the second insulating portion 12b.
  • the alternating current supplied to the second electrical conductor of the second one-turn coil body 12 from the main body connecting portion 14 described later circulates around the second electric conductor of the second one-turn coil body 12, It flows to the electrode 13c. Thereby, magnetic flux is generated inside the second one-turn coil body 12. Since the flowing current is an alternating current, the magnitude and direction of the magnetic flux change, and the eddy current is induced in the steel pipe 1 so as to generate a magnetic flux that cancels the change in the magnetic flux. At this time, induction heating is performed in which the eddy current generates Joule heat due to the electric resistance of the steel pipe 1, thereby heating the steel pipe 1.
  • the main body connecting portion 14 connects the first adjacent portion 11c adjacent to the first insulating portion 11b in the circumferential direction and the second adjacent portion 12c adjacent to the second insulating portion 12b in the circumferential direction.
  • a cross section orthogonal to the relative moving direction of the induction heating coil 10 with respect to the steel pipe 1 and projected in the axial direction of the steel pipe 1 (hereinafter referred to as “projected cross section” in this specification). ),
  • the first adjacent portion 11c and the second adjacent portion 12c are located at different positions. Therefore, as shown in FIG. 1A and FIG. It has a cross-sectional shape bent 90 degrees into an L shape.
  • the main body connecting portion 14 converts the alternating current flowing from the first adjacent portion 11c of the first one-turn coil body 11 into the second one turn via the second adjacent portion 12c of the second one-turn coil body.
  • the coil body 12 is supplied.
  • the ineffective coil length Ln at which the substantial number of coil turns in the circumferential direction is less than the total number of coil turns is equal to the width of the second insulating portion 12 b. It is the total length (L1 + L2) of L1 of the first insulating portion 11b, and the ineffective coil length Ln is 5% or less of the inner peripheral coil length L0. Desirably, Ln ⁇ 0.03 ⁇ L0.
  • the first adjacent portion 11c and the second adjacent portion 12c are present at different positions in the projected cross section.
  • the central angle of the first one-turn coil body 11 or the second one-turn coil body 12 be 5 to 45 degrees apart.
  • the ineffective coil length in which the number of coil turns is substantially 1 is the region S (insulation) where the coil connection portion 9-4 is disposed. (The region between the portions 9-1a and 9-2a) plus the insulating portion 9-1a and the insulating portion 9-2a, which is as wide as the coil width.
  • the region where the number of coil turns is substantially 1, the region where the first insulating portion 11b exists, and the second insulating portion 12b.
  • the region where the current flows in the circumferential direction is substantially reduced, and the region where the current flowing in the circumferential direction is substantially equivalent to one turn is greatly reduced.
  • the diameter of the steel pipe 1 is 31.8 mm and the first one-turn coil body 11 or the second one
  • the total length (L1 + L2) of the width L1 of the second insulating portion 12b and the width L2 of the first insulating portion 11b is the first one-turn coil body.
  • 11 or the inner coil length 118.75 mm of the second one-turn coil body 12 is about 3.4%.
  • the total length (L1 + L2) is the first length. This is approximately 4.1% of the inner coil length of the one-turn coil body 11 or the second one-turn coil body 12.
  • the ineffective coil length is almost equal to the coil width.
  • the ineffective coil length is about 15% of the inner coil length.
  • the induction heating coil 5 based on the conventional technical idea.
  • the temperature difference in the circumferential direction of the steel pipe 1 is remarkably reduced as compared with the case where the steel pipe 1 is induction-heated using.
  • an induction heating coil 10 or induction heating is performed while a steel pipe 1 made of ordinary steel having an outer diameter (diameter) of 31.8 mm and a wall thickness of 1.8 mm is conveyed in the axial direction at a conveyance speed of 80 mm / sec. Induction heating is performed by passing the inside of the coil 5.
  • the temperature difference in the circumferential direction generated in the steel pipe 1 is about 240 ° C. in the induction heating coil 5, but is reduced to about 80 ° C. in the induction heating coil 10.
  • the induction heating coil 10 can heat the steel pipe 1 uniformly in a circumferential direction and stably in a narrow range.
  • the induction heating coil 10 includes two one-turn coil bodies 11 and 12 is taken as an example.
  • the present invention is not limited to this form.
  • the induction heating coil of the present invention may have three or more one-turn coil bodies.
  • the third one-turn coil body is located between the first one-turn coil body 11 and the second one-turn coil body 12, or next to the first one-turn coil body 12 or the second one-turn coil body 12.
  • the first one-turn coil body 11 and the second one-turn coil body 12 are arranged in a row. For reasons such as narrowing the heating width and restrictions on the installation location, it is desirable that the number of one-turn coil bodies be two or three.
  • the shape of the induction heating coil is not limited to a circular shape, for example, a rectangular shape, an elliptical shape, an oval shape, a polygonal shape, a cross-sectional shape of a combination of a polygon and a circle, or a combination of a polygon and an ellipse.
  • a cross-sectional shape may be sufficient.
  • FIG. 2 is an explanatory view schematically showing a machined member manufacturing apparatus 20 to which the induction heating coil 10 according to the present invention is applied.
  • the manufacturing apparatus 20 includes a feed mechanism 21, a support mechanism 22, an induction heating coil 10, a cooling mechanism 23, and a gripping mechanism 24. These components will be described sequentially.
  • the feed mechanism 21 feeds the steel pipe 1 in the longitudinal direction.
  • a mechanism using an electric servo cylinder is exemplified as the feed mechanism 21.
  • the feed mechanism 21 is not limited to a specific type of mechanism.
  • a known mechanism such as a mechanism using a ball screw or a mechanism using a timing belt or a chain is equally used as this type of feeding mechanism for the steel pipe 1.
  • the steel pipe 1 is supported by a gripping mechanism 25 so as to be movable.
  • the feed mechanism 21 feeds the steel pipe 1 in the axial direction (longitudinal direction) at a predetermined feed speed.
  • the gripping mechanism 25 supports the steel pipe 1 in order to feed the steel pipe 1.
  • the gripping mechanism 25 may be omitted when a support mechanism 22 described later is installed.
  • the feed mechanism 21 feeds the steel pipe 1 in the axial direction, and the induction heating coil 10 and the cooling mechanism 23 are fixedly installed.
  • the induction heating coil 10 and the cooling device 23 may be installed so as to be relatively movable with respect to the steel pipe 1. For example, (a) while fixing and arranging the steel pipe 1 without sending it, the induction heating coil 10 and the cooling mechanism 23 move relative to the steel pipe 1, and (b) sending the steel pipe 1 in its axial direction, Further movement of the induction heating coil 10 and the cooling mechanism 23 relative to the steel pipe 1 is allowed.
  • the support mechanism 22 supports the steel pipe 1 fed in the axial direction by the feed mechanism 21 at the first position A so as to be movable.
  • a fixed guide is exemplified as the support mechanism 22.
  • the support mechanism 22 is not limited to a particular type of mechanism. For example, a pair or a pair of non-driving rolls arranged to face each other may be used as the support mechanism 22. A known mechanism as this type of support mechanism is equally used as the support mechanism 22.
  • the steel pipe 1 passes through the installation position A of the support mechanism and is sent in the axial direction.
  • the support mechanism 22 may be substituted by a gripping mechanism 25.
  • the induction heating coil 10 rapidly heats the steel pipe 1 at a second position B located downstream of the first position A in the feed direction of the steel pipe 1.
  • the induction heating coil 10 is fed at a feed rate of 5 to 150 mm / sec by supplying an alternating current having a frequency of 5 to 100 kHz to the first one-turn coil body 11 and the second one-turn coil body 12.
  • the steel pipe 1 to be obtained is induction heated at the second position B.
  • FIG. 3 (a) and 3 (b) are explanatory views showing the positional relationship between the induction heating coil 10 and the steel pipe 1
  • FIG. 3 (a) shows the first one-turn coil body 11 and the first coil 2 is a case where the distance between the 1-turn coil body 12 and the steel pipe 1 is uniformly 3.0 mm
  • FIG. 3B shows the insulating portion 11b of the first 1-turn coil body 11 and the second 1 turn.
  • the distance between the second insulating portion 12b of the coil body and the steel pipe 1 is 2.0 mm
  • the temperature of the steel pipe 1 in the vicinity of the first insulating portion 11b and the second insulating portion 12b is lower than the temperature of the steel pipe 1 at other positions, and the circumferential direction of the steel pipe 1 is reduced.
  • the temperature difference is about 80 ° C.
  • the difference between the temperature of the steel pipe 1 in the vicinity of the first insulating portion 11b and the second insulating portion 12b and the temperature of the steel pipe 1 at other positions is reduced.
  • the temperature difference in the circumferential direction of the steel pipe 1 is about 40 ° C.
  • the steel pipe 1 can be heated a plurality of times by using in combination with at least one preheating means for the steel pipe 1 provided on the upstream side of the induction heating coil 10. Thereby, the temperature difference in the circumferential direction of the steel pipe 1 can be further reduced.
  • the steel pipe 1 to be fed can be heated non-uniformly in the circumferential direction or the axial direction. Thereby, the temperature difference in the circumferential direction of the steel pipe 1 can be further reduced.
  • the steel pipe 1 is rapidly heated by the induction heating coil 10 while the temperature difference in the circumferential direction is significantly reduced as illustrated in FIG. [Cooling mechanism 23]
  • the cooling mechanism 23 is arranged at a third position C downstream of the second position B in the feed direction of the steel pipe 1.
  • the cooling mechanism 23 cools the heated steel pipe 1.
  • the high temperature part 1a which moves to the axial direction of the steel pipe 1 is partially formed.
  • the deformation resistance of the high temperature portion 1a is significantly lower than that of other portions.
  • the cooling mechanism 23 only needs to be able to cool the steel pipe 1 at a desired cooling rate, and is not limited to a specific type of cooling mechanism.
  • a water cooling mechanism that cools the steel pipe 1 by injecting cooling water to a predetermined position on the outer surface of the steel pipe 1 is exemplified as the cooling mechanism 23.
  • the cooling water is sprayed with an inclination toward the feeding direction of the steel pipe 1.
  • the distance of the cooling mechanism 23 for the steel pipe 1 in the direction parallel to the direction orthogonal to the axial direction of the steel pipe 1 can be adjusted.
  • the gripping mechanism 24 is disposed in a region D downstream of the third position C in the feed direction of the steel pipe 1.
  • the gripping mechanism 24 moves in a three-dimensional direction in a work space including a space upstream of the third position C in the feed direction of the steel pipe 1 while gripping the steel pipe 1.
  • the gripping mechanism 24 gives a bending moment to the high temperature portion 1 a formed in the steel pipe 1.
  • a chuck mechanism is used as the gripping mechanism 24.
  • a bending member for example, a bending member having a two-dimensionally different bending direction, such as S-shaped bending, by performing a bending process in which the bending direction is two-dimensionally different by moving the gripping mechanism 24 two-dimensionally. Is possible.
  • “Workspace” means a three-dimensional space defined by equations (1), (2), and (3).
  • x ⁇ 0 and (y 0 or y ⁇ 0.5D) and 0 ⁇ ⁇ ⁇ 360 °
  • D means the minimum outer dimension (mm) of the bending member
  • Rmin means the minimum radius of curvature (mm) of the bending member
  • x, y, and ⁇ are the second values.
  • the steel pipe 1 is bent by moving the gripping mechanism 24 in a three-dimensional direction in the work space, and thereby a bending member having a bent portion intermittently or continuously in the longitudinal direction is manufactured. .
  • the gripping mechanism 24 includes a main body 26 having a columnar outer shape and a moving mechanism 29.
  • the main body 26 is constituted by a hollow body.
  • the hollow body has an inner peripheral surface shaped along the outer peripheral surface of the steel pipe 1.
  • the main body 26 grips the steel pipe 1 by being disposed in contact with the outer surface of the tip portion of the steel pipe 1.
  • the main body 26 may be configured by a cylindrical body having an outer peripheral surface shaped along the inner peripheral surface of the steel pipe 1. In this case, the main body 26 grips the steel pipe 1 by being inserted and disposed inside the distal end portion of the steel pipe 1.
  • the moving mechanism 29 includes a first base 27 and a second base 28.
  • the first base 27 mounts the main body 26 and is arranged to be movable in a direction (vertical direction in FIG. 1) orthogonal to the feed direction of the steel pipe 1 at the first position A.
  • the second base 28 is disposed on the first base 27 so as to be movable in the feeding direction.
  • reference numeral 30 indicates an X-axis tilt motor
  • reference numeral 31 indicates an X-axis shift motor
  • reference numeral 32 indicates a Y-axis tilt motor
  • reference numeral 33 indicates a Y-axis shift motor
  • reference numeral 34 indicates a Z-axis motor.
  • a tilt motor is shown, and a reference numeral 35 denotes a Z-axis shift motor.
  • an articulated robot having a joint that can rotate around at least one axis may support the main body 26.
  • an articulated robot By using an articulated robot, it becomes easy to support the main body 26 movably in a three-dimensional direction.
  • the long steel pipe 1 having a closed cross-sectional shape is supported at the first position A by the support mechanism 22 and is sent in the longitudinal direction by the feed mechanism 21.
  • the steel pipe 1 fed at a feed rate of 5 to 150 mm / sec is induction heated.
  • the high temperature portion 1 a is formed in the steel pipe 1. Further, in the region D, the position of the gripping mechanism 24 is changed to a three-dimensional direction in a work space including a space upstream of the third position C in the feed direction of the steel pipe 1, and the high temperature portion of the steel pipe 1 is changed. Giving a bending moment to 1a is continuously performed according to the target product shape.
  • a bent product having a bending portion bent in three dimensions intermittently or continuously in the longitudinal direction is continuously manufactured.
  • the steel pipe 1 is heated to a temperature at which the steel pipe 1 can be partially quenched at the second position B, and is cooled at a predetermined cooling rate at the third position C, whereby a part or all of the steel pipe 1 is obtained.
  • a bending process product has a quenching part intermittently or continuously toward the outer peripheral direction in the cross section which cross
  • the manufacturing apparatus 20 is (A) An uncoiler that continuously feeds the strip-shaped steel plate, which forms the ERW steel pipe production line, a forming device that forms the fed strip-shaped steel plate into a pipe having a predetermined cross-sectional shape, and both side edges of the butted strip-shaped steel plates On the outlet side of the post-processing device in the continuous production device for bending products, comprising a welding device for welding to form a continuous tube, and a post-processing device for post-annealing and sizing the weld bead and if necessary, Or (b) a continuous production apparatus for a bent product comprising an uncoiler for continuously feeding a strip-shaped steel plate, and a forming mechanism for forming the fed strip-shaped steel plate into a predetermined cross-sectional shape, constituting a roll forming line Bending products can be continuously manufactured by arranging them on the exit side of the forming mechanism.
  • the heated The heating region can be formed uniformly in the circumferential direction of the metal material as a body and stably in a narrow range in the axial direction of the metal material.
  • the radius of curvature in the longitudinal direction is not constant, and at least two different radii of curvature in the longitudinal direction. It is possible to manufacture a bent product having these parts efficiently and inexpensively.
  • the present invention is widely applied, for example, as a bending technique for a further advanced bending product for automobiles, for example.
  • the hardened steel material produced according to the present invention is applicable to, for example, uses (i) to (vii) exemplified below.
  • Automotive strength members such as lower arms and brake pedals of automobile suspensions;
  • Reinforcing members such as various types of automobile reinforcements and braces,
  • Automotive structural members such as bumpers, door impact beams, side members, suspension mount members, pillars, side sills,
  • Frames for bicycles and motorcycles cranks
  • Reinforcing members for vehicles such as trains, cart parts (cart frames, various beams, etc.)
  • Frame parts such as hulls, reinforcing members
  • Vii) Home appliance strength member reinforcing member or structural member
  • the steel pipe 1 made of ordinary steel having an outer diameter (diameter) of 31.8 mm and a wall thickness of 1.8 mm is conveyed in the axial direction at a conveying speed of 80 mm / sec in a non-rotating manner
  • the induction heating coil 10 or 5 Induction heating was performed by passing through the interior.
  • a plurality of thermocouples were attached to two portions P1 and P2 in the circumferential direction of the steel pipe 1, and the temperature of the steel pipe 1 during heating was measured while conveying the steel pipe 1.
  • FIG. 4 is a graph showing the results of the example of the present invention
  • FIG. 5 is a graph showing the results of the comparative example.
  • the measurement positions are the parts P1 and P2 shown in the graphs of FIGS.
  • the part P1 is a position of a region sandwiched between the first insulating part 11b and the second insulating part 12b in the cross section, that is, a position where the number of coil turns is substantially one in the induction heating coil 5 of the comparative example. It is.
  • the part P2 is a position that is 90 degrees away from the part P1 by the central angle of the main body 11. 4 and 5, the solid line is the measurement result of the part P, and the broken line is the measurement result of the part P2.
  • the vertical axis T represents the temperature (° C.) of the steel pipe 1
  • the horizontal axis SP represents the feed position (mm) in the axial direction of the steel pipe 1.
  • the temperature difference in the circumferential direction of the steel pipe 1 is about 260 ° C.
  • the comparative example as shown in the graph of FIG. The temperature difference is reduced to about 80 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 非回転で軸方向へ搬送される鋼管を周方向に均一にかつ軸方向に狭い範囲で安定して加熱することができる誘導加熱コイルを提供する。 被加熱体である長尺の金属材1の外周を周方向に取り巻く構成の誘導加熱コイル10は、1巻き目のコイル本体11と2巻き目のコイル本体12という2つ以上の1巻きコイルを有し、これらコイルを軸方向に投影した場合の実質的なコイル巻き数がコイル全体の巻き数未満となる内周長さLn(非実効コイル長)とし、投影したコイル本体の内周長さL0(内周コイル長)とし、Ln/L0が0.05以下となり、コイル本体11とコイル本体12は接続部に絶縁部11bと12bを有し、絶縁部はコイル本体の中心角で5~45度離れた位置に存在する。

Description

誘導加熱コイル、加工部材の製造装置および製造方法
 本発明は、誘導加熱コイル、加工部材の製造装置および製造方法にする。本発明は、例えば焼入れ鋼管等の焼入れ鋼材を製造する際に好適に用いられる誘導加熱コイルと、この誘導加熱コイルを備える加工部材の製造装置と、この誘導加熱コイルを用いる加工部材の製造方法とに関する。
 金属製の強度部材、補強部材または構造部材が自動車や各種機械に用いられる。高強度、軽量かつ小型であることがこれらの部材に要求される。これらの部材は、従来より、鋼製のプレス加工品の溶接、厚鋼板の打ち抜き、さらにはアルミニウム合金の鍛造等によって、製造されてきた。これらの製造方法により達成される軽量化および小型化は、限界に達している。
 これらの部材は、さらに軽量化および小型化するため、例えば非特許文献1に開示されるハイドロフォームによっても製造される。ハイドロフォームは、金型の内部に配置される金属管の内部に高圧の加工液を供給して金属管を膨出変形させ、金属管を金型の内面に沿って変形させることによって、複雑な形状を有する成形品を製造する。ハイドロフォームは、冷間加工であるため、例えば引張強度が780MPa以上といった延性が低い素材を複雑な形状に成形することが難しい。ハイドロフォームは、通常、曲げ、プリフォームおよびハイドロフォームの3工程を要するため、工程が比較的煩雑になる。さらに、ハイドロフォームは、加工機が大型かつ比較的高価である。
 本出願人は、特許文献1により曲げ部材の製造装置を開示した。図6は、この製造装置0の概略を示す説明図である。
 金属管1(以降の説明では、金属管が鋼管である場合を例にとる)は、支持機構2によって軸方向へ移動自在に支持される。送り機構3は、鋼管1を上流側から下流側へ向けて送る。製造装置0は、支持機構2の下流において鋼管1に曲げ加工を行うことによって、曲げ部材8を製造する。
 支持機構2の下流において、誘導加熱コイル5は、軸方向へ送られる鋼管1を部分的に焼入れ可能温度域(Ac点以上)へ急速に誘導加熱する。水冷機構6は、誘導加熱コイル5の直ぐ下流において鋼管1を急速に冷却する。これらにより、鋼管1の軸方向へ移動する高温部1aが、誘導加熱コイル5と水冷機構6との間の鋼管1に部分的に形成される。高温部1aの変形抵抗は、他の部分の変形抵抗よりも著しく小さい。
 可動ローラダイス4は、ロール対4aを少なくとも一組有する。ロール対4aは、鋼管1を送りながら支持する。可動ローラダイス4は、水冷機構6の下流の領域において、鋼管1を支持しながら二次元又は三次元の方向へ移動することによって、高温部1aに曲げモーメントを与える。
 製造装置0は、比較的安価な構成機器2~6を用いた単純な工程によって、鋼管1に高い作業能率で曲げ加工を行って、所望の形状を有する高強度(例えば780MPa以上の引張強度)の曲げ部材8を製造する。
国際公開第2006/093006号パンフレット
自動車技術Nov.57,No.6(2003)23~28頁
 一般的に、例えば棒材といった中実かつ金属製の被加熱部材を誘導加熱コイルにより誘導加熱する際には、誘導加熱は、被加熱部材をその周方向へ均一に加熱するために、被加熱部材を中心軸回りに回転しながら、行われる。しかし、製造装置0において鋼管1をその中心軸回りに回転することは、支持機構2の下流において移動させる可動ローラダイス4の移動範囲に制限があるため、不可能である。このため、製造装置0は、鋼管1を回転させずに軸方向へ送りながら、誘導加熱コイル5により鋼管1を誘導加熱する。このため、鋼管1を周方向へ均一に加熱することが難しい。
 誘導加熱における加熱電力は、誘導加熱コイル5に通電される電流値(A)と、誘導加熱コイル5の巻き数(Turn)との積であるアンペアターン(ATurn)によって、決定される。
 製造装置0は、鋼管1を精度良く加工することができる。鋼管1の軸方向への加熱幅は、製造装置0による曲げ加工の精度をさらに高めるために、できるだけ狭いことが好ましい。この加熱幅は、誘導加熱コイル5の巻き数が多くなると、広くなる。このため。誘導加熱コイル5の巻き数は、加熱幅を狭くするために、できるだけ少ないことが好ましい。
 一方、一つの誘導加熱コイル5に通電可能な電流値は、その材質および断面積に依存し、一般的には最大で10000A程度である。このため、誘導加熱コイル5の巻き数は、高い生産性と良好な寸法精度とを両立するためにより多くのエネルギーを必要とする場合には、2巻き以上にしなければならないことがある。
 図7は、従来の技術的思想に基づく誘導加熱コイル5の一例を示す説明図である。図7(a)は、誘導加熱コイル5の斜視図である。図7(b)は、誘導加熱コイル5の1巻き目の本体9-1および2巻き目の本体9-2の、鋼管1の軸方向と平行な方向への間隔を広げて描くことによって誘導加熱コイル5の構造をわかり易く示す斜視図である。図7(c)は、鋼管1の軸方向への誘導加熱コイル5の投影を示す説明図であり、実線矢印は1巻き目の本体9―1における電流流れを示し、破線矢印は2巻き目の本体9―2における電流流れを示す。さらに、図7(d)は誘導加熱コイル5を用いて加熱された鋼管1の数値解析シミュレーションによる温度分布の一例を示す説明図である。
 製造装置0によって曲げ部材8を高い寸法精度で製造するためには、鋼管1の高温部1aが、鋼管1の軸方向へできるだけ狭く、かつ周方向へ均一に形成される必要がある。
 図7(a)~図7(c)に示すように、誘導加熱コイル5は環状の本体9-1、9-2を有する。本体9-1、9-2は、鋼管1の周囲に鋼管1から離れて配置される。本体9-1は絶縁板を挟むことにより形成される絶縁部9-1aを有するとともに、本体9-2は絶縁板を挟むことにより形成される絶縁部9-2aを有する。図7(c)に示すように、二つの絶縁部9-1a、9-2aは、本体9-1、9-2に交流電流を供給するための電極9-3a、9-3bの間に設けられる。
 図7(c)に実線の矢印により示すように、一方の電極9-3aを介して本体9-1に供給された交流電流は本体9-1を流れる。図7(c)に破線の矢印で示すように、本体9-1を流れた電流は本体9-2および電極9-3bの順に流れる。これにより、磁束が本体9-1、9-2の内部に発生する。流れる電流が交流であるため、磁束の大きさと向きが変化する。このため、渦電流が、その磁束の変化を打ち消すような磁束を発生するように、鋼管1に誘起される。この渦電流が鋼管1の電気抵抗によってジュール熱を発生し、これにより、鋼管1が加熱されるという誘導加熱(induction heating)が行われる。鋼管1の発熱は、いわゆる表皮効果によって、供給される交流電流の周波数が高いほど、鋼管1の表面層に集中する。
 図7(a)~図7(c)に示すように、誘導加熱コイル5の巻き数を2巻きにするためには、1巻き目の本体9-1と2巻き目の本体9-2とを接続するためのコイル接続部9-4を設ける必要がある。このため、絶縁板からなる2箇所の絶縁部9-1a、9-2aが設けられる。一般的に、コイルはらせん形状を有するため、被加熱体のできるだけ近くで、かつ最短距離で1巻き目の本体9-1と2巻き目の本体9-2とを接続することが当業者の常識である。
 図7(c)に示すように、鋼管1の軸方向への誘導加熱コイル5の投影では、コイル接続部9-4が配置される領域S(絶縁部9-1aおよび9-2aの間の領域)において、電流は鋼管1の軸方向へ流れる。このため、領域Sにおいては、円周方向へ流れる電流は1方向となるために、誘導加熱コイル5の巻き数は実質的に1である。これに対し、領域S以外の残余の領域においては、円周方向へ流れる電流は2方向となるために、誘導加熱コイル5の巻き数は実質的に2である。このように、誘導加熱コイル5の巻き数は、本体9-1、9-2の周方向の位置に関して同じではない。
 このため、誘導加熱コイル5を用いて鋼管1を誘導加熱すると、鋼管1の周方向への温度差が不可避的に発生する。例えば、外径(直径)31.8mm、肉厚1.8mmの普通鋼製の鋼管1を、80mm/secの搬送速度でその軸方向へ非回転で搬送しながら、誘導加熱コイル5の内部を通過させることによって誘導加熱する場合、図7(d)に示すように、コイル接続部9-4が配置される領域S(絶縁部9-1aおよび9-2aの間の領域)に相当する部分の鋼管1の加熱温度と、領域S以外の残余の領域に相当する部分の鋼管1の加熱温度との差が最大で約240℃にも達する。このように、誘導加熱コイル5は、鋼管1を、その周方向へ均一に、かつ軸方向への狭い範囲で、安定して加熱することができない。
 本発明の目的は、例えば鋼管等の金属材を、その周方向へ均一に、かつ軸方向への狭い範囲で安定して加熱することができる誘導加熱コイルを提供することであり、さらに、この誘導加熱コイルを用いることによって高い寸法精度を有する加工部材を安定して確実に製造することができる加工部材の製造装置および製造方法を提供することである。
 本発明による誘導加熱コイルの構成は、図1に例示される通りであり、(i)長尺の金属材1の外周を周方向に取り囲み、金属材1から離れて配置される第1の絶縁部11bおよび第1の電気伝導体を備えた第1の1巻きコイル本体11と、(ii)第1の1巻きコイル本体11の内周形状と実質的に同一の内周形状を有し、金属材1から離れて金属材1の軸方向へ第1の1巻きコイル本体11と並列して配置される第2の絶縁部12bおよび第2の電気伝導体を備えた第2の1巻きコイル本体12と、(iii)第1の絶縁部11bに周方向へ隣接する第1の隣接部分11c、および第2の絶縁部12bに周方向へ隣接する第2の隣接部分12cを接続する本体接続部14とを備え、かつ、金属材1に対して相対的に金属材1の軸方向へ移動しながら金属材1を誘導加熱する誘導加熱コイル10において、実効コイル長Leの誘導加熱コイルの内周コイル長L0の関係が、(L0-Le)/L0が0.05以下である。
 ここで、「内周コイル長(Inner-Coil-Length)L0」とは、第1の1巻きコイル本体11または第2の1巻きコイル本体12の内側表面の1周分(絶縁部を含む)の長さをいい、「実効コイル長(Effective-Coil-Length)Le」とは、金属材1に対する誘導加熱コイル10の相対的な移動方向に直交する断面に第1の電気伝導体および第2の電気伝導体を投影したときに重畳する(重なり合う)領域の内周長さ、すわなち、実質的な周方向の巻き数がコイル全体の巻き数と等しくなる内周長さをいう。
 例えば、内周コイル長は、内径Rの円形コイルでは2πRとなり、内側短辺aおよび内側長辺bの長方形コイルでは2×(a+b)となる。図1に例示する本発明において、実効コイル長Leは、内周コイル長L0から2カ所の絶縁部11b、12bの周方向長さL1、L2の和(L1+L2)を減じた「2πR-L1-L2」である。さらに、非実効コイル長(Noneffective-Coil-Length)Lnとは、実質的に周方向長さの巻き数がコイル全体の巻き数未満となる領域のコイル内周長さをいい、Ln=L0-Leとなる。
 したがって、本発明は、望ましくは、被加熱体である長尺の金属材の外周を周方向に取り巻く第1の1巻きコイル本体および第2の1巻きコイル本体を少なくとも有し、回転を伴わない長尺の金属材に対して相対的に移動しながら当該金属材を誘導加熱する加熱コイルであって、前記金属材に対する相対的な移動方向へコイルを投影した場合の実質的なコイル巻き数が、コイル全体の巻き数未満となる領域のコイル内周長さをLnとするとともに前記投影したコイル内周の長さをL0とした場合に、Ln/L0が0.05以下であることを特徴とする誘導加熱コイルである。
 さらに、本発明では、第1の隣接部分11cと、第2の隣接部分12cとが、前記断面内において、互いに異なる位置に存在すること、具体的には、第1の1巻きコイル本体11または第2の1巻きコイル本体12の中心角で5~45度離れた位置に存在することが望ましい。
 従来の技術的思想に基づく誘導加熱コイルでは、被加熱体とコイルとの距離を均一とし、加熱効率を高めるためにコイル全長が最短となるように設計することが常識であった。しかし、本発明による誘導加熱コイルは、図1に例示されるように、従来の当業者の常識により想到される形状とは、顕著に異なる形状を有する。すなわち、本発明は、コイル全長が増加することや、コイルと被加熱体の距離が大きくなることを厭わずに、周方向に関してコイル巻き数が均一となることを最も重要視した結果、完成したものであって、非回転の被加熱体の外周を均一に加熱できるという予期せぬ効果を得られる。
 別の観点からは、本発明は、図2に例示されるように、誘導加熱コイル10と、誘導加熱コイル10とともに金属材1に対して相対的に移動しながら、誘導加熱コイル10により誘導加熱された金属材1を冷却することによって、金属材1の軸方向へ移動する高温部1aを金属材1に形成する冷却機構23と、高温部1aに曲げモーメントを与える加工機構24、29とを備えることを特徴とする加工部材の製造装置20である。
 さらに別の観点からは、本発明は、図2に例示されるように、誘導加熱コイル10を、中心軸回りに回転しない長尺の金属材1に対して相対的に金属材1の軸方向へ移動しながら金属材1を誘導加熱するとともに、誘導加熱コイル10とともに金属材1に対して相対的に移動する冷却機構23により、誘導加熱コイル10により誘導加熱された金属材1を冷却することによって、金属材1の軸方向へ移動する高温部1aを金属材1に形成した後に、高温部1aに曲げモーメントを与えることを特徴とする加工部材の製造方法である。
 これらの本発明では、金属材1が、閉じた横断面形状を有する中空の鋼材であること、例えば鋼管であることが望ましい。
 本発明によれば、金属材をその周方向に均一にかつ軸方向への狭い範囲で安定して加熱することが可能になるので、高い寸法精度で加工部材を安定して確実に製造することができるようになる。
図1は、本発明に係る誘導加熱コイルの一例を示す説明図であり、図1(a)は、誘導加熱コイルの斜視図であり、図1(b)は、誘導加熱コイルの第1の1巻きコイル本体および第2の1巻きコイル本体の、鋼管の軸方向と平行な方向への間隔を広げて描くことによって誘導加熱コイルの構造をわかり易く示す斜視図であり、図1(c)は、鋼管の軸方向への誘導加熱コイルの投影を示す説明図であり、図1(d)は誘導加熱コイルを用いて加熱された鋼管の数値解析シミュレーションによる温度分布の一例を示す説明図である。 図2は、本発明に係る誘導加熱コイルを適用された加工部材の製造装置を模式的に示す説明図である。 図3(a)および図3(b)は、いずれも、本発明に係る誘導加熱コイルおよび鋼管の位置関係を示す説明図であり、図3(a)は、第1の1巻きコイル本体および第2の1巻きコイル本体と鋼管との間隔が均等に3.0mmとなる場合であり、図3(b)は、第1の1巻きコイル本体および第2の1巻きコイル本体それぞれの絶縁部と鋼管との間隔が2.0mmであるとともに、絶縁部以外の部位における誘導加熱コイルと鋼管との間隔が2.0~4.0mmの範囲で不均一となる場合である。 図4は、本発明に係る誘導加熱コイルにより鋼管を加熱した場合の軸方向の温度分布を示すグラフである。 図5は、比較例に係る誘導加熱コイルにより鋼管を加熱した場合の軸方向の温度分布を示すグラフである。 図6は、特許文献1により開示された曲げ加工装置の概略を示す説明図である。 図7は、従来の技術的思想に基づく誘導加熱コイルの一例を示す説明図であり、図7(a)は、誘導加熱コイルの斜視図であり、図7(b)は、誘導加熱コイルの1巻き目の本体および2巻き目の本体の、鋼管の軸方向と平行な方向への間隔を広げて描くことによって誘導加熱コイルの構造をわかり易く示す斜視図であり、図7(c)は、鋼管の軸方向への誘導加熱コイルの投影を示す説明図であり、図7(d)は誘導加熱コイルを用いて加熱された鋼管の数値解析シミュレーションによる温度分布の一例を示す説明図である。
0 曲げ加工装置
1 鋼管
2 支持機構
3 送り機構
4 可動ローラダイス
4a ロール対
5 誘導加熱コイル
6 水冷機構
8 曲げ部材
9-1 1巻き目の本体
9-2 2巻き目の本体
9-1a、9-2a 絶縁部
9-3a、9-3b 電極
9-4 コイル接続部
10 本発明に係る誘導加熱コイル
11 第1の1巻きコイル本体
11b 第1の絶縁部
11c 第1の隣接部分
12 第2の1巻きコイル本体
12b 第2の絶縁部
12c 第2の隣接部分
13a、13c 電極
14 本体接続部
20 本発明に係る製造装置
21 送り機構
22 支持機構
23 冷却機構
24 把持機構
25 つかみ機構
26 本体
27 第1の基盤
28 第2の基盤
29 移動機構
 以降の説明では、本発明における金属材が鋼管である場合を例にとる。本発明は、金属材が鋼管である場合に限定されない。本発明は、閉じた横断面形状を有する金属製の中空部材に適用される。例えば、矩形、楕円形、長円形、多角形、多角形と円の組み合わせの横断面形状、または、多角形と楕円の組み合わせの横断面形状を有する中空の金属材が、この中空部材として例示される。
 [誘導加熱コイル10]
 図1は、本発明に係る誘導加熱コイル10の一例を示す説明図である。図1(a)は、誘導加熱コイル10の斜視図であり、図1(b)は、誘導加熱コイル10の第1の1巻きコイル本体11および第2の1巻きコイル本体12の、鋼管1の軸方向と平行な方向への間隔を広げて描くことによって誘導加熱コイル10の構造をわかり易く示す斜視図であり、図1(c)は、鋼管1の軸方向への誘導加熱コイル10の投影を示す説明図であり、図1(d)は誘導加熱コイル10を用いて加熱された鋼管1の数値解析シミュレーションによる温度分布の一例を示す説明図である。図1(d)において、凡例における一番上のデザインは950℃超1000℃以下であることを示し、上から2番目のデザインは900℃超950℃以下であることを示し、以下同様であって、一番下のデザインは550℃以下であることを示す。
 誘導加熱コイル10は、鋼管1の軸方向へ鋼管1に対して相対的に移動しながら、鋼管1を誘導加熱する。
 誘導加熱コイル10は、第1の1巻きコイル本体11および第2の1巻きコイル本体12を備える。誘導加熱コイル10は、1巻きの第1の加熱コイル11と1巻きの第2の加熱コイル12とを備えることに、実質的に同じである。
 長尺の鋼管1は、中心軸回りに回転せずにその軸方向へ向けて送られる。
 第1の1巻きコイル本体11は、銅合金製であり、環状の外形を備える。第1の1巻きコイル本体11は、第1の電気伝導体と、周方向の一部に第1の絶縁部11bとを有する。第1の絶縁部11bの厚みは薄いことが望ましい。第1の絶縁部11bの厚みは、絶縁性を確実に確保するために、1~2mm程度であることが例示される。第1の1巻きコイル本体11は、鋼管1の周囲に鋼管1から所定距離離れて、かつ鋼管1の全周を覆って、配置される。
 電極13aが、第1の絶縁部11bの隣に位置する、第1の電気伝導体の第1の隣接部分11cに設けられる。電極13aから第1の1巻きコイル本体11へ供給された交流電流は、第1の1巻きコイル本体11の第1の電気伝導体を周回した後、後述する本体接続部14を介して第2の1巻きコイル本体12の第2の電気伝導体へ流れる。これにより、磁束が第1の1巻きコイル本体11の内部に発生する。流れる電流が交流であるため磁束の大きさと向きが変化し、渦電流が、その磁束の変化を打ち消すような磁束を発生するように、鋼管1に誘起される。このとき、渦電流が鋼管1の電気抵抗によってジュール熱を発生し、これにより鋼管1が加熱されるという誘導加熱(induction heating)が行われる。
 第2の1巻きコイル本体12は、銅合金製であり、環状の外形を有する。第2の1巻きコイル本体12は、第2の電気伝導体と、周方向の一部に第2の絶縁部12bとを有する。第2の絶縁部12bの厚みは薄いことが望ましい。絶縁性を確実に確保するために、第2の絶縁部12bの厚みは1~2mm程度であることが例示される。第2の1巻きコイル本体12は、鋼管1の周囲に鋼管1から所定距離離れて、かつ鋼管1の全周を覆って、配置される。第2の1巻きコイル本体12は、鋼管1の軸方向へ第1の1巻きコイル本体11と一列に配置される。
 第2の1巻きコイル本体12は、第1の1巻きコイル本体11の内周形状と同一の内周形状を有する。また、第2の1巻きコイル本体12は、第1の1巻きコイル本体11の外周形状と同一の外周形状を有する。
 電極13cが、第2の絶縁部12bの隣に位置する、第2の電気伝導体の第2の隣接部分12cに設けられる。後述する本体接続部14から第2の1巻きコイル本体12の第2の電気伝導体に供給された交流電流は、第2の1巻きコイル本体12の第2の電気伝導体を周回した後、電極13cへ流れる。これにより、磁束が第2の1巻きコイル本体12の内部に発生する。流れる電流が交流であるため磁束の大きさと向きが変化し、渦電流が、その磁束の変化を打ち消すような磁束を発生するように、鋼管1に誘起される。このとき、渦電流が鋼管1の電気抵抗によってジュール熱を発生し、これにより鋼管1が加熱されるという誘導加熱(induction heating)が行われる。
 本体接続部14は、第1の絶縁部11bに周方向へ隣接する第1の隣接部分11cと、第2の絶縁部12bに周方向へ隣接する第2の隣接部分12cとを接続する。
 後述するように、鋼管1に対する誘導加熱コイル10の相対的な移動方向に直交するとともに鋼管1の軸方向へ投影された断面(以降、本明細書では「投影横断面」と省略して記載する)において、第1の隣接部分11cと、第2の隣接部分12cとが互いに異なる位置に存在するため、図1(a)および図1(b)に示すように、本体接続部14は、略L字型に90度屈曲した断面形状を有する。
 本体接続部14は、第1の1巻きコイル本体11の第1の隣接部分11cから流れ込む交流電流を、第2の1巻きコイル本体の第2の隣接部分12cを介して、第2の1巻きコイル本体12に供給する。
 誘導加熱コイル10では、図1(c)に示すように、実質的な周方向のコイル巻き数が全体のコイル巻き数未満となる非実効コイル長Lnが、第2の絶縁部12bの幅と第1の絶縁部11bのL2との合計長さ(L1+L2)であり、非実効コイル長Lnが内周コイル長L0の5%以下である。望ましくは、Ln≦0.03×L0である。
 また、誘導加熱コイル10では、図1(c)に示すように、第1の隣接部分11cと、第2の隣接部分12cとが、投影横断面において、互いに異なる位置に存在すること、具体的には、第1の1巻きコイル本体11または第2の1巻きコイル本体12の中心角で5~45度離れた位置に存在することが望ましい。
 図7(c)に示す従来の技術的思想による高周波誘導加熱コイル5では、コイル巻き数が実質的に1となる非実効コイル長は、コイル接続部9-4が配置される領域S(絶縁部9-1aおよび9-2aの間の領域)に絶縁部9-1aおよび絶縁部9-2aを加えた長さであり、コイル幅と同程度の広い幅となる。これに対し、本発明の図1(c)に示す誘導加熱コイル10においてコイル巻き数が実質的に1となる領域は、第1の絶縁部11bが存在する領域、および第2の絶縁部12bが存在する領域だけとなり、円周方向へ流れる電流が実質的に1巻き分となる領域は、大幅に削減される。
 例えば、第1の絶縁部11b、および第2の絶縁部12bの厚みがいずれも2mmである場合、鋼管1の直径を31.8mmとするとともに第1の1巻きコイル本体11または第2の1巻きコイル本体12の内径を37.8mmとすると、第2の絶縁部12bの幅L1と、第1の絶縁部11bの幅L2との合計長さ(L1+L2)は、第1の1巻きコイル本体11または第2の1巻きコイル本体12の内側コイル長118.75mmの約3.4%となる。
 また、鋼管1の直径を25.4mmとするとともに第1の1巻きコイル本体11または第2の1巻きコイル本体12の内径を31.4mmとすると、合計長さ(L1+L2)は、第1の1巻きコイル本体11または第2の1巻きコイル本体12の内側コイル長の約4.1%となる。
 なお、従来の技術的思想に基づく誘導加熱コイル5では、非実効コイル長はコイル幅とほぼ等しくなる。1巻き目の本体9-1の内径が31.4mmであるとともにコイル幅が15mmである場合に、その非実効コイル長は、内側コイル長の約15%である。
 図1(d)および図7(d)を対比することにより理解されるように、本発明の誘導加熱コイル10を用いて鋼管1を誘導加熱すると、従来の技術的思想に基づく誘導加熱コイル5を用いて鋼管1を誘導加熱する場合よりも、鋼管1の周方向の温度差が顕著に低減される。例えば、外径(直径)31.8mm、肉厚1.8mmの普通鋼製の鋼管1を、80mm/secの搬送速度でその軸方向へ非回転で搬送しながら、誘導加熱コイル10または誘導加熱コイル5の内部を通過させることにより誘導加熱する。すると、鋼管1に生じる周方向の温度差は、誘導加熱コイル5では約240℃であるが、誘導加熱コイル10では約80℃程度に低減される。このように、誘導加熱コイル10は、鋼管1を周方向に均一にかつ狭い範囲で安定して加熱することができる。
 以上の説明は、誘導加熱コイル10が2つの1巻きコイル本体11、12を備える形態を例にとった。本発明はこの形態には制限されない。本発明の誘導加熱コイルは、3つ以上の1巻きコイル本体を有していてもよい。第3の1巻コイル本体は、第1の1巻きコイル本体11および第2の1巻きコイル本体12の間や、第1の1巻きコイル本体12または第2の1巻きコイル本体12の隣に、第1の1巻きコイル本体11および第2の1巻きコイル本体12と一列に、配置される。加熱幅を狭くすることや設置場所の制約等の理由により、1巻きコイル本体の設置数は2つもしくは3つであることが望ましい。
 また、誘導加熱コイルの形状は円形に限定されるものではなく、例えば、矩形、楕円形、長円形、多角形、多角形と円の組み合わせの横断面形状、または、多角形と楕円の組み合わせの横断面形状でよい。
 [製造装置20および製造方法]
 誘導加熱コイル10を曲げ加工装置0に適用して、加工部材を製造する状況を説明する。
 図2は、本発明に係る誘導加熱コイル10を適用された加工部材の製造装置20を模式的に示す説明図である。
 同図に示すように、この製造装置20は、送り機構21と、支持機構22と、誘導加熱コイル10と、冷却機構23と、把持機構24とを備える。これらの構成機器を順次説明する。
 [送り機構21]
 送り機構21は、鋼管1をその長手方向へ送る。
 電動サーボシリンダーを用いた機構が送り機構21として例示される。送り機構21は、特定の型式の機構には限定されない。例えば、ボールネジを用いた機構やタイミングベルトやチェーンを用いた機構といった、鋼管1のこの種の送り機構として公知の機構が等しく用いられる。
 鋼管1は、つかみ機構25で移動自在に支持される。送り機構21は、所定の送り速度で鋼管1をその軸方向(長手方向)へ送る。つかみ機構25は、鋼管1を送るために鋼管1を支持する。つかみ機構25は、後述する支持機構22が設置される場合には省略してもよい。
 製造装置20では、送り機構21が鋼管1をその軸方向へ送るとともに、誘導加熱コイル10および冷却機構23が固定して設置される。しかし、本発明はこの形態には限定されない。誘導加熱コイル10および冷却装置23が鋼管1に対して相対的に移動自在に設置されればよい。例えば、(a)鋼管1を送らずに固定して配置するとともに、誘導加熱コイル10および冷却機構23が鋼管1に対して移動することや、(b)鋼管1をその軸方向へ送るとともに、誘導加熱コイル10および冷却機構23が鋼管1に対してさらに移動することも許容される。
 [支持機構22]
 支持機構22は、送り機構21により軸方向へ送られる鋼管1を、第1の位置Aにおいて移動自在に支持する。
 固定ガイドが支持機構22として例示される。支持機構22は、特定の型式の機構には限定されない。例えば、対向して配置される一対あるいは一対以上の非駆動のロールが支持機構22として用いられてもよい。この種の支持機構として公知の機構が支持機構22として等しく用いられる。
 鋼管1は、支持機構の設置位置Aを通過して、軸方向へ送られる。支持機構22は、つかみ機構25により代用されてもよい。
 [誘導加熱コイル10]
 誘導加熱コイル10は、第1の位置Aよりも鋼管1の送り方向の下流に位置する第2の位置Bにおいて、鋼管1を急速に加熱する。
 誘導加熱コイル10は、第1の1巻きコイル本体11および第2の1巻きコイル本体12に、周波数が5~100kHzの交流電流を供給されることによって、5~150mm/secの送り速度で送られる鋼管1を、第2の位置Bにおいて誘導加熱する。
 鋼管1に対する誘導加熱コイル10の、鋼管1の軸方向と直交する方向と平行な方向への距離を変更することによって、鋼管1の一部をその周方向へ不均一に加熱することができる。
 図3(a)および図3(b)は、いずれも、誘導加熱コイル10および鋼管1の位置関係を示す説明図であり、図3(a)は、第1の1巻きコイル本体11および第2の1巻きコイル本体12と鋼管1との間隔が均等に3.0mmとなる場合であり、図3(b)は、第1の1巻きコイル本体11の絶縁部11bおよび第2の1巻きコイル本体の第2の絶縁部12bと鋼管1との間隔が2.0mmであるとともに、第1の絶縁部11bおよび第2の絶縁部12b以外の部位における誘導加熱コイル10と鋼管1との間隔が2.0~4.0mmの範囲で不均一となる場合である。
 図3(a)に示す場合には、第1の絶縁部11bおよび第2の絶縁部12b付近における鋼管1の温度が他の位置の鋼管1の温度よりも低くなり、鋼管1の周方向の温度差は80℃程度となる。
 これに対し、図3(b)に示す場合には、第1の絶縁部11bおよび第2の絶縁部12b付近における鋼管1の温度と、他の位置の鋼管1の温度との差が小さくなり、鋼管1の周方向の温度差は40℃程度となる。
 誘導加熱コイル10の上流側に少なくとも1つ以上設けられる鋼管1の予熱手段を併用することによって、鋼管1を複数回加熱することができる。これにより、鋼管1の周方向の温度差をさらに小さくすることができる。
 さらに、誘導加熱コイル10の上流側に少なくとも1つ以上設けられる鋼管1の予熱手段を併用することによって、送り出される鋼管1をその周方向または軸方向へ不均一に加熱することもできる。これにより、鋼管1の周方向の温度差をさらに小さくすることができる。
 鋼管1は、誘導加熱コイル10により、図1(d)に例示するように、周方向の温度差を顕著に低減されながら、急速に加熱される。
 [冷却機構23]
 冷却機構23は、第2の位置Bよりも鋼管1の送り方向の下流の第3の位置Cに、配置される。冷却機構23は、加熱された鋼管1を冷却する。鋼管1は、冷却機構23により冷却されることにより、鋼管1の軸方向へ移動する高温部1aが部分的に形成される。高温部1aは、他の部分よりも変形抵抗が大幅に低下している。
 冷却機構23は、鋼管1を所望の冷却速度で冷却することができるものであればよく、特定の型式の冷却機構には限定されない。一般的には、冷却水を鋼管1の外表面の所定の位置に噴射することによって鋼管1を冷却する水冷機構が冷却機構23として例示される。
 図1に示すように、冷却水は、鋼管1の送り方向へ向けて傾斜して吹き付けられる。鋼管1に対する冷却機構23の、鋼管1の軸方向と直交する方向と平行な方向への距離を変更することによって、高温部1aの軸方向への長さを調整することができる。
 [把持機構24]
 把持機構24は、第3の位置Cよりも鋼管1の送り方向の下流の領域Dに配置される。把持機構24は、鋼管1を把持しながら、第3の位置Cよりも鋼管1の送り方向の上流側の空間を含むワークスペース(work space)内において三次元の方向へ移動する。これにより、把持機構24は、鋼管1に形成されている高温部1aに曲げモーメントを与える。一般的には、チャック機構が把持機構24として用いられる。
 なお、本発明では、三次元に移動自在である把持機構24を二次元に移動することは当然可能である。把持機構24を二次元に移動することにより、曲げ方向が二次元的に異なる曲げ加工を行って屈曲部材、例えばS字曲げのような曲げ方向が二次元的に異なる屈曲部材を製造することも可能である。
 「ワークスペース」とは、式(1)、(2)および(3)により規定される三次元空間を意味する。
 x<0かつ(y=0またはy≧0.5D)かつ0≦θ<360°                             ・・・・・(1)
+(y-Rmin)≧Rmin            ・・・・(2)
+(y+Rmin)≧Rmin-(0.5D-Rmin)+(0.5D+Rmin)                     ・・・・(3)
 ただし、式(1)~(3)において、Dは屈曲部材の最小外形寸法(mm)を意味し、Rminは屈曲部材の最小曲率半径(mm)を意味し、x、y、θは第2の位置を原点とする円柱座標系であって、屈曲部材の瞬間的な送り方向をxの正方向とし、xと水平面内で直交する方向をyとし、周方向の角度をθとする。
 把持機構24がワークスペース内において三次元の方向へ移動することによって鋼管1に曲げ加工が行われ、これにより、屈曲部を長手方向へ向けて断続的又は連続的に備える屈曲部材が製造される。
 ワークスペースは観念的に認識される空間であるので、このワークスペース内に例えば各種機構といった有体物が存在していてもよい。
 把持機構24は、柱状の外形を有する本体26と移動機構29とを備える。
 本体26は中空体により構成される。中空体は、鋼管1の外周面に沿う形状の内周面を有する。本体26は、鋼管1の先端部の外面に当接して配置されることによって、鋼管1を把持する。
 なお、本体26は、図1に示す例とは異なり、鋼管1の内周面に沿う形状の外周面を有する筒体により構成されていてもよい。この場合、本体26は、鋼管1の先端部の内部に挿入して配置されることによって、鋼管1を把持する。
 移動機構29は、第1の基盤27および第2の基盤28により構成される。第1の基盤27は、本体26を搭載するとともに第1の位置Aにおける鋼管1の送り方向と直交する方向(図1における上下方向)へ移動自在に配置される。第2の基盤28は、第1の基盤27に前記送り方向へ移動自在に配置される。
 第1の基盤27の移動、および、第2の基盤28の移動は、いずれも、ボールネジおよび駆動モータを用いて行われる。この移動機構29により本体26は、水平面内で二次元に移動自在に配置される。なお、図1における符号30はX軸チルトモータを示し、符号31はX軸シフトモータを示し、符号32はY軸チルトモータを示し、符号33はY軸シフトモータを示し、符号34はZ軸チルトモータを示し、さらに、符号35はZ軸シフトモータを示す。
 さらに、図2に示す移動機構29に替えて、少なくとも1軸以上の軸廻りに回動可能な関節を有する関節型ロボットが本体26を支持するようにしてもよい。関節型ロボットを用いることにより、本体26を三次元の方向へ移動自在に支持することが容易になる。
 製造装置20によって、三次元に屈曲する曲げ加工部を、長手方向へ向けて断続的又は連続的に備える加工製品を製造する状況を説明する。
 閉じた断面形状を有する長尺の鋼管1を、支持機構22により第1の位置Aにおいて支持するとともに送り機構21によりその長手方向へ送る。
 第2の位置Bにおいて誘導加熱コイル10に周波数が5~100kHzの交流電流を供給することにより、5~150mm/secの送り速度で送られる鋼管1を誘導加熱する。
 第3の位置Cにおいて冷却機構23により鋼管1を冷却することにより、鋼管1に高温部1aを形成する。
 さらに、領域Dで、把持機構24の位置を、第3の位置Cよりも鋼管1の送り方向の上流側の空間を含むワークスペース内において三次元の方向へ変更して、鋼管1の高温部1aに曲げモーメントを与えることを、目標とする製品形状に合わせて継続して行う。
 これにより、三次元に屈曲する曲げ加工部を、長手方向へ向けて断続的又は連続的に備える曲げ加工製品が、連続的に製造される。
 この場合に、第2の位置Bにおいて鋼管1を部分的に焼入れが可能な温度に加熱するとともに、第3の位置Cにおいて所定の冷却速度で冷却することにより、鋼管1の一部または全部を焼入れることができる。これにより、曲げ加工製品は、少なくとも長手方向及び/又はこの長手方向と交差する断面内における外周方向へ向けて、断続的又は連続的に焼入れ部を有する。
 製造装置20を、
(a)電縫鋼管製造ラインを構成する、帯状鋼板を連続的に繰り出すアンコイラーと、繰り出された帯状鋼板を所定の断面形状の管に成形する成形装置と、突き合わされた帯状鋼板の両側縁を溶接して連続する管を形成する溶接装置と、溶接ビードの切削および必要に応じてポストアニールやサイジングをする後処理装置とを備える曲げ加工製品の連続製造装置における後処理装置の出側に、配置すること、または
(b)ロールフォーミングラインを構成する、帯状鋼板を連続的に繰り出すアンコイラーと、繰り出された帯状鋼板を所定の断面形状に成形する成形機構とを備える曲げ加工製品の連続製造装置における成形機構の出側に配置すること
によって、曲げ加工製品を連続的に製造することができる。
 本発明によれば、曲げ方向が3次元的に異なる曲げを行って曲げ加工製品を製造する場合であっても、さらに高強度の金属材の曲げ加工が必要な場合であっても、被加熱体である金属材の周方向に均一にかつ金属材の軸方向の狭い範囲に安定して加熱領域を形成することができる。
 これにより、高強度で形状凍結性がよく、所定の硬度分布を有するとともに所望の寸法精度を有し、さらに、長手方向への曲率半径が一定ではなく、長手方向へ少なくとも二つの互いに異なる曲率半径の部分を有する曲げ加工製品を、効率的かつ安価に製造することができる。
 しかも、例えば多関節型のロボット等により支持された把持手段によって金属材を把持して金属材に曲げ加工を行うことにより、曲げ加工の角度を大きく確保することができ、表面性状や表面疵を抑制することができ、また曲げ加工精度を確保することができるとともに、作業能率に優れた曲げ加工が可能になる。
 本発明は、例えば、さらに高度化する例えば自動車用の曲げ加工製品の曲げ加工技術として、広く適用される。
 本発明により製造される焼入れ鋼材は、例えば、以下に例示する用途(i)~(vii)に対して適用可能である。
 (i)自動車のサスペンションのロアーアームやブレーキペダルといった自動車の強度部材、
 (ii)自動車の各種レインフォース、ブレース等の補強部材、
 (iii)バンパー、ドアインパクトビーム、サイドメンバー、サスペンションマウントメンバー、ピラー、サイドシル等の自動車の構造部材、
 (iv)自転車や自動二輪車等のフレーム、クランク
 (v)電車等の車輛の補強部材、台車部品(台車枠、各種梁等)
 (vi)船体等のフレーム部品、補強部材、
 (vii)家電製品の強度部材、補強部材または構造部材
 図1に示す誘導加熱コイル10を図6に示す製造装置0に適用した製造装置と、図7に示す比較例の誘導加熱コイル5を図6に示す製造装置0に適用した製造装置とを用いて、外径(直径)31.8mm、肉厚1.8mmの普通鋼製の鋼管1を、80mm/secの搬送速度でその軸方向へ非回転で搬送しながら、誘導加熱コイル10または5の内部を通過させることにより誘導加熱した。そして、鋼管1の周方向の二箇所の部位P1、P2に熱電対を複数個装着し、鋼管1を搬送しながら、加熱時の鋼管1の温度を測定した。
 図4は、本発明例の結果を示すグラフであり、図5は、比較例の結果を示すグラフである。
 なお、測定位置は、図4、5のグラフ中に併記した部位P1、P2である。部位P1は、横断面内において第1の絶縁部11bおよび第2の絶縁部12bに挟まれた領域の位置、すなわち比較例の誘導加熱コイル5ではコイル巻き数が実質的に一巻きとなる位置である。また部位P2は、部位P1から本体11の中心角で90度離れた位置である。図4、5のグラフにおける実線が部位Pの測定結果であり、破線が部位P2の測定結果である。
 また、図4、5のグラフにおける縦軸Tは鋼管1の温度(℃)を示し、横軸SPは鋼管1の軸方向への送り位置(mm)を示す。
 図5にグラフで示すように、比較例では鋼管1の周方向の温度差が約260℃であるのに対し、図4にグラフで示すように本発明例によれば鋼管1の周方向の温度差は約80℃に低減される。

Claims (3)

  1.  回転を伴わない長尺の金属材に対して相対的に移動しながら当該金属材を誘導加熱する加熱コイルにおいて、
     非実効コイル長をLnとし、内周コイル長をL0とした場合に、Ln/L0が0.05以下であること
    を特徴とする誘導加熱コイル。
  2.  請求項1に記載された誘導加熱コイルと、
     前記誘導加熱コイルとともに前記金属材に対して相対的に移動しながら、前記誘導加熱コイルにより誘導加熱された前記金属材を冷却することによって、前記金属材の軸方向へ移動する高温部を前記金属材に形成する冷却機構と、
     前記高温部に曲げモーメントを与える加工機構と
    を備えることを特徴とする加工部材の製造装置。
  3.  請求項1に記載された誘導加熱コイルを、中心軸回りに回転しない長尺の金属材に対して相対的に該金属材の軸方向へ移動しながら当該金属材を誘導加熱するとともに、前記誘導加熱コイルとともに前記金属材に対して相対的に移動する冷却機構により、前記誘導加熱コイルにより誘導加熱された前記金属材を冷却することによって、前記金属材の軸方向へ移動する高温部を前記金属材に形成した後に、該高温部に曲げモーメントを与えることを特徴とする加工部材の製造方法。
PCT/JP2011/050093 2010-01-06 2011-01-06 誘導加熱コイル、加工部材の製造装置および製造方法 WO2011083817A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CA2786460A CA2786460C (en) 2010-01-06 2011-01-06 Induction heating coil, and an apparatus and method for manufacturing a worked member
JP2011549018A JP5403071B2 (ja) 2010-01-06 2011-01-06 誘導加熱コイル、加工部材の製造装置および製造方法
EA201290608A EA024314B1 (ru) 2010-01-06 2011-01-06 Катушка для индукционного нагрева, устройство и способ изготовления обработанной детали
ES11731815.4T ES2597027T3 (es) 2010-01-06 2011-01-06 Bobina de calentamiento por inducción, dispositivo para fabricación de pieza de trabajo, y método de fabricación
MX2012007911A MX339779B (es) 2010-01-06 2011-01-06 Bobina de calentamiento por induccion y aparato y metodo para la fabricacion de un miembro procesado.
AU2011204165A AU2011204165B2 (en) 2010-01-06 2011-01-06 Induction heating coil, and an apparatus and method for manufacturing a worked member
BR112012016758A BR112012016758B1 (pt) 2010-01-06 2011-01-06 bobina de aquecimento e aparelho de manufatura para um membro trabalhado
EP11731815.4A EP2523530B1 (en) 2010-01-06 2011-01-06 Induction heating coil, device for manufacturing of workpiece, and manufacturing method
KR1020127020189A KR101404386B1 (ko) 2010-01-06 2011-01-06 유도 가열 코일, 가공 부재의 제조 장치 및 제조 방법
CN201180012755.8A CN102792771B (zh) 2010-01-06 2011-01-06 感应加热线圈、加工构件的制造装置及制造方法
IN6264DEN2012 IN2012DN06264A (ja) 2010-01-06 2011-01-06
US13/542,883 US9604272B2 (en) 2010-01-06 2012-07-06 Induction heating coil, and an apparatus and method for manufacturing a worked member
ZA2012/05734A ZA201205734B (en) 2010-01-06 2012-07-30 Induction heating coil,device for manufacturing of workpiece,and manufacturing method
US15/140,527 US10406581B2 (en) 2010-01-06 2016-04-28 Method for manufacturing a worked member using an induction heating coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-001384 2010-01-06
JP2010001384 2010-01-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/542,883 Continuation US9604272B2 (en) 2010-01-06 2012-07-06 Induction heating coil, and an apparatus and method for manufacturing a worked member

Publications (1)

Publication Number Publication Date
WO2011083817A1 true WO2011083817A1 (ja) 2011-07-14

Family

ID=44305554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050093 WO2011083817A1 (ja) 2010-01-06 2011-01-06 誘導加熱コイル、加工部材の製造装置および製造方法

Country Status (14)

Country Link
US (2) US9604272B2 (ja)
EP (1) EP2523530B1 (ja)
JP (1) JP5403071B2 (ja)
KR (1) KR101404386B1 (ja)
CN (1) CN102792771B (ja)
AU (1) AU2011204165B2 (ja)
BR (1) BR112012016758B1 (ja)
CA (1) CA2786460C (ja)
EA (1) EA024314B1 (ja)
ES (1) ES2597027T3 (ja)
IN (1) IN2012DN06264A (ja)
MX (1) MX339779B (ja)
WO (1) WO2011083817A1 (ja)
ZA (1) ZA201205734B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220608A (zh) * 2012-03-28 2014-12-17 丰田自动车株式会社 环形金属环的制造方法及制造装置以及环形金属环
JP2019210509A (ja) * 2018-06-04 2019-12-12 日本製鉄株式会社 3次元熱間曲げ焼入れ装置および焼入れ方法
JP2020030998A (ja) * 2018-08-23 2020-02-27 高周波熱錬株式会社 加熱コイル及び加熱方法
JP2022537727A (ja) * 2019-06-28 2022-08-29 ニコベンチャーズ トレーディング リミテッド エアロゾル供給装置
JP2023509835A (ja) * 2020-03-30 2023-03-10 上海精智実業股▲ふん▼有限公司 焼入システムおよび焼入方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201807600T4 (tr) * 2009-12-15 2018-06-21 Primetals Tech France Sas Sürekli geçiş halindeki bir çelik şerit için ön ısıtma tertibatı.
KR101667505B1 (ko) * 2012-09-21 2016-10-18 신닛테츠스미킨 카부시키카이샤 고주파 유도 가열 장치, 가공 장치
WO2016028197A1 (en) * 2014-08-18 2016-02-25 Valmet Ab Welding head for magnetic pulse welding of tubular profiles to a cylindrical inner member
JP5909014B1 (ja) * 2015-06-08 2016-04-26 オリジン電気株式会社 接合部材の製造方法及び接合部材製造装置
FR3048628B1 (fr) * 2016-03-11 2018-07-13 Stelia Aerospace Machine et procede de cintrage d'une canalisation cylindrique longitudinale
US10626475B2 (en) * 2016-03-31 2020-04-21 Nippon Steel Corporation Heat treatment apparatus, heat treatment method for steel workpiece, and hot bending method for steel workpiece
JP6803588B2 (ja) * 2017-09-28 2020-12-23 本田技研工業株式会社 加熱コイル
CN108633119B (zh) * 2018-05-15 2024-02-06 上海实树汽车工程技术股份有限公司 一种移动式高频感应加热机
CN110923409B (zh) * 2019-12-03 2020-10-27 燕山大学 感应淬火装置及其淬火方法
CN111570580B (zh) * 2020-05-20 2021-03-05 燕山大学 用于大直径厚壁管的加热装置及其加热方法
JP7468386B2 (ja) * 2021-02-02 2024-04-16 トヨタ自動車株式会社 誘導加熱コイル及びその製造方法
CN115971263B (zh) * 2023-03-20 2023-06-23 太原理工大学 无缝金属复合管在线梯度控温设备及其轧制与热处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280125A (ja) * 1988-09-13 1990-03-20 Hitachi Ltd 高周波誘導加熱装置
JPH06243960A (ja) * 1992-11-13 1994-09-02 Metcal Inc 低放射誘導加熱コイル
JP2006523364A (ja) * 2003-03-07 2006-10-12 セレス 電磁誘導による金属帯材の加熱装置

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1936309A (en) * 1931-11-04 1933-11-21 Ajax Electrothermie Corp Induction electric furnace
NL279654A (ja) * 1961-07-17
DE1440983B1 (de) * 1963-06-07 1969-11-13 Allg Elek Citaets Ges Aeg Tele Induktor zum Erwaermen der Enden von langgestreckten Werkstuecken
CA851846A (en) * 1965-08-31 1970-09-15 Viart Fernand Process and means for heating by induction
US3424886A (en) * 1966-10-27 1969-01-28 Ajax Magnethermic Corp Induction heating
DE1909941A1 (de) * 1968-03-05 1970-08-20 Inst Elektroswarki Patona Einrichtung zur induktiven Stossschweissung und Druckverformung von Metallen
JPS4810708B1 (ja) * 1969-10-29 1973-04-06
US3688233A (en) * 1971-03-12 1972-08-29 Westinghouse Electric Corp Electrical inductive apparatus having serially interconnected coils
US3689727A (en) * 1971-03-30 1972-09-05 Olin Corp Induction coil for high frequency welding
US3725630A (en) * 1971-12-20 1973-04-03 Cycle Dyne Inc Inductive coil for heating a loop of conductive material
US3755644A (en) * 1972-06-27 1973-08-28 Growth Int Inc High frequency induction heating apparatus
US4062216A (en) * 1974-07-23 1977-12-13 Daiichi Koshuha Kogyo Kabushiki Kaisha Metal bending methods and apparatus
US3956916A (en) * 1975-02-24 1976-05-18 Herkner Edward C Method and apparatus for making fishing lures
US4098106A (en) * 1975-07-08 1978-07-04 Daiichi Koshuha Kogyo Kabushiki Kaisha Bending method and apparatus with slidable clamp
JPS53145832A (en) * 1977-05-26 1978-12-19 Central Glass Co Ltd Method of bending glass plate
US4251704A (en) * 1979-03-28 1981-02-17 Park-Ohio Industries, Inc. Unit for induction heating and hardening gear teeth
JPS5893516A (ja) * 1981-11-30 1983-06-03 Hitachi Ltd パイプの熱間曲げ加工法およびその装置
DE3427639A1 (de) * 1984-07-26 1986-02-06 Cojafex B.V., Rotterdam Verfahren und vorrichtung zum biegen laenglicher werkstuecke, insbesondere rohre
US4785147A (en) * 1986-06-25 1988-11-15 Tocco, Inc. System for hardening gears by induction heating
US4855551A (en) * 1986-06-25 1989-08-08 Tocco, Inc. Method and apparatus for hardening gears
US4749834A (en) * 1986-06-25 1988-06-07 Tocco, Inc. Method and apparatus of hardening gears by induction heating
US4675488A (en) * 1986-06-25 1987-06-23 Tocco, Inc. Method for hardening gears by induction heating
JPH0512274Y2 (ja) * 1986-11-07 1993-03-29
US4808779A (en) * 1988-04-07 1989-02-28 Industrial Electric Heating, Inc. Single cycle, single frequency induction contour hardening process
US5316849A (en) * 1989-10-26 1994-05-31 Minnesota Mining And Manufacturing Company Reclosable mechanical fastener based on a composite article
JPH04294091A (ja) * 1991-03-22 1992-10-19 Mitsubishi Heavy Ind Ltd 誘導加熱装置
US5495094A (en) * 1994-04-08 1996-02-27 Inductotherm Corp. Continuous strip material induction heating coil
JPH1010708A (ja) 1996-06-20 1998-01-16 Toppan Printing Co Ltd グラビア製版用ポジ格子又は菱形スクリーン
JP3326450B2 (ja) * 1997-04-25 2002-09-24 高周波熱錬株式会社 非直線棒状部材の誘導加熱処理装置
JP3563349B2 (ja) * 1998-09-08 2004-09-08 トライエンジニアリング株式会社 ローラー転圧式加工装置及びローラー転圧式加工方法
US7024897B2 (en) * 1999-09-24 2006-04-11 Hot Metal Gas Forming Intellectual Property, Inc. Method of forming a tubular blank into a structural component and die therefor
EP1087278A3 (en) * 1999-09-24 2004-12-22 Honda Giken Kogyo Kabushiki Kaisha Method of generating control data for bending and torsion apparatuses
EP1264517A1 (de) * 2000-03-13 2002-12-11 Otto Junker GmbH Vorrichtung zur erwärmung von metallischem gut
JP2001355047A (ja) * 2000-06-14 2001-12-25 Kawasaki Steel Corp 冷間加工性と高周波焼入れ性に優れた高炭素鋼管およびその製造方法
JP3934864B2 (ja) 2000-09-05 2007-06-20 オークラ輸送機株式会社 物品保持装置および物品移載装置
CN1810069B (zh) * 2003-06-26 2010-06-23 应达公司 感应加热线圈的电磁屏蔽
JP4591908B2 (ja) * 2003-12-15 2010-12-01 臼井国際産業株式会社 パイプの曲げ加工装置
JP4502334B2 (ja) * 2004-04-28 2010-07-14 高周波熱錬株式会社 多段形状軸部材の誘導加熱コイル及び加熱方法
US8863565B2 (en) * 2005-03-03 2014-10-21 Nippon Steel & Sumitomo Metal Corporation Three-dimensionally bending machine, bending-equipment line, and bent product
WO2006093006A1 (ja) 2005-03-03 2006-09-08 Sumitomo Metal Industries, Ltd. 金属材の曲げ加工方法、曲げ加工装置および曲げ加工設備列、並びにそれらを用いた曲げ加工製品
FR2902274B1 (fr) * 2006-06-09 2008-08-08 Celes Sa Dispositif de chauffage par induction a haute frequence, et four a induction equipe d'un tel dispositif
WO2008136068A1 (ja) * 2007-04-20 2008-11-13 Mitsubishi Heavy Industries, Ltd. 管体の残留応力改善方法及び残留応力改善装置
JP5329215B2 (ja) * 2008-12-26 2013-10-30 富士電子工業株式会社 歯車と段付き軸の誘導加熱装置、並びに、誘導加熱方法
EP2996440A1 (en) * 2009-06-21 2016-03-16 Inductotherm Corp. Electric induction heating and stirring of an electrically conductive material in a containment vessel
PT2359949E (pt) * 2009-07-14 2014-01-23 Nippon Steel & Sumitomo Metal Corp Dispositivo e método para fabricar membro dobrado

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280125A (ja) * 1988-09-13 1990-03-20 Hitachi Ltd 高周波誘導加熱装置
JPH06243960A (ja) * 1992-11-13 1994-09-02 Metcal Inc 低放射誘導加熱コイル
JP2006523364A (ja) * 2003-03-07 2006-10-12 セレス 電磁誘導による金属帯材の加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2523530A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220608A (zh) * 2012-03-28 2014-12-17 丰田自动车株式会社 环形金属环的制造方法及制造装置以及环形金属环
JP2019210509A (ja) * 2018-06-04 2019-12-12 日本製鉄株式会社 3次元熱間曲げ焼入れ装置および焼入れ方法
JP6992680B2 (ja) 2018-06-04 2022-01-13 日本製鉄株式会社 3次元熱間曲げ焼入れ装置および焼入れ方法
JP2020030998A (ja) * 2018-08-23 2020-02-27 高周波熱錬株式会社 加熱コイル及び加熱方法
JP7086788B2 (ja) 2018-08-23 2022-06-20 高周波熱錬株式会社 加熱コイル及び加熱方法
JP2022537727A (ja) * 2019-06-28 2022-08-29 ニコベンチャーズ トレーディング リミテッド エアロゾル供給装置
JP7499791B2 (ja) 2019-06-28 2024-06-14 ニコベンチャーズ トレーディング リミテッド エアロゾル供給装置
JP2023509835A (ja) * 2020-03-30 2023-03-10 上海精智実業股▲ふん▼有限公司 焼入システムおよび焼入方法
JP7254248B2 (ja) 2020-03-30 2023-04-07 上海精智実業股▲ふん▼有限公司 焼入システムおよび焼入方法

Also Published As

Publication number Publication date
KR20120099515A (ko) 2012-09-10
EP2523530B1 (en) 2016-07-13
ZA201205734B (en) 2013-04-24
KR101404386B1 (ko) 2014-06-09
MX339779B (es) 2016-06-08
BR112012016758B1 (pt) 2020-04-28
CN102792771B (zh) 2016-02-10
CA2786460C (en) 2016-08-09
BR112012016758A2 (pt) 2016-08-23
CN102792771A (zh) 2012-11-21
US20120325806A1 (en) 2012-12-27
AU2011204165B2 (en) 2013-10-24
IN2012DN06264A (ja) 2015-09-25
US10406581B2 (en) 2019-09-10
JPWO2011083817A1 (ja) 2013-05-13
US20160279690A1 (en) 2016-09-29
JP5403071B2 (ja) 2014-01-29
EA201290608A1 (ru) 2013-02-28
MX2012007911A (es) 2012-09-07
CA2786460A1 (en) 2011-07-14
US9604272B2 (en) 2017-03-28
EP2523530A4 (en) 2014-01-22
EA024314B1 (ru) 2016-09-30
ES2597027T3 (es) 2017-01-13
AU2011204165A1 (en) 2012-08-02
EP2523530A1 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5403071B2 (ja) 誘導加熱コイル、加工部材の製造装置および製造方法
US10016802B2 (en) Method and apparatus for manufacturing a bent product
JP5472324B2 (ja) 屈曲部材の製造方法および製造装置
CA2682815C (en) Method of manufacturing a bent product and an apparatus and a continuous line for manufacturing the same
JP2007083304A (ja) 金属材の曲げ加工方法、曲げ加工装置および曲げ加工設備列、並びにそれらを用いた曲げ加工製品
JP5729059B2 (ja) 熱処理鋼材又は曲げ部材の製造装置及び製造方法
JP2021016891A (ja) 中空屈曲部品の製造方法、中空屈曲部品の製造装置、及び中空屈曲部品
JP2011230150A (ja) 加工製品の製造方法及び製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012755.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011549018

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2786460

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201003379

Country of ref document: TH

Ref document number: MX/A/2012/007911

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011204165

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 6264/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127020189

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011204165

Country of ref document: AU

Date of ref document: 20110106

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201290608

Country of ref document: EA

REEP Request for entry into the european phase

Ref document number: 2011731815

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011731815

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012016758

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012016758

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120706