JP5472324B2 - 屈曲部材の製造方法および製造装置 - Google Patents

屈曲部材の製造方法および製造装置 Download PDF

Info

Publication number
JP5472324B2
JP5472324B2 JP2011549017A JP2011549017A JP5472324B2 JP 5472324 B2 JP5472324 B2 JP 5472324B2 JP 2011549017 A JP2011549017 A JP 2011549017A JP 2011549017 A JP2011549017 A JP 2011549017A JP 5472324 B2 JP5472324 B2 JP 5472324B2
Authority
JP
Japan
Prior art keywords
metal material
steel pipe
induction heating
heating coil
bending member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011549017A
Other languages
English (en)
Other versions
JPWO2011083816A1 (ja
Inventor
信宏 岡田
淳 富澤
直明 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011549017A priority Critical patent/JP5472324B2/ja
Publication of JPWO2011083816A1 publication Critical patent/JPWO2011083816A1/ja
Application granted granted Critical
Publication of JP5472324B2 publication Critical patent/JP5472324B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/12Bending rods, profiles, or tubes with programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/16Auxiliary equipment, e.g. for heating or cooling of bends
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/60Continuous furnaces for strip or wire with induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Heat Treatment Of Articles (AREA)
  • General Induction Heating (AREA)

Description

本発明は、屈曲部材の製造方法および製造装置に関する。
金属製の強度部材、補強部材または構造部材が自動車や各種機械に用いられる。高強度、軽量かつ小型であることがこれらの部材に要求される。これらの部材は、従来より、鋼製のプレス加工品の溶接、厚鋼板の打ち抜き、さらにはアルミニウム合金の鍛造によって、製造されてきた。これらの製造方法により達成される、屈曲部材の軽量化および小型化は、限界に達している。本出願人は、特許文献1により、屈曲部材の製造装置を開示した。
図12は、この製造装置0の概略を示す説明図である。製造装置0は、支持機構2によって軸方向へ移動自在に支持される金属管1(以降の説明においては、金属管が鋼管である場合を例にとる)を上流側から下流側へ向けて送り機構3により送りながら、支持機構2の下流において鋼管1に曲げ加工を行うことによって、屈曲部材8を製造する。
誘導加熱コイル5は、支持機構2の下流において、軸方向へ送られる鋼管1を部分的に焼入れ可能温度域(Ac点以上)へ急速に誘導加熱する。水冷機構6は、誘導加熱コイル5の直ぐ下流において鋼管1を急速に冷却する。これらにより、鋼管1の軸方向へ移動する高温部1aが鋼管1に部分的に形成される。高温部1aの変形抵抗は、他の部分の変形抵抗よりも著しく小さい。
可動ローラダイス4は、ロール対4aを少なくとも一組有する。ロール対4aは、鋼管1を送りながら支持する。可動ローラダイス4は、水冷機構6の下流の領域において、鋼管1を支持しながら二次元又は三次元の方向へ移動することによって、高温部1aに曲げモーメントを与える。
このようにして、製造装置0は、比較的安価な構成要素2〜6を用いた単純な工程によって、鋼管1に高い作業能率で曲げ加工を行って、所望の形状を有する高強度(例えば、引張強度:780MPa以上)の屈曲部材8を製造する。
国際公開第2006/093006号パンフレット
製造装置0が優れた寸法精度を有する屈曲部材8を製造するためには、鋼管1の周方向に均一にかつ鋼管1の軸方向の狭い範囲に、高温部1aを形成することが極めて重要になる。
高温部1aが形成される範囲は、一般的に、鋼管1の送り速度、鋼管1の肉厚さらには誘導加熱コイル5に供給する電流の周波数(本明細書では「電流周波数」という)によって、大きく変化する。これらの条件が適正でないと、高温部1aを所望の状態に形成できず、屈曲部材8の寸法精度が低下する。
本発明は、製造装置0を用いて、鋼管1の周方向に均一にかつ軸方向の狭い範囲に安定して高温部1aを形成するには、(a)鋼管1の肉厚が2.0mm以下である場合には、鋼管1の送り速度Vを5〜150mm/secとするとともに、誘導加熱コイル5として巻き数が1である誘導加熱コイルを用い、かつこの誘導加熱コイル5に5〜100kHzの電流周波数の交流電流を供給すること、(b)鋼管1の肉厚が2.0mm超3.0mm以下である場合には、誘導加熱コイル5として巻き数が2である誘導加熱コイルを用い、(1)式:f<3000/Vおよび(2)式:f≧0.08Vの関係を満足するように、誘導加熱コイル5の電流周波数f(kHz)および鋼管1の送り速度V(mm/sec)を調整することが、有効であるという新規な知見に基づく。
本発明は、閉じた横断面形状を有する長尺かつ中空の金属材を、その長手方向へ送りながら第1の位置において支持し、第1の位置よりも金属材の送り方向の下流に位置する第2の位置において金属材を誘導加熱コイルにより誘導加熱するとともに、第2の位置よりも金属材の送り方向の下流に位置する第3の位置において金属材を冷却することによって、金属材の軸方向へ移動する高温部を形成するとともに、第3の位置よりも金属材の送り方向の下流に位置する領域において、金属材を把持する把持機構の位置を三次元の方向へ変更して、高温部に曲げモーメントを与えることによって、三次元に屈曲する屈曲部を長手方向へ向けて断続的又は連続的に備える屈曲部材を製造する方法において、金属材の肉厚が2.0mm以下である場合には、金属材の送り速度を5〜150mm/secとするとともに、誘導加熱コイルとして巻き数が1である誘導加熱コイルを用い、かつ誘導加熱コイルに5〜100kHzの電流周波数の交流電流を供給すること、および、金属材の肉厚が2.0mm超3.0mm以下である場合には、誘導加熱コイルとして巻き数が2である誘導加熱コイルを用い、(1)式:f<3000/Vおよび(2)式:f≧0.08Vの関係を満足するように、誘導加熱コイルの電流周波数f(kHz)および金属材の送り速度V(mm/sec)を調整することを特徴とする屈曲部材の製造方法である。ただし、5kHz≦f≦100kHz、5mm/sec≦V≦150mm/secである。
別の観点からは、本発明は、閉じた横断面形状を有する長尺かつ中空の金属材をその長手方向へ送るための送り機構と、送られる金属材を、第1の位置において支持するための支持機構と、送られる金属材を、第1の位置よりも金属材の送り方向の下流に位置する第2の位置において誘導加熱するための加熱機構と、送られる金属材を、第2の位置よりも金属材の送り方向の下流に位置する第3の位置において金属材を冷却することによって、金属材の軸方向へ移動する高温部をこの金属材に部分的に形成するための冷却機構と、送られる金属材を、第3の位置よりも金属材の送り方向の下流に位置する領域において把持しながら、三次元の方向へ移動することによって、高温部に曲げモーメントを与えるための把持機構とを備える屈曲部材の製造装置において、金属材の肉厚が2.0mm以下である場合には、送り機構は金属材を5〜150mm/secの送り速度Vで送るとともに、加熱機構は巻き数が1である誘導加熱コイルを有し、かつ誘導加熱コイルは5〜100kHzの電流周波数の交流電流を供給されること、および、金属材の肉厚が2.0mm超3.0mm以下である場合には、加熱機構は巻き数が2である誘導加熱コイルを有するとともに、送り機構および加熱機構は、f<3000/V、およびf≧0.08Vの関係を満足するように、送り機構による金属材の送り速度V(mm/sec)と、誘導加熱コイルの電流周波数f(kHz)とを調整することを特徴とする屈曲部材の製造装置である。ただし、5kHz≦f≦100kHz、5mm/sec≦V≦150mm/secである。
これらの本発明は、金属材の肉厚が2.0mm以下であるか、または2.0mm超3.0mm以下であるかに基づいて、すなわち金属材の肉厚を考慮して、上述したいずれかの条件で屈曲部材を製造してもよい。
これらの本発明では、
(A)屈曲部材が、長手方向へ少なくとも二つの互いに異なる曲率半径の部分を有すること、
(B)金属材が、円形、矩形、楕円形、長円形、多角形、多角形と円の組み合わせ、または多角形と楕円の組み合わせからなる横断面形状を有すること、
(C)把持機構が、金属材の先端部の内部に挿入して配置されること、または、金属材の先端部の外面に当接して配置されることによって、金属材を把持すること、
(D)送られる金属材が、第2の位置において部分的に焼入れが可能な温度に加熱されるとともに第3の位置において冷却されることによって、長手方向の少なくとも一部を焼入れられること、または
(E)屈曲部材が、長手方向、及び/又はこの長手方向と交差する断面内における周方向へ向けて、断続的又は連続的に焼入れ部を有すること
のうちの少なくとも一つを満足することが、望ましい。
特許文献1の製造装置を用いて金属材の周方向に均一にかつ金属材の軸方向の狭い範囲に高温部を安定して形成できるため、高い寸法精度で屈曲部材を製造可能になる。
図1は、本発明に係る製造装置の一例の構成を、簡略化して概念的に示す説明図である。 図2は、数値解析の形状モデルを示す説明図である。 図3は、鋼管の肉厚が3mmであってかつ誘導加熱コイルに供給する電流周波数fが25kHzである場合における、鋼管の温度分布の数値解析結果を示す説明図である。 図4は、電流周波数fを変化させた場合における加熱領域の変化(鋼管の肉厚:3mm、送り速度f:100mm/sec)を示す説明図である。 図5は、2巻きの誘導加熱コイルに25kHzの電流周波数の電流を供給し、鋼管の送り速度Vを変化させる場合の解析結果を示す説明図である。 図6は、2巻きの誘導加熱コイルに電流周波数fを変化させた電流を供給し、100mm/secの送り速度Vで鋼管を搬送する場合の解析結果を示す説明図である。 図7は、2巻きの誘導加熱コイルを用いる場合の送り速度V、電流周波数fと加熱幅との関係を示すグラフである。 図8は、2巻きの誘導加熱コイルを用いる場合の送り速度V、電流周波数fと通電可能電流との関係を示すグラフである。 図9は、2巻きの誘導加熱コイルの適切な送り速度Vおよび電流周波数fの範囲を示すグラフである。 図10は、関節型ロボットを用いた製造装置の構成を概念的に示す説明図である。 図11は、関節型ロボットを示す説明図である。 図12は、特許文献1により開示された製造装置の概略を示す説明図である。
0 製造装置
1 金属材
1a 高温部
2 支持機構
3 送り機構
4 可動ローラダイス
4a ロール対
5 誘導加熱コイル
6 水冷機構
10、10−1 製造装置
11 送り機構
12 つかみ機構
13 支持機構
14 加熱機構
14a 誘導加熱コイル
15 把持機構
16 冷却機構
17 本体
18 第1の基盤
19 第2の基盤
20 移動機構
22 X軸チルトモータ
23 X軸シフトモータ
24 Y軸チルトモータ
25 Y軸シフトモータ
26 Z軸チルトモータ
27 X軸シフトモータ
30 数値解析のモデル
31 鋼管
31a 高温部
32、32−1、32−2 誘導加熱コイル
図1は、本発明に係る製造装置10の一例の構成を、簡略化して概念的に示す説明図である。
同図に示すように、製造装置10は、送り機構11と、支持機構13と、加熱機構14と、冷却機構16と、把持機構15とを備える。これらの構成要素を順次説明する。
[送り機構11]
送り機構11は、金属材1をその長手方向へ送る。金属材1は、閉じた断面形状を有する長尺かつ中空の部材である。以降の説明では、金属材1が鋼管である場合を例にとる。本発明は、金属材が鋼管1である場合には限定されない。例えば、矩形、楕円形、長円形、多角形、多角形と円の組み合わせからなる横断面形状を有する中空の金属材、または、多角形と楕円の組み合わせからなる横断面形状を有する中空の金属材が、鋼管1と同様に用いられる。
電動サーボシリンダーを用いた送り機構が送り機構11として例示される。送り機構11は、特定の型式のものには限定されない。ボールネジを用いた送り機構やタイミングベルトやチェーンを用いた送り機構といった、この種の送り機構として公知の送り機構が、送り機構11に等しく用いられる。
鋼管1は、つかみ機構12で移動自在に支持されて、送り機構11により所定の送り速度V(mm/sec)で軸方向(長手方向)へ送られる。つかみ機構12は、鋼管1を送るために鋼管1を支持する。つかみ機構12は設置されなくてもよい。
[支持機構13]
支持機構13は、送り機構11によって軸方向へ送られる鋼管1を、第1の位置Aにおいて移動自在に支持する。
固定ガイドが支持機構13として例示される。支持機構13は特定の型式の支持機構には限定されない。対向して配置される一対あるいは一対以上の非駆動のロールが、支持機構13として用いられる。この種の支持機構として公知の支持機構が、支持機構13として等しく用いられる。
鋼管1は、支持機構13の設置位置Aを通過して、軸方向へさらに送られる。支持機構13はつかみ機構12により代用されてもよい。
[加熱機構14]
加熱機構14は、送られる鋼管1を誘導加熱する。加熱機構14は、第1の位置Aよりも鋼管1の送り方向の下流に位置する第2の位置Bに、配置される。
製造装置10では、鋼管1の肉厚が2.0mm以下である場合には、送り機構11が鋼管1を5〜150mm/secの送り速度Vで送る。さらに、加熱機構14は、巻き数が1である誘導加熱コイル14aを有し、かつ誘導加熱コイル14aは5〜100kHzの電流周波数の交流電流を供給される。
さらに、製造装置10では、鋼管1の肉厚が2.0mm超3.0mm以下である場合には、加熱機構14は巻き数が2である誘導加熱コイル14aを有する。さらに、送り機構11および加熱機構14は、f<3000/V、およびf≧0.08Vの関係を満足するように、送り機構11による鋼管1の送り速度V(mm/sec)と、誘導加熱コイル14aに供給される交流電流の電流周波数f(kHz)とを調整する。ただし、5kHz≦f≦100kHz、5mm/sec≦V≦150mm/secである。
ここで、「巻き数が1である誘導加熱コイル」は、鋼管1の周囲を完全に一周包囲するコイル本体を有する誘導加熱コイルに限定されない。「巻き数が1である誘導加熱コイル」は、鋼管1の外周の一部分は包囲しないものの鋼管1の大部分を包囲するコイル本体を有する誘導加熱コイルも含む。具体的には、鋼管1の外周の70%以上の部分を包囲するコイル本体を有する誘導加熱コイルは、「巻き数が1である誘導加熱コイル」に包含される。
この理由を、本発明者らが行った数値解析の結果を参照しながら、説明する。
(数値解析条件)
図2は、数値解析のモデル30を示す説明図である。数値解析のモデル30は、図2に示すように2次元軸対象とした。
この数値解析では、鋼管31の肉厚、誘導加熱コイル32に供給する電流の電流周波数f、および鋼管31の送り速度Vを変化させた場合における高温部31aの形成状況を、磁場解析および伝熱解析により検討した。
誘導加熱コイル32が、一辺の長さが15mmである正方形の横断面形状を有する銅製のチューブにより構成されるものとして、以下に列記する条件で計算を行った。
鋼管31の直径(mm):38.1
誘導加熱コイル32と鋼管31との距離d(mm):3
電流周波数f(kHz):5、10、25、50、75または100の6水準
鋼管31の肉厚(mm):1.0、2.0または3.0の3水準
鋼管31の送り速度V(mm/sec):5、10、50、75、100、125または150の7水準
加熱された鋼管31の冷却開始位置は、誘導加熱コイル32の端部の投影位置33から下流へ向けて10mm離れた位置とした。
(数値解析結果)
図3に、鋼管31の肉厚が3mmであってかつ電流周波数fが25kHzである場合における、鋼管31の温度分布の数値解析結果を示す。図3は、鋼管31の高温部の送り速度依存性を示す。なお、図3、および後述する図4〜6では、鋼管31の上部の線が鋼管31の外面を示し、鋼管31の下部の線が鋼管31の内面を示す。
一般的に、鋼材の変形抵抗は800℃以上の温度域で大きく減少する。そこで、この数値解析では800℃以上に昇温された領域を加熱領域とした。また、全ての計算は、鋼管31の外面の最大温度が1000℃となる条件で、行った。
図3に示すように、送り速度Vが5、10、50、75、100、125さらには150(mm/sec)と高まるのに伴って、鋼管1の外面および内面の温度分布の差が大きくなる。この理由は、誘導加熱によって鋼管31の外面が直接的に加熱され、かつ鋼管31の内面は外面からの伝熱のみによって加熱されるため、鋼管31の送り速度Vが高くなるほど、鋼管31の内面が加熱される時間が少なくなるからである。
図3に示すように、鋼管31の送り速度Vが5または10(mm/sec)である場合には、鋼管31の内面および外面の温度差が殆ど発生せず、曲げ加工を問題なく行うことができる。鋼材の曲げ加工に際しては、その板厚方向の均熱性(温度分布が一様であること)が重要であり、特に800℃以上となる領域となる幅(以下「有効加熱幅(Effective−Heated−Width)」という)を制御する必要がある。
鋼管31の送り速度Vが50mm/secになると、有効加熱幅(図3において符号Aで示す範囲)が狭くなる。鋼管31の送り速度Vが75mmになると、有効加熱幅Aがほぼ零となる。有効加熱幅Aが零になると、曲げ加工を精度良く行うことが不可能になる。さらに、鋼管31の送り速度Vが100mm/sec以上になると、鋼管31の内面を800℃以上に加熱できなくなり、曲げ加工を行うことが不可能になる。
このように、鋼管31の送り速度Vが高くなるほど、また鋼管31の肉厚が厚くなるほど、鋼管31の有効加熱幅が減少し、曲げ加工を行うことが困難になる。以上の結果から、鋼管31の送り速度Vは5mm/sec以上150mm/sec以下とする。
一方、誘導加熱機構では、電流周波数fを変更することは容易ではないため、誘導加熱機構の設計時に適切な電流周波数fを選択する必要がある。
図4は、電流周波数fを変化させた場合における加熱領域の変化(鋼管31の肉厚3mm、送り速度V100mm/sec)を示す説明図である。
誘導加熱における浸透深さは、電流周波数fが低くなるほど、深くなる。このため、鋼管31の送り速度Vが同じ場合には、電流周波数fが低いほど、鋼管31の内面まで800℃以上に加熱することができる。しかし、本発明では、電流周波数fが低いほど誘導加熱による有効加熱幅Aが大きくなるため、屈曲部材の寸法精度が低下する。
図5は、2巻きの誘導加熱コイル31−1、31−2に25kHzの電流周波数fの電流を供給し、鋼管31の送り速度Vを変化させた場合の解析結果を示す説明図である。また、図6は、2巻きの誘導加熱コイル31−1、31−2に電流周波数fを変化させた電流を供給し、100mm/secで鋼管31を搬送する場合の解析結果を示す説明図である。
図5、6に示す結果と、図3、4に示す結果とを対比することによって、誘導加熱コイルの巻き数を増やすことに伴って鋼管31の加熱開始位置が上流側に移動するため、鋼管31の軸方向への有効加熱幅Aが広がるものの、鋼管31の内面まで加熱できることがわかる。
本発明者らは、図3〜6に例示するようにして、誘導加熱コイル32の巻き数、電流周波数f、および鋼管31の送り速度Vを様々に変更して多数の解析を行った結果、有効加熱幅Aが零とならない送り速度V、電流周波数fおよび肉厚の関係を得た。表1には、巻き数が1である誘導加熱コイルを用いた場合において、電流周波数fおよび送り速度Vと曲げ加工可能な鋼管肉厚との関係を示す。
Figure 0005472324
表1における記号「-」は、肉厚3mm以下で有効加熱幅Aが零より大となり、すなわち,肉厚3mm以下の鋼管を曲げ加工を行うことができることを示す。また、表1における数値は、この値以上の肉厚の場合に有効加熱幅Aが零となる加工限界厚み(mm)を示す。すなわち、製造装置0が対象とする鋼管31の肉厚を最大3mmとすると、表1において破線で囲まれた条件が曲げ加工可能な条件である。
誘導加熱コイル32は一般的に銅合金からなる。誘導加熱コイル32に通電可能な電流値は、誘導加熱コイル32の断面積や冷却方法にも依存するが、通常は最大10000Aである。表1に示すように、鋼管31の送り速度Vを速くするためには電流周波数fを下げる必要がある。電流周波数fを下げると誘導加熱コイル32の電流値が増加する。
表2に、鋼管31の肉厚が3mmである場合に1000℃まで加熱するのに巻き数が1である誘導加熱コイル32に供給する必要がある電流値(A)を示す。
Figure 0005472324
表2において破線で囲んで示すように、電流周波数fが低く、かつ鋼管31の送り速度Vが速い場合には、電流値が10000Aを超えてしまうため、誘導加熱を行うことが事実上できない。
鋼管31の送り速度Vを100mm/sec以上とするためには、表1に示すように、電流周波数fを10kHz以下とする必要がある。しかし、巻き数が1巻きの誘導加熱コイル32では電流値が10000Aを超えてしまう。
これを解決するためには、誘導加熱コイルの巻き数を2とすることが有効である。巻き数を1から2へと倍に増やすことによって、1巻き当りの電流値を低下することができるものの、鋼管31の軸方向への加熱幅が増加する。
表1および表2から、コイル巻き数が1である場合は、送り速度Vが150mm/sec以下で電流周波数fが25〜75kHzの条件では、肉厚が2.0mmである鋼管31の加熱に適することがわかる。
表3には、誘導加熱コイルの巻き数が2であって、鋼管31の肉厚が3mmである場合に、鋼管31を1000℃まで加熱するのに必要な電流値(A)の解析結果を示す。
Figure 0005472324
表3に示すように、誘導加熱コイルの巻き数が2である場合には、例えば、電流周波数fが10kHzであっても100mm/secの送り速度Vで曲げ加工を行うことが可能である。なお、表3において破線で囲まれた条件は、電流値が10000Aを超えてしまうために誘導加熱を行うことが事実上できない条件を示す。
表4には、誘導加熱コイルの巻き数が2である場合に有効加熱幅Aが零とならない範囲の解析結果を示す。表4の表記は、表1の表記の同様である。
Figure 0005472324
表4において破線で囲んで示すように、誘導加熱コイルの巻き数が2である場合は、1である場合よりも、加熱範囲が広がることにより、有効加熱幅Aを確保できる条件が拡大する。
表5は、誘導加熱コイルの巻き数が1である場合の有効加熱幅A(mm)を示し、表6は、誘導加熱コイルの巻き数が2である場合の有効加熱幅A(mm)を示す。
Figure 0005472324
Figure 0005472324
表5に示すように、1巻きである場合にはいずれの条件でも有効加熱幅Aが25mm以下となるが、表6に破線で囲んで示すように、2巻きである場合には条件によっては有効加熱幅Aが30mmを超えることがある。
製造装置0による加工精度を確保するためには、有効加熱幅Aが狭いほど望ましい。有効加熱幅A(mm)は広くても30mm程度以下であることが望ましい。そこで、鋼管31の肉厚が2.0mm以下である場合は、1巻きの誘導加熱コイル32を用いるほうが有効加熱幅A(mm)を狭くすることができ、屈曲部材の寸法精度を確保することができる。その場合の送り速度Vと電流周波数fとは、表1および表2から、送り速度Vが150mm/sec以下で25kHzから100kHzが好適である。
一方、肉厚が2.0mm超3.0mm以下である場合は、2巻きの誘導加熱コイル32−1、32−2を用いることが望ましいが、この場合にも、屈曲部材の寸法精度を確保するためには有効加熱幅Aは30mm程度以下であることが望ましい。
表6に示す関係を、図7にグラフにより示す。図7のグラフにおける白丸印は有効加熱幅Aが30mm以下であることを示し、黒四角印は有効加熱幅Aが30mm超であることを示す。
図7のグラフに示すように、電流周波数f(kHz)と送り速度V(mm/sec)とが、近似式であるf<3000/Vの関係を満足すれば、有効加熱幅Aを30mm程度以下とすることができることがわかる。
また、図7のグラフから、2巻きの誘導加熱コイル32−1、32−2を用いる場合は、25kHz以下の電流周波数fが好適であるが、電流周波数fが低い場合には、表3に示すコイルに通電可能な電流値も考慮する必要がある。
この関係を図8にグラフで示す。図8のグラフにおける白丸印は通電可能な電流値であることを示し、黒四角印は通電不可な電流値であることを示す。
図8に示すグラフから、2巻きの誘導加熱コイル32−1、32−2を用いる場合に通電可能な範囲は、近似式であるf≧0.08Vの範囲である。
図9は、図7に示した有効加熱幅Aが30mm程度以下となる領域と、図8に示した通電可能な領域とを併せて示すグラフである。図9のグラフには、電流周波数fおよび送り速度Vをどのように調整しても、有効加熱幅Aが確保できない範囲を格子部LP(f≧25kHzかつV≧125mm/sec)により示す。
以上の理由により、鋼管1の肉厚が2.0mm以下である場合は、送り機構11が鋼管1を5〜150mm/secの送り速度Vで送るとともに、加熱機構14として巻き数が1である誘導加熱コイル14aを用い、かつこの1巻きの誘導加熱コイル14aに5〜100kHzの電流周波数fの交流電流を供給することによって、鋼管1を誘導加熱する。
さらに、鋼管1の肉厚が2.0mm超3.0mm以下である場合には、加熱機構14として巻き数が2である誘導加熱コイル14aを用い、送り機構11および加熱機構14は、f<3000/V、およびf≧0.08Vの関係を満足するように、送り機構11による鋼管1の送り速度V(mm/sec)と、誘導加熱コイル14aに供給される交流電流の電流周波数f(kHz)とを調整することが望ましい。ただし、5kHz≦f≦100kHz、5mm/sec≦V≦150mm/secである。
上述したように、巻き数が2である誘導加熱コイル14aを用いて鋼管1を加熱すると、鋼管1の貫通加熱幅Aが若干広くなるものの、鋼管1の肉厚が2.0mm以下である場合にも適用可能である。
また、鋼管1の軸方向と直交する方向と平行な方向への、鋼管1および誘導加熱コイル14a間の距離を変更することによって、鋼管1の少なくとも一部をその周方向へ不均一に加熱することができる。
さらに、加熱機構14の上流側に別の加熱機構を少なくとも1つ以上設けて鋼管1を加熱することによって、鋼管1を2回以上加熱することや、鋼管1の一部をその周方向へ不均一に加熱することができる。
[冷却機構16]
冷却機構16は、第2の位置Bよりも鋼管1の送り方向の下流の第3の位置Cに、配置される。冷却機構16は、加熱された鋼管1を冷却する。鋼管1は、冷却機構16により冷却されることにより、鋼管1の軸方向へ移動する高温部1aが部分的に形成される。高温部1aは、他の部分よりも変形抵抗が大幅に低下している。
冷却機構16は、鋼管1を所望の冷却速度で冷却することができるものであればよく、特定の型式の冷却機構には限定されない。一般的には、冷却水を鋼管1の外周面の所定の位置に噴射することによって鋼管1を冷却する水冷機構が例示される。
図1に示すように、冷却水は、鋼管1の送り方向へ向けて傾斜して吹き付けられる。鋼管1に対する冷却機構16の、鋼管1の軸方向と直交する方向と平行な方向への距離を変更することによって、高温部1aの軸方向への長さを調整することができる。
[把持機構15]
把持機構15は、第3の位置Cよりも鋼管1の送り方向の下流の領域Dに配置される。把持機構15は、鋼管1を把持しながら、第3の位置Cよりも鋼管1の送り方向の上流側の空間を含むワークスペース(work space)内において、少なくとも鋼管1の送り方向を含む三次元の方向へ移動する。これにより、把持機構15は、鋼管1に形成されている高温部1aに曲げモーメントを与える。一般的には、チャック機構が把持機構15として用いられる。
なお、本発明では、三次元に移動自在である把持機構15を二次元に移動することは当然可能である。把持機構15を二次元に移動することにより、曲げ方向が二次元的に異なる曲げ加工を行って屈曲部材、例えばS字曲げのような曲げ方向が二次元的に異なる屈曲部材を製造することも可能である。
「ワークスペース」とは、式(3)、(4)および(5)により規定される三次元空間を意味する。
x<0かつ(y=0またはy≧0.5D)かつ0≦θ<360° ・・・・・(3)
+(y−Rmin)≧Rmin ・・・・(4)
+(y+Rmin)≧Rmin−(0.5D−Rmin)+(0.5D+Rmin) ・・・・(5)
ただし、式(3)〜(5)において、Dは屈曲部材の最小外形寸法(mm)を意味し、Rminは屈曲部材の最小曲率半径(mm)を意味し、x、y、θは第2の位置を原点とする円柱座標系であって、屈曲部材の瞬間的な送り方向をxの正方向とし、xと水平面内で直交する方向をyとし、周方向の角度をθとする。
把持機構15がワークスペース内において三次元の方向へ移動することによって鋼管1に曲げ加工が行われ、これにより、屈曲部を長手方向へ向けて断続的又は連続的に備える屈曲部材が製造される。
ワークスペースは観念的に認識される空間であるので、このワークスペース内に例えば各種機構といった有体物が存在していてもよい。
把持機構15は、柱状の外形を有する本体17と移動機構20とを備える。
本体17は中空体により構成される。中空体は、鋼管1の外周面に沿う形状の内周面を有する。本体17は、鋼管1の先端部の外面に当接して配置されることによって、鋼管1を把持する。
なお、本体17は、図1に示す例とは異なり、鋼管1の内周面に沿う形状の外周面を有する筒体により構成されていてもよい。この場合、本体17は、鋼管1の先端部の内部に挿入して配置されることによって、鋼管1を把持する。
移動機構20は、第1の基盤18および第2の基盤19により構成される。第1の基盤18は、本体17を搭載するとともに第1の位置Aにおける鋼管1の送り方向と直交する方向(図1における上下方向)へ移動自在に配置される。第2の基盤19は、第1の基盤18に前記送り方向へ移動自在に配置される。
第1の基盤18の移動、および、第2の基盤19の移動は、いずれも、ボールネジおよび駆動モータを用いて行われる。この移動機構20により本体17は、水平面内で二次元に移動自在に配置される。なお、図1における符号22はX軸チルトモータを示し、符号23はX軸シフトモータを示し、符号24はY軸チルトモータを示し、符号25はY軸シフトモータを示し、符号26はZ軸チルトモータを示し、さらに、符号27はX軸シフトモータを示す。
図1に示す移動機構20に替えて、少なくとも1軸以上の軸廻りに回動可能な関節を有する関節型ロボットを用いて、本体17を支持してもよい。
図10は、関節型ロボット21を用いた製造装置10−1の構成を概念的に示す説明図であり、図11はこの関節型ロボット21を示す説明図である。
関節型ロボット21は、簡単に、本体17を少なくとも鋼管1の送り方向を含む三次元の方向へ移動自在に支持することができる。
次に、この製造装置10によって屈曲部材を製造する状況を説明する。
はじめに、長尺の鋼管1を、支持機構13により第1の位置Aにおいて支持するとともに送り機構11によりその長手方向へ送る。
次に、鋼管1の肉厚が2.0mm以下である場合には、送り機構11が鋼管1を5〜150mm/secの送り速度Vで送るとともに、第2の位置Bに配置された加熱機構14を構成する1巻きの誘導加熱コイル14aに5〜100kHzの電流周波数Vの交流電流を供給することにより、鋼管1を誘導加熱する。
さらに、鋼管1の肉厚が2.0mm超3.0mm以下である場合には、f<3000/V、およびf≧0.08Vの関係を満足するように、送り機構11による鋼管1の送り速度V(mm/sec)と、加熱機構14を構成する2巻きの誘導加熱コイル14aに供給する交流電流の電流周波数f(kHz)とを調整することによって、鋼管1を誘導加熱する。
次に、第3の位置Cにおいて冷却機構16により鋼管1を冷却することによって、鋼管1に高温部1aを形成する。
そして、領域Dにおいて、鋼管1を把持する把持機構15の位置を、前記ワークスペース内において、少なくとも鋼管1の送り方向を含む三次元の方向へ変更して、鋼管1の高温部1aに曲げモーメントを与える。
これらの処理を、屈曲部材の目標形状に合わせて鋼管1の全長について、行う。これにより、三次元に屈曲する屈曲部を長手方向へ向けて断続的又は連続的に備える屈曲部材が、連続的に製造される。
この場合、第2の位置Bにおいて鋼管1を部分的に焼入れ可能温度域(Ac点以上)に加熱するとともに、第3の位置Cにおいて所定の冷却速度で急速に冷却することにより、鋼管1の少なくとも一部を焼入れることもできる。これにより、少なくとも長手方向及び/又はこの長手方向と交差する断面内における周方向へ向けて焼入れ部を断続的又は連続的に有する屈曲部材が製造される。
製造装置10を、電縫鋼管の製造装置の出側に配置すること、具体的には、帯状鋼板を連続的に繰り出すアンコイラーと、繰り出された帯状鋼板を所定の断面形状の管に成形する成形装置と、突き合わされた帯状鋼板の両側縁を溶接して連続する管を形成する溶接装置と、溶接ビードの切削および必要に応じてポストアニールやサイジングをする後処理装置と、この後処理装置の出側に配置された製造装置10とを備える連続製造装置を用いることによって、屈曲部材を連続的に製造することができる。
また、製造装置10を、ロールフォーミングラインを構成する、帯状鋼板を連続的に繰り出すアンコイラーと、繰り出された帯状鋼板を所定の断面形状に成形する成形装置と、この成形装置の出側に配置された製造装置10とを備える連続製造装置を用いることによって、屈曲部材を連続的に製造することができる。
製造装置10は、鋼管1の周方向に均一にかつ鋼管1の軸方向の狭い範囲に安定して高温部1aを形成することができ、これにより、高強度で形状凍結性に優れ、所定の硬度分布を有するとともに所望の寸法精度を有し、さらに、長手方向への曲率半径が一定ではなく長手方向へ少なくとも二つの互いに異なる曲率半径の部分を有する屈曲部材を、効率的かつ安価に製造することができる。
さらに、製造装置10−1は、例えば多関節型のロボット等により支持された把持機構15によって鋼管1を把持して鋼管1に曲げ加工を行うことため、屈曲部の曲げ角度を大きく確保することができ、表面性状や表面疵を抑制することができ、さらに寸法精度を確保することができるとともに、優れた作業能率で、屈曲部材を製造することができる。

Claims (8)

  1. 閉じた横断面形状を有する長尺かつ中空の金属材を、その長手方向へ送りながら第1の位置において支持し、
    前記第1の位置よりも前記金属材の送り方向の下流に位置する第2の位置において該金属材を誘導加熱コイルにより誘導加熱するとともに、前記第2の位置よりも前記金属材の送り方向の下流に位置する第3の位置において前記金属材を冷却することによって、前記金属材の軸方向へ移動する高温部を形成するとともに、
    前記第3の位置よりも前記金属材の送り方向の下流に位置する領域において、前記金属材を把持する把持機構の位置を三次元の方向へ変更して、前記高温部に曲げモーメントを与えることによって、
    三次元に屈曲する屈曲部を長手方向へ向けて断続的又は連続的に備える屈曲部材を製造する方法において、
    前記金属材の肉厚が2.0mm以下である場合には、前記金属材の送り速度を5〜150mm/secとするとともに、前記誘導加熱コイルとして巻き数が1である誘導加熱コイルを用い、かつ該誘導加熱コイルに5〜100kHzの交流電流を供給すること、および、
    前記金属材の肉厚が2.0mm超3.0mm以下である場合には、前記誘導加熱コイルとして巻き数が2である誘導加熱コイルを用い、下記(1)式および(2)式の関係を満足するように、該誘導加熱コイルに供給する交流電流の周波数(kHz)および前記金属材の送り速度(mm/sec)を調整すること
    を特徴とする屈曲部材の製造方法。
    f<3000/V ・・・・・・・(1)
    f≧0.08V ・・・・・・・(2)
    ただし、(1)式および(2)式において、fは前記周波数であるとともにVは前記送り速度であり、5kHz≦f≦100kHz、5mm/sec≦V≦150mm/secである。
  2. 前記屈曲部材は、前記長手方向へ少なくとも二つの互いに異なる曲率半径の部分を有する請求項1に記載された屈曲部材の製造方法。
  3. 前記金属材は、円形、矩形、楕円形、長円形、多角形、多角形と円の組み合わせからなる横断面形状、または、多角形と楕円の組み合わせからなる横断面形状を有する請求項1または請求項2に記載された屈曲部材の製造方法。
  4. 前記把持機構は、前記金属材の先端部の内部に挿入して配置されることによって、前記金属材を把持する請求項1から請求項3までのいずれか1項に記載された屈曲部材の製造方法。
  5. 前記把持機構は、前記金属材の先端部の外面に当接して配置されることによって、前記金属材を把持する請求項1から請求項3までのいずれか1項に記載された屈曲部材の製造方法。
  6. 送られる前記金属材は、前記第2の位置において部分的に焼入れが可能な温度に加熱されるとともに前記第3の位置において冷却されることによって、長手方向の少なくとも一部を焼入れられる請求項1から請求項5までのいずれか1項に記載された屈曲部材の製造方法。
  7. 前記屈曲部材は、長手方向、及び/又は該長手方向と交差する断面内における周方向へ向けて、断続的又は連続的に焼入れ部を有する請求項1から請求項6までのいずれか1項に記載された屈曲部材の製造方法。
  8. 閉じた横断面形状を有する長尺かつ中空の金属材をその長手方向へ送るための送り機構と、
    送られる前記金属材を、第1の位置において支持するための支持機構と、
    送られる前記金属材を、前記第1の位置よりも該金属材の送り方向の下流に位置する第2の位置において誘導加熱するための加熱機構と、
    送られる前記金属材を、前記第2の位置よりも該金属材の送り方向の下流に位置する第3の位置において前記金属材の加熱された部分を冷却することによって、前記金属材の軸方向へ移動する高温部を該金属材に部分的に形成するための冷却機構と、
    送られる前記金属材を、前記第3の位置よりも前記金属材の送り方向の下流に位置する領域において把持しながら、三次元の方向へ移動することによって、前記高温部に曲げモーメントを与えるための把持機構と
    を備える屈曲部材の製造装置において、
    前記金属材の肉厚が2.0mm以下である場合には、前記送り機構は前記金属材を5〜150mm/secの送り速度で送るとともに、前記加熱機構は巻き数が1である誘導加熱コイルを有し、かつ該誘導加熱コイルは5〜100kHzの交流電流を供給されること、および、
    前記金属材の肉厚が2.0mm超3.0mm以下である場合には、前記加熱機構は巻き数が2である誘導加熱コイルを有するとともに、前記送り機構および前記加熱機構は、下記(1)式および(2)式の関係を満足するように、前記送り機構による前記金属材の送り速度(mm/sec)と、前記誘導加熱コイルに供給される交流電流の周波数(kHz)とを調整すること
    を特徴とする屈曲部材の製造装置。
    f<3000/V ・・・・・・・(1)
    f≧0.08V ・・・・・・・(2)
    ただし、(1)式および(2)式において、fは前記周波数であるとともにVは前記送り速度であり、5kHz≦f≦100kHz、5mm/sec≦V≦150mm/secである。
JP2011549017A 2010-01-06 2011-01-06 屈曲部材の製造方法および製造装置 Active JP5472324B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011549017A JP5472324B2 (ja) 2010-01-06 2011-01-06 屈曲部材の製造方法および製造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010001383 2010-01-06
JP2010001383 2010-01-06
PCT/JP2011/050091 WO2011083816A1 (ja) 2010-01-06 2011-01-06 屈曲部材の製造方法および製造装置
JP2011549017A JP5472324B2 (ja) 2010-01-06 2011-01-06 屈曲部材の製造方法および製造装置

Publications (2)

Publication Number Publication Date
JPWO2011083816A1 JPWO2011083816A1 (ja) 2013-05-13
JP5472324B2 true JP5472324B2 (ja) 2014-04-16

Family

ID=44305553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011549017A Active JP5472324B2 (ja) 2010-01-06 2011-01-06 屈曲部材の製造方法および製造装置

Country Status (12)

Country Link
US (1) US8567225B2 (ja)
EP (1) EP2522442B1 (ja)
JP (1) JP5472324B2 (ja)
KR (1) KR101414346B1 (ja)
CN (1) CN102791395B (ja)
AU (1) AU2011204164B2 (ja)
BR (1) BR112012016810A8 (ja)
CA (1) CA2786458C (ja)
EA (1) EA020748B1 (ja)
MX (1) MX2012007910A (ja)
WO (1) WO2011083816A1 (ja)
ZA (1) ZA201205733B (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2359949E (pt) 2009-07-14 2014-01-23 Nippon Steel & Sumitomo Metal Corp Dispositivo e método para fabricar membro dobrado
CN104620676B (zh) * 2012-09-21 2016-04-06 新日铁住金株式会社 高频感应加热装置、加工装置
DE102013001898A1 (de) * 2013-02-05 2014-08-07 Thermprotec Gmbh Verfahren zum Verbessern der Temperaturverteilung beim induktiven bzw. konduktiven Härten von geformten Rohren und Stäben insbesondere aber nicht ausschließlich für den Einsatz als Fahrwerksstabilisatoren in Automobilen
CN103706691B (zh) * 2013-12-29 2015-08-19 哈尔滨工业大学 利用电子万能试验机进行金属板材弯曲成形方法
WO2015144103A1 (de) * 2014-03-25 2015-10-01 Technische Universität Dortmund Verfahren und vorrichtung zur inkrementellen herstellung von gebogenen drähten, rohren, profilen oder dgl. aus stangenförmigen metallischen materialien
DE112015004072T5 (de) * 2014-09-04 2017-05-11 Temper Ip, Llc Formgebungsverfahren mit Magnetfeldern
AT516371B1 (de) * 2014-12-02 2016-05-15 Stonawski Rudolf Einrichtung zum Biegen eines Profil-Werkstücks
DE102015106570B4 (de) * 2015-04-28 2016-12-15 AWS Schäfer Technologie GmbH Verfahren zum Induktionsbiegeumformen eines druckfesten Rohrs mit großer Wandstärke und großem Durchmesser
CN105170739B (zh) * 2015-08-10 2017-03-08 石家庄国祥运输设备有限公司 三维空间连续弯管加工装置
WO2017061445A1 (ja) * 2015-10-05 2017-04-13 新日鐵住金株式会社 焼入れ鋼材の製造方法および製造装置、焼入れ用鋼材ならびに焼入れ鋼材
ES2663508B1 (es) * 2017-03-31 2019-02-25 La Farga Yourcoppersolutions S A Sistema y procedimiento de control de la recristalización de una pieza tubular metálica
JP6992680B2 (ja) * 2018-06-04 2022-01-13 日本製鉄株式会社 3次元熱間曲げ焼入れ装置および焼入れ方法
CN109834780A (zh) * 2019-04-01 2019-06-04 钛马迪家居江苏有限公司 一种可实现无级调节的家具零件弯曲成型机
JP2022108601A (ja) 2021-01-13 2022-07-26 トヨタ自動車株式会社 成形加工方法
CN113441580B (zh) * 2021-08-31 2021-11-16 南通驰连机械有限公司 一种智能自动数控弯管机
DE102021127807A1 (de) 2021-10-26 2023-04-27 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum bereichsweisen Umformen schlanker Werkstücke, Werkstück sowie Vorrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076232A (ja) * 1983-10-03 1985-04-30 Toyota Motor Corp 高強度中空スタビライザの製造方法
JP2000094043A (ja) * 1998-09-25 2000-04-04 Dai Ichi High Frequency Co Ltd 金属管曲げ加工装置
JP2002187730A (ja) * 2000-12-21 2002-07-05 Matsushita Electric Ind Co Ltd 管曲げ加工方法及び管曲げ加工装置
JP2006240441A (ja) * 2005-03-02 2006-09-14 Sumitomo Metal Ind Ltd 車体補強用部材
WO2008123505A1 (ja) * 2007-04-04 2008-10-16 Sumitomo Metal Industries, Ltd. 曲げ加工製品の製造方法、製造装置及び連続製造装置
JP2009050903A (ja) * 2007-08-28 2009-03-12 Dai Ichi High Frequency Co Ltd 金属管曲げ加工装置および方法
JP2009233731A (ja) * 2008-03-28 2009-10-15 Tokyo Metropolitan Univ 金属管の結晶粒微細化装置及び金属管の結晶粒微細化方法
JP2009291820A (ja) * 2008-06-06 2009-12-17 Mazda Motor Corp 金属管の熱間曲げ加工方法およびその装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1891338A (en) * 1931-02-09 1932-12-20 Lester W Snell Method of and means for bending tubes
JPS5938048B2 (ja) * 1975-09-18 1984-09-13 第一高周波工業 (株) 長尺材の連続曲げ加工方法及びその装置
DE2555326C3 (de) * 1975-12-05 1978-10-19 Mannesmann Ag, 4000 Duesseldorf Vorrichtung zum Biegen von Großrohren
NL165667C (nl) * 1976-09-03 1981-05-15 Cojafex Werkwijze en inrichting voor het continu voortschrijdend buigen van langgerekte voorwerpen, zoals buizen.
JPS5561326A (en) * 1978-10-30 1980-05-09 Dai Ichi High Frequency Co Ltd Bending method for austenitic stainless cast steel pipe by high frequency induction heating
DE3427639A1 (de) * 1984-07-26 1986-02-06 Cojafex B.V., Rotterdam Verfahren und vorrichtung zum biegen laenglicher werkstuecke, insbesondere rohre
JP3195082B2 (ja) * 1992-12-17 2001-08-06 マツダ株式会社 金属部材の曲げ加工装置
JPH10314852A (ja) * 1997-05-14 1998-12-02 Honda Motor Co Ltd 引張曲げ加工装置におけるワークの端末把持装置
US7024897B2 (en) * 1999-09-24 2006-04-11 Hot Metal Gas Forming Intellectual Property, Inc. Method of forming a tubular blank into a structural component and die therefor
CA2320563C (en) * 1999-09-24 2008-02-19 Honda Giken Kogyo Kabushiki Kaisha Method of generating control data for bending and torsion apparatuses
JP3400767B2 (ja) * 2000-02-28 2003-04-28 徹 佐藤 鋼管曲げ加工装置及び方法
JP2001355047A (ja) * 2000-06-14 2001-12-25 Kawasaki Steel Corp 冷間加工性と高周波焼入れ性に優れた高炭素鋼管およびその製造方法
FR2845397B1 (fr) * 2002-10-02 2005-07-29 Allevard Rejna Autosuspensions Installation de trempe par induction, notamment pour la fabrication d'elements de suspension
WO2005058625A1 (ja) * 2003-12-17 2005-06-30 Sumitomo Metal Industries Ltd. 車体補強用金属管およびこれを用いた車体補強用部材
ITRM20050048A1 (it) * 2005-02-04 2006-08-05 Cml Int Spa Macchina curvatrice con braccio di curvatura a ingombro ridotto.
EP1857195B8 (en) 2005-03-03 2014-07-30 Nippon Steel & Sumitomo Metal Corporation Method for bending metal material and bent product
CN100464888C (zh) * 2007-12-26 2009-03-04 连式雄 一种中频感应加热推制弯头的工艺及其装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076232A (ja) * 1983-10-03 1985-04-30 Toyota Motor Corp 高強度中空スタビライザの製造方法
JP2000094043A (ja) * 1998-09-25 2000-04-04 Dai Ichi High Frequency Co Ltd 金属管曲げ加工装置
JP2002187730A (ja) * 2000-12-21 2002-07-05 Matsushita Electric Ind Co Ltd 管曲げ加工方法及び管曲げ加工装置
JP2006240441A (ja) * 2005-03-02 2006-09-14 Sumitomo Metal Ind Ltd 車体補強用部材
WO2008123505A1 (ja) * 2007-04-04 2008-10-16 Sumitomo Metal Industries, Ltd. 曲げ加工製品の製造方法、製造装置及び連続製造装置
JP2009050903A (ja) * 2007-08-28 2009-03-12 Dai Ichi High Frequency Co Ltd 金属管曲げ加工装置および方法
JP2009233731A (ja) * 2008-03-28 2009-10-15 Tokyo Metropolitan Univ 金属管の結晶粒微細化装置及び金属管の結晶粒微細化方法
JP2009291820A (ja) * 2008-06-06 2009-12-17 Mazda Motor Corp 金属管の熱間曲げ加工方法およびその装置

Also Published As

Publication number Publication date
AU2011204164A1 (en) 2012-08-02
US8567225B2 (en) 2013-10-29
WO2011083816A1 (ja) 2011-07-14
CA2786458C (en) 2014-09-23
EA020748B1 (ru) 2015-01-30
EP2522442A4 (en) 2018-03-21
EP2522442A1 (en) 2012-11-14
EP2522442B1 (en) 2020-10-28
AU2011204164B2 (en) 2014-01-30
KR20120099143A (ko) 2012-09-06
KR101414346B1 (ko) 2014-07-02
CN102791395A (zh) 2012-11-21
ZA201205733B (en) 2013-04-24
EA201290609A1 (ru) 2013-01-30
BR112012016810A2 (pt) 2016-04-19
MX2012007910A (es) 2012-12-17
BR112012016810A8 (pt) 2017-10-03
JPWO2011083816A1 (ja) 2013-05-13
CA2786458A1 (en) 2011-07-14
US20130000375A1 (en) 2013-01-03
CN102791395B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5472324B2 (ja) 屈曲部材の製造方法および製造装置
JP5403071B2 (ja) 誘導加熱コイル、加工部材の製造装置および製造方法
US20180043411A1 (en) Method and apparatus for manufacturing a bent product
AU2008235842B2 (en) Method of manufacturing a bent product and an apparatus and a continuous line for manufacturing the same
JP5435033B2 (ja) 曲げ部材の製造方法及び製造装置
US10335843B2 (en) Method for manufacturing bent member, and hot-bending apparatus for steel material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5472324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350