JP7468386B2 - 誘導加熱コイル及びその製造方法 - Google Patents

誘導加熱コイル及びその製造方法 Download PDF

Info

Publication number
JP7468386B2
JP7468386B2 JP2021014857A JP2021014857A JP7468386B2 JP 7468386 B2 JP7468386 B2 JP 7468386B2 JP 2021014857 A JP2021014857 A JP 2021014857A JP 2021014857 A JP2021014857 A JP 2021014857A JP 7468386 B2 JP7468386 B2 JP 7468386B2
Authority
JP
Japan
Prior art keywords
induction heating
heating coil
straight pipe
arc
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021014857A
Other languages
English (en)
Other versions
JP2022118381A (ja
Inventor
光崇 芳田
豪 五上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021014857A priority Critical patent/JP7468386B2/ja
Priority to US17/646,183 priority patent/US11737177B2/en
Priority to DE102022100122.9A priority patent/DE102022100122B4/de
Priority to CN202210072814.0A priority patent/CN114845431A/zh
Publication of JP2022118381A publication Critical patent/JP2022118381A/ja
Application granted granted Critical
Publication of JP7468386B2 publication Critical patent/JP7468386B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • H05B6/103Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces multiple metal pieces successively being moved close to the inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/02Induction heating
    • H05B2206/022Special supports for the induction coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Induction Heating (AREA)

Description

本発明は誘導加熱コイル及びその製造方法に関し、特に、層状に敷き詰めた金属粉末の所定領域にレーザビームを照射し、溶融及び凝固させて金属層を形成することを繰り返して誘導加熱コイルを造形する誘導加熱コイルの製造方法に関する。
近年、層状に敷き詰めた金属粉末の所定領域にレーザビームを照射し、溶融及び凝固させることを繰り返し、多数の金属層を積層一体化して三次元形状の物品を造形する積層造形技術(いわゆる「3Dプリンタ技術」)が、脚光を浴びている。
特許文献1には、このような積層造形技術を用いて誘導加熱コイルを製造する手法が開示されている。
特開2018-010876号公報
発明者らは、特許文献1に開示された誘導加熱コイルに関し、以下の問題点を見出した。円柱状の加熱対象物の誘導加熱に用いる誘導加熱コイルを傾斜角度90°で積層造形する場合、コイルの内部にサポートを形成する必要がある。具体的には、図12~図14を参照して説明する。
図12~図14は、従来の誘導加熱コイルの製造方法によって製造された誘導加熱コイル300を示す模式的斜視図である。z軸プラス向きが鉛直上向きであり、xy平面が水平面である。平面視で誘導加熱コイル300の面積が最大面積となる場合、すなわち誘導加熱コイル300の配管部100をx軸正側に、コイル部200をx軸負側に載置する場合を、誘導加熱コイル300の傾斜角度が0°であると定義する。また、図12に示すように、平面視で誘導加熱コイル300の面積が最小面積となる場合、すなわち誘導加熱コイル300の配管部100をz軸正側に、コイル部200をz軸負側に配置する場合を、誘導加熱コイル300の傾斜角度が90°であると定義する。
図13は、図12のXIIIで示す領域の拡大図である。図12に示すように、誘導加熱コイル300の造形時の傾斜角度を90°とすると、図13に示すように直線状パイプ203の中空状の経路207の内部にもサポートSを形成する必要がある。造形後、経路207の内部に形成したサポートSは除去できないため、直線状パイプ203の経路207の内部における冷却水等の冷媒の流れを阻害してしまうという問題がある。
ここで、従来の製造方法によって製造された誘導加熱コイルの直線状パイプ203の経路207の内部にサポートSを形成しないようにするためには、図14に示すように、誘導加熱コイル300の造形時の傾斜角度を45°とする必要があった。しかし、図14に示すように誘導加熱コイル300を傾斜角度45°で製造すると、図12に示すように傾斜角度90°で製造する場合に比べて、造形時に広いxy平面方向の面積を要する。例えば、図14に示すように、一度に造形できる誘導加熱コイル300の数が少なく、一例として2個であり、生産効率が悪いという問題がある。
本発明は、上記の問題を鑑みてなされたものであり、内部にサポートを形成することなく積層造形可能であり、直線状パイプの内部の複数経路内の水温の偏りを抑制可能な誘導加熱コイル、及び生産効率を向上可能な誘導加熱コイルの製造方法を提供するものである。
本発明の一形態に係る誘導加熱コイルは、
円柱状の加熱対象物の外周面の円周方向に沿って円弧状に湾曲した一対の円弧状パイプと、
前記円弧状パイプの一端同士をつなぐ直線状パイプと、を備える誘導加熱コイルであって、
前記直線状パイプの内部には、前記直線状パイプの長手方向に沿って延設され、前記直線状パイプの内部を複数経路に分割する壁が少なくとも1つ以上形成されており、
前記壁には少なくとも1個以上の菱形の貫通孔が形成されている。
本発明に係る誘導加熱コイルでは、直線状パイプの内部には、直線状パイプの長手方向に沿って延設され、直線状パイプの内部を複数経路に分割する壁が少なくとも1つ以上形成されている。したがって、壁がサポートとしての機能を有するため、直線状パイプの内部にサポートを形成する必要がない。さらに、壁には少なくとも1個以上の菱形の貫通孔が形成されている。そのため、直線状パイプの内部の複数経路内で生じ得る水温の偏りを抑制可能である。
隣り合う前記壁同士の間隔が5mm以下であってもよい。このような構成によって、直線状パイプの内部にサポートを形成する必要がない。
本発明の一形態に係る誘導加熱コイルの製造方法は、
金属粉末を層状に敷き詰めるステップと、
層状に敷き詰めた前記金属粉末の所定領域にレーザビームを照射し、溶融及び凝固させて金属層を形成するステップと、を繰り返し、
前記金属層を鉛直上側に順次積層して誘導加熱コイルを造形する誘導加熱コイルの製造方法であって、
前記誘導加熱コイルは、円柱状の加熱対象物の外周面の円周方向に沿って円弧状に湾曲した一対の円弧状パイプと、前記円弧状パイプの一端同士をつなぐ直線状パイプと、を備え、
前記直線状パイプの内部に、前記直線状パイプの長手方向に沿って延設され、前記直線状パイプの内部を複数経路に分割する壁を少なくとも1つ以上形成し、
前記壁に少なくとも1個以上の菱形の貫通孔を形成する。
本発明に係る誘導加熱コイルの製造方法では、直線状パイプの内部に、直線状パイプの長手方向に沿って延設され、直線状パイプの内部を複数経路に分割する壁を少なくとも1つ以上形成する。したがって、壁がサポートとしての機能を有するため、造形時に直線状パイプの内部にサポートを形成する必要がない。さらに、壁に少なくとも1個以上の菱形の貫通孔を形成する。そのため、直線状パイプの内部の複数経路内で生じ得る水温の偏りを抑制可能である。
隣り合う前記壁同士の間隔が5mm以下であってもよい。このような構成によって、中空状の直線状パイプにダレが生じることなく製造できる。よって、直線状パイプの内部にサポートを形成する必要がない。
前記直線状パイプが造形された後に、前記円弧状パイプが造形されてもよい。このような構成によって、生産効率を向上できる。
本発明により、内部にサポートを形成することなく積層造形可能であり、直線状パイプの内部の複数経路内の水温の偏りを抑制可能な誘導加熱コイル、及び生産効率を向上可能な誘導加熱コイルの製造方法を提供できる。
実施形態に係る誘導加熱コイルを示す模式的斜視図である。 実施形態に係る誘導加熱コイルの直線状パイプの内部構造を示す斜視図である。 実施形態に係る誘導加熱コイルの直線状パイプの内部構造を示す正面断面図である。 図3のIV-IV線に沿う断面斜視図である。 実施形態に係る誘導加熱コイルの製造方法に用いる積層造形装置の一例を示す模式的断面図である。 実施形態に係る誘導加熱コイルの製造方法によって製造された誘導加熱コイルを示す斜視図である。 図6のVIIの領域を示す拡大斜視図である。 実施形態に係る誘導加熱コイルの製造方法によって製造された誘導加熱コイルを示す斜視図である。 実施例及び比較例に係る誘導加熱コイルが、クランクシャフトCSのクランクピンCPを焼き入れする様子を示す模式的斜視図である。 実施例及び比較例に係る誘導加熱コイルによって焼き入れされたクランクピンCPの焼き入れ結果を示す断面写真である。 実施例及び比較例に係る誘導加熱コイルによって焼き入れされたクランクピンの焼き入れ深さの結果を示すグラフである。 従来の誘導加熱コイルの製造方法によって製造された誘導加熱コイルを示す模式的斜視図である。 図12のXIIIで示す領域の拡大図である。 従来の誘導加熱コイルの製造方法によって製造された誘導加熱コイルを示す模式的斜視図である。
以下、本発明の具体的な実施の形態について、図面を参照しながら詳細に説明する。
なお、図に示した右手系xyz座標は、構成要素の位置関係を説明するための便宜的なものである。特に言及のない限り、z軸プラス向きが鉛直上向きである。また、xy平面が水平面である。
(実施形態)
<誘導加熱コイルの構成>
まず、図1を参照して、実施形態に係る誘導加熱コイルの構成について説明する。
図1は、実施形態に係る誘導加熱コイル1を示す模式的斜視図である。誘導加熱コイル1は、例えば純銅又はクロム銅等の銅基合金からなる。図1に示すように、誘導加熱コイル1は、配管部10及びコイル部20を備えている。
図1に示すように、配管部10は、一対のリード配管11a、11b、接続配管12、及び排水用配管13を備えている。配管部10は、いずれも幅広面がy軸方向に垂直な(y軸方向の幅が小さい)平角管から構成されている。
また、コイル部20は、中心軸がy軸に平行な円柱状の加熱対象物を外側から誘導加熱する。図1に二点鎖線で示した加熱対象物の一例は、クランクシャフトのクランクピンCPである。他の加熱対象物の一例は、クランクシャフトのクランクジャーナルである。図1に示すように、コイル部20は、クランクピンCPの外周面の円周方向に沿って円弧状に湾曲した一対の円弧状コイル20a、20bを備えている。
さらに、図1に示すように、円弧状コイル20aは、第1の円弧状パイプ21a、第2の円弧状パイプ22a、及び直線状パイプ23aを備えている。直線状パイプ23aは、第1の円弧状パイプ21aと第2の円弧状パイプ22aの一端同士をつなぐパイプである。同様に、円弧状コイル20bは、第1の円弧状パイプ21b、第2の円弧状パイプ22b、及び直線状パイプ23bを備えている。直線状パイプ23bは、第1の円弧状パイプ21bと第2の円弧状パイプ22bの一端同士をつなぐパイプである。
図1に示すように、リード配管11a、11bは、上方(z軸正方向)に延設されると共に、y軸方向に並設されている。そして、リード配管11a、11bの端部(x軸負側)は、それぞれ高周波電源(不図示)に接続されている。一方、リード配管11aの下端は、円弧状コイル20aの第2の円弧状パイプ22aの根元部(上端部)に接続され、リード配管11bの下端は、円弧状コイル20bの第2の円弧状パイプ22bの根元部(上端部)に接続されている。
図1に示すように、接続配管12は、一対の円弧状コイル20a、20bを互いに接続している。図1の例では、接続配管12はxz平面視においてU字形状を有している。具体的には、接続配管12は、円弧状コイル20aの第1の円弧状パイプ21aの根元部(上端部)から上方に延設されると共に、リード配管11aとy軸方向に並設された部位を有している。また、接続配管12は、円弧状コイル20bの第1の円弧状パイプ21bの根元部(上端部)から上方に延設された部位を有している。そして、x軸方向に並設された両部位の上端部がx軸方向に延設された部位によって互いに接続されている。
排水用配管13は、一端が接続配管12の端部に接続されており、他端から冷却水が排出される。この排水用配管13の他端は絶縁されているため、排水用配管13には電流は流れない。
円弧状コイル20aの第1の円弧状パイプ21a及び第2の円弧状パイプ22aは、いずれもクランクピンCPの外周面の円周方向に沿って略1/4円弧状に湾曲した角パイプであって、y軸方向に並設されている。そして、第1の円弧状パイプ21a及び第2の円弧状パイプ22aの先端部(下端部)は、クランクピンCPの軸方向(y軸方向)に延設された直線状パイプ23aによって互いに接続されている。
同様に、円弧状コイル20bの第1の円弧状パイプ21b及び第2の円弧状パイプ22bは、いずれもクランクピンCPの外周面の円周方向に沿って略1/4円弧状に湾曲した角パイプであって、y軸方向に並設されている。そして、第1の円弧状パイプ21b及び第2の円弧状パイプ22bの先端部(下端部)は、クランクピンCPの軸方向(y軸方向)に延設された直線状パイプ23bによって互いに接続されている。
誘導加熱コイル1における電流及び冷却水の流れFLについて説明する。
図1において、高周波電源から供給される電流は、リード配管11a、円弧状コイル20a、接続配管12、円弧状コイル20b、及びリード配管11bをこの順又は逆順に流れる。
また、図1において、円弧状コイル20aを冷却するための冷却水は、リード配管11aの端部から導入され、円弧状コイル20a及び接続配管12を介して排水用配管13から排出される。図1において、冷却水の流れFLを、破線部で示す。
一方、円弧状コイル20bを冷却するための冷却水は、リード配管11bの端部から導入され、円弧状コイル20b及び接続配管12を介して排水用配管13から排出される。
なお、誘導加熱コイルの内部を流れる冷媒は冷却水に限定されない。
次に、図2~図4を用いて、直線状パイプ23aの内部構造について説明する。
図2は、実施形態に係る誘導加熱コイル1の直線状パイプ23aの内部構造を示す斜視図である。図2は、図1のIIの破線領域を示している。以下に説明する直線状パイプ23aの内部構造は、直線状パイプ23aと対である直線状パイプ23bも同様に備える。
図2に示すように、直線状パイプ23aの内部経路27には、壁24、25が形成されている。壁24、25は直線状パイプ23aの長手方向(y軸方向)に沿って延設されており、略角柱状である。壁24、25は、直線状パイプ23aの内部経路27を、複数の経路26a、26b、26cに分割する。ここで、内部経路27は上述の冷却水が流れる経路を指す。壁24、25によって内部経路27が分割されて形成された経路26a、26b、26cは略円筒状である。壁24、25は、本実施形態に係る誘導加熱コイルを積層造形する際に、サポートとしての機能を有する。したがって、内部経路27にサポートを形成することなく積層造形できる。
壁24には、経路26aと経路26bとをつなぐ貫通孔24a、24b、24cが形成されている。同様に、壁25には、経路26bと経路26cとをつなぐ貫通孔25a、25b、25cが形成されている。各貫通孔の形状は断面視菱形であり、詳細は図4を用いて後述する。図2では一例として、壁に貫通孔が3個ずつ形成された例を説明したが、貫通孔は少なくとも1個以上形成されていればよい。各壁に1個以上の貫通孔を設けることによって、隣り合う経路同士の間を冷却水が流れることができる。誘導加熱の際に、より加熱対象物に近い経路26cが、より加熱対象物から遠い経路26aに比べて高温になるが、経路間に貫通孔を設けることにより、経路間での冷却水の水温の偏りを抑制することができる。
図3は、実施形態に係る誘導加熱コイルの直線状パイプ23aの内部構造を示す正面断面図である。隣り合う壁24と壁25との間隔は、5mm以下である。換言すると、壁24と壁25との間に形成された経路26bのz軸正側のxy平面におけるx軸に沿う幅が5mm以下となるように、壁24と壁25とを形成する。つまり、内部経路27において、複数の経路のz軸正側のxy平面におけるx軸に沿う幅が5mm以下となるように、壁を形成する。このような構成によって、中空状の直線状パイプ23aにダレが生じることなく製造できる。よって、直線状パイプの内部にサポートを形成する必要がない。
図4は、図3のIV-IV線に沿う断面斜視図である。図4に示すように、貫通孔24a、24b、24cの断面形状は、菱形である。つまり、貫通孔24a、24b、24cの形状は、断面視菱形の角筒状である。ここで、本明細書における「菱形」とは、四辺の長さがすべて等しく、四つの内角がすべて直角である正方形である。図4に示すように、貫通孔24a、24b、24cは、当該正方形がyz平面において傾斜角度45°で配置されている。各貫通孔の断面形状を菱形とすることによって、積層造形の際にダレの形成を抑制しつつ、角筒状の貫通孔24a、24b、24cを形成することができる。
さらに、本実施形態に係る誘導加熱コイル1は、配管部10とコイル部20とが一体造形されているため、各部品をロウ付けにより接合して製造された誘導加熱コイルに比べ、高寿命である。ここで「寿命」とは、誘導加熱コイルに水漏れなどが生じて使用できなくなることを指す。具体的には、ロウ付けにより製造された誘導加熱コイルは平均2万ショット、最大3万ショット用いることができるが、本実施形態に係る誘導加熱コイル1は、9万ショット用いることができる。また、本実施形態に係る誘導加熱コイル1は、ロウ付けによって製造された誘導加熱コイルに比べて製造単価が安価であるため、製造コストを低減することができる。
一方で、本実施形態に係る誘導加熱コイル1が誘導加熱する加熱対象物の焼き入れ深さは、ロウ付けにより製造された誘導加熱コイルが誘導加熱する加熱対象物の焼き入れ深さと同等である。焼き入れ深さの従来技術との比較結果については、実施例を用いて後述する。また、基礎物性についても、ロウ付けにより製造された誘導加熱コイルは純銅から製造するため導電率100%であるが、本実施形態に係る誘導加熱コイル1は銅基合金からなるため、導電率は90%程度と高く、誘導加熱コイルとして十分に使用可能である。
<積層造形装置の構成及び動作>
続いて、図5を参照して、実施形態に係る誘導加熱コイルの製造方法に用いる積層造形装置について説明する。図5は、実施形態に係る誘導加熱コイルの製造方法に用いる積層造形装置の一例を示す模式的断面図である。図5に示すように、積層造形装置は、ベース31、定盤32、造形槽33、造形槽支持部34、造形槽駆動部35、支柱36、支持部37、レーザスキャナ38、光ファイバ39、レーザ発振器40、スキージ41、樋42、粉末分配器43、粉末供給部44、及び制御装置500を備えている。
ベース31は、定盤32及び支柱36を固定するための台である。ベース31は、定盤32が載置される上面が水平になるように、床面に設置される。定盤32は、ベース31の水平な上面に載置、固定されている。定盤32の上面も水平であって、この定盤32の上面に金属粉末51が敷き詰められ、三次元形状の造形物50が形成されていく。
なお、実際の造形物50は図1~図4に示した誘導加熱コイル1だが、図5に示した造形物50は積層造形装置を説明するために模式的に描かれている。
図5の例では、定盤32は、四角柱状の部材である。図5に示すように、定盤32の上面の周縁全体に、水平方向に張り出したフランジ状の凸部32aが形成されている。この凸部32aの外周面が全体に亘り造形槽33の内側面と接触しているため、定盤32の上面及び造形槽33の内側面に囲われた空間に金属粉末51を保持することができる。ここで、造形槽33の内側面と接触している凸部32aの外周面に、例えばフェルトからなるシール部材(不図示)を設けることにより、金属粉末51の保持力を高めることができる。
造形槽33は、この定盤32の上面に敷き詰められた金属粉末51を側面から保持する筒状の部材である。図5の例では、定盤32が四角柱状であるため、造形槽33は、上端にフランジ部33aを備えた角パイプである。造形槽33は、例えば厚さ1~6mm程度(好適には3~5mm程度)のステンレス鋼鈑から構成され、軽量である。造形槽33の上部開口端33bに金属粉末層を形成し、この金属粉末層にレーザビームLBを照射することにより金属層を形成する。上部開口端33bの形状は、例えば600mm×600mmである。
また、造形槽33は、上下方向(z軸方向)に移動可能に設置されている。詳細には後述するように、金属層を形成する度に造形槽33を定盤32に対して一定量ずつ上昇させ、造形物50を形成していく。ここで、実施形態に係る積層造形装置では、一定重量かつ軽量な造形槽33のみを上昇させればよい。そのため、毎回精度良く金属粉末層を形成することができる。その結果、精度良く造形物50を形成することができる。
造形槽支持部34は、造形槽33のフランジ部33aの上面が水平となるように、フランジ部33aの下面を3点で支持している支持部材である。造形槽支持部34は、造形槽33を上下方向(z軸方向)に移動させる造形槽駆動部35の連結部35cに連結されている。
造形槽駆動部35は、造形槽33を上下方向(z軸方向)に移動させるための駆動機構である。造形槽駆動部35は、モータ35a、ボールねじ35b、連結部35cを備えている。モータ35aが駆動すると、z軸方向に延設されたボールねじ35bが回転する。そして、ボールねじ35bが回転すると、ボールねじ35bに沿って、連結部35cが上下方向(z軸方向)に移動する。上述の通り、造形槽33を支持する造形槽支持部34が連結部35cに連結されているため、造形槽駆動部35により造形槽33が上下方向(z軸方向)に移動可能となる。なお、造形槽駆動部35の駆動源は、モータに限らず、油圧シリンダなどを用いてもよい。
ここで、造形槽駆動部35は、ベース31から略垂直に(すなわち鉛直方向に)立設された支柱36の上部に固定されている。このように、本実施形態に係る積層造形装置では、造形槽駆動部35が、造形槽33の外部に設置されているため、メンテナンス性に優れている。
レーザスキャナ38は、造形槽33の上部開口端33bに形成された金属粉末層に対して、レーザビームLBを照射する。レーザスキャナ38は、図示されないレンズ及びミラーを有している。そのため、図5に示すように、レーザスキャナ38は、金属粉末層における水平面(xy平面)上の位置に関わらず、金属粉末層にレーザビームLBの焦点を合わせることができる。
ここで、レーザビームLBは、レーザ発振器40において生成され、光ファイバ39を介して、レーザスキャナ38に導入される。なお、レーザ発振器40の代わりに電子ビーム発生装置(不図示)を使い、金属粉末層に対し電子ビームを照射することにより金属層を形成することもできる。
また、レーザスキャナ38は、支持部37を介して、造形槽33のフランジ部33aに固定されている。そのため、レーザスキャナ38とレーザビームLBの照射対象である金属粉末層との距離を一定に保つことができる。したがって、実施形態に係る積層造形装置は、精度良く造形物50を製造することができる。
スキージ41は、第1のスキージ41a及び第2のスキージ41bから構成されている。第1のスキージ41a及び第2のスキージ41bは、いずれもy軸方向に延設されている。また、スキージ41は、造形槽33の上部開口端33bを介して、一方のフランジ部33aから対向するフランジ部33aまでx軸方向にスライドすることができる。
図5に示すように、第1のスキージ41a及び第2のスキージ41bが、x軸負側のフランジ部33a上に設置された状態で、両者の間に金属粉末が供給される。ここで、2回分の金属粉末層を形成するための金属粉末が供給される。すなわち、スキージ41がx軸負側のフランジ部33aからx軸正側のフランジ部33aまでスライドすることにより、1回分の金属粉末層が造形槽33の上部開口端33bに形成される。
図5に破線で示したように、この金属粉末層に対してレーザビームLBを照射し、金属層を形成している間、スキージ41はx軸正側のフランジ部33a上で待機している。そして、スキージ41がx軸正側のフランジ部33aからx軸負側のフランジ部33aまでスライドすることにより、もう1回分の金属粉末層が造形槽33の上部開口端33bに形成される。
なお、例えば金属層の形成領域が狭い場合には、スキージ41をx軸負側のフランジ部33aからx軸正側のフランジ部33aまで最大限スライドさせずに、金属層の形成領域はカバーした上で、途中でスライドを止めてもよい。金属粉末層を形成するための金属粉末量を節約できると共に時間を短縮することができる。
樋42及び粉末分配器43は、粉末供給部44から投下された金属粉末をスキージ41の長手方向に均一に分配するためのものである。樋42の下面には、第1のスキージ41a及び第2のスキージ41bの間隔(x軸方向)より狭く、スキージ41の粉末投入領域と同程度の長さ(y軸方向)を有する開口部が形成されている。
粉末分配器43は、樋42の溝の断面形状と同形状の板状部材である。粉末分配器43は、図示しない駆動機構によりy軸方向にスライドすることができる。ここで、図5では、分かり易くするため、粉末分配器43を樋42から離して描いている。しかし、実際には、粉末分配器43は樋42の溝の両側面と隙間なく接触しながらスライドする。粉末分配器43が、樋42において金属粉末が投下された一端から他端までスライドすることにより、金属粉末が樋42の開口部を介して、スキージ41の長手方向(y軸方向)に均一に分配される。
粉末供給部44は、金属粉末が蓄えられた小型タンクである。なお、金属粉末は、例えば平均粒径20μm程度の銅基合金粉末である。
制御装置500は、積層造形装置の動作を制御する。例えば、制御装置500は、造形槽駆動部35、レーザスキャナ38、レーザ発振器40、スキージ41等と、有線又は無線で接続されている。制御装置500は、造形物50を製造するための三次元データを記憶しており、この三次元データを用いてこれらの構成要素を制御する。これにより、積層造形装置は、造形物50を造形する。
図示していないが、制御装置500は、コンピュータとしての機能を有し、例えばCPU(Central Processing Unit)等の演算部と、各種制御プログラムやデータ等が格納されたRAM(Random Access Memory)、ROM(Read Only Memory)等の記憶部と、を備えている。
なお、制御装置500は、複数に分割して設けられていてもよい。
以上のように、積層造形装置において、層状に敷き詰めた金属粉末51の所定領域にレーザビームを照射し、溶融及び凝固させて金属層を形成することを繰り返すことによって、三次元形状の造形物50を製造する。
本実施携帯における造形物50は、図1に示した誘導加熱コイル1である。上述の積層造形装置を用いて、直線状パイプの内部に、直線状パイプの長手方向に沿って延設され、直線状パイプの内部を複数経路に分割する壁を少なくとも1つ以上形成する。壁には、少なくとも1個以上の菱形の貫通孔を形成する。また、隣り合う前記壁同士の間隔を5mm以下となるように形成する。積層造形が行われる順としては、直線状パイプ23a、23bが造形された後に、円弧状パイプ21a、21b、22a、22bが造形される。
図6~図8は、実施形態に係る誘導加熱コイルの製造方法によって製造された誘導加熱コイル1を示す斜視図である。図7は、図6のVIIの領域を示す拡大斜視図である。誘導加熱コイル1は、コイル部20の直線状パイプの内部に壁が設けられている。したがって、図6に示すように傾斜角度を90°で製造した場合であっても、図7に示すように直線状パイプ23aの内部にはサポートSが形成されない。
実施形態に係る誘導加熱コイル1は、上述の通り傾斜角度を90°で製造することができるため、傾斜角度45°で製造するときに比べ(図14参照)て、製造時に要するxy平面方向の面積が狭い。図8に示すように、一度に製造できる誘導加熱コイル1の数は例えば8個であり、45°で製造した場合の2個と比べて多く、4倍量の誘導加熱コイルを一度に製造できる。したがって、実施形態に係る誘導加熱コイルの製造方法は、生産効率を向上させ、製造コストを低減できる。
以下、実施例に基づき本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。実施例及び比較例に係る誘導加熱コイルを用いて加熱対象物であるクランクシャフトのクランクピンを焼き入れし、焼き入れ深さの結果について評価を行った。
クランクピンの焼き入れに用いた誘導加熱コイルは、それぞれ以下の通りである。
・比較例1:各部品をロウ付けにより接合して製造された誘導加熱コイルを用いた。
・比較例2:直線状パイプの内部に壁を有しておらず、傾斜角度45°で積層造形して製造された誘導加熱コイルを用いた。
・実施例:実施形態で上述した製造方法で製造された誘導加熱コイルを用いた。すなわち、直線状パイプの内部に壁を有しており、傾斜角度90°で積層造形して製造された誘導加熱コイルを用いた。
以下、図9~図11を参照して説明する。
図9は、実施例及び比較例に係る誘導加熱コイルが、クランクシャフトCSのクランクピンCPを焼き入れする様子を示す模式的斜視図である。
図10は、実施例及び比較例に係る誘導加熱コイルによって焼き入れされたクランクピンCPの焼き入れ結果を示す断面写真である。図10は、図9のXで示す領域のクランクピンCPの焼き入れ結果である。図10において、誘導加熱コイルによって焼き入れされた上部側焼き入れ部HT及び下部側焼き入れ部HBは、それぞれ白く示されている。
本実施例及び比較例では、下部側焼き入れ部HBについて焼き入れ結果を評価した。具体的には、図10に示すように、実施例、比較例1及び比較例2について、それぞれ位置A、位置B、位置C及び位置Dにおける、焼き入れ深さを測定した。位置A~位置Dは、具体的にはそれぞれ以下の通りである。
・位置A:クランクピンCPの下面側の左端部の点Pを中心として、焼き入れ部の最深部を通るような円を描いたときに(破線で示す)、当該円が最小となるときの半径を焼き入れ深さとして測定した。
・位置B:クランクピンCPの下面側の中央付近の、焼き入れ深さが最も浅い部分の焼き入れ深さを測定した。
・位置C:クランクピンCPの下面側の位置Bと位置Dとの間の、焼き入れ深さが最も深い部分の焼き入れ深さを測定した。
・位置D:クランクピンCPの下面側の右端部の点P′を中心として、焼き入れ部の最深部を取るような円を描いたときに(破線で示す)、当該円が最小となるときの半径を焼き入れ深さとして測定した。
図11は、実施例及び比較例に係る誘導加熱コイルによって焼き入れされたクランクピンの焼き入れ深さの結果を示すグラフである。図11のグラフは、横軸が位置A~D、縦軸が測定した焼き入れ深さを示している。横軸の「C-B」は、焼き入れ深さが最も深い位置Cの焼き入れ深さから、焼き入れ深さが最も浅い位置Bの焼き入れ深さを減算して求めた、位置Bと位置Cとの焼き入れ深さの差を示している。
図11のグラフ中に示す破線は、焼き入れが十分であることを意味する焼き入れ規格を示す基準線である。すなわち、焼き入れ深さがグラフの上下の基準線の範囲内であれば、焼き入れ規格を満たす。図11のグラフに示すように、実施例、比較例1及び比較例2に係る誘導加熱コイルによって焼き入れされたクランクピンは、位置A~Dすべてにおいて焼き入れ規格を満たすという結果を得ることができた。また、位置Bと位置Cとの焼き入れ深さの差の値も、焼き入れ規格を満たしていた。
このように、実施例、比較例1及び比較例2に係る誘導加熱コイルは、いずれも焼き入れ規格を満たしていた。一方で、実施例に係る誘導加熱コイルは、比較例1及び比較例2に係る誘導加熱コイルと比較して、以下の利点を有する。
まず、実施例に係る誘導加熱コイルと、比較例1に係る誘導加熱コイル、すなわち各部品をロウ付けにより接合して製造された誘導加熱コイルとを比較する。実施例に係る誘導加熱コイルは、積層造形によって製造されるため、各部品が一体造形されている。したがって、各部品をロウ付けにより接合して製造された誘導加熱コイルに比べ、高寿命である。具体的には、ロウ付けにより製造された誘導加熱コイルは平均2万ショット、最大3万ショット用いることができるが、本実施形態に係る誘導加熱コイルは、9万ショット用いることができる。また、実施例に係る誘導加熱コイルは、比較例1に係る誘導加熱コイルに比べて製造単価が安価であるため、製造コストを低減することができる。さらに、基礎物性についても、比較例1に係る誘導加熱コイルは純銅から製造されているため導電率100%であるが、実施例に係る誘導加熱コイルは銅基合金からなるため導電率は90%と高く、誘導加熱コイルとして十分に使用可能である。
続いて、実施例に係る誘導加熱コイルと、比較例2に係る誘導加熱コイル、すなわち直線状パイプの内部に壁を有しておらず、傾斜角度45°で積層造形して製造された誘導加熱コイルとを比較する。実施例の誘導加熱コイルは、上述の通り傾斜角度を90°で製造することができるため、比較例2に係る誘導加熱コイルのように傾斜角度45°で製造するときに比べて、製造時に要するxy平面方向の面積が狭い。一度に製造できる誘導加熱コイルの数は例えば8個であり、45°で製造した場合の2個と比べて多く、4倍量の誘導加熱コイルを一度に製造できる。したがって、実施例に係る誘導加熱コイルの製造方法は、生産効率を向上させ、製造コストを低減できる。
以上の通り、本実施例に係る誘導加熱コイルは、比較例1及び比較例2に係る誘導加熱コイルと比較して上記の利点を有しており、内部にサポートを形成することなく積層造形可能であり、生産効率を向上可能であるという結果を得ることができた。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
1 誘導加熱コイル
10 配管部
11a、11b リード配管
12 接続配管
13 排水用配管
20 コイル部
20a、20b 円弧状コイル
21a、21b 第1の円弧状パイプ
22a、22b 第2の円弧状パイプ
23a、23b 直線状パイプ
24、25 壁
24a、24b、24c、25a、25b、25c 貫通孔
26a、26b、26c 経路
27 内部経路
31 ベース
32 定盤
32a 凸部
33 造形槽
33a フランジ部
33b 上部開口端
34 造形槽支持部
35 造形槽駆動部
35a モータ
35c 連結部
36 支柱
37 支持部
38 レーザスキャナ
39 光ファイバ
40 レーザ発振器
41 スキージ
41a 第1のスキージ
41b 第2のスキージ
42 樋
43 粉末分配器
44 粉末供給部
45 傾斜角度
50 造形物
51 金属粉末
90 傾斜角度
100 配管部
200 コイル部
203 直線状パイプ
207 経路
300 誘導加熱コイル
500 制御装置
CP クランクピン
CS クランクシャフト
D 位置
HB 下部側焼き入れ部
HT 上部側焼き入れ部
LB レーザビーム
P、P′ 点
S サポート

Claims (5)

  1. 円柱状の加熱対象物の外周面の円周方向に沿って円弧状に湾曲した一対の円弧状パイプと、
    前記円弧状パイプの一端同士をつなぐ直線状パイプと、を備える誘導加熱コイルであって、
    前記直線状パイプの内部には、前記直線状パイプの長手方向に沿って延設され、前記直線状パイプの内部を複数経路に分割する壁が少なくとも1つ以上形成されており、
    前記壁には少なくとも1個以上の菱形の貫通孔が形成されている、
    誘導加熱コイル。
  2. 隣り合う前記壁同士の間隔が5mm以下である、請求項1に記載の誘導加熱コイル。
  3. 金属粉末を層状に敷き詰めるステップと、
    層状に敷き詰めた前記金属粉末の所定領域にレーザビームを照射し、溶融及び凝固させて金属層を形成するステップと、を繰り返し、
    前記金属層を鉛直上側に順次積層して誘導加熱コイルを造形する誘導加熱コイルの製造方法であって、
    前記誘導加熱コイルは、円柱状の加熱対象物の外周面の円周方向に沿って円弧状に湾曲した一対の円弧状パイプと、前記円弧状パイプの一端同士をつなぐ直線状パイプと、を備え、
    前記直線状パイプの内部に、前記直線状パイプの長手方向に沿って延設され、前記直線状パイプの内部を複数経路に分割する壁を少なくとも1つ以上形成し、
    前記壁に少なくとも1個以上の菱形の貫通孔を形成する、
    誘導加熱コイルの製造方法。
  4. 隣り合う前記壁同士の間隔を5mm以下とする、
    請求項3に記載の誘導加熱コイルの製造方法。
  5. 前記直線状パイプが造形された後に、前記円弧状パイプが造形される、
    請求項3又は4に記載の誘導加熱コイルの製造方法。
JP2021014857A 2021-02-02 2021-02-02 誘導加熱コイル及びその製造方法 Active JP7468386B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021014857A JP7468386B2 (ja) 2021-02-02 2021-02-02 誘導加熱コイル及びその製造方法
US17/646,183 US11737177B2 (en) 2021-02-02 2021-12-28 Induction heating coil and its manufacturing method
DE102022100122.9A DE102022100122B4 (de) 2021-02-02 2022-01-04 Induktionsheizspule
CN202210072814.0A CN114845431A (zh) 2021-02-02 2022-01-21 感应加热线圈及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021014857A JP7468386B2 (ja) 2021-02-02 2021-02-02 誘導加熱コイル及びその製造方法

Publications (2)

Publication Number Publication Date
JP2022118381A JP2022118381A (ja) 2022-08-15
JP7468386B2 true JP7468386B2 (ja) 2024-04-16

Family

ID=82402979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021014857A Active JP7468386B2 (ja) 2021-02-02 2021-02-02 誘導加熱コイル及びその製造方法

Country Status (4)

Country Link
US (1) US11737177B2 (ja)
JP (1) JP7468386B2 (ja)
CN (1) CN114845431A (ja)
DE (1) DE102022100122B4 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123387A (ja) 2008-11-19 2010-06-03 Ntn Corp 高周波誘導加熱装置
CN111653529A (zh) 2020-04-30 2020-09-11 华为技术有限公司 一种液冷散热器及通信设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559779B2 (ja) 2004-06-29 2010-10-13 富士電子工業株式会社 クランクシャフトの誘導焼入方法
WO2011041771A2 (en) * 2009-10-02 2011-04-07 Bollman John C Arrangement and method for powering inductors for induction hardening
AU2011204165B2 (en) * 2010-01-06 2013-10-24 Nippon Steel Corporation Induction heating coil, and an apparatus and method for manufacturing a worked member
JP6219228B2 (ja) * 2014-05-12 2017-10-25 光洋サーモシステム株式会社 誘導加熱コイル、および、誘導加熱コイルの製造方法
US10546689B2 (en) * 2017-01-17 2020-01-28 Caterpillar Inc. Method for manufacturing induction coil assembly
JP2018010876A (ja) 2017-09-11 2018-01-18 光洋サーモシステム株式会社 誘導加熱コイル
JP7086788B2 (ja) * 2018-08-23 2022-06-20 高周波熱錬株式会社 加熱コイル及び加熱方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123387A (ja) 2008-11-19 2010-06-03 Ntn Corp 高周波誘導加熱装置
CN111653529A (zh) 2020-04-30 2020-09-11 华为技术有限公司 一种液冷散热器及通信设备

Also Published As

Publication number Publication date
CN114845431A (zh) 2022-08-02
US20220248507A1 (en) 2022-08-04
US11737177B2 (en) 2023-08-22
DE102022100122A1 (de) 2022-08-04
JP2022118381A (ja) 2022-08-15
DE102022100122B4 (de) 2024-01-04

Similar Documents

Publication Publication Date Title
JP5095917B2 (ja) 三次元製品の製造装置及び製造方法
JP4639087B2 (ja) 三次元製品の製造装置及び製造方法
JP5008260B2 (ja) 三次元製品の製造装置及び製造方法
JP5712306B2 (ja) 三次元体の製造方法
JP2020015944A (ja) 付加製造用学習モデル生成装置、付加製造による造形物の製造条件決定装置および付加製造による造形物の状態推定装置
JP2006510806A (ja) 三次元製品の製造装置及び製造方法
JP2006510806A5 (ja)
KR20150115595A (ko) 3차원 조형 장치
JP7435696B2 (ja) 処理装置、処理方法、マーキング方法、及び、造形方法
CN112512729B (zh) 用于确定针对增材制造方法的构造规范的方法
EP3294914B1 (en) Method and apparatus for heat treatment of a ferrous material using an energy beam
US11453054B2 (en) Method for manufacturing three-dimensional shaped object
CN110462535B (zh) 三维物体制造方法和设备及其控制单元、提供控制数据的方法和存储介质
JP7380769B2 (ja) 処理装置及び処理方法、加工方法、並びに、造形装置及び造形方法
JP2010228332A (ja) 造形物の製造方法
JP7548358B2 (ja) 加工システム、加工方法、コンピュータプログラム、記録媒体及び制御装置
JP7468386B2 (ja) 誘導加熱コイル及びその製造方法
JP2022074564A (ja) 付加製造物の設計方法、付加製造物の設計装置及び付加製造物
KR20220073775A (ko) 레이저 소스를 이용한 적층 제조를 위한 적응 경로
JP5993224B2 (ja) 三次元造形装置
JP7063034B2 (ja) 積層造形方法
JP7298516B2 (ja) 誘導加熱コイルの製造方法
JP7073970B2 (ja) 積層造形方法
JP7484362B2 (ja) 付加製造支援装置および付加製造システム
JP2024037869A (ja) 加工システム、及び、加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230822

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7468386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150