WO2011078130A1 - 回転センサの異常判定装置 - Google Patents

回転センサの異常判定装置 Download PDF

Info

Publication number
WO2011078130A1
WO2011078130A1 PCT/JP2010/072923 JP2010072923W WO2011078130A1 WO 2011078130 A1 WO2011078130 A1 WO 2011078130A1 JP 2010072923 W JP2010072923 W JP 2010072923W WO 2011078130 A1 WO2011078130 A1 WO 2011078130A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
signal
rotation
sensor
pulse signal
Prior art date
Application number
PCT/JP2010/072923
Other languages
English (en)
French (fr)
Inventor
晶人 内田
良文 中村
吉原 正朝
哲 枡田
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to CN201080058329.3A priority Critical patent/CN102667413B/zh
Priority to EP10839360.4A priority patent/EP2518451B1/en
Publication of WO2011078130A1 publication Critical patent/WO2011078130A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0825Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to prevention of engine restart failure, e.g. disabling automatic stop at low battery state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24457Failure detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/06Reverse rotation of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/08Redundant elements, e.g. two sensors for measuring the same parameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an abnormality determination device that determines the occurrence of an abnormality in a rotation sensor that outputs a pulse signal corresponding to a rotation direction each time a rotating body rotates by a predetermined angle.
  • the output shaft of an internal combustion engine does not always rotate in one direction, but temporarily rotates in the opposite direction (reverse direction) to the normal operation direction (forward direction) during the stop process or during the stop of the output shaft. There are things to do. For this reason, if a sensor that detects only the rotation amount is used as a rotation sensor for detecting the rotation angle of the output shaft of the internal combustion engine, when the output shaft rotates in the reverse direction, this can be grasped by the output signal of the rotation sensor. Therefore, a deviation occurs between the rotation angle of the output shaft of the internal combustion engine detected by the rotation sensor and the actual rotation angle. Therefore, in this case, the internal combustion engine may not be properly restarted.
  • Patent Document 1 proposes to employ a sensor that outputs a pulse signal having an output width that differs depending on the rotation direction every time the output shaft of the internal combustion engine rotates by a predetermined angle. ing.
  • the rotation sensor of Document 1 includes a disk-shaped signal rotor attached to an output shaft of an internal combustion engine and two sensor units (a first sensor unit and a second sensor unit) provided in the vicinity of the signal rotor. I have. Convex portions are formed on the outer periphery of the signal rotor at predetermined angular intervals, and the two sensor units output a pulse-like signal each time the convex portion of the signal rotor passes in the vicinity of the sensor portion. These sensor units output pulse signals that are out of phase with each other. And this rotation sensor outputs the pulse signal according to the signal from each sensor part.
  • the output width of this pulse signal depends on the change state of the output signal when the output signal of the second sensor section changes (change from a low signal to a high signal [rise], or change from a high signal to a low signal [fall) ]) And the output value (high signal or low signal) of the first sensor unit.
  • the rotation amount of the engine output shaft can be grasped by the number of pulse signals from the rotation sensor, and the rotation direction of the engine output shaft can be grasped by the width of the pulse signal.
  • the rotation angle of the engine output shaft can be obtained with high accuracy in consideration of the rotation in the direction.
  • the literature 1 proposes an abnormality determination device that determines the occurrence of an abnormality in such a rotation sensor.
  • the abnormality determination device of Document 1 when the voltage level of the pulse signal is detected and the state where the pulse signal becomes a high signal or a low signal continues for a predetermined time or more, an abnormality of the rotation sensor occurs. It is determined that
  • the reliability of the pulse signal output from the rotation sensor is extremely low, and a deviation occurs between the rotation angle of the output shaft of the internal combustion engine that is grasped based on the pulse signal and the actual rotation angle. Therefore, it is desirable to detect the occurrence of the abnormality and take appropriate measures.
  • the abnormality determination device disclosed in Patent Document 1 has a problem in that the occurrence of an abnormality cannot be determined because the abnormality occurrence is determined based on the fact that the voltage level of the pulse signal does not change over a predetermined time. .
  • An object of the present invention is to provide an abnormality determination device that can accurately determine the occurrence of an abnormality in a rotation sensor.
  • an abnormality determination device for a rotation sensor that detects the rotation of a rotating body.
  • the rotation sensor includes a first sensor unit and a second sensor unit that output a pulse-like signal having an output width corresponding to half of the predetermined angle every time the rotating body rotates by a predetermined angle.
  • the first and second sensor units output signals that are out of phase with each other.
  • the rotation sensor has a condition that the output signal of the second sensor unit changes in a state where no pulse signal is output from the rotation sensor and the output signal of the first sensor unit is a predetermined value.
  • a pulse signal is output when When the change direction of the output signal of the second sensor unit is the first direction, a pulse signal having a first time width is output.
  • the abnormality determination device includes a calculation unit that calculates a time interval of the output start timing of the pulse signal, and the rotation sensor when a difference between the two time intervals continuously calculated by the calculation unit is larger than a determination value. And a determination unit that determines that is abnormal.
  • the rotating body when an abnormality occurs in which the output signal of the first sensor unit does not change from a predetermined determination value (for example, a high signal or a low signal), the rotating body is half of a predetermined angle when the rotating body rotates.
  • the pulse signal having the first time width and the pulse signal having the second time width are alternately output from the rotation sensor at the output timing for each rotation period (specific period).
  • one of the pulse signal having the first time width and the pulse signal having the second time width is output at the output timing for each specific period.
  • the output width (second time width) of the longer pulse signal may become longer than the specific period.
  • the time interval between the output start time of the pulse signal having the first time width and the output start time of the pulse signal having the second time width immediately after the first time width is The specified period is reached.
  • the second time width is longer than the specific period, the time interval between the output start time of the pulse signal having the second time width and the output start time of the pulse signal having the first time width immediately after the second time width. Is the length of a period in which a plurality of the specific periods are connected.
  • Whether the difference is larger than the determination value is determined based on whether the difference is larger than a predetermined determination value, or the ratio of the two time intervals is out of a predetermined determination range. Can do.
  • the rotating body is an output shaft of an internal combustion engine.
  • the rotation sensor outputs a pulse signal having the first time width as a signal indicating normal rotation of the output shaft, and outputs a pulse signal having the second time width as a signal indicating reverse rotation of the output shaft. .
  • the rotational speed (engine rotational speed) of the output shaft of the internal combustion engine since the rotational speed (engine rotational speed) of the output shaft of the internal combustion engine may be increased during normal rotation, the output width of the pulse signal becomes longer than a predetermined angle even during such high rotation. To prevent this, a short width (first time width) is set as the output width. Further, during reverse rotation of the output shaft of the internal combustion engine, the engine rotation speed does not increase and the output width of the pulse signal is unlikely to be longer than a predetermined angle, so that the output width of the pulse signal is relatively long ( Second time width) is set.
  • a pulse signal having a time width corresponding to the reverse rotation of the output shaft during the forward rotation of the output shaft of the internal combustion engine, that is, a relatively long second time width is output.
  • the pulse signal output width (second time width) may be longer than the specific period.
  • the output width of the second output width corresponding to the reverse rotation during the forward rotation of the engine output shaft with the occurrence of the abnormality is the output width of the pulse signal.
  • the rotation sensor includes a signal rotor having a convex portion formed at a predetermined angle on the outer periphery and a missing tooth portion formed by missing a part of the convex portion.
  • the signal rotor is attached to the output shaft so as to be integrally rotatable.
  • Each of the first sensor unit and the second sensor unit outputs a pulsed signal each time the convex portion of the signal rotor passes.
  • the abnormality determination device detects passage of the missing tooth portion when the difference is larger than the determination value.
  • the determination unit has the same number of detections that the missing tooth detection unit detects the passage of the missing tooth part during a period in which the rotation sensor outputs a pulse signal as many times as the number of rotations of the output shaft. It is determined that the rotation sensor is abnormal when it is equal to or greater than a threshold value greater than the number of missing teeth.
  • the reference angle for the rotation angle of the engine output shaft can be detected by detecting the passage of the missing tooth portion provided in the signal rotor by the rotation sensor. It is used a lot.
  • the control structure can be simplified.
  • the determination unit determines that the rotation sensor is abnormal on the condition that the rotation speed of the output shaft is equal to or higher than a predetermined speed.
  • the apparatus in which the phenomenon in which the second time width is longer than the specific period occurs only in the region where the engine rotational speed is high, it is erroneously determined that the rotation sensor is abnormal in the region where the engine rotational speed is low. Therefore, it is possible to accurately determine the occurrence of abnormality of the rotation sensor.
  • the abnormality determination device further includes a control unit and a prohibition unit.
  • the control unit automatically stops the internal combustion engine when a predetermined stop condition is satisfied, and performs automatic stop / restart control for automatically starting the internal combustion engine when a predetermined restart condition is satisfied.
  • the prohibition unit prohibits execution of the automatic stop / restart control when the determination unit determines that an abnormality has occurred in the rotation sensor.
  • the restart of the internal combustion engine can be avoided based on the rotation angle of the output shaft of the internal combustion engine calculated by the rotation sensor in which an abnormality has occurred, that is, the rotation angle having a very low reliability. And inconveniences such as starting failure can be suppressed.
  • the flowchart which shows the automatic stop process procedure performed by the abnormality determination apparatus of FIG.
  • the flowchart which shows the restart process procedure performed by the abnormality determination apparatus of FIG.
  • surface which shows the relationship between the change aspect of the output signal of a main sensor, the output signal of a sub sensor, and the information about the rotation direction of the crankshaft output by an output device.
  • the timing chart which shows an example of transition of each output signal at the time of forward rotation of a crankshaft.
  • the timing chart which shows an example of transition of each output signal at the time of reverse rotation of a crankshaft.
  • the timing chart which shows an example of transition of each output signal at the time of passage of a missing tooth part.
  • the flowchart which shows the missing tooth detection process procedure performed by the abnormality determination apparatus of FIG. The timing chart which shows an example of transition of each output signal at the time of abnormality occurrence of a rotation sensor.
  • the timing chart which shows an example of the execution aspect of the abnormality determination process performed by the abnormality determination apparatus of FIG.
  • FIG. 1 shows a schematic configuration of a vehicle including an abnormality determination device for a rotation sensor 40 according to the present embodiment.
  • the vehicle 10 is equipped with an internal combustion engine 11 as a drive source.
  • Drive wheels (not shown) are connected to a crankshaft 12 that is an output shaft of the internal combustion engine 11, and the power generated by the internal combustion engine 11 is transmitted to the drive wheels.
  • a starter motor 17 is connected to the crankshaft 12.
  • the starter motor 17 functions as an electric motor when the internal combustion engine 11 is started by an operation of an operation switch (not shown) by an occupant or when the internal combustion engine 11 is automatically started.
  • the crankshaft 12 of the internal combustion engine 11 is forcibly rotated (cranked) by driving the starter motor 17, and an auxiliary torque for starting the internal combustion engine 11 is applied to the crankshaft 12.
  • the abnormality determination device includes an electronic control device 30 that executes various controls for driving the vehicle 10.
  • the electronic control unit 30 includes a central processing unit (CPU) that executes various arithmetic processes related to various controls, a non-volatile memory (ROM) that stores programs and data necessary for the arithmetic operation, and the arithmetic results of the CPU.
  • CPU central processing unit
  • ROM non-volatile memory
  • RAM volatile memory
  • a speed sensor 31 for detecting the traveling speed SPD of the vehicle 10
  • an accelerator operation amount sensor 32 for detecting a depression amount of an accelerator pedal (not shown) (accelerator depression amount AC)
  • an idle switch 33 for detecting whether or not the accelerator pedal is depressed.
  • Sensors include a brake switch 34 for detecting whether or not a brake pedal (not shown) is depressed, and an opening degree of the throttle valve 24 (throttle opening degree TA) provided in the intake passage 19.
  • an air amount sensor 37 for detecting the amount of air passing through the intake passage 19 (passage air amount GA).
  • a water temperature sensor 38 for detecting the temperature THW of the cooling water of the internal combustion engine 11, and the rotational speed (engine rotational speed) and rotational angle (crank angle “° CA”) of the crankshaft 12 are detected.
  • a rotation sensor 40 is also included.
  • the electronic control unit 30 grasps the operating state of the internal combustion engine 11 such as the engine rotational speed and the engine load KL based on the output signals of various sensors.
  • the engine load KL is calculated based on the intake air amount of the internal combustion engine 11 and the engine speed determined based on the accelerator depression amount AC, the throttle opening degree TA, and the passage air amount GA.
  • the electronic control unit 30 outputs command signals to various drive circuits connected to the output port in accordance with the operation state of the internal combustion engine 11 that is grasped as described above. In this way, the electronic control device 30 controls the drive control of the starter motor 17, the operation control of the fuel injection valve 20 (fuel injection control), the operation control of the spark plug 21 (ignition timing control), and the operation control of the throttle valve 24 (throttle control). Control) and the like are executed.
  • the vehicle 10 automatically stops the internal combustion engine 11 when the vehicle 10 stops at an intersection or the like in order to improve fuel efficiency and reduce emissions, and at the same time, stop the internal combustion engine 11 at any timing during the automatic stop.
  • An automatic stop / start function is provided that allows the vehicle 10 to start automatically.
  • FIG. 2 is a flowchart showing a procedure of a process for automatically stopping the internal combustion engine 11 (automatic stop process)
  • FIG. 3 is a flowchart showing a procedure of a process for automatically starting the internal combustion engine 11 (restart process).
  • a series of processing shown in these flowcharts is executed by the electronic control unit 30 as interrupt processing for each predetermined period.
  • the electronic control device 30 functions as a control unit that executes automatic stop / restart control and a prohibition unit that prohibits execution of the automatic stop / restart control.
  • step S101 the operating states of the vehicle 10 and the internal combustion engine 11 are read into the electronic control unit 30 through the output signals of the various sensors. It is determined whether or not an automatic stop condition is satisfied (step S102). Specifically, for example, when all of the following conditions [Condition 1] to [Condition 5] are satisfied, it is determined that the automatic stop condition is satisfied.
  • step S102 the operating states of the vehicle 10 and the internal combustion engine 11 are read into the electronic control unit 30 through the output signals of the various sensors.
  • step S102 it is determined whether or not an automatic stop condition is satisfied.
  • the coolant temperature THW is higher than the water temperature lower limit value.
  • the idle switch is “ON”.
  • Step S102 If any one of [Condition 1] to [Condition 5] is not satisfied (NO in Step S102), the automatic stop condition is not satisfied and the internal combustion engine 11 is automatically stopped. If it is determined that the condition is not satisfied, the process is temporarily terminated. Thereafter, when it is determined that the automatic stop condition is satisfied because the vehicle 10 stops at the intersection (YES in step 102), for example, the fuel supply to the internal combustion engine 11 is stopped and the internal combustion engine 11 is stopped. The operation of the engine 11 is stopped (step S103). Thereafter, this process is temporarily terminated.
  • step S201 the operating states of the vehicle 10 and the internal combustion engine 11 are read into the electronic control unit 30 through the output signals of the various sensors. It is determined whether or not a restart condition is satisfied (step S202). Specifically, under the condition that the internal combustion engine 11 is in a stopped state through the automatic stop process described above, if any one of [Condition 1] to [Condition 4] is not satisfied, the restart condition Is determined to have been established.
  • Step 4 If all of [Condition 1] to [Condition 4] are satisfied even when the internal combustion engine 11 is not automatically stopped or when the internal combustion engine 11 is automatically stopped (Step 4) If NO in S202, the restart condition is not satisfied, and it is determined that the restart condition of the internal combustion engine 11 is not satisfied, the process is temporarily terminated. Thereafter, if any one of [Condition 1] to [Condition 4] is not satisfied in the automatic stop state of the internal combustion engine 11 (YES in Step S202), the internal combustion engine 11 is restarted because the restart condition is satisfied. Processing is executed (step S203). Specifically, the starter motor 17 is driven and execution of the cranking operation is started. In addition to this, well-known fuel injection control and ignition timing control are executed, and the internal combustion engine 11 is restarted. Thereafter, this process is temporarily terminated.
  • the crankshaft 12 does not always rotate in one direction.
  • the direction (forward direction) opposite to the direction (normal direction) during normal operation of the internal combustion engine 11 temporarily.
  • a sensor that outputs only a signal corresponding to the amount of rotation of the crankshaft 12 is employed as the rotation sensor, it cannot be grasped from the output signal of the system when the crankshaft 12 rotates in the reverse direction. Accordingly, a deviation occurs between the crank angle obtained from the output signal of the rotation sensor and the actual crank angle.
  • the rotation direction is detected in addition to detecting the rotation amount of the crankshaft 12, and a signal (crank signal NE) corresponding to the detected rotation amount and rotation direction is output.
  • a signal crank signal NE
  • the crank angle can be obtained with high accuracy while considering the rotation of the crankshaft 12 in the reverse direction.
  • the phenomenon in which the crankshaft 12 rotates in reverse is a phenomenon that occurs only during the process of stopping the rotation of the crankshaft 12 or during the stoppage.
  • the electronic control unit 30 validates the signal indicating reverse rotation in the output signal of the rotation sensor 40 during the reverse rotation detection period, and invalidates the signal indicating reverse rotation during the period other than the reverse rotation detection period.
  • the reverse rotation detection period a period from when the following [start condition] is satisfied to when the [end condition] is satisfied is set.
  • Fuel injection from the fuel injection valve 20 is stopped to automatically stop the internal combustion engine 11, and the engine rotational speed is not more than a predetermined speed (for example, 400 revolutions / minute).
  • a disc-shaped signal rotor 41 that rotates integrally with the crankshaft 12 is attached to the crankshaft 12 of the internal combustion engine 11.
  • Convex portions 41 a are formed on the outer periphery of the signal rotor 41 at every predetermined angle (10 ° CA). Further, the signal rotor 41 includes a portion in which a part (two adjacent ones) of the convex portion 41a is missing, that is, a so-called toothless portion 41b.
  • a rotation sensor 40 is provided in the vicinity of the signal rotor 41.
  • the rotation sensor 40 includes two sensors (a main sensor 42 and a sub sensor 43) provided in the vicinity of the signal rotor 41, and an output device 44 that outputs a signal (crank signal NE) corresponding to a change in crank angle. I have.
  • the main sensor 42 functions as the second sensor unit
  • the sub sensor 43 functions as the first sensor unit.
  • the main sensor 42 and the sub sensor 43 both have a predetermined width (a width corresponding to 5 ° CA) each time the convex portion 41a of the signal rotor 41 passes in the vicinity of the sensors 42 and 43 as the crankshaft 12 rotates. Each outputs a pulse-like signal, and is attached at a position to output signals that are out of phase with each other by a predetermined angle (2.5 ° CA).
  • the output device 44 takes in the output signals of the main sensor 42 and the sub sensor 43, and forms and outputs a crank signal NE that changes with a change in the crank angle based on the output signals.
  • the crank signal NE is formed based on the following idea.
  • FIG. 4 shows the relationship between the change mode of the output signal when the output signal of the main sensor 42 changes, the output signal of the sub sensor 43, and information about the rotation direction of the crankshaft 12 output by the output device 44. .
  • crankshaft 12 As shown in [Condition A] in FIG. 4, when the output signal of the sub sensor 43 is a high signal when the output signal of the main sensor 42 changes (falls) from a high signal to a low signal, the crankshaft 12 is positive. It is detected that the crank angle has reached a predetermined angle by rotating in the direction. Also, as shown in [Condition B] in FIG. 4, when the output signal of the sub sensor 43 is a high signal when the output signal of the main sensor 42 changes (rises) from a low signal to a high signal, the crankshaft 12 is reversed. It is detected that the crank angle has reached a predetermined angle by rotating in the direction.
  • crankshaft 12 it is detected that the crankshaft 12 has been rotated by a predetermined angle when the condition that the output signal of the sub sensor 43 is a high signal and the output signal of the main sensor 42 is satisfied.
  • the rotation direction of the crankshaft 12 is detected based on the direction of change of the output signal of the main sensor 42 when the condition is satisfied.
  • FIG. 5 shows an example of the relationship among the output signal of the main sensor 42, the output signal of the sub sensor 43, and the crank signal NE when the crankshaft 12 is rotating forward.
  • the crank signal NE that is a high signal is a period from the timing at which the above [Condition A] (see FIG.
  • a pulse signal (low signal) having an output width of a predetermined time TS is output from the rotation sensor 40 as a signal indicating normal rotation of the crankshaft 12, and the predetermined time TS is defined as a first time width.
  • the electronic control unit 30 counts the number of pulse signals that form the crank signal NE and obtains a value corresponding to the crank angle (specifically, the count value of the crank counter shown in FIG. 5) to obtain the crank angle. To detect. In this case, every time the crank signal NE changes from a high signal to a low signal, the count value of the crank counter is incremented by “1” (time t11, t13, t15). The count value of the crank counter indicates that the larger the value, the larger the crank angle. When the value corresponds to 720 ° CA, the count value corresponds to 0 ° CA.
  • crank angle has become a reference angle (for example, 0 ° CA or 360 ° CA) by detecting passage of the missing tooth portion 41b through a missing tooth detection process described later, and the count value of the crank counter is determined. Is changed to a value corresponding to the reference angle.
  • a reference angle for example, 0 ° CA or 360 ° CA
  • FIG. 6 shows an example of the relationship among the output signal of the main sensor 42, the output signal of the sub sensor 43, and the crank signal NE when the crankshaft 12 rotates in the reverse direction.
  • the output signal of the sub sensor 43 is a high signal.
  • the condition that the output signal of the main sensor 42 changes from the low signal to the high signal is satisfied (time t21, t24, t27).
  • the crank signal NE that is a high signal is from the timing when the above [Condition B] (see FIG.
  • a predetermined time TL elapses (time t21 to t23, The signal is changed to a low signal at t24 to t26 and t27 to t29).
  • a predetermined time TL a time (for example, several hundred milliseconds) longer than a predetermined time TS (see FIG. 5) set when the crankshaft 12 is rotating forward is set.
  • the engine rotation speed does not increase and the output width of the pulse signal (low signal) is unlikely to be longer than the predetermined angle (10 ° CA).
  • a relatively long width (the predetermined time TL) is set as the output width of the signal.
  • a pulse signal (low signal) having an output width of a predetermined time TL is output from the rotation sensor 40 as a signal indicating reverse rotation of the crankshaft 12, and the predetermined time TL is defined as a second time width.
  • the count value of the crank counter is obtained by the electronic control unit 30 as follows. First, when the crank signal NE changes from a high signal to a low signal, the count value of the crank counter is once incremented by “1” (time t21, t24, t27).
  • the pulse width Assuming that the output width of the low signal is a value indicating the reverse rotation of the crankshaft 12, “2” is subtracted from the count value of the crank counter. Through these series of operations, the count value of the crank counter is decremented by “1”.
  • FIG. 7 shows an example of the relationship among the output signal of the main sensor 42, the output signal of the sub sensor 43, and the crank signal NE when passing through the missing tooth portion 41b.
  • the convex portion 41a of the signal rotor 41 has a predetermined angle (10 ° CA) interval of the rotation sensor 40. Pass through the neighborhood. Therefore, as shown in FIG. 7, the time interval (time t31 to t32, t33 to t34, t34 to t35) of the falling timing of the pulse signal (crank signal NE) output from the rotation sensor 40 is the engine rotation speed. Although it changes with the change, it is hardly changed in a very short time as compared with the time interval immediately before or after, for example.
  • the time interval (time t32 to t33) of the falling timing of the pulse signal (crank signal NE) output from the rotation sensor 40 is also the time interval just before (time t31 to t32) or the time interval just after (time t33 to t34). ) And larger.
  • the time interval of the pulse signal falling timing (low signal generation time interval) is larger than the immediately preceding time interval (or the immediately following time interval). Based on this determination, passage of the missing tooth portion 41b is detected. Next, the missing tooth detection process will be described in detail with reference to FIG.
  • FIG. 8 is a flowchart showing an execution procedure of the missing tooth detection process.
  • a series of processes shown in this flowchart is performed by the electronic control device 30 as a missing tooth detection unit at every predetermined crank angle (for example, 30 ° CA). Executed.
  • the electronic control unit 30 detects the passage of the missing tooth portion 41b when the difference between two consecutively calculated time intervals is larger than the determination value.
  • the “time interval of the pulse signal output start timing” means the “time interval of the fall timing of the pulse signal (crank signal NE)” or “low signal generation time interval”. It may be described as “pulse signal time interval”.
  • the time interval of the start time is calculated, and the current value T0, the previous value T1, and the previous time value T2 are stored.
  • the current value T0, the previous value T1, and the previous time value T2 are used.
  • the electronic control unit 30 functions as a calculation unit that calculates the time interval of the pulse signal.
  • the predetermined range is a range (in the present embodiment, a range of 0.4 to 2.4) in which it is possible to accurately and quickly detect that the missing tooth portion 41b has passed. It is obtained in advance based on the results of experiments and simulations and stored in the electronic control unit 30.
  • step S302 If any of the ratios RA and RB is out of the predetermined range (YES in step S302), the passage of the missing tooth portion 41b is detected (step S303), and the ratios RA and RB are both in the predetermined range. If it is within (NO in step S302), the passage of the missing tooth portion 41b is not detected (the process of step S303 is jumped).
  • FIG. 10 shows an example of the transition of the output signal of the main sensor 42, the output signal of the sub sensor 43, and the crank signal NE when the engine speed increases in the state where the abnormality has occurred.
  • the crankshaft 12 is rotated at a predetermined angle (a pulse signal when the abnormality does not occur) during the forward rotation of the crankshaft 12.
  • Pulse output having a time width (predetermined time TS) indicating normal rotation from the rotation sensor 40 at an output timing (time t51, t52, t53%) For each period (specific period) that rotates by half of the output interval). (Low signal) and a pulse signal (low signal) having a time width (predetermined time TL) indicating reverse rotation are alternately output.
  • a pulse signal is output every time the crankshaft 12 rotates by a predetermined angle. Either one of the pulse signals having a width of the predetermined time TL is output. Therefore, when the engine speed increases, the output width of the longer pulse signal (specifically, the predetermined time TL) becomes longer than the specific period.
  • a pulse signal is output from the rotation sensor 40 when the output signal of the main sensor 42 changes, that is, when [Condition A] or [Condition B] (see FIG. 4) is satisfied.
  • a pulse signal is output from the rotation sensor 40 on the condition that it is not.
  • the “no pulse signal output from the rotation sensor 40” state corresponds to a state where the crank signal NE is a high signal.
  • the output width of the pulse signal indicating the reverse rotation (predetermined time TL) becomes longer than the specific period by increasing the engine speed in the state where the abnormality occurs.
  • the length of the period in which the time interval between the output start time (time t52) and the output start time (time t55) of the pulse signal indicating the positive rotation immediately after that connects a plurality of the specific periods ("3" in the example shown in FIG. 10). It will be.
  • the output width (predetermined time TS) of the pulse signal indicating the normal rotation is within the specific period
  • the output start time (time t51, t55) of the pulse signal and the pulse indicating the reverse rotation immediately thereafter
  • the time interval from the signal output start time (time t52, t56) is the specific period.
  • the time interval of the falling timing of the pulse signal output from the rotation sensor 40 becomes longer than the time interval before and after the timing.
  • the time interval (interval indicated by the previous value T1 in FIG. 10) between the output start timing of the pulse signal indicating reverse rotation and the output start timing of the pulse signal indicating normal rotation immediately thereafter is the time interval before and after that. It becomes longer than (the interval indicated by the current value T0 or the interval indicated by the previous time value T2 in FIG. 10).
  • the number of detections that the passage of the missing tooth portion 41b is detected by the missing tooth detection process during the period in which the pulse signal is output from the rotation sensor 40 by the number indicating that the crankshaft 12 has made one rotation is the same tooth missing portion. It is determined that the rotation sensor 40 is abnormal when it is equal to or greater than a threshold value (“12” in the present embodiment) greater than the number of arrangements 41b (“1” in the present embodiment).
  • the output width of the pulse signal becomes longer than the specific period based on the fact that the time interval of the pulse signal output from the rotation sensor 40 is larger than the immediately preceding time interval (or the immediately following time interval).
  • the occurrence of abnormality of the rotation sensor 40 can be accurately determined based on the determination.
  • the determination of “is present” the process of step S302 in FIG. 8
  • the control structure can be simplified.
  • the occurrence of the abnormality can be determined by inputting a pulse signal having an output width indicating reverse rotation in a determination period in which the crankshaft 12 is only rotating forward.
  • a determination method if an abnormality occurrence determination is executed only at the timing when a pulse signal having an output width indicating normal rotation is output, it is erroneously assumed that no abnormality has occurred in the rotation sensor 40. Will be judged.
  • the execution interval of abnormality determination there is a possibility that a pulse signal having an output width indicating normal rotation is always output at the execution timing. In such a case, the abnormality of the rotation sensor 40 is determined. Can not be.
  • the fall timing detection accuracy and the rise timing detection accuracy according to the importance of those timings One is set high and the other is set low.
  • the detection accuracy of the timing (the falling timing in the present embodiment) serving as a reference for detecting the rotation of the crankshaft is set high, and the detection accuracy of other timings (rising timing in the present embodiment) is low. Is set.
  • the timing with the lower detection accuracy (rising timing) may not be detected. In that case, the output width of the pulse signal cannot be calculated.
  • the abnormality determination of the rotation sensor 40 is performed using only the timing with the higher detection accuracy (falling timing) without using the timing with the lower detection accuracy (rise timing). Is executed. Therefore, such an inconvenience can be avoided and the abnormality determination can be performed with high accuracy.
  • FIG. 11 is a flowchart showing an execution procedure of the abnormality determination process.
  • a series of processes shown in this flowchart is executed by the electronic control unit 30 as a determination unit for each predetermined crank angle (for example, 30 ° CA). .
  • step S401 the count value Ca of the execution counter is incremented (step S401). Thereafter, it is determined whether or not the passage of the missing tooth portion 41b is detected during the most recent missing tooth detection process (see FIG. 8) (step S402). If the passage of the missing tooth portion 41b is detected (YES in step S402), the count value Cd of the detection counter for counting the number of times of detection is incremented (step S403). On the other hand, when the passage of the missing tooth portion 41b is not detected (NO in step S402), the count value Cd of the detection counter is not incremented (the process of step S403 is jumped).
  • the count value Ca of the execution counter is a predetermined value (a value corresponding to one rotation of the crankshaft 12 [12 in this embodiment]). It is determined whether or not (step S404).
  • step S404 When the count value Ca of the execution counter is less than the predetermined value (NO in step S404), the rotation sensor 40 has output pulse signals by the number indicating that the count value Ca still makes one revolution of the crankshaft 12. Therefore, the present process is temporarily terminated without executing the following processes (steps S405 to S407).
  • step S404 the count value Cd of the detection counter is equal to or greater than a threshold value (“12” in the present embodiment). Is determined (step S405).
  • step S406 If the count value Cd of the detection counter is greater than or equal to the threshold (YES in step S405), it is determined that the rotation sensor 40 is abnormal (step S406), and if the count value Cd is less than the threshold ( In step S405, NO) it is not determined that rotation sensor 40 is abnormal (the process of step S406 is jumped).
  • the count value Ca of the execution counter and the count value Cd of the detection counter are both reset to “0” (step S407), and then this process is temporarily performed. Is terminated.
  • step S406 if it is determined that an abnormality has occurred in the rotation sensor 40 in the abnormality determination process described above (step S406), then the fail-safe process described below is executed.
  • the operation of the count value of the crank counter is prohibited when the crank signal NE indicating the reverse rotation of the crankshaft 12 is output. That is, since it is highly likely that the reverse rotation of the crankshaft 12 cannot be properly detected based on the crank signal NE, detection of the reverse rotation of the crankshaft 12 is prohibited. Is done. Even if an abnormality occurs in which the output signal of the sub sensor 43 does not change from the high signal, the crankshaft 12 rotates in the positive direction based on the pulse signal having an output width indicating the positive rotation in the crank signal NE. Since this can be detected, detection of rotation of the crankshaft 12 in the positive direction is allowed.
  • the occurrence can be accurately determined.
  • the fail safe control based on the determination of the occurrence of the abnormality, it is possible to appropriately cope with the occurrence of the abnormality of the rotation sensor 40.
  • the time interval of the output start timing of the pulse signal (low signal) is calculated, and the rotation sensor 40 is abnormal when the ratio RA, RB of the two time intervals calculated continuously is out of the predetermined range. I decided to judge. Therefore, it can be determined that the output width of the pulse signal (low signal) is longer than the specific period, and the occurrence of abnormality of the rotation sensor 40 can be accurately determined based on the determination.
  • a pulse signal having an output width corresponding to the reverse rotation of the crankshaft 12 may be output. It can be determined that the ratio RA, RB is out of the predetermined range that the period is longer. And based on the determination, generation
  • the above embodiment may be modified as follows.
  • the threshold value in the abnormality determination process is the number of times the missing tooth detection process is executed within a period in which the pulse signal is output from the rotation sensor 40 by the number indicating that the crankshaft 12 has made one rotation (“12” in the above embodiment).
  • the value can be arbitrarily changed as long as it is the following value and a value larger than the number of arrangement of the missing tooth portions 41b (“1” in the above embodiment).
  • the condition that the rotation sensor 40 in the abnormality determination process is abnormal or the abnormality determination process itself may be executed on condition that the engine rotation speed is equal to or higher than a predetermined speed.
  • a predetermined speed In the apparatus of the above embodiment, as is clear from the example at the time of low rotation shown in FIG. 9 and the example at the time of high rotation shown in FIG. It occurs only in the high operating range. Therefore, even if it is determined that the rotation sensor 40 is abnormal through the execution of the abnormality determination process in a region where the engine rotational speed is low, it can be said that there is a high possibility that this is an erroneous determination.
  • the rotation sensor 40 is erroneously determined to be abnormal in a region where the engine rotational speed is low, and the abnormality occurrence of the rotation sensor 40 can be accurately determined.
  • the upper limit speed of the speed range in which the phenomenon that the output width of the pulse signal becomes longer than the specific period does not occur is obtained in advance based on the results of experiments or simulations, and the upper limit speed is set as the predetermined speed. That's fine.
  • an abnormality determination process capable of determining the occurrence of abnormality of the rotation sensor 40 at least in an operation region where the engine rotation speed is low may be executed. According to this configuration, it is possible to determine the occurrence of abnormality of the rotation sensor 40 even in the operation region where the engine rotation speed is low, and it is possible to determine the occurrence of the abnormality early.
  • an abnormality determination process for example, a process is adopted in which it is determined that the rotation sensor 40 is abnormal when a pulse signal indicating reverse rotation is output from the rotation sensor 40 during a determination period in which the crankshaft 12 is only rotating forward. can do.
  • a process of determining that the rotation sensor 40 is abnormal when the output width of one of the two pulse signals continuously output from the rotation sensor 40 in the determination period is different from the other output width is adopted. You can also According to these processes, it is determined that a pulse signal indicating reverse rotation is output in a situation where the crankshaft 12 is only rotating forward, that is, only a pulse signal indicating forward rotation is output from the rotation sensor 40. With this determination, it can be properly determined that the rotation sensor 40 is abnormal.
  • a period in which the starter motor 17 is in a driving state a period in which the engine rotation speed is equal to or higher than a lower limit speed (for example, 400 rotations / minute), or the like can be employed. .
  • the missing tooth detection process can be omitted.
  • the above configuration can also be applied to an internal combustion engine provided with a signal rotor in which the missing tooth portion 41b is not formed.
  • the internal combustion engine provided with the signal rotor in which the toothless portion 41b is not formed, and it is determined that the time interval of the pulse signal is larger than the immediately preceding time interval (or the immediately following time interval).
  • a predetermined threshold a value of 2 or more. According to such a configuration, it is possible to suppress erroneous determination that the rotation sensor 40 is abnormal when the above determination is accidentally made due to the influence of noise or the like, and it is possible to accurately determine the abnormality of the rotation sensor 40. can do.
  • the fact that the difference is larger than the determination value indicates that the difference between the previous value T1 and the previous value T2 (the absolute value of [T1-T2]) or the difference between the current value T0 and the previous value T1 ([T1- The determination may be made when the absolute value of T2] is larger than a predetermined determination value.
  • the difference between the two time intervals and a value having a high correlation are calculated, a determination value corresponding to the correlation value is set, and the above two values are calculated based on the comparison result between the correlation value and the determination value. What is necessary is just to judge that the difference of a time interval is larger than a criterion value.
  • the present invention can be applied to a rotation sensor having any configuration as long as both of the following [Condition C] and [Condition D] are satisfied.
  • [Condition C] Each time the crankshaft rotates by a predetermined angle, it has a main sensor and a sub sensor that output a pulse-like signal having an output width corresponding to half of the predetermined angle, and the main sensor and the sub sensor are out of phase with each other.
  • a rotation sensor that outputs a signal.
  • a pulse signal is output when the condition that the output signal of the main sensor changes in a state where the pulse signal is not output from the rotation sensor and the output signal of the sub sensor is a predetermined value is satisfied.
  • the change direction of the output signal of the main sensor is the first direction
  • a pulse signal having a first time width is output
  • the change direction of the output signal of the main sensor is the second opposite to the first direction.
  • a rotation sensor that outputs a pulse signal having a second time width longer than the first time width when the direction is.
  • a rotation sensor for example, when the output signal of the sub sensor at the rise of the output signal of the main sensor is a low signal, a pulse signal having an output width indicating positive rotation is output, while the fall of the output signal of the main sensor is output.
  • a sensor that outputs a pulse signal having an output width indicating reverse rotation when the output signal of the sub sensor at that time is a low signal can be given.
  • the present invention can be applied not only to a vehicle in which only an internal combustion engine is mounted as a vehicle drive source, but also to a hybrid vehicle in which an internal combustion engine and an electric motor are mounted as vehicle drive sources.
  • the present invention is also applicable to a vehicle in which automatic stop / restart control is not executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 クランクシャフトの回転を検出する回転センサの異常判定装置が開示される。回転センサは、互いに位相のずれた信号を出力する第1センサ部および第2センサ部を有し、パルス信号を出力する。第2センサ部の出力信号の変化方向が第1の方向であるときには、第1時間幅を有するパルス信号が出力される。第2センサ部の出力信号の変化方向が第2方向であるときには、第2時間幅を有するパルス信号が出力される。異常判定装置は、パルス信号の出力開始時期の時間間隔を算出する算出部と、該算出部により連続して算出された二つの時間間隔の差が閾値より大きいときに回転センサが異常であると判定する判定部と、を含む。

Description

回転センサの異常判定装置
 本発明は、回転体が所定角度回転する毎にその回転方向に応じたパルス信号を出力する回転センサについての異常の発生を判定する異常判定装置に関する。
 近年、燃料消費量の低減やエミッションの低減を図るべく、車両駆動源として内燃機関と電動機とを備えたハイブリッド車両や交差点等での車両停止時において内燃機関の運転を一時的に停止させる車両などのように、車両の運転に際して内燃機関の運転を間欠的に停止させる制御(自動停止再始動制御)を実行することが提案され、実用化されている。こうした車両では、自動停止再始動制御における内燃機関の自動停止に際して内燃機関の出力軸の回転角を正確に把握することにより、その後の内燃機関の再始動に際して燃料噴射制御などの機関制御を適切に実行することが可能になる。それにより、内燃機関の再始動を適正に実行して速やかに完了させることが可能になる。
 内燃機関の出力軸は常に一方向に回転するとは限らず、同出力軸の回転の停止過程や停止中において一時的に通常運転時における方向(正方向)と反対の方向(逆方向)に回転することがある。そのため、仮に内燃機関の出力軸の回転角を検出するための回転センサとして回転量のみを検出するものを採用すると、出力軸が逆回転した際にこれを同回転センサの出力信号によって把握することができず、その分だけ回転センサによって検出される内燃機関の出力軸の回転角と実際の回転角との間にずれが生じてしまう。したがって、この場合には内燃機関の再始動を適正に行うことができなくなるおそれがある。
 そのため、例えば特許文献1には、そうした回転センサとして、内燃機関の出力軸が所定角度回転する毎にその回転方向に応じて異なる出力幅を有するパルス信号を出力するものを採用することが提案されている。
 上記文献1の回転センサは、内燃機関の出力軸に取り付けられた円板形状のシグナルロータと同シグナルロータの近傍に設けられた二つのセンサ部(第1センサ部および第2センサ部)とを備えている。シグナルロータの外周には所定角度間隔毎に凸部が形成され、二つのセンサ部は共にシグナルロータの凸部が同センサ部の近傍を通過する度にパルス状の信号を出力する。それらセンサ部は互いに位相のずれたパルス状の信号を出力するようになっている。そして、この回転センサは各センサ部からの信号に応じたパルス信号を出力する。このパルス信号の出力幅は、第2センサ部の出力信号の変化時における同出力信号の変化態様(ロー信号からハイ信号への変化[立ち上がり]、あるいはハイ信号からロー信号への変化[立ち下がり])と第1センサ部の出力値(ハイ信号あるいはロー信号)との関係に応じて異なるように設定される。上記文献1の回転センサによれば、回転センサからのパルス信号の数によって機関出力軸の回転量を把握するとともに、同パルス信号の幅によって機関出力軸の回転方向を把握することができ、逆方向への回転を考慮したうえで機関出力軸の回転角を精度良く求めることが可能になる。
 ところで、上記回転センサにおいて、例えばパルス信号を伝送する信号線が断線する等の異常が発生した場合に、内燃機関の出力軸の回転角を検出することができなくなってしまう。そのため、上記文献1には、そうした回転センサについての異常の発生を判定する異常判定装置が提案されている。上記文献1の異常判定装置では、パルス信号の電圧レベルが検出されて、同パルス信号がハイ信号またはロー信号になった状態が所定時間以上にわたって継続した場合に、回転センサの異常が発生していると判定される。
特開2005-233622号公報(第5-6頁、図2-3)
 上記特許文献1の回転センサでは、例えば第1センサ部の出力信号が一定値(ハイ信号またはロー信号)から変化しなくなる異常が発生した場合など、発生する異常によっては内燃機関の出力軸の回転に伴って周期的なパルス信号の出力が継続される場合がある。
 こうした場合には、回転センサから出力されるパルス信号の信頼性がごく低く、同パルス信号をもとに把握される内燃機関の出力軸の回転角と実際の回転角との間にずれが生じることが避けられないために、その異常の発生を検知して適切に対処することが望まれる。しかしながら、特許文献1の異常判定装置では、パルス信号の電圧レベルが所定時間にわたって変化しないことをもとに異常発生の判定が行われるため、そうした異常の発生を判定することができないという問題がある。
 なお、このような問題は、内燃機関の出力軸の回転を検出するための回転センサに限らず、なんらかの回転体の回転を検出するための回転センサであれば同様に生じ得る。
 本発明の目的は、回転センサの異常発生を的確に判定することのできる異常判定装置を提供することにある。
 上記目的を達成するため、本発明の一態様では、回転体の回転を検出する回転センサの異常判定装置が提供される。前記回転センサは前記回転体が所定角度回転する毎に該所定角度の半分に相当する出力幅を有するパルス状の信号を出力する第1センサ部および第2センサ部を有する。第1及び第2センサ部は互いに位相のずれた信号を出力する。前記回転センサは、同回転センサからパルス信号が出力されていない状態で且つ前記第1センサ部の出力信号が予め定められた値である状態で前記第2センサ部の出力信号が変化するという条件が成立したときにパルス信号を出力する。前記第2センサ部の出力信号の変化方向が第1の方向であるときには、第1時間幅を有するパルス信号が出力される。前記第2センサ部の出力信号の変化方向が前記第1の方向とは逆の第2方向であるときには、前記第1時間幅より長い第2時間幅を有するパルス信号が出力される。前記異常判定装置は、前記パルス信号の出力開始時期の時間間隔を算出する算出部と、該算出部により連続して算出された二つの前記時間間隔の差が判定値より大きいときに前記回転センサが異常であると判定する判定部と、を含む。
 上記構成では、第1センサ部の出力信号が予め定められた判定値(例えばハイ信号、あるいはロー信号)から変化しなくなる異常が発生すると、回転体の回転時において同回転体が所定角度の半分だけ回転する期間(特定期間)毎の出力タイミングで、回転センサから第1時間幅を有するパルス信号と第2時間幅を有するパルス信号とが交互に出力される状態になる。そうした異常が発生すると、特定期間毎の出力タイミングにおいて第1時間幅を有するパルス信号および第2時間幅を有するパルス信号のいずれか一方が出力される状況になるため、同回転体の回転速度が高くなった場合に、長いほうのパルス信号の出力幅(第2時間幅)が上記特定期間より長くなるおそれがある。この場合、第1時間幅は上記特定期間内に収まることから、同第1時間幅を有するパルス信号の出力開始時期と直後における第2時間幅を有するパルス信号の出力開始時期との時間間隔は上記特定期間になる。これに対して、第2時間幅は上記特定期間より長くなるため、同第2時間幅を有するパルス信号の出力開始時期と直後における第1時間幅を有するパルス信号の出力開始時期との時間間隔は上記特定期間を複数繋いだ期間の長さになる。
 上記構成によれば、前記算出部により連続して算出された二つの時間間隔の差が大きくなっていることに基づいて、回転体が所定角度の半分だけ回転する特定期間よりパルス信号の出力幅(第2時間幅)が長くなっていることを判断することができ、その判断をもって回転センサの異常の発生を的確に判定することができる。
 なお前記差が判定値より大きいことは、同差が予め定められた判定値より大きいことや、前記二つの時間間隔の比が予め定められた判定範囲から外れたことなどに基づいて判断することができる。
 好ましくは、前記回転体は内燃機関の出力軸である。前記回転センサは、前記第1時間幅を有するパルス信号を前記出力軸の正回転を示す信号として出力し、前記第2時間幅を有するパルス信号を前記出力軸の逆回転を示す信号として出力する。
 上記構成では、内燃機関の出力軸の正回転時には同出力軸の回転速度(機関回転速度)が高くなることがあるために、そうした高回転時においてもパルス信号の出力幅が所定角度より長くなることのないように、同出力幅として短い幅(第1時間幅)が設定される。また、内燃機関の出力軸の逆回転時には、機関回転速度が高くなることがなくパルス信号の出力幅が所定角度より長くなる可能性が低いために、パルス信号の出力幅として比較的長い幅(第2時間幅)が設定される。こうした構成において前記異常が発生すると、内燃機関の出力軸の正回転時において同出力軸の逆回転時に相当する時間幅、すなわち比較的長い第2時間幅のパルス信号が出力されるようになるため、機関回転速度が高くなった場合にパルス信号の出力幅(第2時間幅)が前記特定期間より長くなるおそれがある。
 上記構成によれば、前記異常の発生に伴って機関出力軸の正回転時において逆回転時に相当する第2出力幅のパルス信号が出力されたことに起因して同パルス信号の出力幅が前記特定期間より長くなった場合に、これを前記差が大きくなっていることに基づき判断することができ、その判断をもとに回転センサの異常の発生を的確に判定することができる。
 好ましくは、前記回転センサは、外周に所定角度毎に形成された凸部と同凸部の一部を欠損させることにより構成される欠歯部とを有するシグナルロータを含む。シグナルロータは前記出力軸に一体回転可能に取り付けられる。前記第1センサ部および前記第2センサ部の各々は、前記シグナルロータの凸部の通過の度にパルス状の信号を出力する。前記異常判定装置は、前記差が前記判定値より大きいことをもって前記欠歯部の通過を検出する。前記判定部は、前記出力軸が一回転したことを示す数だけ前記回転センサからパルス信号が出力される期間において、前記欠歯検出部によって前記欠歯部の通過を検出した検出回数が、同欠歯部の配設数より大きい閾値以上であるときに、前記回転センサが異常であると判定する。
 回転センサによって機関出力軸の回転角を検出する装置では、シグナルロータに設けられた欠歯部の通過を回転センサによって検出することにより、機関出力軸の回転角についての基準角を検出することが多用されている。
 上記構成によれば、そうした基準角(欠歯部)の検出を実行する装置において、同基準角の検出と回転センサの異常判定とを「前記差が判定値より大きいこと」との共通の判断に基づいて行うことができ、制御構造の簡素化を図ることができる。
 好ましくは、前記判定部は、前記出力軸の回転速度が所定速度以上であることを条件に、前記回転センサが異常であるという判定をなす。
 上記構成によれば、第2時間幅が前記特定期間より長くなる現象が機関回転速度の高い領域においてのみ発生する装置において、機関回転速度の低い領域において回転センサが異常であると誤って判定されることを回避することができ、同回転センサの異常発生を精度よく判定することができる。
 好ましくは、前記異常判定装置は、制御部と禁止部とをさらに含む。前記制御部は、所定の停止条件が成立した場合に前記内燃機関を自動停止する一方、所定の再始動条件が成立した場合に前記内燃機関を自動始動する自動停止再始動制御を行う。前記禁止部は、前記判定部によって前記回転センサにおける異常の発生が判定されたときに、前記自動停止再始動制御の実行を禁止する。
 上記構成によれば、異常が生じた回転センサにより算出される内燃機関の出力軸の回転角、すなわち信頼性のごく低い回転角に基づいて内燃機関の再始動が行われることを回避することができ、始動不良などの不都合の発生を抑えることができる。
本発明の一実施の形態にかかる回転センサの異常判定装置を備える車両の概略構成を示す図。 図1の異常判定装置によって実行される自動停止処理手順を示すフローチャート。 図1の異常判定装置によって実行される再始動処理手順を示すフローチャート。 メインセンサの出力信号の変化態様とサブセンサの出力信号と出力機器により出力されるクランクシャフトの回転方向についての情報との関係を示す表。 クランクシャフトの正回転時における各出力信号の推移の一例を示すタイミングチャート。 クランクシャフトの逆回転時における各出力信号の推移の一例を示すタイミングチャート。 欠歯部の通過時における各出力信号の推移の一例を示すタイミングチャート。 図1の異常判定装置によって実行される欠歯検出処理手順を示すフローチャート。 回転センサの異常発生時における各出力信号の推移の一例を示すタイミングチャート。 図1の異常判定装置によって実行される異常判定処理の実行態様の一例を示すタイミングチャート。 図1の異常判定装置によって実行される異常判定処理手順を示すフローチャート。
 以下、本発明を具体化した一実施の形態について説明する。
 図1に、本実施の形態にかかる回転センサ40の異常判定装置を備える車両の概略構成を示す。
 図1に示すように、車両10には駆動源としての内燃機関11が搭載されている。この内燃機関11の出力軸であるクランクシャフト12には駆動輪(図示略)が接続されており、同内燃機関11が発生する動力は駆動輪に伝達される。上記クランクシャフト12にはスタータモータ17が接続されている。このスタータモータ17は、乗員による運転スイッチ(図示略)の操作によって内燃機関11を始動する際や内燃機関11を自動始動する際に電動機として機能する。詳しくは、スタータモータ17の駆動によって内燃機関11のクランクシャフト12が強制的に回転駆動(クランキング)されて、同クランクシャフト12に内燃機関11の始動のための補助トルクが付与される。
 上記内燃機関11の燃焼室18には吸気通路19を通じて空気が吸入されるとともに、燃料噴射弁20から噴射された燃料が供給される。そして、そうした吸入空気と噴射燃料とからなる混合気に対して点火プラグ21による点火が行われると、その混合気が燃焼してピストン22が往復移動し、内燃機関11のクランクシャフト12が回転する。燃焼後の混合気は排気として内燃機関11の燃焼室18から排気通路23に送り出される。
 本実施の形態にかかる異常判定装置は、車両10の運転のための各種制御を実行する電子制御装置30を備えている。この電子制御装置30は、各種制御に関係する各種の演算処理を実行する中央処理装置(CPU)、その演算に必要なプログラムやデータが記憶された不揮発性メモリ(ROM)、CPUの演算結果が一時的に記憶される揮発性メモリ(RAM)、外部との間で信号を入力及び出力するための入力ポート及び出力ポート等を備えている。
 電子制御装置30の入力ポートには各種のセンサ類が接続されている。そうしたセンサ類としては、例えば車両10の走行速度SPDを検出するための速度センサ31や、アクセルペダル(図示略)の踏み込み量(アクセラレータ踏み込み量AC)を検出するためのアクセラレータ操作量センサ32、同アクセルペダルの踏み込みの有無を検出するためのアイドルスイッチ33が挙げられる。また、センサ類としては、ブレーキペダル(図示略)の踏み込みの有無を検出するためのブレーキスイッチ34や、吸気通路19に設けられたスロットルバルブ24の開度(スロットル開度TA)を検出するためのスロットルセンサ36、吸気通路19を通過する空気の量(通路空気量GA)を検出するための空気量センサ37が挙げられる。さらにセンサ類としては、内燃機関11の冷却水の温度THWを検出するための水温センサ38や、クランクシャフト12の回転速度(機関回転速度)および回転角(クランク角「°CA」)を検出するための回転センサ40等も挙げられる。
 電子制御装置30は、各種センサ類の出力信号に基づき、機関回転速度や機関負荷KLなどといった内燃機関11の運転状態を把握する。なお機関負荷KLは、アクセラレータ踏み込み量AC、スロットル開度TAおよび通路空気量GAに基づいて求められる内燃機関11の吸入空気量と機関回転速度とに基づき算出される。電子制御装置30は、そのようにして把握した内燃機関11の運転状態に応じて、出力ポートに接続された各種の駆動回路に指令信号を出力する。このようにして電子制御装置30により、スタータモータ17の駆動制御、燃料噴射弁20の作動制御(燃料噴射制御)、点火プラグ21の作動制御(点火時期制御)、スロットルバルブ24の作動制御(スロットル制御)などといった各種制御が実行される。
 本実施の形態にかかる車両10は、その燃費改善やエミッション低減を図るべく交差点等で車両10が停止したときに内燃機関11を自動停止させるとともに同自動停止中における任意のタイミングで内燃機関11を自動始動して車両10を発進可能とさせる自動停止始動機能を備えている。
 以下、本実施の形態の自動停止再始動制御にかかる処理について、図2および図3を参照して説明する。なお、図2は内燃機関11を自動停止させる処理(自動停止処理)の手順を示すフローチャートであり、図3は内燃機関11を自動始動させる処理(再始動処理)の手順を示すフローチャートである。これらフローチャートに示される一連の処理は、それぞれ所定周期毎の割り込み処理として、電子制御装置30により実行される。本実施の形態では、電子制御装置30が自動停止再始動制御を実行する制御部、および同自動停止再始動制御の実行を禁止する禁止部として機能する。
 ここでは先ず、図2を参照して、自動停止処理の手順を説明する。
 図2に示されるように、この処理では先ず、上記各種のセンサ類の出力信号を通じて車両10や内燃機関11の運転状態が電子制御装置30に読み込まれるとともに(ステップS101)、それらの運転状態から自動停止条件が成立したか否かが判断される(ステップS102)。具体的には、例えば以下の条件[条件1]~[条件5]が全て満たされたことをもって、自動停止条件が成立したと判断される。
[条件1]内燃機関11の暖機が終了していること(冷却水温度THWが水温下限値より高いこと)。
[条件2]アクセルペダルが踏まれていないこと(アイドルスイッチが「オン」されていること)。
[条件3]ブレーキペダルが踏み込まれていること(ブレーキスイッチが「オン」されていること)。
[条件4]車両10が停止していること。
[条件5]上記[条件1]~[条件4]の全てが満たされた後において、内燃機関11の自動停止が実行された履歴がないこと。
 そして、上記[条件1]~[条件5]のいずれか一つでも満足されていない場合には(ステップS102においてNO)、自動停止条件が成立しておらず、内燃機関11の自動停止を実行する条件下にないと判断されて、本処理は一旦終了される。その後、交差点にて車両10が停止する等して、上記自動停止条件が成立したと判断されると(ステップ102においてYES)、例えば内燃機関11への燃料供給が停止される等して、内燃機関11の運転が停止される(ステップS103)。そしてその後、本処理は一旦終了される。
 次に、図3を参照して、再始動処理の手順を説明する。
 図3に示されるように、この処理では先ず、上記各種のセンサ類の出力信号を通じて車両10や内燃機関11の運転状態が電子制御装置30に読み込まれるとともに(ステップS201)、それらの運転状態から再始動条件が成立したか否かが判断される(ステップS202)。具体的には、上述した自動停止処理を通じて内燃機関11が停止状態にあるとの条件下において、上記[条件1]~[条件4]のうちの1つでも満足されなくなった場合に再始動条件が成立したと判断される。
 そして、内燃機関11が自動停止されていない場合、あるいは内燃機関11が自動停止されている場合であっても上記[条件1]~[条件4]の全てが満足されている場合には(ステップS202においてNO)、再始動条件が成立しておらず、内燃機関11の再始動を実行する条件下にないとして、本処理は一旦終了される。その後、内燃機関11の自動停止状態において上記[条件1]~[条件4]の一つでも満足されなくなると(ステップS202においてYES)、再始動条件が成立したとして、内燃機関11を再始動させる処理が実行される(ステップS203)。具体的には、前記スタータモータ17が駆動されて前記クランキング動作の実行が開始される。また、これに併せて周知の燃料噴射制御や点火時期制御が実行されて、内燃機関11が再始動される。そしてその後、本処理は一旦終了される。
 ここで上記車両10(図1参照)では、自動停止処理を通じた内燃機関11の自動停止に際してクランクシャフト12のクランク角を正確に把握しておくことにより、その後の再始動処理を通じた内燃機関11の再始動に際して機関制御(燃料噴射制御や点火時期制御など)を適切に実行することができる。それにより、内燃機関11の再始動を適正に実行して速やかに完了させることができる。
 クランクシャフト12は常に一方向に回転するとは限らず、クランクシャフト12の回転が停止する過程や停止中において一時的に内燃機関11の通常運転時における方向(正方向)と反対の方向(逆方向)に回転することがある。そのため、仮にクランクシャフト12の回転量に応じた信号のみを出力するものを回転センサとして採用すると、クランクシャフト12が逆方向に回転した際にこれを同システムの出力信号から把握することができず、その分だけ回転センサの出力信号によって求められるクランク角と実際のクランク角との間にずれが生じてしまう。
 本実施の形態では、回転センサ40として、クランクシャフト12の回転量を検出することに併せて回転方向を検出し、それら検出した回転量および回転方向に応じた信号(クランク信号NE)を出力するものが採用されている。このクランク信号NEに基づいて電子制御装置30によってクランク角を求めることにより、クランクシャフト12の逆方向への回転を考慮しつつクランク角が精度良く求められる。
 ちなみに本実施の形態では、クランクシャフト12が逆回転する現象は同クランクシャフト12の回転が停止する過程や停止中においてのみ発生する現象であるため、同現象が発生する可能性のある期間(詳しくは、逆回転検出期間)においてのみ電子制御装置30による逆方向への回転の検出が行われる。具体的には、電子制御装置30は、逆回転検出期間においては回転センサ40の出力信号における逆回転を示す信号を有効とし、逆回転検出期間以外の期間においては同逆回転を示す信号を無効とする。なお逆回転検出期間としては、以下の[開始条件]が成立してから[終了条件]が成立するまでの期間が設定される。
 [開始条件]内燃機関11を自動停止させるべく燃料噴射弁20からの燃料噴射が停止されており、且つ機関回転速度が所定速度(例えば、400回転/分)以下になっていること。
 [終了条件]内燃機関11を再始動させるべくスタータモータ17の作動が開始された後にクランクシャフト12が正方向に所定数(例えば1回転)以上回転したこと。
 次に、回転センサ40およびその周辺の部材の具体的な構造について説明する。
 内燃機関11のクランクシャフト12には同クランクシャフト12と一体回転する円板形状のシグナルロータ41が取り付けられている。シグナルロータ41の外周には所定角度(10°CA)毎に凸部41aが形成されている。また、このシグナルロータ41は凸部41aの一部(隣り合う二つ)を欠損させた部分、いわゆる欠歯部41bを備えている。上記シグナルロータ41の近傍には回転センサ40が設けられている。この回転センサ40は、上記シグナルロータ41の近傍に設けられた二つのセンサ(メインセンサ42およびサブセンサ43)と、クランク角の変化に応じた信号(クランク信号NE)を出力する出力機器44とを備えている。本実施の形態では、メインセンサ42が第2センサ部として機能し、サブセンサ43が第1センサ部として機能する。
 メインセンサ42およびサブセンサ43は、共にクランクシャフト12の回転に伴ってシグナルロータ41の凸部41aが同センサ42,43の近傍を通過する度に、所定幅(5°CAに相当する幅)のパルス状の信号をそれぞれ出力するものであり、互いに所定角度(2.5°CA)だけ位相のずれた信号を出力する位置に取り付けられている。出力機器44は、メインセンサ42およびサブセンサ43の出力信号を取り込むとともに、それら出力信号をもとにクランク角の変化に伴って変化するクランク信号NEを形成して出力する。
 クランク信号NEは以下のような考えのもとに形成される。
 図4に、メインセンサ42の出力信号の変化時における同出力信号の変化態様と、サブセンサ43の出力信号と、出力機器44により出力されるクランクシャフト12の回転方向についての情報との関係を示す。
 図4の[条件A]に示すように、メインセンサ42の出力信号のハイ信号からロー信号への変化(立ち下がり)時においてサブセンサ43の出力信号がハイ信号であるときには、クランクシャフト12が正方向に回転して所定角度毎のクランク角になったことが検出される。また図4の[条件B]に示すように、メインセンサ42の出力信号のロー信号からハイ信号への変化(立ち上がり)時においてサブセンサ43の出力信号がハイ信号であるときには、クランクシャフト12が逆方向に回転して所定角度毎のクランク角になったことが検出される。このように本実施の形態では、サブセンサ43の出力信号がハイ信号であり且つメインセンサ42の出力信号が変化したとの条件が成立したときにクランクシャフト12が所定角度だけ回転したことが検出され、同条件の成立時におけるメインセンサ42の出力信号の変化方向に基づいてクランクシャフト12の回転方向が検出される。
 そして、メインセンサ42及びサブセンサ43からの出力信号をもとにクランク信号NEが以下のように作成されて出力される。
 図5に、クランクシャフト12が正回転しているときにおけるメインセンサ42の出力信号とサブセンサ43の出力信号とクランク信号NEとの関係の一例を示す。
 図5に示すように、クランクシャフト12の正回転時においては、同クランクシャフト12が所定角度(具体的には10°CA)だけ回転する毎に、サブセンサ43の出力信号がハイ信号である状態でメインセンサ42の出力信号がハイ信号からロー信号に変化するとの条件が成立する(時刻t11,t13,t15)。そして、ハイ信号になっているクランク信号NEは上記[条件A](図4参照)の成立したタイミングから予め定められた所定時間TS(例えば、数十ミリ秒)が経過するまでの間(時刻t11~t12,t13~t14,t15~t16)においてロー信号に変更される。なお、クランクシャフト12の正回転時には機関回転速度が高くなることがある。そうした高回転時においてもクランク信号NEを形成するパルス信号の出力幅(ロー信号の出力幅)が所定角度(10°CA)より長くなることのないように、同出力幅として短い幅(上記所定時間TS)が設定される。本実施の形態では、所定時間TSの出力幅を有するパルス信号(ロー信号)がクランクシャフト12の正回転を示す信号として回転センサ40から出力され、同所定時間TSが第1時間幅として定義される。
 電子制御装置30は、このクランク信号NEを形成するパルス信号の数をカウントしてクランク角に相当する値(詳しくは、図5に併せ示すクランクカウンタのカウント値)を求めることにより同クランク角を検出する。この場合には、クランク信号NEがハイ信号からロー信号に変化する度にクランクカウンタのカウント値が「1」ずつインクリメントされる(時刻t11,t13,t15)。なおクランクカウンタのカウント値は、大きい値になるほどクランク角が大きいことを示し、720°CAに相当する値になると0°CAに相当する値になる。また、後述する欠歯検出処理を通じて上記欠歯部41bの通過が検出されることにより、クランク角が基準角(例えば0°CAや360°CA)になったと判断されて、クランクカウンタのカウント値が同基準角に対応する値に変更される。
 図6に、クランクシャフト12が逆回転しているときにおけるメインセンサ42の出力信号とサブセンサ43の出力信号とクランク信号NEとの関係の一例を示す。
 図6に示すように、クランクシャフト12の逆回転時においては、同クランクシャフト12が所定角度(具体的には10°CA)だけ回転する毎に、サブセンサ43の出力信号がハイ信号である状態でメインセンサ42の出力信号がロー信号からハイ信号に変化するとの条件が成立する(時刻t21,t24,t27)。そして、この場合にはハイ信号になっているクランク信号NEは上記[条件B](図4参照)の成立したタイミングから予め定められた所定時間TLが経過するまでの間(時刻t21~t23,t24~t26,t27~t29)においてロー信号に変更される。この所定時間TLとしては、クランクシャフト12が正回転しているときに設定される所定時間TS(図5参照)より長い時間(例えば、数百ミリ秒)が設定される。なお、クランクシャフト12の逆回転時には、機関回転速度が高くなることがなくパルス信号(ロー信号)の出力幅が所定角度(10°CA)より長くなる可能性が低いために、パルス信号(ロー信号)の出力幅として比較的長い幅(上記所定時間TL)が設定される。本実施の形態では、所定時間TLの出力幅を有するパルス信号(ロー信号)がクランクシャフト12の逆回転を示す信号として回転センサ40から出力され、同所定時間TLが第2時間幅として定義される。
 また、クランクシャフト12の逆回転時には電子制御装置30により次のようにしてクランクカウンタのカウント値が求められる。先ず、クランク信号NEがハイ信号からロー信号に変化したときに一旦クランクカウンタのカウント値が「1」ずつインクリメントされる(時刻t21,t24,t27)。その後においてクランク信号NEがロー信号になっている期間が判定値(ただし、所定時間TS<判定値<所定時間TL)以上になると(時刻t22,t25,t28)、同クランク信号NEのパルス幅(ロー信号の出力幅)がクランクシャフト12の逆回転を示す値になっているとして、クランクカウンタのカウント値から「2」が減算される。これら一連の操作を通じてクランクカウンタのカウント値が「1」ずつデクリメントされる。
 次に、上記シグナルロータ41の欠歯部41bが通過したことを回転センサ40によって検出するための処理(上記欠歯検出処理)について説明する。
 図7に、欠歯部41bの通過時におけるメインセンサ42の出力信号とサブセンサ43の出力信号とクランク信号NEとの関係の一例を示す。
 クランクシャフト12の回転に際してシグナルロータ41における欠歯部41b以外の部分が回転センサ40の近傍を通過するときには、同シグナルロータ41の凸部41aが所定角度(10°CA)間隔で回転センサ40の近傍を通過する。そのため、図7に示すように、回転センサ40から出力されるパルス信号(クランク信号NE)の立ち下がりタイミングの時間間隔(時刻t31~t32,t33~t34,t34~t35)は、機関回転速度の変化に伴って変化するとはいえ、ごく短い時間内では例えば、直前あるいは直後における時間間隔と比較すると殆ど変わらない。
 一方、シグナルロータ41の欠歯部41bが回転センサ40の近傍を通過するときには、同シグナルロータ41の凸部41aの間隔(30°CA)が他の部分と比較して大きい。そのため、回転センサ40から出力されるパルス信号(クランク信号NE)の立ち下がりタイミングの時間間隔(時刻t32~t33)も直前における時間間隔(時刻t31~t32)あるいは直後における時間間隔(時刻t33~t34)と比較して大きくなる。
 本実施の形態では、このようにしてパルス信号の立ち下がりタイミングの時間間隔(ロー信号の発生時間間隔)が直前の時間間隔(あるいは直後の時間間隔)と比較して大きくなったことが判断され、その判断をもって欠歯部41bの通過が検出される。 次に、欠歯検出処理について図8を参照しつつ詳細に説明する。
 図8は欠歯検出処理の実行手順を示すフローチャートであり、このフローチャートに示される一連の処理は、所定クランク角(例えば、30°CA)毎に、欠歯検出部としての電子制御装置30により実行される。本実施の形態において、電子制御装置30は連続して算出した二つの時間間隔の差が判定値より大きいことをもって、欠歯部41bの通過を検出する。
 図8に示すように、この処理では先ず、回転センサ40から出力されたパルス信号の出力開始時期の時間間隔について、最新の値(今回値T0)、前回の値(前回値T1)、前々回の値(前々回値T2)に基づいて前回値T1と前々回値T2との比RA(=T1/T2)、今回値T0と前回値T1との比RB(=T0/T1)がそれぞれ算出される(ステップS301)。なお、「パルス信号の出力開始時期の時間間隔」とは、前述した「パルス信号(クランク信号NE)の立ち下がりタイミングの時間間隔」或いは「ロー信号の発生時間間隔」を意味し、以下において単に「パルス信号の時間間隔」と記載する場合もある。
 なお本実施の形態では、電子制御装置30により実行される別途の処理を通じて、回転センサ40からパルス信号が入力される度に、言い換えればクランク信号NEの各立ち下がりタイミングにおいて、同パルス信号の出力開始時期の時間間隔が算出されるとともに、その今回値T0、前回値T1、前々回値T2がそれぞれ記憶される。ステップS301の処理では、それら今回値T0、前回値T1、および前々回値T2が用いられる。本実施の形態では、電子制御装置30がパルス信号の時間間隔を算出する算出部として機能する。
 そのようにして各比RA,RBが算出された後、それら比RA,RBのいずれかが所定範囲から外れているか否かが判断される(ステップS302)。本実施の形態では、上記所定範囲として、欠歯部41bが通過したことを精度よく且つ早期に検出することの可能な範囲(本実施の形態では、0.4~2.4の範囲)が実験やシミュレーションの結果に基づき予め求められて電子制御装置30に記憶されている。
 そして、各比RA,RBのいずれかが所定範囲から外れている場合には(ステップS302においてYES)欠歯部41bの通過が検出され(ステップS303)、各比RA,RBがいずれも所定範囲内である場合には(ステップS302においてNO)欠歯部41bの通過が検出されない(ステップS303の処理がジャンプされる)。
 ところで図9に示すように、上記サブセンサ43の出力信号がハイ信号から変化しなくなる異常が発生すると、クランクシャフト12が正回転している場合に、クランク信号NEとしてクランクシャフト12が正回転したことを示す信号(時刻t41,t43,t45,t47)と逆回転したことを示す信号(時刻t42,t44,t46)とが交互に出力される。このとき、クランクカウンタのカウント値のインクリメントとデクリメントとが交互に繰り返されるために、クランクシャフト12が正回転しているにもかかわらず、同カウント値が大きくならず、電子制御装置30により検出されるクランク角と実際のクランク角との間にずれが生じてしまう。そして、これにより内燃機関11の再始動を速やかに完了させることができなくなるおそれがある。
 この点をふまえて本実施の形態では、そうした異常の発生を判定する異常判定処理を実行するようにしている。以下、そうした異常判定処理について説明する。
 図10に、上記異常が発生した状態で機関回転速度が高くなった場合におけるメインセンサ42の出力信号、サブセンサ43の出力信号、およびクランク信号NEの推移の一例を示す。
 図10に示すように、サブセンサ43の出力信号がハイ信号から変化しなくなる異常が発生すると、クランクシャフト12の正回転時において、同クランクシャフト12が所定角度(上記異常の非発生時におけるパルス信号の出力間隔)の半分だけ回転する期間(特定期間)毎の出力タイミング(時刻t51,t52,t53・・・)で、回転センサ40から正回転を示す時間幅(所定時間TS)を有するパルス信号(ロー信号)と逆回転を示す時間幅(所定時間TL)を有するパルス信号(ロー信号)とが交互に出力される。
 この場合、上記異常の非発生時であればクランクシャフト12が所定角度回転する毎にパルス信号が出力される状況において、上記特定期間毎の出力タイミングで出力幅が所定時間TSのパルス信号と出力幅が所定時間TLのパルス信号とのいずれか一方が出力される。そのため、機関回転速度が高くなると、長いほうのパルス信号の出力幅(具体的には、所定時間TL)が上記特定期間より長くなってしまう。
 ここで本実施の形態の装置では、メインセンサ42の出力信号の変化時、すなわち前記[条件A]または[条件B](図4参照)の成立時において、回転センサ40からパルス信号が出力されていないことを条件に回転センサ40からパルス信号が出力される。なお、「回転センサ40からパルス信号が出力されていない」状態とは、クランク信号NEがハイ信号である状態に相当する。上記異常の発生などによって回転センサ40から逆回転を示すパルス信号が出力されている状況で上記[条件A]や[条件B]が成立すると、次のような態様で回転センサ40からクランク信号NEが出力される。すなわち、逆回転を示すパルス信号が出力されている状況で[条件A]が一回成立したときには、その後において[条件A]の成立による正回転を示すパルス信号の出力と[条件B]の成立による逆回転を示すパルス信号の出力とが共に行われていないタイミングで、正回転を示すパルス信号が出力される(図示略)。また、逆回転を示すパルス信号が出力されている状況で[条件A]と[条件B]とが一回ずつ成立したときには、それらの成立によるパルス信号の出力が行われない(図10参照)。
 したがって本実施の形態の装置では、上記異常が発生した状態で機関回転速度が高くなることによって逆回転を示すパルス信号の出力幅(所定時間TL)が上記特定期間より長くなると、同パルス信号の出力開始時期(時刻t52)と直後における正回転を示すパルス信号の出力開始時期(時刻t55)との時間間隔が上記特定期間を複数(図10に示す例では「3」)繋いだ期間の長さになってしまう。これに対して、正回転を示すパルス信号の出力幅(所定時間TS)は上記特定期間内に収まることから、同パルス信号の出力開始時期(時刻t51,t55)と直後における逆回転を示すパルス信号の出力開始時期(時刻t52,t56)との時間間隔は上記特定期間になる。
 このように本実施の形態の装置では、上記異常が発生した状態で機関回転速度が高くなると、上述した欠歯検出処理(図8参照)においてシグナルロータ41の欠歯部41bの通過が検出されるときと同様に、回転センサ40から出力されるパルス信号の立ち下がりタイミングの時間間隔がその前後の時間間隔と比較して長くなる。具体的には、逆回転を示すパルス信号の出力開始時期と直後における正回転を示すパルス信号の出力開始時期との時間間隔(図10中に前回値T1で示す間隔)がその前後の時間間隔(図10中に今回値T0で示す間隔または前々回値T2で示す間隔)と比較して長くなる。この点をふまえて本実施の形態では、欠歯検出処理における検出結果に基づいて回転センサ40の異常発生の判定を行う。
 詳しくは、クランクシャフト12が一回転したことを示す数だけ回転センサ40からパルス信号が出力される期間内において、欠歯検出処理により欠歯部41bの通過を検出した検出回数が同欠歯部41bの配設数(本実施の形態では「1」)より大きい閾値(本実施の形態では「12」)以上であるときに、回転センサ40が異常であると判定される。
 これにより、回転センサ40から出力されたパルス信号の時間間隔が直前の時間間隔(あるいは直後の時間間隔)と比較して大きくなったことに基づいてパルス信号の出力幅が前記特定期間より長くなったことを判断することができ、その判断をもって回転センサ40の異常の発生を的確に判定することができる。
 しかも、「パルス信号の時間間隔が直前の時間間隔(あるいは直後の時間間隔)と比較して大きくなったこと」との共通の判断、具体的には「比RA,RBが所定範囲から外れていること」との判断(図8のステップS302の処理)に基づいて、欠歯検出処理による欠歯部41bの通過の検出と異常判定処理による回転センサ40の異常判定とを行うことができる。これにより制御構造の簡素化を図ることができる。
 ちなみに、上記異常が発生したことを、クランクシャフト12が正回転しかしない判定期間において逆回転を示す出力幅を有するパルス信号が入力されたことをもって判定することもできる。ただし、こうした判定方法を採用した場合、正回転を示す出力幅を有するパルス信号が出力されたタイミングでのみ異常の発生の判定が実行されると、回転センサ40に異常が発生していないと誤って判定されてしまう。また、異常判定の実行間隔によっては、その実行タイミングにおいて常に正回転を示す出力幅を有するパルス信号が出力される状況になる可能性があり、そうした場合には回転センサ40の異常を判定することができなくなる。この点、本実施の形態の装置では、そうした異常判定の実行タイミングや実行間隔によることなく、回転センサ40の異常発生を的確に判定することができる。
 また装置によっては、回転センサから出力されるパルス信号の立ち下がりタイミングおよび立ち上がりタイミングを電子制御装置によって検出する際に、それらタイミングの重要度に応じて立ち下がりタイミングの検出精度および立ち上がりタイミングの検出精度の一方が高く設定されるとともに他方が低く設定される。通常、クランクシャフトの回転検出の基準となるタイミング(本実施の形態では、立ち下がりタイミング)の検出精度が高く設定され、それ以外のタイミング(本実施の形態では、立ち上がりタイミング)の検出精度が低く設定される。そうした装置では、上記異常が発生した状態で機関回転速度が高くなって立ち下がりタイミングと立ち上がりタイミングとが近づいた場合に、検出精度の低いほうのタイミング(立ち上がりタイミング)を検出できなくなることがあり、その場合にはパルス信号の出力幅を算出することができなくなってしまう。この点、本実施の形態によれば、そうした検出精度の低いほうのタイミング(立ち上がりタイミング)を用いることなく、検出精度の高いほうのタイミング(立ち下がりタイミング)のみを用いて回転センサ40の異常判定が実行される。そのため、そうした不都合を回避して精度よく異常判定を行うことができる。
 以下、本実施の形態の異常判定処理の実行手順について図11を参照しつつ説明する。
 図11は異常判定処理の実行手順を示すフローチャートであり、このフローチャートに示される一連の処理は、所定クランク角(例えば、30°CA)毎に、判定部としての電子制御装置30により実行される。
 図11に示すように、この処理では先ず、実行カウンタのカウント値Caがインクリメントされる(ステップS401)。その後、直近の欠歯検出処理(図8参照)の実行時において欠歯部41bの通過が検出されたか否かが判断される(ステップS402)。そして、欠歯部41bの通過が検出された場合には(ステップS402においてYES)、その検出回数を計時するための検出カウンタのカウント値Cdがインクリメントされる(ステップS403)。一方、欠歯部41bの通過が検出されなかった場合には(ステップS402においてNO)、検出カウンタのカウント値Cdがインクリメントされない(ステップS403の処理がジャンプされる)。
 このようにして検出カウンタのカウント値Cdが操作された後、上記実行カウンタのカウント値Caが所定値(クランクシャフト12の一回転に相当する値[本実施の形態では、12])であるか否かが判断される(ステップS404)。
 実行カウンタのカウント値Caが所定値未満である場合には(ステップS404においてNO)、同カウント値Caが未だクランクシャフト12が一回転したことを示す数だけ回転センサ40からパルス信号が出力されたことを示す値になっていないと判断して、以下の処理(ステップS405~ステップS407)を実行することなく本処理は一旦終了される。
 その後、本処理が繰り返し実行されて、実行カウンタのカウント値Caが所定値になると(ステップS404においてYES)、検出カウンタのカウント値Cdが閾値(本実施の形態では、「12」)以上であるか否かが判断される(ステップS405)。
 そして、検出カウンタのカウント値Cdが閾値以上である場合には(ステップS405においてYES)回転センサ40が異常であると判定され(ステップS406)、同カウント値Cdが閾値未満である場合には(ステップS405においてNO)回転センサ40が異常であると判定されない(ステップS406の処理がジャンプされる)。このようにして回転センサ40における異常の発生が判定されると、実行カウンタのカウント値Caと検出カウンタのカウント値Cdとが共に「0」にリセットされた後(ステップS407)、本処理は一旦終了される。
 本実施の形態では、上述した異常判定処理において回転センサ40に異常が発生していると判定されると(ステップS406)、その後において以下に記載するフェイルセーフ処理が実行される。
 本実施の形態のフェイルセーフ処理では、自動停止再始動制御の実行が禁止される。具体的には、自動停止処理を通じた内燃機関11の自動停止が禁止される。これにより、電子制御装置30により求められて記憶されているクランク角、すなわち回転センサ40の異常によって信頼性が低下しているクランク角に基づく内燃機関11の再始動の実行を回避することができ、同内燃機関11の始動不良などの不都合の発生を抑えることができる。
 また、クランクシャフト12の逆回転を示すクランク信号NEが出力されているときのクランクカウンタのカウント値の操作が禁止される。すなわち、クランク信号NEをもとにクランクシャフト12の逆方向の回転を適正に検出することができない状態になっている可能性が高いために、クランクシャフト12の逆方向への回転の検出が禁止される。なお、サブセンサ43の出力信号がハイ信号から変化しなくなる異常が発生した場合であっても、クランク信号NEにおける正回転を示す出力幅を有するパルス信号に基づいてクランクシャフト12の正方向への回転についてはこれを検出することが可能であるため、クランクシャフト12の正方向への回転の検出については許容される。
 このように本実施の形態では、サブセンサ43の出力信号がハイ信号から変化しなくなる異常が発生した場合に、その発生を的確に判定することができる。しかも、その異常発生の判定をもとにフェイルセーフ制御を実行することにより、回転センサ40の異常発生に適切に対処することができる。
 以上説明したように、本実施の形態によれば、以下に記載する利点が得られる。
 (1)パルス信号(ロー信号)の出力開始時期の時間間隔を算出するとともに、連続して算出した二つの時間間隔の比RA,RBが所定範囲を外れたときに回転センサ40が異常であると判定するようにした。そのため、パルス信号(ロー信号)の出力幅が前記特定期間より長くなっていることを判断することができ、その判断をもって回転センサ40の異常の発生を的確に判定することができる。
 (2)異常の発生に伴い、クランクシャフト12の正回転時において逆回転時に相当する出力幅を有するパルス信号が出力されることがあるが、これに起因して同パルス信号の出力幅が特定期間より長くなったことを、前記比RA,RBが所定範囲を外れたことに基づき判断することができる。そして、その判断をもとに回転センサ40の異常の発生を的確に判定することができる。
 (3)クランクシャフト12が一回転したことを示す数だけ回転センサ40からパルス信号が出力される期間において、欠歯検出処理によって欠歯部41bの通過を検出した検出回数が閾値以上であるときに、回転センサ40が異常であると判定するようにした。そのため、欠歯検出処理における欠歯部41bの検出と異常判定処理における回転センサ40の異常判定とを「パルス信号の時間間隔が直前の時間間隔(あるいは直後の時間間隔)と比較して大きくなったこと」との共通の判断に基づいて行うことができ、制御構造の簡素化を図ることができる。
 (4)回転センサ40が異常であると判定された場合に、自動停止処理における内燃機関11の自動停止を禁止するようにした。そのため、信頼性のごく低いクランク角に基づいて内燃機関11の再始動が行われることを回避することができ、同内燃機関11の始動不良などの不都合の発生を抑えることができる。
 なお、上記実施の形態は、以下のように変更して実施してもよい。
 異常判定処理における閾値は、クランクシャフト12が一回転したことを示す数だけ回転センサ40からパルス信号が出力される期間内において欠歯検出処理が実行される回数(上記実施の形態では「12」)以下の値であり且つ欠歯部41bの配設数(上記実施の形態では「1」)より大きい値であれば、任意に変更可能である。
 機関回転速度が所定速度以上であることを条件に、異常判定処理における回転センサ40が異常であるとの判定や同異常判定処理そのものを実行するようにしてもよい。上記実施の形態の装置では、図9に示す低回転時における例や図10に示す高回転時における例から明らかなように、パルス信号の出力間隔が前記特定期間より長くなる現象が機関回転速度の高い運転領域においてのみ発生する。そのため、機関回転速度の低い領域における異常判定処理の実行を通じて回転センサ40が異常であると判定されたとしても、これは誤った判定である可能性が高いと云える。上記構成によれば、機関回転速度の低い領域において回転センサ40が異常であると誤って判定されることを回避することができ、同回転センサ40の異常発生を精度よく判定することができる。なお上記構成においては、実験やシミュレーションの結果などに基づいてパルス信号の出力幅が前記特定期間より長くなる現象が発生しない速度範囲の上限速度を予め求め、同上限速度を上記所定速度として設定すればよい。
 上記実施の形態にかかる異常判定処理に併せて、少なくとも機関回転速度が低い運転領域において回転センサ40の異常発生を判定することの可能な異常判定処理を実行してもよい。同構成によれば、機関回転速度が低い運転領域においても回転センサ40の異常発生を判定することができるようになり、同異常の発生を早期に判定することができる。そうした異常判定処理としては、例えばクランクシャフト12が正回転しかしない判定期間において回転センサ40から逆回転を示すパルス信号が出力されたことをもって同回転センサ40が異常であると判定するとの処理を採用することができる。その他、上記判定期間において回転センサ40から連続して出力された二つのパルス信号の一方の出力幅と他方の出力幅とが異なるときに同回転センサ40が異常であると判定するとの処理を採用することもできる。これら処理によれば、クランクシャフト12が正回転しかしない状況、すなわち回転センサ40から正回転を示すパルス信号のみが出力される状況で逆回転を示すパルス信号が出力されていることを判断することができ、その判断をもって回転センサ40が異常であると適正に判定することができる。なおクランクシャフト12が正回転しかしない判定期間としては、スタータモータ17が駆動状態である期間や、機関回転速度が下限速度(例えば、400回転/分)以上である期間などを採用することができる。
 パルス信号の時間間隔が直前の時間間隔(あるいは直後の時間間隔)と比較して大きくなったことの判断を、欠歯検出処理において実行される処理を通じて行うことに代えて、異常判定処理において実行される処理を通じて行うようにしてもよい。同構成が採用される装置では欠歯検出処理を省略することができる。また上記構成は欠歯部41bが形成されないシグナルロータが設けられた内燃機関にも適用することができる。
 なお、欠歯部41bが形成されないシグナルロータが設けられた内燃機関に適用されて、パルス信号の時間間隔が直前の時間間隔(あるいは直後の時間間隔)と比較して大きくなったことの判断が異常判定処理を通じて行われる装置では、同判断がなされた回数を計数し、該回数が所定の閾値(2以上の値)以上であるときに回転センサ40が異常であると判定することが望ましい。こうした構成によれば、ノイズ等の影響によって偶発的に上記判断がなされた場合に回転センサ40が異常であると誤って判定されることを抑えることができ、回転センサ40の異常を精度よく判定することができる。
 上記実施の形態では、前述したように連続して算出した二つの時間間隔の差が判定値より大きいことを、前回値T1と前々回値T2との比RA(=T1/T2)や今回値T0と前回値T1との比RB(=T0/T1)が予め定められた所定範囲を外れたことをもって判断するようにした。これに代えて、上記差が判定値より大きいことを、前回値T1と前々回値T2との差([T1―T2]の絶対値)や今回値T0と前回値T1との差([T1―T2]の絶対値)が予め定められた判定値より大きいことをもって判断するようにしてもよい。要は、上記二つの時間間隔の差と相関の高い値(相関値)を算出するとともに同相関値に見合う判定値を設定し、それら相関値と判定値との比較結果に基づいて上記二つの時間間隔の差が判定値より大きいことを判断すればよい。
 本発明は、以下の[条件C]および[条件D]を共に満たすものであれば、任意の構成の回転センサに適用することができる。
 [条件C]クランクシャフトが所定角度回転する毎に同所定角度の半分に相当する出力幅を有するパルス状の信号を出力するメインセンサおよびサブセンサを有し、メインセンサおよびサブセンサは互いに位相のずれた信号を出力する回転センサ。
 [条件D]回転センサからパルス信号が出力されていない状態で且つサブセンサの出力信号が予め定められた値である状態でメインセンサの出力信号が変化するという条件が成立したときにパルス信号を出力し、メインセンサの出力信号の変化方向が第1の方向であるときには第1時間幅を有するパルス信号が出力され、メインセンサの出力信号の変化方向が前記第1の方向とは逆の第2の方向であるときには第1時間幅より長い第2時間幅を有するパルス信号が出力される回転センサ。
 そうした回転センサとしては、例えばメインセンサの出力信号の立ち上がり時におけるサブセンサの出力信号がロー信号であるときに正回転を示す出力幅を有するパルス信号を出力する一方、メインセンサの出力信号の立ち下がり時におけるサブセンサの出力信号がロー信号であるときに逆回転を示す出力幅を有するパルス信号を出力するセンサを挙げることができる。この回転センサに本発明の異常判定装置を適用した場合には、サブセンサの出力信号がロー信号から変化しなくなる異常の発生を的確に判定することができる。
 本発明は、車両駆動源として内燃機関のみが搭載された車両に限らず、車両駆動源として内燃機関と電動機とが搭載されたハイブリッド車両などにも適用することができる。
 自動停止再始動制御が実行されない車両にも、本発明は適用可能である。

Claims (5)

  1.  回転体の回転を検出する回転センサの異常判定装置であって、前記回転センサは前記回転体が所定角度回転する毎に該所定角度の半分に相当する出力幅を有するパルス状の信号を出力する第1センサ部および第2センサ部を有し、第1及び第2センサ部は互いに位相のずれた信号を出力し、前記回転センサは同回転センサからパルス信号が出力されていない状態で且つ前記第1センサ部の出力信号が予め定められた値である状態で前記第2センサ部の出力信号が変化するという条件が成立したときにパルス信号を出力し、前記第2センサ部の出力信号の変化方向が第1の方向であるときには第1時間幅を有するパルス信号が出力され、前記第2センサ部の出力信号の変化方向が前記第1の方向とは逆の第2方向であるときには前記第1時間幅より長い第2時間幅を有するパルス信号が出力され、前記異常判定装置は、
     前記パルス信号の出力開始時期の時間間隔を算出する算出部と、
     該算出部により連続して算出された二つの前記時間間隔の差が判定値より大きいときに前記回転センサが異常であると判定する判定部と、
    を備える回転センサの異常判定装置。
  2.  前記回転体は内燃機関の出力軸であり、
     前記回転センサは、前記第1時間幅を有するパルス信号を前記出力軸の正回転を示す信号として出力し、前記第2時間幅を有するパルス信号を前記出力軸の逆回転を示す信号として出力する
    請求項1に記載の異常判定装置。
  3.  前記回転センサは、外周に所定角度毎に形成された凸部と同凸部の一部を欠損させることにより構成される欠歯部とを有するシグナルロータを含み、同シグナルロータは前記出力軸に一体回転可能に取り付けられ、
     前記第1センサ部および前記第2センサ部の各々は、前記シグナルロータの凸部の通過の度にパルス状の信号を出力し、
     前記異常判定装置は、前記差が前記判定値より大きいことをもって前記欠歯部の通過を検出する欠歯検出部をさらに備え、
     前記判定部は、前記出力軸が一回転したことを示す数だけ前記回転センサからパルス信号が出力される期間において、前記欠歯検出部によって前記欠歯部の通過を検出した検出回数が、同欠歯部の配設数より大きい閾値以上であるときに、前記回転センサが異常であると判定する
    請求項2に記載の異常判定装置。
  4.  前記判定部は、前記出力軸の回転速度が所定速度以上であることを条件に、前記回転センサが異常であるという判定をなす
    請求項2または3に記載の異常判定装置。
  5.  所定の停止条件が成立した場合に前記内燃機関を自動停止する一方、所定の再始動条件が成立した場合に前記内燃機関を自動始動する自動停止再始動制御を行う制御部と、
     前記判定部によって前記回転センサにおける異常の発生が判定されたときに、前記自動停止再始動制御の実行を禁止する禁止部と
    をさらに備える請求項2~4のいずれか一項に記載の異常判定装置。
PCT/JP2010/072923 2009-12-24 2010-12-20 回転センサの異常判定装置 WO2011078130A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080058329.3A CN102667413B (zh) 2009-12-24 2010-12-20 旋转传感器的异常判断装置
EP10839360.4A EP2518451B1 (en) 2009-12-24 2010-12-20 Abnormality determination device for rotation sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-292732 2009-12-24
JP2009292732A JP5195738B2 (ja) 2009-12-24 2009-12-24 回転センサの異常判定装置

Publications (1)

Publication Number Publication Date
WO2011078130A1 true WO2011078130A1 (ja) 2011-06-30

Family

ID=44195657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072923 WO2011078130A1 (ja) 2009-12-24 2010-12-20 回転センサの異常判定装置

Country Status (4)

Country Link
EP (1) EP2518451B1 (ja)
JP (1) JP5195738B2 (ja)
CN (1) CN102667413B (ja)
WO (1) WO2011078130A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982675A1 (fr) * 2011-11-14 2013-05-17 Continental Automotive France Procede de diagnostic d'une tete de detection magnetique a reluctance variable et circuit de detection

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001714A1 (en) * 2013-07-03 2015-01-08 Yamaha Hatsudoki Kabushiki Kaisha Engine system and saddle-straddling type motor vehicle
JP6213483B2 (ja) * 2015-01-09 2017-10-18 トヨタ自動車株式会社 クランク角センサの故障診断装置
WO2017065056A1 (ja) * 2015-10-13 2017-04-20 株式会社デンソー 鞍乗型車両用カム角センサ異常診断装置、エンジンシステム、及び鞍乗型車両
CN105510036A (zh) * 2015-12-02 2016-04-20 浙江吉利汽车研究院有限公司 一种检测发动机停机相位的传感器及方法
EP3312567B1 (en) * 2016-10-18 2019-12-04 ams AG Rotary sensor arrangement and method for determining a failure status of such arrangement
KR102557609B1 (ko) 2017-12-19 2023-07-20 엘지이노텍 주식회사 센싱 장치 및 로터 및 센서의 이상 여부 판단 방법
JP6953621B2 (ja) * 2018-03-28 2021-10-27 新電元工業株式会社 駆動装置、駆動方法、駆動プログラムおよび電動車両
FR3086387B1 (fr) 2018-09-24 2020-08-28 Continental Automotive France Procede de determination de la position d'un vilebrequin de vehicule automobile
JP2021091053A (ja) * 2019-12-11 2021-06-17 セイコーエプソン株式会社 ロボットシステムおよびロボットの制御装置
CN110907658B (zh) * 2019-12-13 2021-08-17 天津电气科学研究院有限公司 一种码盘转速计算及故障检测方法
CN115667852B (zh) * 2020-05-28 2024-02-23 日产自动车株式会社 监视控制装置及监视控制方法
CN112526970A (zh) * 2020-11-27 2021-03-19 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) 一种工控设备运行状态检测方法、装置及电子设备
JP7491329B2 (ja) 2022-02-18 2024-05-28 トヨタ自動車株式会社 車両制御装置
CN118392471A (zh) * 2024-05-08 2024-07-26 苏州星蓝纳米技术有限公司 一种大盘旋转异常检测报警系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089133A (ja) * 2000-09-18 2002-03-27 Aisin Seiki Co Ltd 開口覆材の開閉制御装置
JP2005233622A (ja) 2004-02-17 2005-09-02 Toyota Motor Corp 逆転検出機能付き回転検出装置
JP2007291872A (ja) * 2006-04-21 2007-11-08 Mitsubishi Electric Corp 内燃機関の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0313152A (pt) * 2002-08-01 2005-06-28 Yamaha Motor Co Ltd Dispositivo de controle de motor
JP2005201174A (ja) * 2004-01-16 2005-07-28 Toyota Motor Corp 故障診断装置
DE102004061808A1 (de) * 2004-12-22 2006-07-06 Robert Bosch Gmbh Verfahren zum Betrieb einer Brennkraftmaschine
JP4506504B2 (ja) * 2005-02-25 2010-07-21 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089133A (ja) * 2000-09-18 2002-03-27 Aisin Seiki Co Ltd 開口覆材の開閉制御装置
JP2005233622A (ja) 2004-02-17 2005-09-02 Toyota Motor Corp 逆転検出機能付き回転検出装置
JP2007291872A (ja) * 2006-04-21 2007-11-08 Mitsubishi Electric Corp 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2518451A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982675A1 (fr) * 2011-11-14 2013-05-17 Continental Automotive France Procede de diagnostic d'une tete de detection magnetique a reluctance variable et circuit de detection
WO2013072030A1 (fr) * 2011-11-14 2013-05-23 Continental Automotive France Procede de diagnostic d'une tete de detection magnetique a reluctance variable et circuit de detection
CN104040151A (zh) * 2011-11-14 2014-09-10 法国大陆汽车公司 可变磁阻磁探测头的诊断方法和探测电路
US9217786B2 (en) 2011-11-14 2015-12-22 Continental Automotive France Method for diagnosing a variable reluctance magnetic detection head, and detection circuit

Also Published As

Publication number Publication date
EP2518451A4 (en) 2014-05-14
EP2518451B1 (en) 2015-09-23
CN102667413B (zh) 2015-02-11
JP2011133337A (ja) 2011-07-07
JP5195738B2 (ja) 2013-05-15
EP2518451A1 (en) 2012-10-31
CN102667413A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
WO2011078130A1 (ja) 回転センサの異常判定装置
JP5167237B2 (ja) 回転センサの異常判定装置
JP5281617B2 (ja) 回転検出装置
JP5165705B2 (ja) 内燃機関の制御装置
US9677528B2 (en) Start control apparatus
JP2009024548A (ja) 内燃機関制御装置
JP2010242621A (ja) 内燃機関の自動停止始動制御装置
JP5221711B2 (ja) 内燃機関自動停止再始動制御装置
JP5379722B2 (ja) 水温センサの異常判定装置
JP4911364B2 (ja) 内燃機関の制御装置
JP5304724B2 (ja) エンジン制御装置
JP2005320945A (ja) エンジン制御装置
JP2009138662A (ja) 内燃機関の停止位置検出装置及び逆転検出装置
JP2012062802A (ja) 車載内燃機関の制御装置
JP2009097347A (ja) 内燃機関の制御装置
WO2016072083A1 (ja) 内燃機関の制御装置
JP2014047746A (ja) 内燃機関の制御装置
JP2012073054A (ja) 回転検出装置
JP5044613B2 (ja) 回転センサの異常検出装置
JP6334389B2 (ja) エンジン制御装置
JP2009236003A (ja) クランク角センサの異常診断装置
JP5407934B2 (ja) 回転角検出システムの異常判定装置
JP6206094B2 (ja) 内燃機関の制御装置
JP6176145B2 (ja) 車両用アイドリングストップ制御装置
JP6253544B2 (ja) 内燃機関の自動停止/再始動制御システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058329.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839360

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010839360

Country of ref document: EP