WO2011077665A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2011077665A1
WO2011077665A1 PCT/JP2010/007263 JP2010007263W WO2011077665A1 WO 2011077665 A1 WO2011077665 A1 WO 2011077665A1 JP 2010007263 W JP2010007263 W JP 2010007263W WO 2011077665 A1 WO2011077665 A1 WO 2011077665A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
noise
power conversion
conversion device
noise removing
Prior art date
Application number
PCT/JP2010/007263
Other languages
English (en)
French (fr)
Inventor
昌義 ▲高▼橋
圭輔 福増
鳥越 誠
智彦 末松
哲 重田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US13/518,716 priority Critical patent/US9112402B2/en
Priority to EP10838905.7A priority patent/EP2518884B1/en
Priority to CN201080058067.0A priority patent/CN102668355B/zh
Publication of WO2011077665A1 publication Critical patent/WO2011077665A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters

Definitions

  • the present invention relates to a power conversion device that suppresses noise current or voltage mixed in the device by propagating a control wiring connected to an external device at low cost and in a small size.
  • a power converter such as an inverter that generates an AC voltage from a DC power source such as a battery includes a main circuit (power module) including a switching element and a drive circuit (gate driver) that generates a signal for driving the switching element. ), A smoothing capacitor, and a control circuit (motor controller) that generates an operation signal to be sent to the drive circuit and the like.
  • This type of power conversion device transmits and receives signals by connecting a control circuit inside the device and a plurality of external devices and sensors through a control wiring.
  • a control circuit and a sensor circuit in the apparatus malfunction due to the voltage. Therefore, circuit or structural devices for reducing noise current and voltage mixed in the apparatus are required.
  • a number of through-type noise filters in which a reactance element is coupled to a conducting wire that passes through the substrate perpendicular to the required substrate are provided on a long and narrow strip-shaped substrate at regular intervals, and one end of each conducting wire of the through-type noise filter. Is connected to each connection end of the plurality of printed wirings provided on the printed wiring board, and the other end of each conductive wire in the through-type noise filter is connected to the plurality of printed wirings provided on the other printed wiring board.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-307637
  • Patent Document 1 Japanese Patent Laid-Open No. 7-307637
  • a noise filter capacitor
  • noise current is injected into the substrate GND through the capacitor, so that there is a problem that a sensor in the apparatus and a circuit on the substrate malfunction.
  • a noise filter capacitor
  • the electromagnetic noise reduction effect is greatly deteriorated depending on the wiring length in the substrate after passing through the noise filter. is there.
  • an object of the present invention is to provide a power conversion device that can suppress noise current or voltage mixed in the device by propagating a control wiring connected to an external device at a low cost and in a small size.
  • a housing, a connection terminal provided in the housing, a control circuit unit provided in the housing, a wiring connecting the connection terminal and the control circuit unit, and the wiring A first noise removing means connected between the ground potential of the casing and a second noise connected in parallel with the first noise removing means between the wiring and the ground potential of the casing. And a noise removing means.
  • (3) The power converter according to (1) or (2), wherein the wiring position to which the first noise removing unit is connected and the wiring position to which the second noise removing unit is connected Is a power converter characterized by being a quarter wavelength of the maximum frequency of noise to be removed.
  • the present invention it is possible to provide a power conversion device capable of suppressing noise current or voltage mixed in the device by propagating a control wiring connected to an external device at low cost and in a small size.
  • the in-vehicle inverter device is provided in the in-vehicle electric system as a control device that controls the driving of the in-vehicle electric motor (motor), converts the DC power supplied from the in-vehicle battery constituting the in-vehicle power source into predetermined AC power, By supplying the obtained AC power to the in-vehicle motor, the driving of the in-vehicle motor is controlled.
  • each car manufacturer has set its own noise immunity standards based on standards such as ISO-11452 and is considered to be stricter than general electronic equipment. It has become.
  • the electric field intensity applied to a general electronic device is about 3 to 10 V / m.
  • the electric field intensity applied to the in-vehicle inverter device is about 70 to 150 V / m, which is 10 times or more.
  • electric field irradiation from 200 MHz to 1 GHz may be performed toward the control wiring.
  • This irradiation causes current noise having the same frequency as that to be mixed into the in-vehicle inverter device via the control wiring, which often causes malfunction of the circuit in the device.
  • the frequency at which malfunction occurs is often 400 MHz to 1 GHz. This is thought to be due to the cavity resonance due to the case size of the in-vehicle inverter device.
  • an in-vehicle inverter device will be described as an example.
  • the present invention is not limited to this, and the present invention can also be applied to DC / DC power converters such as DC / DC converters and DC choppers, and AC / DC power converters.
  • the configuration described below is an industrial power conversion device used as a control device for an electric motor that drives equipment in a factory, a control device for an electric motor that is used in a household solar power generation system, or drives a household electrical appliance.
  • the present invention can also be applied to a household power conversion device used for the above. In particular, application to a power conversion device aimed at cost reduction and miniaturization is preferable.
  • FIG. 12 is a diagram showing the structure of the in-vehicle power converter according to the present invention
  • FIG. 13 is an equivalent circuit diagram showing the electrical connection between the in-vehicle power converter according to the present invention and peripheral devices.
  • a power module 209 includes a power module 209, a smoothing capacitor 207 that performs charge supply at switching speed and with low noise, a gate driver 211 that drives a gate of a switching element mounted on the power module 209, and a power module.
  • the cooling mechanism 210 for cooling the smoothing capacitor 207, the external device connection connector 208, the DC terminal 204 and the DC connector 206 for connecting the high voltage battery connected to the outside of the power converter, the power module 209 and the smoothing Bus bar 214 used as wiring for supplying a high voltage to the capacitor 207, etc.
  • AC terminal or AC connector 212 for connecting the current converted to alternating current to the motor, heat dissipation sheet 203, control for transmitting a motor control signal to the gate driver 211 Times Control circuit board 202 on which the control circuit board 202 is mounted, a circuit board base 205 on which the control circuit board 202 is mounted, a case 213 for housing each component in one housing, and a cover 201 for sealing the housing.
  • the power conversion device assumes a case where two motors are driven, and has a structure in which two sets of the power module 209 and the gate driver 211 can be mounted. Since it depends on the number of loads corresponding to this, it is not limited to two sets.
  • the power system circuit that performs the switching operation is likely to generate noise, it is preferable that the power system circuit be arranged away from the weak electrical harness / cable or the board that is easily affected by the noise. That is, the power module 209, the gate driver 211, the cooling mechanism 210, the smoothing capacitor 207, the bus bar 214, the AC terminal 212, and the DC terminal 204 are all partitioned by the circuit board base 205 on which the control circuit board 202 is mounted.
  • the control circuit board 202 is preferably mounted in a space above the circuit board base 205, and the power converter case 213 is closed on the front, rear, left and right sides, and the upper part is closed by the power converter cover 201. Placed in the space.
  • an external connection connector 208 for connecting the control circuit board 202 and a device outside the power converter is mounted on the control circuit board 202 or a dedicated board for the connector, and the circuit board base is the same as the control circuit board 202. It is mounted in a space above 205. With such a configuration, it is possible to obtain an effect that the power system circuit is less susceptible to noise.
  • the motor 232 and the high voltage battery 227 which are loads and the power conversion device 100 are connected using a shield cable 231.
  • the casing of the cable 231GND and the motor 232 is connected to the chassis GND228.
  • the housing of the high voltage battery 227 and the GND of the high voltage DC cable 226 are also connected to the GND 228 in the same manner.
  • control circuit board 10 operates based on a 12V (or 24V) power source supplied from a vehicle-mounted 12V (or 24V) battery 224 via a power supply wiring 223, and a motor is mounted on the control circuit board 10.
  • An angle detection circuit for detecting the rotation angle of 232, a transceiver for communicating with devices outside the power converter, a microcontroller for controlling these, and the like are mounted.
  • the motor angle detection circuit (resolver circuit) and the motor current detection circuit have a function of converting an analog value of voltage or current into a digital value and transmitting it to a microcontroller via a signal line. It is easy to cause performance degradation and malfunction due to superimposition.
  • control circuit board 10 is connected to an external device 221 such as an engine controller via the control wiring 222, it is known that noise in the vehicle propagates to the board circuit 10 via the control wiring 222. Therefore, for the safety of the vehicle, it is required to prevent such malfunction due to noise.
  • the power module 230 (corresponding to 209 in FIG. 12) has a plurality of semiconductor power switching elements such as IGBTs, flywheel diodes and the like as shown in FIG.
  • the gate driver 211 receives an ON / OFF control signal of the switching element from the control circuit board 10 via the board connection line 225 and performs switching control of the power module 230.
  • MOSFET MOSFET
  • the base 205 is made of a material having higher conductivity than the control circuit board 10 (corresponding to 202 in FIG. 12) such as metal, and the case 213, the cover 201, the base 205, and the cooling mechanism 210 are all physically and electrically connected.
  • the cases 205 and 11 are preferably connected to a chassis GND 228 (corresponding to 12 in FIG. 1) of the vehicle or the like at, for example, a connection point 229, so that the base 205 is also at the GND potential.
  • FIG. 1 is an explanatory view of a first embodiment of the power conversion device according to the present invention, and is a top view when the cover 201 of the power conversion device of FIG. 12 is removed.
  • the power converter case 11 (corresponding to 213 in FIG. 12) is GND-connected to the chassis GND 228 in FIG. 13 and the contact 12 (corresponding to 229 in FIG. 13), and corresponds to the control circuit board 10 (corresponding to 202 in FIG. 12). ) Are supplied from the case 11 via the circuit board base (corresponding to 205 in FIG. 12) as described above.
  • the control wiring 1 for connecting devices outside the power converter and the external connection connector 2 and the board connector 7 are connected via the signal wiring (18 or) 6 in the case 11, and
  • the amplifier 9 is connected through the signal wiring 8 in the control circuit board 10.
  • the amplifier 9 is described as an example of a circuit on the control circuit board 10 connected to the control wiring 1.
  • the amplifier 9 is not limited to the amplifier, and a microcomputer, a transceiver, a comparator, and the like are also applicable.
  • noise removing components 4 and 5 are provided in parallel between the signal wiring 6 and the connection point 3.
  • capacitors are shown as the noise removal components 4 and 5, but the noise removal components are not limited to capacitors and may have other configurations having parasitic capacitance.
  • the signal wiring 8 is short-circuited to GND at a frequency at which the wiring length is 1 ⁇ 4 wavelength with respect to the noise wavelength.
  • a standing wave having a capacitor as a node is applied to the signal wiring 8 and a large noise is mixed into the control circuit board 10. This standing wave can be suppressed by setting the length of the signal wiring 6 to a line electrical length shorter than 1 ⁇ 2 wavelength of the maximum noise frequency.
  • the noise elimination components 4 and 5 are short-circuited to the connection point 3 to GND at a high frequency. This is because standing waves propagating to the wiring 8 can be suppressed, and noise that enters the control circuit board 10 can be suppressed. Specifically, in the line through which the noise to be suppressed propagates, even when the noise removal component 4 is at the node of the target noise, the noise removal component 5 simultaneously shorts the amplitude point that is not a node to the GND. Propagation can be suppressed, and the noise current waveform can be prevented from being reduced from 14a to 14b.
  • the line length of the signal wiring 6 is 1 ⁇ 4 wavelength of the standing wave.
  • the line length of the signal wiring 6 is 1 ⁇ 4 wavelength of the standing wave, a larger noise propagation suppressing effect can be obtained. This is because even if the noise removal component 4 is in the target noise node, the noise removal component 5 short-circuits the maximum amplitude point to the GND, so that the effect of suppressing noise propagation is the largest.
  • the noise elimination components 4 and 5 simultaneously short-circuit the node portion of the standing wave to GND. Note that the noise amplitude cannot be suppressed depending on the line electrical length of the wiring 8.
  • FIG. 2 is an explanatory view of a second embodiment of the power converter according to the present invention, and is a top view when the cover 201 of the power converter of FIG. 12 is removed.
  • FIG. 2 is different from FIG. 1 in that a noise removal component 16 is provided between the signal wiring 18 and the connection point 3.
  • One of the noise removal components 16 is connected to the signal wiring 18, and the other is not connected to the GND on the control circuit board 10 but to the case 11 at the connection point 3.
  • the electric length of the line from the noise removal component 16 to the input of the amplifier 9 is considered as a monopole antenna
  • a standing wave is generated when it is equal to a quarter wavelength of the noise current
  • the noise current is the noise removal component 16. No longer flows.
  • the noise current is equal to 3/4 wavelength, 5/4 wavelength,.... This indicates that noise cannot be reduced when the frequency of the noise current becomes high (the wavelength becomes shorter).
  • FIG. 3 is an explanatory diagram of a third embodiment of the power converter according to the present invention, and is a top view when the cover 201 of the power converter of FIG. 12 is removed.
  • FIG. 3 is different from FIG. 1 in that a shield 17 is provided inside the case 11 of the power converter so as to surround the noise removal components 4 and 5 and the signal wiring 6.
  • a shield 17 is provided inside the case 11 of the power converter so as to surround the noise removal components 4 and 5 and the signal wiring 6.
  • FIG. 4 is a diagram showing a simulation model in a conventional power converter
  • FIGS. 5 and 6 are diagrams showing a simulation model in the power converter according to the present invention
  • FIG. 7 is a diagram in the power converter according to the present invention. It is a figure which shows a simulation result.
  • the current source 31 and the output resistor 32 represent noise current sources
  • the signal wiring 33 (corresponding to the signal wiring 6 in FIG. 1) between the external connection connector 2 and the board connector 7 is the maximum noise.
  • the frequency was set to 250 ps, which is a quarter wavelength of 1 GHz, and the characteristic impedance was set to 300 ⁇ .
  • the signal wiring 36 on the control board circuit has a delay time of 300 ps, a characteristic impedance of 50 ⁇ , and an input resistance of the amplifier 9 of 3 k ⁇ . It is assumed that the noise removal component 34 is mounted on the control circuit board, and the noise removal components C38, C39, and C40 are connected to the case GND, respectively. Here, the noise removal components 34 and 38 are set to 100 pF, and the noise removal components 39 and 40 are set to 50 pF.
  • the inductors 35, 35a, and 35b are parasitic inductances of the GND wiring.
  • FIG. 7 shows current amounts in three different frequency response characteristics.
  • 51 indicates the current flowing through the noise removal component 34 in FIG. 4
  • 52 indicates the current flowing through the input resistor 37 in FIG. 5
  • 53 indicates the current flowing through the input resistor 37 in FIG.
  • the noise current value of 53 can be reduced by 20 dB or more than other configurations. Therefore, according to the present invention, it was confirmed that noise mixed in the apparatus can be suppressed, and a prospect of reducing malfunction of the circuit in the apparatus was obtained.
  • FIG. 8 is an explanatory diagram of the fourth embodiment of the power converter according to the present invention.
  • the cover 201 of the power converter is removed.
  • the noise removal components 103 and 105 are connected to GND, and are arranged in parallel to the signal wiring 104 that connects the external connection connector 101 and the amplifier 9.
  • control circuit board 10 is connected to the cases GND 13 a and 13 b, and the external connection connector 101 is connected to the case GND 102.
  • the noise elimination components 103 and 105 and the signal wiring 104 are mounted on the external connection connector 101 side, and thus, the same configuration as that in FIG. 1 can be taken. Further, when the control circuit board 10 has a layer structure of four or more layers, it is possible to provide the shielding effect shown in FIG. 3 by making the signal wiring 104 a strip line.
  • FIG. 9 shows a power converter that connects the external connection connector 111 and the control circuit board 10 with a wiring material 113 such as an FPC (Flexible-Printed-Circuits).
  • FIG. It is the figure seen from.
  • FIG. 9 differs from FIG. 1 in that there is no noise removing element such as a capacitor between the signal wiring and the contact, and the signal wiring 114 for connecting the external connection connector 111 and the board connector 7 is different.
  • ground patterns 115a, b, c, and d are provided at both ends, and a wiring material 113 is provided so as to cover the signal wiring 114.
  • the wiring material 113 has a layer structure of two or more layers.
  • the ground patterns 115a to 115d are arranged above and below the signal wiring 114, so A GND parasitic capacitance component (noise removal component) can be provided, and a configuration similar to that of FIG. 1 can be realized.
  • FIG. 11 is an explanatory view of a sixth embodiment of the power converter according to the present invention, and is a top view when the external connection connector 101 is directly mounted on the connector board 121.
  • FIG. 11 differs from FIG. 1 in that the connector 101 for external connection and the board connector 122 are connected by the signal wiring 104, and the board connector 122 and the board connector 7 are connected by the signal wiring 123, respectively.
  • the control circuit board 10 is connected to different GNDs.
  • the capacitor is described in the drawings as the noise removing means in the present invention, it is not limited to the capacitor, and may be a means capable of removing other noise components.
  • the power conversion device of the present invention may have a configuration in which the embodiments of the first to sixth embodiments are combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

 外部機器と接続される制御配線を伝搬して装置内に混入するノイズ電流または電圧を安価且つ小型に抑制する電力変換装置を提供する。 筐体と、前記筐体に設けられた接続端子と、前記筐体の内部に設けられた制御回路部と、前記接続端子と前記制御回路部とを接続する配線と、前記配線と前記筐体の接地電位との間に接続された第1のノイズ除去手段と、前記配線と前記筐体の接地電位との間に、前記第1のノイズ除去手段と並列に接続された第2のノイズ除去手段と、を有する電力変換装置である。

Description

電力変換装置
 本発明は、外部機器と接続される制御配線を伝搬して装置内に混入する雑音電流または電圧を安価且つ小型に抑制する電力変換装置に関する。
 バッテリ等の直流電源から交流電圧を生成するインバータ等の電力変換装置は、スイッチング素子等を有して成る主回路(パワーモジュール)と、該スイッチング素子を駆動する信号を生成する駆動回路(ゲートドライバ)と、平滑化コンデンサと、該駆動回路等へ送る動作信号を生成する制御回路(モーターコントローラ)等を備えて構成される。
 この種の電力変換装置は、装置内部の制御回路と複数の外部機器やセンサとを制御配線で接続して信号の送受信を行うが、同制御配線を伝搬して装置内に混入する雑音電流や電圧によって、装置内の制御回路やセンサ回路が誤動作するという課題を有する。そこで、装置内に混入するノイズ電流および電圧を低減するための回路的または構造的工夫が求められている。    
 制御配線を介して装置内の制御回路等へ混入される電磁ノイズを低減するために、制御配線と装置内の基板等との接続部にロス成分またはノイズフィルタ(コンデンサ)を挿入する方法がある。
 例えば、「所要の基板と直交して基板を貫通する導線にリアクタンス素子を結合させた貫通型ノイズフィルタを、細長い短冊状基板に一定間隔で多数設けるとともに、その貫通型ノイズフィルタの各導線の一端を、印刷配線基板上に設けられた複数の印刷配線の各接続端に接続し、さらに貫通型ノイズフィルタにおける各導線の他端を、他の印刷配線基板上に設けられた複数の印刷配線の各接続端に接続したことを特徴とする印刷配線基板用ノイズフィルタ」があり、特許文献1(特開平7‐307637号公報)が知られている。
特開平7‐307637号公報
 しかし、特許文献1(特開平7‐307637号公報)記載の構成では、リアクタンス素子が高価であるために装置が高コストとなる等の問題がある。また基板上にノイズフィルタ(コンデンサ)を配置した場合、ノイズ電流は同コンデンサを介して基板GNDに注入されてしまうため、装置内のセンサや同基板上の回路が誤動作してしまうという問題がある。また、制御配線と装置内の基板等との接続部にノイズフィルタ(コンデンサ)を挿入した場合には、ノイズフィルタ通過後の基板内配線長によって、電磁ノイズ低減効果が大きく劣化するといった問題点がある。
 そこで本発明では、外部機器と接続される制御配線を伝搬して装置内に混入するノイズ電流または電圧を安価且つ小型に抑制することのできる電力変換装置を提供することを目的とする。
 本願において開示される発明のうち代表的なものの概要を簡単に説明すれば次の通りである。
(1)筐体と、前記筐体に設けられた接続端子と、前記筐体の内部に設けられた制御回路部と、前記接続端子と前記制御回路部とを接続する配線と、前記配線と前記筐体の接地電位との間に接続された第1のノイズ除去手段と、前記配線と前記筐体の接地電位との間に、前記第1のノイズ除去手段と並列に接続された第2のノイズ除去手段と、を有する電力変換装置である。
(2)(1)記載の電力変換装置であって、前記第1のノイズ除去手段が接続された前記配線位置と前記第2のノイズ除去手段が接続された前記配線位置との距離は、除去すべきノイズの最大周波数の1/2波長よりも小さい距離であることを特徴とする電力変換装置である。
(3)(1)または(2)に記載の電力変換装置であって、前記第1のノイズ除去手段が接続された前記配線位置と前記第2のノイズ除去手段が接続された前記配線位置との距離は、除去すべきノイズの最大周波数の1/4波長であることを特徴とする電力変換装置である。
 本発明によれば、外部機器と接続される制御配線を伝搬して装置内に混入するノイズ電流または電圧を安価且つ小型に抑制することのできる電力変換装置を提供することができる。
本発明に係る電力変換装置の第一の実施例の説明図である。 本発明に係る電力変換装置の第二の実施例の説明図である。 本発明に係る電力変換装置の第三の実施例の説明図である 従来の電力変換装置におけるシミュレーションモデルを示す図である 本発明に係る電力変換装置におけるシミュレーションモデルを示す図である。 本発明に係る電力変換装置におけるシミュレーションモデルを示す図である。 本発明に係る電力変換装置におけるシミュレーション結果を示す図である。 本発明に係る電力変換装置の第四の実施例の説明図である。 本発明に係る電力変換装置の第五の実施例の説明図である。 本発明に係る電力変換装置の第五の実施例の説明図である。 本発明に係る電力変換装置の第六の実施例の説明図である。 本発明に係る車載電力変換装置の構造を示す図である。 本発明に係る車載電力変換装置の構成を示す図である。
 以下、本発明に係る電力変換装置の実施形態の一例について、図面に基づき詳細に説明する。なお、実施例を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
 以下に説明する実施例では、本発明が適用される電力変換装置として、特に外来ノイズに対する耐性(イミュニティ)が厳しい車載用インバータ装置を例に挙げて説明する。車載用インバータ装置は、車載電動機(モータ)の駆動を制御する制御装置として車載電機システムに備えられており、車載電源を構成する車載バッテリから供給された直流電力を所定の交流電力に変換し、得られた交流電力を車載電動機に供給することにより、車載電動機の駆動を制御するものである。ここで車載用インバータ装置は、安全性および信頼性確保のため、各カーメーカは、ISO‐11452などの規格に基づき、独自にノイズ耐性基準を定めており、一般的な電子機器よりも厳しいものとなっている。例えば、バイコニカルアンテナやホーンアンテナを用いて強電界を被試験対象に照射し、エラーの有無を確認する放射イミュニティ試験では、一般電子機器に照射する電界強度は約3~10V/mであるのに対し、車載用インバータ装置に照射する電界強度は約70~150V/mと10倍以上である。例えば、試験の一例として、200MHzから1GHzまでの電界照射を制御配線に向けて行う場合がある。この照射により周波数と同一の電流ノイズが制御配線を介して車載用インバータ装置に混入されることになり、これにより装置内回路の誤動作を引き起こすことが多い。この場合に、誤動作が生じる周波数としては400MHz~1GHzが多い。これは車載用インバータ装置のケースサイズによる空洞共振が一要因であると考えられる。
 尚、以下では車載用インバータ装置を例に説明を行うが、これに限らずDC/DCコンバータや直流チョッパなどの直流-直流電力変換装置、交流-直流電力変換装置等にも適用可能である。また、以下に説明する構成は、工場の設備を駆動する電動機の制御装置として用いられる産業用電力変換装置、家庭の太陽光発電システムに用いられる、または家庭の電化製品を駆動する電動機の制御装置に用いられる家庭電力変換装置等に対しても適用可能である。特に、低コスト化及び小型化を狙った電力変換装置への適用が好ましい。
 まず、図12および図13を用いて電力変換装置の構成を説明する。図12は本発明に係る車載電力変換装置の構造を示す図であり、図13は本発明に係る車載電力変換装置および周辺装置の電気的な接続を表した等価回路図である。
 図12の電力変換装置は、パワーモジュール209、スイッチング時の電荷供給を高速且つ低雑音にて行う平滑化コンデンサ207、パワーモジュール209に搭載されるスイッチング素子のゲートを駆動するゲートドライバ211、パワーモジュール209や平滑化コンデンサ207等を冷却する冷却機構210、外部機器接続用コネクタ208、電力変換器外部に接続される高電圧のバッテリを接続するDCターミナル204とDCコネクタ206、パワーモジュール209及び平滑化コンデンサ207等に高電圧を供給する配線として用いるバスバー214、交流に変換された電流をモータへ接続するACターミナル若しくはACコネクタ212、放熱用シート203、ゲートドライバ211へモータ制御信号を伝えるための制御回路が実装された制御回路基板202、制御回路基板202を実装する回路基板用ベース205、各コンポーネントを一つの筐体に収納するケース213、筐体を封止するカバー201とを有して構成される。
 尚、同電力変換装置は、駆動するモータを二機とした場合を想定しており、パワーモジュール209及びゲートドライバ211が二組搭載できるような構造としているが、これらの数は駆動するモータまたはこれに相当する負荷の数量に依存するため、二組に限られない。
 ここで、スイッチング動作を行うパワー系回路は雑音を発生させやすいので、雑音の影響を受けやすい弱電系のハーネス・ケーブルや基板等から離す配置とすることが好ましい。つまり、パワーモジュール209、ゲートドライバ211、冷却機構210、平滑化コンデンサ207、バスバー214、ACターミナル212、DCターミナル204は、全て制御回路基板202を実装する回路基板用ベース205によって仕切られたケース213下方の空間に組みつけられることが望ましく、制御回路基板202は回路基板用ベース205よりも上方の空間に実装され、前後左右は電力変換器のケース213、上部は電力変換器のカバー201によって閉じた空間の中に配置される。同様に、制御回路基板202と電力変換器外部の機器を接続するための外部接続用コネクタ208は、制御回路基板202又はコネクタ専用の基板上に実装され、制御回路基板202同様に回路基板用ベース205より上方の空間に実装される。このような構成により、パワー系回路による雑音の影響を受けにくくなるという効果を得ることができる。
 図13の本発明に係る電力変換装置および周辺装置の電気的な接続を表した等価回路図では、負荷であるモータ232および高電圧バッテリ227と電力変換装置100はシールドケーブル231を用いて接続されており、同ケーブル231GND及びモータ232の筐体はシャーシGND228に接続されている。高圧バッテリ227の筐体及び高圧DCケーブル226のGNDも同様に同GND228に接続されている。
 ここで、制御回路基板10は車載の12V(または24V)バッテリ224から電源配線223を介して供給される12V(または24V)電源を基に動作しており、制御回路基板10上には、モータ232の回転角度を検知するための角度検知回路、電力変換器外部の機器と通信を行うためのトランシーバ、これらを制御するためのマイクロコントローラ等が搭載される。またケース11内には、モータ232に流れている電流を検知するための電流検知回路がある。これらの回路は5V以下の低い電源電圧で動作しているため、外来ノイズにより誤動作を起こす可能性がある。特に、モータ角度検知回路(レゾルバ回路)やモータ電流検知回路は電圧若しくは電流のアナログ値をデジタル値へ変換しマイクロコントローラへ信号線を介して伝える機能を有しており、これらアナログ値は雑音の重畳による性能劣化・誤動作を引き起こし易い。
 ここで、制御回路基板10はエンジンコントローラなどの外部装置221と制御配線222を介して接続されているため、車輌内のノイズが同制御配線222を介して基板回路10まで伝播することが知られており、車輌の安全性のために、これらのノイズによる誤動作を阻止することが求められている。
 ここで、パワーモジュール230(図12の209に相当)は、図13に示すようにIGBT等の半導体パワースイッチング素子やフライホイールダイオード等を複数個有している。ゲートドライバ211は、基板接続線225を介して制御回路基板10からスイッチング素子のON/OFF制御信号を受け取り、パワーモジュール230のスイッチング制御を行う。尚、パワースイッチング素子としてMOSFETを用いる場合等はフライホイールダイオードを用いないことも可能である。
 また、ベース205は金属など制御回路基板10(図12の202に相当)よりも高い導電性を有する材料とし、ケース213、カバー201、ベース205及び冷却機構210は全て物理的且つ電気的に接続されており、ケース213、11は車両等のシャーシGND228(図1の12に相当)と例えば接続点229で接続されることによってベース205もGND電位となることが望ましい。
 本発明の実施例1について、図1を用いて説明する。図1は本発明に係る電力変換装置の第一の実施例の説明図であり、図12の電力変換装置のカバー201を外した場合の上面図である。
 電力変換装置のケース11(図12における213に相当)は、図13のシャーシGND228と接点12(図13における229に相当)においてGND接続されており、制御回路基板10(図12の202に相当)のケースGND13a~13fは前述のように回路基板用ベース(図12の205に相当)を介してケース11から供給されている。電力変換装置外部の機器を接続するための制御配線1および外部接続用コネクタ2と基板コネクタ7とは、ケース11内の信号配線(18または)6を介して接続されており、基板コネクタ7とアンプ9とは、制御回路基板10内の信号配線8を通して接続されている。ここで制御配線1と繋がる制御回路基板10上の回路例としてアンプ9を記載したが、アンプに限られず、他にもマイコンやトランシーバ、コンパレータなども適用可能である。
 ここで、本実施例1では、信号配線6と接続点3との間に並列になるようにノイズ除去成分4、5を備える。図1ではノイズ除去成分4、5としてコンデンサが示されているが、ノイズ除去成分はコンデンサに限られず、寄生キャパシタンスを持つ他の構成であってもよい。信号配線6と接続点3との間に並列になるようにノイズ除去成分4、5を備えることにより、従来技術におけるノイズフィルタ通過後の基板内配線長によって電磁ノイズ低減効果が大きく劣化するといった問題点を解消し、ノイズ低減効果の劣化を抑制することができる。その結果、インバータのイミュニティ性能の向上を実現する電力変換装置を提供することができる。
 さらに、従来の電力変換装置では、アンプ9の入力インピーダンスがHiインピーダンスと仮定した場合、信号配線8の配線長がノイズの波長に対して1/4波長となる周波数にはGNDに短絡するためのコンデンサを節とする定在波が信号配線8にあわられて制御回路基板10に大きなノイズが混入することになるという課題があったが、本実施例1において両ノイズ除去成分4、5間の信号配線6の長さをノイズの最大周波数の1/2波長よりも短い線路電気長に設定することにより、この定在波を抑制することが可能となる。
 これは、信号配線6の線路電気長が定在波の1/2波長より短くなるように設定すると、高周波数においてノイズ除去成分4、5がGNDへの接続点3に短絡されるため、信号配線8に伝播する定在波を抑制し、制御回路基板10に侵入するノイズを抑えることができるためである。具体的には、抑制対象のノイズが伝播する線路において、ノイズ除去成分4が対象ノイズの節の部分にあるときでも、ノイズ除去成分5が同時に節でない振幅点をGNDに短絡させるため、ノイズの伝播を抑制でき、ノイズ電流波形が14aから14bのように低減することを防ぐことが可能となる。
 さらに、信号配線6の線路長を定在波の1/4波長とすることが望ましい。信号配線6の線路長を定在波の1/4波長とした場合には、さらに大きなノイズ伝播抑制効果を得ることができる。これは、ノイズ除去成分4が対象ノイズの節にあっても、ノイズ除去成分5が最大振幅点をGNDに短絡させるため、最もノイズ伝播の抑制効果が大きいためである。
 ここで、信号配線6の線路電気長が問題となるノイズ周波数の1/2波長と等しい場合、ノイズ除去成分4および5は定在波の節の部分を同時にGNDに短絡することになるため、配線8の線路電気長によってはノイズ振幅を抑制できないことに注意する。
 本発明の実施例2について、図2を用いて説明する。図2は本発明に係る電力変換装置の第二の実施例の説明図であり、図12の電力変換装置のカバー201を外した場合の上面図である。
 図2の電力変換装置において図1と異なる点は、信号配線18と接続点3との間にノイズ除去成分16を備える点である。ノイズ除去成分16の一方を信号配線18に、もう一方を制御回路基板10上のGNDではなく、ケース11に接続点3において接続されている。これにより、ノイズ除去成分16からアンプ9の入力までの線路の電気長が、制御配線1を伝搬して電力変換装置内に混入するノイズ電流の1/4波長よりも十分に短い場合には、ノイズ電流はノイズ除去成分16を介して直接ケース11に流れるため、制御回路基板10のGNDにノイズ電流が混入して回路が誤動作することを低減することができる。
 ここで、ノイズ除去成分16からアンプ9の入力までの線路の電気長をモノポールアンテナとして考えると、ノイズ電流の1/4波長と等しいときに定在波が立ち、ノイズ電流はノイズ除去成分16には流れなくなる。また、ノイズ電流の3/4波長、5/4波長・・・と等しいときも同様である。これはノイズ電流の周波数が高周波になる(波長としては短くなる)とノイズを低減できないことを示している。
 本発明の実施例3について、図3を用いて説明する。図3は本発明に係る電力変換装置の第三の実施例の説明図であり、図12の電力変換装置のカバー201を外した場合の上面図である。
 図3の電力変換装置において図1と異なる点は、ノイズ除去成分4、5と信号配線6を囲むように、電力変換装置のケース11内部にシールド17を備える点である。ノイズ除去成分4、5と配線6を囲むようにシールド17を追加することで、信号配線6からのノイズの再放射を防ぐことが可能になる。
 次に、外部接続用コネクタ2からアンプ9までの電流伝達特性シミュレーション結果を、図4乃至図7を用いて説明する。図4は従来の電力変換装置におけるシミュレーションモデルを示す図であり、図5および図6は本発明に係る電力変換装置におけるシミュレーションモデルを示す図であり、図7は本発明に係る電力変換装置におけるシミュレーション結果を示す図である。
 図4から図6において、電流源31と出力抵抗32はノイズ電流源を表し、外部接続用コネクタ2と基板コネクタ7の間の信号配線33(図1の信号配線6に相当)はノイズの最大周波数を1GHzの1/4波長である250psとし、特性インピーダンスを300Ωとした。
 制御基板回路上の信号配線36は遅延時間300ps、特性インピーダンスは50Ωとし、アンプ9の入力抵抗を3kΩとしている。ノイズ除去成分34は制御回路基板上に搭載されているとし、ノイズ除去成分C38とC39、C40はそれぞれケースGNDに接続されたとする。ここで、ノイズ除去成分34、38は100pF、ノイズ除去成分39、40は50pFとした。インダクタ35、35a、35bはGND配線の寄生インダクタンスである。
 図7は、異なる3つの周波数応答特性における電流量を示す。51は図4のノイズ除去成分34に流れる電流を、52は図5の入力抵抗37に流れる電流を、53は図6の入力抵抗37に流れる電流を示している。1MHz付近の周波数に関しては、同図の52および53に示すように信号はほとんど劣化しないことが分かる。ここで、イミュニティ試験で誤作動が起こりやすい400MHz~1GHzに注目すると、53のノイズ電流値は他の構成よりも20dB以上も低減できている。よって本発明により、装置に混入するノイズを抑制できることを確認し、装置内回路の誤作動を低減できる見通しを得た。
 本発明の実施例4について、図8を用いて説明する。図8は本発明に係る電力変換装置の第四の実施例の説明図であり、図12の外部接続用コネクタ101を制御回路基板106に直接実装したときに、電力変換装置のカバー201を外した場合の上面図である。
 図8の電力変換装置において図1と異なる点は、制御回路基板10のGNDパターンがスリット107によって分離されている点である。本実施例4については、ノイズ除去成分103、105はそれぞれGNDに接続しており、外部接続用コネクタ101とアンプ9とを接続する信号配線104に対して並列に配置されている。
 ここで、制御回路基板10はケースGND13a、13bに、外部接続用コネクタ101はケースGND102にそれぞれ接続されている。ノイズ除去成分103、105と信号配線104は外部接続用コネクタ101側に搭載されており、これにより図1と同様の構成をとることが可能となる。さらに、同制御回路基板10が4層以上の層構成の場合、信号配線104をストリップラインとすることで図3に示すシールド効果を備えることが可能である。
 本発明の実施例5について、図9および図10を用いて説明する。図9および図10により、本発明に係る電力変換装置の第五の実施例を説明する。図9は、外部接続用コネクタ111と制御回路基板10をFPC(Flexible‐Printed‐Circuits:フレキシブルプリント基板)のような配線材113で接続する電力変換装置であり、図10は配線材113を横から見た図である。
 図9の電力変換装置において図1と異なる点は、信号配線と接点との間にコンデンサなどのノイズ除去素子を有さず、外部接続用コネクタ111と基板コネクタ7とを接続する信号配線114の両端にグランドパターン115a、b、c、dと、信号配線114を覆うように配線材113とを備える点である。
 ここで配線材113は2層以上の層構成を持っており、例えば図10に示す配線材113の断面図のように、信号配線114の上下にグランドパターン115a~115dを配置することで、対GNDの寄生容量成分(ノイズ除去成分)を持たせることができ、図1と同様の構成を実現することができる。
 本発明の実施例6について、図11を用いて説明する。図11は本発明に係る電力変換装置の第六の実施例の説明図であり、外部接続用コネクタ101をコネクタ基板121に直接実装したときの上面図である。
 図11の電力変換装置において図1と異なる点は、外部接続用コネクタ101と基板コネクタ122とは信号配線104により、基板コネクタ122と基板コネクタ7とが信号配線123によりそれぞれ接続され、コネクタ基板121と制御回路基板10とは各々異なるGNDに接続されている点である。
 ノイズ除去成分103、105と信号配線104とをコネクタ基板121上に配置することで、図1と同様の構成を実現することができる。
 以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 また、本発明におけるノイズ除去手段として図面中ではコンデンサを記載したが、コンデンサに限定されるものではなく、他のノイズ成分を除去可能な手段であってもよい。
 また、本発明の電力変換装置は、本実施例1乃至6のそれぞれの実施例を組み合わせた構成であってもよい。
 1・・・制御配線、2、111・・・外部接続用コネクタ、3・・・接続点、13a~13f、102、112・・・ケースGND、4、5、16、34、38、39、40、103、105・・・ノイズ除去成分、6、8、18、33、36、104、108、114、123・・・信号配線、7、122・・・基板コネクタ、9・・・アンプ、10、106、202・・・制御回路基板、11・・・ケース、12・・・シャーシGND、14a、14b・・・ノイズ電流波形、31・・・電流源、32・・・出力抵抗、35、35a、35b・・・寄生インダクタンス、51、52、53・・・電流、113・・・配線材、115a~115d・・・グランドパターン(グランド)プレーン、121・・・コネクタ基板、201・・・カバー、203・・・放熱用シート、204・・・DCターミナル、205・・・回路基板用ベース、206・・・DCコネクタ、207・・・平滑化コンデンサ、208・・・外部機器接続用コネクタ、209、230・・・パワーモジュール、210・・・水冷機構、211・・・ゲートドライバ(基板)、212・・・ACコネクタ、213・・・ケース、214・・・DCバスバー(プラス側)、221・・・外部機器、222・・・信号配線、223・・・電源配線、224・・・12Vバッテリ、225・・・基板接続線、226・・・高圧DCケーブル、228・・・シャーシGND、229・・・電力変換器GND(接続点)、231・・・モーターケーブル(シールドケーブル)、232・・・モータ

Claims (12)

  1. 筐体と、
    前記筐体に設けられた接続端子と、
    前記筐体の内部に設けられた制御回路部と、
    前記接続端子と前記制御回路部とを接続する配線と、
    前記配線と前記筐体の接地電位との間に接続された第1のノイズ除去手段と、
    前記配線と前記筐体の接地電位との間に、前記第1のノイズ除去手段と並列に接続された第2のノイズ除去手段と、
    を有する電力変換装置。  
  2. 請求項1記載の電力変換装置であって、
    前記第1のノイズ除去手段が接続された前記配線の位置と前記第2のノイズ除去手段が接続された前記配線の位置との距離は、除去すべきノイズの最大周波数の1/2波長よりも小さい距離であることを特徴とする電力変換装置。
  3. 請求項1または2に記載の電力変換装置であって、
    前記第1のノイズ除去手段が接続された前記配線の位置と前記第2のノイズ除去手段が接続された前記配線の位置との距離は、除去すべきノイズの最大周波数の1/4波長であることを特徴とする電力変換装置。
  4. 請求項1乃至3のいずれかに記載の電力変換装置であって、
    前記第1のノイズ除去手段と前記第2のノイズ除去手段と前記配線の少なくとも一部を囲むように、前記筐体の内部にシールドを備えたことを特徴とする電力変換装置。
  5. 請求項1乃至4のいずれかに記載の電力変換装置であって、
    前記第1のノイズ除去手段と前記第2のノイズ除去手段と前記配線と前記制御回路部とを囲む制御回路基板にはGNDパターンが設けられており、前記GNDパターンはスリットによって複数に分離されていることを特徴とする電力変換装置。
  6. 請求項5記載の電力変換装置であって、
    前記スリットによって、前記第1のノイズ除去手段と前記第2のノイズ除去手段と前記配線の一部を囲む第1のGNDパターンと前記制御回路部を囲む第2のGNDパターンの少なくとも2つのGNDパターンに分離されていることを特徴とする電力変換装置。
  7. 請求項1乃至6のいずれかに記載の電力変換装置であって、
    該電力変換装置と外部機器とを接続するために該電力変換装置に設けられているコネクタと前記接続端子との間に配線材を設けたことを特徴とする電力変換装置。
  8. 請求項7記載の電力変換装置であって、
    前記配線材は2層以上の層構成を有することを特徴とする電力変換装置。
  9. 請求項7または8に記載の電力変換装置であって、
    前記配線材はFPCであることを特徴とする電力変換装置。
  10. 請求項1記載の電力変換装置であって、
    前記接続端子は第1の接続端子および第2の接続端子の少なくとも2つあり、
    前記第1の接続端子と前記第2の接続端子とは信号配線で接続されており、
    前記第1の接続端子は前記第2の接続端子よりも前記コネクタに近い位置に配置されており、
    前記コネクタから前記第1の接続端子までを囲むように設けられた第1のGNDパターンと前記第2の接続端子から前記制御回路を囲むように設けられた第2のGNDパターンとを有することを特徴とする電力変換装置。
  11. 請求項1乃至10のいずれかに記載の電力変換装置であって、
    前記制御回路部はマイコンまたはトランシーバまたはコンパレータのいずれかであることを特徴とする電力変換装置。
  12. 請求項1乃至11のいずれかに記載の電力変換装置であって、
    前記第1のノイズ除去手段および前記第2のノイズ除去手段はコンデンサであることを特徴とする電力変換装置。
PCT/JP2010/007263 2009-12-25 2010-12-15 電力変換装置 WO2011077665A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/518,716 US9112402B2 (en) 2009-12-25 2010-12-15 Power conversion apparatus
EP10838905.7A EP2518884B1 (en) 2009-12-25 2010-12-15 Power conversion apparatus
CN201080058067.0A CN102668355B (zh) 2009-12-25 2010-12-15 电力变换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009293692A JP5500973B2 (ja) 2009-12-25 2009-12-25 電力変換装置
JP2009-293692 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011077665A1 true WO2011077665A1 (ja) 2011-06-30

Family

ID=44195219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007263 WO2011077665A1 (ja) 2009-12-25 2010-12-15 電力変換装置

Country Status (5)

Country Link
US (1) US9112402B2 (ja)
EP (1) EP2518884B1 (ja)
JP (1) JP5500973B2 (ja)
CN (1) CN102668355B (ja)
WO (1) WO2011077665A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748775A (zh) * 2011-09-28 2014-04-23 日产自动车株式会社 电力变换装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9065356B2 (en) 2011-02-28 2015-06-23 Hitachi, Ltd. Electric power converter
JP5622659B2 (ja) * 2011-05-31 2014-11-12 日立オートモティブシステムズ株式会社 電力変換装置
JP6180810B2 (ja) 2013-06-19 2017-08-16 三菱重工オートモーティブサーマルシステムズ株式会社 インバータ一体型電動圧縮機
JP6104763B2 (ja) * 2013-09-05 2017-03-29 日立オートモティブシステムズ株式会社 電力変換装置
WO2016103496A1 (ja) * 2014-12-26 2016-06-30 日産自動車株式会社 電力変換装置
US10784792B2 (en) * 2016-06-02 2020-09-22 Nissan Motor Co., Ltd. Power conversion device
JP6523394B2 (ja) * 2017-09-21 2019-05-29 本田技研工業株式会社 電動車両のハーネス配策構造
JP7205078B2 (ja) * 2018-05-24 2023-01-17 株式会社村田製作所 車載用ワイヤハーネス
DE112020007383T5 (de) * 2020-07-03 2023-04-20 Mitsubishi Electric Corporation Stromrichtereinrichtung

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307637A (ja) 1994-05-11 1995-11-21 Witco Of Jupiter Dentsu Kk 印刷配線基板用ノイズフィルタ
JP2005020868A (ja) * 2003-06-25 2005-01-20 Fuji Electric Fa Components & Systems Co Ltd 電力変換回路
JP2006204027A (ja) * 2005-01-21 2006-08-03 Matsushita Electric Ind Co Ltd 自動車用空調装置
JP2006230064A (ja) * 2005-02-16 2006-08-31 Toyota Motor Corp 電力変換ユニット
JP2006311697A (ja) * 2005-04-28 2006-11-09 Hitachi Ltd ブラシレスモータシステム
JP2007012685A (ja) * 2005-06-28 2007-01-18 Toyota Motor Corp 半導体素子の冷却構造および半導体素子のモジュール構造
JP2007059810A (ja) * 2005-08-26 2007-03-08 Toyota Motor Corp 電源装置
JP2008042124A (ja) * 2006-08-10 2008-02-21 Fuji Electric Holdings Co Ltd 半導体パワーモジュール
JP2008295126A (ja) * 2007-05-22 2008-12-04 Mitsubishi Electric Corp 電力変換器システム
JP2009027840A (ja) * 2007-07-19 2009-02-05 Fuji Electric Device Technology Co Ltd 電力変換装置
JP2009105178A (ja) * 2007-10-23 2009-05-14 Nichicon Corp パワー半導体ユニット

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3631343B2 (ja) * 1995-12-04 2005-03-23 富士通株式会社 通信・情報端末装置
JP2000223799A (ja) 1999-02-02 2000-08-11 Toshiba Corp 配線基板及びその製造方法
US6633800B1 (en) * 2001-01-31 2003-10-14 Ainsworth Inc. Remote control system
JP3374917B2 (ja) * 2001-02-16 2003-02-10 サンケン電気株式会社 スイッチング電源装置
JP2004153951A (ja) * 2002-10-31 2004-05-27 Fuji Electric Fa Components & Systems Co Ltd 半導体電力変換回路
JP4314513B2 (ja) 2003-06-18 2009-08-19 アイシン・エィ・ダブリュ株式会社 インバータノイズ除去装置
CN2731907Y (zh) 2004-08-24 2005-10-05 华为技术有限公司 一种多层印刷电路板
JP2006080215A (ja) 2004-09-08 2006-03-23 Nissan Motor Co Ltd 車両用パワー・エレクトロニクス・システムとそのノイズ抑制方法
JP4498305B2 (ja) * 2005-05-11 2010-07-07 キヤノン株式会社 シールド筐体
JP4756935B2 (ja) 2005-06-29 2011-08-24 本田技研工業株式会社 コンデンサ搭載型インバータユニット
DE602007009955D1 (de) 2006-03-31 2010-12-02 Panasonic Corp Schaltung und verfahren zur lärmminderung
JP4609504B2 (ja) 2008-03-04 2011-01-12 株式会社豊田自動織機 電子機器
JP5002568B2 (ja) * 2008-10-29 2012-08-15 日立オートモティブシステムズ株式会社 電力変換装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307637A (ja) 1994-05-11 1995-11-21 Witco Of Jupiter Dentsu Kk 印刷配線基板用ノイズフィルタ
JP2005020868A (ja) * 2003-06-25 2005-01-20 Fuji Electric Fa Components & Systems Co Ltd 電力変換回路
JP2006204027A (ja) * 2005-01-21 2006-08-03 Matsushita Electric Ind Co Ltd 自動車用空調装置
JP2006230064A (ja) * 2005-02-16 2006-08-31 Toyota Motor Corp 電力変換ユニット
JP2006311697A (ja) * 2005-04-28 2006-11-09 Hitachi Ltd ブラシレスモータシステム
JP2007012685A (ja) * 2005-06-28 2007-01-18 Toyota Motor Corp 半導体素子の冷却構造および半導体素子のモジュール構造
JP2007059810A (ja) * 2005-08-26 2007-03-08 Toyota Motor Corp 電源装置
JP2008042124A (ja) * 2006-08-10 2008-02-21 Fuji Electric Holdings Co Ltd 半導体パワーモジュール
JP2008295126A (ja) * 2007-05-22 2008-12-04 Mitsubishi Electric Corp 電力変換器システム
JP2009027840A (ja) * 2007-07-19 2009-02-05 Fuji Electric Device Technology Co Ltd 電力変換装置
JP2009105178A (ja) * 2007-10-23 2009-05-14 Nichicon Corp パワー半導体ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2518884A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748775A (zh) * 2011-09-28 2014-04-23 日产自动车株式会社 电力变换装置
CN103748775B (zh) * 2011-09-28 2017-03-08 日产自动车株式会社 电力变换装置

Also Published As

Publication number Publication date
JP2011135705A (ja) 2011-07-07
US20120326799A1 (en) 2012-12-27
EP2518884B1 (en) 2018-06-13
CN102668355A (zh) 2012-09-12
CN102668355B (zh) 2015-04-29
JP5500973B2 (ja) 2014-05-21
EP2518884A4 (en) 2014-12-10
US9112402B2 (en) 2015-08-18
EP2518884A1 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5500973B2 (ja) 電力変換装置
US7956566B2 (en) Driver IC with HV-isolation, especially hybrid electric vehicle motor drive concept
EP2043418B1 (en) Method and apparatus for reducing EMI emissions from a power inverter
CN108370196B (zh) 抗干扰装置、电子组件和抗干扰装置的用途
JP5760864B2 (ja) 電力変換装置
CN111656660B (zh) 车辆用的电磁干扰抑制
JP5991137B2 (ja) 電力変換装置
WO2016194050A1 (ja) 電力変換装置
JP6464580B2 (ja) 電力変換装置
JP7331946B2 (ja) 電子回路
US9312752B2 (en) Electronics apparatus and production method for an electronics apparatus
WO2012117477A1 (ja) 電力変換装置
Qing-yu et al. EMC design for HEV drive system
CN109074109B (zh) 电力转换装置、以及使用该电力转换装置的电动助力转向装置
KR101776213B1 (ko) 냉각팬 제어기를 위한 emi 저감 장치
JP7512515B2 (ja) 電子機器
CN112189306A (zh) 噪声滤波器
CN220629182U (zh) 功率变换设备、电机控制器及车辆
CN118413061A (zh) 一种电机控制装置及系统
JP4351948B2 (ja) プリント配線基板
JP2020014374A (ja) 電力変換用回路基板及び電動圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058067.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838905

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010838905

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13518716

Country of ref document: US