WO2011074584A1 - オルガノポリシロキサン化合物の製造方法 - Google Patents

オルガノポリシロキサン化合物の製造方法 Download PDF

Info

Publication number
WO2011074584A1
WO2011074584A1 PCT/JP2010/072500 JP2010072500W WO2011074584A1 WO 2011074584 A1 WO2011074584 A1 WO 2011074584A1 JP 2010072500 W JP2010072500 W JP 2010072500W WO 2011074584 A1 WO2011074584 A1 WO 2011074584A1
Authority
WO
WIPO (PCT)
Prior art keywords
organopolysiloxane
group
terminal
general formula
solvent
Prior art date
Application number
PCT/JP2010/072500
Other languages
English (en)
French (fr)
Inventor
隆史 神舘
林藤 克彦
整 瀧口
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN2010800571493A priority Critical patent/CN102656211A/zh
Priority to EP10837610.4A priority patent/EP2514783B1/en
Priority to US13/516,081 priority patent/US8716411B2/en
Publication of WO2011074584A1 publication Critical patent/WO2011074584A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • C08G77/455Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences containing polyamide, polyesteramide or polyimide sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups

Definitions

  • the present invention relates to a method for producing an organopolysiloxane compound.
  • Organopolysiloxane compounds (hereinafter sometimes referred to as “silicone compounds”) have low surface tension, excellent lubricity and releasability, high thermal stability, generally very low glass transition points, and excellent gas permeability.
  • Various forms of silicone compounds are lubricants, heat media, electrical insulators, paint leveling agents, mold release agents, cosmetic additives, fiber treatment agents, impact cushioning materials, It is widely used as a sealing material, molding material, polish, foam stabilizer and antifoam.
  • Patent Document 1 discloses a silicone compound that is soluble or dispersible in various solvents such as ethanol.
  • the silicone compound described in Patent Document 1 has a property that is not present in conventional products that is excellent in solubility in various solvents, the quality may not be stable during production.
  • the molecular weight of a silicone compound may fall and a touch may deteriorate.
  • bases used for cosmetic applications often need to be solid and have no stickiness in the solid state.
  • JP-A-2-276824 Japanese Patent Laid-Open No. 4-85335
  • An object of the present invention is to provide a production method capable of producing an organopolysiloxane compound which suppresses a decrease in molecular weight, has no stickiness and has a good feel, and has a stable quality.
  • this invention provides the manufacturing method of the following organopolysiloxane compounds.
  • Process for producing an organopolysiloxane compound in which a segment of poly (N-acylalkyleneimine) comprising a repeating unit represented by the following general formula (1) is bonded to the terminal and / or side chain of an organopolysiloxane segment Because (A) a step of ring-opening polymerization of a cyclic imino ether compound represented by the following general formula (I) in a solvent to prepare a terminal-reactive poly (N-acylalkyleneimine) solution; (B) a step of preparing a modified organopolysiloxane solution by mixing a modified organopolysiloxane having an amino group at the terminal and / or side chain of a molecular chain with a solvent; (C) The terminal-reactive poly (N-acylalkyleneimine) solution obtained in the step (a) is mixed with the modified organopolys
  • the manufacturing method of an organopolysiloxane compound including the process to remove.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, an aralkyl group, or an aryl group, and n represents 2 or 3.
  • R 1 and n have the same meanings as R 1 and n in the general formula (1).
  • a decrease in molecular weight can be suppressed, and an organopolysiloxane compound having no stickiness and good feel can be produced with stable quality.
  • FIG. 1 is a GPC chart of a sample before heat drying in Example 1.
  • FIG. 2 is a GPC chart of a sample after heat drying in Example 1.
  • FIG. It is a GPC chart figure of the sample before the heat drying in the comparative example 1.
  • the organopolysiloxane compound obtained by the production method of the present invention is a poly (N-acylalkyleneimine) comprising a repeating unit represented by the following general formula (1) at the end and / or side chain of an organopolysiloxane segment. The segments are combined.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, an aralkyl group, or an aryl group, and n represents 2 or 3.
  • Such an organopolysiloxane compound is not particularly limited, but preferred specific examples include a modified organopolysiloxane segment represented by the following general formula (2) and a repeating unit represented by the above general formula (1). And a poly (N-acylalkylenimine) segment.
  • R 2 independently represents an alkyl group having 1 to 22 carbon atoms or a phenyl group
  • R 3 and R 4 each independently represents an alkyl group having 1 to 22 carbon atoms or a phenyl group, or Represents a divalent linking group represented by any of the following formulas (i) to (vi)
  • R 5 represents a divalent linking group represented by any of the following formulas (i) to (vi): P represents an integer of 2 to 4000, and q represents an integer of 2 to 250.
  • * represents a site bonded to a silicon atom in the general formula (2)
  • ** represents a poly (consisting of repeating units represented by the general formula (1)
  • (N-acylalkyleneimine) represents a site bonded to a segment
  • X ⁇ represents a counter ion of a quaternary ammonium salt.
  • the alkyl group having 1 to 22 carbon atoms represented by R 1 is preferably a linear, branched or cyclic alkyl group having 1 to 22 carbon atoms, and having 1 to 10 carbon atoms.
  • An alkyl group is more preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • Specific examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group.
  • the aralkyl group represented by R 1 is preferably an aralkyl group having 7 to 15 carbon atoms, more preferably an aralkyl group having 7 to 14 carbon atoms, and further preferably an aralkyl group having 7 to 10 carbon atoms. Specific examples include benzyl group, phenethyl group, trityl group, naphthylmethyl group, anthracenylmethyl group and the like.
  • the aryl group represented by R 1 is preferably an aryl group having 6 to 14 carbon atoms, more preferably an aryl group having 6 to 12 carbon atoms, and still more preferably an aryl group having 6 to 9 carbon atoms.
  • Specific examples include phenyl group, tolyl group, xylyl group, naphthyl group, biphenyl group, anthryl group, phenanthryl group and the like.
  • R 1 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, more preferably a linear or branched alkyl group having 1 to 3 carbon atoms, and particularly preferably an ethyl group.
  • n is preferably 2.
  • the alkyl group having 1 to 22 carbon atoms represented by R 2 to R 4 has the same meaning as the alkyl group having 1 to 22 carbon atoms represented by R 1 described above, and is preferable.
  • the range is the same.
  • R 2 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, more preferably a linear or branched alkyl group having 1 to 3 carbon atoms, and particularly preferably a methyl group.
  • R 3 and R 4 represent an alkyl group having 1 to 22 carbon atoms or a phenyl group
  • a linear or branched alkyl group having 1 to 6 carbon atoms is preferable, and a linear or branched chain having 1 to 3 carbon atoms is preferable.
  • the alkyl group is more preferable, and the methyl group is particularly preferable.
  • the divalent linking group represented by any of the above formulas (i) to (vi) represented by R 3 to R 5 is an alkylene group containing a nitrogen atom, It functions as a linking group between the modified organopolysiloxane segment and the poly (N-acylalkylimine) segment.
  • a group represented by the above formula (i) or (ii) is preferable.
  • X ⁇ represents a counter ion of ammonium, and specific examples include ethyl sulfate ion, methyl sulfate ion, chlorine ion, iodine ion, sulfate ion, p-toluenesulfonate ion, Examples include perchlorate ions.
  • p represents an integer of 2 to 4000
  • q represents an integer of 2 to 150.
  • p is preferably an integer of 135 to 1600, more preferably an integer of 400 to 1350, and more preferably an integer of 400 to 1000.
  • q is preferably an integer of 3 to 50, more preferably an integer of 5 to 30, further preferably an integer of 10 to 25, and still more preferably an integer of 15 to 25.
  • connection rate of the organopolysiloxane segment refers to the ratio of the poly (N-acylalkyleneimine) segment connected to the total amino groups of the modified organopolysiloxane segment.
  • the connection rate of the organopolysiloxane segment can be obtained from the following calculation formula (1) by measuring the content of unreacted amino groups by neutralization titration of the organopolysiloxane compound.
  • connection rate (%) (1—Unreacted amino group content (mol / g) / Total amino group content (mol / g) of the modified organopolysiloxane segment) ⁇ 100 (1)
  • the connection rate of the organopolysiloxane segment is 65 to 95%, preferably 70 to 90%, more preferably 75 to 88% from the viewpoint of the thermal stability of the organopolysiloxane compound.
  • the molecular weight (MWox) of the poly (N-acylalkylenimine) segment in the organopolysiloxane compound is measured by a method of calculating from the molecular weight of N-acylalkyleneimine units and the degree of polymerization, or by a gel permeation chromatography (GPC) measurement method. In the present invention, it means the number average molecular weight measured by the GPC measurement method.
  • MWox is preferably 150 to 50,000, more preferably 500 to 10,000, and still more preferably 800 to 5000, from the viewpoint of feel and solubility in ethanol when the resulting organopolysiloxane compound is applied to cosmetic applications. Particularly preferred is 1000 to 3000.
  • the weight average molecular weight of the poly (N-acylalkylenimine) segment measured by the GPC measurement method is preferably 180 to 65,000, more preferably 600 to 13,000, still more preferably 960 to 6,500, and still more preferably. 1,200 to 3,900, particularly preferably 1,200 to 2,000. Details of specific measurement conditions for GPC are shown in the Examples.
  • the weight average molecular weight (MWsi) of the organopolysiloxane segment constituting the main chain in the organopolysiloxane compound is preferably 300 to 300,000, and more preferably 10,000 to 10,000 from the viewpoint of solubility in ethanol. 120,000, more preferably 30,000 to 100,000. Since MWsi has a common skeleton with the modified organopolysiloxane which is a raw material compound, MWsi is substantially the same as the weight average molecular weight of the modified organopolysiloxane.
  • the weight average molecular weight of the modified organopolysiloxane is a weight average molecular weight measured by GPC after acetylating active hydrogen with acetic anhydride in advance.
  • the ratio of the mass (Msi) of the organopolysiloxane segment in the mass (Msiox) of the organopolysiloxane compound obtained by the production method of the present invention (hereinafter also referred to as “the mass ratio (r) of the organopolysiloxane segment”) is: From the viewpoint of feel when the obtained organopolysiloxane compound is applied to cosmetic use and solubility in ethanol, 0.1 to 0.95 is preferable, 0.3 to 0.9 is more preferable, and 0.5 More preferably, 0.8 is more preferable.
  • the mass ratio (r) of the organopolysiloxane segment is defined by the following formula.
  • the mass ratio (r) of the organopolysiloxane segment was determined by dissolving 5% by mass of the organopolysiloxane compound according to the present invention in deuterated chloroform and analyzing the alkyl content in the organopolysiloxane segment by nuclear magnetic resonance ( 1 H-NMR) analysis. It can be determined from the integral ratio of the group or phenyl group to the methylene group in the poly (N-acylalkylenimine) segment.
  • the weight average molecular weight (MWt) of the organopolysiloxane compound obtained by the production method of the present invention is preferably 500 to 500,000, more preferably 30,000 to 150,000, still more preferably from the viewpoint of solubility in ethanol. Is 50,000 to 120,000. This MWt can be obtained by the GPC measurement described in the examples.
  • JP-A-2-276824 Patent Document 1
  • JP-A-2009-24114 JP-A-2009-24114
  • the organopolysiloxane compound according to the present invention is produced by reacting a modified organopolysiloxane having an amino group at the terminal and / or side chain of a molecular chain with a terminal reactive poly (N-acylalkyleneimine).
  • the method of the present invention includes the following steps (a) to (d).
  • (A) A step of preparing a terminal-reactive poly (N-acylalkyleneimine) solution by ring-opening polymerization of a cyclic imino ether compound represented by the following general formula (I) in a solvent.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, an aralkyl group, or an aryl group, and n represents 2 or 3)
  • B A step of preparing a modified organopolysiloxane solution by mixing a modified organopolysiloxane having an amino group at the end and / or side chain of a molecular chain with a solvent.
  • C The terminal-reactive poly (N-acylalkyleneimine) solution obtained in the step (a) is mixed with the modified organopolysiloxane solution obtained in the step (b) to obtain a modified organopolysiloxane. Reacting 65 to 95% of all amino groups having with the terminal reactive poly (N-acylalkylenimine).
  • D A step of removing the solvent at 100 to 200 ° C. after the completion of the step (c).
  • Step (a) In the step (a), the cyclic imino ether compound represented by the general formula (I) is subjected to ring-opening polymerization (living polymerization) in a solvent to prepare a terminal reactive poly (N-acylalkyleneimine) solution.
  • R 1 and n in the general formula (I) have the same meanings as R 1 and n in the general formula (1), and preferred ranges are also the same.
  • an aprotic polar solvent is preferable.
  • alkyl acetate (C1-3) esters such as ethyl acetate and propyl acetate
  • dialkyl (C1-3) ethers such as diethyl ether and diisopropyl ether
  • cyclic ethers such as dioxane and tetrahydrofuran
  • ketones such as acetone and methyl ethyl ketone
  • halogen solvents such as chloroform and methylene chloride, nitrile solvents such as acetonitrile and benzonitrile, and media such as N, N-dimethylformamide, N, N-dimethylacetamide and dimethyl sulfoxide can be used.
  • ⁇ 3 Esters are preferably used.
  • the water concentration in the cyclic imino ether compound solution obtained by mixing the cyclic imino ether compound with the solvent is preferably 600 mg / kg or less, more preferably 200 mg or less, more preferably from the viewpoint of controlling the molecular weight of the polymer obtained. More preferably, it is 100 mg / kg or less. On the other hand, from the viewpoint of operational efficiency, it is preferably 10 mg / kg or more, more preferably 30 mg / kg or more, still more preferably 50 mg / kg or more, and particularly preferably 70 mg / kg or more.
  • the dehydrating and drying treatment is preferably performed under reduced pressure or using a dehydrating agent.
  • a dehydrating agent include molecular sieve, alumina, calcium chloride, calcium sulfate and the like. Among these, molecular sieve is preferable from the viewpoint of achievable water concentration and economy.
  • the dehydration temperature is preferably 50 ° C. or lower, more preferably 40 ° C. or lower, and further preferably 35 ° C. or lower.
  • the dehydration temperature is preferably 5 ° C. or higher.
  • the dehydrating agent may be added directly to the cyclic imino ether compound solution and stirred, and then the dehydrating agent may be removed.
  • the cyclic imino ether compound solution is passed through a column filled with the dehydrating agent. It is preferable to perform a dehydration drying process.
  • the concentration of the cyclic imino ether compound in the cyclic imino ether compound solution is preferably 10 to 80% by mass, more preferably 20 to 60% by mass, and still more preferably 25 to 55% by mass from the viewpoint of shortening the dehydration time. %.
  • An initiator can be used for the ring-opening polymerization of the cyclic imino ether compound.
  • Initiators include compounds with strong electrophilic reactivity, for example, alkyls of strong acids such as benzenesulfonic acid alkyl ester, p-toluenesulfonic acid alkyl ester, trifluoromethanesulfonic acid alkyl ester, trifluoroacetic acid alkyl ester, sulfuric acid dialkyl ester, etc.
  • Esters can be used.
  • dialkyl sulfates particularly dialkyl sulfates having an alkyl group having 1 to 3 carbon atoms, are preferably used.
  • the amount of the initiator used is usually 1 mol of the initiator with respect to 2 to 100 mol of the cyclic imino ether compound.
  • the polymerization temperature is preferably 40 to 150 ° C, more preferably 60 to 120 ° C, still more preferably 70 to 110 ° C, and still more preferably 75 to 100 ° C.
  • the polymerization temperature is preferably within the above range after adding the initiator from the viewpoint of controlling the molecular weight of the resulting polymer.
  • the polymerization time is not uniform depending on the reaction conditions such as the polymerization temperature, but is usually 1 to 60 hours, preferably 2 to 50 hours, more preferably 3 to 30 hours, still more preferably 5 to 15 hours. It's time.
  • n 2 poly (N-acylethyleneimine) in the general formula (1) is obtained.
  • the number average molecular weight of the terminal reactive poly (N-acylalkyleneimine) obtained by ring-opening polymerization is preferably 150 to 50000, more preferably 500 to 10,000, still more preferably 800 to 5000, and particularly preferably 1000 to 3000. is there. 150 or more are preferable from the viewpoint of improving the solubility of the resulting organopolysiloxane compound in ethanol, and 50000 or less is preferable from the viewpoint of ease of production.
  • Step (b) In the step (b), a modified organopolysiloxane solution having amino groups at the molecular chain terminals and / or side chains is mixed with a solvent to prepare a modified organopolysiloxane solution.
  • the modified organopolysiloxane having an amino group at the end and / or side chain of the molecular chain is not particularly limited, but a preferred specific example is a modified organopolysiloxane represented by the following general formula (II).
  • R 2 independently represents an alkyl group having 1 to 22 carbon atoms or a phenyl group
  • R 6 and R 7 each independently represents an alkyl group having 1 to 22 carbon atoms or a phenyl group
  • R 8 represents a substituent represented by any of the following formulas (vii) to (xi)
  • p represents 2 Represents an integer of ⁇ 4000
  • q represents an integer of 2 to 150.
  • the alkyl group or phenyl group having 1 to 22 carbon atoms represented by R 2 , R 6 and R 7 is the carbon represented by R 2 to R 4 in the general formula (2). It is synonymous with the alkyl group or phenyl group of formula 1 to 22, and the preferred range is also the same. Moreover, p and q are synonymous with p and q in the said General formula (2), and their preferable range is also the same. Of the substituents represented by any of the above formulas (vii) to (xi), the group represented by the above formula (vii) or (viii) is preferable.
  • the modified organopolysiloxane can be produced by any method. Moreover, a commercial item can also be used. Specific examples include KF-8015, KF-864, KF-8003 manufactured by Shin-Etsu Silicone Co., Ltd., and BY16-898 manufactured by Toray Dow Corning Co., Ltd. (all are trade names).
  • the solvent used in the step (b) is preferably an aprotic polar solvent.
  • alkyl acetate (C1-3) esters such as ethyl acetate and propyl acetate, dialkyl (C1-3) ethers such as diethyl ether and diisopropyl ether, cyclic ethers such as dioxane and tetrahydrofuran, ketones such as acetone and methyl ethyl ketone
  • Halogen solvents such as chloroform and methylene chloride, nitrile solvents such as acetonitrile and benzonitrile, solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and dimethyl sulfoxide, among which alkyl acetate (C1 ⁇ 3) Esters are preferably used. From the viewpoint of solvent separation and production cost, it is preferable to use the same solvent as the solvent used in the step (a).
  • the concentration of the modified organopolysiloxane in the solution is preferably controlled to 10 to 70% by mass, more preferably 20 to 60% by mass, and still more preferably 30 to 50% by mass from the viewpoint of increasing the efficiency of the dehydration drying treatment. Is preferred.
  • the water concentration in the modified organopolysiloxane solution is preferably 100 mg / kg or less, more preferably 90 mg / kg or less, still more preferably 60 mg / kg or less. It is. On the other hand, from the viewpoint of operational efficiency, it is preferably at least 3 mg / kg, more preferably at least 5 mg / kg, even more preferably at least 10 mg / kg, even more preferably at least 30 mg / kg.
  • the dehydration drying treatment is preferably dehydrated using a dehydrating agent from the viewpoint of reducing the equipment load.
  • a dehydrating agent a molecular sieve is preferable from the viewpoint of achievable water concentration and economy.
  • the dehydration temperature is preferably 40 ° C. or less from the viewpoint of shortening the dehydration time, and preferably 5 ° C. or more from the viewpoint of operation efficiency.
  • the dehydrating agent may be added directly to the modified organopolysiloxane solution and stirred, and then the dehydrating agent may be removed.
  • the denatured organopolysiloxane solution is passed through a column filled with the dehydrating agent for dehydration. Drying is preferred.
  • the terminal reactive poly (N-acylalkyleneimine) solution is preferably cooled to 70 ° C. or less, more preferably 10 to 65 ° C., further preferably 20 ° C. to 60 ° C., and particularly preferably 25 to 40 ° C. preferable.
  • Step (c) In the step (c), the terminal reactive poly (N-acylalkyleneimine) solution obtained in the step (a) and the modified organopolysiloxane solution obtained in the step (b) are mixed to obtain a modified organo 65 to 95 mol% of all amino groups of the polysiloxane are reacted with the terminal reactive poly (N-acylalkyleneimine).
  • an organopolysiloxane compound having excellent stability can be obtained. That is, an organopolysiloxane compound having no stickiness and good feel can be stably produced even when the solvent removal treatment or the like is carried out under high temperature conditions.
  • connection rate of the organopolysiloxane segment is 65 to 95%, preferably 70 to 90%, more preferably 72 to 88%, from the viewpoint of thermal stability of the organopolysiloxane compound and suppression of by-product formation. is there.
  • One active site of the terminal reactive poly (N-acylalkyleneimine) linked to the amino group of the modified organopolysiloxane is generated per mole of the initiator. Therefore, for example, an organopolysiloxane compound having a coupling ratio of 65 to 95% can be obtained by adding 65 to 95 mol% of an initiator with respect to the amino group of the modified organopolysiloxane.
  • the reaction temperature of the terminally reactive poly (N-acylalkylenimine) solution and the modified organopolysiloxane solution is preferably 40 to 150 ° C, more preferably 60 to 120 ° C, still more preferably 70 to 110 ° C, and still more preferably. Is 75-100 ° C.
  • the reaction temperature is preferably within the above temperature range after mixing the terminal reactive poly (N-acylalkyleneimine) and the modified organopolysiloxane solution from the viewpoint of controlling the molecular weight of the resulting product.
  • the reaction time is not uniform depending on the reaction conditions such as the polymerization temperature, but is usually 1 to 60 hours, preferably 3 to 30 hours, and more preferably 5 to 15 hours.
  • the water concentration in the reaction mixture after the terminal-reactive poly (N-acylalkylenimine) solution and the modified organopolysiloxane solution were mixed and reacted was determined by the terminal-reactive poly (N-acylalkyleneimine) solution and the modified
  • the water concentration in the organopolysiloxane solution it is preferably controlled to 150 mg / kg or less, more preferably 120 mg / kg or less, still more preferably 100 mg / kg or less, and even more preferably 80 mg / kg or less.
  • the lower limit of the water concentration may be 0 mg / kg or more, but from the viewpoint of the efficiency of the operation in the steps (a) and (b), 5 mg / kg or more is preferable, 10 mg / kg or more is more preferable, 30 mg / kg kg or more is particularly preferable.
  • Step (d) the solvent is removed under the condition of 100 to 200 ° C. after the completion of the step (c).
  • the removal of the solvent from the reaction solution can be preferably carried out at 120 to 170 ° C, more preferably 140 to 160 ° C.
  • the residual solvent concentration is preferably 3000 mg / kg or less, more preferably 2000 mg / kg or less, and particularly preferably 1000 mg / kg or less.
  • the solvent can be removed using a desolventizer having a twin screw described in JP-A-10-279690.
  • This desolvator has a space from the bottom of the tank to the upper end of the biaxial screw as an effective volume, and a uniform space exists from the raw material supply port to the dried product discharge port as an evaporation chamber above this effective volume.
  • the deaeration hole connected to a decompression line is provided in the ceiling part of the evaporation chamber.
  • Solvent removal is preferably performed in a nitrogen atmosphere from the viewpoint of suppressing coloring of the resulting modified organopolysiloxane.
  • the molecular weight of the organopolysiloxane segment is substantially the same as the weight average molecular weight of the side chain primary aminopropyl modified organopolysiloxane, and the weight average molecular weight of the side chain primary aminopropyl modified organopolysiloxane is determined by the following method. After acetylation of the chain primary aminopropyl-modified organopolysiloxane, it was determined by GPC under the same measurement conditions as the weight average molecular weight of (N-propionylethyleneimine).
  • Measurement of residual solvent Measurement was performed using gas chromatography. The measurement conditions are as follows. Column: manufactured by Supelco, trade name: PTA-5 30 m ⁇ 0.25 mm ⁇ 0.5 ⁇ m Detection: FID Temperature rise: 40 ° C. 5 min ⁇ 8 ° C./min ⁇ 200° C. 0 min, splitless injection side temperature: 200 ° C. Injection volume: 1 ⁇ l Detection temperature: 200 ° C Sample preparation: About 0.5 g of internal standard dimethylacetamide (manufactured by Wako Pure Chemical Industries, Ltd.) and about 0.5 g of sample were precisely weighed and diluted with ethanol to make about 10 ml.
  • Amine value (mol / g) (AB) ⁇ f / (sample amount (g) ⁇ 10000)
  • Example 1 60.8 g (0.61 mol) of 2-ethyl-2-oxazoline and 143.3 g of ethyl acetate were mixed, and the mixture was molecular sieve (trade name: Zeolum A-4, manufactured by Tosoh Corporation) 10.0 g And dehydration was carried out for 15 hours to reduce the water concentration to 88 mg / kg or less.
  • molecular sieve trade name: Zeolum A-4, manufactured by Tosoh Corporation
  • Example 2 2-ethyl-2-oxazoline (41.0 g, 0.41 mol) and ethyl acetate (95.54 g) were mixed, and the mixture was molecular sieve (trade name: Zeolum A-4, manufactured by Tosoh Corporation) (7.5 g). And dehydration was carried out for 15 hours to reduce the water concentration to 93 mg / kg or less.
  • molecular sieve trade name: Zeolum A-4, manufactured by Tosoh Corporation
  • N-propionylethyleneimine-dimethylsiloxane copolymer A part thereof was concentrated under reduced pressure at room temperature to obtain an N-propionylethyleneimine-dimethylsiloxane copolymer as a pale yellow solid.
  • the mass ratio of the organopolysiloxane segment was 0.68, and the weight average molecular weight was 65,000.
  • 26 mol% of amino groups remained in the amino groups of the side chain primary aminopropyl-modified polydimethylsiloxane used as a raw material. Okay (consolidation rate: 74%).
  • N-propionylethyleneimine-dimethylsiloxane copolymer A part thereof was concentrated under reduced pressure at room temperature to obtain an N-propionylethyleneimine-dimethylsiloxane copolymer as a pale yellow solid.
  • the mass ratio of the organopolysiloxane segment was 0.67, and the weight average molecular weight was 85,000.
  • connection ratio 100%.
  • 50 g of the ethyl acetate solution of the N-propionylethyleneimine-dimethylsiloxane copolymer obtained above was placed in a flat stainless steel vat and dried by heating at 150 ° C. under reduced pressure (10 kPa) for 1 hour to remove the solvent.
  • the weight average molecular weight of the obtained solid was 66000.
  • the residual solvent was 500 mg / kg (vs solids).
  • N-propionylethyleneimine-dimethylsiloxane copolymer A part thereof was concentrated under reduced pressure at room temperature to obtain an N-propionylethyleneimine-dimethylsiloxane copolymer as a pale yellow solid.
  • This product was insoluble in various solvents such as ethyl acetate and chloroform. (Linkage rate set value: 40%).
  • 50 g of the ethyl acetate solution of the N-propionylethyleneimine-dimethylsiloxane copolymer obtained above was placed in a flat stainless steel vat and dried by heating at 150 ° C. under reduced pressure (10 kPa) for 1 hour to remove the solvent.
  • This product was insoluble in various solvents such as ethanol, ethyl acetate and chloroform.
  • Example 1 was subjected to GPC analysis before and after heat drying.
  • FIGS. FIG. 1 is a GPC chart of a sample before heat drying in Example 1
  • FIG. 2 is a GPC chart of a sample after heat drying in Example 1.
  • 3 is a GPC chart of the sample before heat drying in Comparative Example 1
  • FIG. 4 is a GPC chart of the sample after heat drying in Comparative Example 1. From the results of FIGS. 1 to 4, it can be seen that the molecular weight greatly fluctuated by the heat treatment in Comparative Example 1, whereas the molecular weight was not lowered by the heat treatment in Example 1.
  • the organopolysiloxane compound as in the present invention it is generally considered preferable to reduce amino groups as much as possible, that is, to increase the coupling rate as much as possible from the viewpoint of avoiding inappropriate reactions.
  • the organopolysiloxane compound having a good feeling without stickiness without sticking to the molecular weight does not decrease even after heat treatment. it can.
  • the organopolysiloxane compound obtained by the method of the present invention has no stickiness and has a good feel and is suitably used as a cosmetic base.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

 オルガノポリシロキサンのセグメントの末端及び/又は側鎖に、下記一般式(1)で表される繰返し単位からなるポリ(N-アシルアルキレンイミン)のセグメントが結合してなるオルガノポリシロキサン化合物の製造方法であって、(a)下記一般式(I)で表される環状イミノエーテル化合物を溶媒中で開環重合して、末端反応性ポリ(N-アシルアルキレンイミン)溶液を調製する工程、(b)分子鎖の末端及び/又は側鎖にアミノ基を有する変性オルガノポリシロキサンを溶媒と混合して、変性オルガノポリシロキサン溶液を調製する工程、(c)前記工程(a)で得られた末端反応性ポリ(N-アシルアルキレンイミン)溶液と前記工程(b)で得られた変性オルガノポリシロキサン溶液とを混合して、変性オルガノポリシロキサンが有する全アミノ基の65~95モル%を末端反応性ポリ(N-アシルアルキレンイミン)と反応させる工程、及び(d)前記工程(c)の終了後、100~200℃の条件下で溶媒を除去する工程を含む、オルガノポリシロキサン化合物の製造方法。 (式中、R1は、水素原子、炭素数1~22のアルキル基、アラルキル基、又はアリール基を表し、nは2又は3を表す。)

Description

オルガノポリシロキサン化合物の製造方法
 本発明は、オルガノポリシロキサン化合物の製造方法に関する。
 オルガノポリシロキサン化合物(以下、「シリコーン化合物」と称することがある)は、低い表面張力、優れた潤滑性や離型性、高い熱的安定性、一般にきわめて低いガラス転移点、優れた気体透過性等の多くの特徴を有していることから、様々な形態のシリコーン化合物が潤滑剤、熱媒体、電気絶縁体、塗料レベリング剤、離型剤、化粧品添加剤、繊維処理剤、衝撃緩衝材、シーリング材、型取り材、つや出し剤、整泡剤、消泡剤として極めて広範囲に利用されている。
 パーソナルケアの分野においても例外でなく、シリコーン化合物は、スキンケア剤、ファンデーション、シャンプー、コンディショナー等の化粧料に感触向上剤等として多用されている。あるいは、ヘアセット剤の主基剤として使用されている。パーソナルケアの分野では、固体状態でべたつきの無い好感触が望まれることが多い。更には、配合の容易さの面で、エタノール可溶性が求められることが多い。例えば、特許文献1には、エタノール等の各種溶媒に可溶あるいは分散可能なシリコーン化合物が開示されている。
 シリコーンエラストマーの製造については、例えば特許文献2に記載されているように、ポリ(N-アシルアルキレンイミン)のオリゴマーを重合する工程及びそのオリゴマーをシリコーン化合物にグラフトさせる工程の2段階からなるものが知られている。ここで、これらの工程は、均一系で反応することが必要になるため、溶媒中で行われることが一般的であり、使用できる溶媒は、酢酸エチルやクロロホルム等の非プロトン性の溶媒に限定される。
 このような方法で得られたシリコーン化合物を、パーソナルケアの分野で使用する場合には、反応終了後に脱溶媒工程を設ける必要がある。特に、パーソナルケアの分野では溶剤臭が好まれないので、極力残存する溶媒を除去しなければならず、そのためには減圧下高温で脱溶媒する必要である。
 したがって、特許文献1に記載されているシリコーン化合物は各種溶媒に対する溶解性に優れるという従来品にはない性質を有しているが、製造する際に品質が安定しないことがあり、特に、脱溶媒処理等を高温条件で行った場合には、シリコーン化合物の分子量が低下して、感触が悪化することがある。これに対し、化粧品用途に用いられる基剤には、固体状態でベタつきがなく感触が良好であることが必要である場合が多い。
特開平2-276824号公報 特開平4-85335号公報
 本発明の課題は、分子量の低下を抑制して、ベタつきがなく感触が良好であるオルガノポリシロキサン化合物を安定な品質で製造できる製造方法を提供することにある。
 すなわち、本発明は、以下のオルガノポリシロキサン化合物の製造方法を提供する。
 オルガノポリシロキサンのセグメントの末端及び/又は側鎖に、下記一般式(1)で表される繰返し単位からなるポリ(N-アシルアルキレンイミン)のセグメントが結合してなるオルガノポリシロキサン化合物の製造方法であって、
(a)下記一般式(I)で表される環状イミノエーテル化合物を溶媒中で開環重合して、末端反応性ポリ(N-アシルアルキレンイミン)溶液を調製する工程、
(b)分子鎖の末端及び/又は側鎖にアミノ基を有する変性オルガノポリシロキサンを溶媒と混合して、変性オルガノポリシロキサン溶液を調製する工程、
(c)前記工程(a)で得られた末端反応性ポリ(N-アシルアルキレンイミン)溶液と前記工程(b)で得られた変性オルガノポリシロキサン溶液とを混合して、変性オルガノポリシロキサンが有する全アミノ基の65~95モル%を末端反応性ポリ(N-アシルアルキレンイミン)と反応させる工程、及び
(d)前記工程(c)の終了後、100~200℃の条件下で溶媒を除去する工程
を含む、オルガノポリシロキサン化合物の製造方法。
Figure JPOXMLDOC01-appb-C000005
(前記一般式(1)中、R1は、水素原子、炭素数1~22のアルキル基、アラルキル基、又はアリール基を表し、nは2又は3を表す。)
Figure JPOXMLDOC01-appb-C000006
(前記一般式(I)中、R1及びnは、前記一般式(1)におけるR1及びnと同義である。)
 本発明の方法によれば、分子量の低下を抑制することができ、ベタつきがなく感触が良好であるオルガノポリシロキサン化合物を安定な品質で製造することができる。
実施例1における加熱乾燥前のサンプルのGPCチャート図である。 実施例1における加熱乾燥後のサンプルのGPCチャート図である。 比較例1における加熱乾燥前のサンプルのGPCチャート図である。 比較例1における加熱乾燥後のサンプルのGPCチャート図である。
<オルガノポリシロキサン化合物>
 本発明の製造方法によって得られるオルガノポリシロキサン化合物は、オルガノポリシロキサンのセグメントの末端及び/又は側鎖に、下記一般式(1)で表される繰返し単位からなるポリ(N-アシルアルキレンイミン)のセグメントが結合してなる。
Figure JPOXMLDOC01-appb-C000007
(前記一般式(1)中、R1は、水素原子、炭素数1~22のアルキル基、アラルキル基、又はアリール基を表し、nは2又は3を表す。)
 このようなオルガノポリシロキサン化合物は、特に限定されないが、好ましい具体例としては、下記一般式(2)で表される変性オルガノポリシロキサンセグメントと、前記一般式(1)で表される繰返し単位からなるポリ(N-アシルアルキレンイミン)セグメントからなるものである。
Figure JPOXMLDOC01-appb-C000008
(式中、R2は、それぞれ独立に炭素数1~22のアルキル基又はフェニル基を表し、R3及びR4は、それぞれ独立に炭素数1~22のアルキル基又はフェニル基を表すか又は下式(i)~(vi)のいずれかで表される2価の連結基を表し、R5は、下式(i)~(vi)のいずれかで表される2価の連結基を表す。pは、2~4000の整数を表し、qは、2~250の整数を表す。)
Figure JPOXMLDOC01-appb-C000009
(式(i)~(vi)中、*は、前記一般式(2)におけるケイ素原子に結合する部位を表し、**は、前記一般式(1)で表される繰返し単位からなるポリ(N-アシルアルキレンイミン)セグメントに結合する部位を表す。X-は4級アンモニウム塩の対イオンを表す。)
 前記一般式(1)中、R1で表される炭素数1~22のアルキル基としては、炭素数1~22の直鎖、分岐状又は環状のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~6のアルキル基が更に好ましい。具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、オクタデシル基、ノナデシル基、エイコシル基、ドコシル基等が挙げられる。
 R1で表されるアラルキル基としては、炭素数7~15のアラルキル基が好ましく、炭素数7~14のアラルキル基がより好ましく、炭素数7~10のアラルキル基が更に好ましい。具体例としては、ベンジル基、フェネチル基、トリチル基、ナフチルメチル基、アントラセニルメチル基等が挙げられる。
 R1で表されるアリール基としては、炭素数6~14のアリール基が好ましく、炭素数6~12のアリール基がより好ましく、炭素数6~9のアリール基が更に好ましい。具体例としては、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基、アントリル基、フェナントリル基等が挙げられる。
 これらの中でも、R1としては、炭素数1~6の直鎖又は分岐状のアルキル基が好ましく、炭素数1~3の直鎖又は分岐状のアルキル基がより好ましく、エチル基が特に好ましい。
 前記一般式(1)中、nは2が好ましい。
 前記一般式(2)中、R2~R4で表される炭素数1~22のアルキル基としては、上述したR1で表される炭素数1~22のアルキル基と同義であり、好ましい範囲も同様である。
 R2としては、炭素数1~6の直鎖又は分岐状のアルキル基が好ましく、炭素数1~3の直鎖又は分岐状のアルキル基がより好ましく、メチル基が特に好ましい。また、R3及びR4が炭素数1~22のアルキル基又はフェニル基を表す場合も炭素数1~6の直鎖又は分岐状のアルキル基が好ましく、炭素数1~3の直鎖又は分岐状のアルキル基がより好ましく、メチル基が特に好ましい。
 前記一般式(2)中、R3~R5で表される、上記式(i)~(vi)のいずれかで表される2価の連結基は、窒素原子を含むアルキレン基であり、変性オルガノポリシロキサンセグメントとポリ(N-アシルアルキルイミン)セグメントとの連結基として機能する。上記式(i)~(vi)の中でも上記式(i)又は(ii)で表される基が好ましい。
 上記式(i)~(vi)中、X-はアンモニウムの対イオンを表し、具体例としては、エチル硫酸イオン、メチル硫酸イオン、塩素イオン、ヨウ素イオン、硫酸イオン、p-トルエンスルホン酸イオン、過塩素酸イオン等が挙げられる。
 前記一般式(2)中、pは、2~4000の整数を表し、qは、2~150の整数を表す。pは、135~1600の整数が好ましく、400~1350の整数がより好ましく、400~1000の整数がより好ましい。qは、3~50の整数が好ましく、5~30の整数がより好ましく、10~25の整数が更に好ましく、15~25の整数がより更に好ましい。
 本明細書中、オルガノポリシロキサンセグメントの連結率とは、変性オルガノポリシロキサンセグメントが有する全アミノ基に対してポリ(N-アシルアルキレンイミン)セグメントが連結している割合をいう。オルガノポリシロキサンセグメントの連結率は、オルガノポリシロキサン化合物の中和滴定によって未反応のアミノ基の含有量を測定することで下記計算式(1)から求めることができる。
連結率(%)=(1-未反応のアミノ基含有量(モル/g)/変性オルガノポリシロキサンセグメントが有する全アミノ基含有量(モル/g))×100   (1)
 オルガノポリシロキサンセグメントの連結率は、オルガノポリシロキサン化合物の熱安定性の観点から、65~95%であり、好ましくは70~90%、より好ましくは75~88%である。
 オルガノポリシロキサン化合物におけるポリ(N-アシルアルキレンイミン)セグメントの分子量(MWox)は、N-アシルアルキレンイミン単位の分子量と重合度とから算出する方法又はゲルパーミエーションクロマトグラフィー(GPC)測定法により測定することが可能であるが、本発明においてはGPC測定法により測定される数平均分子量をいう。得られるオルガノポリシロキサン化合物を化粧品用途に応用した場合の感触及びエタノールへの溶解性の観点から、MWoxは好ましくは150~50,000、より好ましくは500~10,000、更に好ましくは800~5000、特に好ましくは1000~3000である。ポリ(N-アシルアルキレンイミン)セグメントのGPC測定法により測定される重量平均分子量としては、180~65,000が好ましく、600~13,000、更に好ましくは960~6,500、より更に好ましくは1,200~3,900、特に好ましくは1,200~2,000である。
 GPCの具体的測定条件の詳細は実施例に示す。
 オルガノポリシロキサン化合物において主鎖を構成するオルガノポリシロキサンセグメントの重量平均分子量(MWsi)は、好ましくは300~300,000であるが、エタノールへの溶解性の観点から、より好ましくは10,000~120,000、更に好ましくは30,000~100,000である。MWsiは、原料化合物である変性オルガノポリシロキサンと共通の骨格を有するため、MWsiは変性オルガノポリシロキサンの重量平均分子量と略同一である。なお、変性オルガノポリシロキサンの重量平均分子量は、活性水素をあらかじめ無水酢酸でアセチル化した後、GPCにより測定した重量平均分子量である。
 本発明の製造方法で得られるオルガノポリシロキサン化合物の質量(Msiox)中に占めるオルガノポリシロキサンセグメントの質量(Msi)の割合(以下「オルガノポリシロキサンセグメントの質量比(r)」ともいう)は、得られるオルガノポリシロキサン化合物を化粧品用途に応用した場合の感触、及びエタノールへの溶解性の観点から、0.1~0.95が好ましく、0.3~0.9がより好ましく、0.5~0.8が更に好ましい。尚、オルガノポリシロキサンセグメントの質量比(r)は、下記の式で定義される。
r=Msi/Msiox=Msi/(Msi+Mox)
(式中、Msi、Msioxは前記と同じ意味を表し、Moxはポリ(N-アシルアルキレンイミン)セグメントの質量を表す。)
 オルガノポリシロキサンセグメントの質量比(r)は、本発明に係るオルガノポリシロキサン化合物を重クロロホルム中に5質量%溶解させ、核磁気共鳴(1H-NMR)分析により、オルガノポリシロキサンセグメント中のアルキル基又はフェニル基と、ポリ(N-アシルアルキレンイミン)セグメント中のメチレン基との積分比より求めることができる。
 本発明の製造方法で得られるオルガノポリシロキサン化合物の重量平均分子量(MWt)は、エタノールへの溶解性の観点から好ましくは500~500,000、より好ましくは30,000~150,000、更に好ましくは50,000~120,000である。このMWtは実施例に記載のGPC測定によって得ることができる。
 本発明に係るオルガノポリシロキサン化合物の具体例については、特開平2-276824号公報(前記特許文献1)や特開2009-24114号公報等の記載を参照することができる。
<オルガノポリシロキサン化合物の製造方法>
 本発明に係るオルガノポリシロキサン化合物は、分子鎖の末端及び/又は側鎖にアミノ基を有する変性オルガノポリシロキサンと、末端反応性ポリ(N-アシルアルキレンイミン)とを反応させて製造される。
 本発明の方法は、下記工程(a)~(d)を含む。
(a)下記一般式(I)で表される環状イミノエーテル化合物を溶媒中で開環重合して、末端反応性ポリ(N-アシルアルキレンイミン)溶液を調製する工程。
Figure JPOXMLDOC01-appb-C000010
(式中、R1は、水素原子、炭素数1~22のアルキル基、アラルキル基、又はアリール基を表し、nは2又は3を表す。)
(b)分子鎖の末端及び/又は側鎖にアミノ基を有する変性オルガノポリシロキサンを溶媒と混合して、変性オルガノポリシロキサン溶液を調製する工程。
(c)前記工程(a)で得られた末端反応性ポリ(N-アシルアルキレンイミン)溶液と前記工程(b)で得られた変性オルガノポリシロキサン溶液とを混合して、変性オルガノポリシロキサンが有する全アミノ基の65~95%を末端反応性ポリ(N-アシルアルキレンイミン)と反応させる工程。
(d)前記工程(c)の終了後、100~200℃の条件下で溶媒を除去する工程。
[工程(a)]
 工程(a)では、前記一般式(I)で表される環状イミノエーテル化合物を溶媒中で開環重合(リビング重合)して、末端反応性ポリ(N-アシルアルキレンイミン)溶液を調製する。
 前記一般式(I)におけるR1及びnは前記一般式(1)におけるR1及びnと同義であり、好ましい範囲も同様である。
(環状イミノエーテル化合物の開環重合)
 環状イミノエーテル化合物の開環重合に用いる溶媒としては、非プロトン性極性溶媒が好ましい。具体的には、酢酸エチル、酢酸プロピル等の酢酸アルキル(C1~3)エステル、ジエチルエーテル、ジイソプロピルエーテル等のジアルキル(C1~3)エーテル、ジオキサン、テトラヒドロフラン等の環状エーテル、アセトン、メチルエチルケトン等のケトン、クロロホルム、塩化メチレン等のハロゲン溶媒、アセトニトリル、ベンゾニトリル等のニトリル溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の媒を使用することができ、中でも酢酸アルキル(C1~3)エステルが好適に使用される。
 環状イミノエーテル化合物を溶媒に混合して得られる環状イミノエーテル化合物溶液中の水分濃度は、得られる重合体の分子量を制御する観点から、好ましくは、600mg/kg以下、より好ましくは200mg以下、より更に好ましくは100mg/kg以下である。一方、操作の効率性の観点から、好ましくは10mg/kg以上、より好ましくは30mg/kg以上、より更に好ましくは50mg/kg以上、特に好ましくは70mg/kg以上である。
 環状イミノエーテル化合物溶液中の水分量が多い場合には、脱水乾燥処理をすることが好ましい。脱水乾燥処理は、減圧条件下、又は脱水剤を用いて行うことが好ましい。設備負荷を軽減する観点から、脱水剤を用いて脱水することがより好ましい。脱水剤としては、モレキュラーシーブ、アルミナ、塩化カルシウム、硫酸カルシウム等が挙げられ、これらの中でも、達成可能な水分濃度及び経済性の観点から、モレキュラーシーブが好ましい。
 脱水時間を短縮する観点から、脱水温度は、好ましくは50℃以下、より好ましくは40℃以下、更に好ましくは35℃以下で行う。操作の効率性の観点から、脱水温度を5℃以上とすることが好ましい。
 脱水剤は、環状イミノエーテル化合物溶液中に直接添加し撹拌後、脱水剤を除去してもよいが、操作性の観点から、脱水剤を充填したカラムに、上記環状イミノエーテル化合物溶液を通過させて脱水乾燥処理することが好ましい。また、環状イミノエーテル化合物溶液中の環状イミノエーテル化合物の濃度は、脱水時間を短縮する観点から、好ましくは10~80質量%、より好ましくは20~60質量%、更に好ましくは、25~55質量%である。
 環状イミノエーテル化合物の開環重合には、開始剤を用いることができる。開始剤としては、求電子反応性の強い化合物、例えば、ベンゼンスルホン酸アルキルエステル、p-トルエンスルホン酸アルキルエステル、トリフルオロメタンスルホン酸アルキルエステル、トリフルオロ酢酸アルキルエステル、硫酸ジアルキルエステル等の強酸のアルキルエステルを使用することができ、中でも硫酸ジアルキル、特に炭素数1~3のアルキル基を有する硫酸ジアルキルが好適に使用される。開始剤の使用量は、通常、環状イミノエーテル化合物2~100モルに対して、開始剤1モルである。
 重合温度は、好ましくは40~150℃、より好ましくは60~120℃、更に好ましくは70~110℃、より更に好ましくは75~100℃である。重合温度は、得られる重合体の分子量を制御する観点から、開始剤を添加した後に上記範囲にすることが好ましい。
 重合時間は、重合温度等の反応条件により一様ではないが、通常1~60時間であり、好ましくは2~50時間であり、より好ましくは3~30時間であり、更に好ましくは5~15時間である。
 前記一般式(I)で表される環状イミノエーテル化合物として、例えば、2-置換-2-オキサゾリンを用いれば、上記一般式(1)においてn=2のポリ(N-アシルエチレンイミン)が得られ、2-置換-ジヒドロ-2-オキサジンを用いれば、上記一般式(1)においてn=3のポリ(N-アシルプロピレンイミン)が得られる。
 開環重合によって得られる末端反応性ポリ(N-アシルアルキレンイミン)の数平均分子量は、好ましくは150~50000、より好ましくは500~10000、更に好ましくは800~5000、特に好ましくは1000~3000である。得られるオルガノポリシロキサン化合物のエタノールへの溶解性を向上させる観点から150以上が好ましく、製造の容易さの観点から50000以下が好ましい。
[工程(b)]
 工程(b)では、分子鎖の末端及び/又は側鎖にアミノ基を有する変性オルガノポリシロキサンを溶媒と混合して、変性オルガノポリシロキサン溶液を調製する。
 前記の分子鎖の末端及び/又は側鎖にアミノ基を有する変性オルガノポリシロキサンは、特に限定されないが、好ましい具体例としては、下記一般式(II)で表される変性オルガノポリシロキサンである。
Figure JPOXMLDOC01-appb-C000011
(式中、R2は、それぞれ独立に炭素数1~22のアルキル基又はフェニル基を示し、R6及びR7は、それぞれ独立に炭素数1~22のアルキル基又はフェニル基を表すか又は下式(vii)~(xi)のいずれかで表される置換基を表し、R8は、下式(vii)~(xi)のいずれかで表される置換基を表す。pは、2~4000の整数を表し、qは、2~150の整数を表す。)
Figure JPOXMLDOC01-appb-C000012
 前記一般式(II)において、R2、R6及びR7で表される炭素数1~22のアルキル基又はフェニル基は、前記一般式(2)におけるR2~R4で表される炭素数1~22のアルキル基又はフェニル基と同義であり、好ましい範囲も同様である。また、p及びqは、前記一般式(2)におけるp及びqと同義であり、好ましい範囲も同様である。
 上記式(vii)~(xi)のいずれかで表される置換基のうち、上記式(vii)又は(viii)で表される基が好ましい。
 前記変性オルガノポリシロキサンは任意の方法で製造することができる。また、市販品を使用することもできる。具体例としては、信越シリコーン(株)製KF-8015、KF-864、KF-8003、東レ・ダウコーニング(株)製BY16-898等が挙げられる(いずれも商品名)。
 前記工程(b)に用いられる溶媒としては、非プロトン性極性溶媒が好ましい。具体的には、酢酸エチル、酢酸プロピル等の酢酸アルキル(C1~3)エステル、ジエチルエーテル、ジイソプロピルエーテル等のジアルキル(C1~3)エーテル、ジオキサン、テトラヒドロフラン等の環状エーテル、アセトン、メチルエチルケトン等のケトン、クロロホルム、塩化メチレン等のハロゲン溶媒、アセトニトリル、ベンゾニトリル等のニトリル溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の溶媒を使用することができ、中でも酢酸アルキル(C1~3)エステルが好適に使用される。溶媒の分離や製造コストの観点から、前記工程(a)に用いられる溶媒と同じ溶媒を使用することが好ましい。
 溶液中の変性オルガノポリシロキサンの濃度は、脱水乾燥処理の効率化の観点から、好ましくは10~70質量%、より好ましくは20~60質量%、更に好ましくは30~50質量%に制御することが好ましい。
 本発明の製造方法で得られるオルガノポリシロキサンの感触の観点から、変性オルガノポリシロキサン溶液中の水分濃度は、好ましくは100mg/kg以下、より好ましくは90mg/kg以下、更に好ましくは60mg/kg以下である。一方、操作の効率性の観点から、好ましくは3mg/kg以上、より好ましくは5mg/kg以上、更に好ましくは10mg/kg以上、より更に好ましくは30mg/kg以上である。
 前記変性オルガノポリシロキサン溶液中の水分量が多い場合、脱水乾燥処理をすることが好ましく、前記工程(a)における環状イミノエーテル化合物溶液を脱水する方法と同様の方法で脱水することができる。具体的には、脱水乾燥処理は、設備負荷を軽減する観点から、脱水剤を用いて脱水することが好ましい。脱水剤としては、達成可能な水分濃度及び経済性の観点から、モレキュラーシーブが好ましい。脱水温度は、脱水時間を短縮する観点から40℃以下が好ましく、操作の効率性の観点から5℃以上が好ましい。脱水剤は変性オルガノポリシロキサン溶液中に直接添加し撹拌後、脱水剤を除去してもよいが、操作性の観点から、脱水剤を充填したカラムに、変性オルガノポリシロキサン溶液を通過させて脱水乾燥処理することが好ましい。
 一つの好ましい実施態様において、得られる重合体の分子量を制御する観点から、次の工程(c)の前に、前記末端反応性ポリ(N-アシルアルキレンイミン)溶液を冷却することが好ましい。末端反応性ポリ(N-アシルアルキレンイミン)溶液は、好ましくは70℃以下、より好ましくは10~65℃、更に好ましくは20℃~60℃、特に好ましくは25~40℃まで冷却されることが好ましい。
[工程(c)]
 工程(c)では、前記工程(a)で得られた末端反応性ポリ(N-アシルアルキレンイミン)溶液と前記工程(b)で得られた変性オルガノポリシロキサン溶液とを混合して、変性オルガノポリシロキサンが有する全アミノ基の65~95モル%を末端反応性ポリ(N-アシルアルキレンイミン)と反応させる。
 変性オルガノポリシロキサンが有する全アミノ基の65~95モル%を末端反応性ポリ(N-アシルアルキレンイミン)と反応させ、オルガノポリシロキサンセグメントの連結率を65~95%に制御することで、熱安定性に優れたオルガノポリシロキサン化合物を得ることができる。すなわち、脱溶媒処理等を高温条件で行っても分子量が低下することがなく、ベタつきの無い感触が良好であるオルガノポリシロキサン化合物を安定して製造することができる。
(連結反応)
 オルガノポリシロキサンセグメントの連結率は、オルガノポリシロキサン化合物の熱安定性及び副生成物の生成抑制の観点から、65~95%であり、好ましくは70~90%、より好ましくは72~88%である。
 変性オルガノポリシロキサンが有するアミノ基と連結する、末端反応性ポリ(N-アシルアルキレンイミン)の活性点は、開始剤1モルに対して1モル生成する。従って、例えば、連結率が65~95%のオルガノポリシロキサン化合物は、変性オルガノポリシロキサンが有するアミノ基に対して、開始剤を65~95モル%添加することで得ることができる。なお、開始剤は、上記工程(a)で用いた開始剤と同様のものを使用することができる。
 末端反応性ポリ(N-アシルアルキレンイミン)溶液と変性オルガノポリシロキサン溶液との反応温度は、好ましくは40~150℃、より好ましくは60~120℃、更に好ましくは70~110℃、より更に好ましくは75~100℃である。反応温度は、得られる生成物の分子量を制御する観点から、末端反応性ポリ(N-アシルアルキレンイミン)と変性オルガノポリシロキサン溶液とを混合した後に上記温度範囲にすることが好ましい。
 反応時間は重合温度等の反応条件により一様ではないが、通常1~60時間であり、好ましくは3~30時間であり、より好ましくは5~15時間である。
 末端反応性ポリ(N-アシルアルキレンイミン)溶液と変性オルガノポリシロキサン溶液とを混合し反応させた後の反応混合液中の水分濃度は、末端反応性ポリ(N-アシルアルキレンイミン)溶液及び変性オルガノポリシロキサン溶液中の水分濃度を制御する事により、好ましくは150mg/kg以下、より好ましくは120mg/kg以下、更に好ましくは100mg/kg以下、より更に好ましくは80mg/kg以下に制御される。水分濃度の下限は0mg/kg以上であってよいが、前記(a)及び(b)工程における操作の効率性の観点から、5mg/kg以上が好ましく、10mg/kg以上がより好ましく、30mg/kg以上が特に好ましい。
[工程(d)]
 工程(d)では、前記工程(c)の終了後、100~200℃の条件下で溶媒を除去する。
 オルガノポリシロキサン化合物をパーソナルケアの分野で使用する場合には、溶剤臭が好まれないため極力残存する溶媒を除去することが望ましい。反応液からの溶媒の除去は、好ましくは120~170℃、より好ましくは140~160℃の条件下で行うことができる。また、溶媒を効率よく除去する観点から、減圧下で行うことが好ましい。
 残存溶媒濃度は、残存溶媒臭を取り除く観点からは3000mg/kg以下であることが好ましく、さらに好ましくは2000mg/kg以下、特に好ましくは1000mg/kg以下である。
 一つの好ましい実施態様において、生産効率の観点から、特開平10-279690号公報に記載の二軸スクリューを有する脱溶媒機を用いて溶媒除去をすることができる。この脱溶媒機は、槽底より二軸のスクリュー上端までの空間を有効容積として有し、この有効容積の上部には、原料供給口から乾燥物排出口にかけて一様な空間が蒸発室として存在し、蒸発室の天井部には、減圧ラインにつながる脱気孔が設けられる。
 溶媒除去は、得られる変性オルガノポリシロキサンの着色を抑制する観点から、窒素雰囲気下で行うことが好ましい。
(分子量の測定)
 以下の実施例及び比較例において、ポリ(N-プロピオニルエチレンイミン)の数平均分子量、重量平均分子量及び最終生成物の重量平均分子量は、下記の条件でゲルパーミエーションクロマトグラフィー(GPC)より求めた。
測定条件
カラム:K-804L(商品名、昭和電工(株)製)を直列に2つ連結したものを用いた。
溶離液:1mmol/L ファーミンDM20(商品名、花王(株)製)/クロロホルム
流量:1.0mL/min
カラム温度:40℃
検出器:示差屈折率計
サンプル:5mg/mL,100μL
ポリスチレン換算
 実施例においてオルガノポリシロキサンセグメントの分子量は、側鎖一級アミノプロピル変性オルガノポリシロキサンの重量平均分子量と略同一であり、側鎖一級アミノプロピル変性オルガノポリシロキサンの重量平均分子量は、下記の方法で側鎖一級アミノプロピル変性オルガノポリシロキサンのアセチル化を行なった後、前記(N-プロピオニルエチレンイミン)の重量平均分子量と同一の測定条件でGPCにより求めた。
<側鎖一級アミノプロピル変性オルガノポリシロキサンのアセチル化>
 冷却管を備えた丸底フラスコに、クロロホルム90gと側鎖一級アミノプロピル変性ポリジメチルシロキサン10gとを加え、均一に溶解した。次いで、無水酢酸を側鎖一級アミノプロピル変性ポリジメチルシロキサンのアミノ基に対して当量加え、撹拌しながら還流下8時間アミノ基をアセチル化した。放冷後、減圧下溶媒を除去し、分子量測定用のサンプルとした。
(水分濃度の測定)
 溶液中の水分濃度は、下記装置を用いて測定した。
装置:カールフィッシャー水分測定装置(商品名:CA-06、三菱化学(株)製)
陰極側試薬:アクアミクロンCK(商品名、三菱化学(株)製)
陽極側試薬:アクアミクロンAU(商品名、三菱化学(株)製):アクアミクロンCM(商品名、三菱化学(株)製)=20:80(容量%)
(残存溶媒の測定)
 ガスクロマトグラフィーを用いて測定した。測定条件は以下の通りである。
カラム:Supelco社製、商品名:PTA-5 30m×0.25mm×0.5μm
検出:FID
昇温:40℃5min→8℃/min→200℃0min、スプリットレス
インジェクション側温度:200℃
注入量:1μl
検出側温度:200℃
サンプル調製:内部標準のジメチルアセトアミド(和光純薬工業(株)製)約0.5gとサンプル約0.5gを精秤し、エタノールで希釈して約10mlとした。
(未反応アミン量の測定)
 試料約3gを精量し、メタノール/クロロホルム=50/50(容量/容量)溶媒50mLに溶解した。この溶液を、電位差滴定装置を用い0.1mol/L過塩素酸酢酸標準溶液で滴定した。同時に、並行して空試験を行った。得られた値から、下記の計算式によりアミン価を計算した。
 アミン価(モル/g)=(A-B)×f/(試料量(g)×10000)
 A:試料の滴定に要した0.1mol/L過塩素酸酢酸標準溶液の使用量(mL)
 B:空試験の滴定に要した0.1mol/L過塩素酸酢酸標準溶液の使用量(mL)
 f:0.1mol/L過塩素酸酢酸標準溶液のファクタ-
実施例1
 2-エチル-2-オキサゾリン60.8g(0.61モル)と酢酸エチル143.3gとを混合し、混合液をモレキュラーシーブ(商品名:ゼオラムA-4、東ソー(株)製)10.0gで15時間脱水を行い、水分濃度を88mg/kg以下にした。
 側鎖一級アミノプロピル変性ポリジメチルシロキサン(商品名:KF-8003、信越シリコーン(株)製、重量平均分子量50000、アミン当量2000)150.0g(含有アミノ基:0.075モル)と酢酸エチル304.2gとを混合し、混合液をモレキュラーシーブ23gで15時間脱水を行い、水分濃度を54mg/kg以下にした。
 上記の脱水2-エチル-2-オキサゾリンの酢酸エチル溶液に硫酸ジエチル9.8g(0.064モル)を加え、窒素雰囲気下8時間、80℃で加熱還流し、末端反応性ポリ(N-プロピオニルエチレンイミン)を合成した。GPCにより測定した数平均分子量は1100、重量平均分子量は1300であった。
 この末端反応性ポリ(N-プロピオニルエチレンイミン)溶液を30℃まで冷却後、上記の脱水した側鎖一級アミノプロピル変性ポリジメチルシロキサン溶液を一括して加え、10時間80℃で加熱還流し、その後冷却し、N-プロピオニルエチレンイミン-ジメチルシロキサン共重合体の酢酸エチル溶液658gを得た。一部を室温下で減圧濃縮しN-プロピオニルエチレンイミン-ジメチルシロキサン共重合体を淡黄色固体として得た。オルガノポリシロキサンセグメントの質量比は0.69、重量平均分子量は116000であった。ここで、得られたオルガノポリシロキサン化合物について中和滴定を行った結果、原料として用いた側鎖一級アミノプロピル変性ポリジメチルシロキサンのアミノ基中、15モル%のアミノ基が残存していることがわかった(連結率:85%)。
 上記で得られたN-プロピオニルエチレンイミン-ジメチルシロキサン共重合体の酢酸エチル溶液50gを平型ステンレスバットに入れ、150℃減圧下(10kPa)で1時間加熱乾燥し溶媒除去を行った。得られた固体の重量平均分子量は119000であった。残存溶媒は、610mg/kg(対固体換算)であった。
実施例2
 2-エチル-2-オキサゾリン41.0g(0.41モル)と酢酸エチル95.54gとを混合し、混合液をモレキュラーシーブ(商品名:ゼオラムA-4、東ソー(株)製)7.5gで15時間脱水を行い、水分濃度を93mg/kg以下にした。
 側鎖一級アミノプロピル変性ポリジメチルシロキサン(商品名:KF-8003、信越シリコーン(株)製、重量平均分子量50000、アミン当量2000)100.0g(含有アミノ基:0.050モル)と酢酸エチル203.0gとを混合し、混合液をモレキュラーシーブ15gで15時間脱水を行い、水分濃度を82mg/kg以下にした。
 上記の脱水2-エチル-2-オキサゾリンの酢酸エチル溶液に硫酸ジエチル6.0g(0.039モル)を加え、窒素雰囲気下8時間、80℃で加熱還流し、末端反応性ポリ(N-プロピオニルエチレンイミン)を合成した。GPCにより測定した数平均分子量は1300、重量平均分子量は1500であった。
 この末端反応性ポリ(N-プロピオニルエチレンイミン)溶液を30℃まで冷却後、上記の脱水した側鎖一級アミノプロピル変性ポリジメチルシロキサン溶液を一括して加え、10時間80℃で加熱還流し、その後冷却し、N-プロピオニルエチレンイミン-ジメチルシロキサン共重合体の酢酸エチル溶液440gを得た。一部を室温下で減圧濃縮しN-プロピオニルエチレンイミン-ジメチルシロキサン共重合体を淡黄色固体として得た。オルガノポリシロキサンセグメントの質量比は0.68、重量平均分子量は65000であった。ここで、得られたオルガノポリシロキサン化合物について中和滴定を行った結果、原料として用いた側鎖一級アミノプロピル変性ポリジメチルシロキサンのアミノ基中、26モル%のアミノ基が残存していることがわかった(連結率:74%)。
 上記で得られたN-プロピオニルエチレンイミン-ジメチルシロキサン共重合体の酢酸エチル溶液50gを平型ステンレスバットに入れ、150℃減圧下(10kPa)で1時間加熱乾燥し溶媒除去を行った。得られた固体の重量平均分子量は64000であった。残存溶媒は、550mg/kg(対固体換算)であった。
比較例1
 2-エチル-2-オキサゾリン59.0g(0.60モル)と酢酸エチル143.3gとを混合し、混合液をモレキュラーシーブ(商品名:ゼオラムA-4、東ソー(株)製)21.0gで15時間脱水を行い、水分濃度を92mg/kg以下にした。
 側鎖一級アミノプロピル変性ポリジメチルシロキサン(商品名:KF-8003、信越シリコーン(株)製、重量平均分子量50000、アミン当量2000)150.0g(含有アミノ基:0.075モル)と酢酸エチル304.5gとを混合し、混合液をモレキュラーシーブ23gで15時間脱水を行い、水分濃度を56mg/kg以下にした。
 上記の脱水2-エチル-2-オキサゾリンの酢酸エチル溶液に硫酸ジエチル11.56g(0.075モル)を加え、窒素雰囲気下8時間、80℃で加熱還流し、末端反応性ポリ(N-プロピオニルエチレンイミン)を合成した。GPCにより測定した数平均分子量は900、重量平均分子量は1100であった。
 この末端反応性ポリ(N-プロピオニルエチレンイミン)溶液を30℃まで冷却後、上記の脱水した側鎖一級アミノプロピル変性ポリジメチルシロキサン溶液を一括して加え、10時間80℃で加熱還流し、その後冷却し、N-プロピオニルエチレンイミン-ジメチルシロキサン共重合体の酢酸エチル溶液660gを得た。一部を室温下で減圧濃縮しN-プロピオニルエチレンイミン-ジメチルシロキサン共重合体を淡黄色固体として得た。オルガノポリシロキサンセグメントの質量比は0.67、重量平均分子量は85000であった。ここで、得られたオルガノポリシロキサン化合物について中和滴定を行った結果、アミノ基は残存していないことがわかった(連結率:100%)。
 上記で得られたN-プロピオニルエチレンイミン-ジメチルシロキサン共重合体の酢酸エチル溶液50gを平型ステンレスバットに入れ、150℃減圧下(10kPa)で1時間加熱乾燥し溶媒除去を行った。得られた固体の重量平均分子量は66000であった。残存溶媒は、500mg/kg(対固体換算)であった。
比較例2
 2-エチル-2-オキサゾリン56.5g(0.57モル)と酢酸エチル124.4gとを混合し、混合液をモレキュラーシーブ(商品名:ゼオラムA-4、東ソー(株)製)9.0gで15時間脱水を行い、水分濃度を85mg/kg以下にした。
 側鎖一級アミノプロピル変性ポリジメチルシロキサン(商品名:KF-8003、信越シリコーン(株)製、重量平均分子量50000、アミン当量2000)150.0g(含有アミノ基:0.075モル)と酢酸エチル304.5gとを混合し、混合液をモレキュラーシーブ23gで15時間脱水を行い、水分濃度を46mg/kg以下にした。
 上記の脱水2-エチル-2-オキサゾリンの酢酸エチル溶液に硫酸ジエチル4.72g(0.031モル)を加え、窒素雰囲気下8時間、80℃で加熱還流し、末端反応性ポリ(N-プロピオニルエチレンイミン)を合成した。GPCにより測定した数平均分子量は2000、重量平均分子量は2400であった。
 この末端反応性ポリ(N-プロピオニルエチレンイミン)溶液を30℃まで冷却後、上記の脱水した側鎖一級アミノプロピル変性ポリジメチルシロキサン溶液を一括して加え、10時間80℃で加熱還流し、その後冷却し、N-プロピオニルエチレンイミン-ジメチルシロキサン共重合体の酢酸エチル溶液637gを得た。一部を室温下で減圧濃縮しN-プロピオニルエチレンイミン-ジメチルシロキサン共重合体を淡黄色固体として得た。このものは、酢酸エチル、クロロホルム等の各種溶媒に不溶であった。(連結率の設定値:40%)。
 上記で得られたN-プロピオニルエチレンイミン-ジメチルシロキサン共重合体の酢酸エチル溶液50gを平型ステンレスバットに入れ、150℃減圧下(10kPa)で1時間加熱乾燥し溶媒除去を行った。このものは、エタノール、酢酸エチル、クロロホルム等の各種溶媒に不溶であった。
Figure JPOXMLDOC01-appb-T000013
 表1の結果から明らかなように、連結率が100%である比較例1のオルガノポリシロキサン化合物は、溶媒除去のための加熱処理により分子量が低下した。分子量の低下は、ベタついて感触が悪化することにつながる。これに対して、連結率を85%又は74%に制御した実施例1及び2のオルガノポリシロキサン化合物は、加熱処理しても分子量が低下しなかった。このことから、実施例1及び2ではベタつきがなく感触が良好なオルガノポリシロキサン化合物を安定して製造できたことがわかる。
 また、実施例1及び比較例1の各サンプルについて、加熱乾燥の前後におけるGPC分析を行った。結果を図1~4に示す。図1は、実施例1における加熱乾燥前のサンプルのGPCチャート図であり、図2は、実施例1における加熱乾燥後のサンプルのGPCチャート図である。また、図3は、比較例1における加熱乾燥前のサンプルのGPCチャート図であり、図4は、比較例1における加熱乾燥後のサンプルのGPCチャート図である。
 図1~4の結果からも、比較例1では加熱処理により分子量が大きく変動したのに対し、実施例1では加熱処理しても分子量が低下しなかったことがわかる。
 本発明のようなオルガノポリシロキサン化合物は、一般に、不適切な反応を避ける観点から、アミノ基を極力低減させること、つまり可能な限り連結率を上げることが好ましいと考えられる。しかし、本発明では、このような状況下において、あえて連結率を下げても、予想に反し加熱処理後も分子量が低下せず、ベタつきがなく感触が良好なオルガノポリシロキサン化合物を安定して製造できる。
 本発明の方法により得られるオルガノポリシロキサン化合物は、ベタつきがなく感触が良好であり、化粧品用基剤として好適に用いられる。

Claims (5)

  1.  オルガノポリシロキサンのセグメントの末端及び/又は側鎖に、下記一般式(1)で表される繰返し単位からなるポリ(N-アシルアルキレンイミン)のセグメントが結合してなるオルガノポリシロキサン化合物の製造方法であって、
    (a)下記一般式(I)で表される環状イミノエーテル化合物を溶媒中で開環重合して、末端反応性ポリ(N-アシルアルキレンイミン)溶液を調製する工程、
    (b)分子鎖の末端及び/又は側鎖にアミノ基を有する変性オルガノポリシロキサンを溶媒と混合して、変性オルガノポリシロキサン溶液を調製する工程、
    (c)前記工程(a)で得られた末端反応性ポリ(N-アシルアルキレンイミン)溶液と前記工程(b)で得られた変性オルガノポリシロキサン溶液とを混合して、変性オルガノポリシロキサンが有する全アミノ基の65~95モル%を末端反応性ポリ(N-アシルアルキレンイミン)と反応させる工程、及び
    (d)前記工程(c)の終了後、100~200℃の条件下で溶媒を除去する工程
    を含む、オルガノポリシロキサン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (前記一般式(1)中、R1は、水素原子、炭素数1~22のアルキル基、アラルキル基、又はアリール基を表し、nは2又は3を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (前記一般式(I)中、R1及びnは、前記一般式(1)におけるR1及びnと同義である。)
  2.  前記変性オルガノポリシロキサンが下記一般式(II)で表される化合物である、請求項1に記載のオルガノポリシロキサン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R2は、それぞれ独立に炭素数1~22のアルキル基又はフェニル基を示し、R6及びR7は、それぞれ独立に炭素数1~22のアルキル基又はフェニル基を表すか又は下式(vii)~(xi)のいずれかで表される置換基を表し、R8は、下式(vii)~(xi)のいずれかで表される置換基を表す。pは、2~4000の整数を表し、qは、2~150の整数を表す。)
    Figure JPOXMLDOC01-appb-C000004
  3.  前記工程(c)において、変性オルガノポリシロキサンが有する全アミノ基の70~90モル%を末端反応性ポリ(N-アシルアルキレンイミン)と反応させる、請求項1又は2に記載のオルガノポリシロキサン化合物の製造方法。
  4.  前記工程(d)において、減圧下で溶媒を除去する、請求項1~3のいずれかに記載のオルガノポリシロキサン化合物の製造方法。
  5.  工程(c)の前に、工程(a)で得られた末端反応性ポリ(N-アシルアルキレンイミン)溶液を70℃以下に冷却する、請求項1~4のいずれかに記載のオルガノポリシロキサン化合物の製造方法。
PCT/JP2010/072500 2009-12-16 2010-12-14 オルガノポリシロキサン化合物の製造方法 WO2011074584A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800571493A CN102656211A (zh) 2009-12-16 2010-12-14 有机聚硅氧烷化合物的制造方法
EP10837610.4A EP2514783B1 (en) 2009-12-16 2010-12-14 Process for production of organopolysiloxane compound
US13/516,081 US8716411B2 (en) 2009-12-16 2010-12-14 Process for production of organopolysiloxane compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009285638 2009-12-16
JP2009-285638 2009-12-16

Publications (1)

Publication Number Publication Date
WO2011074584A1 true WO2011074584A1 (ja) 2011-06-23

Family

ID=44167336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072500 WO2011074584A1 (ja) 2009-12-16 2010-12-14 オルガノポリシロキサン化合物の製造方法

Country Status (5)

Country Link
US (1) US8716411B2 (ja)
EP (1) EP2514783B1 (ja)
JP (1) JP2011144366A (ja)
CN (1) CN102656211A (ja)
WO (1) WO2011074584A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110300186A1 (en) 2010-04-14 2011-12-08 Battelle Memorial Institute Functionalized Nano- and Micro-materials for Medical Therapies
JP5474916B2 (ja) 2011-11-21 2014-04-16 シャープ株式会社 情報処理装置および複合機
FR3050207B1 (fr) 2016-04-15 2018-04-06 Ecole Superieure De Physique Et De Chimie Industrielles De La Ville De Paris Composition de polymeres comprenant des silicones reticules a points de reticulation echangeables, procede de preparation et utilisations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306163A (ja) * 1997-03-06 1998-11-17 Kao Corp オルガノポリシロキサン
WO2009014237A2 (en) * 2007-07-20 2009-01-29 Kao Corporation Organopolysiloxane
JP2009149597A (ja) * 2007-11-27 2009-07-09 Kao Corp 毛髪化粧料
JP2009256367A (ja) * 2009-02-27 2009-11-05 Kao Corp エアゾール整髪剤

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68908016T2 (de) * 1988-05-31 1994-03-03 Mitsubishi Chem Ind Verfahren zur Herstellung eines Phenolats und dessen Verwendung in einem Verfahren zur Herstellung eines aromatischen Polyether-Ketons.
JP2716831B2 (ja) 1989-01-11 1998-02-18 花王株式会社 新規なオルガノポリシロキサン及びその製造方法
JP2716851B2 (ja) 1990-07-26 1998-02-18 花王株式会社 新規なオルガノポリシロキサンの製造方法
JPH0525025A (ja) * 1991-07-22 1993-02-02 Kao Corp 毛髪化粧料
TW504387B (en) * 1995-09-06 2002-10-01 Kao Corp Emulsified, water-in-oil type composition and skin cosmetic preparation
US6027718A (en) 1997-03-06 2000-02-22 Kao Corporation Organopolysiloxanes
TW513309B (en) * 1998-07-01 2002-12-11 Kao Corp Powder-based solid cosmetic composition and preparation process thereof
DE602004004561T2 (de) * 2003-03-18 2007-11-15 Tosoh Corp. Katalysatorzusammensetzung für die Herstellung von Polyurethanharz und Verfahren zu ihrer Herstellung
JP4469688B2 (ja) * 2004-08-31 2010-05-26 花王株式会社 毛髪化粧料
JP5478005B2 (ja) 2007-07-20 2014-04-23 花王株式会社 オルガノポリシロキサン
US20120296052A1 (en) * 2009-12-16 2012-11-22 Kao Corporation Process for production of organopolysiloxane compound
JP5791335B2 (ja) * 2010-04-07 2015-10-07 花王株式会社 オルガノポリシロキサン化合物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306163A (ja) * 1997-03-06 1998-11-17 Kao Corp オルガノポリシロキサン
WO2009014237A2 (en) * 2007-07-20 2009-01-29 Kao Corporation Organopolysiloxane
JP2009149597A (ja) * 2007-11-27 2009-07-09 Kao Corp 毛髪化粧料
JP2009256367A (ja) * 2009-02-27 2009-11-05 Kao Corp エアゾール整髪剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2514783A4 *

Also Published As

Publication number Publication date
EP2514783B1 (en) 2016-05-04
US20120302705A1 (en) 2012-11-29
CN102656211A (zh) 2012-09-05
US8716411B2 (en) 2014-05-06
JP2011144366A (ja) 2011-07-28
EP2514783A4 (en) 2015-04-29
EP2514783A1 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5406692B2 (ja) オルガノポリシロキサン化合物の製造方法
JP5791335B2 (ja) オルガノポリシロキサン化合物の製造方法
EP2502951A1 (en) Organopolysiloxane
CN102869691B (zh) 改性聚合物的制造方法
Zheng et al. Thermoplastic silicone elastomers based on Gemini ionic crosslinks
SK284953B6 (sk) Blokové kopolyméry a spôsob ich prípravy
WO2011074584A1 (ja) オルガノポリシロキサン化合物の製造方法
CN105524284B (zh) 一种聚硅氧烷-聚乙烯接枝共聚物及其制备方法和应用
JP5663289B2 (ja) オルガノポリシロキサン化合物の製造方法
US7973120B2 (en) Enamine oils and method for the production thereof
JP5432037B2 (ja) オルガノポリシロキサン化合物の製造方法
JP5374433B2 (ja) オルガノポリシロキサン化合物の製造方法
JP5406780B2 (ja) オルガノポリシロキサン化合物の製造方法
CN104211850B (zh) 一种含可逆氢键的梳型聚合物及其制备方法
JP5406781B2 (ja) オルガノポリシロキサン化合物の製造方法
KR101672794B1 (ko) 신규한 실리콘 화합물 및 그 제조방법, 및 그를 포함하는 계면활성제 및 화장품
JPH0532784A (ja) シロキサン化合物及びその製造方法
Naghash et al. Crosslinked methyl methacrylate/ethylene glycol dimethacrylate polymer compounds with a macroazoinitiator
JPH03247657A (ja) 硬化性組成物
JP4674387B2 (ja) メルカプトメチルフェニル基含有ジオルガノポリシロキサンおよびその製造方法
JP2004051986A (ja) ペルオキシド官能性オルガノポリシロキサンおよびその製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057149.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13516081

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010837610

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE