WO2011074546A1 - 液晶配向処理剤及びそれを用いた液晶表示素子 - Google Patents

液晶配向処理剤及びそれを用いた液晶表示素子 Download PDF

Info

Publication number
WO2011074546A1
WO2011074546A1 PCT/JP2010/072400 JP2010072400W WO2011074546A1 WO 2011074546 A1 WO2011074546 A1 WO 2011074546A1 JP 2010072400 W JP2010072400 W JP 2010072400W WO 2011074546 A1 WO2011074546 A1 WO 2011074546A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
aligning agent
diamine
crystal aligning
Prior art date
Application number
PCT/JP2010/072400
Other languages
English (en)
French (fr)
Inventor
尚宏 野田
拓郎 小田
皇晶 筒井
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201080063462.8A priority Critical patent/CN102754020B/zh
Priority to KR1020127015035A priority patent/KR101742838B1/ko
Priority to JP2011546117A priority patent/JP5751171B2/ja
Publication of WO2011074546A1 publication Critical patent/WO2011074546A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/53Physical properties liquid-crystalline
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent, a liquid crystal alignment film, and a liquid crystal display element used for a liquid crystal display element.
  • liquid crystal alignment film of a liquid crystal display element As a liquid crystal alignment film of a liquid crystal display element, a liquid crystal alignment treatment agent mainly composed of a polyimide precursor such as polyamic acid or a solution of soluble polyimide is applied and baked, followed by rubbing treatment, so-called polyimide system
  • the liquid crystal alignment film is mainly used.
  • the liquid crystal alignment film not only controls the alignment state of the liquid crystal but also affects the characteristics of the liquid crystal display element. In particular, characteristics such as film peeling and scraping during rubbing treatment, and suppression of a decrease in contrast of the liquid crystal display element and reduction of an afterimage phenomenon have become important with the increase in definition of the liquid crystal display element.
  • a liquid crystal aligning agent containing a tertiary amine with a specific structure in addition to polyamic acid or imide group-containing polyamic acid is used as a short time until the afterimage generated by direct current voltage disappears (For example, refer to Patent Document 1), and those using a liquid crystal alignment treatment agent containing a soluble polyimide using a specific diamine having a pyridine skeleton as a raw material (for example, refer to Patent Document 2).
  • the present invention provides a liquid crystal alignment film that is resistant to film peeling and scraping during rubbing, has a high voltage holding ratio, and does not easily accumulate initial charge even when a DC voltage is applied to the liquid crystal cell. It aims at providing the liquid-crystal aligning agent which can be obtained.
  • the present inventors have found that a polyamic acid using a specific diamine compound containing a novel compound as a diamine component and / or a liquid crystal aligning agent containing polyimide obtained by imidizing the polyamic acid is obtained.
  • the inventors have found that the present invention is extremely effective for achieving the above object, and have completed the present invention. That is, the present invention has the following gist.
  • a group comprising a polyamic acid obtained by reacting a diamine component containing a diamine compound represented by the following formula [1] with a tetracarboxylic dianhydride component, and a polyimide obtained by imidizing the polyamic acid.
  • a liquid crystal aligning agent comprising at least one polymer selected from the group consisting of:
  • Ar represents a homocyclic aromatic compound or a nitrogen atom-containing heterocyclic aromatic compound, and a hydrogen atom on a carbon atom or a nitrogen atom constituting the ring may be substituted.
  • Ar in the formula [1] is a six-membered homocyclic aromatic compound or a six-membered nitrogen atom-containing heterocyclic aromatic compound.
  • the liquid-crystal aligning agent as described in said (1) whose Ar of Formula [1] is a 5-membered nitrogen atom containing heterocyclic aromatic compound.
  • a liquid crystal display device comprising the liquid crystal alignment film according to (10).
  • Ar represents a homocyclic aromatic compound or a nitrogen atom-containing heterocyclic aromatic compound, and the carbon atom constituting the ring or the hydrogen atom on the nitrogen atom may be substituted with an organic group.
  • Ar in the formula [1] is a six-membered homocyclic aromatic compound or a six-membered nitrogen atom-containing heterocyclic aromatic compound.
  • Ar in the formula [1] is a five-membered nitrogen atom-containing heterocyclic aromatic compound.
  • the liquid crystal alignment treatment agent of the present invention is resistant to film peeling and scraping during rubbing, has a high voltage holding ratio, and can obtain a liquid crystal alignment film in which initial charge accumulation hardly occurs even when a DC voltage is applied to the liquid crystal cell. By using this liquid crystal alignment film, a liquid crystal panel with good characteristics can be produced.
  • the novel diamine compound useful as a raw material of the polyamic acid which is a liquid-crystal aligning agent, and a polyimide is provided.
  • the liquid-crystal aligning agent of this invention is a polyamic acid obtained by making the diamine component and tetracarboxylic dianhydride component containing the specific diamine compound represented by following formula [1] react, and this polyamic acid. It is a liquid crystal aligning agent containing at least one polymer of imidized polyimide.
  • This specific diamine compound includes a novel compound not yet described in the literature, and by using this specific diamine compound, film peeling and scraping during rubbing are reduced even in the rubbing treatment required for liquid crystal alignment treatment.
  • the obtained liquid crystal alignment film has a high voltage holding ratio, and even when a DC voltage is applied to the liquid crystal cell, it is possible to prevent initial charge accumulation from occurring.
  • Ar is a homocyclic aromatic compound or a nitrogen atom-containing heterocyclic aromatic compound, and since this Ar is a site involved in charge transfer, it has an electrically active structure. Among them, a nitrogen atom-containing heterocyclic aromatic compound is preferable. Ar is not particularly limited as long as it is an allocyclic aromatic compound or a nitrogen atom-containing heterocyclic aromatic compound, but if a bulky structure or a ring having a large molecular weight is introduced, liquid crystal alignment may be disturbed. A low molecular weight is desirable.
  • Ar constitutes a monovalent group
  • Ar since it constitutes a monovalent group, in this specification, as described above, for convenience, it is described as an allocyclic aromatic compound, a nitrogen atom-containing heterocyclic aromatic compound, or the like. Strictly speaking, since it constitutes a monovalent group, in the case of an allocyclic aromatic compound, it is a residue obtained by removing one hydrogen atom from the allocyclic aromatic compound, and also contains a nitrogen atom In the case of a heterocyclic aromatic compound, it means a residue obtained by removing one hydrogen atom of a nitrogen atom-containing heterocyclic aromatic compound.
  • Ar is benzene, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazole, oxadiazole, thiazole, thiadiazole, pyrrole, imidazole, pyrazole, or triazole, and one hydrogen atom of these compounds is removed. Meaning each residue.
  • Ar in the above formula [1] is not particularly limited in the form of the ring of the homocyclic aromatic compound or the nitrogen atom-containing heterocyclic aromatic compound, and good characteristics can be obtained with either a five-membered ring or a six-membered ring. it can. It is known that a 5-membered homocyclic aromatic compound or a nitrogen atom-containing heterocyclic aromatic compound has a higher reactivity of the ring itself compared to a 6-membered ring. Therefore, the ring reacts in the baking process at a high temperature performed at the time of forming the liquid crystal alignment film to cause crosslinking, which is preferable from the viewpoint of rubbing resistance.
  • Ar in the formula [1] may be connected to the same ring such as biphenylene or bipyridine, or different types of rings may be connected to each other like phenylpyridine or phenylthiophene. Further, it may have a condensed ring structure such as quinoline or benzimidazole.
  • homocyclic aromatic compounds include cyclopentadiene, benzene, azulene, naphthalene, anthracene, phenanthrene, pyrene, naphthacene, benzopyrene, perylene, pentacene, phenalene, indene, fluorene, biphenylene, and the like.
  • nitrogen atom-containing heterocyclic aromatic compound examples include pyrrole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, tetrazine, imidazole, pyrazole, oxazole, isoxazole, oxadiazole, thiazole, isothiazole, and thiadiazole.
  • Ar examples include cyclopentadiene, benzene, azulene, naphthalene, indene, fluorene, biphenylene, pyrrole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, tetrazine, imidazole, pyrazole, oxazole, isoxazole, oxadiazole, thiazole , Isothiazole, thiadiazole, triazole, tetrazole, indole, indazole, benzimidazole, benzoxazole, benzoisoxazole, benzothiazole, benzisothiazole, quinoline, isoquinoline, thioline, phthalazine, quinazoline, quinoxaline, naphthyridine, pteridine, purine, Coumarin, isocoumarin, carbazole, thienopyridine, furo
  • benzene pyridine, pyridazine, pyrimidine, pyrazine, triazine pyrrole, oxazole, oxadiazole, thiazole, thiadiazole, imidazole, pyrazole, or triazole.
  • the hydrogen atom on the carbon atom or the nitrogen atom which comprises the ring in said homocyclic aromatic compound or nitrogen atom containing heterocyclic aromatic compound may be substituted.
  • the type and number of substituents are not particularly limited, but electron-donating substituents having a relatively low molecular weight such as methyl, ethyl, alkoxyl, methoxy, ethoxy, amino, and dimethylamino groups, and carboxyl groups.
  • an electron-withdrawing substituent having a relatively small molecular weight such as a nitro group or a cyano group is preferable because it activates electron transfer.
  • the position of the substituent with the homocyclic aromatic compound or heterocyclic aromatic compound is not particularly limited, but in the case of a nitrogen-containing heterocyclic aromatic compound, the position of the substituent is preferably not adjacent to the nitrogen atom.
  • the position of the substituent is preferably not adjacent to the nitrogen atom.
  • it is unsubstituted or substituted with a relatively small substituent such as a methyl group or an ethyl group.
  • An aromatic compound or a nitrogen atom-containing heterocyclic aromatic compound is preferred.
  • the position of each substituent on the benzene ring is not particularly limited. From the viewpoint of the orientation of the liquid crystal when the liquid crystal alignment film is used, the positional relationship between the two amino groups is preferably meta or para, and from the viewpoint of increasing the solvent solubility of polyamic acid or polyimide, meta is more preferable. . In the case where the positional relationship between the two amino groups is meta, that is, in the case of a 1,3-diaminobenzene structure, the position of the methylene ester is preferably 4 or 5, and in particular, the effect of increasing the nucleophilicity of the amino group The position 5 is particularly preferred because it can be easily synthesized.
  • Preferable specific examples of the diamine represented by the general formula [1] include compounds of the following formula [2], formula [4], formula [5] or formula [6].
  • Ar is preferably benzene, pyridine, pyridazine, pyrimidine, pyrazine, triazine pyrrole, oxazole, oxadiazole, thiazole, thiadiazole, imidazole, pyrazole, or triazole.
  • the method for synthesizing the diamine represented by the general formula [1] is not particularly limited.
  • a dinitro compound represented by the following general formula [7] is synthesized, and the nitro group is reduced by a usual method. And can be synthesized by a method of converting to an amino group.
  • the dinitro compound represented by the general formula [7] can be synthesized by esterification of the corresponding dinitrobenzyl alcohol as shown below. That is, it is synthesized by reacting dinitrobenzyl alcohol with carboxylic acid chloride or acid dianhydride in the presence of a base such as pyridine or triethylamine.
  • Ar corresponds to Ar in the target diamine of the general formula [1].
  • dinitrobenzyl alcohol include 2,4-dinitrobenzyl alcohol, 3,5-dinitrobenzyl alcohol, 2,5-dinitrobenzyl alcohol, and the like.
  • the method for obtaining the diamine represented by the general formula [1] by reducing the dinitro compound represented by the general formula [7] is not particularly limited, and palladium-carbon, platinum oxide, Raney nickel, platinum black,
  • the reaction is carried out by reaction with hydrogen gas, hydrazine, hydrogen chloride, etc. in a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane, alcohol, using rhodium-alumina, platinum carbon sulfide or the like as a catalyst.
  • ⁇ Diamine component> The diamine represented by the above formula [1] can be reacted with tetracarboxylic dianhydride to obtain a polyamic acid.
  • the diamine component used when synthesizing the polyamic acid may be only the diamine represented by the formula [1], or a combination of one or more selected from other diamines.
  • the solubility of the resulting polyamic acid and the polyimide imidized with this polyamic acid in an organic solvent can be increased.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent containing this polyamic acid or polyimide has excellent rubbing resistance, high voltage holding ratio, and initial charge even when a DC voltage is applied to the liquid crystal cell. Accumulation is unlikely to occur.
  • the diamine represented by the formula [1] is preferably 5 to 100 mol%, more preferably 10 to 80 mol% of the total diamine component used for the synthesis of the polyamic acid. Particularly preferred is 20 to 50 mol%.
  • the diamine used in combination with the diamine represented by Formula [1] is not specifically limited. Specific examples of such diamines are shown below.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylamine, isophorone diamine Etc.
  • aromatic diamines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 3,5-diamino- N, N-diallylaniline, 2,4-diamino-N, N-diallylaniline, 1,4-diamino-2-methoxybenzene, 2,5-diamino-p-xylene, 1,3-diamino-4-chlorobenzene 3,5-diaminobenzoic acid, 1,4-diamino-2,5-dichlorobenzene, 4,4'-diamino-1,2-diphenylethane, 4,4'-diamino-2,2'-dimethylbi Benzyl, 4,4'-diaminodiphenylmethane, 3,3'
  • heterocyclic diamines examples include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran, 3,6-diaminocarbazole 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole and the like.
  • aliphatic diamines examples include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7- Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylheptane, 1,12-diaminododecane 1,18-diaminooctadecan
  • aromatic-aliphatic diamine examples include a diamine represented by the formula [3]. H 2 N—Ar′—R 1 —NH—R 2 [3]
  • Ar ′ in the formula is phenylene or naphthylene
  • R 1 is an alkylene group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms
  • R 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, Preferably they are a hydrogen atom or a methyl group.
  • diamine represented by the formula [3] examples include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-amino Phenethylamine, 4-aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3- (3-aminopropyl) aniline, 4- (3-aminopropyl) aniline, 3- (3- Methylaminopropyl) aniline, 4- (3-methylaminopropyl) aniline, 3- (4-aminobutyl) aniline, 4- (4-aminobutyl) aniline, 3- (4-methylaminobutyl) aniline, 4- (4-Methylaminobutyl) aniline, 3- (5-aminopentyl) aniline, 4- (5-aminopentyl) ) Aniline, 3- (5-amin
  • the solubility of the resulting polyamic acid or polyimide (hereinafter referred to as a polymer) in an organic solvent is further improved.
  • a polymer polyamic acid or polyimide
  • a diamine that increases the pretilt angle of the liquid crystal described later hereinafter also referred to as tilt diamine
  • tilt diamine a diamine that increases the pretilt angle of the liquid crystal described later
  • the preferable content of the diamine represented by the formula [3] is 10 to 80 mol%, preferably 20 to 70 mol% of the total diamine component.
  • Examples of the diamine capable of increasing the pretilt angle of the liquid crystal include a long-chain alkyl group, a perfluoroalkyl group, an aromatic cyclic group, an aliphatic cyclic group, a combination thereof, and a steroid. Examples thereof include diamines having a skeleton group. These diamines can be used in combination with the diamine represented by the formula [1]. Specific examples of the tilt diamine will be given below, but the present invention is not limited to these. In the following formulas [12] to [38], j represents an integer of 5 to 20, and k represents an integer of 1 to 20.
  • the diamine of the formula [12] is preferable because of excellent liquid crystal alignment. Since the diamines of the formulas [19] to [26] have a very high pretilt angle developing ability, OCB (Optically Compensated Bend) liquid crystal alignment films (OCB alignment films), vertical alignment mode liquid crystal alignment films (VA) It is suitably used for an alignment film for use.
  • OCB Optically Compensated Bend
  • VA vertical alignment mode liquid crystal alignment films
  • the content of the diamine of the formula [12] is preferably 10 to 30 mol% of the total diamine component, and the alignment film for OCB or the alignment film for VA ( When the pretilt angle is 10 to 90 °, the content of the diamines of the formulas [19] to [26] is preferably 5 to 40 mol% of the total diamine component.
  • the preferred ratio of each diamine component is 10 to 50% (formula [1]) / 20 to 80% (formula [ 3]) / 10-30% (formula [12]), more preferably 20-40% (formula [1]) / 30-50% (formula [3]) / 10-30% (formula [12 ]).
  • the tetracarboxylic dianhydride component to be reacted with the diamine component is not particularly limited. That is, one type of tetracarboxylic dianhydride may be used, or two or more types of tetracarboxylic dianhydrides may be used in combination.
  • a tetracarboxylic dianhydride to be reacted with the diamine component is used as a tetracarboxylic acid dianhydride to be reacted with the diamine component in order to further improve the voltage holding ratio of the liquid crystal cell.
  • a carboxylic dianhydride it is preferable to use a carboxylic dianhydride.
  • the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane.
  • Tetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, [4 (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid anhydride], 1,2,3,4-butanetetracarbox
  • Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4-benzophenonetetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dian
  • pyromellitic dianhydride is particularly preferable.
  • the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure is considered in consideration of the balance of each characteristic such as solubility of the obtained polyamic acid or polyimide, orientation of liquid crystal, voltage holding ratio, accumulated charge, etc.
  • the aromatic tetracarboxylic dianhydride is used in a molar ratio of the former / the latter of preferably 90/10 to 50/50, more preferably 80/20 to 60/40.
  • the polymerization reaction method of the tetracarboxylic dianhydride component and the diamine component is not particularly limited.
  • a polymerization reaction can be performed to obtain a polyamic acid, and a polyimide can be obtained by dehydrating and ring-closing this polyamic acid.
  • a solution in which the diamine component is dispersed or dissolved in an organic solvent is stirred, and the tetracarboxylic dianhydride component is left as it is or organically.
  • a method of adding by dispersing or dissolving in a solvent a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, and a tetracarboxylic dianhydride component and a diamine component.
  • the method of adding alternately etc. are mentioned.
  • the polymerization reaction may be performed in a state where these multiple types of components are mixed in advance, or the polymerization reaction may be sequentially performed individually.
  • the temperature for the polymerization reaction of the tetracarboxylic dianhydride component and the diamine component in an organic solvent is usually 0 to 150 ° C, preferably 5 to 100 ° C, more preferably 10 to 80 ° C. When the temperature is higher, the polymerization reaction is completed earlier, but when it is too high, a high molecular weight polymer may not be obtained.
  • the polymerization reaction can be performed at any concentration, but if the total concentration of the tetracarboxylic dianhydride component and the diamine component is too low, it becomes difficult to obtain a high molecular weight polymer, and if the concentration is too high, Since the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult, the total concentration is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the polymerization reaction may be performed at a high concentration, and then an organic solvent may be added.
  • the organic solvent used in the polymerization reaction is not particularly limited as long as the generated polyamic acid can be dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, Examples thereof include pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 1,3-dimethylimidazolidinone. These may be used alone or in combination.
  • the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
  • water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
  • the ratio of the tetracarboxylic dianhydride component and the diamine component used for the polymerization reaction of the polyamic acid is preferably 1: 0.8 to 1: 1.2 in molar ratio, and this molar ratio is close to 1: 1. As the molecular weight of the polyamic acid obtained increases. By controlling the molecular weight of this polyamic acid, the molecular weight of the polyimide obtained after imidation can be adjusted.
  • the molecular weight of the polyamic acid or polyimide of the present invention is not particularly limited, but when included in the liquid crystal alignment treatment agent, from the viewpoint of the strength of the resulting coating film and the ease of handling as the liquid crystal alignment treatment agent, the weight average The molecular weight is preferably 2,000 to 200,000, more preferably 5,000 to 50,000.
  • the polyimide used for the liquid-crystal aligning agent of this invention is a polyimide which imidated the above-mentioned polyamic acid.
  • the imidization of the polyamic acid can be performed by stirring for 1 to 100 hours in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like.
  • acetic anhydride is preferable because the obtained polyimide can be easily purified after imidization.
  • the solvent used at the time of the polyamic acid polymerization reaction mentioned above can be used.
  • the imidation ratio of polyimide can be controlled by adjusting the amount of catalyst, reaction temperature, reaction time, and the like.
  • the amount of the basic catalyst at this time is preferably 0.2 to 10 times mol, more preferably 0.5 to 5 times mol of the amic acid group.
  • the amount of the acid anhydride is preferably 1 to 30 times mol, more preferably 1 to 10 times mol of the amic acid group.
  • the reaction temperature is preferably ⁇ 20 to 250 ° C., more preferably 0 to 180 ° C.
  • the imidation ratio of the polyimide used for the liquid crystal aligning agent of the present invention is not particularly limited, the imidation ratio is preferably 40% or more because a liquid crystal alignment film having a higher voltage holding ratio can be obtained. 60% or more is more preferable, and particularly preferably 80% or more.
  • the polyimide can be recovered by adding the solution after imidization with stirring with a poor solvent, and precipitating the polyimide, followed by filtration.
  • the poor solvent at this time include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the recovered polyimide can also be washed with this poor solvent.
  • the polyimide recovered and washed in this way can be powdered by drying at normal temperature or under reduced pressure at room temperature or by heating. Such an operation can also be performed on the polyamic acid. For example, when it is not desired to include the solvent used for the polymerization of polyamic acid in the liquid crystal aligning agent, or when it is desired to remove unreacted monomer components and impurities in the reaction solution, the above precipitation recovery and purification are performed. Just do it.
  • the liquid-crystal aligning agent of this invention is a coating liquid containing at least 1 type of polymer of the polyamic acid and polyimide obtained as mentioned above.
  • the reaction solution of the polyamic acid or polyimide described above may be used as it is or diluted, and the precipitate recovered from the reaction solution may be redissolved in an organic solvent.
  • adjustment of the solvent composition for controlling the coating property to the substrate, addition of an additive for improving the properties of the coating film, and the like can be performed.
  • the organic solvent used in the dilution and re-dissolution process is not particularly limited as long as it can dissolve the polymer contained therein.
  • Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinylpyrrolidone.
  • N-methyl-2-pyrrolidone N-ethyl-2-pyrrolidone, 1,3-dimethylimidazolidinone, and ⁇ -butyrolactone are preferably used. You may use these 1 type or in mixture of 2 or more types.
  • Solvents added to control the coating property of the liquid crystal aligning agent on the substrate include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1 -Ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, diethylene glycol diethyl ether, propylene glycol monoacetate, propylene glycol diacetate, dipropylene glycol monomethyl ether, propylene glycol-1-monomethyl ether -2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, Acid methyl ester, lactic acid ethyl ester, lactic acid n- propyl ester, lactate n- butyl
  • solvents include solvents that cannot dissolve polyamic acid or polyimide alone, but can be mixed with the liquid crystal aligning agent of the present invention as long as the polymer does not precipitate.
  • a solvent having a low surface tension by properly mixing a solvent having a low surface tension, the uniformity of the coating film can be improved at the time of application to the substrate, and it is also suitably used in the liquid crystal aligning agent of the present invention.
  • butyl cellosolve, ethyl carbitol, dipropylene glycol monomethyl ether, and diethylene glycol diethyl ether are particularly preferable from the viewpoint of solubility of polyimide.
  • Additives for improving the properties of the coating include 3-aminopropylmethyldiethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane
  • silane coupling agents such as The addition of these silane coupling agents can improve the adhesion of the coating film to the substrate.
  • the content of the silane coupling agent is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass with respect to the total mass of the polyamic acid and the polyimide.
  • the solid content concentration of the liquid crystal alignment treatment agent of the present invention can be appropriately changed depending on the thickness of the liquid crystal alignment film to be formed, but is preferably 1 to 10% by mass. If it is less than 1% by mass, it is difficult to form a uniform and defect-free coating film, and if it exceeds 10% by mass, the storage stability of the solution may be deteriorated.
  • the term “solid content” as used herein refers to a product obtained by removing the solvent from the liquid crystal aligning agent.
  • the concentration of the polyamic acid or polyimide used in the liquid crystal alignment treatment agent of the present invention is not particularly limited, but is preferably 1% by mass or more, more preferably 3% from the viewpoint of the properties of the obtained liquid crystal alignment film. % Or more, particularly 5% by mass or more.
  • the liquid crystal alignment treatment agent obtained as described above is preferably filtered before being applied to the substrate.
  • the liquid-crystal aligning agent of this invention can be used as a liquid-crystal aligning film for rubbing by apply
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate. A glass substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, or the like can be used, and an ITO electrode for driving a liquid crystal is formed. It is preferable to use a new substrate from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
  • the method for applying the liquid crystal aligning agent include spin coating, printing, and ink-jet methods. From the viewpoint of productivity, the flexographic printing method is widely used industrially, and the liquid crystal aligning treatment of the present invention. It is also preferably used in agents.
  • the drying process after applying the liquid crystal alignment treatment agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, the drying process is performed. It is preferable to include.
  • the drying is not particularly limited as long as the solvent is evaporated to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like.
  • a method of drying on a hot plate at 50 to 150 ° C., preferably 80 to 120 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
  • the substrate coated with the liquid crystal aligning agent is preferably baked at an arbitrary temperature of 100 to 350 ° C., more preferably 150 to 300 ° C., and further preferably 180 to 250 ° C.
  • an amic acid group is present in the liquid crystal aligning agent, the conversion from an amic acid to an imide is changed by this firing, but the liquid crystal aligning agent of the present invention does not necessarily need to be 100% imidized.
  • the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered, so that it is preferably 10 to 200 nm, more preferably 50 to 100 nm.
  • An existing rubbing apparatus can be used for rubbing the coating surface formed on the substrate as described above.
  • Examples of the material of the rubbing cloth at this time include cotton, rayon, and nylon.
  • a substrate with a liquid crystal alignment film obtained by the above method can be used as a liquid crystal display element by preparing a liquid crystal cell by a known method.
  • a pair of substrates on which a liquid crystal alignment film is formed is preferably an arbitrary rubbing direction of 0 to 270 ° with a spacer of preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m sandwiched between them.
  • a method is generally used in which the angle is set to be fixed, the periphery is fixed with a sealant, and liquid crystal is injected and sealed.
  • the method for encapsulating liquid crystal is not particularly limited, and examples thereof include a vacuum method in which liquid crystal is injected after reducing the pressure inside the produced liquid crystal cell, and an dropping (ODF) method in which liquid crystal is dropped and then sealed.
  • the liquid crystal display element thus obtained includes a TN liquid crystal display element, an STN liquid crystal display element, a TFT liquid crystal display element, an OCB liquid crystal display element, a lateral electric field type (IPS) liquid crystal display element, a VA liquid crystal display element, and the like. It is suitably used for display elements by various methods.
  • a dinitro compound (24.9 g), platinum / carbon (2.5 g) and 1,4-dioxane (250 g) were added to a 500 mL four-necked flask, and the mixture was stirred at room temperature in a hydrogen atmosphere. Celite filtration was performed after completion
  • a mixture of 48.00 g of dinitro compound, 4.8 g of platinum carbon, and 490 g of 1,4-dioxane was stirred at 23 ° C. in a hydrogen atmosphere. After completion of the reaction, the catalyst was filtered through celite, and then the solvent was distilled off with an evaporator to obtain a crude product. The obtained crude product was dispersed and washed with 300 g of ethanol to obtain a target diamine compound having the following NMR characteristics (amount: 27.20 g, yield: 70%).
  • Examples 1 to 10 and Comparative Examples 1 to 4 In Examples 1 to 10 and Comparative Examples 1 to 4 described below, production examples of the liquid crystal alignment treatment agent are described.
  • Explanations of abbreviations used in the synthesis of polyamic acid and polyimide are as follows, and ⁇ Measurement of molecular weight>, ⁇ Measurement of imidization ratio>, ⁇ Evaluation of rubbing resistance>, ⁇ Preparation of liquid crystal cell>, ⁇ Evaluation of pretilt angle>, ⁇ Measurement method of voltage holding ratio>, and ⁇ Accumulated charge (RDC)
  • the evaluation method is as follows.
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) is 10ml / L) Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (number average molecular weight of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation and polyethylene manufactured by Polymer Laboratories Glycol (weight average molecular weight about 12,000, 4,000, 1,000).
  • This coating surface was rubbed with a rubbing apparatus (RS01-2 type, manufactured by Iinuma Gauge Manufacturing Co., Ltd.) with a roll diameter of 120 mm under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.5 mm.
  • a substrate with a liquid crystal alignment film was obtained.
  • the liquid crystal alignment film surface was observed with a confocal laser microscope. Evaluation was shown according to the following criteria. ⁇ : Scraping and rubbing scratches are not observed. ⁇ : Scraping and rubbing scratches are observed.
  • X A film
  • a liquid crystal cell was produced as follows.
  • a liquid crystal alignment treatment agent is spin-coated on a glass substrate with a transparent electrode, dried on an 80 ° C. hot plate for 5 minutes, and then baked on a 210 ° C. hot plate for 10 minutes to form a coating film having a thickness of 70 nm. I let you.
  • This coating film surface was rubbed with a rubbing apparatus having a roll diameter of 120 mm using a rayon cloth under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm to obtain a substrate with a liquid crystal alignment film.
  • ⁇ Measurement of pretilt angle> The twisted nematic liquid crystal cell produced by the method described in ⁇ Preparation of liquid crystal cell> was heated at 105 ° C. for 5 minutes, and then the pretilt angle and the voltage holding ratio were measured. The pretilt angle was measured using a crystal rotation method.
  • ⁇ Measurement of voltage holding ratio> How much voltage can be maintained by applying a voltage of 4 V for 60 ⁇ s at a temperature of 90 ° C. to the twisted nematic liquid crystal cell manufactured by the method described in ⁇ Preparation of liquid crystal cell> above and measuring the voltage after 16.67 ms. was obtained as a voltage holding ratio.
  • a voltage holding ratio measuring device (VHR-1 manufactured by Toyo Corporation) was used for measuring the voltage holding ratio.
  • ⁇ Evaluation of accumulated charge (RDC)> A DC voltage was applied from 0 V to 1.0 V at a 0.1 V interval at a temperature of 23 ° C. to the twisted nematic liquid crystal cell manufactured by the method described in the above ⁇ Liquid Crystal Cell Preparation>, and the flicker amplitude level at each voltage was measured.
  • a calibration curve was created. Next, after grounding for 5 minutes, an AC voltage of 3.0 V and a DC voltage of 5.0 V were applied, the flicker amplitude level after 1 hour was measured, and RDC was evaluated by comparing with a calibration curve prepared in advance. This RDC evaluation method is called a flicker reference method.
  • Example 1 Using 5.00 g (25 mmol) of CBDA as the tetracarboxylic dianhydride component and 6.30 g (26 mmol) of DABPh as the diamine component, the reaction was carried out at room temperature in 45.18 g of NMP for 16 hours at 20% by mass of polyamic acid. A solution (PAA-1) was obtained. 10.0 g of this polyamic acid solution (PAA-1) was diluted with 13.3 g of NMP and 10.0 g of BC, from a solution containing 6% by mass of solids, 64% by mass of NMP, and 30% by mass of BC. A liquid crystal alignment treatment agent was obtained.
  • Example 2 To 40 g of the polyamic acid solution (PAA-1 concentration 20% by mass) obtained in Example 1, 93.33 g of NMP was added for dilution, and then 5.64 g of acetic anhydride and 2.33 g of pyridine were added, and The reaction was carried out for 3 hours to imidize. The reaction solution was cooled to about room temperature and then poured into 500 ml of methanol, and the precipitated solid was recovered. The solid was washed several times with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-1).
  • SPI-1 white powder of polyimide
  • This polyimide had a number average molecular weight of 14,630, a weight average molecular weight of 32,160, and an imidation ratio of 82%.
  • SPI-1 polyimide
  • 18.0 g of ⁇ -BL was added and stirred at 50 ° C. for 20 hours.
  • the polyimide was completely dissolved at the end of stirring.
  • 8.0 g of ⁇ -BL, 6.00 g of BC, and 6.00 g of DPM were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours, 5% by mass of polyimide (SPI-1), 65% by mass of ⁇ -BL, and DPM.
  • a liquid crystal aligning agent consisting of a solution containing 15% by mass and 15% by mass of BC was obtained.
  • Example 3 Using 5.00 g (25 mmol) of CBDA as a tetracarboxylic dianhydride component and 6.32 g (26 mmol) of DABPy as a diamine component, the mixture was reacted in NMP45.29 g at room temperature for 16 hours, and 20 mass% polyamic An acid solution (PAA-2) was obtained.
  • a polyamic acid solution (PAA-2) 10.0 g is diluted with 13.3 g of NMP and 10.0 g of BC, and consists of a solution containing 6% by mass of solids, 64% by mass of NMP, and 30% by mass of BC.
  • a liquid crystal aligning agent was obtained.
  • Example 4 To 40 g of the polyamic acid solution (PAA-2 concentration 20% by mass) obtained in Example 3, 93.33 g of NMP was added for dilution, and 5.77 g of acetic anhydride and 2.39 g of pyridine were added, and the mixture was heated at 40 ° C. for 3 hours. The reaction was imidized. The reaction solution was cooled to about room temperature and then poured into 500 ml of methanol, and the precipitated solid was recovered. The solid was washed several times with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-2). The number average molecular weight of this polyimide was 13,204, and the weight average molecular weight was 30,700.
  • SPI-2 white powder of polyimide
  • the imidation ratio was 87%.
  • SPI-2 polyimide
  • 18.0 g of ⁇ -BL was added and stirred at 50 ° C. for 20 hours.
  • the polyimide was completely dissolved at the end of stirring.
  • 8.0 g of ⁇ -BL, 6.00 g of BC, and 6.00 g of DPM were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours, 5% by mass of polyimide (SPI-2), 65% by mass of ⁇ -BL, and DPM.
  • a liquid crystal aligning agent composed of a solution containing 15% by mass and 15% by mass of BC was obtained.
  • Example 5 As tetracarboxylic dianhydride component, 5.30 g (27 mmol) of CBDA, as a diamine component, 2.00 g (8 mmol) of DABPh, 1.35 g (11 mmol) of 3-ABA, and 2.65 g (8 mmol) of C14DAB ), And reacted in 45.25 g of NMP at room temperature for 16 hours to obtain a 20% by mass polyamic acid solution (PAA-3).
  • Polyamic acid solution (PAA-3) 10.0 g diluted with 13.3 g NMP and 10.0 g BC, and consisting of a solution containing 6 wt% solids, 64 wt% NMP and 30 wt% BC A liquid crystal aligning agent was obtained.
  • Example 6 To 40 g of the polyamic acid solution (PAA-3 concentration: 20% by mass) obtained in Example 5, 93.33 g of NMP was added for dilution, and 5.97 g of acetic anhydride and 2.47 g of pyridine were added, and the mixture was added at 60 ° C. for 3 hours. The reaction was imidized. The reaction solution was cooled to about room temperature and then poured into 500 ml of methanol, and the precipitated solid was recovered. The solid was washed several times with methanol and then dried under reduced pressure at 100 ° C. to obtain a milky white powder of polyimide (SPI-3).
  • SPI-3 milky white powder of polyimide
  • the number average molecular weight of this polyimide was 14,785, and the weight average molecular weight was 37,483. Moreover, the imidation ratio was 88%. 12.00 g of ⁇ -BL was added to 2.00 g of polyimide (SPI-3), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, 8.0 g of ⁇ -BL, 6.00 g of BC, and 6.00 g of DPM were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (SPI-3) was 5% by mass, ⁇ -BL was 65% by mass, DPM. A liquid crystal aligning agent comprising a solution containing 15% by mass and 15% by mass of BC was obtained.
  • Example 7 As the tetracarboxylic dianhydride component, 5.27 g (27 mmol) of CBDA, as the diamine component, 2.00 g (8 mmol) of DABPy, 1.34 g (11 mmol) of 3-ABA, and 2.63 g (8 mmol) of C14DAB ), And reacted in 44.96 g of NMP at room temperature for 16 hours to obtain a 20% by mass polyamic acid solution (PAA-4).
  • a polyamic acid solution (PAA-4) 10.0 g is diluted with 13.3 g of NMP and 10.0 g of BC, and consists of a solution containing 6% by mass of solids, 64% by mass of NMP, and 30% by mass of BC.
  • a liquid crystal aligning agent was obtained.
  • Example 8 To 40 g of the polyamic acid solution (PAA-4 concentration: 20% by mass) obtained in Example 7, 93.33 g of NMP was added to dilute, 5.97 g of acetic anhydride and 2.47 g of pyridine were added, and the mixture was added at 60 ° C. for 3 hours. The reaction was imidized. The reaction solution was cooled to about room temperature and then poured into 500 ml of methanol, and the precipitated solid was recovered. The solid was washed several times with methanol and then dried under reduced pressure at 100 ° C. to obtain a milky white powder of polyimide (SPI-4).
  • SPI-4 milky white powder of polyimide
  • the number average molecular weight of this polyimide was 15,594, and the weight average molecular weight was 42,320.
  • the imidation ratio was 87%.
  • 12.00 g of ⁇ -BL was added to 2.00 g of polyimide (SPI-4), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, 8.0 g of ⁇ -BL, 6.00 g of BC, and 6.00 g of DPM were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours.
  • Polyimide (SPI-4) was 5% by mass, ⁇ -BL was 65% by mass, DPM.
  • a liquid crystal aligning agent comprising a solution containing 15% by mass and 15% by mass of BC was obtained.
  • Example 9 As the tetracarboxylic dianhydride component, 5.57 g (29 mmol) of CBDA, as the diamine component, 2.38 g (9 mmol) of DABTMPz, 1.42 g (12 mmol) of 3-ABA, and 2.79 g (9 mmol) of C14DAB ), And reacted in 46.7 g of NMP at room temperature for 16 hours to obtain a 20% by mass solution of polyamic acid (PAA-5). 10.0 g of this polyamic acid (PAA-5) solution was diluted with 13.3 g of NMP and 10.0 g of BC, 6 mass% of polyamic acid (PAA-5), 64 mass% of NMP, and 30 mass of BC. The liquid crystal aligning agent which consists of a solution containing% was obtained.
  • Example 10 93.3 g of NMP was added to 40.0 g of a polyamic acid (PAA-5) solution (PAA-5 concentration: 20% by mass) obtained in the same manner as in Example 9 to dilute, and 6.06 g of acetic anhydride and pyridine 2 .53 g was added and reacted at 60 ° C. for 3 hours to imidize.
  • the reaction solution was cooled to about room temperature and then poured into 500 ml of methanol, and the precipitated solid was recovered. Further, the solid was washed twice with methanol and then dried under reduced pressure at 100 ° C. to obtain a white brown powder of polyimide (SPI-5).
  • the number average molecular weight of this polyimide was 14,222, and the weight average molecular weight was 33,154. Moreover, the imidation ratio was 88%. 12.00 g of ⁇ -BL was added to 2.00 g of polyimide (SPI-5), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, ⁇ -BL 8.00 g, BC 6.00 g, and DPM 6.00 g were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours. Polyimide (SPI-5) was 5% by mass, ⁇ -BL was 65% by mass, DPM. A liquid crystal aligning agent comprising a solution containing 15% by mass and 15% by mass of BC was obtained.
  • the reaction solution was cooled to about room temperature and then poured into 600 ml of methanol to recover the precipitated solid.
  • the solid was washed several times with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide (SPI-6).
  • the number average molecular weight of this polyimide was 16,338, and the weight average molecular weight was 39,865.
  • the imidation ratio was 80%. 9 g of ⁇ BL was added to 1.00 g of polyimide (SPI-6), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring.
  • a liquid crystal consisting of 10.0 g of polyamic acid (PAA-7) diluted with 13.3 g of NMP and 10.0 g of BC, and containing a solid content of 6% by mass, NMP of 64% by mass and BC of 30% by mass An alignment treatment agent was obtained.
  • PAA-7 polyamic acid
  • the imidation ratio was 89%.
  • 9 g of ⁇ BL was added to 1.00 g of polyimide (SPI-7), and the mixture was stirred at 50 ° C. for 20 hours. The polyimide was completely dissolved at the end of stirring. Further, 4.0 g of ⁇ -BL, 3.0 g of BC, and 3.0 g of DPM were added to this solution, and the mixture was stirred at 50 ° C. for 20 hours, 5% by mass of polyimide, 65% by mass of ⁇ -BL, 15% by mass of DPM, And the liquid-crystal aligning agent which consists of a solution containing 15 mass% of BC was obtained.
  • the liquid crystal aligning agent of the present invention provides a liquid crystal alignment film that is resistant to film peeling and scraping during rubbing, has a high voltage holding ratio, and is unlikely to accumulate initial charge even when a DC voltage is applied. Therefore, the liquid crystal display element produced using the liquid crystal aligning agent of the present invention can be a highly reliable liquid crystal display device, and includes a TN liquid crystal display element, an STN liquid crystal display element, a TFT liquid crystal display element, and a VA liquid crystal display. It is suitably used for display elements by various methods such as an element, an IPS liquid crystal display element, and an OCB liquid crystal display element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pyridine Compounds (AREA)

Abstract

 ラビング時の膜剥れや削れに強く、電圧保持率が高く、かつ直流電圧が印加されても初期の電荷の蓄積が起こり難い液晶配向膜を得ることができる液晶配向処理剤を提供する。 下記式[1]で表わされるジアミンを含むジアミン成分と、テトラカルボン酸二無水物成分とを反応させて得られるポリアミック酸、及び該ポリアミック酸をイミド化して得られるポリイミドのうちの少なくとも一種の重合体を含有する液晶配向処理剤。 (化1) (式中、Arは同素環芳香族化合物、窒素原子含有複素環芳香族化合物を表し、環を構成する炭素原子上又は窒素原子上の水素原子は置換されていてもよい。)

Description

液晶配向処理剤及びそれを用いた液晶表示素子
 本発明は、液晶表示素子に用いる液晶配向処理剤、液晶配向膜、及び液晶表示素子に関するものである。
 現在、液晶表示素子の液晶配向膜としては、ポリアミック酸などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向処理剤を塗布し焼成し、次いでラビング処理が施された、いわゆるポリイミド系の液晶配向膜が主として用いられている。
 液晶配向膜は、液晶の配向状態を制御するだけではなく液晶表示素子の特性にも影響する。とりわけ、ラビング処理時における膜剥がれ、削れの問題や、液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像現象の低減といった特性が重要になっている。
 ポリイミド系の液晶配向膜において、直流電圧によって発生した残像が消えるまでの時間が短いものとして、ポリアミック酸やイミド基含有ポリアミック酸に加えて特定構造の3級アミンを含有する液晶配向処理剤を使用したもの(例えば特許文献1参照)や、ピリジン骨格などを有する特定ジアミンを原料に使用した可溶性ポリイミドを含有する液晶配向処理剤を使用したもの(例えば特許文献2参照)などが知られている。
 また、ポリイミド系の液晶配向膜において、電圧保持率が高く、かつ直流電圧によって発生した残像が消えるまでの時間が短いものとして、ポリアミック酸やそのイミド化重合体などに加えて、分子内に1個のカルボン酸基を含有する化合物、分子内に1個のカルボン酸無水物基を含有する化合物及び分子内に1個の3級アミノ基を含有する化合物から選ばれる化合物を極く少量含有する液晶配向処理剤を使用したもの(例えば、特許文献3参照)が知られている。
特開平9-316200号公報 特開平10-104633号公報 特開平8-76128号公報
 本発明は、上記の状況を鑑み、ラビング時の膜剥がれや削れに強く、電圧保持率が高く、かつ液晶セルに直流電圧が印加されても、初期の電荷の蓄積が起こり難い液晶配向膜を得ることができる液晶配向処理剤を提供することを目的とする。
 本発明者は、鋭意研究を行った結果、ジアミン成分として、新規化合物を含む特定のジアミン化合物を使用したポリアミック酸、及び/又は該ポリアミック酸をイミド化して得られるポリイミドを含む液晶配向処理剤が上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。すなわち、本発明は以下の要旨を有するものである。
(1)下記式[1]で表わされるジアミン化合物を含むジアミン成分と、テトラカルボン酸二無水物成分とを反応させて得られるポリアミック酸、及び該ポリアミック酸をイミド化して得られるポリイミドからなる群から選ばれる少なくとも一種の重合体を含有することを特徴とする液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000007
(式中、Arは同素環芳香族化合物、又は窒素原子含有複素環芳香族化合物を表し、環を構成する炭素原子上又は窒素原子上の水素原子は置換されていてもよい。)
(2)式[1]のArが、六員環の同素環芳香族化合物又は六員環の窒素原子含有複素環芳香族化合物である上記(1)に記載の液晶配向処理剤。
(3)式[1]の Arが、五員環の窒素原子含有複素環芳香族化合物である上記(1)に記載の液晶配向処理剤。
(4)式[1]の Arが、ベンゼン、ピリジン、ピリダジン、ピリミジン、ピラジン又はトリアジンである上記(1)に記載の液晶配向処理剤。
(5)式[1]の Arが、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール、ピロール、イミダゾール、ピラゾール、又はトリアゾールである上記(1)に記載の液晶配向処理剤。
(6)式[1]で表わされるジアミン化合物が、下記一般式[4]から式[6]で表されるいずれかの化合物(Arは上記と同じ意味である。)である上記(1)に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000008
(7)式[1]で表わされるジアミン化合物が、下記一般式[2]で表される化合物(Arは上記と同じ意味である。)である上記(1)に記載の液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000009
(8)ジアミン成分として、下記式[3]で表されるジアミン化合物を少なくとも10mol%以上含む上記(1)~(7)のいずれかに記載の液晶配向処理剤。

N-Ar’-R-NH-R [3]

(式中、Ar’はフェニレン基、ナフチレン基を表し、RはCが1~5のアルキレン基を表し、RはCが1~5のアルキル基を表す)
(9)テトラカルボン酸二無水物成分が、脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物を含む上記(1)~(8)のいずれかに記載の液晶配向処理剤。
(10)上記(1)~(9)のいずれかに記載の液晶配向処理剤を電極付き基板上に塗布、焼成してなる液晶配向膜。
(11)上記(10)に記載の液晶配向膜を具備する液晶表示素子。
(12)下記式[1]で表されるジアミン化合物。
Figure JPOXMLDOC01-appb-C000010
(式中、Arは同素環芳香族化合物、又は窒素原子含有複素環芳香族化合物を表し、環を構成する炭素原子又は窒素原子上の水素原子は有機基で置換されていてもよい。)
(13)式[1]のArが、六員環の同素環芳香族化合物又は六員環の窒素原子含有複素環芳香族化合物である上記(12)に記載のジアミン化合物。
(14)式[1]の Arが、五員環の窒素原子含有複素環芳香族化合物である上記(12)に記載のジアミン化合物。
(15)式[1]の Arが、ベンゼン、ピリジン、ピリダジン、ピリミジン、ピラジン又はトリアジンである上記(12)に記載のジアミン化合物。
(16)式[1]の Arが、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール、ピロール、イミダゾール、ピラゾール、又はトリアゾールである上記(12)に記載のジアミン化合物。
(17)式[1]で表わされるジアミン化合物が、下記一般式[4]から式[6]で表されるいずれかの化合物である上記(12)に記載のジアミン化合物。
Figure JPOXMLDOC01-appb-C000011
(18)式[1]で表わされるジアミン化合物が、下記一般式[2]で表される化合物である上記(12)に記載のジアミン化合物。
Figure JPOXMLDOC01-appb-C000012
(19)上記(12)~(18)のいずれかに記載のジアミン化合物を含有するジアミン成分と、テトラカルボン酸二無水物成分とを反応させて得られるポリアミック酸、又は該ポリアミック酸をイミド化して得られるポリイミド。
 本発明の液晶配向処理剤はラビング時の膜剥がれや削れに強く、電圧保持率が高く、かつ液晶セルに直流電圧が印加されても初期の電荷の蓄積が起こり難い液晶配向膜を得ることができ、この液晶配向膜を使用することで、特性が良好な液晶パネルを作製できる。
 また、本発明によれば、液晶配向処理剤であるポリアミック酸、及びポリイミドの原料などとして有用な新規なジアミン化合物が提供される。
 本発明の液晶配向処理剤は、下記式[1]にて表される特定のジアミン化合物を含むジアミン成分とテトラカルボン酸二無水物成分とを反応させて得られるポリアミック酸、及び該ポリアミック酸をイミド化したポリイミドの内の少なくとも一種の重合体を含有する液晶配向処理剤である。この特定のジアミン化合物は、文献未載の新規な化合物を含み、この特定のジアミン化合物を使用することで、液晶配向処理に必要となるラビング処理においても、ラビング時の膜剥がれや削れを軽減することができ、得られた液晶配向膜は電圧保持率が高く、なおかつ、液晶セルに直流電圧が印加されても初期の電荷の蓄積が起こり難くすることができる。
<式[1]のジアミン化合物>
 上記式[1]において、Arは同素環芳香族化合物、又は窒素原子含有複素環芳香族化合物であり、このArは、電荷の授受に関与する部位となるため、電気的に活性な構造であることが好ましく、なかでも、窒素原子含有複素環芳香族化合物であるのが好ましい。
 Arは、同素環芳香族化合物又は窒素原子含有複素環芳香族化合物であれば特に限定されないが、嵩高い構造あるいは分子量の大きな環を導入すると液晶配向性を乱す可能性があるため、比較的分子量が低いものが望ましい。
 なお、Arは、1価の基を構成するため、本明細書では、上記のように、便宜上、同素環芳香族化合物、又は窒素原子含有複素環芳香族化合物などと記載されるが、Arは、1価の基を構成するため、厳密に表現すると、同素環芳香族化合物の場合は、同素環芳香族化合物の水素原子を1個取り去った残基であり、また、窒素原子含有複素環芳香族化合物の場合は、窒素原子含有複素環芳香族化合物の水素原子を1個取り去った残基を意味する。Arが、ベンゼン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール、ピロール、イミダゾール、ピラゾール、又はトリアゾールの場合も同じであり、これらの化合物の水素原子を1個取り去ったそれぞれの残基を意味する。
 上記式[1]におけるArは、同素環芳香族化合物又は窒素原子含有複素環芳香族化合物の環の形態は特に限定されず、五員環でも、六員環でも良好な特性を得ることができる。
 五員環の同素環芳香族化合物又は窒素原子含有複素環芳香族化合物は、六員環のそれらに比べて環自体の反応性が高いことが知られている。そのため、液晶配向膜の形成時に行う高温での焼成過程で環が反応して架橋がおこるため、ラビング耐性の観点では好ましい。一方、液晶配向膜の電気特性の点では、構造安定性に富む六員環の同素環芳香族化合物又は窒素原子含有複素環芳香族化合物が好ましい。
 また、式[1]におけるArは、ビフェニレン、ビピリジンのように同一の環が連結していてもよく、フェニルピリジンやフェニルチオフェンのように異種の環同士が連結していてもよい。またキノリンやベンゾイミダゾールのように縮環構造をとっていてもよい。
 上記の同素環芳香族化合物の具体例としては、シクロペンタジエン、ベンゼン、アズレン、ナフタレン、アントラセン、フェナントレン、ピレン、ナフタセン、ベンゾピレン、ペリレン、ペンタセン、フェナレン、インデン、フルオレン、ビフェニレンなどが挙げられる。
 また、上記の窒素原子含有複素環芳香族化合物の具体例としては、ピロール、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、テトラジン、イミダゾール、ピラゾール、オキサゾール、イソキサゾール、オキサジアゾール、チアゾール、イソチアゾール、チアジアゾールトリアゾール、テトラゾール、インドール、インダゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソキサゾール、ベンゾチアゾール、ベンゾイソチアゾール、キノリン、イソキノリン、チノリン、フタラジン、キナゾリン、キノキサリン、ナフチリジン、プテリジン、プリン、クマリン、イソクマリン、カルバゾール、アクリジン、フェナントロリン、チエノピリジン、フロピリジン、インドリジン、キノリジン、カルボリン等が挙げられる。また、ピロール、ピラゾール、イミダゾールなどにおけるN―H部位は、そのままでも又はメチル化などアルキル化されていてもよい。
 Arの好ましい具体例としては、シクロペンタジエン、ベンゼン、アズレン、ナフタレン、インデン、フルオレン、ビフェニレン、ピロール、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジン、テトラジン、イミダゾール、ピラゾール、オキサゾール、イソキサゾール、オキサジアゾール、チアゾール、イソチアゾール、チアジアゾール、トリアゾール、テトラゾール、インドール、インダゾール、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾイソキサゾール、ベンゾチアゾール、ベンゾイソチアゾール、キノリン、イソキノリン、チノリン、フタラジン、キナゾリン、キノキサリン、ナフチリジン、プテリジン、プリン、クマリン、イソクマリン、カルバゾール、チエノピリジン、フロピリジン、インドリジン、キノリジン、カルボリンが挙げられる。特に好ましくはベンゼン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジンピロール、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール、イミダゾール、ピラゾール、又はトリアゾールである。
 上記の同素環芳香族化合物又は窒素原子含有複素環芳香族化合物における環を構成する炭素原子上又は窒素原子上の水素原子は置換されていてもよい。置換基の種類や数は特に限定されないが、メチル基、エチル基、アルコキシル基、メトキシ基、エトキシ基、アミノ基、ジメチルアミノ基等の比較的分子量の小さな電子供与性の置換基や、カルボキシル基、ニトロ基、シアノ基等の比較的分子量の小さな電子吸引性の置換基が電子の授受を活性化させるため好ましい。同素環芳香族化合物又は複素環芳香族化合物との置換基の位置は特に限定されないが、含窒素複素環芳香族化合物の場合、置換基の位置は窒素原子と隣り合わない位置が好ましい。
 一方、液晶配向膜としたときの液晶配向性やラビング耐性、また合成のし易さなどの観点からは無置換、又はメチル基やエチル基などの比較的小さな置換基で置換された同素環芳香族化合物又は窒素原子含有複素環芳香族化合物が好ましい。
 一般式[1]で表されるジアミンにおいて、ベンゼン環上の各置換基の位置は特に限定されない。液晶配向膜とした場合の液晶の配向性の観点からは、2つのアミノ基の位置関係はメタ又はパラが好ましく、また、ポリアミック酸やポリイミドの溶媒溶解性を高めるという観点では、メタがより好ましい。2つのアミノ基の位置関係がメタの場合、即ち1,3-ジアミノベンゼン構造の場合に、メチレンエステルの位置は、4又は5の位置が好ましく、特に、アミノ基の求核性を高める効果や容易に合成できる点から、5の位置が特に好ましい。
 一般式[1]で表されるジアミンの好ましい具体例としては、下記の式[2]、式[4]、式[5]又は式[6]の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 なお、式中、Arは、ベンゼン、ピリジン、ピリダジン、ピリミジン、ピラジン、トリアジンピロール、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール、イミダゾール、ピラゾール、又はトリアゾールが好ましい。
<式[1]のジアミン化合物の合成>
 一般式[1]で表されるジアミンの合成法は特に限定されるものではないが、例えば、下記一般式[7]で表されるジニトロ化合物を合成し、さらに通常の方法でニトロ基を還元してアミノ基に変換する方法で合成することができる。
Figure JPOXMLDOC01-appb-C000014
 上記一般式[7]で表されるジニトロ化合物は、下記に示されるように、対応するジニトロベンジルアルコールのエステル化により合成できる。すなわち、ジニトロベンジルアルコールと、カルボン酸クロリド又は酸二無水物とをピリジンやトリエチルアミンなどの塩基の存在下で反応させることにより合成される。なお、Arは、目的とする上記一般式[1]のジアミンにおけるArに対応する。
 なお、ジニトロベンジルアルコールとしては、2,4-ジニトロベンジルアルコール、3,5-ジニトロベンジルアルコール、2,5-ジニトロベンジルアルコール等が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 上記一般式[7]で表されるジニトロ化合物を還元して、一般式[1]で表されるジアミンを得る方法には、特に制限はなく、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナ、硫化白金炭素などを触媒として用い、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系などの溶媒中、水素ガス、ヒドラジン、塩化水素などとの反応により行なわれる。
<ジアミン成分>
 上記式[1]で表されるジアミンは、テトラカルボン酸二無水物と反応させることで、ポリアミック酸を得ることができる。本発明において、ポリアミック酸を合成する際に用いるジアミン成分は、式[1]で表されるジアミンのみであってもよく、その他のジアミンから選ばれる1種又は2種以上を組み合わせてもよい。
 ジアミン成分として、式[1]で表されるジアミンを含有させることで、得られるポリアミック酸及びこのポリアミック酸をイミド化したポリイミドの有機溶媒への溶解性を高めることができる。更には、このポリアミック酸又はポリイミドを含有する液晶配向処理剤から得られた液晶配向膜は、ラビング耐性に優れ、電圧保持率が高く、かつ、液晶セルに直流電圧が印加されても初期の電荷蓄積が起こり難くなる。このような特性を得るために、式[1]で表されるジアミンは、ポリアミック酸の合成に使用するジアミン成分全体の5~100mol%であることが好ましく、より好ましくは10~80mol%であり、特に好ましくは20~50mol%である。
 上記のジアミン成分において、式[1]で表されるジアミンと組み合わせて使用するジアミンは、特に限定されない。このようなジアミンの具体例を以下に示す。
 脂環式ジアミンの例としては、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルアミン、イソホロンジアミンなどが挙げられる。
 芳香族ジアミンの例としては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、3,5-ジアミノトルエン、3,5-ジアミノ-N,N-ジアリルアニリン、2,4-ジアミノ-N,N-ジアリルアニリン、1,4-ジアミノ-2-メトキシベンゼン、2,5-ジアミノ-p-キシレン、1,3-ジアミノ-4-クロロベンゼン、3,5-ジアミノ安息香酸、1,4-ジアミノ-2,5-ジクロロベンゼン、4,4’-ジアミノ-1,2-ジフェニルエタン、4,4’-ジアミノ-2,2’-ジメチルビベンジル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’―ジメチルジフェニルメタン、2,2’-ジアミノスチルベン、4,4’-ジアミノスチルベン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,5-ビス(4-アミノフェノキシ)安息香酸、4,4’-ビス(4-アミノフェノキシ)ビベンジル、2,2-ビス[(4-アミノフェノキシ)メチル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフロロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,1-ビス(4-アミノフェニル)シクロヘキサン、α、α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス(3-アミノフェニル)ヘキサフロロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフロロプロパン、4,4’-ジアミノジフェニルアミン、2,4-ジアミノジフェニルアミン、1,8-ジアミノナフタレン、1,5-ジアミノナフタレン、1,5-ジアミノアントラキノン、1,3-ジアミノピレン、1,6-ジアミノピレン、1,8―ジアミノピレン、2,7-ジアミノフルオレン、1,3-ビス(4-アミノフェニル)テトラメチルジシロキサン、ベンジジン、2,2’-ジメチルベンジジン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,7-ビス(4-アミノフェニル)ヘプタン、1,8-ビス(4-アミノフェニル)オクタン、1,9-ビス(4-アミノフェニル)ノナン、1,10-ビス(4-アミノフェニル)デカン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、ジ(4-アミノフェニル)プロパン-1,3-ジオエート、ジ(4-アミノフェニル)ブタン-1,4-ジオエート、ジ(4-アミノフェニル)ペンタン-1,5-ジオエート、ジ(4-アミノフェニル)ヘキサン-1,6-ジオエート、ジ(4-アミノフェニル)ヘプタン-1,7-ジオエート、ジ(4-アミノフェニル)オクタン-1,8-ジオエート、ジ(4-アミノフェニル)ノナン-1,9-ジオエート、ジ(4-アミノフェニル)デカン-1,10-ジオエート、1,3-ビス〔4-(4-アミノフェノキシ)フェノキシ〕プロパン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ブタン、1,5-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ペンタン、1,6-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘキサン、1,7-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘプタン、1,8-ビス〔4-(4-アミノフェノキシ)フェノキシ〕オクタン、1,9-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ノナン、1,10-ビス〔4-(4-アミノフェノキシ)フェノキシ〕デカンなどが挙げられる。
 複素環式ジアミンの例としては、2,6-ジアミノピリジン、2,4-ジアミノピリジン、2,4-ジアミノ-1,3,5-トリアジン、2,7-ジアミノジベンゾフラン、3,6-ジアミノカルバゾール、2,4-ジアミノ-6-イソプロピル-1,3,5-トリアジン、2,5-ビス(4-アミノフェニル)-1,3,4-オキサジアゾールなどが挙げられる。
 脂肪族ジアミンの例としては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,3-ジアミノ-2,2-ジメチルプロパン、1,6-ジアミノ-2,5-ジメチルヘキサン、1,7-ジアミノ-2,5-ジメチルヘプタン、1,7-ジアミノ-4,4-ジメチルヘプタン、1,7-ジアミノ-3-メチルヘプタン、1,9-ジアミノ-5-メチルヘプタン、1,12-ジアミノドデカン、1,18-ジアミノオクタデカン、1,2-ビス(3-アミノプロポキシ)エタンなどが挙げられる。
 芳香族-脂肪族ジアミンの例としては、式[3]で表されるジアミンが挙げられる。

N-Ar’-R-NH-R [3]

 ここで、式中のAr’はフェニレン又はナフチレン、Rは炭素数1~5、好ましくは1~3のアルキレン基であり、Rは水素原子又は炭素数1~5のアルキル基であり、好ましくは水素原子又はメチル基である。
 式[3]で表されるジアミンの具体例としては、3-アミノベンジルアミン、4―アミノベンジルアミン、3-アミノ-N-メチルベンジルアミン、4-アミノ-N-メチルベンジルアミン、3-アミノフェネチルアミン、4-アミノフェネチルアミン、3-アミノ-N-メチルフェネチルアミン、4-アミノ-N-メチルフェネチルアミン、3-(3-アミノプロピル)アニリン、4-(3-アミノプロピル)アニリン、3-(3-メチルアミノプロピル)アニリン、4-(3-メチルアミノプロピル)アニリン、3-(4-アミノブチル)アニリン、4-(4-アミノブチル)アニリン、3-(4-メチルアミノブチル)アニリン、4-(4-メチルアミノブチル)アニリン、3-(5-アミノペンチル)アニリン、4-(5-アミノペンチル)アニリン、3-(5-メチルアミノペンチル)アニリン、4-(5-メチルアミノペンチル)アニリン、2-(6-アミノナフチル)メチルアミン、3-(6-アミノナフチル)メチルアミン、2-(6-アミノナフチル)エチルアミン、3-(6-アミノナフチル)エチルアミンなどが挙げられる。
 式[3]で表されるジアミンを式[1]で表されるジアミンと併用すると、得られるポリアミック酸又はポリイミド(以下、これらを重合体という)の有機溶媒への溶解性が更に向上し、また、液晶配向膜として用いた時に液晶配向性に優れるので好ましい。更に、後述する液晶のプレチルト角を大きくするジアミン(以下チルトジアミンともいう)を併用すると、液晶のプレチルト角をさらに大きくするという効果を奏する。従って、同じ大きさのプレチルト角を得ようとする場合に、チルトジアミンの使用量が少なくても大きなチルト角を得ることができる。加えて、液晶配向処理剤の印刷性改善も期待できる。
 式[3]で表されるジアミンの好ましい含有量は、ジアミン成分全体の10~80mol%、好ましくは20~70mol%である。
 液晶のプレチルト角を大きくすることができるジアミン(チルトジアミンともいう。)としては、長鎖アルキル基、パーフルオロアルキル基、芳香族環状基、脂肪族環状基、又はこれらを組み合わせた置換基、ステロイド骨格基などを有するジアミンを挙げることができる。これらのジアミンは、式[1]で表されるジアミンと併用することができる。
 以下に、チルトジアミンの具体例を挙げるが、本発明はこれらに限定されるものではない。なお、以下に例示する、式[12]~式[38]において、jは5~20の整数を表し、kは1~20の整数を表す。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 上記の式[12]~式[38]のジアミンの内、式[12]のジアミンは液晶配向性に優れるため好ましい。式[19]~式[26]のジアミンは、プレチルト角の発現能が非常に高いため、OCB(Optically Compensated Bend)液晶用配向膜(OCB用配向膜)、垂直配向モード液晶用配向膜(VA用配向膜)に好適に用いられる。
 例えば、TN液晶用配向膜(プレチルト角が3~5°)では、式[12]のジアミンの含有量はジアミン成分全体の10~30mol%が好ましく、OCB用配向膜、あるいはVA用配向膜(プレチルト角が10~90°)では、式[19]~式[26]のジアミンの含有量はジアミン成分全体の5~40mol%が好ましい。
 本発明の液晶配向処理剤に使用されるポリアミック酸もしくはポリイミドの溶解性、液晶の配向性、チルト角、電圧保持率、蓄積電荷などの各特性のバランスを考慮すると、例えば式[1]、式[3]、及び式[12]で表されるジアミン成分を用いる場合、それぞれのジアミン成分の好ましい比率は、モル比で、10~50%(式[1])/20~80%(式[3])/10~30%(式[12])が好ましく、さらに好ましくは20~40%(式[1])/30~50%(式[3])/10~30%(式[12])である。
<テトラカルボン酸二無水物成分>
 本発明の液晶配向処理剤に必要なポリアミック酸又はポリイミドにおいて、上記したジアミン成分と反応させるテトラカルボン酸二無水物成分は、特に限定されない。すなわち、1種類のテトラカルボン酸二無水物であってもよく、2種類以上のテトラカルボン酸二無水物を併用してもよい。
 本発明の液晶配向処理剤においては、液晶セルの電圧保持率を更に向上できる点などから、前記のジアミン成分と反応させるテトラカルボン酸二無水物として、脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物を用いることが好ましい。
 脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、〔4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物〕、1,2,3,4-ブタンテトラカルボン酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸二無水物、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-二無水物、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-二無水物などが挙げられる。この中で、特に1,2,3,4-シクロブタンテトラカルボン酸二無水物を用いると液晶配向性に優れた配向膜が得られるために好ましい。
 更には、芳香族テトラカルボン酸二無水物を併用すると、液晶配向性が向上し、かつ液晶セルの蓄積電荷の抜けを速くすることができる。芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物などが挙げられる。中でもピロメリット酸二無水物が特に好ましい。
 得られたポリアミック酸もしくはポリイミドの溶解性、液晶の配向性、電圧保持率、蓄積電荷などの各特性のバランスを考慮するならば、脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物と、芳香族テトラカルボン酸二無水物との使用比率は、前者/後者のモル比で90/10~50/50が好ましく、より好ましくは80/20~60/40である。
<重合反応>
 本発明において、テトラカルボン酸二無水物成分とジアミン成分の重合反応方法は特に限定されない。一般的には、有機溶媒中で混合することにより重合反応してポリアミック酸とすることができ、このポリアミック酸を脱水閉環させることによりポリイミドとすることができる。
 テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で混合させる方法としては、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられる。また、テトラカルボン酸二無水物成分又はジアミン成分が複数種の化合物からなる場合は、これら複数種の成分をあらかじめ混合した状態で重合反応させてもよく、個別に順次重合反応させてもよい。
 テトラカルボン酸二無水物成分とジアミン成分を有機溶剤中で重合反応させる際の温度は、通常0~150℃、好ましくは5~100℃、より好ましくは10~80℃である。温度が高い方が重合反応は早く終了するが、高すぎると高分子量の重合体が得られない場合がある。
 また、重合反応は任意の濃度で行うことができるが、テトラカルボン酸二無水物成分とジアミン成分との合計濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、合計濃度は好ましくは1~50質量%、より好ましくは5~30質量%である。重合反応初期は高濃度で行い、その後、有機溶媒を追加してもよい。
 上記重合反応の際に用いられる有機溶媒は、生成したポリアミック酸が溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチルイミダゾリジノン等を挙げることができる。これらは単独でも、また混合して使用してもよい。さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒は、なるべく脱水乾燥させたものを用いることが好ましい。
 ポリアミック酸の重合反応に用いるテトラカルボン酸二無水物成分とジアミン成分の比率は、モル比で1:0.8~1:1.2であることが好ましく、このモル比が1:1に近いほど、得られるポリアミック酸の分子量は大きくなる。このポリアミック酸の分子量を制御することで、イミド化後に得られるポリイミドの分子量を調整することができる。
 本発明のポリアミック酸又はポリイミドの分子量は特に限定されないが、液晶配向処理剤に含有させる場合には、得られる塗膜の強度と液晶配向処理剤としての取り扱いのし易さの観点から、重量平均分子量で2,000~200,000が好ましく、より好ましくは5,000~50,000である。
<ポリイミドの合成>
 本発明の液晶配向処理剤に使用されるポリイミドは、上記したポリアミック酸をイミド化したポリイミドである。ポリアミック酸のイミド化は、有機溶媒中において、塩基性触媒と酸無水物の存在下で、1~100時間攪拌することにより可能である。
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは、反応を進行させるのに適度な塩基性を持つので好ましい。
 また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができる。中でも無水酢酸は、イミド化終了後に、得られたポリイミドの精製が容易となるので好ましい。
 有機溶媒としては前述したポリアミック酸重合反応時に用いる溶媒を使用することができる。
 ポリイミドのイミド化率は、触媒量、反応温度、反応時間などを調節することにより制御することができる。このときの塩基性触媒の量は、アミック酸基の0.2~10倍モルが好ましく、より好ましくは0.5~5倍モルである。また、酸無水物の量は、アミック酸基の1~30倍モルが好ましく、より好ましくは1~10倍モルである。反応温度は-20~250℃が好ましく、より好ましくは0~180℃である。
 本発明の液晶配向処理剤に使用されるポリイミドのイミド化率は特に限定されないが、より高い電圧保持率の液晶配向膜が得られるという理由から、イミド化率が40%以上であることが好ましく、60%以上がより好ましく、特に好ましくは80%以上である。
 このようにして得られたポリイミドの溶液には、添加した触媒などが残存しているので、液晶配向処理剤に用いる場合には、ポリイミドを回収・洗浄してから使用することが好ましい。
 ポリイミドの回収は、貧溶媒の撹拌下にイミド化後の溶液を投入し、ポリイミドを析出させた後にろ過することで可能となる。このときの貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼンなどを挙げることができる。回収したポリイミドの洗浄も、この貧溶媒で行うことができる。このようにして回収・洗浄したポリイミドは、常圧あるいは減圧下で、常温あるいは加熱乾燥して粉末とすることができる。
 このような操作は、前記のポリアミック酸に対しても行うことができる。例えば、ポリアミック酸の重合に用いた溶媒を液晶配向処理剤中に含有させたくない場合や、反応溶液中の未反応のモノマー成分や不純物を除きたい場合には、上記の沈殿回収及び精製を行えばよい。
<液晶配向処理剤>
 本発明の液晶配向処理剤は、上記のようにして得られたポリアミック酸及びポリイミドのうちの少なくとも一種の重合体を含有する塗布液である。
 その製造例を挙げると、前記したポリアミック酸又はポリイミドの反応溶液をそのまま、又は希釈したものでもよく、反応液から沈殿回収したものを有機溶媒に再溶解してもよい。また、希釈や再溶解の工程においては、基板への塗布性を制御するための溶媒組成の調整や、塗膜の特性を改善するための添加物の追加などを行うことができる。更には、上記とは異なる構造のポリイミドの溶液や、ポリアミック酸の溶液と混合したり、他の樹脂成分を添加してもよい。
 上記の希釈や再溶解の工程に使用する有機溶媒としては、含有される重合体を溶解させるものであれば特に限定されない。その具体例を挙げると、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノンなどである。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチルイミダゾリジノン、γ-ブチロラクトンは好適に用いられる。これらは1種又は2種以上を混合して用いてもよい。
 液晶配向処理剤の基板への塗布性を制御するために加える溶媒としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、ジエチレングリコールジエチルエーテル、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどが挙げられる。これらの溶媒には、単独ではポリアミック酸もしくはポリイミドを溶解させることができない溶媒も含まれるが、重合体が析出しない範囲であれば、本発明の液晶配向処理剤に混合することができる。特に、低表面張力を有する溶媒を適度に混合させることにより、基板への塗布時に塗膜均一性が向上でき、本発明の液晶配向処理剤においても好適に用いられる。この中で、特にポリイミドの溶解性の観点から、ブチルセロソルブ、エチルカルビトール、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテルが特に好ましい。
 塗膜の特性を改善するための添加物としては、3-アミノプロピルメチルジエトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシランなどのシランカップリング剤が挙げられる。これらのシランカップリング剤の添加により、基板に対する塗膜の密着性を向上させることができるが、添加量が過大な場合は、ポリアミック酸やポリイミドなどが凝集し易くなる。そのため、シランカップリング剤の含有量は、好ましくはポリアミック酸及びポリイミドの合計質量に対して0.5~10質量%、より好ましくは1~5質量%である。
 本発明の液晶配向処理剤の固形分濃度は、形成させようとする液晶配向膜の厚みの設定によって適宜変更することができるが、1~10質量%とすることが好ましい。1質量%未満では均一で欠陥のない塗膜を形成させることが困難となり、10質量%よりも多いと溶液の保存安定性が悪くなる場合がある。ここで言うところの固形分とは、液晶配向処理剤から溶媒を除いたものを指す。また、本発明の液晶配向処理剤に使用されるポリアミック酸又はポリイミドの濃度は特に限定されないが、得られる液晶配向膜の特性の観点から、好ましくは1質量%以上であり、より好ましくは3質量%以上であり、特には5質量%以上である。
 以上のようにして得られた液晶配向処理剤は、基板に塗布する前に濾過することが好ましい。
<液晶表示素子>
 本発明の液晶配向処理剤は、基板に塗布し、乾燥、焼成することで塗膜とすることができ、この塗膜面をラビング処理することにより、ラビング用の液晶配向膜として使用される。またラビング処理をしないVA用(垂直配向用)液晶配向膜、光配向膜としても使用される。
 この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、アクリル基板若しくはポリカーボネート基板などのプラスチック基板などを用いることができ、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
 液晶配向処理剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられるが、生産性の面から工業的にはフレキソ印刷法が広く用いられており、本発明の液晶配向処理剤においても好適に用いられる。
 液晶配向処理剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合や、塗布後直ちに焼成されない場合には、乾燥工程を含むのが好ましい。乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が蒸発していればよく、その乾燥手段については特に限定されない。例えば、50~150℃、好ましくは80~120℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法が挙げられる。
 液晶配向処理剤を塗布した基板の焼成は、100~350℃の任意の温度で行うことが好ましいが、より好ましくは150~300℃であり、さらに好ましくは180~250℃である。液晶配向処理剤中にアミック酸基が存在する場合は、この焼成によってアミック酸からイミドへの転化率が変化するが、本発明の液晶配向処理剤は、必ずしも100%イミド化させる必要はない。
 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは10~200nm、より好ましくは50~100nmである。
 上記のようにして基板上に形成された塗膜面のラビング処理は、既存のラビング装置を使用することができる。この際のラビング布の材質としては、コットン、レーヨン、ナイロンなどが挙げられる。
 上記した手法により得られた液晶配向膜付き基板は、公知の方法で液晶セルを作製し、液晶表示素子とすることができる。液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を、好ましくは1~30μm、より好ましくは2~10μmのスペーサーを挟んで、ラビング方向が0~270°の任意の角度となるように設置して周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を行う滴下(ODF)法などが例示できる。
 このようにして得られた液晶表示素子は、TN液晶表示素子、STN液晶表示素子、TFT液晶表示素子、OCB液晶表示素子、更には、横電界型(IPS)液晶表示素子、VA液晶表示素子など、種々の方式による表示素子に好適に用いられる。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定して解釈されるものではない。
(合成例1)
3,5-ジアミノベンジルベンゾエートの合成
 500mL四口フラスコに、3,5-ジニトロベンジルアルコール20.0g、ベンゾイルクロリド14.9g、テトラヒドロフラン150mLの溶液に、ピリジン8.8gを滴下して、室温で30時間攪拌した。反応終了後、純水50mLを加え1時間攪拌した。酢酸エチルを加えて有機層を抽出し、有機層を1N塩酸、飽和重曹水、飽和食塩水で洗浄した。有機層に無水硫酸マグネシウムを加えて脱水乾燥、濾過した後に、ロータリーエバポレーターを用いて溶媒留去を行った。残渣を酢酸エチルを用いて再結晶を行い、24.9gの下記のNMR特性を有するジニトロ化合物を合成した(収率82%)。
1H NMR (400 MHz,CDCl3):δ9.03 (t, 1H), 8.65 (d, 2H), 8.12-8.07 (m, 2H), 7.63 (tt, 1H), 7.53-7.47 (m, 2H), 5.55 (s, 2H)
Figure JPOXMLDOC01-appb-C000023
 500mL四口フラスコにジニトロ化合物24.9g、白金/カーボン2.5g、1,4-ジオキサン250gを加え、水素雰囲気下室温で攪拌した。反応終了後セライトろ過を行い、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をメタノールを用いて再結晶を行い、薄茶色固体を12.8g合成した(収率64%)。
 この薄茶色固体をNMRで測定した結果を以下に示す。その結果から、得られた薄茶色固体が目的とするジアミン化合物であることを確認した。
1H NMR (400 MHz,DMSO-d6):δ8.01-7.99 (m, 2H), 7.69-7.64 (m, 1H), 7.57-7.51 (m, 2H), 5.87 (d, 2H), 5.79 (t, 1H), 5.06 (s, 2H), 4.80 (br, 4H)
Figure JPOXMLDOC01-appb-C000024
(合成例2)
3,5-ジアミノベンジルニコチネートの合成
 500mL三口フラスコに、1,3-ジニトロベンジルアルコール25.0g、ピコリン酸クロリド塩酸塩24.6g、N,N-ジメチルアミノピリジン1.4g、テトラヒドロフラン300mLを加えた。トリエチルアミン52.8mLを滴下し、室温で18時間攪拌した。反応終了後、純水50mLを加え1時間攪拌した。酢酸エチルを加えて有機層を抽出し、有機層を1N塩酸、飽和重曹水、飽和食塩水で洗浄した。有機層に無水硫酸マグネシウムを加えて脱水乾燥、濾過した後に、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をテトラヒドロフラン/ヘキサン=1/4を用いて再結晶を行い、36.0gの下記のNMR特性を有するジニトロ化合物を合成した(収率94%)。
1H NMR (400 MHz,CDCl3):δ9.04 (t, 1H), 8.83-8.79 (m, 1H), 8.71-8.65 (m, 2H), 8.19 (dt, 1H), 7.91 (d, 1H), 7.59-7.54 (m, 1H), 5.64 (d, 2H)
Figure JPOXMLDOC01-appb-C000025
 500mL四口フラスコにジニトロ化合物29.4g、白金/カーボン4.5g、1,4-ジオキサン430gを加え、水素雰囲気下室温で攪拌した。反応終了後セライトろ過を行い、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をイソプロピルアルコールを用いて再結晶を行い、薄茶色固体を20.2g合成した(収率86%)。
 この薄茶色固体をNMRで測定した結果を以下に示す。その結果から、得られた薄茶色固体が、目的とするジアミン化合物であることを確認した。
1H NMR (400 MHz,CDCl3):δ8.80-8.76 (m, 1H), 8.14 (dt, 1H), 7.83 (dt, 1H), 7.50-7.45 (m, 1H), 6.23 (d, 2H), 6.00 (t, 1H), 5.28 (s, 2H), 3.1 (br, 4H)
Figure JPOXMLDOC01-appb-C000026
(合成例3)
3,5-ジアミノベンジル-1,3,4-トリメチルピラゾール-5-カルボキシレートの合成
 500mL四口フラスコに1,3,4-トリメチル-1H-ピラゾール-5-カルボン酸17.1g、ジクロロメタン250mLを加え、温度0度に冷却した。二塩化オキラリル10.2mL、DMF0.8gを加え、室温で2時間攪拌した。攪拌後、3,5-ジニトロベンジルアルコール22.0g、ピリジン9.7gを加え、室温で41時間攪拌した。反応終了後、純水50mLを加え1時間攪拌した。酢酸エチルを加えて有機層を抽出し、有機層を1N塩酸、飽和重曹水、飽和食塩水で洗浄した。有機層に無水硫酸マグネシウムを加えて脱水乾燥、ろ過した後に、ロータリーエバポレーターを用いて溶媒留去を行った。イソプロピルアルコールを用いて残渣の再結晶を行い、18.1gの下記のNMR特性を有するジニトロ化合物を得た。(収率71%)。
1H NMR (400 MHz, CDCl3):δ9.04 (t, 1H), 8.64 (dt, 2H), 5.54 (t, 2H), 4.08 (s, 3H), 2.24 (s, 3H), 2.21 (s, 3H)
Figure JPOXMLDOC01-appb-C000027
 500mL四口フラスコに、ジニトロ化合物18.0g、白金/カーボン1.8g、テトラヒドロフラン180gを加え、水素雰囲気下17時間攪拌した。反応終了後セライトろ過を行い、ロータリーエバポレーターを用いて溶媒留去を行った。残渣をテトラヒドロフランとイソプロピルアルコールを用いて再結晶を行い、薄茶色固体を9.8g得た(収率67%)。
 この薄茶色固体をNMRで測定した結果を以下に示す。この結果から、得られた薄茶色固体が、目的とするジアミン化合物であることを確認した。
1H NMR (400 MHz, CDCl3):δ6.15 (d, 2H), 5.98 (t, 1H), 5.15 (s, 2H), 4.06 (s, 3H), 3.58 (br, 4H), 2.18 (s, 6H)
Figure JPOXMLDOC01-appb-C000028
(合成例4)2-(ピリジンー2-イル)エチルー3,5-ジアミノベンゾエートの合成 300mL四口フラスコに2-ピリジンエタノール23.45g、トリエチルアミン19.23gをテトラヒドロフラン200mlに溶解させ、10℃以下に冷却し、ジニトロベンゾイルクロリド41.68gをテトラヒドロフラン110gに溶解させた溶液を、発熱に注意しながら滴下した。滴下終了後、反応温度を23℃に上げ、さらに反応を行った。反応終了確認後、蒸留水1.5Lに反応液を注ぎ、析出した固体をろ過、水洗後、エタノール380gで分散洗浄することにより、50.82gの下記のNMR特性を有するジニトロ化合物を得た。(収率:89%)。
1HNMR(400MHz,DMSO-d6):δ9.76(t,1H)9.09-9.02(m,2H),8.99-8.93(m,1H),8.50(m,1H),7.64-7.60(m,1H),7.36-7.32(m,1H),4.57(s,2H),3.35(s,2H)
 ジニトロ化合物48.00g、白金カーボン4.8g、1,4-ジオキサン490gの混合物を、水素雰囲気下23℃で攪拌した。反応終了後、触媒をセライトにてろ過した後、エバポレーターにて溶媒を留去し粗物を得た。得られた粗物をエタノール300gで分散洗浄し、下記のNMR特性を有する目的とするジアミン化合物を得た(得量:27.20g,得率:70%)。
1HNMR(400MHz,DMSO-d6):δ8.64(t,1H),8.44(d,1H),7.67(d,1H),7.34(q,1H),6.23(d,2H),5.94(s,1H),4.87(b,4H),4.39(d,2H),3.38(s,2H)
Figure JPOXMLDOC01-appb-C000030
実施例1~10及び比較例1~4
 下記する実施例1~10及び比較例1~4において、液晶配向処理剤の製造例を記載するが、ポリアミック酸及びポリイミドの合成で使用された略号の説明は下記するとおりであり、また、<分子量の測定>、<イミド化率の測定>、<ラビング耐性の評価>、<液晶セルの作製>、<プレチルト角の評価>、<電圧保持率の測定方法>、及び<蓄積電荷(RDC)の評価>についての方法は、下記のとおりである。
 なお、これらの実施例及び比較例の各液晶配向処理剤の物性(特性)は、後記する表1及び表2にまとめて示される。
<テトラカルボン酸二無水物>
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
<ジアミン>
DABPh:3,5-ジアミノベンジルベンゾエート
DABPy:3,5-ジアミノベンジルニコチネート
DABTMPz:3,5-ジアミノベンジル-1,3,4-トリメチル-1H-ピラゾール-5-カルボキシレート
RefDA:2-(ピリジン-2-イル)エチル 3,5-ジアミノベンゾエート
C14DAB:4-テトラデシルオキシ-1,3-ジアミノベンゼン
3-ABA:3-アミノベンジルアミン
<有機溶媒>
NMP:N-メチル-2-ピロリドン
γBL:γ-ブチロラクトン
BC:ブチルセロソルブ
DPM:ジプロピレングリコールモノメチルエーテル
 <分子量の測定>
 ポリアミック酸及びポリイミドの分子量は、該ポリイミドを下記のGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール及びポリエチレンオキシド換算値として、それぞれ、数平均分子量及び重量平均分子量を算出した。
 GPC装置:Shodex社製 (GPC-101)
 カラム:Shodex社製 (KD803、KD805の直列)
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(数平均分子量 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(重量平均分子量 約12,000、4,000、1,000)。
<イミド化率の測定>
 ポリイミドのイミド化率は、該ポリイミドをd6-DMSO(ジメチルスルホキシド-d6)に溶解させ、1H-NMRを測定し、イミド化せずに残存しているアミド酸基の比率をプロトンピークの積算値の比から求め算出した。
<ラビング耐性の評価>
 各液晶配向処理剤を透明電極付きガラス基板にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、210℃のホットプレート上で10分間焼成を行い、膜厚70nmの塗膜を形成させた。この塗膜面をロール径120mmのラビング装置(飯沼ゲージ製作所製 RS01-2型)でレーヨン布を用いて、ロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.5mmの条件でラビングし、液晶配向膜付き基板を得た。液晶配向膜表面を共焦点レーザー顕微鏡にて観察した。評価は以下の基準に従って示した。
    ○:削れカスやラビング傷が観察されない。
    △:削れカスやラビング傷が観察される。
    ×:膜が剥離する又は目視でラビング傷が観察される。
<液晶セルの作製>
 各液晶配向処理剤を用いて、以下のようにして液晶セルを作製した。
 液晶配向処理剤を透明電極付きガラス基板にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、210℃のホットプレート上で10分間焼成を行い、膜厚70nmの塗膜を形成させた。この塗膜面をロール径120mmのラビング装置でレーヨン布を用いて、ロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.3mmの条件でラビングし、液晶配向膜付き基板を得た。液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合いラビング方向が直交するようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2003(メルク・ジャパン社製)を注入し、注入口を封止して、ツイストネマティック液晶セルを得た。
<プレチルト角の測定>
 上記<液晶セル作製>に記載方法で作製したツイストネマティック液晶セルを105℃で5分間加熱した後、プレチルト角の測定と電圧保持率の測定を行った。プレチルト角はクリスタルローテーション法を用いて測定した。
<電圧保持率の測定>
 上記<液晶セル作製>に記載方法で作製したツイストネマティック液晶セルに、90℃の温度下で4Vの電圧を60μs間印加し、16.67ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として求めた。なお、電圧保持率の測定には電圧保持率測定装置(東陽テクニカ社製、VHR-1)を使用した。
<蓄積電荷(RDC)の評価>
 上記<液晶セル作製>に記載方法で作製したツイストネマティック液晶セルに、23℃の温度下で直流電圧を0Vから0.1V間隔で1.0Vまで印加し、各電圧でのフリッカー振幅レベルを測定し、検量線を作成した。次いで、5分間アースした後、交流電圧3.0V、直流電圧5.0Vを印加し、1時間後のフリッカー振幅レベルを測定し、予め作製した検量線と照らし合わせることによりRDCを評価した。このRDCの評価方法は、フリッカー参照法と呼ばれる。
(実施例1)
 テトラカルボン酸二無水物成分として、CBDAを5.00g(25mmol)、ジアミン成分として、DABPhを6.30g(26mmol)を用い、NMP45.18g中、室温で16時間反応させ20質量%のポリアミック酸溶液(PAA-1)を得た。
 このポリアミック酸溶液(PAA-1) 10.0gを、NMP13.3g及びBC10.0gを用いて希釈し、固形分を6質量%、NMPを64質量%、及びBCを30質量%含有する溶液からなる液晶配向処理剤を得た。
(実施例2)
 実施例1で得られたポリアミック酸溶液(PAA-1濃度20質量%)40gに、NMPを93.33g加えて希釈し、次いで、無水酢酸5.64g及びピリジン2.33gを加え、40℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール500ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-1)の白色粉末を得た。このポリイミドは、数平均分子量が14,630、重量平均分子量が32,160であり、また、イミド化率は82%であった。
 得られたポリイミド(SPI-1)2.00gに、γ-BL18.0gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にγ-BL8.0g、BC6.00g、及びDPM6.00gを加え、50℃で20時間攪拌し、ポリイミド(SPI-1)を5質量%、γ-BLを65質量%、DPMを15質量%、及びBCを15質量%が含有する溶液からなる液晶配向処理剤を得た。
(実施例3)
 テトラカルボン酸二無水物成分として、CBDAを5.00g(25mmol)、ジアミン成分として、DABPyを6.32g(26mmol)を用い、NMP45.29g中、室温で16時間反応させ、20質量%のポリアミック酸溶液(PAA-2)を得た。
 ポリアミック酸溶液(PAA-2) 10.0gを、NMP13.3g及びBC10.0gを用いて希釈し、固形分を6質量%、NMPを64質量%、及びBCを30質量%含有する溶液からなる液晶配向処理剤を得た。
(実施例4)
 実施例3で得られたポリアミック酸溶液(PAA-2濃度20質量%)40gに、NMPを93.33g加えて希釈し、無水酢酸5.77gとピリジン2.39gを加え、40℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール500ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-2)の白色粉末を得た。このポリイミドの数平均分子量は13,204、重量平均分子量は30,700であった。また、イミド化率は87%であった。
 得られたポリイミド(SPI-2)2.00gに、γ-BL18.0gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらにこの溶液にγ-BL8.0g、BC6.00g、及びDPM6.00gを加え、50℃で20時間攪拌し、ポリイミド(SPI-2)を5質量%、γ-BLを65質量%、DPMを15質量%、及びBCを15質量%含有する溶液からなる液晶配向処理剤を得た。
(実施例5)
 テトラカルボン酸二無水物成分として、CBDAを5.30g(27mmol)、ジアミン成分として、DABPhを2.00g(8mmol)、3-ABAを1.35g(11mmol)、及びC14DABを2.65g(8mmol)用い、NMP45.25g中、室温で16時間反応させ20質量%のポリアミック酸溶液(PAA-3)を得た。
ポリアミック酸溶液(PAA-3) 10.0gをNMP13.3g、及びBC10.0gを用いて希釈し、固形分を6質量%、NMPを64質量%、及びBCを30質量%含有する溶液からなる液晶配向処理剤を得た。
(実施例6)
 実施例5で得られたポリアミック酸溶液(PAA-3濃度20質量%)40gに、NMPを93.33g加えて希釈し、無水酢酸5.97gとピリジン2.47gを加え、60℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール500ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-3)の乳白色粉末を得た。このポリイミドの数平均分子量は14,785、重量平均分子量は37,483であった。また、イミド化率は88%であった。
 ポリイミド(SPI-3)2.00gに、γ-BL18.0gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ-BL8.0g、BC6.00g、及びDPM6.00gを加え、50℃で20時間攪拌し、ポリイミド(SPI-3)を5質量%、γ-BLを65質量%、DPMを15質量%、及びBCを15質量%含有する溶液からなる液晶配向処理剤を得た。
(実施例7)
 テトラカルボン酸二無水物成分として、CBDAを5.27g(27mmol)、ジアミン成分として、DABPyを2.00g(8mmol)、3-ABAを1.34g(11mmol)、及びC14DABを2.63g(8mmol)用い、NMP44.96g中、室温で16時間反応させ20質量%のポリアミック酸溶液(PAA-4)を得た。
 ポリアミック酸溶液(PAA-4) 10.0gをNMP13.3g、及びBC10.0gを用いて希釈し、固形分を6質量%、NMPを64質量%、及びBCを30質量%含有する溶液からなる液晶配向処理剤を得た。
(実施例8)
 実施例7で得られたポリアミック酸溶液(PAA-4濃度20質量%)40gに、NMPを93.33g加えて希釈し、無水酢酸5.97gとピリジン2.47gを加え、60℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール500ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-4)の乳白色粉末を得た。このポリイミドの数平均分子量は15,594、重量平均分子量は42,320であった。また、イミド化率は87%であった。
 ポリイミド(SPI-4)2.00gに、γ-BL18.0gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ-BL8.0g、BC6.00g、及びDPM6.00gを加え、50℃で20時間攪拌し、ポリイミド(SPI-4)を5質量%、γ-BLを65質量%、DPMを15質量%、及びBCを15質量%含有する溶液からなる液晶配向処理剤を得た。
(実施例9)
 テトラカルボン酸二無水物成分として、CBDAを5.57g(29mmol)、ジアミン成分として、DABTMPzを2.38g(9mmol)、3-ABAを1.42g(12mmol)、及びC14DABを2.79g(9mmol)用い、NMP46.7g中、室温で16時間反応させポリアミック酸(PAA-5)の濃度20質量%の溶液を得た。
 このポリアミック酸(PAA-5)溶液10.0gを、NMP13.3g及びBC10.0gを用いて希釈し、ポリアミック酸(PAA-5)を6質量%、NMPを64質量%、及びBCが30質量%含有する溶液からなる液晶配向処理剤を得た。
(実施例10)
 実施例9と同様にして得られたポリアミック酸(PAA-5)溶液(PAA-5濃度20質量%)40.0gに、NMPを93.3g加えて希釈し、無水酢酸6.06gとピリジン2.53gを加え、60℃で3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール500ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで2回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-5)の白茶色粉末を得た。このポリイミドの数平均分子量は14,222、重量平均分子量は33,154であった。また、イミド化率は88%であった。
 ポリイミド(SPI-5)2.00gに、γ-BL18.0gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ-BL8.00g、BC6.00g、及びDPM6.00gを加え、50℃で20時間攪拌し、ポリイミド(SPI-5)を5質量%、γ-BLを65質量%、DPMを15質量%、及びBCを15質量%含有する溶液からなる液晶配向処理剤を得た。
(比較例1)
 テトラカルボン酸二無水物成分として、CBDAを12.5g(64mmol)、ジアミン成分として、3-ABAを5.56g(46mmol)、及びC14DABを6.25g(20mmol)用い、NMP97.20g中、室温で16時間反応させ20質量%のポリアミック酸溶液を得た(PAA-6)。
 ポリアミック酸(PAA-6) 10.0gをNMP13.3g、及びBC10.0gを用いて希釈し、固形分を6質量%、NMPを64質量%、及びBCを30質量%含有する溶液からなる液晶配向処理剤を得た。
(比較例2)
 比較例1で得られたポリアミック酸溶液(PAA-6)50gに、NMP116.67g加えて希釈し、無水酢酸7.39gとピリジン3.15gを加え、70℃で3時間反応させてイミド化を行ったが、反応中にゲル化してしまった。
 再度、ポリアミック酸溶液(PAA-6)50gに、NMP116.67g加えて希釈し、無水酢酸7.39gとピリジン3.15gを加え、イミド化の反応温度を50℃にして行った。
 この反応溶液を室温程度まで冷却後、メタノール600ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-6)の白色粉末を得た。このポリイミドの数平均分子量は16,338、重量平均分子量は39,865であった。またイミド化率は80%であった。
 ポリイミド(SPI-6)1.00gに、γBL9gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ-BL4.0g、BC3.0g、及びDPM3.0gを加え、50℃で20時間攪拌し、ポリイミドを5質量%、γ-BLを65質量%、DPMを15質量%、及びBCを15質量%含有する溶液からなる液晶配向処理剤を得た。
(比較例3)
 テトラカルボン酸二無水物成分として、CBDAを5.76g(29mmol)、ジアミン成分として、RefDAを2,31g(9mmol)、3-ABAを1.46g(12mmol)、及びC14DABを2.88g(9mmol)用い、NMP56.84g中、室温で16時間反応させ20質量%のポリアミック酸溶液を得た(PAA-7)。
 ポリアミック酸(PAA-7) 10.0gをNMP13.3g、及びBC10.0gを用いて希釈し、固形分を6質量%、NMPを64質量%、及びBCを30質量%含有する溶液からなる液晶配向処理剤を得た。
(比較例4)
 比較例3で得られたポリアミック酸溶液(PAA-7)50gに、NMPを116.67g加えて希釈し、無水酢酸7.39gとピリジン3.06gを加え、70℃で3時間反応させてイミド化を行った。
 この反応溶液を室温程度まで冷却後、メタノール600ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、100℃で減圧乾燥して、ポリイミド(SPI-7)の薄茶色粉末を得た。このポリイミドの数平均分子量は18,668、重量平均分子量は41,256であった。またイミド化率は89%であった。
 ポリイミド(SPI-7)1.00gに、γBL9gを加え、50℃で20時間攪拌した。攪拌終了時点でポリイミドは完全に溶解していた。さらに、この溶液にγ-BL4.0g、BC3.0g、及びDPM3.0gを加え、50℃で20時間攪拌し、ポリイミドを5質量%、γ-BLを65質量%、DPMを15質量%、及びBCを15質量%含有する溶液からなる液晶配向処理剤を得た。
 本発明の液晶配向処理剤により、ラビング時の膜剥がれや削れに強く、電圧保持率が高く、かつ直流電圧が印加されても初期の電荷の蓄積が起こり難い液晶配向膜が得られる。そのため、本発明の液晶配向処理剤を用いて作製した液晶表示素子は、信頼性の高い液晶表示デバイスとすることができ、TN液晶表示素子、STN液晶表示素子、TFT液晶表示素子、VA液晶表示素子、IPS液晶表示素子、OCB液晶表示素子など、種々の方式による表示素子に好適に用いられる。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
 なお、2009年12月14日に出願された日本特許出願2009-283330号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (19)

  1.  下記式[1]で表わされるジアミン化合物を含むジアミン成分と、テトラカルボン酸二無水物成分とを反応させて得られるポリアミック酸、及び該ポリアミック酸をイミド化して得られるポリイミドからなる群から選ばれる少なくとも一種の重合体を含有する液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Arは同素環芳香族化合物、又は窒素原子含有複素環芳香族化合物を表し、環を構成する炭素原子上又は窒素原子上の水素原子は置換されていてもよい。)
  2.  式[1]のArが、六員環の同素環芳香族化合物又は六員環の窒素原子含有複素環芳香族化合物である請求項1に記載の液晶配向処理剤。
  3.  式[1]のArが、五員環の窒素原子含有複素環芳香族化合物である請求項1に記載の液晶配向処理剤。
  4.  式[1]のArが、ベンゼン、ピリジン、ピリダジン、ピリミジン、ピラジン又はトリアジンである請求項1に記載の液晶配向処理剤。
  5.  式[1]のArが、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール、ピロール、イミダゾール、ピラゾール、又はトリアゾールである請求項1に記載の液晶配向処理剤。
  6.  式[1]で表わされるジアミン化合物が、下記一般式[4]から式[6]で表されるいずれかの化合物である請求項1に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000002
  7.  式[1]で表わされるジアミン化合物が、下記一般式[2]で表される化合物である請求項1に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000003
  8.  ジアミン成分として、下記式[3]で表されるジアミン化合物を少なくとも10mol%以上含む請求項1~7のいずれかに記載の液晶配向処理剤。

    N-Ar’-R-NH-R [3]

    (式中、Ar'はフェニレン基又はナフチレン基を表し、R炭素数が1~5のアルキレン基を表し、Rは炭素数が1~5のアルキル基を表す)
  9.  テトラカルボン酸二無水物成分が、脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物を含む請求項1~8のいずれかに記載の液晶配向処理剤。
  10.  請求項1~9のいずれかに記載の液晶配向処理剤を電極付き基板上に塗布、焼成してなる液晶配向膜。
  11.  請求項10に記載の液晶配向膜を具備する液晶表示素子。
  12.  下記式[1]で表されるジアミン化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Arは同素環芳香族化合物、又は窒素原子含有複素環芳香族化合物を表し、環を構成する炭素原子上又は窒素原子上の水素原子は置換されていてもよい。)
  13.  式[1]のArが、六員環の同素環芳香族化合物又は六員環の窒素原子含有複素環芳香族化合物である請求項12に記載のジアミン化合物。
  14.  式[1]のArが、五員環の窒素原子含有複素環芳香族化合物である請求項12に記載のジアミン化合物。
  15.  式[1]のArが、ベンゼン、ピリジン、ピリダジン、ピリミジン、ピラジン又はトリアジンである請求項12に記載のジアミン化合物。
  16.  式[1]のArが、オキサゾール、オキサジアゾール、チアゾール、チアジアゾール、ピロール、イミダゾール、ピラゾール、又はトリアゾールである請求項12に記載のジアミン化合物。
  17.  式[1]で表わされるジアミン化合物が、下記一般式[4]から式[6]で表されるいずれかの化合物である請求項12に記載のジアミン化合物。
    Figure JPOXMLDOC01-appb-C000005
  18.  式[1]で表わされるジアミン化合物が、下記一般式[2]で表される化合物である請求項12に記載のジアミン化合物。
    Figure JPOXMLDOC01-appb-C000006
  19.  請求項12~18のいずれかに記載のジアミン化合物を含有するジアミン成分と、テトラカルボン酸二無水物成分とを反応させて得られるポリアミック酸、又は該ポリアミック酸をイミド化して得られるポリイミド。
PCT/JP2010/072400 2009-12-14 2010-12-13 液晶配向処理剤及びそれを用いた液晶表示素子 WO2011074546A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080063462.8A CN102754020B (zh) 2009-12-14 2010-12-13 液晶取向处理剂及使用该处理剂的液晶显示元件
KR1020127015035A KR101742838B1 (ko) 2009-12-14 2010-12-13 액정 배향 처리제 및 그것을 사용한 액정 표시 소자
JP2011546117A JP5751171B2 (ja) 2009-12-14 2010-12-13 液晶配向処理剤及びそれを用いた液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-283330 2009-12-14
JP2009283330 2009-12-14

Publications (1)

Publication Number Publication Date
WO2011074546A1 true WO2011074546A1 (ja) 2011-06-23

Family

ID=44167298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072400 WO2011074546A1 (ja) 2009-12-14 2010-12-13 液晶配向処理剤及びそれを用いた液晶表示素子

Country Status (5)

Country Link
JP (1) JP5751171B2 (ja)
KR (1) KR101742838B1 (ja)
CN (1) CN102754020B (ja)
TW (1) TWI502054B (ja)
WO (1) WO2011074546A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002513A1 (ja) * 2010-06-30 2012-01-05 日産化学工業株式会社 重合性化合物、液晶配向剤、液晶配向膜及び液晶表示素子並びに液晶表示素子の製造方法
WO2013137333A1 (ja) * 2012-03-16 2013-09-19 株式会社壮驥 液晶配向膜形成用組成物及び液晶表示素子
US10859874B2 (en) 2018-04-03 2020-12-08 Samsung Display Co., Ltd. Liquid crystal display apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108474981B (zh) * 2015-10-14 2021-04-16 日产化学工业株式会社 液晶取向剂、液晶取向膜和液晶表示元件
CN108700777A (zh) * 2015-12-25 2018-10-23 日产化学工业株式会社 液晶取向剂、液晶取向膜和液晶表示元件
TWI687457B (zh) * 2016-08-24 2020-03-11 奇美實業股份有限公司 液晶配向劑及其應用
WO2019054443A1 (ja) * 2017-09-13 2019-03-21 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
CN112457867B (zh) * 2020-12-15 2021-08-03 深圳清荷科技有限公司 一种液晶膜材料、液晶取向剂、液晶取向膜及其制备方法和液晶显示元件
CN115490858B (zh) * 2022-10-08 2023-06-23 潍坊科技学院 一种含杂芘结构的深棕色耐高温聚酰亚胺及其合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302598A (ja) * 2000-04-27 2001-10-31 Inst Of Physical & Chemical Res 芳香族ポリアミンの製造方法及び芳香族ジアミン化合物
WO2005105892A1 (ja) * 2004-04-28 2005-11-10 Nissan Chemical Industries, Ltd. 液晶配向剤並びにそれを用いた液晶配向膜及び液晶表示素子
JP2008515933A (ja) * 2004-10-13 2008-05-15 ロリク アーゲー 光架橋性材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051662A1 (fr) * 1998-04-01 1999-10-14 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Compositions de polyimides
JP4258690B2 (ja) * 1999-05-26 2009-04-30 独立行政法人理化学研究所 感光性樹脂組成物
JP4168442B2 (ja) 2002-07-29 2008-10-22 Jsr株式会社 ジアミン化合物、ポリアミック酸、イミド化重合体、液晶配向剤、および液晶表示素子
CN100537638C (zh) * 2004-04-28 2009-09-09 日产化学工业株式会社 液晶定向剂、使用了该定向剂的液晶定向膜及液晶显示元件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302598A (ja) * 2000-04-27 2001-10-31 Inst Of Physical & Chemical Res 芳香族ポリアミンの製造方法及び芳香族ジアミン化合物
WO2005105892A1 (ja) * 2004-04-28 2005-11-10 Nissan Chemical Industries, Ltd. 液晶配向剤並びにそれを用いた液晶配向膜及び液晶表示素子
JP2008515933A (ja) * 2004-10-13 2008-05-15 ロリク アーゲー 光架橋性材料

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002513A1 (ja) * 2010-06-30 2012-01-05 日産化学工業株式会社 重合性化合物、液晶配向剤、液晶配向膜及び液晶表示素子並びに液晶表示素子の製造方法
WO2013137333A1 (ja) * 2012-03-16 2013-09-19 株式会社壮驥 液晶配向膜形成用組成物及び液晶表示素子
JPWO2013137333A1 (ja) * 2012-03-16 2015-08-03 株式会社壮驥 液晶配向膜形成用組成物及び液晶表示素子
US10859874B2 (en) 2018-04-03 2020-12-08 Samsung Display Co., Ltd. Liquid crystal display apparatus

Also Published As

Publication number Publication date
CN102754020B (zh) 2016-03-02
KR101742838B1 (ko) 2017-06-01
TW201132745A (en) 2011-10-01
JPWO2011074546A1 (ja) 2013-04-25
CN102754020A (zh) 2012-10-24
TWI502054B (zh) 2015-10-01
KR20120103629A (ko) 2012-09-19
JP5751171B2 (ja) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5751171B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
TWI407211B (zh) A liquid crystal alignment agent and a liquid crystal display device using the liquid crystal display device
JP5729458B2 (ja) ポリアミック酸またはポリイミドの原料として有用な新規なジアミン
JP5282573B2 (ja) 液晶配向剤、それを用いた液晶配向膜及び液晶表示素子
TWI422616B (zh) A liquid crystal alignment agent and a liquid crystal display device using the liquid crystal display device
JP5660160B2 (ja) ジアミン化合物
TWI793067B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
JP5434821B2 (ja) 液晶配向剤及びそれを用いた液晶表示素子
US20060024452A1 (en) Aligning agent for liquid crystal and liquid-crystal display element
WO2009148100A1 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
TWI507447B (zh) A liquid crystal alignment agent, a liquid crystal alignment film and a liquid crystal display device using the same
JP6183616B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
TWI461462B (zh) A liquid crystal alignment agent and a liquid crystal display device using the liquid crystal display device
TWI786195B (zh) 液晶配向劑、液晶元件的製造方法、液晶配向膜及液晶元件
JP2023007402A (ja) 液晶配向剤、液晶配向膜、液晶素子、重合体及びジアミン
CN115109600A (zh) 一种二胺类化合物及其制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063462.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837572

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011546117

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127015035

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837572

Country of ref document: EP

Kind code of ref document: A1