WO2019054443A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2019054443A1
WO2019054443A1 PCT/JP2018/033981 JP2018033981W WO2019054443A1 WO 2019054443 A1 WO2019054443 A1 WO 2019054443A1 JP 2018033981 W JP2018033981 W JP 2018033981W WO 2019054443 A1 WO2019054443 A1 WO 2019054443A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
polymer
aligning agent
Prior art date
Application number
PCT/JP2018/033981
Other languages
English (en)
French (fr)
Inventor
司 藤枝
暁子 杉山
達也 結城
美希 豊田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2019542285A priority Critical patent/JP7255486B2/ja
Priority to CN201880059032.5A priority patent/CN111095091B/zh
Priority to KR1020207009821A priority patent/KR102672358B1/ko
Publication of WO2019054443A1 publication Critical patent/WO2019054443A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/10Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D263/14Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film obtained from the liquid crystal alignment agent, a liquid crystal display device having the liquid crystal alignment film, and novel diamines and polymers suitable therefor.
  • Liquid crystal display devices are widely used in personal computers, mobile phones, smart phones, televisions and the like.
  • liquid crystal display elements there have been many opportunities for liquid crystal display elements to be used under high temperature and high humidity conditions, such as car navigation systems and meters mounted on vehicles, and displays of industrial equipment and measuring equipment installed outdoors.
  • a liquid crystal display element of this type generally controls the alignment of liquid crystal molecules of a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode applying an electric field to the liquid crystal layer, and the liquid crystal layer.
  • a liquid crystal alignment film, a thin film transistor (TFT) for switching an electric signal supplied to a pixel electrode, and the like are provided.
  • liquid crystal display element one in which a liquid crystal layer is sandwiched between a pixel electrode and a common electrode functions as a liquid crystal cell.
  • VHR Voltage Holding Ratio
  • display contrast may be reduced or flicker may occur in the display, making it difficult to view the display.
  • these liquid crystal display elements use a backlight which generates a large amount of heat in order to obtain high brightness, and are used in in-vehicle applications, for example, in car navigation systems and meter panels It may be used or left in a high temperature environment for a long time.
  • the pretilt angle gradually changes, problems such as the inability to obtain an initial display characteristic or unevenness in display occur.
  • the liquid crystal is driven, the voltage holding characteristics and the charge storage characteristics are also affected by the liquid crystal alignment film, and when the voltage holding ratio is low, the contrast of the display screen is lowered and the charge storage with respect to the DC voltage is large. causess a phenomenon that the display screen burns.
  • One of the driving methods of such a liquid crystal display element is a method (also referred to as a vertical alignment (VA) method) in which liquid crystal molecules aligned vertically to the substrate are made to respond by an electric field.
  • a liquid crystal display element of vertical alignment type a liquid crystal composition is previously added with a photopolymerizable compound, and a liquid crystal cell is irradiated with ultraviolet light while applying a voltage to a liquid crystal cell using a vertical alignment film such as polyimide type.
  • PSA Polymer Sustained Alignment
  • a method also referred to as a horizontal alignment (IPS: In Plane Switching) method in which liquid crystal molecules aligned horizontally to the substrate are responded by an electric field.
  • IPS In Plane Switching
  • a method of controlling the alignment direction of liquid crystal is generally known by rubbing the liquid crystal alignment film with a cloth or the like (so-called rubbing treatment) using a horizontal alignment film such as polyimide.
  • rubbing treatment a horizontal alignment film such as polyimide.
  • Patent Documents 2 and 3 disclose a liquid crystal aligning agent for the purpose of providing a liquid crystal alignment film in which abrasion and damage of a coating film by rubbing treatment are less likely to occur. Moreover, in addition to the rubbing resistance of a liquid crystal aligning film, the liquid crystal aligning agent for the purpose of provision of the highly reliable liquid crystal aligning film whose low voltage density of a liquid crystal display element is high and whose ion density is low is disclosed in patent document 4. Is disclosed.
  • the characteristics expected of the liquid crystal alignment film have become severe as the performance of the liquid crystal display device is improved. Therefore, in the prior art, it is more difficult to meet the expectation for the characteristics of the liquid crystal alignment film and the liquid crystal display element accompanying the recent increase in performance.
  • a so-called narrowing of the frame is demanded in which the frame area in which pixels are not formed at the peripheral outer edge of the substrate is reduced.
  • the sealing agent used when producing a liquid crystal display element by bonding two substrates comes to be coated on a polyimide-based liquid crystal alignment film, but the polyimide is polar.
  • the problem to be solved by the present invention is that the film is not easily peeled off or scratched during rubbing, the voltage holding ratio is high, and the aging resistance under high temperature and high humidity conditions is good, as well as the adhesion to the sealing agent.
  • Patent application title Providing a liquid crystal alignment film having excellent properties, providing a liquid crystal aligning agent capable of obtaining the liquid crystal alignment film, providing a polymer capable of obtaining the liquid crystal aligning agent, and
  • An object of the present invention is to provide a novel diamine compound as a raw material.
  • a liquid crystal aligning agent comprising a polymer having an oxazoline skeleton represented by the following formula (1).
  • R 1 represents hydrogen or a monovalent organic group, and * represents a site to be bonded to another group.
  • the liquid crystal aligning agent as described in said (1) whose oxazoline frame
  • the polymer having an oxazoline skeleton represented by the formula (1) is a polymer derived from a diamine selected from the formulas (2-1), (2-2) and (2-4) described later The liquid crystal aligning agent as described in said (1).
  • X 1 represents a tetravalent organic group derived from a tetracarboxylic acid derivative.
  • Y 1 represents a divalent organic group derived from a diamine containing a structure of the formula (1).
  • R 4 Represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • (5) The liquid crystal aligning agent according to claim 4, wherein in the formula (6), the structure of X 1 is at least one selected from the structures of the formulas (A-1) to (A-21) described later.
  • (6) The liquid crystal aligning agent as described in said (4) or (5) whose structural unit represented by said Formula (6) is 10 mol% or more with respect to the total structural unit of the said polymer.
  • a liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of the above (1) to (6).
  • the liquid crystal display element which comprises the liquid crystal aligning film as described in said (7).
  • (11) The polymer according to the above (10), wherein the polymer having an oxazoline skeleton is a polyimide precursor containing a structural unit represented by the following formula (6), and a polyimide which is an imidized product thereof.
  • the present invention it is possible to obtain a liquid crystal alignment film excellent in the adhesion to the sealing agent in addition to the improvement of the rubbing resistance and the voltage holding property and the good aging resistance under high temperature and high humidity conditions.
  • a polymer having an oxazoline skeleton as a component of the liquid crystal aligning agent, peeling and scratching of the film are less likely to occur during rubbing, and the voltage retention rate and high temperature high humidity aging resistance are high, and the sealing agent It is possible to obtain a liquid crystal alignment film excellent in adhesion to the above.
  • a liquid crystal display device having a liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention is a liquid crystal having few display defects due to abrasion or scratches of the liquid crystal alignment film, high reliability, and excellent adhesion with a sealing agent. It becomes a display element.
  • the liquid crystal aligning agent of the present invention is a liquid crystal aligning agent containing a polymer having a structure represented by the following formula (1) (hereinafter, also referred to as a specific polymer).
  • a polymer having a structure represented by the following formula (1) hereinafter, also referred to as a specific polymer.
  • R 1 represents hydrogen or a monovalent organic group
  • * represents a site to be bonded to another group.
  • the specific polymer in the present invention is preferably a polymer obtained from a diamine having the structure of the above formula (1).
  • Examples of the diamine having an oxazoline skeleton represented by the above formula (1) include diamines selected from the group represented by the following formulas (2-1) to (2-3) Be
  • R 1 is the same as that in the above formula (1).
  • R 2 is a single bond, -O -, - COO -, - OCO -, - (CH 2) l -, - O (CH 2) l O -, - CONR 11 -, - NR 11 CO- and -NR 11 And a divalent organic group consisting of a bond selected from-or a combination thereof, wherein W 1 is a structure selected from the following group (3-1), and W 2 is selected from the following group (3-2) W 3 represents a structure selected from the following group (3-3), and W 4 represents a structure selected from the following group (3-4).
  • R 11 represents hydrogen or a monovalent organic group
  • l represents an integer of 1 to 12
  • a represents an integer of 0 or 1.
  • * 1 represents a site to be bonded to the amino group in formulas (2-1) to (2-3), and * 2 represents a site to be bonded to an oxazoline ring.
  • * 1 represents a site binding to an amino group in formulas (2-1) to (2-3), and * 3 represents a site binding to R 2 .
  • * 3 represents a site binding to R 2 .
  • * 2 represents a site binding to the oxazoline ring.
  • X represents a substituent, a hydrogen atom; a halogen atom; an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group; a halogenated alkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group; methoxy group, an alkoxy group having 1 to 6 carbon atoms such as an ethoxy group; a substituted amino group such as an amino group represents an amide group such as NHCOCH 3 or NHCOCH 2 CH 3, NHCOOtBu.
  • tBu represents a tertiary butyl group.
  • R 1 is the same as in the above formula (1), and in particular, a hydrogen atom, a methyl group (Me) or an ethyl group (Et) is preferable.
  • R 11 is the same as in the above formula (1), and in particular, a hydrogen atom, a Me group or an Et group is preferable.
  • n represents an integer of 1 to 6
  • m represents an integer of 1 to 12.
  • Examples of the method of synthesizing a specific diamine in the present invention include a method of synthesizing dinitro compounds represented by the following formulas (4-1) to (4-3), and further reducing the nitro group to convert it into an amino group. be able to.
  • the definitions of R 1 , R 2 , W 1 , W 2 , W 3 , W 4 and a are the above formulas (2-1) to (2-3) Same as in
  • the catalyst used for the reduction reaction of the nitro group is preferably an activated carbon-supported metal available as a commercial product, and examples thereof include palladium-activated carbon, platinum-activated carbon, and rhodium-activated carbon.
  • palladium hydroxide, platinum oxide, Raney nickel, etc. may not necessarily be a metal catalyst of the activated carbon support type. Among them, palladium-activated carbon is preferable.
  • the reaction may be carried out in the coexistence of activated carbon.
  • the amount of activated carbon to be used is preferably 1 to 30% by mass, and more preferably 10 to 20% by mass with respect to the dinitro compound.
  • the reaction may be carried out under pressure.
  • the reaction in order to avoid reduction of the benzene nucleus, the reaction is preferably carried out at a pressure of at most 20 atm, more preferably in the range of up to 10 atm.
  • the solvent in the reduction reaction can be used without limitation as long as the solvent does not react with each raw material.
  • aprotic polar organic solvents DMF, DMSO, DMAc, NMP, etc.
  • ethers Et 2 O, i-Pr 2 O, TBME, CPME, THF, dioxane, etc.
  • aliphatic hydrocarbons penentane, Hexane, heptane, petroleum ether, etc .
  • Aromatic hydrocarbons benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin etc.
  • Halogenated hydrocarbons chloroform, dichloromethane, carbon tetrachloride, dichloroethane Lower fatty acid esters (methyl acetate, ethyl acetate, butyl acetate, methyl propionate, etc.)
  • Nitriles acetonitrile
  • reaction concentration is 0.1 to 100 times by mass, preferably 0.5 to 30 times by mass, more preferably 1 to 10 times by mass that of the dinitro compound.
  • reaction temperature is in the range of -100 ° C. to the boiling point of the solvent used, preferably -50 to 150 ° C.
  • reaction time is generally 0.05 to 350 hours, preferably 0.5 to 100 hours.
  • the above reaction is preferably carried out in the presence of a base.
  • a base examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, alkali metal bicarbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate, and phosphoric acid
  • An organic base such as potassium, 1,8-diazabicyclo [5,4,0] -7-undecene or triethylamine can be used preferably in an amount of 1 to 4 equivalents based on (5-1) or (5-2). .
  • the reaction solvent is preferably an aprotic polar organic solvent (DMF, DMSO, DMAc, NMP, etc.).
  • the amount of the solvent used (reaction concentration) is preferably 0.1 to 100 times by mass, more preferably 0.5 to 30 times by mass that of (5-1) or (5-2).
  • the reaction temperature is preferably in the range of ⁇ 10 ° C. to the boiling point of the solvent used, more preferably 0 to 150 ° C.
  • the reaction time is generally 0.05 to 350 hours, preferably 0.5 to 100 hours.
  • a leaving group (LG) is introduced into the alcohol compound represented by (5-1-1) or (5-2-1), and (5-1-1a Or (5-2-1a) can be reacted with a phenol compound or an amine compound in the presence of a base to give a compound of formula (4-1-2) or (4-3-2) .
  • the leaving group (LG) can be introduced by reaction with methanesulfonyl chloride, ethanesulfonyl chloride, p-toluenesulfonyl chloride or the like in the presence of a base such as triethylamine or pyridine.
  • the reaction of (5-1-1a) or (5-2-1a) with a phenol compound or an amine compound is preferably carried out in the presence of a base.
  • a base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkali metal carbonates such as sodium carbonate and potassium carbonate with respect to (5-1-1a) or (5-2-1a).
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkali metal carbonates such as sodium carbonate and potassium carbonate with respect to (5-1-1a) or (5-2-1a).
  • One to four equivalents can be used.
  • the above reaction is preferably carried out in the presence of a base.
  • the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, inorganic compounds such as sodium phosphate and potassium phosphate, and 1,8-diazabicyclo
  • An organic base such as [5,4,0] -7-undecene can be used in an amount of 1 to 4 equivalents relative to the cyano compound.
  • alkali metal carbonates such as sodium carbonate and potassium carbonate are preferable.
  • aprotic polar organic solvents DMF, DMSO, DMAc, NMP, etc.
  • ethers Et 2 O, i-Pr 2 O, TBME, CPME, THF, dioxane, etc.
  • aliphatic hydrocarbons Pentane, hexane, heptane, petroleum ether etc.
  • Aromatic hydrocarbons benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, nitrobenzene, tetralin etc.
  • Halogenated hydrocarbons chloroform, dichloromethane, tetrachloride Lower fatty acid esters (methyl acetate, ethyl acetate, butyl acetate, methyl propionate, etc.)
  • Nitriles acetonitrile, propionitrile, butyronitrile, etc.
  • Alcohols methanol, ethanol, 2-propanol etc.
  • solvents can be appropriately selected in consideration of the easiness of reaction and the like, and can be used singly or in combination of two or more. If necessary, the solvent can be dried using a suitable dehydrating agent or desiccant and used as a non-aqueous solvent. In particular, alcohols (methanol, ethanol, 2-propanol and the like) are preferable.
  • the following (5-1-1a) or (5-2-1a) is reacted with phthalimide potassium to obtain (5-1-1b) or (5-2-1b), and then hydrazine monohydrate is (5-1-2) or (5-2-2) can be obtained by using and deprotection. Also, it is possible to obtain (5-1-3) or (5-2-3) by reacting an excess amount of the secondary amine compound with (5-1-1a) or (5-2-1a). it can.
  • R 1 , W 1 , W 2 , W 3 and W 4 are the same as in the above formulas (2-1) to (2-3), but R 1 is preferably a hydrogen atom, a Me group or an Et group.
  • Y represents OH, NH 2 or NHR 11
  • Y 1 represents O, NH or NR 11
  • the definition of R 11 is the same as in the above formula (1), and a hydrogen atom, a Me group and an Et group Is preferred.
  • Z represents F, Cl, Br or I
  • n represents an integer of 1 to 6
  • m represents an integer of 1 to 12.
  • the polymer having an oxazoline skeleton of the present invention has a structure represented by the above formula (1).
  • Specific examples include polyamic acid, polyamic acid ester, polyimide, polyurea, polyamide and the like.
  • a liquid crystal aligning agent at least one selected from a polyimide precursor containing a structural unit represented by the following formula (6) and a polyimide that is an imidized product thereof is more preferable.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 1 is a divalent organic group derived from a diamine containing the structure of formula (1)
  • R 4 Is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 4 is preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoint of ease of imidation by heating.
  • X 1 represents the solubility of the polymer in the solvent, the coatability of the liquid crystal aligning agent, the alignment of the liquid crystal in the liquid crystal alignment film, the voltage holding ratio, the accumulated charge, etc. It may be appropriately selected according to the degree of properties required, and may be one type in the same polymer, or two or more types may be mixed. Specific examples of X 1 include the structures of formulas (X-1) to (X-46), etc. listed in paragraphs 13 to 14 of WO 2015/119168.
  • (A-1) and (A-2) are particularly preferable from the viewpoint of further improving the rubbing resistance
  • (A-4) is particularly preferable from the viewpoint of further improving the relaxation rate of stored charge
  • A-15) to (A-17) are particularly preferable from the viewpoint of further improving the liquid crystal alignment and the relaxation rate of the accumulated charge.
  • (A-1), (A-4), (A-5) and (A-7) are preferable from the viewpoint of further improving the voltage holding ratio.
  • the polyimide precursor containing the structural unit represented by Formula (6) may contain the structural unit represented by following formula (7) in the range which does not impair the effect of this invention.
  • X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 2 is a divalent organic group derived from a diamine not including the structure of Formula (1)
  • R 4 Is the same as the definition of Formula (6) above
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • X 2 can include the same structures as those exemplified for X 1 of Formula (6), including preferred examples.
  • Y 2 in the polyimide precursor is a divalent organic group derived from a diamine not including the structure of the formula (1), and the structure is not particularly limited.
  • Y 2 is based on the required properties such as the solubility of the polymer in the solvent, the coatability of the liquid crystal aligning agent, the alignment of the liquid crystal in the liquid crystal alignment film, the voltage holding ratio, and the accumulated charge. And two or more kinds may be mixed in the same polymer.
  • ⁇ Other diamine> In addition to the said diamine component, the diamine component shown below can be used as other diamine.
  • the other diamine has a structure of the following formula (0).
  • each of A 1 and A 5 independently represents a single bond or an alkylene group having 1 to 5 carbon atoms.
  • a single bond or a methylene group is preferable from the viewpoint of the reactivity with the functional group in the sealing material that bonds the upper and lower substrates.
  • each of A 2 and A 4 independently represents an alkylene group having 1 to 5 carbon atoms, preferably a methylene group or an ethylene group.
  • a 3 represents an alkylene group having 1 to 6 carbon atoms or a cycloalkylene group, and in view of reactivity with a functional group in the sealing material, a methylene group or an ethylene group is preferable.
  • B 1 and B 2 are each independently a single bond, —O—, —NH—, —N (CH 3 ) —, —CO—, —COO— or —OCO.
  • -, - CONH -, - NHCO -, - CON (CH 3) - or -N (CH 3) represents the CO. From the viewpoint of the orientation of the resulting liquid crystal alignment film, a single bond or -O- is preferred.
  • D 1 represents a protecting group which is replaced with a hydrogen atom by heat.
  • D 1 functions as a protecting group for an amino group, and is a functional group capable of replacing a hydrogen atom by heat.
  • D 1 is preferably not desorbed at room temperature, more preferably a protecting group which is desorbed by heat of 80 ° C. or more, and heat of 100 ° C. or more, particularly 120 ° C. Even more preferred are protecting groups which leave. 250 degrees C or less is preferable and, as for the temperature to desorb, 230 degrees C or less is more preferable. Desorption temperatures that are too high can lead to degradation of the polymer.
  • Examples of such D 1 include a tert-butoxycarbonyl (t-Boc) group, 9-fluorenylmethoxycarbonyl group and the like.
  • t-Boc tert-butoxycarbonyl
  • the t-Boc group is preferable from the viewpoint of temperature-eliminating property.
  • a is 0 or 1.
  • a 2 and A 3 when a is 1), A 3 and A 4 (when a is 1), or A 2 and A 4 (when a is 0) do not bind to each other. That is, when a is 1, no ring is formed by A 2 and A 3 , A 3 and A 4, and the N atom bonded to D 1 does not constitute a part of the ring. Similarly, when a is 0, no ring is formed by A 2 and A 4, and the N atom bonded to D 1 does not form part of the ring.
  • * represents the site
  • the bonding position of A 1 and / or A 5 to the benzene ring may be any of ortho, meta and para positions, but from the viewpoint of liquid crystal alignment of the liquid crystal alignment film, para position is preferred.
  • the formula (0) is preferably the following formula (0 ′) or the following formula (0 ′ ′).
  • a 1 to A 5 , B 1 , B 2 , D 1 , a and * are the same as in the case of the above formula (0).
  • Specific examples of such specific diamines include, for example, diamines represented by the following formulas (0-1) to (0-21).
  • diamine having a specific side chain structure that expresses vertical orientation When using as a liquid crystal aligning agent in the liquid crystal display element of VA system, it is preferable to prepare a specific polymer using the diamine which has a specific side chain structure which expresses vertical alignment ability.
  • the diamine having this specific side chain structure has at least one side chain structure selected from the group represented by the following formulas [S1] to [S3].
  • diamines represented by the formulas [S1] to [S3] which are examples of diamines having such a specific side chain structure, will be described in order.
  • X 1 and X 2 each independently represent a single bond,-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-,- And CON (CH 3 )-, -NH-, -O-, -COO-, -OCO- or-((CH 2 ) a1 -A 1 ) m1- .
  • the plurality of a1 each independently represent an integer of 1 to 15, a plurality of A 1 represents an oxygen atom or -COO- independently, m1 is 1-2.
  • X 1 and X 2 are each independently a single bond,-(CH 2 ) a- (a is an integer of 1 to 15) from the viewpoint of availability of raw materials and easiness of synthesis.
  • a is an integer of 1 to 15
  • -O-, -CH 2 O- or -COO- is preferable, and a single bond,-(CH 2 ) a- (a is an integer of 1 to 10), -O-, -CH 2 O- or- COO- is more preferred.
  • G 1 and G 2 are each independently selected from a divalent aromatic group having 6 to 12 carbon atoms or a divalent alicyclic group having 3 to 8 carbon atoms. Represents a divalent cyclic group.
  • the optional hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms Or may be substituted by a fluorine atom.
  • m and n are each independently an integer of 0 to 3, and the sum of m and n is 1 to 4.
  • R 1 represents alkyl having 1 to 20 carbons, alkoxy having 1 to 20 carbons, or alkoxyalkyl having 2 to 20 carbons. Any hydrogen that forms R 1 may be substituted with fluorine.
  • examples of the divalent aromatic group having 6 to 12 carbon atoms include phenylene, biphenylene, naphthalene and the like. Further, examples of the divalent alicyclic group having 3 to 8 carbon atoms include cyclopropylene and cyclohexylene.
  • R 1 is the same as that of the above formula [S1].
  • X p is-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON (CH 3 )-, -NH-, -O-, -CH 2 Represents O-, -COO- or -OCO-.
  • a 1 represents an oxygen atom or -COO - represents * (bond marked with "*" is (CH 2) binding to a2) a.
  • a 2 is an oxygen atom or * -COO - represents (bond marked with "*" is (CH 2) binding to a2) a.
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10. Cy represents a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • X 3 is a single bond, -CONH-, -NHCO-, -CON (CH 3 )-, -NH-, -O-, -CH 2 O-, -COO- or -OCO- Represents Among them, in view of the liquid crystal alignment property of the liquid crystal alignment agent, X 3 is preferably -CONH-, -NHCO-, -O-, -CH 2 O-, -COO- or -OCO-.
  • R 2 represents alkyl having 1 to 20 carbons or alkoxyalkyl having 2 to 20 carbons. Any hydrogen that forms R 2 may be substituted with fluorine. Among them, R 2 is preferably an alkyl having 3 to 20 carbons or an alkoxyalkyl having 2 to 20 carbons from the viewpoint of the liquid crystal alignment of the liquid crystal alignment agent.
  • [C] Diamine having a specific side chain structure represented by the following formula [S3]
  • X 4 represents -CONH-, -NHCO-, -O-, -COO- or -OCO-.
  • R 3 represents a structure having a steroid skeleton.
  • the steroid skeleton here has a skeleton represented by the following formula (st) to which three six-membered rings and one five-membered ring are linked.
  • X represents the above formula [X1] or [X2].
  • Col represents at least one selected from the group consisting of the above formulas [Col1] to [Col4], and G represents the above formula [G1] or [G2]. * Represents a site bound to another group.
  • Examples of preferable combinations of X, Col and G in the above formula [S3-x] include, for example, the following combinations. That is, [X1], [Col1], [G1], [X1], [Col1], [G2], [X1], [Col2], [G1], [X1], [Col2], [G2], [X1], [Col3], [G2], [X1], [Col4], [G2], [X1], [Col3], [G1], [X1], [Col4], [G1], [X2] ], [Col1], [G2], [X2], [Col2], [G2], [X2], [Col2], [G1], [X2], [Col3], [G2], [X2] and [Col4] and [G2], [X2] and [Col1] and [G1], [X2] and [Col4] and [G1].
  • a cholesterol (combination of [Col1] and [G2] in said Formula [S3-x]) is mentioned as a representative example of a steroid skeleton
  • the steroid skeleton which does not contain this cholesterol can also be utilized. That is, as the diamine having a steroid skeleton, for example, cholestanyl 3,5-diaminobenzoate and the like can be mentioned, but it is also possible to use a diamine component not containing such a diamine having a cholesterol skeleton.
  • a diamine which has a specific side chain structure the thing which does not contain an amide in the connection position of diamine and a side chain can also be utilized.
  • a liquid crystal alignment film or a liquid crystal display device capable of securing a high voltage holding ratio over a long period of time in the present embodiment, even if such diamine is used, even if a diamine component not containing a diamine having a cholesterol skeleton is used.
  • the liquid crystal aligning agent which can obtain can be provided.
  • the diamines having side chain structures represented by the above formulas [S1] to [S3] are represented by the structures of the following formulas [1-S1]-[1-S3].
  • X 1 , X 2 , G 1 , G 2 , R 1 , m and n are the same as in the above formula [S1].
  • X 3 and R 2 are the same as in the above formula [S2].
  • X 4 and R 3 are the same as in the above formula [S3].
  • a specific polymer can also be prepared using a diamine of two side chains type having two specific side chain structures of vertical alignment.
  • the two side chain diamine which may be contained as such a diamine component is represented, for example, by the following formula [1]
  • X is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,-(CH 2 ) m- , It represents a divalent organic group consisting of -SO 2 -or any combination thereof. Among them, X is preferably a single bond, -O-, -NH- or -O- (CH 2 ) m -O-.
  • Examples of “any combination thereof” are —O— (CH 2 ) m —O—, —O—C (CH 3 ) 2 —, —CO— (CH 2 ) m —, —NH— (CH) 2 ) m- , -SO 2- (CH 2 ) m- , -CONH- (CH 2 ) m- , -CONH- (CH 2 ) m -NHCO-, -COO- (CH 2 ) m -OCO-, etc.
  • m is an integer of 1 to 8;
  • two Y's each independently represent a structure of the following formula [1-1].
  • Y 1 and Y 3 are each independently a single bond,-(CH 2 ) a- (a is an integer of 1 to 15), -O-, -CH 2 Represents O-, -COO- or -OCO-.
  • Y 2 represents a single bond or-(CH 2 ) b- (b is an integer of 1 to 15).
  • Y 1 or Y 3 is a single bond or-(CH 2 ) a-
  • Y 2 is a single bond.
  • Y 1 is —O—, —CH 2 O—, —COO— or —OCO— and / or Y 3 is —O—, —CH 2 O—, —COO— or —OCO—
  • Y 2 is a single bond or-(CH 2 ) b- .
  • Y 4 is a divalent C 17 -C 51 divalent having at least one kind of a divalent cyclic group or a steroid skeleton selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocycle.
  • the arbitrary hydrogen atom which forms this cyclic group is a C1-C3 alkyl group, a C1-C3 alkoxy group, a C1-C3 fluorine-containing alkyl group, a C1-C3 fluorine-containing alkoxy It may be substituted by a group or a fluorine atom.
  • Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring.
  • the arbitrary hydrogen atom which forms this cyclic group is a C1-C3 alkyl group, a C1-C3 alkoxy group, a C1-C3 fluorine-containing alkyl group, a C1-C3 fluorine-containing alkoxy It may be substituted by a group or a fluorine atom.
  • Y 6 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy having 1 to 18 carbon atoms And at least one selected from the group consisting of a group and a fluorine-containing alkoxy group having 1 to 18 carbon atoms.
  • n is an integer of 0 to 4;
  • Y may be a meta position or an ortho position from the position of X, preferably an ortho position. That is, it is preferable that said Formula [1] is following formula [1 '].
  • the positions of the two amino groups may be any positions on the benzene ring, but in the following formulas [1] -a1 to [1] -a3
  • the position represented is preferable, and the following formula [1] -a1 is more preferable.
  • X is the same as in the above formula [1].
  • the following formulas [1] -a1 to [1] -a3 explain the positions of two amino groups, and the notation of Y represented in the above formula [1] is omitted.
  • the above formula [1] is selected from the following formulas [1] -a1-1 to [1] -a3-2
  • the structure represented by the following formula [1] -a1-1 is more preferable.
  • X and Y are each the same as in the formula [1].
  • examples of the above-mentioned formula [1-1] include the following formulas [1-1] -1 to [1-1] -22.
  • the following formulas [1-1] -1 to [1-1] -4, [1-1] -8 or [1-1] -10 are preferable.
  • * represents the bonding position to the phenyl group in the above formulas [1], [1 '] and [1] -a1 to [1] -a3.
  • the diamine component contains a two-side chain diamine having a predetermined structure
  • the ability to align the liquid crystal vertically is unlikely to decrease even when exposed to excessive heating, resulting in a liquid crystal alignment film.
  • the ability to align the liquid crystal vertically is unlikely to be reduced even when any foreign matter comes in contact with the film and the film is damaged. That is, when the diamine component contains the two-side chain diamine, it is possible to provide a liquid crystal aligning agent capable of obtaining a liquid crystal alignment film excellent in various characteristics described above.
  • a specific polymer can also be prepared using a diamine having a photoreactive side chain for the purpose of enhancing the reactivity of the polymerizable compound.
  • Such diamine components may contain, as other diamines, diamines having photoreactive side chains.
  • the photoreactive side chain can be introduced into the specific polymer or the other polymer.
  • diamine having a photoreactive side chain examples include those represented by the following formula [VIII] or [IX].
  • the positions of the two amino groups (—NH 2 ) may be any position on the benzene ring, for example, on the benzene ring with respect to the side chain linking group. 2, 3 positions, 2, 4 positions, 2, 5 positions, 2, 6 positions, 3, 4 positions or 3, 5 positions. From the viewpoint of reactivity when synthesizing a polyamic acid, the positions of 2, 4, 2, 5 or 3, 5 are preferable. The positions of 2, 4 and 3, 5 are more preferable in consideration of the ease of synthesis of the diamine.
  • R 8 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, -CH 2 O-, -N (CH 3) -, - CON (CH 3) - or -N (CH 3) represents a CO-.
  • R 8 is preferably a single bond, -O-, -COO-, -NHCO- or -CONH-.
  • R 9 represents a single bond or an alkylene group having 1 to 20 carbon atoms which may be substituted by a fluorine atom.
  • this bivalent carbocyclic ring or heterocyclic ring can specifically illustrate the thing of following formula (1a).
  • R 9 can be formed by a general organic synthetic method, but a single bond or an alkylene group having 1 to 12 carbon atoms is preferable from the viewpoint of easiness of synthesis.
  • R 10 represents a photoreactive group selected from the group consisting of the following formula (1b). Among them, R 10 is preferably a methacryl group, an acryl group or a vinyl group from the viewpoint of photoreactivity.
  • Y 1 represents -CH 2- , -O-, -CONH-, -NHCO-, -COO-, -OCO-, -NH- or -CO-.
  • Y 2 represents an alkylene group having 1 to 30 carbon atoms, a divalent carbocyclic ring or a heterocyclic ring.
  • One or more hydrogen atoms in the alkylene group, divalent carbon ring or heterocycle here may be substituted with a fluorine atom or an organic group.
  • -CH 2- when the following groups are not adjacent to each other, -CH 2- may be substituted by these groups; -O-, -NHCO-, -CONH-, -COO-, -OCO-, -NH-, -NHCONH-, -CO-.
  • Y 3 represents -CH 2- , -O-, -CONH-, -NHCO-, -COO-, -OCO-, -NH-, -CO- or a single bond.
  • Y 4 represents a cinnamoyl group.
  • Y 5 represents a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbocyclic ring or a heterocyclic ring.
  • One or more hydrogen atoms in the alkylene group, divalent carbon ring or heterocycle here may be substituted with a fluorine atom or an organic group.
  • Y 5 when the following groups are not adjacent to each other, -CH 2- may be substituted by these groups; -O-, -NHCO-, -CONH-, -COO-, -OCO-, -NH-, -NHCONH-, -CO-.
  • Y 6 represents a photopolymerizable group such as an acryl group or a methacryl group.
  • X 9 and X 10 each independently represent a single bond, -O-, -COO-, -NHCO- or -NH-.
  • Y represents an alkylene group having 1 to 20 carbon atoms which may be substituted by a fluorine atom.
  • the diamine of following formula [VII] As a diamine which has a photoreactive side chain, the diamine of following formula [VII] is also mentioned.
  • the diamine of the formula [VII] has a site having a radical generating structure in the side chain.
  • radicals are generated by decomposition upon irradiation with ultraviolet light.
  • Ar represents at least one aromatic hydrocarbon group selected from the group consisting of phenylene, naphthylene and biphenylene, and the hydrogen atom of their ring may be substituted by a halogen atom.
  • Ar to which a carbonyl is bound is involved in the absorption wavelength of ultraviolet light, when the wavelength is increased, a structure with a long conjugate length such as naphthylene or biphenylene is preferable.
  • Ar has a structure such as naphthylene or biphenylene, the solubility may be deteriorated, and in this case, the degree of difficulty of synthesis becomes high.
  • the wavelength of ultraviolet light is in the range of 250 nm to 380 nm, sufficient characteristics can be obtained even with a phenyl group, so Ar is most preferably a phenyl group.
  • the aromatic hydrocarbon group may be provided with a substituent.
  • a substituent an electron donative organic group such as an alkyl group, a hydroxyl group, an alkoxy group, an amino group and the like is preferable.
  • R 1 and R 2 each independently represent an alkyl group having 1 to 10 carbon atoms, an alkoxy group, a benzyl group or a phenethyl group. In the case of an alkyl group or an alkoxy group, a ring may be formed by R 1 and R 2 .
  • T 1 and T 2 each independently represent a single bond, -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, -CH 2 O -, - N (CH 3) -, - CON (CH 3) - or an -N (CH 3) CO- linking group.
  • S represents a single bond or an alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted by a fluorine atom.
  • Q represents a structure selected from the following formula (1d).
  • R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 3 represents —CH 2 —, —NR—, —O— or —S—.
  • Q is preferably an electron-donating organic group, and is preferably an alkyl group, a hydroxyl group, an alkoxy group, an amino group or the like as mentioned in the example of Ar above.
  • Q is an amino derivative, a problem such as a carboxylic acid group generated and an amino group forming a salt may occur during polymerization of a polyamic acid which is a precursor of polyimide, so a hydroxyl group or an alkoxy group is generated. Is more preferred.
  • the positions of the two amino groups (-NH 2 ) may be either o-phenylenediamine, m-phenylenediamine or p-phenylenediamine, but the reactivity with acid dianhydride M-phenylenediamine or p-phenylenediamine is preferred from the viewpoint of
  • n is an integer of 2 to 8.
  • diamines having photoreactive side chains represented by the above formulas [VII], [VIII] or [IX] can be used singly or in combination of two or more.
  • pretilt angle, voltage holding characteristics, accumulated charge, etc. when used as a liquid crystal alignment film, and the response speed of the liquid crystal when used as a liquid crystal display element one type alone or a mixture of two or more types What is necessary is just to adjust suitably, such as the ratio, when using it, and also using 2 or more types in mixture.
  • Diamines other than the above> The diamine other than the above which may be contained in the diamine component for obtaining a specific polymer is not limited to the diamine etc. which have the said specific structure. Examples of these other diamines include those represented by the following formula [2].
  • a 1 and A 2 each independently represent a hydrogen atom, an alkyl group of 1 to 5 carbon atoms, an alkenyl group of 2 to 5 carbon atoms or an alkynyl group of 2 to 5 carbon atoms .
  • a 1 and A 2 are preferably a hydrogen atom or a methyl group.
  • n is an integer of 1 to 6 in particular, unless otherwise specified.
  • Me represents a methyl group.
  • Boc represents a tert-butoxycarbonyl group.
  • the diamines other than those described above can be used in combination of two or more.
  • the amount of the specified diamine relative to other diamines in the specified polymer is 5 to 70 mol%, preferably 10 to 50 mol%, more preferably 10 to 40 mol% of the specified diamine. Is good.
  • the polyimide precursor used in the present invention is obtained from the reaction of a diamine component and a tetracarboxylic acid derivative, and examples thereof include polyamic acid and polyamic acid ester.
  • the structural unit represented by Formula (6) is represented by Formula (6) and Formula It is preferable that it is 10 mol% or more with respect to the sum total of (7), More preferably, it is 20 mol% or more, Especially preferably, it is 30 mol% or more.
  • the weight average molecular weight of the polyimide precursor used in the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. is there.
  • the polyimide obtained by ring-closing the said polyimide precursor is mentioned.
  • the ring closure ratio (also referred to as imidation ratio) of the amic acid group does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, or catalytic imidization in which the catalyst is added to the solution of the polyimide precursor.
  • liquid crystal aligning agent of this invention contains said specific polymer, you may contain 2 or more types of specific polymers of a different structure. In addition to the specific polymer, it may contain another polymer, that is, a polymer having no divalent group represented by the formula (1).
  • the type of polymer includes polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or derivative thereof, poly (styrene-phenylmaleimide) derivative, poly (meth) acrylate Etc.
  • the ratio of the specific polymer to the total polymer component is preferably 5% by mass or more, and for example, 5 to 95% by mass can be mentioned.
  • the liquid crystal aligning agent is generally in the form of a coating solution in terms of forming a uniform thin film. It is preferable that the liquid crystal aligning agent of this invention is also a coating liquid containing the said polymer component and the organic solvent in which this polymer component is dissolved. At that time, the concentration of the polymer in the liquid crystal aligning agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, 1% by mass or more is preferable, and from the viewpoint of storage stability of the solution, 10% by mass or less is preferable. The particularly preferred concentration of the polymer is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as the polymer component dissolves uniformly.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl- And imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone and the like.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone it is preferable to use N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone.
  • the organic solvent contained in the liquid crystal aligning agent of this invention can also use the solvent which improves the coating property at the time of apply
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 2,6- Dimethi -4-Heptanol, 1,2-ethanedi
  • organic solvents are 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene It is preferred to use glycol monobutyl ether or dipropylene glycol dimethyl ether.
  • the kind and content of such a solvent are suitably selected according to the coating apparatus of a liquid crystal aligning agent, coating conditions, coating environment, etc.
  • the liquid crystal aligning agent of the present invention may additionally contain components other than the polymer component and the organic solvent.
  • additional components adhesion assistants for enhancing the adhesion between the liquid crystal alignment film and the substrate, and the adhesion between the liquid crystal alignment film and the sealing material, a crosslinking agent for enhancing the strength of the liquid crystal alignment film, and liquid crystals Examples thereof include dielectrics and conductive substances for adjusting the dielectric constant and the electrical resistance of the alignment film.
  • these additional components include the poor solvents and crosslinkable compounds disclosed in page 53, paragraph [0104] to page 60, paragraph [0116] of WO 2015/060357.
  • a functional silane containing compound and an epoxy group containing compound are mentioned, for example, 3-aminopropyl trimethoxysilane, 3-aminopropyl triethoxysilane, 3- Glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2- Aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl- 3-
  • liquid crystal aligning agent of this invention may contain the following additives in order to raise the mechanical strength of a liquid crystal aligning film.
  • the above additive is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. If the amount is less than 0.1 part by mass, no effect can be expected. If the amount is more than 30 parts by mass, the orientation of the liquid crystal is reduced, so the amount is more preferably 0.5 to 20 parts by mass.
  • the liquid crystal aligning agent of the present invention includes, in addition to the above, a polymer other than the specific polymer described in the present invention, a dielectric for changing electric properties such as dielectric constant and conductivity of liquid crystal alignment film, liquid crystal alignment film Silane coupling agent for the purpose of improving the adhesion between the film and the substrate, a crosslinkable compound for the purpose of enhancing the hardness and density of the film when it is made into a liquid crystal alignment film, and furthermore, a polyimide precursor An imidization promoter for the purpose of efficiently advancing imidation by heating may be contained.
  • the liquid crystal aligning film of this invention is obtained from the said liquid crystal aligning agent.
  • a liquid crystal alignment agent in the form of a coating solution is applied to a substrate, dried, and baked to a film obtained by rubbing or photo alignment treatment And the method of performing an orientation process by a method.
  • VA method it is possible to use the same as it is without performing the alignment process.
  • the substrate to which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate and a polycarbonate substrate can be used together with a glass substrate and a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed, from the viewpoint of simplification of the process. Further, in the reflection type liquid crystal display element, an opaque material such as a silicon wafer can be used if it is only on one side of the substrate, and in this case, a material which reflects light such as aluminum can also be used for the electrode.
  • the liquid crystal aligning agent is generally applied by screen printing, offset printing, flexographic printing, an inkjet method, and the like.
  • Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method, a spray method and the like, and these may be used according to the purpose.
  • the solvent is evaporated and fired by a heating means such as a hot plate, a thermal circulation type oven, an IR (infrared) type oven or the like.
  • a heating means such as a hot plate, a thermal circulation type oven, an IR (infrared) type oven or the like.
  • the drying and baking steps after the application of the liquid crystal alignment agent can be performed at any temperature and time.
  • the step of drying is not necessarily required, but it is preferable to perform the drying step if the time from application to baking is not constant for each substrate, or if it is not immediately fired after application.
  • the solvent may be removed to such an extent that the coating film shape is not deformed by transportation of the substrate, etc.
  • the temperature is 40 ° C. to 150 ° C., preferably 60 ° C.
  • the baking temperature of the coating film formed by applying the liquid crystal aligning agent is, for example, 100 to 350 ° C., preferably 120 to 300 ° C., and more preferably 150 ° C. to 250 ° C.
  • the baking time is 5 minutes to 240 minutes, preferably 10 minutes to 90 minutes, and more preferably 20 minutes to 90 minutes.
  • the heating can be carried out by a generally known method such as a hot plate, a hot air circulating furnace, an infrared furnace and the like.
  • the thickness of the liquid crystal alignment film after firing is preferably 5 to 300 nm, and more preferably 10 to 200 nm, because if it is too thin, the reliability of the liquid crystal display element may decrease.
  • the coating film formed in the above step is subjected to a treatment for imparting liquid crystal alignment ability.
  • a treatment for imparting liquid crystal alignment ability for example, a rubbing treatment in which the coating film is rubbed in a fixed direction with a roll wound with a cloth made of a fiber such as nylon, rayon, cotton, etc. Processing etc. are mentioned.
  • the coating film formed in the above step can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment.
  • ultraviolet rays and visible rays containing light having a wavelength of 150 to 800 nm can be used as radiation for irradiating the coating film.
  • the radiation is polarized, it may be linearly polarized or partially polarized.
  • the irradiation may be performed from the direction perpendicular to the substrate surface, may be performed from an oblique direction, or may be performed in combination. In the case of irradiating non-polarized radiation, the direction of the irradiation is oblique.
  • a light source to be used for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser, an LED lamp and the like can be used.
  • Ultraviolet light in a preferred wavelength range can be obtained by means of using a light source in combination with, for example, a filter, a diffraction grating or the like.
  • the radiation dose is preferably 100 to 50,000 J / m 2 , more preferably 300 to 20,000 J / m 2 .
  • light irradiation of the coating may be performed while heating the coating in order to enhance the reactivity.
  • the temperature during heating is usually 30 to 250 ° C., preferably 40 to 200 ° C., more preferably 50 to 150 ° C.
  • the light alignment treatment may be heat treatment at the time of light irradiation, or may be heat treatment after the light alignment treatment.
  • the heating temperature at this time is preferably 80 to 300 ° C., more preferably 120 to 250 ° C.
  • the heating time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
  • a washing treatment with an organic solvent or water may be performed, or the washing treatment and the heat treatment may be combined.
  • the liquid crystal alignment film after rubbing treatment is further irradiated with ultraviolet light to a part of the liquid crystal alignment film to change the pretilt angle of a part of the liquid crystal alignment film, or to a part of the liquid crystal alignment film surface
  • the rubbing process may be performed in a direction different from the rubbing process described above, and then the resist film may be removed so that the liquid crystal alignment film has different liquid crystal alignment ability in each region. In this case, it is possible to improve the visibility characteristics of the obtained liquid crystal display element.
  • the liquid crystal alignment film suitable for a VA type liquid crystal display element can also be suitably used for a liquid crystal display element of PSA (Polymer Sustained Alignment) type.
  • the liquid crystal alignment film of the present invention is also suitable as a liquid crystal alignment film of a liquid crystal display element of a transverse electric field type such as IPS type or FFS (Fringe Field Switching) type, and a liquid crystal alignment of a liquid crystal display element of VA type, particularly PSA mode. It is also useful as a membrane.
  • liquid crystal display device of the present invention After obtaining a substrate with a liquid crystal alignment film obtained from the above liquid crystal aligning agent, a liquid crystal cell is produced by a known method, and the device is made using the liquid crystal cell.
  • the liquid crystal alignment of the present invention is provided between two substrates disposed to face each other, a liquid crystal layer provided between the substrates, and the substrate and the liquid crystal layer. And a liquid crystal alignment film having the above-described liquid crystal alignment film formed of an agent.
  • a liquid crystal alignment film of the present invention is applied onto two substrates and fired to form a liquid crystal alignment film, and the two substrates are disposed such that the liquid crystal alignment films face each other,
  • a liquid crystal display element having a passive matrix structure is described as an example. Specifically, a transparent substrate is prepared, and then a liquid crystal alignment film is formed on each substrate under the conditions as described above. As described above, the substrate is usually a substrate on which a transparent electrode for driving liquid crystal is formed. As a specific example, the same one as the substrate described for the liquid crystal alignment film can be mentioned.
  • a common electrode is provided on one substrate and a segment electrode is provided on the other substrate.
  • These electrodes can be, for example, ITO electrodes, and are patterned to provide a desired image display. Then, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 -TiO 2 formed by a sol-gel method.
  • liquid crystal display element in the PSA mode for example, a line / slit electrode pattern of 1 to 10 ⁇ m is formed on one side substrate, and it is possible to operate even in a structure where a slit pattern or a protrusion pattern is not formed on the opposite substrate.
  • the liquid crystal display device of the present invention makes it possible to simplify the manufacturing process and obtain high transmittance.
  • the electrode formation surface of a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb shape, and an opposing substrate not provided with an electrode A liquid crystal aligning agent is apply
  • a film made of a metal such as chromium can be used as the metal film.
  • a highly functional element such as a TFT type element, one in which an element such as a transistor is formed between an electrode for driving liquid crystal and a substrate is used.
  • a transmission type liquid crystal display element it is general to use the above-mentioned substrate, but in the reflection type liquid crystal display element, it is also possible to use an opaque substrate such as a silicon wafer if it is only one side of the substrate. It is possible. At that time, a material such as aluminum that reflects light can also be used for the electrode formed on the substrate.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the vertical alignment system is not particularly limited, and the liquid crystal material used in the conventional vertical alignment system, for example, MLC-6608, MLC-6609, MLC-3022 manufactured by Merck, Inc. Or the like can be used.
  • MLC-3023 which is a liquid crystal containing a polymerizable compound can be used.
  • a liquid crystal containing a polymerizable compound represented by the following formula can be used.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the horizontal alignment system such as IPS or FFS is a liquid crystal material conventionally used in the horizontal alignment system, such as MLC-2003 or MLC-2041 manufactured by Merck. Negative-positive liquid crystals or negative-type liquid crystals such as MLC-6608 can also be used.
  • a known method can be mentioned.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one of the substrates so that the surface on which the liquid crystal alignment film is formed is inside.
  • the other substrate is attached and the liquid crystal is injected under reduced pressure to seal it.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one of the substrates and then liquid crystal is dropped, and then the surface on the side where the liquid crystal alignment film is formed.
  • the liquid crystal cell can also be manufactured by a method in which the other substrate is attached and sealed so that the inner side is inside.
  • the thickness of the spacer is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • a liquid crystal cell is manufactured by irradiating ultraviolet light while applying a voltage to the liquid crystal alignment film and the liquid crystal layer.
  • this process include a method in which an electric field is applied to the liquid crystal alignment film and the liquid crystal layer by applying a voltage between the electrodes disposed on the substrate, and irradiation of ultraviolet rays while holding the electric field.
  • the voltage applied between the electrodes is, for example, 5 to 30 Vp-p or DC 2.5 to 15 V, preferably 10 to 30 Vp-p or DC 5 to 15 V.
  • ultraviolet light including light of a wavelength of 300 to 400 nm is preferable.
  • the light source of the irradiation light is as described above.
  • the irradiation dose of ultraviolet radiation is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation dose of ultraviolet radiation, the reduction in reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed and the irradiation time is reduced. This is preferable because the production efficiency is increased.
  • the polymerizable compound when ultraviolet light is irradiated while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is stored by this polymer.
  • the response speed of the obtained liquid crystal display can be increased.
  • a polyimide precursor having side chains for aligning liquid crystals vertically and light reactive side chains, and this polyimide precursor as an imide
  • the polarizing plate is placed on the liquid crystal cell. Specifically, it is preferable to attach a pair of polarizing plates to the surface of the two substrates opposite to the liquid crystal layer.
  • liquid crystal aligning film and the liquid crystal display element of this invention are using the liquid crystal aligning agent of this invention, it is not limited and may be produced by the other well-known method.
  • the steps for obtaining a liquid crystal display element from a liquid crystal alignment agent are disclosed, for example, on pages 17 [0074] to 19 [0081] of Japanese Patent Laid-Open No. 2015-135393.
  • the liquid crystal display device of the present invention can be effectively applied to various devices, and, for example, clocks, portable games, word processors, notebook computers, car navigation systems, camcorders, PDAs, digital cameras, mobile phones, smartphones, It can be used for various displays such as various monitors, liquid crystal televisions, and information displays.
  • TCA 2,3,5-Tricarboxycyclopentylacetic acid-1,4,2,3-dianhydride (diamine)
  • p-PDA 1,4-phenylenediamine
  • DDM 4,4'-methylenedianiline
  • DBA 3,5-diaminobenzoic acid
  • NMP N-methyl-2-pyrrolidone
  • BCS butyl cellosolve
  • Measuring apparatus High temperature gel permeation chromatography (GPC) (SSC-7200) manufactured by Senshu Science Co., Ltd. Column: Shodex column (KD-803, KD-805), column temperature: 50 ° C., eluent: N, N′-dimethylformamide (as an additive, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) 10 ml / L), Flow rate: 1.0 ml / min, Standard sample for preparation of calibration curve: Toso TSK standard polyethylene oxide (molecular weight about 9000,000, 150,000, 100,000, 30,000), and polymer laboratory polyethylene glycol (molecular weight about 12,000, 4) , 000, 1,000).
  • GPC High temperature gel permeation chromatography
  • the (chemical) imidation ratio is determined based on a proton that is derived from a structure that does not change before and after imidization as a reference proton, and is derived from the peak integrated value of this proton and the NH group of the amic acid appearing around 9.5 to 10.0 ppm. It calculated
  • required by the following formula using proton peak integrated value to In the formula, x is a proton peak integrated value derived from the NH group of the amic acid, y is a peak integrated value of the reference proton, and ⁇ is a polyamic acid (imidation ratio is 0%) It is the number ratio of the reference proton to one proton of the NH group. Imidation ratio (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • DA-O1 (2.97 g, 10.0 mmol) is dissolved in NMP (33, 1 g), PMDA (2.05 g, 9.4 mmol) and NMP (3.7 g) are added and reacted at room temperature for 15 hours.
  • a polyamic acid solution was obtained. From this polyamic acid solution (15.0 g) was separated, NMP (15.0 g) and BCS (10.0 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent PAA-7.
  • DA-P1 (15.7 g, 60.0 mmol) is dissolved in NMP (159.0 g), PMDA (11.39 g, 58.8 mmol) and NMP (39.8 g) are added and allowed to react at room temperature for 15 hours A polyamic acid solution was obtained. From this polyamic acid solution (15.0 g) was separated, NMP (15.0 g) and BCS (10.0 g) were added and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent PAA-9.
  • ⁇ Production Example 12> Dissolve DA-O3 (0.730 g, 1.50 mmol), p-PDA (0.164 g, 1.52 mmol) in NMP (10.7 g) and add CBDA (0.559 g, 2.85 mmol), The reaction was carried out at room temperature for 14 hours to obtain a polyamic acid solution. Mn of this polyamic acid was 7700 and Mw was 20000. NMP (7.23g) and BCS (4.84g) were added to this polyamic acid solution, and liquid crystal aligning agent PAA-10 was obtained by stirring at room temperature for 2 hours.
  • Production Example 13 Dissolve DA-O4 (0.325 g, 0.599 mmol), p-PDA (0.261 g, 2.41 mmol) in NMP (8.45 g) and add CBDA (0.559 g, 2.85 mmol), The reaction was carried out at room temperature for 14 hours to obtain a polyamic acid solution. Mn of this polyamic acid was 8700 and Mw was 22000. NMP (5.67g) and BCS (3.81g) were added to this polyamic acid solution, and liquid crystal aligning agent PAA-11 was obtained by stirring at room temperature for 2 hours.
  • the precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder.
  • the imidation ratio of this polyimide was 59%, Mn was 15900 and Mw was 81000.
  • NMP 37.8 g was added to the obtained polyimide powder (4.2 g), and stirred at 70 ° C. for 12 hours for dissolution.
  • BCS (28.0 g) was added to this solution and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent SPI-3.
  • Production Example 15 NMP is added to the polyamic acid solution (23 g) obtained in Production Example 14 to dilute to 6.5 mass%, acetic anhydride (8.59 g) and pyridine (1.33 g) are added as an imidization catalyst, and 80 The reaction was allowed to proceed at 5 ° C for 5 hours. The reaction solution was poured into methanol (320 g) and the resulting precipitate was filtered off. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide was 70%, Mn was 14100, and Mw was 69,200.
  • NMP 37.8 g was added to the obtained polyimide powder (4.2 g), and stirred at 70 ° C. for 12 hours for dissolution.
  • BCS (28.0 g) was added to this solution and stirred at room temperature for 2 hours to obtain a liquid crystal aligning agent SPI-4.
  • the precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder.
  • the imidation ratio of this polyimide was 80%, Mn was 6660, and Mw was 16300.
  • NMP (32.4 g) was added to the obtained polyimide powder (3.6 g), and the mixture was stirred at 70 ° C. for 12 hours for dissolution.
  • BCS (24.0 g) was added to this solution, and the liquid crystal aligning agent SPI-5 was obtained by stirring at room temperature for 2 hours.
  • Production Example 25 The liquid crystal aligning agent SPI-8 (7.00 g) obtained in Production Example 22 and the liquid crystal aligning agent SPI-9 (3.00 g) obtained in Production Example 23 are stirred at room temperature for 3 hours to be a liquid crystal aligning agent SPI I got -11.
  • Production Example 26 The liquid crystal aligning agent SPI-8 (7.00 g) obtained in Production Example 22, and the liquid crystal aligning agent SPI-9 (3.00 g) and AD-1 (0.06 g) obtained in Production Example 23 were prepared at room temperature 3 Liquid crystal aligning agent SPI-12 was obtained by stirring for a time.
  • Production Example 27 The liquid crystal aligning agent SPI-8 (7.00 g) obtained in Production Example 22, and the liquid crystal aligning agent SPI-9 (3.00 g) and AD-2 (0.06 g) obtained in Production Example 23 were prepared at room temperature 3 Liquid crystal aligning agent SPI-13 was obtained by stirring for a time.
  • Production Example 28 Dissolve BODA (1.25 g, 5.00 mmol), DA-O3 (3.41 g, 7.00 mmol), and DA-S1 (1.14 g, 3.00 mmol) in NMP (23.2 g), 60 After reacting for 3 hours at ° C, CBDA (0.88 g, 4.50 mmol) and NMP (3.50 g) were added, and reacted for 4 hours at 40 ° C to obtain a polyamic acid solution. The number average molecular weight of this polyamic acid was 10500, and the weight average molecular weight was 30,700. NMP (5.40g) and BCS (7.20g) were added to this polyamic acid solution (5.4g), and liquid crystal aligning agent PAA-15 was obtained by stirring at room temperature for 2 hours.
  • Example 1 Using the liquid crystal aligning agent PAA-1 obtained in Production Example 1, a liquid crystal cell was produced in the following procedure.
  • a liquid crystal aligning agent PAA-1 is spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 80 ° C. for 90 seconds, and baked for 30 minutes in a hot air circulating oven at 230 ° C. A film was formed.
  • Two substrates of this liquid crystal alignment film were prepared, and a thermosetting sealing agent (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the one liquid crystal alignment film.
  • a thermosetting sealing agent XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.
  • a liquid crystal cell was prepared by injecting a polymerizable compound-containing liquid crystal MLC-3023 (trade name, manufactured by Merck Co., Ltd.) into this empty cell by a pressure reduction injection method. The voltage holding ratio (VHR) of this liquid crystal cell was measured.
  • this liquid crystal cell was subjected to PSA treatment, and the voltage retention after PSA treatment was measured. Furthermore, this cell was aged under high temperature and high humidity conditions, and the voltage retention after aging was measured. [Evaluation of voltage holding ratio] A voltage of 1 V was applied for 60 ⁇ s in a hot air circulating oven at 60 ° C., and then the voltage after 1667 msec was measured, and how much the voltage could be held was calculated as a voltage holding ratio. For the measurement of the voltage holding ratio, VHR-1 manufactured by Toyo Corporation was used.
  • Respective liquid crystal cells were produced in the same manner as in Example 1 except that SPI-7, SPI-14 and SPI-15 were used.
  • the voltage holding ratio at the initial stage, after PSA treatment, after aging, and the decrease value of voltage holding ratio due to aging ( ⁇ (after PSA treatment-after aging)) were measured. did.
  • the respective results are shown in Table 2 below.
  • liquid crystal aligning agents PAA-1, PAA-2, PAA-15, SPI-1, SPI-3, SPI-4, SPI-6, SPI-14 which contain a polymer having an oxazoline skeleton.
  • Examples 1, 2, 10, 3, 11, 12, 13, and 14 using liquid crystal are liquid crystal aligning agents PAA-3, SPI-2, SPI-5, SPI-7, which do not contain a polymer having an oxazoline skeleton.
  • Comparative Examples 1, 2, 5, 6, 7 using SPI-15 it was confirmed that the decrease in voltage retention due to aging was smaller. Therefore, it is understood that the liquid crystal aligning agent containing a polymer having an oxazoline skeleton can obtain a liquid crystal alignment film in which a decrease in voltage holding ratio due to aging hardly occurs.
  • a liquid crystal aligning agent was spin-coated on the ITO surface of a glass substrate having an ITO electrode on the entire surface, and was temporarily dried on a 70 ° C. hot plate for 90 seconds. Then, it baked for 30 minutes in 230 degreeC IR type oven, the coating film with a film thickness of 100 nm was formed, and the board
  • the liquid crystal alignment film was rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.6 mm). The substrate was observed with a microscope, and those with no rubbing streaks on the film surface were evaluated as “good” and those with streaks as “defective”.
  • the streaks due to the rubbing treatment were not found and were good.
  • Comparative Examples 3 and 4 with respect to the liquid crystal aligning agents PAA-6 and PAA-9 containing no polymer having an oxazoline skeleton had many streaks due to rubbing and were poor. Therefore, it is understood that a liquid crystal aligning agent containing a polymer having an oxazoline skeleton can provide a liquid crystal alignment film in which peeling and damage of the film due to rubbing treatment are less likely to occur.
  • Example 15 Using the liquid crystal aligning agent PAA-12 obtained in Production Example 19, an adhesion evaluation sample was produced in the following procedure.
  • a liquid crystal aligning agent PAA-12 is spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 80 ° C. for 90 seconds, and baked for 30 minutes in a hot air circulating oven at 230 ° C. A film was formed.
  • the two substrates thus obtained were prepared, and a 4 ⁇ m bead spacer was coated on the liquid crystal alignment film surface of one of the substrates, and then a sealing agent (manufactured by Kyoritsu Chemical Co., Ltd., XN-1500T) was dropped. Subsequently, the liquid crystal aligning film surface of the other board
  • a sealing agent manufactured by Kyoritsu Chemical Co., Ltd., XN-1500T

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

ラビング時に膜の剥がれや傷が発生しにくく、かつ電圧保持率が高く、高温高湿条件下のエージング耐性が良好なことに加えて、シール剤との密着性に優れた液晶配向膜、この液晶配向膜を得ることができる液晶配向剤、この液晶配向剤を得ることができる重合体、この重合体の原料となる新規なジアミン化合物を提供する。 液晶配向剤が式(1)で表されるオキサゾリン骨格を有する重合体を含有することを特徴とする。(Rは水素又は一価の有機基を表し、*は他の基に結合する部位を表す。)

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、液晶配向剤、この液晶配向剤から得られた液晶配向膜、及びこの液晶配向膜を有する液晶表示素子、並びに、それらに適した新規なジアミン及び重合体に関する。
 液晶表示素子は、パソコン、携帯電話、スマートフォン、テレビ等に幅広く用いられている。近年、車両に搭載されるカーナビやメーター、屋外に設置される産業機器や計測機器の表示部等、高温・高湿下で液晶表示素子が使用される機会も多くなっている。
 この種の液晶表示素子は、一般に、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する液晶配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。
 液晶表示素子では、液晶層を画素電極及び共通電極で挟持させたものが液晶セルとして機能する。液晶セルでは、その電圧保持率(VHR:Voltage Holding Ratio)が低いと、電圧を印加しても液晶分子に十分な電圧がかかり難くなる。そのため、高温・高湿下での使用や長期使用等により、電圧保持率が低下すると表示コントラストが低下したり、表示にフリッカー(ちらつき)が生じたりして表示が見難くなる。
 特に、テレビや車載ディスプレイにでは、これら液晶表示素子は高輝度を得るために発熱量が大きいバックライトを使用していたり、また、車載用途で用いられる、例えば、カーナビゲーションシステムやメーターパネルでは、長時間高温環境下で使用あるいは放置される場合がある。そのような過酷条件において、プレチルト角が徐々に変化した場合、初期の表示特性が得られなくなったり、表示にムラが発生したりなどの問題が起こる。更に、液晶を駆動させた際の、電圧保持特性や電荷蓄積特性も液晶配向膜の影響を受け、電圧保持率が低い場合は表示画面のコントラストが低下し、直流電圧に対する電荷の蓄積が大きい場合は表示画面が焼き付くという現象が生じる。
 このような液晶表示素子の駆動方式の一つに、基板に対して垂直に配向している液晶分子を電界によって応答させる方式(垂直配向(VA)方式ともいう)がある。垂直配向方式の液晶表示素子では、予め液晶組成物中に光重合性化合物を添加し、かつポリイミド系などの垂直配向膜を用い、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くする技術(PSA(Polymer Sustained Alignment)方式素子、例えば、特許文献1及び非特許文献1参照)が知られている。
 また液晶表示素子の駆動方式の一つに、基板に対して水平に配向している液晶分子を電界によって応答させる方式(水平配向(IPS:In Plane Swiching)方式ともいう)がある。水平配向方式の液晶表示素子では、ポリイミド系などの水平配向膜を用い、液晶配向膜を布などで擦る(いわゆるラビング処理)することで、液晶の配向方向を制御する方法が一般的に知られ、現在も工業的に広く用いられている。
 このラビング処理では、液晶配向膜が削れることで発生する粉塵や傷が表示素子の表示 品位を低下させる問題が知られている。そのため、液晶配向膜には、ラビング処理に伴って生じる粉塵や液晶配向膜への損傷が少ない、高いラビング耐性が求められている。
 特許文献2、3には、ラビング処理による塗膜の削れや損傷が起こりにくい液晶配向膜 を提供することを目的とした液晶配向剤が開示されている。また特許文献4には、液晶配 向膜のラビング耐性に加えて、高温でも液晶表示素子の電圧保持率が高く、イオン密度が低い信頼性の高い液晶配向膜の提供を目的とした液晶配向剤が開示されている。
日本特開2003-307720号公報 日本特開2008-203332号公報 国際公開公報2010/053128 国際公開公報2010/050523
K.Hanaoka,SID 04 DIGEST、P1200-1202
 上記に加えて、近年、液晶表示素子の高性能化に伴い、液晶配向膜に期待される特性も厳しくなっている。そのため、従来の技術では、近年の高性能化に伴う液晶配向膜や液晶表示素子の特性に対する期待に応えることが更に難しくなっている。
 加えて、最近の液晶表示素子における有効画素面積の拡大化のため、基板の周辺外縁部で画素を形成しない額縁領域を小さくする、所謂狭額縁化が要求されている。かかるパネルの狭額縁化に伴って、2枚の基板を接着させて液晶表示素子を作製する際に用いるシール剤が、ポリイミド系液晶配向膜上に塗布されるようになるが、ポリイミドには極性基がないか、あるいは少ないため、シール剤と液晶配向膜表面で共有結合が形成されず、基板同士の接着が不十分となる問題点があった。従って、ポリイミド系液晶配向膜とシール剤や基板との接着性(密着性)を向上させることが課題となる。
 また、液晶配向膜とシール剤や基板との密着性の改善は、液晶配向膜の有する、液晶配向性や電気特性を低下させずに達成されることが必要である。
 本発明が解決しようとする課題は、ラビング時に膜の剥がれや傷が発生しにくく、かつ電圧保持率が高く、高温高湿条件下のエージング耐性が良好なことに加えて、シール剤との密着性に優れた液晶配向膜を提供すること、この液晶配向膜を得ることができる液晶配向剤を提供すること、この液晶配向剤を得ることができる重合体を提供すること、及びこの重合体の原料となる新規なジアミン化合物を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、本発明に到達したものであり、本発明は、下記の態様を有する。
 (1)下記式(1)で表されるオキサゾリン骨格を有する重合体を含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000011
 (Rは水素又は一価の有機基を表し、*は他の基に結合する部位を表す。)
 (2)前記式(1)で表されるオキサゾリン骨格がジアミン由来である、上記(1)に記載の液晶配向剤。
 (3)前記式(1)で表されるオキサゾリン骨格を有する重合体が、後記する式(2-1)、(2-2)及び(2-4)から選ばれるジアミンに由来する重合体である、上記(1)に記載の液晶配向剤。
 (4)前記オキサゾリン骨格を有する重合体が、下記式(6)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種である、上記(1)に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000012
 (式(6)中、Xはテトラカルボン酸誘導体に由来する4価の有機基を表す。Yは式(1)の構造を含むジアミンに由来する2価の有機基を表す。Rは水素原子又は炭素数1~5のアルキル基を表す。)
 (5)前記式(6)中、Xの構造が後記する式(A-1)~(A-21)の構造から選ばれる少なくとも1種である、請求項4に記載の液晶配向剤。
 (6)前記式(6)で表される構造単位が、前記重合体の全構造単位に対して10モル%以上である、上記(4)又は(5)に記載の液晶配向剤。
 (7)上記(1)~(6)のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。
 (8)上記(7)に記載の液晶配向膜を具備する液晶表示素子。
 (9)下記式(2-1)、(2-2)又は(2-3)で表されるオキサゾリン骨格を有するジアミン。
Figure JPOXMLDOC01-appb-C000013
 (各記号の定義は、後記する通りである。)
 (10)上記(9)に記載のジアミンを由来とするオキサゾリン骨格を有する重合体。
 (11)前記オキサゾリン骨格を有する重合体が、下記式(6)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドである、上記(10)に記載の重合体。
Figure JPOXMLDOC01-appb-C000014
 (式(6)中の各記号の定義は、上記(4)における記載と同じである。)
 (12)前記式(6)中、Xの構造が後記する式(A-1)~(A-21)の構造から選ばれる少なくとも1種である、上記(11)に記載の重合体。
 (13)前記式(6)で表される構造単位が、前記重合体の全構造単位に対して10モル%以上である、上記(11)又は(12)に記載の重合体。
 本発明によれば、ラビング耐性と電圧保持特性を向上させ、高温高湿条件下のエージング耐性が良好なことに加えて、シール剤との密着性に優れた液晶配向膜が得られる。換言すると、液晶配向剤の成分として、オキサゾリン骨格を有する重合体を使用することで、ラビング時に膜の剥がれや傷が発生しにくく、さらには電圧保持率及び高温高湿エージング耐性が高く、シール剤との密着性に優れた液晶配向膜を得ることができる。
 本発明の液晶配向剤から得られた液晶配向膜を具備する液晶表示素子は、液晶配向膜の削れや傷による表示欠陥が少なく、かつ信頼性の高く、シール剤との密着性に優れた液晶表示素子となる。
 本発明の液晶配向剤は、下記式(1)で表される構造を有する重合体(以下、特定重合体とも言う)を含有する液晶配向剤である。
<特定構造>
Figure JPOXMLDOC01-appb-C000015
 上記式(1)において、Rは水素、又は一価の有機基を表し、*は他の基に結合する部位を表す。本発明における特定重合体は、上記式(1)の構造を有するジアミンから得られる重合体であるのが好ましい。
<特定ジアミン>
 上記式(1)で表されるオキサゾリン骨格を有するジアミン(以下、特定ジアミンともいう。)は、下記式(2-1)~式(2-3)で表される群から選ばれるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000016
 上記式(2-1)~式(2-3)中、Rの定義は、上記式(1)におけるもの同じである。Rは単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONR11-、-NR11CO-及び-NR11-から選ばれる結合であるか、又はそれらの組み合わせからなる2価の有機基を表し、Wは下記群(3-1)から選ばれる構造、Wは下記群(3-2)から選ばれる構造、Wは下記群(3-3)から選ばれる構造、Wは下記群(3-4)から選ばれる構造を表す。ここで、R11は水素、又は一価の有機基を表し、lは1~12の整数、aは0又は1の整数を表す。
Figure JPOXMLDOC01-appb-C000017
 上記群(3-1)中、*は式(2-1)から(2-3)中のアミノ基と結合する部位を表し、*はオキサゾリン環と結合する部位を表す。群(3-2)中、*は式(2-1)から(2-3)中のアミノ基と結合する部位を表し、*はRと結合する部位を表す。群(3-3)中、*はRと結合する部位を表す。群(3-4)中、*はオキサゾリン環と結合する部位を表す。Xは置換基を表し、水素原子;ハロゲン原子;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;トリフルオロメチル基等の炭素数1~6のハロゲン化アルキル基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;NHCOCHやNHCOCHCH、NHCOOtBu等のアミド基を表す。tBuはターシャルブチル基を表す。
 上記式(2-1)~(2-3)のジアミンの具体例としては以下が例示される。
Figure JPOXMLDOC01-appb-C000018
 上記式中、Rの定義は、上記式(1)におけるものと同じであり、特に、水素原子、メチル基(Me)又はエチル基(Et)が好ましい。R11の定義は、上記式(1)におけるものと同じであり、特に、水素原子、Me基又はEt基が好ましい。nは1~6の整数を表し、mは1~12の整数を表す。
<特定ジアミンの合成方法>
 本発明における特定ジアミンを合成する方法は例えば、下記式(4-1)~(4-3)で表されるジニトロ化合物を合成し、さらにニトロ基を還元してアミノ基に変換する方法を挙げることができる。
Figure JPOXMLDOC01-appb-C000019
 上記式(4-1)~(4-3)中、R、R、W、W、W、W及びaの定義は上記式(2-1)~(2-3)におけるものと同じである。
 上記ニトロ基の還元反応に用いられる触媒は、市販品として入手できる活性炭担持金属が好ましく、例えば、パラジウム-活性炭、白金-活性炭、ロジウム-活性炭などが挙げられる。また、水酸化パラジウム、酸化白金、ラネーニッケルなど必ずしも活性炭担持型の金属触媒でなくてもよい。なかでも、パラジウム-活性炭が好ましい。
 上記還元反応をより効果的に進行させるため、活性炭の共存下で反応を実施することもある。この時、使用する活性炭の量は、ジニトロ化合物に対して1~30質量%が好ましく、10~20質量%がより好ましい。同様な理由により、加圧下で反応を実施する場合もある。この場合、ベンゼン核の還元を避けるため、好ましくは20気圧以下であり、より好ましくは10気圧までの範囲で反応を実施する。
 上記還元反応における溶媒は、各原料と反応しない溶媒であれば、制限なく使用することができる。例えば、非プロトン性極性有機溶媒(DMF、DMSO、DMAc、NMPなど);エーテル類(EtO、i-PrO、TBME、CPME、THF、ジオキサンなど);脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど);芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等);などが使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択でき、2種以上混合して用いることができる。必要に応じて、適当な脱水剤や乾燥剤を用いて溶媒を乾燥し、非水溶媒として用いることもできる。溶媒の使用量(反応濃度)は、ジニトロ化合物に対し、0.1~100質量倍であり、好ましくは0.5~30質量倍であり、さらに好ましくは1~10質量倍である。
 反応温度は、-100℃から使用する溶媒の沸点までの範囲、好ましくは、-50~150℃である。反応時間は、通常0.05~350時間、好ましくは0.5~100時間である。
[式(4-1)、式(4-3)のジニトロ化合物の製法]
 式(4-1)及び(4-3)の化合物を合成する方法は、例えば、下記反応式で表すように、式(5-1)又は(5-2)で表される化合物とハロニトロベンゼンとを、塩基の存在下で反応させることにより(4-1-1)又は(4-3-1)を得ることができる。
Figure JPOXMLDOC01-appb-C000020
 上記反応は、塩基の存在下で行うことが好ましい。塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属重炭酸塩、リン酸カリウム、1,8-ジアザビシクロ[5,4,0]-7-ウンデセンやトリエチルアミン等の有機塩基等を(5-1)又は(5-2)に対して好ましくは1~4当量用いることができる。
 反応溶媒としては、非プロトン性極性有機溶媒(DMF、DMSO、DMAc、NMPなど)が好ましい。溶媒の使用量(反応濃度)は、(5-1)又は(5-2)に対し、好ましくは0.1~100質量倍であり、より好ましくは0.5~30質量倍である。
 反応温度は、-10℃から使用する溶媒の沸点までの範囲が好ましく、より好ましくは、0~150℃である。反応時間は、通常0.05~350時間、好ましくは0.5~100時間である。
 上記ジニトロ化合物を製造する他の手法としては、(5-1-1)又は(5-2-1)で表されるアルコール化合物に脱離基(LG)を導入し、(5-1-1a)又は(5-2-1a)を得た後、塩基の存在下でフェノール化合物もしくはアミン化合物と反応させることで式(4-1-2)又は(4-3-2)を得ることができる。
Figure JPOXMLDOC01-appb-C000021
 上記脱離基(LG)は、トリエチルアミンやピリジン等の塩基の存在下、メタンスルホニルクロリド、エタンスルホニルクロリド、又はp-トルエンスルホニルクロリドなどと反応させることで導入することができる。
 (5-1―1a)又は(5-2-1a)とフェノール化合物もしくはアミン化合物の反応は、塩基の存在下で行うことが好ましい。塩基としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩を(5-1-1a)又は(5-2-1a)に対して1~4当量用いることができる。
 (5-1)又は(5-2)で表される化合物と酸塩化物を、トリエチルアミンやピリジン等の塩基の存在下で反応させることで、(4-1-2)又は(4-3-3)を得ることができる。
Figure JPOXMLDOC01-appb-C000022
[式(4-2)の製法]
 式(4-2)の化合物を合成する方法に特に制限はない。例えば、下記反応式で表すように、式(5-1)で表される化合物と酸塩化物を、トリエチルアミンやピリジンなどの塩基の存在下で反応させることにより(4-2-1)又は(4-2-2)を得ることができる。
Figure JPOXMLDOC01-appb-C000023
[式(5-1)及び(5-2)の製法]
 式(5-1)及び式(5-2)を合成する方法に特に制限はない。例えば、文献(J. Org. Chem. 2014, 79, 8668-8677)を参考に下記反応式で表すように、シアノ化合物とアミノエタノール化合物を塩基の存在下で反応させることで(5-1-1)又は(5-2-1)を得ることができる。
Figure JPOXMLDOC01-appb-C000024
 上記反応は、塩基の存在下で行うことが好ましい。塩基としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、リン酸ナトリウム、リン酸カリウム等の無機化合物、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン等の有機塩基等をシアノ化合物に対して1~4当量用いることができる。中でも、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩が好ましい。
 反応溶媒としては、非プロトン性極性有機溶媒(DMF、DMSO、DMAc、NMPなど);エーテル類(EtO、i-PrO、TBME、CPME、THF、ジオキサンなど);脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど);芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等);アルコール類(メタノール、エタノール、2-プロパノール等)などが使用できる。これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができ、1種単独で又は2種以上混合して用いることができる。必要に応じて、適当な脱水剤や乾燥剤を用いて溶媒を乾燥し、非水溶媒として用いることもできる。特にアルコール類(メタノール、エタノール、2-プロパノール等)が好ましい。
 下記(5-1-1a)又は(5-2-1a)にフタルイミドカリウムを反応させて、(5-1-1b)又は(5-2-1b)を得た後、ヒドラジン一水和物を用いて脱保護することで(5-1-2)又は(5-2-2)を得ることができる。また、過剰量の2級アミン化合物と(5-1-1a)又は(5-2-1a)を反応させることで、(5-1-3)又は(5-2-3)を得ることができる。
Figure JPOXMLDOC01-appb-C000025
 なお、ここまでの製造スキームにおける式中、R、W、W、W、Wの定義は上記式(2-1)~(2-3)における場合と同じであるが、Rは水素原子やMe基、Et基が好ましい。YはOH、NH又はNHR11を表し、Y1はO、NH又はNR11を表し、R11の定義は、上記式(1)における場合と同じであり、水素原子、Me基及びEt基が好ましい。Zは、F、Cl、Br、Iを表し、nは1~6の整数を表し、mは1~12の整数を表す。
<重合体>
 本発明のオキサゾリン骨格を有する重合体は、上記式(1)で表される構造を有する。具体例としては、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリウレア、ポリアミドなどが挙げられる。液晶配向剤としての観点から、下記式(6)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種がより好ましい。
Figure JPOXMLDOC01-appb-C000026
 上記式(6)中、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは式(1)の構造を含むジアミンに由来する2価の有機基であり、Rは水素原子又は炭素数1~5のアルキル基である。Rは、加熱によるイミド化のしやすさの点から、水素原子、メチル基又はエチル基が好ましい。
<テトラカルボン酸二無水物>
 上記式(6)のポリイミド前駆体中のXは、重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類であってもよく、2種類以上が混在していても良い。
 Xの具体例を示すならば、国際公開公報2015/119168の13項~14項に掲載される、式(X-1)~(X-46)の構造などが挙げられる。
 以下に、好ましいXの構造を示す。
Figure JPOXMLDOC01-appb-C000027
 上記のうち、(A-1)、(A-2)はラビング耐性の更なる向上という観点から特に好ましく、(A-4)は蓄積電荷の緩和速度の更なる向上という観点から特に好ましく、(A-15)~(A-17)などは、液晶配向性と蓄積電荷の緩和速度の更なる向上という観点から特に好ましい。
 また、上記のうち、(A-1)、(A-4)、(A-5)、(A-7)は電圧保持率の更なる向上という観点から好ましい。
<ジアミン>
 上記式(6)において、Yの具体例としては前記式(2-1)、(2-2)又は(2-3)のジアミンから2つのアミノ基を除いた構造を挙げることができる。
<重合体(その他の構造単位)>
 式(6)で表される構造単位を含むポリイミド前駆体は、本発明の効果を損なわない範囲において、下記式(7)で表される構造単位を含んでいても良い。
Figure JPOXMLDOC01-appb-C000028
 式(7)において、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは式(1)の構造を含まないジアミンに由来する2価の有機基であり、Rは、前記式(6)の定義と同じであり、Rは水素原子又は炭素数1~4のアルキル基を表す。また、2つあるRの少なくとも一方は水素原子であることが好ましい。
 Xの具体例としては、好ましい例も含めて式(6)のXで例示したものと同じ構造を挙げることができる。また、ポリイミド前駆体中のYは式(1)の構造を含まないジアミンに由来する二価の有機基であり、その構造は特に限定されない。また、Yは重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に2種類以上が混在していても良い。
 Yの具体例を示すならば、国際公開公報2015/119168の4項に掲載される式(2)の構造、及び、8項~12項に掲載される、式(Y-1)~(Y-97)、(Y-101)~(Y-118)の構造;国際公開公報2013/008906の6項に掲載される、式(2)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/122413の8項に掲載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/060360の8項に掲載される式(3)の構造;日本特開公報2012-173514の8項に記載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2010-050523の9項に掲載される式(A)~(F)からアミノ基を2つ除いた二価の有機基、などが挙げられる。
<その他ジアミン>
 上記ジアミン成分に加え、その他ジアミンとして、下記に示すジアミン成分を使用することができる。
<その他ジアミン:式(0)の構造を有するジアミン>
 その他ジアミンは、下記式(0)の構造を有する。
Figure JPOXMLDOC01-appb-C000029
 上記式(0)中、A及びAは、それぞれ独立して、単結合又は炭素数1~5のアルキレン基を表す。上下基板を張り合わせるシール材中の官能基との反応性の点からは、単結合又はメチレン基が好ましい。
 また、上記式(0)中、A及びAは、それぞれ独立して、炭素数1~5のアルキレン基を表し、好ましくはメチレン基又はエチレン基である。Aは、炭素数1~6のアルキレン基又はシクロアルキレン基を表し、シール材中の官能基との反応性の点かはら、メチレン基又はエチレン基が好ましい。
 また、上記式(0)中、B及びBは、それぞれ独立して、単結合、-O-、-NH-、-N(CH)-、-CO-、-COO-、-OCO-、-CONH-、-NHCO-、-CON(CH)-又は-N(CH)COを表す。得られる液晶配向膜の配向性の点からは、単結合又は-O-が好ましい。
 また、上記式(0)中、Dは、熱により水素原子に置き換わる保護基を表す。Dは、アミノ基の保護基として機能するものであり、熱により水素原子に置き換わる官能基である。液晶配向剤の保存安定性の点からは、Dは室温において脱離しないことが好ましく、80℃以上の熱で脱離する保護基がより好ましく、100℃以上、特に120℃以上の熱で脱離する保護基が更に好ましい。脱離する温度は、250℃以下が好ましく、230℃以下がより好ましい。高すぎる脱離する温度は重合体の分解を招く可能性がある。このようなDの例としては、tert-ブトキシカルボニル(t-Boc)基、9-フルオレニルメトキシカルボニル基等が挙げられる。なかでも、温度による脱離性の点からは、t-Boc基が好ましい。
 また、上記式(0)中、aは0又は1である。A及びA(aが1の場合)、A及びA(aが1の場合)、又はA及びA(aが0の場合)は、互いに結合しない。つまり、aが1の場合、A及びA、A及びAにより環は形成されず、Dに結合するN原子が該環の一部を構成しない。同様に、aが0の場合、A及びAにより環は形成されず、Dに結合するN原子が該環の一部を構成しない。
 また、上記式(0)中、*は他の基に結合する部位を表す。*から見て、ベンゼン環に対するA及び/又はAの結合位置は、オルト位、メタ位、パラ位のいずれでもよいが、液晶配向膜の液晶配向性の点からは、パラ位が好ましい。すなわち、上記式(0)は、下記式(0’)又は下記式(0’’)であるのが好ましい。
Figure JPOXMLDOC01-appb-C000030
 上記式(0’)及び上記式(0’’)中、A~A、B、B、D、a並びに*は、上記式(0)の場合と同様である。
 このような特定ジアミンの具体例としては、例えば、下記式(0-1)~(0-21)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000031
<その他ジアミン:垂直配向性を発現する特定側鎖構造を有するジアミン>
 VA方式の液晶表示素子における液晶配向剤として用いる場合、垂直配向能を発現する特定側鎖構造を有するジアミンを用いて特定重合体を調製することが好ましい。この特定側鎖構造を有するジアミンは、下記式[S1]~[S3]で表される群から選ばれる少なくとも1種の側鎖構造を有する。以下、かかる特定側鎖構造を有するジアミンの例である、式[S1]~[S3]で表されるジアミンについて順に説明する。
 [A]:下記式[S1]で表される特定側鎖構造を有するジアミン
Figure JPOXMLDOC01-appb-C000032
 上記式[S1]中、X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数であり、複数のAはそれぞれ独立して酸素原子又は-COO-を表し、m1は1~2である。
 なかでも、原料の入手性や合成の容易さの点からは、X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又は-COO-が好ましく、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又は-COO-がより好ましい。
 また、上記式[S1]中、G及びGは、それぞれ独立して、炭素数6~12の2価の芳香族基又は炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。該環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。m及びnは、それぞれ独立して、0~3の整数であって、m及びnの合計は1~4である。
 また、上記式[S1]中、Rは、炭素数1~20のアルキル、炭素数1~20のアルコキシ又は炭素数2~20のアルコキシアルキルを表す。Rを形成する任意の水素はフッ素で置換されていてもよい。このうち、炭素数6~12の2価の芳香族基の例としては、フェニレン、ビフェニレン、ナフタレン等が挙げられる。また、炭素数3~8の2価の脂環式基の例としては、シクロプロピレン、シクロヘキシレン等が挙げられる。
 従って、上記式[S1]の好ましい具体例として、下記式[S1-x1]~[S1-x7]があげられる。
Figure JPOXMLDOC01-appb-C000033
 上記式[S1-x1]~[S1-x7]中、Rは、上記式[S1]の場合と同様である。Xは、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。Aは、酸素原子又は-COO-*(「*」を付した結合手が(CHa2と結合する)を表す。Aは、酸素原子又は*-COO-(「*」を付した結合手が(CHa2と結合する)を表す。aは0又は1の整数であり、aは2~10の整数である。Cyは1,4-シクロへキシレン基又は1,4-フェニレン基を表す。
 [B]:下記式[S2]で表される特定側鎖構造を有するジアミン
Figure JPOXMLDOC01-appb-C000034
 上記式[S2]中、Xは単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。なかでも、液晶配向剤の液晶配向性の点から、Xは-CONH-、-NHCO-、-O-、-CHO-、-COO-又は-OCO-が好ましい。
 また、上記式[S2]中、Rは、炭素数1~20のアルキル又は炭素数2~20のアルコキシアルキルを表す。Rを形成する任意の水素はフッ素で置換されていてもよい。なかでも、液晶配向剤の液晶配向性の点から、Rは炭素数3~20のアルキル又は炭素数2~20のアルコキシアルキルが好ましい。
 [C]:下記式[S3]で表される特定側鎖構造を有するジアミン
Figure JPOXMLDOC01-appb-C000035
 上記式[S3]中、Xは-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。ここでのステロイド骨格は、3つの六員環及び1つの五員環が結合した下記式(st)で表される骨格を有する。
Figure JPOXMLDOC01-appb-C000036
 上記式[S3]の例として下記式[S3-x]が挙げられる。
Figure JPOXMLDOC01-appb-C000037
 上記式[S3-x]中、Xは、上記式[X1]又は[X2]を表す。また、Colは、上記式[Col1]~[Col4]からなる群から選ばれる少なくとも1種を表し、Gは、上記式[G1]又は[G2]を表す。*は他の基に結合する部位を表す。
 上記式[S3-x]における、X、Col及びGの好ましい組合せの例としては、例えば、下記の組合せが挙げられる。すなわち、[X1]と[Col1]と[G1]、[X1]と[Col1]と[G2]、[X1]と[Col2]と[G1]、[X1]と[Col2]と[G2]、[X1]と[Col3]と[G2]、[X1]と[Col4]と[G2]、[X1]と[Col3]と[G1]、[X1]と[Col4]と[G1]、[X2]と[Col1]と[G2]、[X2]と[Col2]と[G2]、[X2]と[Col2]と[G1]、[X2]と[Col3]と[G2]、[X2]と[Col4]と[G2]、[X2]と[Col1]と[G1]、[X2]と[Col4]と[G1]である。
 また、上記式[S3]の具体的としては、日本特開平4-281427号公報の段落[0024]に記載のステロイド化合物から水酸基(ヒドロキシ基)を除いた構造、同公報の段落[0030]に記載のステロイド化合物から酸クロライド基を除いた構造、同公報の段落[0038]に記載のステロイド化合物からアミノ基を除いた構造、同公報の段落[0042]にステロイド化合物からハロゲン基を除いた構造、及び日本特開平8-146421の段落[0018]~[0022]に記載の構造等が挙げられる。
 なお、ステロイド骨格の代表例としては、コレステロール(上記式[S3-x]における[Col1]及び[G2]の組み合わせ)が挙げられるが、該コレステロールを含まないステロイド骨格を利用することもできる。すなわち、ステロイド骨格を有するジアミンとして、例えば3,5-ジアミノ安息香酸コレスタニル等が挙げられるが、かかるコレステロール骨格を有するジアミンを含まないジアミン成分とすることも可能である。また、特定側鎖構造を有するジアミンとして、ジアミンと側鎖との連結位置にアミドを含まないものを利用することもできる。このようなジアミンを利用しても、本実施形態においては、コレステロール骨格を有するジアミンを含まないジアミン成分を利用しても、長期に渡って高い電圧保持率を確保できる液晶配向膜や液晶表示素子を得ることができる液晶配向剤を提供できる。
 なお、上記式[S1]~[S3]で表される側鎖構造を有するジアミンは、それぞれ、下記式[1-S1]-[1-S3]の構造で表される。
Figure JPOXMLDOC01-appb-C000038
 上記式[1-S1]中、X、X、G、G、R、m及びnは、上記式[S1]における場合と同様である。上記式[1-S2]中、X及びRは、上記式[S2]における場合と同様である。上記式[1-S3]中、X及びRは、上記式[S3]における場合と同様である。
<その他のジアミン:垂直配向性を発現する二側鎖型の特性側鎖構造を有するジアミン>
 VA方式の液晶表示素子における晶配向剤として用いる場合、垂直配向性の特定側鎖構造を2つ有する二側鎖型のジアミンを用いて特定重合体を調製することもできる。
 かかるジアミン成分として含まれていてもよい二側鎖ジアミンは、例えば下記式[1]で表される
Figure JPOXMLDOC01-appb-C000039
 上記式[1]中、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-又はそれらの任意の組み合わせからなる2価の有機基を表す。なかでも、Xは、単結合、-O-、-NH-、-O-(CH-O-であるのが好ましい。「それらの任意の組み合わせ」の例としては、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、-COO-(CH-OCO-等が挙げられる。mは1~8の整数である。
 また、上記式[1]中、2つのYは、それぞれ独立して、下記式[1-1]の構造を表す。
Figure JPOXMLDOC01-appb-C000040
 上記式[1-1]中、Y及びYは、それぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を表す。Yは単結合又は-(CH-(bは1~15の整数である)を表す。ただし、Y又はYが単結合又は-(CH-である場合、Yは単結合である。また、Yが-O-、-CHO-、-COO-又は-OCO-であるか、及び/又はYが-O-、-CHO-、-COO-又は-OCO-である場合、Yは単結合又は-(CH-である。
 また、式[1-1]中、Yは、ベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基又はステロイド骨格を有する炭素数17~51の2価の有機基を表す。該環状基を形成する任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
 また、上記式[1-1]中、Yは、ベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を表す。該環状基を形成する任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
 また、上記式[1-1]中、Yは炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシ基及び炭素数1~18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を表す。nは0~4の整数である。
 また、上記式[1]中、Yは、Xの位置からメタ位であってもオルト位であってもよいが、好ましくはオルト位がよい。すなわち、上記式[1]は、下記式[1’]であるのが好ましい。
Figure JPOXMLDOC01-appb-C000041
 また、上記式[1]中、2つのアミノ基(-NH)の位置は、ベンゼン環上のいずれの位置であってもよいが、下記式[1]-a1~[1]-a3で表される位置が好ましく、下記式[1]-a1であるのがより好ましい。下記式中、Xは、上記式[1]における場合と同様である。なお、下記式[1]-a1~[1]-a3は、2つのアミノ基の位置を説明するものであり、上記式[1]中で表されていたYの表記が省略されている。
Figure JPOXMLDOC01-appb-C000042
 従って、上記式[1’]及び[1]-a1~[1]-a3に基づけば、上記式[1]は、下記式[1]-a1-1~[1]-a3-2から選ばれるいずれかの構造であるのが好ましく、下記式[1]-a1-1で表される構造がより好ましい。下記式中、X及びYは、それぞれ式[1]における場合と同様である。
Figure JPOXMLDOC01-appb-C000043
 また、上記式[1-1]の例として、下記式[1-1]-1~[1-1]-22が挙げられる。このうち、上記式[1-1]の例としては、下記式[1-1]-1~[1-1]-4、[1-1]-8又は[1-1]-10が好ましい。なお、下記式中、*は、上記式[1]、[1’]及び[1]-a1~[1]-a3におけるフェニル基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 ジアミン成分が、所定構造を有する二側鎖ジアミンを含有することで、過度の加熱にさらされた場合でも、液晶を垂直に配向させる能力が低下し難くなる液晶配向膜となる。また、ジアミン成分が該二側鎖ジアミンを含有することで、膜に何らかの異物が接触し、傷ついた際も、液晶を垂直に配向させる能力が低下し難くなる液晶配向膜となる。すなわち、ジアミン成分が該二側鎖ジアミンを含有することで、各種の上記特性に優れた液晶配向膜が得られる液晶配向剤を提供できるようになる。
<その他のジアミン:光反応性側鎖を有するジアミン>
 PSA方式の液晶表示素子における液晶配向剤として用いる場合、重合性化合物の反応性を高める目的で光反応性側鎖を有するジアミンを用いて特定重合体を調製することもできる。
 かかるジアミン成分は、その他のジアミンとして、光反応性側鎖を有するジアミンを含有してもよい。ジアミン成分が、光反応性側鎖を有するジアミンを含有することで、特定重合体やそれ以外の重合体に、光反応性側鎖を導入できるようになる。
 光反応性側鎖を有するジアミンとしては、例えば、下記式[VIII]又は[IX]で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000046
 上記式[VIII]及び[IX]中、2つのアミノ基(-NH)の位置は、ベンゼン環上のいずれの位置であってもよく、例えば、側鎖の結合基に対し、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置又は3,5の位置が挙げられる。ポリアミック酸を合成する際の反応性の点からは、2,4の位置、2,5の位置又は3,5の位置が好ましい。ジアミンを合成する際の容易性の点も加味すると、2,4の位置又は3,5の位置がより好ましい。
 また、上記式[VIII]中、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-又は-N(CH)CO-を表す。特に、Rは単結合、-O-、-COO-、-NHCO-又は-CONH-であるのが好ましい。
 また、上記式[VIII]中、Rは、単結合又はフッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表す。ここでのアルキレン基の-CH-は、-CF-又は-CH=CH-で任意に置換されていてもよく、次のいずれかの基が互いに隣り合わない場合、これらの基に置換されていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環又は複素環。なお、この二価の炭素環又は複素環は、具体的には下記式(1a)のものを例示することができる。
Figure JPOXMLDOC01-appb-C000047
 また、上記式[VIII]中、Rは、通常の有機合成的手法で形成させることができるが、合成の容易性の点からは、単結合又は炭素数1~12のアルキレン基が好ましい。
 また、上記式[VIII]中、R10は、下記式(1b)からなる群から選択される光反応性基を表す。なかでも、R10は、光反応性の点から、メタクリル基、アクリル基又はビニル基が好ましい。
Figure JPOXMLDOC01-appb-C000048
 また、上記式[IX]中、Yは、-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-又は-CO-を表す。Yは、炭素数1~30のアルキレン基、二価の炭素環又は複素環を表す。ここでのアルキレン基、二価の炭素環又は複素環における、1つ又は複数の水素原子は、フッ素原子又は有機基で置換されていてもよい。Yは、次の基が互いに隣り合わない場合、-CH-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。
 また、上記式[IX]中、Yは、-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、-CO-又は単結合を表す。Yはシンナモイル基を表す。Yは単結合、炭素数1~30のアルキレン基、二価の炭素環又は複素環を表す。ここでのアルキレン基、二価の炭素環又は複素環における、1つ又は複数の水素原子は、フッ素原子又は有機基で置換されていてもよい。Yは、次の基が互いに隣り合わない場合、-CH-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。Yはアクリル基又はメタクリル基等の光重合性基を表す。
 このような上記式[VIII]又は[IX]で表される光反応性側鎖を有するジアミンの具体例としては、下記式(1c)が挙げられる。
Figure JPOXMLDOC01-appb-C000049
 上記式(1c)中、X及びX10は、それぞれ独立に、単結合、-O-、-COO-、-NHCO-又は-NH-である結合基を表す。Yは、フッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表す。
 光反応性側鎖を有するジアミンとしては、下記式[VII]のジアミンも挙げられる。式[VII]のジアミンは、ラジカル発生構造を有する部位を側鎖に有している。ラジカル発生構造においては、紫外線照射により分解しラジカルが発生する。
Figure JPOXMLDOC01-appb-C000050
 上記式[VII]中、Arはフェニレン、ナフチレン及びビフェニレンからなる群から選ばれる少なくとも1種の芳香族炭化水素基を表し、それらの環の水素原子はハロゲン原子に置換されていてもよい。カルボニルが結合しているArは、紫外線の吸収波長に関与するため、長波長化する場合、ナフチレンやビフェニレンのような共役長の長い構造が好ましい。一方、Arがナフチレンやビフェニレンのような構造になると、溶解性が悪くなる場合があり、この場合、合成の難易度が高くなる。紫外線の波長が250nm~380nmの範囲であればフェニル基でも十分な特性が得られるため、Arはフェニル基が最も好ましい。
 上記Arにおいて、芳香族炭化水素基には置換基が設けられていてもよい。ここでの置換基の例としては、アルキル基、ヒドロキシル基、アルコキシ基、アミノ基等、電子供与性の有機基が好ましい。
 また、上記式[VII]中、R1及びRは、それぞれ独立して、炭素原子数1~10のアルキル基、アルコキシ基、ベンジル基又はフェネチル基を表す。アルキル基やアルコキシ基の場合、R及びRにより環が形成されていてもよい。
 また、上記式[VII]中、T及びTは、それぞれ独立して、単結合、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-又は-N(CH)CO-の結合基を表す。
 また、式[VII]中、Sは単結合、非置換又はフッ素原子によって置換されている炭素原子数1~20のアルキレン基を表す。ここでのアルキレン基の-CH-又は-CF-は、-CH=CH-で任意に置換されていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合、これらの基に置換されていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環、二価の複素環。
 また、式[VII]中、Qは、下記式(1d)から選ばれる構造を表す。
Figure JPOXMLDOC01-appb-C000051
 上記式(1d)中、Rは水素原子又は炭素原子数1~4のアルキル基を表す。Rは、-CH-、-NR-、-O-、又は-S-を表す。
 また、上記式[VII]中、Qは、電子供与性の有機基が好ましく、上記Arの例でも挙げたような、アルキル基、ヒドロキシル基、アルコキシ基、アミノ基等が好ましい。Qがアミノ誘導体の場合、ポリイミドの前駆体であるポリアミック酸の重合の際に、発生するカルボン酸基とアミノ基が塩を形成するなどの不具合が生じる可能性があるため、ヒドロキシル基又はアルコキシ基がより好ましい。
 また、上記式[VII]中、2つのアミノ基(-NH)の位置は、o-フェニレンジアミン、m-フェニレンジアミン又はp-フェニレンジアミンのいずれでもよいが、酸二無水物との反応性の点では、m-フェニレンジアミン又はp-フェニレンジアミンが好ましい。
 従って、上記式[VII]の好ましい具体的としては、合成の容易さ、汎用性の高さ、特性等の点から、下記式が挙げられる。なお、下記式中、nは2~8の整数である。
Figure JPOXMLDOC01-appb-C000052
 これらの上記式[VII]、[VIII]又は[IX]で表される光反応性側鎖を有するジアミンは、1種単独又は2種以上混合して用いることができる。液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷等の特性、液晶表示素子とした際の液晶の応答速度等に応じて、1種単独か2種以上混合して用いるか、また、2種以上混合して用いる場合にはその割合等、適宜調整すればよい。
<その他のジアミン:上記以外のジアミン>
 特定重合体を得るためのジアミン成分に含まれていてもよい上記以外のジアミンは、上記特定構造を有するジアミン等に限定されない。これらの上記以外のジアミンの例としては、下記式[2]で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000053
 上記式[2]中、A及びAは、それぞれ独立して、水素原子、炭素数1~5のアルキル基、炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基を表す。なかでも、モノマーの反応性の点から、A及びAは、水素原子又はメチル基が好ましい。また、Y11の構造を例示すると、下記式(Y-1)~(Y-178)が挙げられる。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
 上記式中、特にnの範囲の記載が無いものについては、nは1~6の整数である。また、上記式中、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
 上記式中、Bocは、tert-ブトキシカルボニル基を表す。
 以上説明した上記以外のジアミンは、2種以上組み合わせて用いることができる。ジアミン成分が上記以外のジアミンを含有する場合、特定重合体における、その他のジアミンに対する特定ジアミンは、特定ジアミンが5~70mol%、好ましくは10~50mol%、より好ましくは10~40mol%となる量がよい。
 本発明に用いるポリイミド前駆体は、ジアミン成分とテトラカルボン酸誘導体との反応から得られるものであり、ポリアミック酸やポリアミック酸エステル等が挙げられる。
 式(6)で表される構造単位を含むポリイミド前駆体が、式(7)で表される構造単位を同時に含む場合、式(6)で表される構造単位は、式(6)と式(7)の合計に対して10モル%以上であることが好ましく、より好ましくは20モル%以上であり、特に好ましくは30モル%以上である。
 本発明に用いるポリイミド前駆体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。
 式(1)で表される2価の基を主鎖に有するポリイミドとしては、前記のポリイミド前駆体を閉環させて得られるポリイミドが挙げられる。このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
<液晶配向剤>
 本発明の液晶配向剤は、上記の特定重合体を含有するが、異なる構造の特定重合体を2種以上含有していてもよい。また、特定重合体に加えて、その他の重合体、すなわち式(1)で表される2価の基を有さない重合体を含有していてもよい。重合体の形式としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレート等が挙げられる。本発明の液晶配向剤がその他の重合体を含有する場合、全重合体成分に対する特定重合体の割合は5質量%以上が好ましく、例えば5~95質量%が挙げられる。
 液晶配向剤は、均一な薄膜を形成させるという点から、一般的には塗布液の形態をとる。本発明の液晶配向剤も、上記重合体成分と、この重合体成分を溶解させる有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更できる。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン等である。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンを用いることが好ましい。
 また、本発明の液晶配向剤に含有される有機溶媒は、上記溶媒に加えて、液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を用いることもできる。かかる有機溶媒の具体例を下記に挙げる。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、2,6-ジメチル-4-ヘプタノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジイソプロピルエーテル、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、2,6-ジメチル-4-ヘプタノン、4,6-ジメチル-2-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、上記式[D-1]~[D-3]で表される溶媒等を挙げることができる。
 なかでも、有機溶媒は、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルを用いることが好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境等に応じて適宜選択される。
 本発明の液晶配向剤は、重合体成分及び有機溶媒以外の成分を追加的に含有してもよい。このような追加成分としては、液晶配向膜と基板との密着性や、液晶配向膜とシール材との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための架橋剤、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質等が挙げられる。これら追加成分の具体例としては、国際公開第2015/060357号の53頁段落[0104]~60頁段落[0116]に開示される貧溶媒や架橋性化合物が挙げられる。
 液晶配向膜と基板との密着性を向上させる化合物としては、官能性シラン含有化合物やエポキシ基含有化合物が挙げられ、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン又はN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタン等が挙げられる。
 また、本発明の液晶配向剤は、液晶配向膜の機械的強度を上げるために以下のような添加物を含有していてもよい。
Figure JPOXMLDOC01-appb-C000074
 上記の添加剤は、液晶配向剤に含有される重合体成分の100質量部に対して0.1~30質量部であることが好ましい。0.1質量部未満であると効果が期待できず、30質量部を超えると液晶の配向性を低下させるため、より好ましくは0.5~20質量部である。
 本発明の液晶配向剤には、上記の他、本発明に記載の特定重合体以外の重合体、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的の誘電体、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、更には塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を含有せしめてもよい。
<液晶配向膜>
 本発明の液晶配向膜は、前記液晶配向剤から得られる。液晶配向剤から液晶配向膜を得る方法の一例を挙げるなら、塗布液形態の液晶配向剤を基板に塗布し、乾燥し、焼成して得られた膜に対して、ラビング処理法又は光配向処理法で配向処理を施す方法が挙げられる。なお、VA方式においては、配向処理を施さずに、そのまま用いることもできる。
 液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板、ポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法などが一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、目的に応じてこれらを用いてもよい。
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により、溶媒を蒸発させ、焼成する。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択できる。乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を行うことが好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については、例えば、温度40℃~150℃、好ましくは60℃~100℃のホットプレート上で、0.5分~30分、好ましくは1分~5分乾燥させる方法が挙げられる。
 液晶配向剤を塗布することにより形成された塗膜の焼成温度は、例えば100~350℃、好ましくは120~300℃であり、さらに好ましくは150℃~250℃である。焼成時間は5分~240分、好ましくは10分~90分であり、より好ましくは20分~90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環炉、赤外線炉などで行うことができる。
 焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmであることが好ましく、10~200nmがより好ましい。
 TN型、STN型、IPS型又はFFS型の液晶表示素子を製造する場合、上記工程で形成した塗膜に液晶配向能を付与する処理を実施する。配向能付与処理としては、塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。一方、VA型液晶表示素子を製造する場合には、上記工程で形成した塗膜をそのまま液晶配向膜として使用できるが、該塗膜に対し配向能付与処理を施してもよい。
 光配向処理において、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合には、照射の方向は斜め方向とする。
 使用する光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザー、LEDランプなどを使用することができる。好ましい波長領域の紫外線は、光源を、例えばフィルター、回折格子などと併用する手段などにより得ることができる。放射線の照射量は、好ましくは100~50,000J/mであり、より好ましくは300~20,000J/mである。
 また、塗膜に対する光照射は、反応性を高めるために塗膜を加温しながら行ってもよい。加温の際の温度は、通常30~250℃であり、好ましくは40~200℃であり、より好ましくは50~150℃である。
 光配向処理は、光照射時に加熱処理を施してもよく、光配向処理後に加熱処理を行っても良い。このときの加熱温度は、好ましくは80~300℃であり、より好ましくは120~250℃である。加熱時間は、好ましくは5~200分であり、より好ましくは10~100分である。また、前記加熱処理の代わりに、有機溶媒や水による洗浄処理を行ってもよく、洗浄処理と加熱処理を組み合わせても良い。
 ラビング処理後の液晶配向膜に対して更に、液晶配向膜の一部に紫外線を照射することによって液晶配向膜の一部の領域のプレチルト角を変化させる処理や、液晶配向膜表面の一部にレジスト膜を形成した上で先のラビング処理と異なる方向にラビング処理を行った後にレジスト膜を除去する処理を行い、液晶配向膜が領域ごとに異なる液晶配向能を持つようにしてもよい。この場合、得られる液晶表示素子の視界特性を改善することが可能である。
 VA型の液晶表示素子に好適な液晶配向膜は、PSA(Polymer  Sustained Alignment)型の液晶表示素子にも好適に用いることができる。
 本発明の液晶配向膜は、IPS方式やFFS(Fringe Field Switching)方式などの横電界方式の液晶表示素子の液晶配向膜としても好適であり、VA方式、特にPSAモードの液晶表示素子の液晶配向膜としても有用である。
<液晶表示素子>
 本発明の液晶表示素子は、上記液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して素子としたものである。作製可能な液晶表示素子の具体例としては、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向剤により形成された上記液晶配向膜と、を有する液晶セルを具備する液晶表示素子である。より具体的には、本発明の液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持し、すなわち、液晶配向膜に接触させて液晶層を設けた液晶表示素子であり、PSAモードにおいては、さらに液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することで作製される液晶セルを具備する液晶表示素子である。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。具体的には、透明な基板を準備し、次に、前記のような条件で、各基板の上に液晶配向膜を形成する。基板は上記のとおり、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜で記載した基板と同様のものを挙げることができる。
 一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。
 PSAモードの液晶表示素子においては、片側基板に例えば1~10μmのライン/スリット電極パターンを形成し、対向基板にはスリットパターンや突起パターンを形成していない構造においても動作可能であり、この構造の液晶表示素子によって、製造時のプロセスを簡略化でき、高い透過率を得ることができる。
 IPS型又はFFS型の液晶表示素子を製造する場合、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板の電極形成面と、電極が設けられていない対向基板の一面とに液晶配向剤をそれぞれ塗布し、次いで各塗布面を加熱することにより塗膜を形成する。金属膜としては、例えばクロムなどの金属からなる膜を使用できる。
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
 透過型の液晶表示素子の場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
 垂直配向方式の液晶表示素子の液晶層を構成する液晶材料は特に限定されず、従来の垂直配向方式で使用される液晶材料、例えば、メルク社製のMLC-6608やMLC-6609、MLC-3022などのネガ型の液晶を用いることができる。また、PSAモードでは、重合性化合物を含有する液晶であるMLC-3023を用いることが出来る。その他にも、例えば下記式で表されるような重合性化合物含有の液晶を使用することができる。
Figure JPOXMLDOC01-appb-C000075
 一方、IPSやFFS等の水平配向方式の液晶表示素子の液晶層を構成する液晶材料は、従来水平配向方式で使用される液晶材料、例えば、メルク社製のMLC-2003やMLC-2041などのネガポジ型の液晶やMLC-6608などのネガ型の液晶も用いることができる。
 液晶層を2枚の基板の間に挟持させる方法としては、公知の方法を挙げることができる。例えば、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。また、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布した後に液晶を滴下し、その後液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせて封止を行う方法でも液晶セルを作製できる。上記スペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。
 PSAモード方式に於いては、液晶を挟持させた後、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することにより液晶セルを作製する。この工程としては、例えば基板上に設置されている電極間に電圧をかけることで液晶配向膜及び液晶層に電界を印加し、この電界を保持したまま紫外線を照射する方法が挙げられる。ここで、電極間にかける電圧としては、例えば5~30Vp-p又はDC2.5~15V、好ましくは10~30Vp-p又はDC5~15Vである。また、照射する光としては、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、前記のとおりである。紫外線の照射量は、例えば、1~60J、好ましくは40J以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。
 上記のように、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、重合性化合物が反応して重合体を形成し、この重合体により液晶分子が傾く方向が記憶されることで、得られる液晶表示素子の応答速度を速くすることができる。また、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、液晶を垂直に配向させる側鎖と、光反応性の側鎖とを有するポリイミド前駆体、及び、このポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一種の重合体が有する光反応性の側鎖同士や、重合体が有する光反応性の側鎖と重合性化合物が反応するため、得られる液晶表示素子の応答速度を速くすることができる。
 以上の工程が終了した後、液晶セルに偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付けることが好ましい。
 なお、本発明の液晶配向膜及び液晶表示素子は、本発明の液晶配向剤を用いている限り限定されるものでは無く、その他の公知の手法で作製されたものであっても良い。液晶配向剤から液晶表示素子を得るまでの工程は、例えば、日本特開公報2015-135393の17頁[0074]~19頁[0081]に開示されている。
 本発明の液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。実施例において使用した化合物の略号の意味を以下に示す。
(酸二無水物)
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物。
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物。
PMDA:ベンゼン-1,2,4,5-テトラカルボン酸無水物。
TCA:2,3,5-トリカルボキシシクロペンチル酢酸-1,4,2,3-二無水物
(ジアミン)
p-PDA:1,4-フェニレンジアミン、DDM:4,4‘-メチレンジアニリン
DBA:3,5-ジアミノ安息香酸
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
<溶媒>
NMP:N-メチル-2-ピロリドン、   BCS:ブチルセロソルブ。
<ポリイミドの分子量測定>
測定装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)(SSC-7200)、
カラム:Shodex社製カラム(KD-803、KD-805)、カラム温度:50℃、溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、
流速:1.0ml/分、
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約9000,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS混合品)1.0mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。
 (化学)イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。なお、式中、xはアミック酸のNH基由来のプロトンピーク積算値であり、yは基準プロトンのピーク積算値であり、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基のプロトン1個に対する基準プロトンの個数割合である。
   イミド化率(%)=(1-α・x/y)×100
 化合物DA-O1~DA-O4は新規化合物であり、以下のようにして合成した。
 下記モノマーの合成例1~4による生成物は1H-NMR分析により同定した。分析条件は下記のとおりである。
 装置:Varian NMR System 400 NB (400 MHz)
 測定溶媒:DMSO-d 、
 基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)
<<合成例1:DA-O1の合成>>
Figure JPOXMLDOC01-appb-C000079
<化合物[1]の合成>
 メタノール(320g)、p-ニトロベンゾニトリル(40.0g,270mmol)、2-アミノ-2-メチル-1,3-プロパンジオール(142.3g)、及び炭酸ナトリウム(28.6g)をフラスコ中に仕込み、窒素雰囲気還流条件下にて22時間反応させた。反応終了後、反応溶液を純水(960g)に注ぎ込み結晶を析出させ、ろ過、メタノール洗浄を実施した。続いて、得られた粗物を酢酸エチル(260g)とヘキサン(40g)混合溶媒でスラリー洗浄を行い、ろ過、乾燥することで化合物[1]を白色結晶として得た(収量:46.8g、収率:73%)。
H-NMR(400MHz) in DMSO-d: 8.29-8.33ppm(m,2H), 8.07-8.11ppm(m,2H) 4.97ppm(t,J=6.0Hz,1H), 4.46ppm(d,J=8.4Hz,1H), 4.07ppm(d,J=8.4Hz,1H), 3.36-3.47ppm(m,2H), 1.25ppm(s,3H)
<化合物[2]の合成>
 N-メチル-2-ピロリドン(380g)、化合物[1](44.7g,189mmol)、4-フルオロニトロベンゼン(45.9g)、及び水酸化ナトリウム(12.6g)をフラスコ中に仕込み、室温条件下で約5日間反応させた。反応終了後、反応液を純水(1124g)に注ぎ込み結晶を析出させ、ろ過することで粗結晶を回収した。続いて、メタノール(179g)で室温スラリー洗浄を行い、続いて酢酸エチル(560g)でスラリー洗浄を行った。スラリー洗浄後、ろ過、乾燥することで化合物[2]を薄黄色結晶として得た(収量:51.4g,収率:76%)。
H-NMR(400MHz) in DMSO-d: 8.30-8.32ppm(m,2H), 8.15-8.19ppm(m,2H), 8.09-8.12ppm(m,2H), 7.13-7.18ppm(m,2H), 4.56ppm(d,J=8.8Hz,1H), 4.27ppm(d,J=8.4Hz,1H), 4.26ppm(d,J=9.6Hz,1H), 4.21ppm(d,J=10.0Hz,1H)1.25ppm(s,3H)
<DA-O1の合成>
 テトラヒドロフラン(397g)及びメタノール(99g)、化合物[2](49.7g,139mmol)、5%パラジウム-炭素(約50%水湿潤品)(3.46g)をフラスコ中に仕込み、水素雰囲気室温条件下で24時間反応させた。反応終了後、ろ過することで5%パラジウム-炭素を除去し、減圧濃縮することで内部総重量を73.4gとした。続いて、2-プロパノール(250g)を加えて50℃加熱溶解させ、氷冷条件下で結晶を析出させ、ろ過、乾燥する事でDA-O1を白色結晶として得た(収量:30.2g,収率:73%)。
H-NMR(400MHz) in DMSO-d:7.50-7.54ppm(m,2H), 6.62-6.66ppm(m,2H), 6.53-6.56ppm(m,2H), 6.45-6.49ppm(m,2H), 5.7ppm(s,2H), 4.61ppm(s, 2H), 4.31ppm(d,J=8.4Hz,1H),4.00ppm(d,J=8.40Hz,1H), 3.74-3.79ppm(m,2H), 1.30ppm(s,3H)
<<合成例2:DA-O2の合成の合成>>
Figure JPOXMLDOC01-appb-C000080
<化合物[3]の合成>
 メタノール(240g)、p-ニトロベンゾニトリル(30.0g,203mmol)、2-アミノ-1,3-プロパンジオール(55.6g)、及び炭酸ナトリウム(21.6g)をフラスコ中に仕込み、窒素雰囲気還流条件下にて23時間反応させた。反応終了後、反応溶液を純水(720g)に注ぎ込み結晶を析出させ、ろ過、メタノール洗浄を実施した。続いて、得られた粗物を酢酸エチル(150g)とヘキサン(30g)混合溶媒でスラリー洗浄を行い、ろ過、乾燥することで化合物[3]を薄黄色結晶として得た(収量:30.9g、収率:69%)。
H-NMR(400MHz)in DMSO-d:8.11-8.33ppm(m,2H),8.09-8.12ppm(m,2H),4.90ppm(t,J=5.6Hz,1H),4.48-4.90ppm(m,1H),4.33-4.41ppm(m,2H),3.36-3.64ppm(m,2H)
<化合物[4]の合成>
 N-メチル-2-ピロリドン(138g)、化合物[3](27.8g,126mmol)、4-フルオロニトロベンゼン(28.8g)、及び水酸化ナトリウム(7.6g)をフラスコ中に仕込み、室温条件下で約4日間反応させた。反応終了後、反応液に酢酸エチル(504g)及び純水(224g)を加えた結果、結晶が析出した。ろ過することで結晶を回収し、回収した結晶をメタノール(140g)と純水(140g)混合溶媒で室温スラリー洗浄した。スラリー洗浄後、ろ過、メタノール洗浄、乾燥することで化合部物[4]を薄黄色結晶として得た(収量:31.3g、収率:72%)。
H-NMR(400MHz)in DMSO-d: 8.31-8.33ppm(m,2H) 8.17-8.21ppm(m,2H),8.11-8.14ppm(m,2H),7.15-7.19ppm(m,2H),4.76-4.83ppm(m,1H),4.66-4.70ppm(m,1H),4.42-4.46ppm(m,1H),4.32-4.38ppm(m,1H)
<DA-O2の合成>
 テトラヒドロフラン(217g)及びメタノール(62.6g)、化合物[4](31.3g,91.2mmol)、及び5%パラジウム-炭素(約50%水湿潤品)(2.34g)をフラスコ中に仕込み、水素雰囲気40℃条件下で4日間反応させた。反応終了後、ろ過することで5%パラジウム-炭素を除去し、減圧濃縮することで溶媒を除去し粗物を得た。続いて、メタノール(243g)で室温スラリー洗浄を行い、ろ過、乾燥することでDA-O2を薄ピンク色結晶として得た(収量:17.5g,収率:68%)。
H-NMR(400MHz)in DMSO-d:7.53-7.56ppm(m,2H), 6.64-6.68ppm(m,2H),6.54-6.57ppm(m,2H),6.47-6.51ppm(m,2H),5.73ppm(s,2H),4.62ppm(s,2H),4.41-4.47ppm(m,2H),4.15-4.18ppm(m,1H),3.96-3.99ppm(m,1H),3.79-3.83ppm(m,1H)
<<合成例3:DA-O3の合成>>
Figure JPOXMLDOC01-appb-C000081
<化合物[5]の合成>
 メタノール(400g)、テレフタロニトリル(50.2g,392ammol)、2-アミノ-2-メチル-1,3-プロパンジオール(165g)、及び炭酸ナトリウム(83.9g)をフラスコ中に仕込み、窒素雰囲気還流条件下で20時間反応させた。反応終了後、純水(1200g)中に反応液を注ぎ込み結晶を析出させ、ろ過により粗物を回収した。得られた粗物を純水(300g×6回)、次いでメタノール(200g×2回)洗浄することで化合物[5]を白色結晶として得た(粗収量:109.6g、粗収率:100%)。
H-NMR(400MHz)in DMSO-d:7.92ppm(s,4H),4.94ppm(t,J=5.2Hz,2H),4.41ppm(d,J=8.0Hz,2H),4.01ppm(d,J=8.0Hz,2H),3.36-3.44ppm(m,4H),1.23ppm(s,6H)
<化合物[6]の合成>
 N-メチル-2-ピロリドン(327g)、化合物[5](40.8g,146mmol)、及び水酸化カリウム(21.2g)をフラスコ中に仕込み、窒素雰囲気水冷条件下N-メチル-2-ピロリドン(19.9g)に溶解させた4-フルオロニトロベンゼン(45.7g)を滴下した。滴下終了後、滴下ロートをN-メチル-2-ピロリドン(21.4g)で洗浄し、室温条件下で2時間反応させた。反応終了後、純水(1200g)中に反応液を注ぎ込み結晶を析出させ、ろ過、純水、メタノール洗浄を実施した。続いて、得られた粗結晶をメタノール(300g)で室温スラリー洗浄した。続いて、粗結晶をクロロホルム(10009g)に加熱溶解させ、メタノール(466g)を加えて結晶を析出させ、ろ過、乾燥することで、化合物[6]を薄黄色結晶として得た(収量:63.2g、収率:79%)。
H-NMR(400MHz)in DMSO-d:8.16-8.19ppm(m,4H), 7.95ppm(s,4H),7.13-7.16ppm(m,4H),4.52ppm(d,J=8.4Hz,2H),4.19-4.22ppm(m,6H),1.42ppm(s,6H)
<DA-O3の合成>
 テトラヒドロフラン(509g)、メタノール(62.3g)、化合物[6](62.7g,115mmol)、及び5%パラジウム-炭素(約50%水湿潤品)(3.66g)をフラスコ中に仕込み、水素雰囲気40℃条件下で4日間反応させた。反応終了後、ろ過することで5%パラジウム-炭素を除去した。続いて、ろ物を過剰量のN,N-ジメチルホルムアミドで洗浄した。得られたろ液を減圧濃縮し、メタノール(660g)を加えて結晶を析出させ、ろ過することでDA-O3を薄ピンク色結晶として得た(収量:20.9g、収率:38%)。
H-NMR(400MHz)in DMSO-d:7.96ppm(s,4H),6.62-6.65ppm(m,4H),6.46-6.49ppm(m,4H),4.61ppm(s,4H), 4.47ppm(d,J=8.4Hz,2H),4.16ppm(d,J=8.4Hz,2H), 3.87ppm(d,J=9.2Hz,2H),3.60ppm(d,J=9.2Hz,2H), 1.36ppm(s,6H)
<<合成例4:DA-O4の合成>>
Figure JPOXMLDOC01-appb-C000082
<化合物[7]の合成>
 N-メチル-2-ピロリドン(400g)、化合物[5](40.0g,143mmol)、及びトリエチルアミン(38.0g)をフラスコ中に仕込み、窒素雰囲気水冷条件下で4-ニトロベンゾイルクロリド(60.7g)を4分割投入した。投入後、撹拌不良が発生したため、N-メチル-2-ピロリドン(160g)を加えて撹拌性を確保し、室温条件下で約15時間反応させた。反応終了後、反応液を純水(1500g)中に注ぎ込み結晶を析出させ、ろ過、純水及びメタノール洗浄を実施した。続いて、得られた粗物をテトラヒドロフラン(560g)に50℃加熱溶解させ、メタノール(400g)を加えて結晶を析出させた。更に得られた結晶を、テトラヒドロフラン(160g)でスラリー洗浄を行い、ろ過、乾燥することで化合物[7]を白色結晶として得た(収量:47.4g、収率:55%)。
H-NMR(400MHz)in DMSO-d:8.24-8.30ppm(m,4H), 8.06-8.11ppm(m,4H),7.93ppm(s,4H),4.58-4.60ppm(m,2H),4.35-4.43ppm(m,4H),4.19-4.22ppm(m,2H),1.43ppm(s,6H)
<DA-O4の合成>
 テトラヒドロフラン(453g)、メタノール(95.6g)、N,N-ジメチルホルムアミド(400g)、化合物[7](47.4g,78.6mmol)、及び5%パラジウム-炭素(約50%水湿潤品)(2.90g)をフラスコ中に仕込み、水素雰囲気室温条件下で約3日間反応させた。ろ過により5%パラジウム-炭素を除去し、減圧濃縮することで内部重量を130gとした。得られた均一溶液にメタノール(390g)を加えて結晶を析出させ、ろ過、乾燥することでDA-O4を白色結晶として得た(収量:17.3g、収率:41%)。
H-NMR(400MHz)in DMSO-d:7.96ppm(s,4H),7.52-7.55ppm(m,4H),6.46-6.50ppm(m,4H),5.96ppm(s,4H), 4.48ppm(d,J=8.8Hz,2H),4.16-4.22ppm(m,6H),1.39ppm(s,6H)
<製造例1>
 BODA(1.25g、5.00mmol)、DA-O1(2.08g、7.00mmol)及びDA-S1(1.14g、3.00mmol)をNMP(17.9g)中で溶解し、60℃で3時間反応させたのち、CBDA(0.92g、4.70mmol)とNMP(3.70g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。このポリアミック酸のMnは10200、Mwは25800であった。このポリアミック酸溶液(5.4g)にNMP(5.40g)とBCS(7.20g)を加え室温で2時間攪拌することにより液晶配向剤PAA-1を得た。
<製造例2>
 BODA(1.25g、5.00mmol)、DA-O2(1.98g、7.00mmol)及びDA-S1(1.14g、3.00mmol)をNMP(17.5g)中で溶解し、60℃で3時間反応させたのち、CBDA(0.89g、4.55mmol)とNMP(3.60g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。このポリアミック酸のMnは9800、Mwは47700であった。 このポリアミック酸溶液(5.4g)にNMP(5.40g)とBCS(7.20g)を加え室温で2時間攪拌することにより液晶配向剤PAA-2を得た。
<製造例3>
 BODA(3.13g、12.5mmol)、p-PDA(1.89g、17.5mmol)及びDA-S1(2.85g、7.50mmol)、をNMP(31.5g)中で溶解し、60℃で3時間反応させたのち、CBDA(2.40g、12.3mmol)とNMP(9.60g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。このポリアミック酸のMnは10800、Mwは28000であった。このポリアミック酸溶液(5.4g)にNMP(5.40g)とBCS(7.20g)を加え室温で2時間攪拌することにより液晶配向剤PAA-3を得た。
<製造例4>
 BODA(1.25g、5.00mmol)、DA-O1(2.08g、7.00mmol)及びDA-S1(1.14g、3.00mmol)をNMP(17.9g)中で溶解し、60℃で3時間反応させたのち、CBDA(0.92g、4.70mmol)とNMP(3.70g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(15g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(2.81g)、およびピリジン(0.87g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(170g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は51%であり、Mnは10100、Mwは25000であった。
 得られたポリイミド粉末(2.0g)にNMP(18.0g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(13.3g)を加え、室温で2時間攪拌することにより液晶
配向剤SPI-1を得た。
<製造例5>
 BODA(3.13g、12.5mmol)、p-PDA(1.89g、17.5mmol)及びDA-S1(2.85g、7.50mmol)をNMP(31.5g)中で溶解し、60℃で3時間反応させたのち、CBDA(2.40g、12.3mmol)とNMP(9.60g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(20g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.94g)、およびピリジン(1.53g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(240g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は49%であり、Mnは10600、Mwは27500であった。
 得られたポリイミド粉末(2.0g)にNMP(18.0g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(13.3g)を加え、室温で2時間攪拌することにより液晶配向剤SPI-2を得た。
<製造例6>
 DA-O1(1.49g、5.01mmol)をNMP(13.7g)中で溶解し、CBDA(0.93g、4.73mmol)とNMP(4.01g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。このポリアミック酸のMnは6500、Mwは13800であった。
 このポリアミック酸溶液(12.1g)にNMP(4.45g)とBCS(7.67g)を加え室温で2時間攪拌することにより液晶配向剤PAA-4を得た。
<製造例7>
 DA-O1(0.40g、1.34mmol)、p-PDA(0.14g及び1.33mmol)をNMP(5.90g)中で溶解し、CBDA(0.50g、2.55mmol)とNMP(1.71g)を加え、室温で18時間反応させポリアミック酸溶液を得た。このポリアミック酸のMnは6000、Mwは13200であった。このポリアミック酸溶液(8.65g)にNMP(5.20g)とBCS(3.46g)を加え室温で2時間攪拌することにより液晶配向剤PAA-5を得た。
<製造例8>
 p-PDA(2.17g、20.1mmol)をNMP(41.8g)中で溶解し、CBDA(3.61g、18.4mmol)とNMP(9,46g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。このポリアミック酸のMnは4800、Mwは11200であった。
 このポリアミック酸溶液(49.1g)にNMP(15.2g)とBCS(16.1g)を加え室温で2時間攪拌することにより液晶配向剤PAA-6を得た。
<製造例9>
 DA-O1(2.97g、10.0mmol)をNMP(33,1g)中で溶解し、PMDA(2.05g、9.4mmol)とNMP(3.7g)を加え、室温で15時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液の中から(15.0g)を分取し、NMP(15.0g)とBCS(10.0g)を加え室温で2時間攪拌することにより液晶配向剤PAA-7を得た。
<製造例10>
 DA-O2(2.83g、10.0mmol)をNMP(32,2g)中で溶解し、PMDA(2.05g、9.4mmol)とNMP(3.60g)を加え、室温で15時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液の中から(15.0g)を分取し、NMP(15.0g)とBCS(10.0g)を加え室温で2時間攪拌することにより液晶配向剤PAA-8を得た。
<製造例11>
 DA-P1(15.7g、60.0mmol)をNMP(159.0g)中で溶解し、PMDA(11.39g、58.8mmol)とNMP(39.8g)を加え、室温で15時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液の中から(15.0g)を分取し、NMP(15.0g)とBCS(10.0g)を加え室温で2時間攪拌することにより液晶配向剤PAA-9を得た。
<製造例12>
 DA-O3(0.730g、1.50mmol)、p-PDA(0.164g、1.52mmol)をNMP(10.7g)中で溶解し、CBDA(0.559g、2.85mmol)を加え、室温で14時間反応させポリアミック酸溶液を得た。このポリアミック酸のMnは7700、Mwは20000であった。このポリアミック酸溶液にNMP(7.23g)とBCS(4.84g)を加え室温で2時間攪拌することにより液晶配向剤PAA-10を得た。
<製造例13>
 DA-O4(0.325g、0.599mmol)、p-PDA(0.261g、2.41mmol)をNMP(8.45g)中で溶解し、CBDA(0.559g、2.85mmol)を加え、室温で14時間反応させポリアミック酸溶液を得た。このポリアミック酸のMnは8700、Mwは22000であった。このポリアミック酸溶液にNMP(5.67g)とBCS(3.81g)を加え室温で2時間攪拌することにより液晶配向剤PAA-11を得た。
<製造例14>
 TCA(5.55g、25.5mmol)、DA-O1(5.31g、17.90mmol)及びDA-S1(2.91g、7.65mmol)をNMP(55.1g)中で溶解し、60℃で6時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(23g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(8.59g)、およびピリジン(1.33g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(320g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は59%であり、Mnは15900、Mwは81000であった。
 得られたポリイミド粉末(4.2g)にNMP(37.8g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(28.0g)を加え、室温で2時間攪拌することにより液晶配向剤SPI-3を得た。
<製造例15>
 製造例14で得られたポリアミック酸溶液(23g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(8.59g)、およびピリジン(1.33g)を加え、80℃で5時間反応させた。この反応溶液をメタノール(320g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は70%であり、Mnは14100、Mwは69200であった。
 得られたポリイミド粉末(4.2g)にNMP(37.8g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(28.0g)を加え、室温で2時間攪拌することにより液晶配向剤SPI-4を得た。
<製造例16>
 TCA(3.35g、15.0mmol)、p-PDA(1.14g、10.5mmol)及びDA-S1(1.71g、4.50mmol)をNMP(24.8g)中で溶解し、60℃で6時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(20g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.93g)、およびピリジン(1.53g)を加え、110℃で4時間反応させた。この反応溶液をメタノール(238g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は80%であり、Mnは6660、Mwは16300であった。
 得られたポリイミド粉末(3.6g)にNMP(32.4g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(24.0g)を加え、室温で2時間攪拌することにより液晶配向剤SPI-5を得た。
<製造例17>
 TCA(2.91g、13.0mmol)、DA-O1(5.41g、18.2mmol)及びDA-S1(2.97g、7.80mmol)をNMP(54.9g)中で溶解し、60℃で3時間反応させたのち、CBDA(2.42g、12.3mmol)とNMP(9.69g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(23g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.41g)、およびピリジン(1.37g)を加え、75℃で2.75時間反応させた。この反応溶液をメタノール(306g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は70%であり、Mnは13800、Mwは39000であった。
 得られたポリイミド粉末(4.2g)にNMP(37.8g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(28.0g)を加え、室温で2時間攪拌することにより液晶配向剤SPI-6を得た。
<製造例18>
 TCA(3.92g、17.5mmol)、p-PDA(2.65g、24.5mmol)及びDA-S1(4.00g、10.5mmol)をNMP(42.3g)中で溶解し、60℃で3時間反応させたのち、CBDA(3.26g、16.6mmol)とNMP(13.0g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(23g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(5.87g)、およびピリジン(1.82g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(320g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は85%であり、Mnは12800、Mwは19900であった。
 得られたポリイミド粉末(4.2g)にNMP(37.8g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(28.0g)を加え、室温で2時間攪拌することにより液晶配向剤SPI-7を得た。
<製造例19>
 BODA(2.63g、10.5mmol)、DA-P2(1.67g、8.40mmol)、DA-O1(2.50g、8.40mmol)及びDA-S2(1.65g、4.20mmol)をNMP(33.8g)中で溶解し、60℃で3時間反応させたのち、CBDA(1.96g、9.98mmol)とNMP(7.82g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。このポリアミック酸のMnは8500、Mwは20100であった。このポリアミック酸溶液(15g)にNMP(15g)とBCS(20g)を加え室温で2時間攪拌することにより液晶配向剤PAA-12を得た。
<製造例20>
 BODA(2.69g、10.8mmol)、DA-P2(1.71g、8.60mmol)、DA-O1(1.28g、4.30mmol)、DA-P3(1.04g、4.30mmol)及びDA-S2(1.69g、4.30mmol)をNMP(33.7g)中で溶解し、60℃で3時間反応させたのち、CBDA(2.00g、10.2mmol)とNMP(8.01g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。このポリアミック酸のMnは9300、Mwは24000であった。このポリアミック酸溶液(15g)にNMP(15g)とBCS(20g)を加え室温で2時間攪拌することにより液晶配向剤PAA-13を得た。
<製造例21>
 BODA(2.75g、11.0mmol)、DA-P2(1.75g、8.80mmol)、DA-P3(2.13g、8.80mmol)及びDA-S2(1.67g、4.40mmol)をNMP(33.3g)中で溶解し、60℃で3時間反応させたのち、CBDA(2.07g、10.6mmol)とNMP(8.28g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。このポリアミック酸のMnは10600、Mwは33000であった。このポリアミック酸溶液(15g)にNMP(15g)とBCS(20g)を加え室温で2時間攪拌することにより液晶配向剤PAA-14を得た。
<製造例22>
 BODA(1.15g、4.6mmol)、DBA(0.70g、4.60mmol)、DA-O1(1.37g、4.60mmol)、DA-P3(1.67g、6.90mmol)及びDA-S1(2.63g、6.90mmol)をNMP(30.1g)中で溶解し、60℃で3時間反応させたのち、CBDA(2.59、34.2mmol)とNMP(10.4g)を加え、室温で1時間反応させたのち、PMDA(1.00g、4.60mmol)とNMP(4.01g)を加え、室温で3時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(28g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(5.86g)、およびピリジン(1.81g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(370g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は87%であり、Mnは12600、Mwは33300であった。
 得られたポリイミド粉末(4.2g)にNMP(37.8g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(28.0g)を加え、室温で2時間攪拌することにより液晶配向剤SPI-8を得た。
<製造例23>
 BODA(4.88g、19.5mmol)、DDM(1.93g、9.75mmol)、DA-P4(1.29g、3.90mmol)、DA-P5(2.78g、11.7mmol)及びDA-S2(5.39g、13.7mmol)をNMP(65.3g)中で溶解し、60℃で3時間反応させたのち、CBDA(3.63、18.5mmol)とNMP(14.5g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(55g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(10.9g)、およびピリジン(3.38g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(730g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は74%であり、Mnは13900、Mwは40700であった。
 得られたポリイミド粉末(4.2g)にNMP(37.8g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(28.0g)を加え、室温で2時間攪拌することにより液晶配向剤SPI-9を得た。
<製造例24>
 BODA(1.00g、4.00mmol)、DBA(1.22g、8.00mmol)、DA-P3(1.45g、6.00mmol)及びDA-S1(2.28g、6.00mmol)をNMP(23.8g)中で溶解し、60℃で3時間反応させたのち、CBDA(2.27、11.6mmol)とNMP(9.01g)を加え、室温で1時間反応させたのち、PMDA(0.87g、4.00mmol)とNMP(3.49g)を加え、室温で3時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(g)、およびピリジン(g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(370g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は74%であり、Mnは11000、Mwは27400であった。
 得られたポリイミド粉末(4.2g)にNMP(37.8g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(28g)を加え、室温で2時間攪拌することにより液晶配向剤SPI-10を得た。
<製造例25>
 製造例22で得られた液晶配向剤SPI-8(7.00g)及び製造例23で得られた液晶配向剤SPI-9(3.00g)を室温で3時間攪拌することにより液晶配向剤SPI-11を得た。
<製造例26>
 製造例22で得られた液晶配向剤SPI-8(7.00g)、製造例23で得られた液晶配向剤SPI-9(3.00g)及びAD-1(0.06g)を室温で3時間攪拌することにより液晶配向剤SPI-12を得た。
<製造例27>
 製造例22で得られた液晶配向剤SPI-8(7.00g)、製造例23で得られた液晶配向剤SPI-9(3.00g)及びAD-2(0.06g)を室温で3時間攪拌することにより液晶配向剤SPI-13を得た。
<製造例28>
 BODA(1.25g、5.00mmol)、DA-O3(3.41g、7.00mmol)、及びDA-S1(1.14g、3.00mmol)をNMP(23.2g)中で溶解し、60℃で3時間反応させたのち、CBDA(0.88g、4.50mmol)とNMP(3.50g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。このポリアミック酸の数平均分子量は10500、重量平均分子量は30700であった。
 このポリアミック酸溶液(5.4g)にNMP(5.40g)とBCS(7.20g)を加え室温で2時間攪拌することにより液晶配向剤PAA-15を得た。
<製造例29>
 BODA(1.88g、7.50mmol)、DA-P4(2.48g、7.50mmol)、DA-O1(1.12g、3.75mmol)、及びDA-S3(2.84g、3.75mmol)をNMP(33.2g)中で溶解し、60℃で3時間反応させたのち、CBDA(1.43g、7.31mmol)とNMP(5.50g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(25g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(3.92g)、およびピリジン(1.21g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(287g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は76%であり、Mnは15000、Mwは55800であった。
 得られたポリイミド粉末(2.0g)にNMP(18.0g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(13.3g)を加え、室温で2時間攪拌することにより液晶配向剤SPI-14を得た。
<製造例30>
 BODA(2.13g、8.50mmol)、DA-P4(2.81g、8.50mmol)、p-PDA(0.46g、4.25mmol)、及びDA-S3(3.22g、4.25mmol)をNMP(34.4g)中で溶解し、60℃で3時間反応させたのち、CBDA(1.59g、8.11mmol)とNMP(6.40g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(45.1g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(7.62g)、およびピリジン(2.36g)を加え、75℃で2.5時間反応させた。この反応溶液をメタノール(456g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミド粉末を得た。このポリイミドのイミド化率は75%であり、Mnは16500、Mwは46600であった。
 得られたポリイミド粉末(2.0g)にNMP(18.0g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(13.3g)を加え、室温で2時間攪拌することにより液晶配向剤SPI-15を得た。
 上記製造例1~30で得られる各液晶配向剤の仕様は、下記の表1-1~表1-3に示すとおりである。
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084

Figure JPOXMLDOC01-appb-T000085
<実施例1>
 製造例1で得られた液晶配向剤PAA-1を用いて下記に示すような手順で液晶セルの作製を行った。液晶配向剤PAA-1を、ITO電極付きガラス基板にスピンコートし、80℃のホットプレートで90秒間乾燥した後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜上に熱硬化性シール剤(協立化学社製 XN-1500T)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルにPSA用重合性化合物含有液晶MLC-3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作製した。この液晶セルの電圧保持率(VHR)を測定した。
 次に、この液晶セルをPSA処理し、PSA処理後の電圧保持率を測定した。さらに、このセルを高温高湿条件下でエージングし、エージング後の電圧保持率を測定した。
[電圧保持率の評価]
 60℃の熱風循環オーブン中で1Vの電圧を60μs間印加し、その後1667msec後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。電圧保持率の測定には、東陽テクニカ社製のVHR-1を使用した。
[PSA処理]
 15VのDC電圧を印加した状態で、液晶セルの外側から325nm以下カットフィルターを通したUVを10J/cm2照射した。なお、UVの照度は、ORC社製UV-MO3Aを用いて測定した。その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射した。
[エージング]
 PSA処理後の液晶セルを、85℃、湿度85%に設定した恒温恒湿槽に10日間放置した。
<実施例2、3、10、11、12、13、14、比較例1、2、5、6、7>
 液晶配向剤PAA-1の代わりに、それぞれ、液晶配向剤PAA-2、PAA-3、PAA-15、SPI-1、SPI-2、SPI-3、SPI-4、SPI-5、SPI-6、SPI-7、SPI-14、SPI-15を用いた以外は実施例1と同様にしてそれぞれの液晶セルを作製した。
 得られた各液晶セルについて、実施例1と同様にして、初期、PSA処理後、エージング後の電圧保持率、エージングによる電圧保持率の低下値(Δ(PSA処理後-エージング後))を測定した。それぞれの結果を、下記の表2に示す。
Figure JPOXMLDOC01-appb-T000086
 表2に示されるように、オキサゾリン骨格を有する重合体を含む液晶配向剤PAA-1、PAA-2、PAA-15、SPI-1、SPI-3、SPI-4、SPI-6、SPI-14を用いた実施例1、2、10、3、11、12、13、14は、オキサゾリン骨格を有する重合体を含まない液晶配向剤PAA-3、SPI-2、SPI-5、SPI-7、SPI-15を用いる比較例1、2、5,6,7と比較して、エージングによる電圧保持率の低下が小さいことが確認された。
 従って、オキサゾリン骨格を有する重合体を含む液晶配向剤は、エージングによる電圧保持率の低下が起きにくい液晶配向膜が得られることが分かる。
[ラビング耐性]
 液晶配向剤を、全面にITO電極が付いたガラス基板のITO面にスピンコートし、70℃のホットプレート上で90秒仮乾燥させた。その後、230℃のIR式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させて、液晶配向膜付き基板を得た。この液晶配向膜を、レーヨン布でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.6mm)した。本基板を顕微鏡にて観察を行い、膜面にラビングによるスジが見られなかったものを「良好」、スジがみられたものを「不良」として評価した。
<実施例4~9、比較例3、4>
 液晶配向剤PAA-4、PAA-5、PAA-6、PAA-7、PAA-8、PAA-9、PAA-10、及びPAA-11について、上記ラビング耐性の評価を行った。それぞれの結果を下記の表3に示す。
Figure JPOXMLDOC01-appb-T000087
 表3に示されように、オキサゾリン骨格を有する重合体を含む液晶配向剤PAA-4、PAA-5、PAA-7、PAA-8、PAA-10、PAA-11についての実施例4、5、6、7、8、9は、ラビング処理によるスジはみられず良好であった。一方、オキサゾリン骨格を有する重合体を含まない液晶配向剤PAA-6、PAA-9についての比較例3、4は、ラビングによるスジが多くみられ不良であった。
 従って、オキサゾリン骨格を有する重合体を含む液晶配向剤は、ラビング処理による膜の剥がれや傷が発生しにくい液晶配向膜が得られることがわかる。
<実施例15>
 製造例19で得られた液晶配向剤PAA-12を用いて下記に示すような手順で密着性評価サンプルの作製を行った。液晶配向剤PAA-12を、ITO電極付きガラス基板にスピンコートし、80℃のホットプレートで90秒間乾燥した後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
 このようにして得られた2枚の基板を用意し、一方の基板の液晶配向膜面上に4μmビーズスペーサーを塗布した後、シール剤(協立化学社製、XN-1500T)を滴下した。次いで、他方の基板の液晶配向膜面を内側にし、基板の重なり幅が1cmになるように、貼り合わせを行った。その際、貼り合わせ後のシール剤の直径が3mmとなるようにシール剤滴下量を調整した。貼り合わせた2枚の基板をクリップにて固定した後、150℃1時間熱硬化させて、密着性評価用のサンプルを作製した。
[密着性の測定]
 上記サンプル基板を卓上形精密万能試験機(島津製作所社製、AGS-X 500N)にて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の力(N)を測定した。
<実施例16、17、18、19、20、比較例10、11>
 液晶配向剤PAA-12の代わりに、それぞれ、液晶配向剤PAA-13、PAA-14、SPI-8、SPI-10、SPI-11、SPI-12、SPI-13を用いた以外は実施例15と同様にしてそれぞれの密着性を測定した。それぞれの結果を、下記の表4に示す。
Figure JPOXMLDOC01-appb-T000088
 表4に示されるように、オキサゾリン骨格を有する重合体を含む液晶配向剤PAA-12、PAA-13、SPI-8、SPI-11、SPI-12、SPI-13を用いた実施例15、16、17、18、19、20は、オキサゾリン骨格を有する重合体を含まない液晶配向剤PAA-14、SPI-10を用いる比較例10、11と比較して、シール密着性が強いことが確認された。
 なお、2017年9月13日に出願された日本特許出願2017-175632号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (13)

  1.  下記式(1)で表されるオキサゾリン骨格を有する重合体を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     (Rは水素又は一価の有機基を表し、*は他の基に結合する部位を表す。)
  2.  前記式(1)で表されるオキサゾリン骨格がジアミン由来である、請求項1に記載の液晶配向剤。
  3.  前記式(1)で表されるオキサゾリン骨格を有する重合体が、下記式(2-1)、(2-2)及び(2-3)から選ばれるジアミンに由来する重合体である、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
     (Rの定義は、上記式(1)と同様である。Rは、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONR11-、-NR11CO-及び-NR11-からなる群から選ばれる少なくとも1種からなる2価の有機基を表す。Wは下記群(3-1)から選ばれる構造を表す。Wは下記群(3-2)から選ばれる構造を表す。Wは下記群(3-3)から選ばれる構造を表す。Wは下記群(3-4)から選ばれる構造を表す。ここで、R11は水素、又は1価の有機基を表し、lは1~12の整数、aは0又は1の整数を表す。)
    Figure JPOXMLDOC01-appb-C000003
     (群(3-1)中、*は式(2-1)~(2-3)中のアミノ基と結合する部位を表し、*はオキサゾリン環と結合する部位を表す。群(3-2)中、*は式(2-1)~(2-3)中のアミノ基と結合する部位を表し、*はRと結合する部位を表す。群(3-3)中、*はRと結合する部位を表す。群(3-4)中、*はオキサゾリン環と結合する部位を表す。Xは、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロゲン化アルキル基、置換アミノ基、炭素数1~6のアルコキシ基、又はアミド基を表す。
  4.  前記オキサゾリン骨格を有する重合体が、下記式(6)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種である、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
     (Xはテトラカルボン酸誘導体に由来する4価の有機基を表す。Yは式(1)の構造を含むジアミンに由来する2価の有機基を表す。Rは水素原子又は炭素数1~5のアルキル基を表す。)
  5.  前記式(6)中、Xの構造が下記構造中から選ばれる少なくとも1種である、請求項4に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  6.  前記式(6)で表される構造単位が、前記重合体の全構造単位に対して10モル%以上である、請求項4又は5に記載の液晶配向剤。
  7.  請求項1~6のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。
  8.  請求項7に記載の液晶配向膜を具備する液晶表示素子。
  9.  下記式(2-1)、(2-2)又は(2-3)で表されるオキサゾリン骨格を有するジアミン。
    Figure JPOXMLDOC01-appb-C000007
     (各記号の定義は、請求項3における記載と同じである。)
  10.  請求項9に記載のジアミンを由来とするオキサゾリン骨格を有する重合体。
  11.  前記オキサゾリン骨格を有する重合体が、下記式(6)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドである、請求項10に記載の重合体。
    Figure JPOXMLDOC01-appb-C000008
     (各記号の定義は、請求項4における記載と同じである。)
  12.  前記式(6)中、Xの構造が下記構造中から選ばれる少なくとも1種である、請求項11に記載の重合体。
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
  13.  前記式(6)で表される構造単位が、前記重合体の全構造単位に対して10モル%以上である、請求項11又は12に記載の重合体。
PCT/JP2018/033981 2017-09-13 2018-09-13 液晶配向剤、液晶配向膜及び液晶表示素子 WO2019054443A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019542285A JP7255486B2 (ja) 2017-09-13 2018-09-13 液晶配向剤、液晶配向膜及び液晶表示素子
CN201880059032.5A CN111095091B (zh) 2017-09-13 2018-09-13 液晶取向剂、液晶取向膜及液晶表示元件
KR1020207009821A KR102672358B1 (ko) 2017-09-13 2018-09-13 액정 배향제, 액정 배향막 및 액정 표시 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-175632 2017-09-13
JP2017175632 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019054443A1 true WO2019054443A1 (ja) 2019-03-21

Family

ID=65722775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033981 WO2019054443A1 (ja) 2017-09-13 2018-09-13 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (4)

Country Link
JP (1) JP7255486B2 (ja)
CN (1) CN111095091B (ja)
TW (1) TWI791614B (ja)
WO (1) WO2019054443A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175539A1 (ja) * 2019-02-26 2020-09-03 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2023008071A1 (ja) * 2021-07-29 2023-02-02 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2023032784A1 (ja) * 2021-08-31 2023-03-09 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2023085390A1 (ja) * 2021-11-12 2023-05-19 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054872A (ja) * 2008-08-29 2010-03-11 Chisso Corp 液晶配向剤、液晶配向膜及び液晶表示素子
JP2016118574A (ja) * 2014-12-18 2016-06-30 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、重合体及び化合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175061A (en) * 1974-10-11 1976-06-29 Okawa Kenji 22 okisazorinjudotaino seizoho
JP5035517B2 (ja) * 2007-02-16 2012-09-26 日産化学工業株式会社 液晶配向剤およびそれを用いた液晶表示素子
CN102754020B (zh) * 2009-12-14 2016-03-02 日产化学工业株式会社 液晶取向处理剂及使用该处理剂的液晶显示元件
WO2014069550A1 (ja) * 2012-10-31 2014-05-08 Jnc株式会社 液晶表示素子およびその製造方法
JP6421545B2 (ja) * 2014-10-21 2018-11-14 Jnc株式会社 ポリアミック酸またはその誘導体を含む液晶配向剤、液晶配向膜および液晶表示素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054872A (ja) * 2008-08-29 2010-03-11 Chisso Corp 液晶配向剤、液晶配向膜及び液晶表示素子
JP2016118574A (ja) * 2014-12-18 2016-06-30 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、重合体及び化合物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175539A1 (ja) * 2019-02-26 2020-09-03 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2023008071A1 (ja) * 2021-07-29 2023-02-02 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2023032784A1 (ja) * 2021-08-31 2023-03-09 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2023085390A1 (ja) * 2021-11-12 2023-05-19 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Also Published As

Publication number Publication date
JPWO2019054443A1 (ja) 2020-10-29
TW201917198A (zh) 2019-05-01
TWI791614B (zh) 2023-02-11
KR20200052909A (ko) 2020-05-15
CN111095091B (zh) 2022-08-26
CN111095091A (zh) 2020-05-01
JP7255486B2 (ja) 2023-04-11

Similar Documents

Publication Publication Date Title
KR101588905B1 (ko) 액정 배향제, 액정 배향막, 액정 표시 소자, 폴리아믹산, 이미드화 중합체 및 디아민 화합물
KR102224531B1 (ko) 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
JP5382351B2 (ja) 液晶配向処理剤、及びそれを用いた液晶表示素子
JP7255486B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2015060363A1 (ja) 液晶配向剤、液晶配向膜、及び液晶配向素子
US10948780B2 (en) Liquid crystal element and method of producing the same
JPWO2019013339A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JPWO2014119682A1 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2017217465A1 (ja) Boa基板又はbcs付き基板塗布用液晶配向剤及び液晶表示素子
JP7488516B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018124166A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2021161989A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン
WO2021210252A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
KR102672358B1 (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자
WO2020184373A1 (ja) 機能性高分子膜形成用塗布液及び機能性高分子膜
JP7421159B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7428177B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン
TWI841710B (zh) 液晶配向劑、液晶配向膜、液晶顯示元件及二胺
JP7322694B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子
WO2022181311A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022014467A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
TW202043333A (zh) 液晶配向劑、液晶配向膜及使用其之液晶顯示元件
WO2022014470A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2021059999A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子、重合体、及びジアミン
JP2024070838A (ja) 液晶配向剤、液晶配向膜及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207009821

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18855248

Country of ref document: EP

Kind code of ref document: A1