WO2011068039A1 - エッチングガス - Google Patents

エッチングガス Download PDF

Info

Publication number
WO2011068039A1
WO2011068039A1 PCT/JP2010/070656 JP2010070656W WO2011068039A1 WO 2011068039 A1 WO2011068039 A1 WO 2011068039A1 JP 2010070656 W JP2010070656 W JP 2010070656W WO 2011068039 A1 WO2011068039 A1 WO 2011068039A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
gas
chf
cof
etching gas
Prior art date
Application number
PCT/JP2010/070656
Other languages
English (en)
French (fr)
Inventor
高田 直門
勇 毛利
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to EP10834491.2A priority Critical patent/EP2508500A4/en
Priority to KR1020127014442A priority patent/KR101391347B1/ko
Priority to US13/513,038 priority patent/US20120231630A1/en
Priority to CN2010800546650A priority patent/CN102648171A/zh
Publication of WO2011068039A1 publication Critical patent/WO2011068039A1/ja
Priority to US14/455,128 priority patent/US9234133B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/38Acyl halides
    • C07C53/46Acyl halides containing halogen outside the carbonyl halide group
    • C07C53/48Halogenated acetyl halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Definitions

  • the present invention relates to an etching gas used for manufacturing a thin film device represented by IC, LSI, TFT and the like.
  • the present invention relates to an etching gas that achieves both environmental performance and fine processing performance.
  • various thin films and thick films are manufactured using a CVD method, a sputtering method, a sol-gel method, a vapor deposition method, and the like. Further, in the process of manufacturing semiconductors such as semiconductors, ICs, LSIs, and TFTs, gas etching is performed to partially remove thin film materials in order to form circuit patterns.
  • PFC perfluorocarbons
  • these GWPs are CF 4 : 7390, C 2 F 6 : 12200, and C 3 F 8 : 8830.
  • an etching gas having a CF 3 group partial structure such as C 2 F 6 or C 3 F 8 exhibits an etching effect by generating active species such as CF 3 radicals and ions in the deposition chamber.
  • active species such as CF 3 radicals and ions in the deposition chamber.
  • CF 4 is by-produced by recombination.
  • CF 4 is the most difficult PFC to decompose in the environment. It is described that there is a possibility that sufficient destruction processing may not be performed only under conditions equivalent to the destruction processing.
  • COF 2 , CHF 2 OF (Patent Document 1), CF 3 COF (Patent Documents 2 and 3) and the like have been proposed as fluorine-containing etching gases having a low global warming potential instead of these PFCs.
  • CF 3 COF can reduce the by-product of CF 4 by optimizing the etching conditions.
  • a compound having a ratio of fluorine number to carbon number (F / C) close to 1 is desired in order to obtain good anisotropy.
  • F / C 4 for CF 4
  • F / C 3 for C 2 F 6
  • 2.7 for C 3 F 8 it becomes 1 as the carbon number is increased.
  • an object of the present invention is to provide a novel etching gas that is not only excellent in etching performance but also easily available and substantially does not produce CF 4 that imposes a burden on the environment.
  • the present invention is as follows.
  • the etching gas is O 2 , O 3 , CO, CO 2 , F 2 , NF 3 , Cl 2 , Br 2 , I 2 , XF n (wherein X represents Cl, I or Br, n represents an integer of 1 ⁇ n ⁇ 7), at least one gas selected from CH 4 , CH 3 F, CH 2 F 2 , CHF 3 , N 2 , He, Ar, Ne, and Kr.
  • the etching gas is CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 , C 3 H 4 , C 3 H 6 , C 3 H 8 , HI, HBr, HCl, CO, NO.
  • invention 5 The etching gas according to Inventions 1 to 3, wherein the etching gas contains at least one gas selected from CH 4 , CH 3 F, CH 2 F 2 , and CHF 3 as an additive.
  • invention 6 A method of etching a semiconductor film, dielectric film or metal film using the etching gas of Inventions 1 to 4.
  • the etching gas of the present invention contains CHF 2 COF, it has not only a feature that the load on the environment is light, but also an excellent etching in a semiconductor film forming process that has a high etching rate and does not cause device corrosion or the like. Has performance. Therefore, it is useful for fine processing by etching a thin film in a semiconductor film forming process.
  • CHF 2 COF the cleaning agent
  • CHF 2 CF 2 OR R, such as HFE-254pc, which is used as a foaming agent or the like (CHF 2 CF 2 OMe) and HFE-374pc-f (CHF 2 CF 2 OEt) is Me , Et, n-Pr, iso-Pr, n-Bu, sec-Bu, iso-Bu, tert-Bu, etc.
  • 1-alkoxy-1,1,2,2-tetrafluoroethane Can be easily and quantitatively synthesized.
  • HFE-254pc and HFE-374pc-f are very readily available compounds because they can be synthesized by adding methanol or ethanol to industrially produced tetrafluoroethylene.
  • CHF 2 COF Since the boiling point of CHF 2 COF is 0 ° C., it becomes a highly convenient clean gas that can be handled as a liquid or a gas. Further, since CHF 2 COF reacts with water and decomposes into difluoroacetic acid (CHF 2 COOH) and hydrogen fluoride (HF), it can usually be detoxified with a water scrubber, and it is also preferable to use an alkaline water scrubber. Even if it passes through the detoxification process and is released into the atmosphere, it reacts with the rain and water vapor in the atmosphere and is easily decomposed, so its impact on global warming is extremely mild.
  • CHF 2 COF difluoroacetic acid
  • HF hydrogen fluoride
  • a significant difference between the properties of the existing CF 3 COF and the CHF 2 COF of the present invention is the ease of taking a ketene structure.
  • the reaction that takes a ketene structure according to the calculation is an endothermic reaction of 165.9 kcal, and in order to advance the reaction, in addition to this free energy, further activation energy is required, which actually occurs. The possibility is very low.
  • CHF 3 active species is generated, therewith through recombination with F active species, although CF 4 cases also conceivable as a by-product, the probability is, CF 3 It can be easily guessed that it is significantly lower than etching gas such as CF 3 COF having a partial structure of the group. For these reasons, it is considered that CHF 2 COF does not substantially produce CF 4 as a by-product, and in fact, no CF 4 by-product was observed in each of the examples.
  • the etching gas containing CHF 2 COF of the present invention can be particularly preferably used for etching a thin film made of a semiconductor, dielectric or metal in the processing of a semiconductor device.
  • Examples of the substance that can be etched by the etching gas containing CHF 2 COF of the present invention include a semiconductor plate such as a silicon wafer and a GaAs wafer, a metal plate such as W, Ta, and Mo, SiO 2 , Al 2 O 3 , Ta 2 O 3.
  • B, P, W, Si, Ti, V, Nb deposited on a substrate such as an insulating or dielectric plate such as glass, soda glass, borosilicate glass, or other single crystal or polycrystal of other compounds , Ta, Se, Te, Mo, Re, Os, Ru, Ir, Sb, Ge, Au, Ag, As, Cr, Hf, Zr, Ni, Co and compounds thereof.
  • W, WSix, Ti, TiN, Ta 2 O 5 , Mo, Re, Ge, Si 3 N 4 , Si, SiO 2, etc. are suitable, and silicon such as WSix, Si 3 N 4 , Si, SiO 2, etc.
  • the contained material is more preferable, and Si and SiO 2 are more preferable.
  • the materials exemplified above may be single crystal, polycrystalline, or amorphous.
  • the etching gas of the present invention can be used in etching such as RIE (reactive ion etching), ECR (electron cyclotron resonance) plasma etching, and microwave etching, but is not limited thereto. Those various etching methods are common technical knowledge for those skilled in the art. Known documents can be referred to as necessary.
  • the reaction conditions are not particularly limited. When CHF 2 COF is used, F radicals reach the bottom of the groove to be etched, and CF y (y is an integer of 1 to 3) ions enter, and etching proceeds in the vertical direction. It is protected by the deposition of silicon, and anisotropic etching is possible by preventing isotropic etching by F radicals. Further, since it contains oxygen (O), there is an advantage that anisotropic etching can be performed while efficiently removing the fluorocarbon film deposited on the side wall.
  • RIE reactive ion etching
  • ECR electron cyclotron resonance plasma etching
  • the ketene polymerizes to protect the side walls.
  • organic substances such as polymers can be removed by heating or plasma ashing using an oxidizing gas such as F 2 or O 2 .
  • the etching method of the present invention can be carried out under various dry etching conditions, and various additives can be added depending on the physical properties, productivity, and fine processing accuracy of the target film.
  • Inert gases such as N 2 , He, Ar, Ne, and Kr can also be used as a diluent, but especially Ar is effective in stabilizing the plasma and has a higher etching rate due to the synergistic effect with CHF 2 COF. can get.
  • the addition amount of the inert gas depends on the shape, performance, and target membrane characteristics of the apparatus such as output and displacement, but is preferably 1/10 to 30 times the flow rate of CHF 2 COF.
  • the etching rate can be increased and the productivity can be increased.
  • O 2 , O 3 , CO 2 , F 2 , NF 3 , Cl 2 , Br 2 , I 2 , XF n (wherein X represents Cl, I or Br, and n is 1 ⁇ n Represents an integer of ⁇ 7, specifically, ClF, ClF 3 , BrF, BrF 3 , IF 5 and IF 7 can be exemplified.
  • the amount of oxidizing gas added depends on the shape of the apparatus such as output, performance, and target film characteristics, but is usually 1/20 to 30 times the flow rate of CHF 2 COF.
  • the flow rate of CHF 2 COF is 1/10 to 10 times the flow rate of CHF 2 COF. If added over 30 times, the excellent anisotropic etching performance of CHF 2 COF is impaired, which is not preferable.
  • the ratio is less than 1/20, the effect of adding an oxidizing gas cannot be sufficiently exhibited, which is not preferable.
  • oxygen when oxygen is added, the etching rate of the metal can be selectively accelerated. That is, the selectivity of the etching rate of the metal with respect to the oxide can be significantly improved, and the metal can be selectively etched.
  • an inert gas such as N 2 , He, Ar, Ne, or Kr can be added simultaneously with the oxidizing gas.
  • the pressure when the etching gas of the present invention is used is preferably 660 Pa (5 Torr) or less in order to perform anisotropic etching, but the etching rate is 0.13 Pa (0.001 Torr) or less. Is not preferable because it becomes slow.
  • Etching is preferably performed at a flow rate between 10 SCCM and 10,000 SCCM, although the gas flow rate used depends on the reactor capacity of the etching apparatus and the wafer size.
  • the etching temperature is preferably 400 ° C. or less. At high temperatures exceeding 400 ° C., etching tends to proceed isotropically, and the required processing accuracy cannot be obtained, and the resist is etched significantly. It is not preferable.
  • a sample was used in which a SiO 2 interlayer insulating film 22 was formed on a single crystal silicon wafer 21, and a resist mask 23 having an opening as an etching mask was formed on the SiO 2 film.
  • a sample before etching is shown in FIG. 1A.
  • FIG. 2 shows a schematic diagram of the apparatus used in the experiment.
  • etching gas difluoroacetic acid fluoride (CHF 2 COF), oxygen (O 2 ), argon (Ar) supplied at a flow rate shown in Table 1 from the gas inlet is used.
  • the excited active species generated in the sapphire tube 7 attached to the upper part of the reaction chamber 1 were supplied into the chamber by a gas flow, and the sample 12 fixed to the sample holder 10 was etched.
  • the sample gas was introduced from the first gas inlet through CHF 2 COF, CF 3 COF, and CF 4 and from the second gas inlet through O 2 through a mass flow controller (not shown).
  • the substrate (sample holder 11) temperature was 25 ° C.
  • the pressure was 2.67 Pa (0.02 torr)
  • the RF power density was set to 2.2 W / cm 2 .
  • the exhaust gas was diluted by adding 5 liters / min of nitrogen on the exhaust side of the mechanical booster pump, and the CF 4 concentration was quantified by a calibration curve method with FT-IR.
  • Table 1 In the table, ND represents the lower limit of detection (0.05% by volume) or less.
  • the etching rate (angstrom / min) was obtained by dividing the film thickness before and after etching by the etching time. The film thickness was measured with an optical interference type film thickness meter.
  • FIG. 1B shows a sample after etching (when there is a shoulder drop).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

開示されているのは、CHF2COFを含んでなるエッチングガスである。このエッチングガスは、O2、O3、CO、CO2、F2、NF3、Cl2、Br2、I2、XFn(式中、XはCl、IまたはBrを表し、nは1≦n≦7の整数を表す。)、CH4、CH3F、CH22、CHF3、N2、He、Ar、Ne、Krなど、または、CH4、C22,C24,C26、C34、C36、C38、HI、HBr、HCl、CO、NO、NH3、H2など、または、CH4、CH3F、CH22、CHF3の中から選ばれた少なくとも1種のガスを添加物として含んでもよい。このエッチングガスは、対レジスト選択比や加工形状のエッチング性能に優れるだけでなく、入手が容易で、環境に負荷をかけるCF4を実質的に副生しない。

Description

エッチングガス
本発明は、IC、LSI、TFTなどに代表される薄膜デバイス製造に用いるエッチングガスに関する。特に、環境性能と微細加工性能を両立させたエッチングガスに関する。
発明の背景
半導体薄膜デバイス製造プロセス、光デバイス製造プロセス、超鋼材料製造プロセスなどでは、CVD法、スパッタリング法、ゾルゲル法、蒸着法などを用いて種々の薄膜、厚膜などが製造されている。また、半導体やIC、LSI、TFT等の半導体の製造過程において、回路パターンを形成するために薄膜材料を部分的に取り除くガスエッチングが行われている。
 現在、薄膜デバイス製造における回路形成のためのエッチングには、CF4、C26、C38等のパーフルオロカーボン(PFC)がエッチングガスとして使用されてきた。しかし、これらのガスは環境中に長期間安定に存在するので地球温暖化係数が高く評価され環境への悪影響が問題となっている。
例えば、第4次IPCC報告書によるとこれらのGWP(100年値)はCF4:7390、C26:12200、C38:8830である。さらに、C26やC38等のCF3基の部分構造を有するエッチングガスは、堆積室(チャンバー)内でCF3ラジカルやイオン等の活性種が発生して、エッチング効果を発揮するが、CF3活性種がFラジカルやイオンのF活性種と接触すると再結合してCF4が副生する。
環境省地球環境局環境保全対策課フロン等対策推進室発行(平成21年3月発行)のPFC破壊処理ガイドラインによると、CF4は環境中で最も分解し難いPFCであり、他のフロン類の破壊処理と同等の条件だけでは十分な破壊処理が出来ない可能性があると記されている。
これらのPFCに代わる地球温暖化係数が低い含フッ素のエッチングガスとして、COF2、CHF2OF(特許文献1)、CF3COF(特許文献2、3)などが提案されている。これらについては、例えば、CF3COFはエッチング条件を最適化することによって、CF4の副生を低減させることが可能であると記載されている。
特開2000-63826 特開2000-265275 特開2002-158181
 前述の通り、特許文献1、2によると、CF3COFはエッチング条件を最適化することによって、CF4の副生を低減させることが可能であると記載されているが、このようなCF3基の部分構造を有するエッチングガスを用いる限り、根本的にCF3活性種とF活性種の再結合を回避することが困難と考えられる。そうすると、前述のようにして最適化されるエッチング条件は、微細加工速度や加工精度に基づく最適化ではないこととなり、究極の目的である加工精度等がCF4副生率によって制限されることになる。実際、エッチング速度、異方性、アスペクト比、レジスト比等の要求性能を満たす条件では、常にCF4の副生を低減することが困難な場合も多い。
また、微細加工が要求されるエッチングにおいて、良い異方性を得るためには、フッ素数と炭素数の比(F/C)が1に近い化合物が望まれている。例えば、パーフルオロカーボン類の場合、CF4ではF/C=4、C26ではF/C=3、C38では2.7であり、炭素数を長くすれば長くするほど1に近づきこの要求に近づくが、沸点が上昇してガスとしての取り扱いが困難となる。さらに、CF3COFの場合でもF/C=2であり満足できる値ではない。
 そこで、本発明は、エッチング性能に優れるだけでなく、入手が容易で、環境に負荷をかけるCF4を実質的に副生しない新規なエッチングガスの提供を課題とする。
本発明者らは、上記の問題点に鑑み鋭意検討の結果、CHF2COFがエッチング性能と環境安全性の両方を満足することを見出し、本発明を完成するに至った。すなわち、本発明は下記の通りである。
[発明1]半導体、誘電体または金属からなる薄膜をエッチングする用に供する、CHF2COFを含むエッチングガス。
[発明2]半導体または誘電体が、シリコン含有物質である発明1のエッチングガス。
[発明3]エッチングガスが、O2、O3、CO、CO2、F2、NF3、Cl2、Br2、I2、XFn(式中、XはCl、IまたはBrを表し、nは1≦n≦7の整数を表す。)、CH4、CH3F、CH22、CHF3、N2、He、Ar、Ne、Krの中から選ばれた少なくとも1種のガスを添加物として含む発明1または2のエッチングガス。
[発明4]エッチングガスが、CH4、C22,C24,C26、C34、C36、C38、HI、HBr、HCl、CO、NO、NH3、H2、N2、He、Ar、Ne、Krの中から選ばれた少なくとも1種のガスを添加物として含む発明1または2のエッチングガス。
[発明5]エッチングガスが、CH4、CH3F、CH22、CHF3の中から選ばれた少なくとも1種のガスを添加物として含む発明1~3のエッチングガス。
[発明6]発明1~4のエッチングガスを用いる半導体膜、誘電体膜または金属膜のエッチング方法。
[発明7]発明6のエッチング方法を施し、次いで、F2またはO2によりアッシングすることを含むエッチング方法。
実施例、比較例で用いたエッチング用試料の断面模式図である。 エッチング後の試料(肩落ち有りの場合)の断面模式図である。 実施例、比較例で用いたリモートプラズマ装置の概略断面図である。
詳細な説明
本発明のエッチングガスは、CHF2COFを含有することから環境への負荷が軽いという特徴を持つだけでなく、エッチング速度が大きくかつ装置腐食等を引き起こさないという半導体の製膜過程における優れたエッチング性能を有する。従って、半導体製膜プロセスにおける薄膜のエッチングによる微細加工に有用である。
 以下、詳細に本発明を説明する。
CHF2COFは、洗浄剤、発泡剤等として使用されているHFE-254pc(CHF2CF2OMe)やHFE-374pc-f(CHF2CF2OEt)等のCHF2CF2OR(RはMe,Et,n-Pr,iso-Pr,n-Bu,sec-Bu,iso-Bu,tert-Bu等のアルキル基)の1-アルコキシ-1,1,2,2-テトラフルオロエタンを接触分解することによって容易かつ定量的に合成可能である。また、HFE-254pcやHFE-374pc-fは、工業的に大量生産されているテトラフルオロエチレンにメタノールやエタノールを付加することで合成できるので、非常に入手の容易な化合物である。
 CHF2COFの沸点は0℃であるので、液体としても、気体としても取り扱える利便性の高いクリーングガスとなる。また、CHF2COFは水と反応してジフルオロ酢酸(CHF2COOH)とフッ化水素(HF)に分解するので、通常、水スクラバーで除害可能であり、アルカリ性水スクラバーを用いることも好ましい。万一除害工程をすり抜けて大気放出されても、大気中の雨や水蒸気と反応して、容易に分解されるので、地球温暖化への影響も極軽度である。
 既存のCF3COFと本発明のCHF2COFの性質で著しく異なる点として、ケテン構造の取りやすさが挙げられる。CHF2COFは下記の反応式のように、CF2=C=Oのケテン構造を取りうることが知られている。CF3COFの場合、計算によるとケテン構造をとる反応は、165.9kcalの吸熱反応であり、反応を進めるためには、この自由エネルギーに加えてさらに活性化エネルギーが必要なので、現実的に起こる可能性は非常に低いと言える。
Figure JPOXMLDOC01-appb-C000001
 実施例において示すように、CHF2COFをエッチングガスとして使用した場合、種々の条件においても、全くCF4が検出されなかったことから見て、CF3COFと全く異なるメカニズムでクリーニングが進んでいるものと推察される。
 また、CF3COFの場合、例えばプラズマを用いたエッチング工程において、一旦発生したCF3活性種は、ある確率でF活性種との接触によって再結合してCF4が副生する。それに対して、CHF2COFの場合、CHF2活性種とF活性種が接触しても分解が比較的容易なCHF3の副生で済む。確率的には、CHF3が更に分解して、CF3活性種が発生して、それとF活性種との再結合によって、CF4が副生するケースも考えられるが、その確率は、CF3基の部分構造を有するCF3COF等のエッチングガスと比較して、著しく低いことは容易に推察できる。これらの理由によって、CHF2COFは実質的にCF4は副生しないと考えられ、実際、各実施例においてもCF4の副生は認められなかった。
 本発明のCHF2COFを含むエッチングガスは、半導体装置の加工における半導体、誘電体または金属からなる薄膜のエッチングに特に好ましく使用できる。
 本発明のCHF2COFを含むエッチングガスによってエッチング可能な物質としては、シリコンウエハ、GaAsウエハなどの半導体板、W、Ta、Moなどの金属板、SiO2、Al23、Ta23などの絶縁体または誘電体の板、ソーダガラス、ホウ珪酸ガラスなどの硝子、その他の化合物の単結晶もしくは多結晶などの基板上に堆積した、B、P、W、Si、Ti、V、Nb、Ta、Se、Te、Mo、Re、Os、Ru、Ir、Sb、Ge、Au、Ag、As、Cr、Hf、Zr、Ni、Co及びその化合物が挙げられる。これらのうち、酸化物、窒化物、炭化物及びこれらの複合物のエッチングに有効である。特に、W、WSix、Ti、TiN、Ta25、Mo、Re、Ge、Si34、Si、SiO2等が好適であり、WSix、Si34、Si、SiO2等のシリコン含有物質がより好ましく、Si、SiO2がさらに好ましい。上に例示した物質は単結晶、多結晶、非晶質のいずれでもよい。
 本発明のエッチングガスは、RIE(反応性イオンエッチング)、ECR(電子サイクロトロン共鳴)プラズマエッチング、マイクロ波エッチングなどのエッチングにおいて使用できるが、これらに限られない。また、それらの各種のエッチング方法は当業者にとって技術常識である。必要に応じて公知文献を参照できる。反応条件は特に問わない。CHF2COFを使うと、エッチングされる溝底部にFラジカルが到達し、さらにCFy(yは1~3の整数。)イオンが入射することにより縦方向にエッチングが進み、側壁はフルオロカーボンポリマ-の堆積により保護され、Fラジカルによる等方的エッチングを防止することにより異方性エッチングを可能になる。また、酸素(O)を含有しているため側壁に堆積したフルオロカーボン膜を効率的に除去しながら異方性エッチングを行える利点がある。
特に、CHF2COFが特異的に微細加工に優れている理由として、F/C比がCF3COFの場合はF/C=2であるのに対して、CHF2COFの場合はF/C=1.5であるだけでなく、前記のケテンがポリマー化して側壁を保護する効果が挙げられる。本発明のエッチングガスを用いてエッチングした後、F2、O2等の酸化性ガスを用いて加熱またはプラズマによりアッシングしてポリマー等の有機物を除去することもできる。
 本発明のエッチング方法は、各種ドライエッチング条件下で実施可能であり、対象膜の物性、生産性、微細加工精度等によって、種々の添加剤を加えることができる。N2、He、Ar、Ne、Kr等の不活性ガスは希釈剤としても使用可能であるが、特にArはプラズマの安定に有効でありCHF2COFとの相乗効果によって、より高いエッチングレートが得られる。不活性ガスの添加量は出力、排気量等の装置の形状、性能や対象膜特性に依存するが、CHF2COFの流量の1/10から30倍が好ましい。
 CHF2COFに酸化性のガスの添加することで、エッチング速度を上げることができ、生産性を上げることができる。具体的には、O2、O3、CO2、F2、NF3、Cl2、Br2、I2、XFn(式中、XはCl、IまたはBrを表し、nは1≦n≦7の整数を表す。具体的には、ClF、ClF3、BrF、BrF3、IF5、IF7を例示できる。)が例示される。酸化性ガスの添加量は出力等の装置の形状、性能や対象膜特性に依存するが、通常、CHF2COFの流量の1/20から30倍である。好ましくは、CHF2COFの流量の1/10から10倍である。30倍を超えて添加した場合は、CHF2COFの優れた異方性エッチング性能が損なわれるので好ましくない。1/20倍未満の場合は酸化性ガスの添加効果が十分には発揮できないので好ましくない。特に、酸素を添加すると選択的に金属のエッチングレートを加速することが可能となる。すなわち、酸化物に対する金属のエッチング速度の選択比を著しく向上でき、金属の選択エッチングが可能となる。もちろん、所望により、酸化性ガスと同時に、N2、He、Ar、Ne、Kr等の不活性ガスの添加も可能である。
 もし、等方的なエッチングを促進するFラジカル量の低減を所望するときは、CH4、C22,C24,C2H6、C34、C36、C38、HI、HBr、HCl、CO、NO、NH3、H2に例示される還元性ガスの添加が有効である。添加量は10倍量以下が望ましく、これ以上添加するとエッチングに働くFラジカルが著しく減量して、生産性が低下する。特に、H2、C22を添加するとSiO2のエッチング速度は変化しないのに対してSiのエッチング速度は低下し、選択性が上がることから下地のシリコンに対してSiO2の選択的エッチングが可能である。
 また、CH4、CH3F、CH22、CHF3のような炭素数1のガスはエッチングガスのフッ素/炭素比のファインチューニングに有効である。これらの添加量もCHF2COFに対して10倍以下が好ましい。これを超えて添加すると、CHF2COFの優れたエッチング性能が損なわれる。また、COはケテン発生時等に副生するHFをHCOFの形でトラップし、それ自身がエッチング剤として働くので効率的である。COの添加量は、CHF2COF:CO(モル比)=10:1~1:5、好ましくは5:1~1:1である。
 本発明のエッチングガスを使用する場合の圧力は、異方性エッチングを行うために、660Pa(5Torr)以下の圧力で行うことが好ましいが、0.13Pa(0.001Torr)以下の圧力ではエッチング速度が遅くなるために好ましくない。使用するガス流量は、エッチング装置の反応器容量、ウエハサイズにもよるが、10SCCM~10000SCCMの間の流量でエッチングすることが好ましい。また、エッチングする温度は、400℃以下が好ましい、400℃を超える高温では等方的にエッチングが進行する傾向が有り必要とする加工精度が得られないこと、また、レジストが著しくエッチングされるために好ましくない。
 以下、実施例により本発明を詳細に説明する。
 実施例1~3、比較例1、2
 本発明のエッチングガスをコンタクトホール加工に使用し、層間絶縁膜(SiO2)をエッチングした例を示す。
 試料として、単結晶シリコンウエハ21上にSiO2層間絶縁膜22を形成し、そのSiO2膜の上にエッチングマスクとして開口部を設けたレジスト・マスク23を形成した試料を用いた。エッチング前の試料を図1Aに示す。
 図2に実験に使用した装置の概略図を記す。高周波電源3(13.56MHz、50W)を用いて、ガス導入口から表1に示す流量で供給したエッチングガス(ジフルオロ酢酸フルオライド(CHF2COF)、酸素(O2)、アルゴン(Ar))を反応チャンバー1の上部に取り付けたサファイア管7内で励起して、生成した活性種をガス流によりチャンバー内に供給し、試料ホルダー10に固定した前記試料12のエッチングを行った。試料ガスは、CHF2COF、CF3COF、CF4は第一ガス導入口から、O2は第二ガス導入口からそれぞれマスフローコントローラー(図示せず。)を介して導入した。
基板(試料ホルダ11)温度25℃、圧力2.67Pa(0.02torr)、RFパワー密度を2.2W/cm2に設定した。排ガスは、メカニカルブースターポンプの排気側で5リットル/分の窒素を加えて希釈し、FT-IRにてCF4濃度を検量線法により定量した。結果を表1に示した。なお、表中のNDは検出下限界(0.05容量%)以下を表す。エッチング速度(オングストローム/min)はエッチング前後の膜厚をエッチング時間で除して求めた。膜厚の測定は光干渉式膜厚計で測定した。エッチング後の試料(肩落ち有りの場合)を図1Bに示す。
Figure JPOXMLDOC01-appb-T000002
1 チャンバー
2 アース
3 高周波電源
4 第一ガス導入口
5 第二ガス導入口
6 第三ガス導入口
7 サファイア管
8 誘導コイル
9 電子式圧力計
10 排気ガスライン
11 試料ホルダ
12 試料
21 シリコンウエハ
22 SiO2層間絶縁膜
23 レジスト・マスク
24 肩落ち部

Claims (7)

  1. 半導体、誘電体または金属からなる薄膜をエッチングする用に供する、CHF2COFを含むエッチングガス。
  2. 半導体または誘電体が、シリコン含有物質である請求項1に記載のエッチングガス。
  3. エッチングガスが、O2、O3、CO、CO2、F2、NF3、Cl2、Br2、I2、XFn(式中、XはCl、IまたはBrを表し、nは1≦n≦7の整数を表す。)、CH4、CH3F、CH22、CHF3、N2、He、Ar、Ne、Krの中から選ばれた少なくとも1種のガスを添加物として含む請求項1または2に記載のエッチングガス。
  4. エッチングガスが、CH4、C22,C24,C26、C34、C36、C38、HI、HBr、HCl、CO、NO、NH3、H2、N2、He、Ar、Ne、Krの中から選ばれた少なくとも1種のガスを添加物として含む請求項1または2に記載のエッチングガス。
  5. エッチングガスが、CH4、CH3F、CH22、CHF3の中から選ばれた少なくとも1種のガスを添加物として含む請求項1~3のいずれか1項に記載のエッチングガス。
  6. 請求項1~4のいずれか1項に記載のエッチングガスを用いる半導体膜、誘電体膜または金属膜のエッチング方法。
  7. 請求項6に記載のエッチング方法を施し、次いで、F2またはO2によりアッシングすることを含むエッチング方法。
PCT/JP2010/070656 2009-12-01 2010-11-19 エッチングガス WO2011068039A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10834491.2A EP2508500A4 (en) 2009-12-01 2010-11-19 ETCHING GAS
KR1020127014442A KR101391347B1 (ko) 2009-12-01 2010-11-19 에칭 가스
US13/513,038 US20120231630A1 (en) 2009-12-01 2010-11-19 Etching Gas
CN2010800546650A CN102648171A (zh) 2009-12-01 2010-11-19 蚀刻气体
US14/455,128 US9234133B2 (en) 2009-12-01 2014-08-08 Etching gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-273031 2009-12-01
JP2009273031A JP5655296B2 (ja) 2009-12-01 2009-12-01 エッチングガス

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/513,038 A-371-Of-International US20120231630A1 (en) 2009-12-01 2010-11-19 Etching Gas
US14/455,128 Division US9234133B2 (en) 2009-12-01 2014-08-08 Etching gas

Publications (1)

Publication Number Publication Date
WO2011068039A1 true WO2011068039A1 (ja) 2011-06-09

Family

ID=44114888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070656 WO2011068039A1 (ja) 2009-12-01 2010-11-19 エッチングガス

Country Status (7)

Country Link
US (2) US20120231630A1 (ja)
EP (1) EP2508500A4 (ja)
JP (1) JP5655296B2 (ja)
KR (1) KR101391347B1 (ja)
CN (1) CN102648171A (ja)
TW (1) TWI431686B (ja)
WO (1) WO2011068039A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691163B2 (ja) * 2009-12-01 2015-04-01 セントラル硝子株式会社 クリーニングガス
CN104067171A (zh) * 2012-01-27 2014-09-24 旭化成电子材料株式会社 微细凹凸结构体、干式蚀刻用热反应型抗蚀剂材料、模具的制造方法及模具
JP6140412B2 (ja) * 2012-09-21 2017-05-31 東京エレクトロン株式会社 ガス供給方法及びプラズマ処理装置
WO2016131061A1 (en) * 2015-02-13 2016-08-18 Tokyo Electron Limited Method for roughness improvement and selectivity enhancement during arc layer etch
US9576816B2 (en) 2015-02-13 2017-02-21 Tokyo Electron Limited Method for roughness improvement and selectivity enhancement during arc layer etch using hydrogen
US9530667B2 (en) 2015-02-13 2016-12-27 Tokyo Electron Limited Method for roughness improvement and selectivity enhancement during arc layer etch using carbon
JP2016178222A (ja) 2015-03-20 2016-10-06 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2016178223A (ja) 2015-03-20 2016-10-06 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP6748354B2 (ja) 2015-09-18 2020-09-02 セントラル硝子株式会社 ドライエッチング方法及びドライエッチング剤
JP6385915B2 (ja) * 2015-12-22 2018-09-05 東京エレクトロン株式会社 エッチング方法
KR102496037B1 (ko) 2016-01-20 2023-02-06 삼성전자주식회사 플라즈마 식각 방법 및 장치
JP6587580B2 (ja) * 2016-06-10 2019-10-09 東京エレクトロン株式会社 エッチング処理方法
TWI757545B (zh) * 2017-09-15 2022-03-11 日商關東電化工業股份有限公司 使用酸鹵化物之原子層蝕刻
JP7177344B2 (ja) * 2017-11-14 2022-11-24 セントラル硝子株式会社 ドライエッチング方法
JP6981267B2 (ja) * 2018-01-17 2021-12-15 東京エレクトロン株式会社 エッチング方法及びエッチング装置
KR102314450B1 (ko) * 2018-10-26 2021-10-19 주식회사 히타치하이테크 플라스마 처리 장치 및 플라스마 처리 방법
CN110523351A (zh) * 2019-09-18 2019-12-03 苏州金宏气体股份有限公司 一种溴化氢的合成装置及合成方法
EP4099365A4 (en) * 2020-01-30 2023-08-16 Resonac Corporation ETCHING PROCESS
CN115668463A (zh) * 2020-04-01 2023-01-31 朗姆研究公司 半导体材料的选择性精确蚀刻

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892162A (ja) * 1994-07-28 1996-04-09 Asahi Glass Co Ltd ジフルオロ酢酸フルオリドおよびジフルオロ酢酸エステルの製造方法
JPH08191062A (ja) * 1995-01-11 1996-07-23 Sony Corp 接続孔の形成方法
JP2001203349A (ja) * 2000-01-20 2001-07-27 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2002158181A (ja) * 2000-09-11 2002-05-31 Research Institute Of Innovative Technology For The Earth クリーニングガス及びエッチングガス
JP2007511096A (ja) * 2003-11-12 2007-04-26 ラム リサーチ コーポレーション トレンチエッチングのためのラインエッジ粗さ低減

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357282A (en) * 1979-08-31 1982-11-02 E. I. Du Pont De Nemours And Company Preparation of fluorocarbonyl compounds
US5905169A (en) * 1995-03-20 1999-05-18 E. I. Du Pont De Nemours And Company Process for producing polyfluoroacyl compositions
US5994599A (en) * 1997-06-19 1999-11-30 E. I. Du Pont De Nemours And Company Halogenated ethers containing fluorine and processes for their manufacture
US6242359B1 (en) * 1997-08-20 2001-06-05 Air Liquide America Corporation Plasma cleaning and etching methods using non-global-warming compounds
JP3611729B2 (ja) 1998-08-26 2005-01-19 セントラル硝子株式会社 エッチングガス
JP2000265275A (ja) 1999-03-15 2000-09-26 Central Glass Co Ltd クリーニング方法
US7189332B2 (en) * 2001-09-17 2007-03-13 Texas Instruments Incorporated Apparatus and method for detecting an endpoint in a vapor phase etch
US7357138B2 (en) * 2002-07-18 2008-04-15 Air Products And Chemicals, Inc. Method for etching high dielectric constant materials and for cleaning deposition chambers for high dielectric constant materials
US6794313B1 (en) * 2002-09-20 2004-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Oxidation process to improve polysilicon sidewall roughness
US20050014383A1 (en) * 2003-07-15 2005-01-20 Bing Ji Use of hypofluorites, fluoroperoxides, and/or fluorotrioxides as oxidizing agent in fluorocarbon etch plasmas
EP1760769A4 (en) * 2004-05-31 2009-05-13 Nat Inst Of Advanced Ind Scien DRYING GASES AND METHOD OF DRYING
JP5691163B2 (ja) * 2009-12-01 2015-04-01 セントラル硝子株式会社 クリーニングガス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892162A (ja) * 1994-07-28 1996-04-09 Asahi Glass Co Ltd ジフルオロ酢酸フルオリドおよびジフルオロ酢酸エステルの製造方法
JPH08191062A (ja) * 1995-01-11 1996-07-23 Sony Corp 接続孔の形成方法
JP2001203349A (ja) * 2000-01-20 2001-07-27 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2002158181A (ja) * 2000-09-11 2002-05-31 Research Institute Of Innovative Technology For The Earth クリーニングガス及びエッチングガス
JP2007511096A (ja) * 2003-11-12 2007-04-26 ラム リサーチ コーポレーション トレンチエッチングのためのラインエッジ粗さ低減

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2508500A4 *

Also Published As

Publication number Publication date
US20140349488A1 (en) 2014-11-27
KR20120078749A (ko) 2012-07-10
EP2508500A1 (en) 2012-10-10
JP5655296B2 (ja) 2015-01-21
US9234133B2 (en) 2016-01-12
KR101391347B1 (ko) 2014-05-07
JP2011119310A (ja) 2011-06-16
TW201140685A (en) 2011-11-16
CN102648171A (zh) 2012-08-22
TWI431686B (zh) 2014-03-21
US20120231630A1 (en) 2012-09-13
EP2508500A4 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5655296B2 (ja) エッチングガス
KR101363440B1 (ko) 클리닝 가스 및 퇴적물의 제거 방법
US9299581B2 (en) Methods of dry stripping boron-carbon films
US20140216498A1 (en) Methods of dry stripping boron-carbon films
TW583736B (en) Plasma cleaning gas and plasma cleaning method
US7168436B2 (en) Gas for removing deposit and removal method using same
WO2016181723A1 (ja) ドライエッチング方法、ドライエッチング剤及び半導体装置の製造方法
JP2007016315A (ja) Cvdプロセス・チャンバのリモート・プラズマ・クリーニング方法
JP7332961B2 (ja) ドライエッチング方法
US9368363B2 (en) Etching gas and etching method
JP7445150B2 (ja) ドライエッチング方法及び半導体デバイスの製造方法
JPWO2018181104A1 (ja) ドライエッチング方法またはドライクリーニング方法
US10872780B2 (en) Dry etching agent composition and dry etching method
TWI824098B (zh) 乾式蝕刻方法、乾式蝕刻劑、及其保存容器
EP2944385A1 (en) A process for etching and chamber cleaning and a gas therefor
JPH06283477A (ja) 半導体装置の製造方法
JP3611729B2 (ja) エッチングガス
JP2011176292A (ja) ドライエッチング剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054665.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13513038

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127014442

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010834491

Country of ref document: EP