WO2011066736A1 - 污泥处理方法和装置及其在污水生物处理中的应用 - Google Patents

污泥处理方法和装置及其在污水生物处理中的应用 Download PDF

Info

Publication number
WO2011066736A1
WO2011066736A1 PCT/CN2010/073333 CN2010073333W WO2011066736A1 WO 2011066736 A1 WO2011066736 A1 WO 2011066736A1 CN 2010073333 W CN2010073333 W CN 2010073333W WO 2011066736 A1 WO2011066736 A1 WO 2011066736A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
treatment
sewage
mixed liquid
feed
Prior art date
Application number
PCT/CN2010/073333
Other languages
English (en)
French (fr)
Inventor
李进民
周连奎
李大勇
Original Assignee
Li Jinmin
Zhou Liankui
Li Dayong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP10834169.4A priority Critical patent/EP2508490A4/en
Priority to EA201290421A priority patent/EA024049B1/ru
Priority to BR112012013332-2A priority patent/BR112012013332B1/pt
Priority to AU2010327284A priority patent/AU2010327284B2/en
Priority to MX2012006387A priority patent/MX2012006387A/es
Priority to CN2010800014682A priority patent/CN102149645B/zh
Priority to JP2012541300A priority patent/JP5685265B2/ja
Priority to US13/509,599 priority patent/US8932466B2/en
Application filed by Li Jinmin, Zhou Liankui, Li Dayong filed Critical Li Jinmin
Priority to NZ60089210A priority patent/NZ600892A/en
Priority to CA2780716A priority patent/CA2780716C/en
Priority to ARP100104423 priority patent/AR079612A1/es
Publication of WO2011066736A1 publication Critical patent/WO2011066736A1/zh
Priority to IL219714A priority patent/IL219714A/en
Priority to ZA2012/04301A priority patent/ZA201204301B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/906Phosphorus containing

Definitions

  • the present invention claims priority to the following patent applications: (1) Chinese Patent Application 200910249722. X, Application Date: December 1, 2009; and (2) China Patent application 201010000737. 5, the application date is January 15, 2010. The contents of these patent applications are hereby incorporated by reference.
  • TECHNICAL FIELD The present invention relates to a sludge treatment method and apparatus and application thereof in sewage biological treatment, in particular to a sludge reduction treatment method and apparatus thereof, and a sludge reduction treatment method The sludge biological treatment method and device for reducing sewage. BACKGROUND OF THE INVENTION With the increasing severity of water pollution, it is imperative to economically and efficiently treat various types of sewage.
  • the traditional activated sludge method is increasingly exposed to the following defects: (1) low biological concentration in the aeration tank; (2) poor water quality, water impact load capacity, and insufficient operation; (3) easy to produce Sludge expansion; (4) Large sludge production; (5) High capital and operating costs, large floor space, etc.
  • the most striking problem with existing sewage biological treatment processes is the production of large excess sludge.
  • the cost of sludge treatment is abnormally high, accounting for about 50% to 60% of the total cost of construction and operation of the sewage treatment plant. Excess sludge requires the necessary disposal, which increases the operating costs of wastewater treatment and limits the choice of sludge treatment methods.
  • sludge reduction methods include digestion (including anaerobic digestion and aerobic digestion), sludge heat treatment such as wet oxidation, sludge concentration methods such as gravity concentration and air flotation, sludge dewatering such as mechanical dewatering. And chemical coagulation, sludge drying methods such as natural drying and drying.
  • these sludge reduction methods have not completely solved the problem of sludge discharge.
  • Chinese Patent Application Publication No. CN101481191A discloses a sewage treatment method for sludge reflux digestion and reduction, wherein the excess sludge is returned to the anaerobic sedimentation tank for long-term accumulation in the sediment sludge zone at the lower part of the anaerobic sedimentation tank to reduce sludge digestion.
  • U.S. Patent Application Publication No. US 2002/0030003 A1 discloses an activated sludge sewage treatment system and method in which sewage is treated with sludge in a contact tank, and then sludge and water are separated in a solid-liquid separator, and the separated sludge and parts are separated. The sewage is mixed and aerated in the digester to reduce the sludge digestion, and the aerated muddy water mixture is partially returned to the contact tank and partially discharged.
  • the present invention provides a sludge treatment method comprising the steps of:
  • any suitable ratio for example at least 60%, preferably at least 65%, more preferably at least 70%, more preferably at least 75%, more preferably At least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 93%, more preferably at least 95%, more preferably at least 98%, most preferably substantially 100% of the first concentrated mixture return step (1) Used as the first mixed liquid, and optionally discharges the first concentrated mixed liquid that has not returned to the step (1).
  • the amount of sludge of the first concentrated mixture of step (1) is not returned.
  • the proportion of the sludge amount of the sludge feed may be any suitable value, for example, selected from less than about
  • step (1) substantially all of the first concentrated mixture is returned to step (1) as the first mixture in step (5).
  • the organic nutrient preferably sewage feed
  • the sludge feed and the first mixture are mixed to obtain a second liquid mixture. That is, step (1) further includes introducing the sewage feed to the first mixture.
  • the flow ratio of the sludge feed to the sewage feed in the step (1) is 1:0.01 to 1:100, preferably 1:0.1 to 1:10, more preferably 1: 0.5 ⁇ 1: 5.
  • the flow ratio of the sludge feed to the sewage feed may be any suitable value, for example, selected from 1:100 to 1:50, 1:50 to 1:20, 1:20 to 1:10, 1 : 10 ⁇ 1: 5, 1: 5 ⁇ 1: 2, 1:2 ⁇ 1: 1.5, 1: 1.5 ⁇ 1: 1, 1: 1 ⁇ 1: 0.8, 1: 0.8 ⁇ 1: 0.5, 1: 0.5 ⁇ 1: 0.2, 1: 0.2 ⁇ 1: 0.1, 1: 0.1 ⁇ 1: 0.05, 1: 0.05 ⁇ 1: 0.02 and 1: 0.02 ⁇ 1: 0.01.
  • the oxygen supply treatment time of the step (2) is from 0.1 to 4 hours, preferably from 0.5 to 2 hours, more preferably from 0.5 to 1.5 hours.
  • the anoxic treatment time of the step (3) is from 0.8 to 6 hours, preferably from 1 to 4 hours, more preferably from 1 to 3 hours.
  • the ratio of the oxygen treatment time to the anoxic treatment time is 1:0.5 to 1:6, preferably 1:1 to 1:3, more preferably 1:1.5 to 1 : 2, most preferably 1: 2.
  • the oxygen supply of step (2) The treatment is carried out in the form of intermittent aeration or continuous aeration.
  • the third mixed liquid in the step (2), has a dissolved oxygen concentration of 0.1 to 4 mg/L, preferably 1.5 to 3 mg/L, more preferably 2 to 3 mg/L.
  • step (3) and step (4) are carried out in a precipitation manner.
  • the sludge concentration of the second mixture is from 3,000 to 30,000 mg/L, preferably from 3,000 to 20,000 mg/L, more preferably from 4,000 to 15,000 mg/L.
  • the facultative microorganism is a dominant group in the sludge of the first, second, third, and fourth mixtures.
  • Some embodiments of the sludge treatment method according to the present invention further include a recovery step of recovering the gaseous phosphorus-containing compound produced in the steps (2) and/or (3).
  • the present invention also provides a biological treatment method for sewage, comprising:
  • step (1) discharging the supernatant, and returning at least a portion of the first concentrated mixture to the step (1) for use as the first mixed liquid, wherein the amount of sludge of the first concentrated mixed liquid that has not returned to the step (1) is less than the sludge The amount of sludge fed; (6) subjecting at least a portion of the supernatant of step (5) and optionally a portion of the sewage feed to biological treatment of the sewage to obtain a second concentrated mixture and purified water;
  • step (7) discharging the purified effluent water, and optionally returning at least part of the second concentrated mixture of the step (6) to the step (1) for use as a sludge feed; wherein the sewage feed is introduced into the step (1) and the sludge
  • the feed and the first mixture are mixed to obtain a second mixture and/or in step (6) with the supernatant of the at least part of the step (5) for biological treatment of the sewage, preferably at least part of the sewage is fed in the step (1) mixing with the sludge feed and the first mixed liquid to obtain a second mixed liquid, and more preferably, mixing all the sewage feed with the sludge feed and the first mixed liquid in the step (1) to obtain a second mixed liquid.
  • step (5) at least 60%, preferably at least 65%, more preferably at least 70%, more preferably at least 75%, more preferably at least 80%, more preferably At least 85%, more preferably at least 90%, more preferably at least 93%, more preferably at least 95%, more preferably at least 98%, most preferably substantially 100% of the first concentrated mixture is returned to step (1) for use as the first mixture And, optionally, discharging the first concentrated mixture that has not returned to step (1).
  • step (6) at least 20%, preferably at least 35%, more preferably at least 50%, more preferably at least 65%, more preferably at least 80%, more preferably
  • the supernatant of step (5) is subjected to sewage biological treatment of at least 85%, more preferably at least 90%, more preferably at least 93%, more preferably at least 95%, more preferably at least 98%, and most preferably substantially 100%.
  • At least 20%, preferably at least 35%, more preferably at least 50%, more preferably at least 65%, more preferably at least 80%, more preferably at least at least one step is introduced in step (1) 85%, more preferably at least 90%, more preferably at least 93%, more preferably at least 95%, more preferably at least 98%, most preferably substantially 100 % of the sewage is fed and the remaining portion of the sewage feed is introduced in step (6).
  • all of the sewage feed is introduced in step (1) and no sewage feed is introduced in step (6).
  • the oxygen supply treatment time of the step (2) is from 0.1 to 4 hours, preferably from 0.5 to 2 hours, more preferably from 0.5 to 1.5 hours.
  • the anoxic treatment time of the step (3) is from 0.8 to 6 hours, preferably from 1 to 4 hours, more preferably from 1 to 3 hours.
  • the ratio of the oxygen treatment time to the anoxic treatment time is 1:0.5 to 1:6, preferably 1:1 to 1:3, more preferably 1:1.5 to 1: 2, most preferably 1:2.
  • the oxygen supply treatment of the step (2) is carried out by intermittent aeration or continuous aeration.
  • the dissolved oxygen concentration of the third mixed liquid is 0.1 to 4 mg/L, preferably 1.5 to 3 mg/L, more preferably 2 to 3 mg/L.
  • step (3) and step (4) are carried out in a precipitation manner, that is to say, anoxic treatment and separation can be carried out by precipitation, preferably precipitation in a sedimentation tank.
  • the sludge concentration of the second mixed liquid is 3,000 to 30,000 mg/L, preferably 3,000 to 20,000 mg/L, more preferably 4,000 to 15,000 mg/L.
  • Some embodiments of the biological wastewater treatment method according to the present invention further include recycling steps The recovery step of the gaseous phosphorus-containing compound produced in the step (2) and/or (3).
  • the ratio of the second concentrated mixture used as the sludge feed to the second concentrated mixture in step (1) is 1 to 100%, preferably About 80 - 100%, more preferably about 100%.
  • the ratio of the second concentrated mixture returned to the step (1) in the step (7) to the sludge feed in the step (1) is from 1 to 100%, preferably about 80. ⁇ 100%, more preferably about 100 ° /. .
  • step (6) is selected from the group consisting of Wuhrmann process, A/0 process, Bardenpho process, Phoredox process, A 2 /0 process, inverted A 2 /0 process, UCT process Wastewater biological treatment steps, MUCT process, VIP process, 0WASA process, JHB process, TNCU process, Dephanox process, BCFS process, MSBR process, SBR process, AB process, oxidation ditch process, biofilm process, fluidized bed process or a combination thereof .
  • the present invention provides a sludge treatment apparatus for the above sludge treatment method, comprising: a first capable of mixing a sewage feed, a sludge feed, and a first mixed liquid to obtain a second mixed liquid a second apparatus capable of performing a second mixed liquid for oxygen treatment to obtain a third mixed liquid; a third apparatus capable of performing a fourth mixed liquid by anoxic treatment; capable of separating the fourth mixed liquid a fourth device for the supernatant and the first concentrated mixture; a fifth device capable of discharging the supernatant; capable of introducing at least a portion of the first concentrated mixture as the first mixed liquid into the first device and returning to the first device The amount of sludge in the first concentrated mixture is less than the amount of sludge in the sludge fed to the sixth device.
  • the third device is set such that the anoxic treatment time is from 0.8 to 6 hours, preferably from 1 to 4 hours, more preferably from 1 to 3 hours.
  • the second device and the third device are arranged such that the ratio of the oxygen treatment time to the anoxic treatment time is 1:0.5 to 1:6, preferably 1:1 ⁇ 1: 3, more preferably 1: 1. 5 ⁇ 1: 2 , most preferably 1: 2.
  • the second device is an aeration tank.
  • the third apparatus and the fourth apparatus are sedimentation tanks, that is, the sedimentation tanks are simultaneously used as the third apparatus and the fourth apparatus.
  • the sludge treatment apparatus further includes a recovery apparatus capable of collecting and recovering gaseous phosphorus-containing compounds.
  • the present invention also provides a sewage biological treatment apparatus for the above sewage biological treatment method, comprising: a first apparatus capable of mixing a sludge feed with a first mixed liquid to obtain a second mixed liquid; a second mixture is subjected to an oxygen treatment to obtain a second mixture; a third device capable of performing anoxic treatment to obtain a fourth mixture; and the fourth mixture can be separated to obtain a supernatant and a fourth apparatus for first concentrating the mixture; a fifth device capable of discharging the supernatant; capable of introducing at least a portion of the first concentrated mixture as the first mixture into the first device and causing the first concentration not to return to the first device
  • the sixth device capable of the sludge amount of the mixed liquid being smaller than the sludge amount of the sludge feed; the seventh device capable of biologically treating the supernatant discharged from at least a portion of the fifth device to obtain the second concentrated mixed liquid and purifying the effluent;
  • An eighth device capable of discharging purified water
  • the second step is 0. 5 ⁇ 2 hours, more preferably 0. 5 ⁇ 1. 5 hours.
  • the third device is set such that the anoxic treatment time is from 0.8 to 6 hours, preferably from 1 to 4 hours, more preferably from 1 to 3 hours.
  • the second apparatus and the third apparatus are arranged such that the ratio of the oxygen treatment time to the anoxic treatment time is 1:0.5 to 1:6, preferably 1:1 ⁇ 1: 3, more preferably 1: 1. 5 ⁇ 1: 2 , most preferably 1: 2.
  • the second device is an aeration tank.
  • the third device and the fourth device are sedimentation tanks, that is, the sedimentation tanks are simultaneously used as the third device and the fourth device.
  • the sludge treatment apparatus further includes a recovery apparatus capable of collecting and recovering gaseous phosphorus-containing compounds.
  • the seventh apparatus is selected from the group consisting of a Wuhrmann process, an A/0 process, a Bardenpho process, a Phoredox process, an A70 process, an inverted A70 process, a UCT process, a MUCT process, a VIP process.
  • Wastewater biological treatment equipment 0WASA process, JHB process, TNCU process, Dephanox process, BCFS process, MSBR process, SBR process, AB process, oxidation ditch process, biofilm process, fluidized bed process or a combination thereof.
  • the present invention also provides a method for reducing the carbon, nitrogen and phosphorus content of sludge from a biological treatment process of sewage, comprising passing sludge as a sludge feed through the sludge — II/73—
  • the invention also provides a reduction in the content of carbon, nitrogen and phosphorus in the carbon, nitrogen and phosphorus contents of the sewage.
  • the present invention also provides a method for recovering phosphorus from sludge in a biological treatment process for sewage, comprising: (i) using the sludge as a sludge feed to pass the phosphorus-containing compound therein by the sludge treatment method, In particular, the phosphorus-containing compound present in the form of a solution is converted to a gaseous phosphorus-containing compound to escape, and (ii) the gaseous phosphorus-containing compound evolved in the step (i) is recovered.
  • the present invention also provides a method of recovering phosphorus in sewage, comprising (i) water as a sewage feed through the above
  • the phosphorus-containing compound particularly in the form of a solution, is converted to a gaseous phosphorus-containing compound to escape, and (ii) the gaseous phosphorus-containing compound evolved in the step (i) is recovered.
  • the present invention also provides a sludge reduction treatment method, the method comprising the steps of:
  • MLSS is a shorthand for mixed liquor suspended solids, also known as mixed liquor sludge concentration, which is the total amount of activated sludge solids contained in aeration tank unit volume mixture. Weight (mg/L).
  • the oxygen supply treatment time of the step (b) is from 0.1 to 4 hours, preferably from 0.5 to 2 hours, more preferably from 0.5 to 1.5 hours.
  • the dissolved oxygen concentration of the oxygenated treatment mixture in the oxygen treatment zone is 0.1 to 4 mg/L, preferably 1.5 to 3 mg/L, more preferably 2 ⁇ 3mg/L.
  • the oxygen concentration of the sludge treatment zone of 3000 ⁇ 30000mg / L, preferably 3000 ⁇ 20000mg / L, and more preferably 4000 ⁇ 15000mg / L o according to the present invention.
  • Some embodiments of the sludge reduction treatment process further comprise the step of recovering the gaseous phosphorus-containing compound produced in steps (b) and/or (c).
  • the present invention provides a sludge reduction processing apparatus, comprising: an oxygen supply treatment zone having a first inlet for receiving a first sludge, and receiving at least a portion a second inlet of the second sludge and optionally a third inlet for receiving the sewage feed; wherein the first sludge is from a sewage biological treatment process; the oxygen treatment zone is for receiving the first sludge, The sludge and sewage feed are subjected to oxygen treatment; the oxygen treatment may be performed by intermittent aeration or continuous aeration; and the anoxic treatment zone is for treating the mixture obtained in the oxygen treatment zone to form a supernatant and a second sludge; and a circulation device for recycling at least a portion of the second sludge back to the oxygen treatment zone.
  • the circulation device will be at least 60%, preferably at least 65%, preferably at least 70%, more preferably at least 75%, more preferably at least 80%, more preferably at least 85 %, more preferably at least 90%, more preferably at least 93%, more preferably at least 95%, more preferably at least 98%, and most preferably substantially 100% of the second sludge is recycled back to the oxygen treatment zone.
  • 5 - 1 2 More preferably 0. 5 - 1, 5 - 2 hours, more preferably 0.5 - 1 hour, more preferably 0.5 - 2 hours, more preferably 0. 5 - 1 . 5 hours.
  • the sludge reduction treatment apparatus further include a phosphorus recovery unit for recovering the gaseous phosphorus-containing compound produced in the oxygen treatment zone and the anoxic treatment zone.
  • the present invention also provides a sludge reduction sewage treatment method comprising: feeding sewage into an oxygen treatment zone including, for example, an aeration tank, such as an anoxic treatment zone and a biological treatment zone of a sedimentation tank.
  • the sewage biological treatment equipment is sequentially subjected to oxygen treatment, anoxic and/or sedimentation treatment and sewage biological treatment; characterized in that it will be present and/or formed in the biological treatment zone and the anoxic treatment zone, respectively.
  • the present invention also provides a sludge reduction sewage treatment method comprising the following steps:
  • step (a) introducing a sewage feed and at least a portion of the second sludge from step (d) and at least a portion of the first sludge from step (g) into an oxygen treatment zone, preferably an aeration tank;
  • step (d) recycling at least a portion of the second sludge back to the oxygen treatment zone, and optionally discharging the remainder of the second sludge, wherein the total amount of MLSS remaining in the remainder of the second sludge is less than that introduced in step (a) MLSS of at least a portion of the first sludge of the oxygen treatment zone
  • the oxygen treatment can be carried out in the form of intermittent aeration or continuous aeration.
  • the oxygen supply treatment time of the step (b) is from 0.1 to 4 hours, preferably from 0.5 to 2 hours, more preferably from 0.5 to 1.5 hours.
  • the dissolved oxygen concentration of the mixture of the oxygenated treatment solution is 0. l ⁇ 4mg / L, preferably 1.5 - 3mg / L, according to some embodiments of the sludge reduction wastewater treatment method of the present invention, More preferably, it is 2 to 3 mg/L.
  • the sludge concentration in the oxygen treatment zone is 3,000 to 30,000 mg/L, preferably 3,000 to 20,000 mg/L, more preferably 4,000 to 15,000 mg/L.
  • the sludge-reduced sewage treatment method according to the present invention further comprise the step of recovering the produced gaseous phosphorus-containing compound.
  • the biological treatment of step (f) is based on the Wuhrmann process, the A/0 process, the Bardenpho process, Phoredox Process, A 2 /0 Process, Inverted A 2 /0 Process, UCT Process, MUCT Process, VIP Process, OWASA Process, JHB Process, TNCU Process, Dephanox Process, BCFS Process, MSBR Process, SBR Process, AB Process, Oxidation Wastewater biological treatment steps of a trench process, a biofilm process, a fluidized bed process, or a combination thereof.
  • the present invention also provides a sludge reduction sewage treatment apparatus, the apparatus comprising an oxygen supply treatment zone such as an aeration tank sequentially connected, such as an anoxic treatment zone of a sedimentation tank and a sewage biological treatment zone Characterized in the oxygen treatment zone having a sewage feed inlet, a second sludge return line in communication with the anoxic treatment zone, and a first sludge return line in communication with the sewage biological treatment zone, and the sewage biological treatment setting
  • the total amount of MLSS of the second sludge discharged from the anoxic treatment zone is made smaller than the total amount of MLSS recycled from the sewage biological treatment zone to the first sludge of the oxygen treatment zone.
  • the present invention also provides a sludge reduction sewage treatment apparatus, comprising:
  • An oxygen treatment zone preferably an aeration tank, having a first inlet receiving at least a portion of the first sludge, a second inlet receiving at least a portion of the second sludge, and a third inlet receiving the sewage feed; said oxygen supply
  • the treatment zone is configured to perform oxygen treatment on the received first sludge, the second sludge, and the sewage feed; the oxygen treatment may be performed by intermittent aeration or continuous aeration;
  • An anoxic treatment zone preferably a sedimentation tank, for treating the mixture obtained in the oxygen treatment zone with anoxic treatment to form a supernatant and a second sludge;
  • sewage biological treatment zone optionally with other sewage feed inlets for biological treatment of said supernatant and optionally other sewage feed to form a first sludge and effluent;
  • a first circulation device for recycling at least a portion of the first sludge back to the oxygen treatment zone
  • a second circulation device for recycling at least a portion of the second sludge back to the oxygen treatment zone
  • the second circulation apparatus will be at least 60%, preferably at least 65%, preferably at least 70%, more preferably at least 75%, more preferably at least 80%, more preferably At least 85%, more preferably at least 90%, more preferably at least 93%, more preferably at least 95%, more preferably at least 98%, and most preferably substantially 100% of the second sludge is recycled back to the oxygen treatment zone.
  • the first circulation apparatus will be at least 60%, preferably at least 65%, preferably at least 70%, more preferably at least 75%, more preferably at least 80%, more preferably At least 85%, more preferably at least 90%, more preferably at least 93%, more preferably at least 95%, more preferably at least 98%, and most preferably substantially 100% of the second sludge is recycled back to the oxygen treatment zone.
  • the oxygen treatment zone is set such that the oxygen treatment time is from 0.1 to 4 hours, preferably from 0.5 to 2 hours, more preferably from 0.5 to 1.5 hours.
  • the sludge-reducing sewage treatment apparatus further include a phosphorus recovery unit for recovering gaseous phosphorus-containing compounds produced in the sewage treatment unit.
  • the biological treatment zone is capable of being based on the Wuhrmann process, the A/0 process, the Bardenpho process, the Phoredox process, the A70 process, the inverted A70 process, the UCT process, the MUCT Process, VIP process, 0WASA process, JHB process, TNCU process, Dephanox process, BCFS process, MSBR process, SBR process, AB process, oxidation ditch process, biofilm process, fluidized bed process or a combination thereof for wastewater biological treatment equipment.
  • the inventors of the present invention have surprisingly found that the above sludge treatment method or sludge reduction is employed.
  • the treatment method can achieve long-term stable operation without sludge discharge and no sludge accumulation. Therefore, the sludge treatment method or the sludge reduction treatment method of the present invention can substantially eliminate sludge discharge and completely solve the problem of sludge discharge, and has great social and economic significance.
  • the above-described sludge treatment method or sludge reduction treatment method of the present invention can be conveniently combined with various suitable sewage biological treatment methods to form a new sewage biological treatment method.
  • the excess sludge produced by the sewage biological treatment method can be treated by the sludge treatment method of the present invention to be digested.
  • the effluent (supernatant) produced by the sludge treatment method of the present invention is generally neutral (ie, the pH is between 6 and 8, especially between 6.5 and 7.5), so there is no need to adjust the pH.
  • Purified effluent that meets emission standards can be obtained by further biological treatment of sewage.
  • the sewage biological treatment method of the present invention can still achieve a good phosphorus removal effect without substantially draining mud.
  • the new sewage biological treatment method can significantly reduce or even completely eliminate sludge discharge, and also has good sewage treatment effect and effluent quality, smaller equipment footprint, and less construction cost. And operating costs as well as higher impact load capacity and operational stability.
  • FIG. 1 is a schematic view showing the process flow of a conventional activated sludge process in the prior art.
  • 2 is a schematic view showing the process flow of an embodiment of a sludge treatment method according to the present invention.
  • Fig. 3 is a schematic view showing the process flow of an embodiment of a sewage biological treatment method or a sludge reduction sewage (biological) treatment method according to the present invention.
  • Fig. 1 is a schematic view showing the process flow of a conventional activated sludge process in the prior art.
  • 2 is a schematic view showing the process flow of an embodiment of a sludge treatment method according to the present invention.
  • Fig. 3 is a schematic view showing the process flow of an embodiment of a sewage biological treatment method or a sludge reduction sewage (biological) treatment method according to the present invention.
  • FIG. 4 is a schematic view showing a process flow of another embodiment of the sewage biological treatment method or the sludge reduction sewage biological treatment method according to the present invention.
  • Fig. 5 is a flow chart showing an oxidation ditch sewage treatment process which can be used in the sewage biological treatment method of the present invention.
  • Figure 6 is a flow diagram of an SBR wastewater treatment process that can be used in the sewage biological treatment process of the present invention.
  • 7 is a flow chart of an AB method sewage treatment process that can be used in the sewage biological treatment method of the present invention.
  • Figure 10 is a flow diagram of an MSBR wastewater treatment process that can be used in the sewage biological treatment process of the present invention.
  • Figure 11 is a schematic diagram showing the process flow of an embodiment of the biological treatment method for sewage according to the present invention.
  • Figure 12 is a schematic diagram showing the process flow of an embodiment of the biological treatment method for sewage according to the present invention.
  • Figure 13 is a schematic diagram showing the process flow of an embodiment of the biological treatment method for sewage according to the present invention.
  • the term "sewage” refers to any sewage containing mainly organic pollutants which can be treated by biological treatment methods, including any suitable industrial wastewater, domestic sewage and any combination thereof, especially urban domestic sewage.
  • the sewage is directly obtained from the place where the sewage is generated, the sewage is collected through the pipe network, the sewage is stored after the sewage is stored for a certain period of time, or the sewage is subjected to fermentation, acid-base regulation, composition adjustment, concentration adjustment, and sedimentation, filtration, centrifugation, and the like. Sewage obtained after chemical and/or physical treatment.
  • the term "sewage biological treatment” refers to a process of utilizing the metabolism of microorganisms to convert organic pollutants in sewage into stable and harmless substances.
  • Aerobic biological treatment can be divided into activated sludge method and biofilm method according to the state of existence of microorganisms in water.
  • Activated sludge method is currently the most extensive.
  • Applied sewage biological treatment method in which air is blown into a substance containing a large amount of organic matter
  • the biological floc-activated sludge is formed in the water, and a large number of microorganisms are inhabited and live on the activated sludge.
  • These microorganisms use the organic matter in the water as a food material to obtain energy and grow and multiply. Therefore, the sewage is purified.
  • the basic process of the activated sludge process is shown in Figure 1.
  • the biofilm process is to form a sludge-like biofilm on the filler by flowing the sewage through the solid filler, and a large number of microorganisms are propagated on the biofilm. It is the same as the activated sludge to purify the sewage.
  • the biofilm method includes biological filter, biological turntable, biological contact oxidation and biological fluidized bed, etc.
  • Anaerobic biological treatment is the use of facultative anaerobic bacteria and obsessive anesthesia The treatment technology of oxygen bacteria to degrade organic pollutants under anaerobic conditions.
  • the anaerobic biological treatment facilities include ordinary digester, anaerobic filter tank, anaerobic sludge bed, anaerobic turntable, baffle anaerobic reactor and the like. Due to the variety of pollutants in the sewage, it is often necessary to combine several treatment methods to achieve the purpose of purification.
  • Examples of common sewage biological treatment methods include activated sludge process, 0SA (Ox i c-Se ttl ing-Anaerobic) process, anaerobic biological treatment process (eg: 3 ⁇ 4 port anaerobic biofilter, anaerobic bio-turntable, Anaerobic contact method, upflow anaerobic sludge bed and segmental anaerobic digestion, etc.), Wuhrmann process, A/0 process, Bardenpho process, Phoredox process, A 2 /0 process, inverted A 2 /0 process, UCT Process, MUCT process, VIP process, 0WASA process, JHB process, TNCU process, Dephanox process, BCFS process, SBR (Sequenc ing Ba tch Reac tor Ac t iva ten S ludge Proces s ) process, MSBR process, AB process, biofilm Processes such as biofilters, bio-rotary disks, biological contact oxidation processes
  • sludge refers to any sludge containing activated sludge produced during the biological treatment of sewage.
  • Activated sludge is a floc formed by organisms in sewage, mainly containing water and various microorganisms such as aerobic bacteria, anaerobic bacteria and facultative bacteria, as well as fungi, algae, protozoa and the like.
  • various microbial groups in the sludge may also undergo changes such as quantity and proportion or even genetic mutations to adapt to the living environment.
  • examples of the sludge may include: domestic sewage sludge and industrial wastewater sludge.
  • examples of sludge can generally include: sludge from the secondary sedimentation tank of the activated sludge process (also becoming surplus sludge or residual activated sludge, the main components of which are microorganisms and water), from Biofilm process secondary sedimentation of mud (also known as humic sludge, the main component is shedding biofilm), sludge from the initial sedimentation tank of the sewage treatment plant (also known as primary sedimentation sludge, the main component is solid Sludge (also known as anaerobic sludge) discharged from anaerobic treatment of wastewater, sludge (also called digested sludge or cooked sludge) from the sludge, and from Sludge from chemical sedimentation tanks (also known as chemical sludge).
  • sludge from the secondary sedimentation tank of the activated sludge process also becoming surplus sludge or residual activated sludge, the main components of which are microorganisms and water
  • examples of sludge can be packaged. Includes: raw sludge or fresh sludge (ie, sludge without any treatment), concentrated sludge, digested sludge, dewatered sludge, dried sludge, etc.
  • the sludge of the present invention may be any of the above sludges and combinations thereof, particularly, excess sludge having a water content of 90% or more, 95% or more, preferably 97% or more, preferably fresh sludge.
  • the term "mixture” means a mixture of the above sludge and water, which is also called a muddy water mixture or a muddy water mixture.
  • the sludge in a suitable mixture has good settling properties, especially in the process of aeration and sedimentation, without sludge expansion or sludge uplift.
  • the sludge volume index (SVI, commonly used in SVI 3Q ) refers to the volume of 1 gram of activated sludge suspended solids, in mL/g, after the mixture has been allowed to stand in a 100 OmL graduated cylinder for 30 minutes.
  • the ground is less than the minimum of sludge expansion occurring during oxygen treatment, for example, SVI 3Q may be less than 200 ml/g, less than 150 ml/g, less than 100 ml/g, or less than 50 ml/g.
  • the term "concentrated mixed liquid” means a mixed liquid having an increased sludge concentration obtained by separating at least a part of water from the above mixed liquid, and in some cases also referred to as sludge, for example, a first concentrated mixed liquid. It can also be called the first sludge.
  • the separation may be precipitation separation, centrifugation, filtration separation, and the like.
  • the sludge in the mixed liquid gradually sinks to form a supernatant liquid in the upper portion of the mixed liquid and a concentrated mixed liquid in which the concentration of the sludge in the lower portion of the mixed liquid is increased.
  • the term "oxygenation treatment” means bringing oxygen into contact with a mixed solution, particularly an oxygen-containing gas such as air, in contact with a mixed solution.
  • oxygenation treatment can be achieved by any method capable of bringing an oxygen-containing gas into contact with the mixed solution, for example, by The oxygen-containing gas is passed through a flowing or non-flowing mixture, in particular by aerating the mixture with an oxygen-containing gas. Aerobic treatment is a typical oxygen treatment.
  • the oxygen treatment can be carried out in any suitable manner under any suitable conditions, for example, under normal pressure, pressure, normal temperature, low temperature and/or elevated temperature conditions, by means of blast aeration, mechanical aeration, jet aeration, etc. Suitable equipment is carried out, for example, in an aeration tank, an oxidation ditch, a fluidized bed, a moving bed or a membrane apparatus. Aeration tank aeration is preferred.
  • any suitable oxygen-containing gas can be used for aeration, preferably air aeration.
  • the dissolved oxygen concentration of the mixed solution can be gradually increased to a desired value.
  • the time of the oxygen treatment is generally determined by the residence time of the mixture in the oxygen treatment unit (or the time the mixture is contacted with oxygen) and the amount of oxygen-containing gas that is introduced.
  • aerobic organisms and facultative organisms are grown, while anaerobic organisms are inhibited.
  • the term "anoxic treatment” means substantially avoiding contact of an oxygen-containing gas with a mixed liquid.
  • the anoxic treatment can be achieved by any method capable of substantially avoiding the contact of the oxygen-containing gas with the mixed liquid.
  • the anoxic treatment of the present invention can be carried out under the conditions of anoxic conditions (with dissolved nitrogen in the absence of dissolved nitrogen) and anaerobic conditions (no dissolved nitrogen in the absence of dissolved nitrogen) described in some literature.
  • the dissolved oxygen concentration may gradually decrease to a desired value, for example, a level equal to about Omg/L.
  • the anoxic treatment can be achieved by slowly flowing the mixture in the sedimentation tank without stopping the aeration.
  • Suitable sedimentation tanks can be advection, vertical flow and radial flow sedimentation tanks.
  • the time of the anoxic treatment is generally determined by the residence time of the mixture in the anoxic treatment unit. Generally, in anoxic treatment, anaerobic organisms and facultative organisms are grown, while aerobic organisms are inhibited.
  • sludge amount is also referred to as sludge content, and generally refers to sludge or sewage.
  • the amount of sludge can also be expressed in terms of the total amount of MLSS.
  • MLSS is a shorthand for mixed liquor concentration (mixed l iquor suspended so l ids), which is also called mixed liquor sludge concentration, which represents the activated sludge solids contained in the aerated tank unit volume mixture. Total weight (mg/L).
  • the present invention provides a sludge treatment method, wherein the sludge is produced in a sewage biological treatment process, the method comprising: (1) mixing a sludge feed with a first mixed liquid to obtain a second mixed liquid (2) the first mixed liquid is subjected to oxygen treatment to obtain a third mixed liquid; (3) the third mixed liquid is subjected to anoxic treatment to obtain a fourth mixed liquid; (4) the fourth mixed liquid is separated to obtain a supernatant liquid; And the first concentrated mixture; (5) discharging the supernatant; returning at least a portion of the first concentrated mixture to the step (1) for use as the first mixed solution, wherein the first concentrated mixed liquid of the step (1) is not returned
  • the amount of sludge is less than the amount of sludge fed by the sludge.
  • the amount of sludge of the first concentrated mixture which has not returned to the step (1) is smaller than the amount of sludge of the sludge feed, that is, there is a net input of the amount of sludge.
  • the net input of the sludge amount is the sludge amount of the sludge feed (as shown in Fig. 1).
  • the inventors of the present invention have surprisingly found that in the long-term operation, despite the net input of the amount of sludge, the amount of sludge in the mixed liquid remains at a relatively stable level without unrestricted growth, which is affected by the sludge.
  • the composition and flow rate of the feed and the effects of other operating conditions, such as in the presence of a sewage feed, are also affected by the flow rate of the sewage feed. Therefore, the sludge treatment method of the present invention is a sludge reduction treatment method. That is, the sludge treatment method of the present invention can digest the sludge in the sludge feed and reduce the sludge.
  • the sludge treatment method of the present invention may be carried out in the case where the sludge feed is continuously added, Long-term stable operation without the need to drain mud, thus eliminating sludge emissions. Furthermore, the inventors of the present invention have surprisingly found that even if the sludge feed has a high content of carbon, nitrogen and phosphorus, and does not discharge any of the first concentrated mixture, the phosphorus content of carbon and nitrogen in the supernatant can be It is kept at a low level, that is, the sludge treatment method of the present invention has a remarkable effect of removing carbon, nitrogen and phosphorus.
  • the inventors of the present invention believe that the sludge treatment method of the present invention can be stably operated for a long period of time without the need for sludge discharge, and the possible reasons are as follows. First, since the amount of sludge discharged is less than the amount of added sludge, the amount of sludge in the mixed liquid should continue to increase. However, in stable operation, the sludge concentration of the mixed liquid is high but does not continue to increase but is high.
  • the biological group in the mixture is in a state of growth and balance, that is, the amount of added sludge ( The amount of sludge including sludge feed and the amount of sludge increased by biological growth in the mixture) and the amount of sludge that died and digested reached a dynamic equilibrium, so there was no net increase in sludge volume.
  • the biological group in the mixture is in a state of growth and balance, that is, the amount of added sludge ( The amount of sludge including sludge feed and the amount of sludge increased by biological growth in the mixture) and the amount of sludge that died and digested reached a dynamic equilibrium, so there was no net increase in sludge volume.
  • the biological treatment methods for sewage due to the proliferation of organisms, no excess sludge is discharged regardless of whether the sludge of the secondary sedimentation tank is returned to the upstream of the process.
  • the aeration tank since only the raw sewage of the sewage is fed without the net input of the sludge, the amount of the discharged sludge is always larger than the amount of the added sludge.
  • the concentration of dissolved organic matter in the effluent of the secondary settling tank must be at a very low level in order to meet the discharge requirements, the aeration tank must use a sufficiently high aeration rate and a sufficiently long aeration time to reduce the concentration of dissolved organic matter in the water. .
  • low organic concentrations generally favor the proliferation of filamentous bacteria leading to sludge bulking.
  • the high aeration rate and long aeration time further increase the possibility of sludge expansion of the mixture containing the higher concentration of sludge. Therefore, in the known various activated sludge processes, the sludge concentration in the aeration tank is usually difficult to reach a high level, that is to say The growth and balance of the biological group cannot be achieved. In addition, due to the resistance of organisms to harsh environments (such as lower nutrient concentrations), known sludge aerobic treatment methods and sludge anaerobic treatment methods usually only dissolve less than 60% of the sludge (ie, cannot The sludge is completely digested, so the process using these methods still requires a certain amount of excess sludge to be discharged.
  • the concentration of the dissolved organic matter in the discharged supernatant can be at a high level without limitation, thereby advantageously limiting the proliferation of the filamentous fungus, P
  • the strip has a lower oxygen demand (e.g., aeration volume), thereby reducing the likelihood of sludge swelling occurring during oxygen treatment, such as aeration.
  • higher levels of dissolved organic matter provide enough nutrients for the organism to form an environment conducive to the metabolism, reproduction and programmed death of the organism, so that the organisms in the sludge are also multiplied in large quantities. Dispel.
  • the sludge treatment method of the present invention can achieve high sludge concentration without sludge swelling.
  • the sludge is relatively long (for example, several months, years or even longer), so that the microorganism having a slower propagation rate and capable of decomposing the refractory substance It can grow normally and enhance the decomposition of sludge.
  • the biodegradable substances and the difficult biodegradable substances (including dead organisms) in the mixed liquid are quickly and effectively digested under the conditions of oxygen treatment and anoxic treatment, so that carbon is contained.
  • a compound such as nitrogen or phosphorus is dissolved as a dissolved organic substance which is discharged as a supernatant or becomes a volatile substance.
  • the sludge in the mixed liquid has excellent sedimentation performance and low oxygen demand (for example, aeration amount) and is capable of degrading various organic substances.
  • the substance (including the dead organism) makes it a water-soluble substance or a gaseous substance, so the mixed liquid can have a relatively high sludge concentration so that the biological group is in a state of growth and balance without sludge expansion, thereby causing the sludge treatment of the present invention.
  • the method is capable of stable operation over a long period of time to reduce or even completely eliminate sludge emissions.
  • the oxygenation treatment of step (2) and the anoxic treatment of step (3) can be carried out in a batch in the same structure or vessel.
  • steps (1) to (4) may be carried out in the same structure or vessel, wherein in step (1), a batch of sludge feed and a previous batch of sludge are fed to obtain a first concentrated mixture (as The first mixed liquid is mixed to obtain a second mixed liquid, and the second mixed liquid is subjected to oxygen treatment in the step (2) to obtain a third mixed liquid, and the third mixed liquid is subjected to anoxic treatment in the step (3) to obtain a first mixed liquid.
  • the supernatant may be discharged through a device capable of discharging the supernatant, such as a drain.
  • the use of renewal methods can save land and construction investment.
  • the oxygenation treatment of step (2) and the anoxic treatment of step (3) may be repeated one or more times before the separation of step (4).
  • the oxygen supply treatment of step (2) and the anoxic treatment of step (3) may be carried out in a semi-continuous or continuous manner in different structures or vessels.
  • steps (1) through (6) may be semi-continuous in different structures (ie, some steps are run in a continuous mode and others are operated in a batch mode) or continuously, where in step (1)
  • the sludge feed is introduced into the first structure intermittently or continuously and mixed with the first mixed liquid to obtain a second mixed liquid, and the second mixed liquid is intermittently or continuously introduced into the second structure to carry out the step (2) intermittently or continuously.
  • the oxygen treatment is performed to obtain a third mixed liquid, and the third mixed liquid is intermittently or continuously introduced into the third structure to intermittently or continuously perform the anoxic treatment of the step (3) to obtain a fourth mixed liquid, and the fourth mixed liquid is separated.
  • the apparatus performs the separation of the step (4) intermittently or continuously to obtain the supernatant and the first concentrated mixture, and the supernatant is discharged intermittently or continuously in the step (5), and at least a part of the first concentrated mixture is intermittently or Continuously introducing the first zone, and optionally discharging the remainder of the first concentrated mixture intermittently or continuously, wherein the amount of sludge of the first concentrated mixture that has not returned to step (1) is less than that of the sludge feed Mud amount.
  • the first, second and third structures may be separate structures of different structures or different areas of the same structure. If the anoxic treatment of step (3) is carried out in a precipitation manner, the separation of step (4) can be carried out simultaneously with step (3) in the same structure (that is, the third structure is also used as a separation device).
  • the supernatant may be discharged through a device capable of discharging the supernatant, such as a drain, and the first concentrated mixture may be introduced into the first structure through, for example, a sludge return pipe.
  • the efficiency of sludge treatment can be advantageously improved in a semi-continuous or continuous manner.
  • each step is performed in a batch or continuous manner is mainly determined based on the flow rate and composition of the sludge feed and the operating conditions of the respective equipment, in order to advantageously optimize and stabilize the operation to obtain an optimum treatment effect.
  • the amount of sludge of the first concentrated mixed liquid which is not returned to the step (1) in the step (5) is smaller than the sludge amount of the sludge feed.
  • substantially all of the first concentrated mixture returns to step (1) as the first mixed liquid in step (5), so that substantially no first concentrated mixed liquid is discharged.
  • the amount of sludge of the first concentrated mixture discharged instantaneously is greater than the amount of sludge of the sludge feed, as long as the remainder of the first concentrated mixture discharged during long-term operation
  • the average amount of the sludge amount is smaller than the average value of the sludge amount of the sludge feed, so that a net input of the sludge amount is present.
  • the amount of sludge of the first concentrated mixture which is not returned to the step (1) in the step (5) is at most the sludge of the sludge feed.
  • One of the following ratios of mud amount for example, about 95°/.
  • the ratio is advantageously about 0%, that is to say that substantially all of the first concentrated mixture of step (5) is returned to step (1) for use as the first mixture. Moreover, the ratio is particularly advantageously less than about 30%, about 25%, about 20%, about 15%, about 10%, about 5%, about 3%, about 1%, especially about 0%, in order to obtain a longer length.
  • the age of the mud Without any theoretical constraints, the longer sludge age allows the slower reproduction of microorganisms capable of decomposing refractory substances and enhances the decomposition of sludge.
  • the ratio is less than about 30%, about 25%, about 20%, about 15%, about 10%, about 5%, about 3%, about 1%, especially about 0%, which is also beneficial to improve the first The sludge concentration of the second, third and fourth mixture.
  • the flow rate of the first concentrated mixture may be 10% to 1000% of the sludge feed flow rate (in the case of the presence of the sewage feed, the total flow rate of the sewage feed and the sludge feed), : 3 ⁇ 4 port 10 ⁇ 20%, 20 - 30%, 30 - 40%, 40 - 60%, 60 - 80%, 80 - 100%, 100 - 150%, 150 - 200%, 200 - 400%, 400 - 600%, 600 ⁇ 800%, 800 ⁇ 1000%.
  • This ratio is also referred to as the reflux ratio of the first concentrated mixture.
  • a suitable reflux ratio advantageously allows the oxygenation treatment time and/or the anoxic treatment time to be a desired value.
  • a suitable reflux ratio may be small, such as 10-20%, 20-30%, 30-40%, 40-60%, to advantageously save power consumption.
  • a suitable reflux ratio can be large, for example 60-80%, 80-100%, 100-150%, 150-200%, 200-400%, 400-600%, 600-800% , 800 - 1000% for shorter oxygen treatment time and / or anoxic treatment time.
  • a preferred reflux ratio is 50 to 150%.
  • the oxygenation treatment time of step (2) is less than the time during which the aerobic microorganisms become dominant species (eg, less than a generation period of aerobic microorganisms, such as less than about 5 hours), And the hypoxia treatment time of step (3) is small The time during which the anaerobic microorganisms become dominant groups (e.g., less than the generational period of anaerobic microorganisms, e.g., less than about 40 hours), thereby making the facultative microorganisms a dominant group.
  • the oxygenation treatment time of step (2) may be less than, for example, 5 hours to prevent aerobic microorganisms from becoming a dominant group, and may also be greater than, for example, 0.1 hours to allow for facultative microorganisms. Sufficient proliferation is obtained and the proliferation of anaerobic microorganisms is sufficiently inhibited, thereby advantageously making the facultative microorganisms a dominant group.
  • the oxygen treatment time may be 0.1 to 4 hours, preferably 0.5 to 2 hours, more preferably 0.5.
  • the oxygenation treatment of the step (2) is carried out in a batch or continuous manner, for example, by intermittent aeration or continuous aeration.
  • the anoxic treatment time of the step (3) may be less than, for example, 6 hours.
  • anaerobic microorganisms In order to prevent anaerobic microorganisms from becoming a dominant group and to reduce the size of the device, it can also be greater than, for example, 0.1 hours to allow sufficient proliferation of facultative microorganisms and sufficient inhibition of the proliferation of aerobic microorganisms, thereby making facultative microorganisms a dominant group.
  • the anoxic treatment time may be 0.8 to 6 hours, preferably 1 to 4 hours, more preferably 1 to 3 hours, for example, selected from 0.8 to 1 hour, 1 ⁇ 1.2 hours, 1.2 ⁇ 1.4 hours, 1.4 ⁇ 1.6 hours, 1.6 ⁇ 1.8 hours, 1.8 ⁇ 2 hours, 2 ⁇ 2.5 hours, 2.5 ⁇ 3 hours, 3 ⁇ 3.5 hours, 3.5 ⁇ 4 hours, 4 ⁇ 4.5 hours, 4.5 to 5 hours, 5 to 5.5 hours, and 5.5 to 6 hours.
  • the anoxic treatment of step (3) can be carried out in a precipitation mode.
  • the anoxic treatment time is advantageously greater than 0.5 hours, particularly advantageously greater than 1 hour to allow the precipitation to be fully completed, while advantageously less than 4 hours to reduce the size of the device.
  • the ratio of oxygen treatment time to anoxic treatment time is 1: 0.5-1: 6, preferably 1: 1 to 1: 3, more preferably 1: 1.5 to 1: 2, most preferably 1: 2
  • the ratio of oxygen treatment time to anoxic treatment time is 1: 0.5-1: 6, preferably 1: 1 to 1: 3, more preferably 1: 1.5 to 1: 2, most preferably 1: 2
  • the ratio of oxygen treatment time to anoxic treatment time is 1: 0.5-1: 6, preferably 1: 1 to 1: 3, more preferably 1: 1.5 to 1: 2, most preferably 1: 2
  • the dissolved oxygen concentration of the third mixture of step (2) may be such that the sludge undergoes sufficient oxygen treatment to advantageously make the facultative microorganisms a dominant group and promote digestion and hydrolysis of the sludge. It is 0.1 - 4 mg / L, preferably 1.5 - 3 mg / L, more preferably 2 ⁇ 3 mg / L, for example, selected from 0.1 ⁇ 0.3 mg / L, 0.3 ⁇ 0.5 mg / L, 0.5 ⁇ 0.7 mg / L, 0.7 ⁇ 0.9 mg /L, 0.9 ⁇ 1.
  • the sludge feed is subjected to oxygen treatment prior to step (1). Without being bound by any theory, it is believed that this is more advantageous for making facultative microorganisms a dominant group.
  • the sludge feed is from the secondary settling tank of the activated sludge process, since the organic matter content in the sludge feed is relatively low, the organisms in the sludge feed will mainly undergo endogenous digestion during the oxygen treatment. Small amount of sludge.
  • such oxygen supply treatment can also reduce the oxygen demand (for example, aeration amount) of the oxygen supply treatment in the step (2), and further reduce the possibility of sludge expansion in the first zone.
  • the sludge feed can be oxygen treated for 0.1 to 0.5 hours, 0.5 to 1 hour, 1 to 1.5 hours, 1.5 to 2 hours, and 2 to
  • the dissolved oxygen concentration of the sludge feed after treatment is selected from 0.1 ⁇ 0.5mg/L, 0.5-lmg/L, l ⁇ 1.5mg/L, 1.5 ⁇ 2mg/L, 2 ⁇ 2.5mg/L, 2.5 ⁇ 3mg/L, 3 ⁇
  • such oxygenation is carried out in a batch or continuous manner, such as in batch or continuous aeration.
  • a step can be made between steps (2) and (3) The three mixed solutions were subjected to deoxidation treatment.
  • the degassing tank can be used for deoxidation treatment, in which the oxygen-containing gas bubbles in the mixture float, so that the dissolved oxygen content of the mixture is no longer increased, and is ready for subsequent anoxic treatment.
  • the deoxidation treatment time may be 0.1 to 0.2 hours, 0.2 to 0.3 hours, 0.3 to 0.5 hours, 0.5 to 0.8 hours, and 0.8 to 1 hour, after the treatment.
  • the dissolved oxygen concentration of the three liquid mixture is selected from less than 0.1 mg/L, less than 0.05 mg/L, and about 0 mg/L.
  • the oxygen treatment time: deoxidation treatment time: the ratio of the anoxic treatment time may be 1: (0.1 ⁇ 0.5): (0.5 ⁇ 4), preferably 1: (0.1 - 0.3): (1 ⁇ 3 More preferably, it is 1: (0.1 to 0.2): (1.5 to 2.5), for example, preferably 1:0.1:1 or 1:0.15:2.
  • the sludge feed may be one or more sludge feeds, preferably fresh sludge feed, and each sludge feed may be the same or different.
  • the sludge feed has a moisture content of, for example, at least 40%, at least 60%, at least 80%, at least 90%, at least 95%, at least 98% or higher, preferably 97% or higher.
  • the sludge feed may also be a low water content sludge such as dry sludge and a mixture thereof with water, sewage, organic nutrients or other sludge feed.
  • step (1) further comprises introducing a sewage feed to the first mixture.
  • the flow ratio of the sludge feed to the sewage feed in step (1) may be selected from 1: 100 ⁇ 1: 50, 1: 50 - 1:20, 1: 20-1: 10, 1: 10-1: 5, 1: 5 ⁇ 1: 2, 1:2 ⁇ 1: 1.5, 1: 1.5 ⁇ 1: 1, 1: 1 ⁇ 1: 0.8, 1: 0.8 ⁇ 1: 0.5, 1: 0.5 ⁇ 1: 0.2, 1: 0.2-1: 0.1, 1: 0.1 ⁇ 1: 0.05, 1: 0.05 - 1: 0.02 and 1: 0.02 - 1: 0.01.
  • the sludge volume index (SVI of the second mixture in step (2) is expressed by SVI 3Q , which means that 1 gram of activated sludge suspended solids is occupied after the mixture is allowed to stand in a 1000 mL measuring cylinder for 30 minutes.
  • the volume, in mL/g should be less than the minimum amount of sludge expansion that occurs during oxygen treatment.
  • the sludge volume index such as SVI 3Q may be less than 300 ml/g, less than 200 ml/g, less than 150 ml/g, less than 100 ml/g, or less than 50 ml/g.
  • the sludge concentration of the second mixture in step (1) may be the concentration at which the organism is in a growth and equilibrium state. According to some embodiments, the sludge concentration of the second mixture in the step (1) is at least about 2500 ⁇ 3000mg / L, 3000 - 3500mg / L, 3500 - 4000mg / L, 4000 - 4500mg / L, 4500 ⁇ 5000mg / L, 5000 ⁇ 5500mg / L, 5500 - 6000mg / L, 6000 - 6500mg / L, 6500 - 7000mg / L, 7000 - 7500mg / L, 7500 - 8000mg / L, 8000 ⁇ 8500mg / L, 8500 - 9000mg / L , 9000 - 9500mg / L , 9500 - l OOOOmg / L , 10000 - 12000mg /
  • the sludge treatment method described above further includes a recovery step of recovering the gaseous phosphorus-containing compound.
  • the gaseous phosphorus-containing compound includes the phosphine produced in the step (2) and/or the step (3), and the like.
  • the recovery step can be carried out simultaneously with step (2) and/or step (3) to recover the gaseous phosphorus-containing compound produced in step (2) and/or step (3).
  • the recovery step can be any suitable method for recovering the gaseous mixture, for example, a method capable of converting a gaseous phosphorus-containing material into a liquid or solid material, for example, by freezing or by being capable of physically and/or chemically adsorbing a gaseous state.
  • the absorbent may be a substance capable of dissolving the gaseous phosphorus-containing compound or a substance capable of reacting with the gaseous phosphorus-containing compound.
  • substances capable of absorbing phosphine gas include, for example, a potassium permanganate solution, a mixed solution of potassium permanganate and caustic, a ferric chloride solution, a sodium hypobromite solution, and the like.
  • phosphine it can also be adsorbed by an adsorbent such as activated carbon, or oxidized to low toxicity by ozone or burned under strict control.
  • the present invention also provides a biological treatment method for sewage, including
  • step (7) discharging the purified effluent; and optionally returning at least a portion of the second concentrated mixture of the step (6) to the step (1) for use as a sludge feed; wherein the sewage feed is introduced into the step (1) and the sludge The feed and the first mixture are mixed to obtain a second mixture and/or introduced into step (6) for biological treatment with the supernatant of the at least partial step (5).
  • steps (1) to (5) constitute the sludge treatment method of the present invention described above. Therefore, the sewage biological treatment method of the present invention is actually the application of the aforementioned sludge treatment method of the present invention in sewage biological treatment.
  • the sewage feed is introduced into step (1), whereby the sludge treatment method of the present invention formed by steps (1) to (5) can be placed as a primary biological treatment step as a secondary biological treatment.
  • the sewage feed is first treated by the primary biological treatment to obtain a supernatant, and then the supernatant is treated as a feed to obtain purified water by secondary biological treatment.
  • the purified effluent is environmentally safe and meets normal emission standards.
  • the excess sludge produced in the secondary biological treatment (ie: the second concentrated mixture) can be digested as a sludge feed in the primary biological treatment, thereby advantageously reducing or even avoiding the sludge in the biological treatment of the entire sewage. emission.
  • the sewage feed is introduced by step (6), whereby the sludge treatment method of the present invention formed by steps (1) to (5) is placed in the step (6) from the viewpoint of sewage feed (6)
  • the sewage used mainly for the digestion step (6) The excess sludge produced during the treatment (ie: the second concentrated mixture).
  • the supernatant of step (5) can also be used as a sewage feed introduction step (6).
  • the sewage feed can also be introduced simultaneously to steps (1) and (6).
  • 1 to 10%, 10-20%, 20 - 30%, 30 - 40%, 40 - 50%, 50 - 60%, 60 of the second concentrated mixture of step (6) may be - 70%, 70 - 80%, 80 - 85%, 85 - 90%, 90 ⁇ 95% or 95 - 100%, particularly advantageously substantially 100% used as sludge feed in step (1), so that The second concentrated mixture is advantageously partially or even substantially completely digested by the sludge treatment method described above, so that the sludge discharged from the entire sewage biological treatment method is reduced or even substantially completely eliminated.
  • the second concentrated mixture from step (6) comprises from 1 to 10%, from 10 to 20%, from 20 to 30%, from 30 to 40% of the sludge feed to step (1). 40 - 50%, 50 - 60%, 60-70%, 70 - 80%, 80 - 85%, 85 - 90%, 90 ⁇ 95% or 95 ⁇ 100%.
  • the aforementioned sludge treatment method of the present invention as a first biological treatment step can be combined with any sewage biological treatment method suitable as a second biological treatment step.
  • the sewage biological treatment method of the present invention significantly reduces or even completely eliminates the discharge of excess sludge as compared with when the sewage biological treatment method as the second biological treatment step is used alone, and at the same time, a good treatment effect is obtained.
  • the ratio of the sewage feed introduced into the step (1) to the sewage feed in the introduction step (6) may be Arbitrarily selected as needed to advantageously balance the load on the system and optimize the effectiveness of the entire wastewater biological treatment process. In some embodiments, it is particularly advantageous to introduce the sewage feed in step (1).
  • the mixture of the step (1) has a high sludge concentration, it can advantageously resist the impact load of the sewage feed water and pollutants, and the high concentration sludge can also be added.
  • the fast reaction speed enables the pollutants in the sewage feed to be efficiently and quickly digested under the action of high-concentration sludge, and some refractory substances can be gradually degraded into easily degradable substances in the first biological treatment step, thereby contributing to the improvement of sewage treatment effect. Reduce the volume of the entire sewage treatment plant, save land, reduce equipment investment and operating costs.
  • the present invention is particularly suitable for COD values below 500 mg/L, below 350 mg/L, below 300 mg/L, below 250 mg/L, below 200 mg/L, below 150 mg/L or below 100 mg/L.
  • the sewage is treated biologically by sewage.
  • the sewage biological treatment method according to the present invention can particularly advantageously treat any sewage biological treatment method for discharging excess sludge (for example, various conventional aerobic sewage biological treatment methods and anaerobic sewage biological treatment methods) as the sewage of the step (6). Biological treatment steps.
  • the biological treatment step of the step (6) may be according to the Wuhrmann process, the A/0 process, the Bardenpho process, the Phoredox process, the A 2 /0 process, the inverted A70 process, the UCT process, the MUCT process, the VIP process.
  • FIG. 3 is a schematic view showing a process flow according to some embodiments of the sewage biological treatment method of the present invention, wherein "influent water” represents sewage feed, and “sludge digestion device” represents a sludge treatment method according to the present invention.
  • "Conventional sewage treatment plant” means any suitable sewage treatment device capable of carrying out the biological biological treatment step of step (6)
  • water outlet represents purified water
  • "excess sludge reflux” represents sludge used as step (1) A second concentrated mixture of the feed.
  • Figure 4 is a schematic view showing the process flow of still another embodiment of the sewage biological treatment method according to the present invention, wherein each term has the same meaning as the term in Figure 3, and "sludge” represents sludge feed from another source.
  • Figure 5 is a flow chart of a conventional oxidation ditch sewage treatment process. The process can be used as the sewage biological treatment step of the step (6) of the sewage biological treatment method of the present invention, wherein the "influent water” can be the supernatant of the step (5) and/or the influent water, and the “water outlet” means the purified water. "Excess sludge” can be used as the sludge feed for step (1).
  • Figure 6 is a flow chart of a conventional SBR sewage treatment process.
  • SBR Sequenc ing Batch Reactor Act ivaten Sludge Process
  • FIG. 7 is a flow chart of a conventional AB wastewater treatment process. This process can be used as the sewage biological treatment step of the step (6) of the sewage biological treatment method of the present invention, wherein each term has the same meaning as in Fig. 5.
  • Figure 8 is a flow chart of the A/0 process sewage treatment process. The process can be used as the step (6) of the sewage biological treatment method of the present invention, and the meaning of each term is the same as FIG.
  • Figure 9 is a flow chart of the A 2 0 sewage treatment process.
  • FIG. 10 is a flow chart of the MSBR wastewater treatment process. This process can be used as the sewage biological treatment step of the step (6) of the sewage biological treatment method of the present invention, wherein each term has the same meaning as in Fig. 5.
  • the present invention provides a sludge treatment apparatus for the sludge treatment method described above, comprising: a first apparatus capable of mixing a sludge feed with a first mixed liquid to obtain a second mixed liquid; a second mixture is subjected to a second device for oxygen treatment to obtain a third mixed liquid; a third device capable of performing anoxic treatment on the third mixed liquid to obtain a fourth mixed liquid; capable of separating the fourth mixed liquid to obtain a supernatant and a fourth apparatus for first concentrating the mixed liquid; a fifth device capable of discharging the supernatant; a sludge capable of introducing at least a portion of the first concentrated mixed liquid into the first device and causing the first concentrated mixed liquid not returned to the first device A sixth device having a smaller amount of sludge than the sludge feed.
  • the first device can be any suitable structure or container capable of mixing the sludge feed and mixture.
  • the second device may be the same device as the first device, or a different device, such as a device that is in water communication with the first device, capable of contacting an oxygen-containing gas, such as air, with the mixed liquid, such as aeration with an aeration device. Pool.
  • the third device may be the same device as the first device and the second device, which realizes anoxic treatment (running in a batch mode), for example, when aeration is stopped; or the third device and the second device may be different devices
  • a structure or vessel e.g., a sedimentation tank
  • capable of substantially avoiding contact of the oxygen-containing gas with the mixture operating in a continuous or semi-continuous manner in communication with the second apparatus.
  • the fourth device may be the same device as the first device, the second device, and the third device, or only the same device as the third device, for example, stopping aeration and/or agitation Separating the supernatant from the first concentrated mixture by, for example, precipitating (running in a batch mode); or the fourth device may be independently connected to the third device to separate the mixed liquid to obtain a supernatant and A device for concentrating the mixture, such as a separate sedimentation tank, a centrifugal separation device or a filtration separation device (running in a continuous or semi-continuous manner).
  • the fifth device may be any suitable device capable of removing the supernatant from the fourth device, such as a drain, a drain, a decanter, and the like.
  • the sixth device may be the same device as the first device, the second device, the third device, and the fourth device (operating in a batch mode); or being capable of independently transporting at least a portion of the first concentrated mixture from the fourth device to
  • the apparatus of the first apparatus such as a return line (having a continuous or semi-continuous operation) optionally having a transfer pump and a control valve in communication with the first apparatus and the fourth apparatus.
  • the sixth apparatus also optionally has means for discharging the remainder of the first concentrated mixture, such as a drain or drain having a control valve to control fouling of the first concentrated mixture that has not returned to the first apparatus
  • the amount of mud is less than the amount of sludge fed by the sludge.
  • the second device can be an aeration tank, an oxidation ditch, a fluidized bed, a moving bed or membrane facility, etc., preferably an aeration tank, more preferably a push-flow rectangular aeration tank.
  • the third device is preferably a sedimentation tank, more preferably a push-flow rectangular sedimentation tank.
  • the sludge treatment apparatus further includes an apparatus in communication with the first apparatus capable of oxygenating the sludge feed, such as a sludge pre-aeration apparatus.
  • the sludge treatment apparatus further includes a deoxidation apparatus capable of performing a deoxidation treatment, which is disposed between the second apparatus and the third apparatus and is respectively in fluid communication with it, for example Degassing tank.
  • a deoxidation apparatus capable of performing a deoxidation treatment, which is disposed between the second apparatus and the third apparatus and is respectively in fluid communication with it, for example Degassing tank.
  • the volume of the second device can be determined based on the flow rate of the second mixture in the second device, using the desired oxygen treatment time as the residence time of the second mixture.
  • the third apparatus is designed such that the anoxic treatment time can be selected from the group consisting of 0.8 to 1 hour, 1 to 1.2 hours, 1.2 to 1.4 hours, 1.4 to 1.6 hours, and 1.6 to 1.8. Hour, 1.8 ⁇ 2 hours, 2 ⁇ 2.5 hours, 2.5 ⁇ 3 hours, 3 ⁇ 3.5 hours, 3.5 ⁇ 4 hours, 4 ⁇ 4.5 hours, 4.5 ⁇ 5 hours, 5 ⁇ 5.5 hours and 5.5 ⁇ 6 hours, preferably 3 ⁇ 4 hours.
  • the volume of the second device can be determined based on the flow rate of the third mixture in the third device, using the desired anoxic treatment time as the residence time of the third mixture.
  • the second device and the third device are designed such that the ratio of the oxygen treatment time to the anoxic treatment time can be selected from 1:0.5 to 1:1, 1:1-1:1.5, 1:1.5-1 : 2, 1:2-1:2.5, 1: 2.5-1: 3, 1: 3-1: 3.6, 1:3.6-1:4, 1:4-1:4.5, 1:4.5 ⁇ 1:5 , 1: 5 ⁇ 1: 5.5 and 1: 5.5 ⁇ 1: 6, preferably 1: 1 ⁇ 1: 3.
  • the volume ratio of the second device to the third device can be determined based on the ratio of the desired oxygen treatment time to the anoxic treatment time.
  • the sludge treatment apparatus further includes a recovery apparatus capable of collecting and recovering gaseous phosphorus-containing compounds.
  • the recycling device can be in communication with the second device and the I or third device to recover the gaseous phosphorus-containing compound produced in the second device and the I or third device.
  • the recovery device can be a refrigeration device, a combustion device, or an adsorption column with a solid or liquid adsorbent, absorbing Cans, etc.
  • the present invention also provides a sewage biological treatment apparatus for the above sewage biological treatment method, comprising: a first apparatus capable of mixing a sludge feed with a first mixed liquid to obtain a second mixed liquid; a second mixture is subjected to an oxygen treatment to obtain a second mixture; a third device capable of performing anoxic treatment to obtain a fourth mixture; and the fourth mixture can be separated to obtain a supernatant and a fourth apparatus for first concentrating the mixture; a fifth apparatus capable of discharging the supernatant; a sludge capable of introducing at least a portion of the first concentrated mixture into the first apparatus and returning the first concentrated mixture not returned to the first apparatus
  • the sixth device capable of measuring the amount of sludge smaller than the sludge feed; capable of performing biological treatment of the supernatant discharged from at least a portion of the fifth device to obtain a second concentrated mixed liquid and a seventh device for purifying the discharged water; capable of discharging the purified water
  • the seventh apparatus is capable of being according to a Wuhrmann process, an A/0 process, a Bardenpho process, a Phoredox process, an A2/0 process, an inverted A2/0 process, a UCT process, a MUCT process, Wastewater biological treatment equipment for VIP process, 0WASA process, JHB process, TNCU process, Dephanox process, BCFS process, MSBR process, SBR process, AB process, oxidation ditch process, biofilm process, fluidized bed process or combination thereof.
  • the present invention also provides a sludge reduction sewage treatment system comprising: a conventional sewage treatment device and a sludge digestion device connected to the water inlet, the remaining sludge pipe of the conventional sewage treatment device is connected to Sludge digestion device.
  • the sludge digestion device comprises a high-concentration sludge reaction device.
  • the sludge digestion device includes an anaerobic sedimentation device, a water outlet of the high-concentration sludge reaction device and an inlet of the anaerobic sedimentation device.
  • the anaerobic precipitation device comprises a first sludge return pipe, and the first sludge return pipe is connected to the high concentration sludge reaction device.
  • the excess sludge return pipe returns all of the excess sludge to the sludge digestion device.
  • the sludge digestion device includes an anaerobic sedimentation device, a water outlet of the high-concentration sludge reaction device and an inlet of the anaerobic sedimentation device.
  • the anaerobic precipitation device comprises a first sludge return pipe, the first sludge return pipe is connected to a high-concentration sludge reaction device, and the excess sludge return pipe returns all remaining sludge to the sludge digestion device .
  • the sludge concentration of the high-concentration sludge reaction device is 4000 mg/L to 20000 mg/L; for example, 6000 mg/L, 8000 mg/L, 10000 mg /L, 12000 mg/L, 14000 mg/L, 15000 mg/L, 16000 mg/L or 18000 mg/L.
  • the hydraulic retention time of the high-concentration sludge reaction device is 1. 5h ⁇ 3. Oh, and the dissolved oxygen at the outlet is lmg/L ⁇ 1. 5mg/L a. 5mg/L ⁇ 2mg / L, 2mg / L ⁇ 2. 5mg / L or 2. 5mg / L ⁇ 3mg / L.
  • the sludge returning pipe of the present invention is refluxed to a high-concentration sludge reaction device.
  • a deoxidation device is disposed between the high-concentration sludge reaction device and the anaerobic precipitation device.
  • Some embodiments of the sludge-reducing sewage treatment system according to the present invention further include an excess sludge aeration tank, the remaining sludge tube of the conventional sewage treatment device being first connected to the remaining sludge aeration tank, and the excess sludge The aeration tank is then connected to a high concentration sludge reaction unit.
  • a pre-treatment device is provided at the water inlet of the sludge digestion device, the pre-treatment device being at least one level of the book.
  • the pretreatment device is a two-stage grid.
  • the conventional sewage treatment apparatus includes an anaerobic reaction device, an aerobic reaction device, and a sedimentation device connected in series, and the sedimentation device includes a second sludge reflux The tube and the remaining sludge tube are connected to the anaerobic reaction device.
  • the aerobic reaction device is an aerobic or oxidation ditch.
  • the conventional sewage treatment apparatus includes an anaerobic reaction device, an anoxic reaction device, an aerobic reaction device, and a sedimentation device, which are sequentially connected in series, and the precipitation device includes The third sludge return pipe and the remaining sludge pipe are connected to the anoxic reaction device.
  • the precipitation device is an SBR pool or a sedimentation tank.
  • the SBR pool has a sludge concentration of 2000 mg/L to 4000 mg/L and a dissolved oxygen content of 2 mg/L to 4 mg/L. 5h ⁇
  • the constant water level drainage time is 1. 5h ⁇ 2. 5h.
  • the second sludge return pipe is connected to the anaerobic reactor, and the sludge of 0.5 Q - 1Q is returned to the anaerobic reactor.
  • the third sludge return pipe is connected to the anaerobic reactor, and the sludge of 0.5 Q - 1Q is returned to the anaerobic reactor.
  • the present invention also provides a sludge reduction sewage treatment method, comprising: step a) performing a sludge digestion reaction of a mixture of sewage and sludge; and step b) dissolving the sludge The treated sewage is subjected to conventional sewage treatment; step c) discharging the treated sewage, so that the excess sludge generated by the conventional sewage treatment is refluxed to participate in the sludge digestion reaction.
  • the sludge digestion reaction in the step a) comprises performing a high-concentration sludge reaction on a mixture of sewage and sludge.
  • the sludge digestion reaction in the step a) comprises anaerobic precipitation of a mixture of sewage and sludge after the reaction of the high-concentration sludge.
  • the anaerobic precipitation of sludge backflow participates in the high concentration sludge reaction.
  • the excess sludge reflux is total reflux.
  • the steps The sludge digestion reaction in step a) comprises anaerobic precipitation of a mixture of sewage and sludge after the reaction of the high-concentration sludge, and the sludge reflux by the anaerobic precipitation participates in the high-concentration sludge reaction, and the excess sludge is refluxed. For all reflux.
  • the sludge-reducing sewage treatment method of the present invention when the high-concentration sludge is reacted, the sludge concentration is 4000 mg/L to 20000 mg/L; for example, 6000 mg/L, 8000 mg/L, 10000 mg.
  • the hydraulic retention time of the high-concentration sludge reaction is 1. 5h ⁇ 3. Oh, and the dissolved oxygen at the outlet is 1 mg/L ⁇ 1. 5 mg, according to some embodiments of the sludge-reduced sewage treatment method of the present invention.
  • the Reflux ratio of the anaerobic sludge is 0. 4Q - 0.
  • the mixture of the sewage and the sludge after the high-concentration sludge reaction is first subjected to deoxidation and then subjected to anaerobic precipitation.
  • the excess sludge is first subjected to sludge aeration and then subjected to a high-concentration sludge reaction. 2mg/L - 0. 9mg/L ⁇
  • the dissolved oxygen content of the sludge aeration is 0. 2mg / L - 0. 9mg / L.
  • the sewage is pretreated to remove impurities before the sludge digestion reaction.
  • the conventional sewage treatment in the step b) includes an anaerobic reaction, an aerobic reaction and precipitation, and the sewage after the aerobic reaction is discharged after being precipitated.
  • the resulting sludge backflow participates in the anaerobic reaction.
  • the conventional sewage treatment in the step b) includes an anaerobic reaction, an anoxic reaction, an aerobic reaction, and precipitation, and the sewage after the aerobic reaction passes through After the sedimentation, the sludge is returned to participate in the anaerobic reaction. 5Q ⁇ 1Q ⁇ The flow rate of the anaerobic reaction is 0. 5Q ⁇ 1Q.
  • the precipitation is carried out using an SBR process.
  • the SBR process employs a sludge concentration of 2000 mg/L to 4000 mg/L and a dissolved oxygen content of 2 mg/L to 4 mg/L.
  • the sluice time is 1. 5h ⁇ 2. 5h.
  • the present invention provides a sludge-reducing sewage treatment system, comprising: a high-concentration sludge reaction device, an anaerobic sedimentation device, and a conventional sewage treatment device, which are sequentially connected in series, the anaerobic
  • the sludge return pipe of the sedimentation device is connected to a high-concentration sludge reaction device, and the remaining sludge pipe of the conventional sewage treatment device is connected to the high-concentration sludge reaction device.
  • the sludge concentration of the high-concentration sludge reaction device is 4000 mg/L to 20000 mg/L; for example, at least 6000 mg/L, at least 8000 mg/L, at least 10000 mg/ L, at least 12000 mg/L, at least 14000 mg/L, at least 15000 mg/L, at least 16000 mg/L or at least 18000 mg/L.
  • the sewage biological treatment device of the present invention may be a device as shown in Figures 11, 12 or 13, wherein the sludge digestion device comprises a high concentration sludge reaction tank, a deoxidation tank and an anaerobic sediment in series. Pool.
  • a pretreatment device is preferably arranged.
  • the pretreatment device is at least a first-stage grid.
  • the grid is the first treatment facility of the sewage treatment plant.
  • a two-stage grid can be set, first through the first-stage grid. The larger suspended solids in the sewage are removed, and then the sewage is further removed by the second-stage grid to remove the smaller suspended matter.
  • the clearance of the grating of the first-stage grating is greater than the clearance of the grating of the second-stage grating, such as:
  • the first level grille is a coarse grille
  • the grid strip is 20 feet apart
  • the mounting angle is 60 degrees
  • the second level grille is a fine grille
  • the grid strip is 6 mm apart
  • the mounting angle is 60 degrees.
  • the high-concentration sludge reaction device is specifically a high-concentration sludge reaction tank, and the pre-treated sewage, the sludge returned by the anaerobic sedimentation device, and the excess sludge refluxed by the sedimentation device at the end of the system in the high-concentration sludge reaction tank Aeration mixing is carried out using a push-flow rectangular pool type.
  • An excess sludge aeration tank is disposed between the sedimentation device and the high-concentration sludge reaction device, and the remaining sludge aeration tank is connected to the sedimentation device and the high-concentration sludge reaction device through the remaining sludge pipe, and the residual sewage is returned.
  • the mud flows into the excess sludge aeration tank, and the sludge returned by the sewage and the anaerobic sedimentation device directly flows into the high-concentration sludge reaction tank, and then the excess sludge after the aeration flows into the high-concentration sludge reaction tank and the sewage and sewage.
  • the mud mixture is thoroughly mixed.
  • the high-concentration sludge reaction tank operates at a higher sludge concentration, has a short hydraulic retention time, operates in a facultative and aerobic manner, and sludge exists between the high-concentration sludge reaction tank and the subsequent anaerobic sedimentation unit.
  • the sludge from the anaerobic precipitation device is returned to the high concentration sludge reaction tank in the present invention. Since the water quality and quantity of sewage from various time periods are uneven and fluctuating, the high-concentration sludge reaction tank can also play a buffering role to avoid the impact of impact load on biochemical treatment.
  • the anaerobic sedimentation device is specifically an anaerobic sedimentation tank, and the sludge in the anaerobic sedimentation tank is returned to the high-concentration sludge reaction tank to participate in the reaction together with the sewage and the surplus sludge, and the sludge circulation can be realized by using the non-blocking sludge pump.
  • the high-concentration sludge reaction device and the anaerobic precipitation device further comprise a deoxidation device, and the mixture of sewage and sludge is deoxidized and then enters the anaerobic precipitation.
  • the pool to avoid the introduction of dissolved oxygen into the anaerobic sedimentation tank, affects the anaerobic reaction.
  • a conventional sewage treatment apparatus includes an anaerobic reaction apparatus, an aerobic reaction apparatus, and a sedimentation apparatus which are sequentially connected in series.
  • the anaerobic tank is preferably a push-flow type, and a baffle plate is arranged in the tank.
  • the sludge from the sedimentation device at the end of the system can be returned to the anaerobic tank to be mixed with the sewage.
  • the aerobic reaction device is an aerobic tank, and may also be other conventional aerobic reaction devices such as oxidation ditch, which are connected in series after the anaerobic tank.
  • Aeration devices are installed in the aerobic tank, such as a three-lobe Roots blower and a He280-type power-diffusion rotary mixing aeration device.
  • the sedimentation device has a sedimentation function, and the sedimentation device is provided with a sludge return pipe and an excess sludge pipe, and may be a SBR (Sequencing Batch Reactor Act ivaten Sludge Process) pool or a sedimentation tank.
  • SBR Sequencing Batch Reactor Act ivaten Sludge Process
  • SBR is a sequential 4 ratio activated sludge process.
  • the water in the aerobic pool is close to the bottom of the tank and enters the SBR pool.
  • the sludge layer can be filtered and intercepted.
  • the role of P is lower than the content of suspended solids in the effluent, so that the effluent quality is better than that of the ordinary secondary settling tank.
  • the invention also adopts air enthalpy to control the effluent to prevent the suspended matter during aeration from entering the effluent enthalpy, thereby effectively controlling the water suspension.
  • the sludge return line is connected between the SBR pool and the anaerobic tank, and the anaerobic tank, the aerobic tank and the SBR pool form an OSA (Oxic-Sett ing- Anaerobic) process, that is, an aerobic-precipitation-anaerobic method.
  • OSA Oxic-Sett ing- Anaerobic
  • an anaerobic section is set up to allow microorganisms to alternately enter the aerobic and anaerobic environment.
  • the ATP obtained by the bacteria in the aerobic phase cannot be immediately used to synthesize new cells, but in the anaerobic section as a maintenance cell.
  • the energy of life activities is consumed, and microbial decomposition and anabolism are relatively separated, rather than being tightly coupled under normal conditions, thereby achieving the effect of sludge reduction.
  • the 0SA process can reduce the amount of sludge generated, improve the sedimentation performance of the sludge, and increase the ability to remove ammonia nitrogen.
  • the remaining sludge pipe is connected between the SBR pool and the high-concentration sludge reaction tank, and the remaining The sludge is not discharged, but is returned to the high-concentration sludge reaction tank at the front end.
  • the SBR pool For the SBR pool constant water level operation and continuous drainage, the SBR pool is set to run in parallel.
  • the sludge digestion reaction comprises a mixture of sewage and sludge for high-concentration sludge reaction, the hydraulic retention time of the high-concentration sludge reaction is 1. 5h ⁇ 3. Oh, for example 2h or 2.
  • the outlet dissolved oxygen Lmg/L ⁇ 1. 5mg / L, 1. 5mg / L ⁇ 2mg / L, 2mg / L - 2. 5mg / L or 2. 5mg / L ⁇ 3mg / L, sludge concentration of 4000mg / L ⁇ 20000mg /L, may specifically be at least 4000 mg / L, at least 6000 mg / L, at least 8000 mg / L, at least 10000 mg / L, at least 12000 mg / L, at least 14000 mg / L, at least 15000 mg / L, at least 16000 mg / L, at least 18000 mg / L Or at least 20,000 mg / L.
  • the sludge digestion reaction preferably further comprises anaerobic precipitation, anaerobic precipitation of the mixture of sewage and sludge after the reaction of the high-concentration sludge, and the anaerobic precipitation of the sludge backflow participates in the high-concentration sludge reaction, and the reflux ratio is 0. 4Q ⁇ 0. 7Q, such as 0. 5 Q or 0. 6Q.
  • the sludge mixture and the pre-treated sewage are subjected to sludge digestion reaction, specifically: first entering the high-concentration sludge reaction tank for aeration, and simultaneously returning the sewage with the excess sludge returned from the SBR tank and the anaerobic sedimentation tank The sludge is thoroughly mixed.
  • the excess sludge is first aerated in the excess sludge aeration tank before entering the high concentration sludge reaction tank.
  • the excess sludge can also enter the high-concentration sludge reaction tank without aeration.
  • the sludge returned from the anaerobic sedimentation tank directly enters the high-concentration sludge reaction tank.
  • the excess sludge is preferably all refluxed to the high-concentration sludge reaction tank, which achieves a zero-emission effect.
  • the dissolved oxygen content in the excess sludge aeration tank is 0. 2mg / L - 0. 9mg / L, ⁇ 0. 3mg / L, 0. 4mg / L, 0.
  • the hydraulic retention time in the high-concentration sludge reaction tank is 1. 5h ⁇ 3. Oh, such as 2h or 2.
  • the sludge concentration is 4000mg / L ⁇ 20000 mg / L, specifically at least 4000 mg / L, at least 6000 mg / L, at least 8000 mg / L, at least 10000 mg / L, at least 12000 mg / L, at least 14000 mg / L, at least 15000 mg / L, at least 16000 mg / L, at least 18000 mg / L or at least 20,000 mg / L.
  • the sludge is refluxed, and the reflux ratio of the anaerobic sedimentation tank to the high-concentration sludge reaction tank is 0. 4Q ⁇ 0. 7Q, for example, 0. 5 Q or 0.
  • the sludge concentration is high, 3 to 5 times or more of the ordinary activated sludge treatment process effectively enhances the impact load resistance of the system.
  • the high concentration of activated sludge can effectively decompose organic matter, and has an excellent buffering effect on the impact of water quality, water volume, pH value and toxic substances, and also provides a more reliable guarantee for the stable treatment effect in the latter stage.
  • the dissolved oxygen at the outlet is 1 mg/L ⁇ 1.5 mg/L, 1.5 mg/L - 2 mg/L, 2 mg/L - 2. 5 mg/L or 2. 5 mg/L - 3 mg/L.
  • the dewatered sewage is discharged from the high-concentration sludge reaction tank into the anaerobic sedimentation tank, and the sludge precipitated in the anaerobic sedimentation tank and the excess sludge generated by the conventional sewage treatment are returned to the high-concentration sludge reaction tank, and the anaerobic sedimentation tank
  • the return sludge is continuously recycled.
  • the mixed sludge in the high-concentration sludge reaction tank always undergoes aerobic and anaerobic alternating processes, and aerobic and anaerobic microorganisms cannot obtain advantages, and the hydrolysis process of the excess sludge is completed to the greatest extent.
  • Hydrolysis can convert macromolecular organics into biodegradable small molecule organics, and under strict anaerobic conditions, further hydrolyzed small molecular organics (rdcod biodegradation) are further converted into VFAs (volatile fatty acids).
  • Sludge hydrolysis produces a "potential" internal carbon source, an organic carbon.
  • Organic carbon can greatly improve the efficiency of ammonia removal from wastewater and save on additional carbon sources.
  • Urban sewage treatment plants have a poor effect of removing ammonia nitrogen due to insufficient carbon source, which is a common phenomenon in urban sewage treatment plants. Energy leakage occurs when the carbon source is abundant. The so-called uncoupling phenomenon, the substrate utilization rate is low.
  • the sludge residence time is infinite, the decomposition of the inert substance can be completed under the action of uncoupling, and the inorganic sludge is eliminated by the autotrophic bacteria.
  • the heterotrophic bacteria complete the excess sludge.
  • the organic matter is digested, and the system does not accumulate inert substances, thereby achieving zero discharge of excess sludge from the municipal sewage treatment plant.
  • the sludge returned by the anaerobic sedimentation tank and the excess sludge produced by the conventional sewage treatment are digested in a large amount, and the balance of growth and depletion can be achieved.
  • the anaerobic sedimentation tank and the SBR pool are not discharged to the outside, and the reaction is stable and the pollution is achieved. Zero emissions of mud.
  • the sewage flows out of the anaerobic tank after flowing out of the anaerobic sedimentation tank.
  • the anaerobic sedimentation tank, the anaerobic tank and the aerobic tank constitute the A70 process, and the sewage is mixed with the return sludge produced by the conventional sewage treatment in the anaerobic tank to fully remove the ammonia nitrogen, and then the sludge and the sewage mixture enter together.
  • the organic matter in the sewage is further adsorbed, oxidized and P-segmented by the metabolism of aerobic bacteria, and nitrification reaction occurs.
  • the sedimentation device is preferably an SBR pool.
  • the reflux ratio of the sludge in the SBR pool to the anaerobic tank is 0. 5Q ⁇ 1Q, and the excess sludge is returned to the high concentration sludge reaction tank. Since the sewage entering the SBR pool has effectively degraded the organic matter in the water, the water quality is relatively stable. After the aeration of the SBR pool, the degradation of the organic matter in the sewage is more thorough, and the SBR pool will produce a clear, periodic precipitation.
  • the high-density sludge layer which acts as a sludge filter and plays an important role in improving the quality of the effluent and denitrification.
  • the sludge concentration in the SBR pool is 2000mg/L ⁇ 4000mg/L, and the dissolved oxygen content is 2mg/L ⁇ 4mg/L.
  • the sinking time in the SBR pool is lh ⁇ 1. 5h, preferably lh, static sinking.
  • the water is drained in the pool for a period of 1. 5h ⁇ 2. 5h, preferably 2h.
  • the anaerobic tank, aerobic tank and SBR tank constitute the 0SA process, and the return sludge is returned to the anaerobic tank to effectively inhibit the filamentous bacteria, prevent sludge expansion and improve the sludge settling performance. It can reduce the amount of sludge generated.
  • the energy required for ATP formation is derived from the oxidation process of the external organic matrix.
  • the degradation of organic matter is completely different from that of aerobic degradation, and the energy released is large.
  • the sludge itself does not have enough energy for its own growth, and it has to use the ATP stored in its body as an energy source for its normal physiological activities. Therefore, the ATP stored in the microbial cells at this stage will be consumed in a large amount, and the amount of sludge will be reduced.
  • the microorganisms must carry out the necessary energy storage.
  • the sludge treatment apparatus can be used particularly advantageously for retrofitting existing various activated sludge process sewage treatment apparatuses.
  • a sludge treatment device is added in the vicinity of an existing sewage treatment device, and excess sludge of the existing sewage treatment device is introduced into the sludge treatment device as a sludge feed, and the sludge treatment device is discharged.
  • the supernatant is introduced into the existing sewage treatment unit as part of the sewage influent.
  • Example 1 In the examples herein, symbol 1 represents tons; DS represents dry sludge; m 3 represents cubic meters; d represents days; COD represents chemical oxygen demand.
  • a sewage treatment plant with a sewage treatment capacity of 20,000 m7d is constructed, and the process flow is as shown in Fig. 11, wherein a high concentration sludge reaction tank (for Oxygen treatment), degassing tank and anaerobic sedimentation tank (for anoxic treatment) constitute a sludge digestion device (ie sludge treatment device according to the invention), while anaerobic tank, aerobic tank and SBR
  • the pool constitutes a conventional sewage treatment device (i.e., a sewage biological treatment device in the sewage treatment device according to the present invention).
  • the third mixed liquid enters the degassing tank and enters the anaerobic sedimentation tank after deoxidation, and the fourth mixed liquid obtained after the precipitation treatment (anoxic treatment) in the anaerobic sedimentation tank is simultaneously separated into the supernatant in the upper layer and is in the The first concentrated mixture of the lower layer.
  • the first concentrated mixture is returned to the high-concentration sludge reaction tank as a sludge return through the sludge return pipe.
  • the supernatant enters a conventional sewage treatment device, and is treated with an anaerobic tank, an aerobic tank, and an SBR tank to obtain effluent (ie, purified water) and excess sludge (ie, a second concentrated mixture).
  • the excess sludge is returned to the high-concentration sludge reaction tank after being aerated through the excess sludge aeration tank.
  • the operation of the sewage treatment plant from July 2008 to the present shows that the sludge yield has been maintained at a level of basically OtDS / (10,000 m 3 sewage * d), achieving zero discharge of sludge.
  • the sludge yield of an adjacent municipal wastewater treatment plant that treats similar wastewater is usually (1.04 - 1.64) tDS/ (million m 3 sewage 'days) with an average of 1.25 tDS / (million m 3 of sewage - d).
  • the water quality of the purified effluent can be referred to the total amount of purified effluent obtained from September 2008 to May 2009, C0D, ammonia nitrogen monitoring data (see Table 1), and the average aeration time of the high concentration sludge reaction tank.
  • the control time is controlled from 0.25 to 3.5 hours, and the precipitation time of the anaerobic sedimentation tank is controlled to be 1 to 5 hours.
  • the ratio of the aeration time to the precipitation time is controlled between 1:0.8-1:5.
  • the sewage treatment plant did not discharge any sludge during the entire test period.
  • Table 1 Total purified water, average COD and average ammonia nitrogen data for the period from September 2008 to May 2009
  • Class 1 B standard for the maximum allowable emission concentration of COD specified in GB18918-2002 60mg/L
  • the first B standard for the maximum allowable emission concentration of ammonia nitrogen When the water temperature is >12°C 8mg/L, 15 mg/L when the water temperature is ⁇ 12 °C. It can be seen from the monitoring data of Table 1 that the urban sewage treatment system provided by the present invention uses COD and ammonia nitrogen in the discharged water to reach the primary B standard of GB18918-2002 whether the temperature is low or the temperature is high. In the test from September 2008 to May 2009, it was also observed that the sludge concentration in the high-concentration sludge reaction tank was always at a fairly high level, as shown in Table 2. Table 2: Monthly average of sludge concentrations of the second mixture in the high-concentration sludge reaction tank from September 2008 to May 2009
  • the COD, ammonia nitrogen and total phosphorus contents of the sewage feed, the second mixed liquid aqueous phase and the supernatant were determined, as shown in Table 3.
  • Table 3 COD, ammonia nitrogen and total phosphorus content (mg/L) of sewage feed, second mixed liquid phase and supernatant measured at different times
  • Example 2 According to the sludge treatment method and the sewage biological treatment method of the present invention, an existing sewage treatment plant operating in the MSBR (ie, A70 followed by SBR) process was modified.
  • the sewage treatment capacity of the modified sewage treatment plant is 20,000 m7d, and the process flow thereof can also be represented by Fig. 11, wherein the parameters are the same as those of the first embodiment.
  • the modified sewage treatment plant has been in operation for more than a year.
  • the sludge yield is basically OtDS/ (10,000 m 3 of sewage. d), and the zero discharge of sludge is basically achieved, and the average COD emission concentration in winter is 24.3.
  • Mg/L the average summer emission concentration is 27.56 mg / L
  • the average ammonia concentration of ammonia nitrogen in winter is 8. 85mg / L
  • the average summer emission concentration is 4. 07 mg / L, reached the first grade B standard of GB18918-2002.
  • a new sewage treatment system can be newly constructed, or a conventional sewage treatment device can be modified to combine high-concentration sludge reaction, anaerobic precipitation and conventional sewage treatment processes to treat sewage. Improve the sedimentation performance of the sludge, inhibit the sludge expansion, and realize the digestion of the excess sludge, so that the entire sewage treatment system produces The remaining sludge reduction even reached zero discharge of sludge.
  • the sludge reduction sewage treatment system and method provided by the present invention are described in detail above. The number of the steps used in the description and the claims are intended to refer to the individual steps, and the order of the individual steps is not to be construed unless the context is specified.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

污泥处理方法和装置及其在污水生物处理中的应用 本申请要求以下专利申请的优先权: ( 1 ) 中国专利申请 200910249722. X, 申请日为 2009年 12月 1 日; 和(2 ) 中国专利申 请 201010000737. 5 , 申请日为 2010年 1月 15 日。 这些专利申请的 内容都通过引用并入本申请。 技术领域 本发明涉及一种污泥处理方法和装置及其在污水生物处理中的 应用,特别是一种污泥减量化处理方法及其装置和一种包括所述污泥 减量化处理方法的污泥减量化污水生物处理方法及其装置。 背景技术 随着水污染的日益严重,对各种污水进行经济有效的处理势在必 行。 目前全球范围内已有数以万计的污水处理厂正在运行,且随着环 境意识与环保要求的提高必将有更多的污水厂行将建设。 污水生物处理以高效低耗的突出优点被广泛用于污水处理,以活 性污泥和生物膜为代表的污水生物处理工艺在水污染治理方面已取 得了巨大成功。 然而, 现有的污水生物处理工艺并不完善。 在实际运行过程中, 多数污水生物处理厂面临以下问题: (1 )进 水水量不足,主要由超前规划和污水排放系统故障导致,影响污水处 理装置的运行; (2 )进水水质不稳定, 主要原因是工业废水排入管网 以及节假日和季节变化等导致的生活习惯改变等,可造成冲击负荷影 响污水处理效果; (3 )碳源不足, 这是各污水处理厂所共同面临的问 题,主要由现代生活习惯所致,可导致生物的营养物失衡影响氮和磷 的去除效果。在面对这些问题时,传统活性污泥法日益暴露出以下缺 陷: (1 )曝气池中生物浓度低; (2 )耐水质、 水量冲击负荷能力差, 运行不够稳定; (3 )易产生污泥膨胀; (4 )污泥产量大; (5 )基建和 运行费用高, 占地面积大等。 特别地,现有污水生物处理工艺最引人注目的问题就是大量剩余 污泥的产生。 污泥处理的费用异常之高, 大约占到污水处理厂建设和 运行总费用的 50% ~ 60%左右。 剩余污泥需要进行必要的处置因而增 加了污水处理的运行费用, 同时也限制了污泥处理方法的选择。常见 的污泥减量方法有消化法(包括厌氧消化和好氧消化)、 污泥热处理 法例如湿式氧化法、污泥浓缩法例如重力浓缩法和气浮浓缩法、污泥 脱水法例如机械脱水和化学混凝法、污泥干化法例如自然干化法和烘 干法。 然而, 这些污泥减量方法并未完全解决污泥排放的问题。 中国专利申请公开 CN101481191A公开了一种污泥回流消化减量 的污水处理方法,其中将剩余污泥返回厌氧沉淀池中在厌氧沉淀池下 部的沉淀污泥区长期积累以便将污泥消化减量,污水进料通过厌氧沉 淀池后进行污水处理得到净化水和剩余污泥,未消化的污泥需要定期 清掏。 美国专利申请公开 US2002/0030003A1公开了一种活性污泥污水 处理系统和方法,其中在接触罐中用污泥处理污水, 然后在固液分离 器中分离污泥和水,分离的污泥与部分污水在消化罐中混合并曝气以 使污泥消化减量, 经曝气的泥水混合液部分返回接触罐, 部分排出。 再者,现有污水生物处理工艺中对磷的去除效果普遍不佳。磷是 造成水体富营养化的主要限制因子,并且是人类可持续发展的重要元 素, 因此目前对水体中磷含量的控制日益严格, 并且逐渐从单一 "去 除,, 转向 "回收"。 目前的脱磷工艺大都基于聚磷菌在厌氧释磷后在 好氧状态下超量摄磷现象, 因此必须排出一定量的污泥来最终除磷, 这对污泥减量也构成了巨大挑战。 综上所述,仍然需要发展新的污泥处理方法和污水生物处理方法 以解决上述问题, 特别是污泥减量的问题。 发明内容 在一个方面, 本发明提供一种污泥处理方法, 包括以下步骤:
( 1 ) 将来自污水生物处理过程的污泥进料与第一混合液混 合得到第二混合液;
( 2 ) 将第二混合液进行给氧处理得到第三混合液;
( 3 ) 将第三混合液进行缺氧处理得到第四混合液;
( 4 ) 将第四混合液分离得到上清液和第一浓缩混合液;
( 5 ) 将上清液排出,并且将至少部分第一浓缩混合液返回步 骤( 1 )用作第一混合液, 其中未返回步骤( 1 )的第一浓缩混合液的 污泥量小于污泥进料的污泥量。 根据本发明的污泥处理方法的一些实施方案, 在步骤(5 ) 中, 将任意合适的比例, 例如至少 60 %、 优选至少 65 %、 更优选至少 70 %、 更优选至少 75 %、 更优选至少 80 %、 更优选至少 85 %、 更优选 至少 90 %、 更优选至少 93 %、 更优选至少 95 %、 更优选至少 98 %、 最优选基本上 100 %的第一浓缩混合液返回步骤(1 )用作第一混合 液, 并且任选地将未返回步骤(1 )的第一浓缩混合液排出。 换句话 说, 在步骤( 5 )中, 未返回步骤( 1 )的第一浓缩混合液的污泥量与 污泥进料的污泥量的比例可以为任意合适的值, 例如选自小于约
40%, 小于约 35%,小于约 30%,小于约 25%, 小于约 20%、小于约 15%, 小于约 13%, 小于约 10%、 小于约 8%, 小于约 5%、 小于约 3%, 小于 约 1%和约 0%。 根据本发明的污泥处理方法的一些实施方案, 在步骤 ( 5 )中将基本上全部第一浓缩混合液返回步骤( 1 )用作第一混合液。 根据本发明的污泥处理方法的一些实施方案, 在步骤(1) 中, 将有机营养物 (优选污水进料)、 污泥进料和第一混合液混合得到第 二混合液。 也就是说, 步骤( 1 )还包括将污水进料引入第一混合液。 根据本发明的污泥处理方法的一些实施方案, 步骤(1) 中污泥 进料与污水进料的流量比为 1: 0.01 ~ 1: 100, 优选 1: 0.1~ 1: 10, 更 优选为 1: 0.5 ~ 1: 5。 具体而言, 污泥进料与污水进料的流量比可以 为任何合适的值,例如选自 1: 100 ~ 1: 50、 1: 50 ~ 1:20、 1: 20 ~ 1: 10、 1: 10~ 1: 5、 1: 5 ~ 1: 2、 1:2 ~ 1: 1.5、 1: 1.5 ~ 1: 1、 1: 1 ~ 1: 0.8、 1: 0.8 ~ 1: 0.5、 1: 0.5 ~ 1: 0.2、 1: 0.2 ~ 1: 0.1、 1: 0.1 ~ 1: 0.05、 1: 0.05 ~ 1: 0.02和 1: 0.02 ~ 1: 0.01。 根据本发明的污泥处理方法的一些实施方案, 步骤(2) 的给氧 处理时间为 0.1 ~4小时,优选 0.5 ~2小时, 更优选 0.5~ 1.5小时。 根据本发明的污泥处理方法的一些实施方案, 步骤(3) 的缺氧 处理时间为 0.8~6小时, 优选 1~4小时, 更优选 1~3小时。 根据本发明的污泥处理方法的一些实施方案,其中给氧处理时间 与缺氧处理时间的比为 1: 0.5 ~ 1: 6,优选 1: 1 ~ 1: 3,更优选 1: 1.5 ~ 1:2, 最优选 1: 2。 根据本发明的污泥处理方法的一些实施方案, 步骤(2) 的给氧 处理以间歇曝气或连续曝气的方式进行。 根据本发明的污泥处理方法的一些实施方案, 在步骤(2) 中, 第三混合液的溶解氧浓度为 0.1 ~ 4mg/L, 优选 1.5 ~ 3mg/L, 更优选 2 - 3mg/L。 根据本发明的污泥处理方法的一些实施方案, 步骤(3)和步骤 (4) 以沉淀方式进行。 根据本发明的污泥处理方法的一些实施方案, 在步骤(1) 中, 第二混合液的污泥浓度为 3000 ~ 30000mg/L,优选 3000 ~ 20000mg/L, 更优选 4000 ~ 15000mg/L。 根据本发明的污泥处理方法的一些实施方案,其中兼性微生物为 第一、 第二、 第三和第四混合液的污泥中的优势群类。 根据本发明的污泥处理方法的一些实施方案, 还包括回收步骤 (2)和 /或 (3) 中产生的气态含磷化合物的回收步骤。 在另一方面, 本发明还提供一种污水生物处理方法, 包括:
( 1 )将来自污水生物处理过程的污泥进料和第一混合液混合得 到第二混合液;
(2)将第二混合液进行给氧处理得到第三混合液;
(3)将第三混合液进行缺氧处理得到第四混合液;
(4)将第四混合液分离得到上清液和第一浓缩混合液;
(5)将上清液排出, 并且将至少部分第一浓缩混合液返回步骤 ( 1 )用作第一混合液, 其中未返回步骤( 1 )的第一浓缩混合液的污 泥量小于污泥进料的污泥量; ( 6 )将至少部分步骤( 5 )的上清液和任选的部分污水进料进行 污水生物处理得到第二浓缩混合液和净化出水;
( 7 )将净化出水排出, 并且任选地将至少部分步骤( 6 )的第二 浓缩混合液返回步骤(1)用作污泥进料; 其中将污水进料引入步骤(1)与污泥进料和第一混合液混合得 到第二混合液和 /或在步骤(6) 中与所述至少部分步骤(5) 的上清 液一起进行污水生物处理, 优选将至少部分污水进料在步骤( 1 ) 中 与污泥进料和第一混合液混合得到第二混合液,更优选将全部污水进 料在步骤(1) 中与污泥进料和第一混合液混合得到第二混合液。 根据本发明的污水生物处理方法的一些实施方案, 在步骤(5) 中, 将至少 60%、优选至少 65%、 更优选至少 70%、 更优选至少 75 %、 更优选至少 80%、 更优选至少 85%、 更优选至少 90%、 更优选 至少 93%、 更优选至少 95%、 更优选至少 98%、 最优选基本上 100 %的第一浓缩混合液返回步骤(1)用作第一混合液, 并且任选地将 未返回步骤( 1 ) 的第一浓缩混合液排出。 根据本发明的污水生物处理方法的一些实施方案, 在步骤(6) 中, 将至少 20%、优选至少 35%、 更优选至少 50%、 更优选至少 65 %、 更优选至少 80%、 更优选至少 85%、 更优选至少 90%、 更优选 至少 93%、 更优选至少 95%、 更优选至少 98%、 最优选基本上 100 %的步骤(5)的上清液进行污水生物处理。 根据本发明的污水生物处理方法的一些实施方案, 在步骤(1) 中引入至少 20%、优选至少 35%、 更优选至少 50%、 更优选至少 65 %、 更优选至少 80%、 更优选至少 85%、 更优选至少 90%、 更优选 至少 93%、 更优选至少 95%、 更优选至少 98%、 最优选基本上 100 %的污水进料, 并且在步骤(6) 中引入剩余部分的污水进料。 在一 些优选的实施方案中, 在步骤(1) 中引入全部的污水进料, 并且在 步骤(6) 中不引入污水进料。 根据本发明的污水生物处理方法的一些实施方案, 步骤(2) 的 给氧处理时间为 0.1~4小时, 优选 0.5~2小时, 更优选 0.5 ~ 1.5 小时。 根据本发明的污水生物处理方法的一些实施方案, 步骤(3) 的 缺氧处理时间为 0.8~ 6小时, 优选 1~4小时, 更优选 1~3小时。 根据本发明的污水生物处理方法的一些实施方案,给氧处理时间 与缺氧处理时间的比为 1: 0.5 ~ 1: 6,优选 1: 1 ~ 1: 3,更优选 1: 1.5 ~ 1:2, 最优选 1:2。 根据本发明的污水生物处理方法的一些实施方案, 步骤(2) 的 给氧处理以间歇曝气或连续曝气的方式进行。 根据本发明的污水生物处理方法的一些实施方案, 在步骤(2) 中, 第三混合液的溶解氧浓度为 0.1 ~ 4mg/L, 优选 1.5 ~ 3mg/L, 更 优选 2 ~ 3mg/L。 根据本发明的污水生物处理方法的一些实施方案, 步骤(3)和 步骤( 4 )以沉淀方式进行,也就是说缺氧处理和分离可通过沉淀(优 选在沉淀池中沉淀)完成。 根据本发明的污水生物处理方法的一些实施方案, 在步骤(1) 中, 第二混合液的污泥浓度为 3000 ~ 30000mg/L, 优选 3000 ~ 20000mg/L, 更优选 4000 ~ 15000mg/L。 根据本发明的污水生物处理方法的一些实施方案,还包括回收步 骤(2 )和 /或(3 ) 中产生的气态含磷化合物的回收步骤。 根据本发明的污水生物处理方法的一些实施方案, 步骤(7 ) 中 返回步骤(1 )用作污泥进料的第二浓缩混合液占第二浓缩混合液的 比例为 1 ~ 100%, 优选约 80 - 100%, 更优选约 100%。 根据本发明的污水生物处理方法的一些实施方案, 步骤(7 ) 中 返回步骤( 1 )的第二浓缩混合液占步骤( 1 )的污泥进料的比例为 1 ~ 100%, 优选约 80 ~ 100%, 更优选约 100°/。。 根据本发明的污水生物处理方法的一些实施方案, 步骤(6 )是 选自根据 Wuhrmann工艺、 A/0工艺、 Bardenpho工艺、 Phoredox工 艺、 A2/0工艺、倒置 A2/0工艺、 UCT工艺、 MUCT工艺、 VIP工艺、 0WASA 工艺、 JHB工艺、 TNCU工艺、 Dephanox工艺、 BCFS工艺、 MSBR工艺、 SBR工艺、 AB工艺、 氧化沟工艺、 生物膜工艺、 流动床工艺或其组合 的污水生物处理步骤。 在另一方面,本发明还提供一种用于上述污泥处理方法的污泥处 理装置, 包括: 能够将污水进料、 污泥进料与第一混合液混合得到第 二混合液的第一设备;能够将第二混合液进行给氧处理得到第三混合 液的第二设备;能够将第三混合液进行缺氧处理得到第四混合液的第 三设备;能够将第四混合液分离得到上清液和第一浓缩混合液的第四 设备; 能够将上清液排出的第五设备; 能够将至少部分第一浓缩混合 液作为第一混合液引入第一设备并且使未返回第一设备的第一浓缩 混合液的污泥量小于污泥进料的污泥量的第六设备。 根据本发明的污泥处理装置的一些实施方案,第二设备经设置使 得给氧处理时间为 0. 1 ~ 4小时,优选 0. 5 ~ 2小时,更优选 0. 5 ~ 1. 5 小时。 根据本发明的污泥处理装置的一些实施方案,第三设备经设置使 得缺氧处理时间为 0. 8 ~ 6小时,优选 1 ~ 4小时,更优选 1 ~ 3小时。 根据本发明的污泥处理装置的一些实施方案,第二设备和第三设 备经设置使得给氧处理时间与缺氧处理时间的比为 1: 0. 5 ~ 1: 6 , 优 选 1: 1 ~ 1: 3, 更优选 1: 1. 5 ~ 1: 2 , 最优选 1: 2。 根据本发明的污泥处理装置的一些实施方案, 第二设备是曝气 池。 根据本发明的污泥处理装置的一些实施方案,第三设备和第四设 备是沉淀池, 也就是说将沉淀池同时作为第三设备和第四设备。。 才艮据本发明的污泥处理装置的一些实施方案,所述污泥处理装置 还包括能够收集并回收气态含磷化合物的回收设备。 在另一方面,本发明还提供一种用于上述污水生物处理方法的污 水生物处理装置, 包括: 能够将污泥进料与第一混合液混合得到第二 混合液的第一设备;能够将第二混合液进行给氧处理得到第三混合液 的第二设备;能够将第三混合液进行缺氧处理得到第四混合液的第三 设备;能够将第四混合液分离得到上清液和第一浓缩混合液的第四设 备; 能够将上清液排出的第五设备; 能够将至少部分第一浓缩混合液 作为第一混合液引入第一设备并且使未返回第一设备的第一浓缩混 合液的污泥量小于污泥进料的污泥量的第六设备;能够将至少部分第 五设备排出的上清液进行污水生物处理得到第二浓缩混合液和净化 出水的第七设备; 能够将净化出水排出的第八设备; 能够将污水进料 引入第一设备与污泥进料和第一混合液混合得到第二混合液和 /或引 入第七设备与上清液一起进行污水生物处理的第九设备;以及任选的 能够将至少部分第二浓缩混合液引入第一设备的第十设备。 — IO/73—
根据本发明的污水生物处理装置的一些实施方案,第二设备经设 置使得给氧处理时间为 0. 1 ~ 4小时,优选 0. 5 ~ 2小时,更优选 0. 5 ~ 1. 5小时。 根据本发明的污水生物处理装置的一些实施方案,第三设备经设 置使得缺氧处理时间为 0. 8 ~ 6小时, 优选 1 ~ 4小时, 更优选 1 ~ 3 小时。 根据本发明的污水生物处理装置的一些实施方案,第二设备和第 三设备经设置使得给氧处理时间与缺氧处理时间的比为 1: 0. 5 ~ 1: 6 , 优选 1: 1 ~ 1: 3, 更优选 1: 1. 5 ~ 1: 2 , 最优选 1: 2。 根据本发明的污水生物处理装置的一些实施方案,第二设备是曝 气池。 根据本发明的污水生物处理装置的一些实施方案,第三设备和第 四设备是沉淀池, 也就是说将沉淀池同时作为第三设备和第四设备。 才艮据本发明的污水生物处理装置的一些实施方案,所述污泥处理 装置还包括能够收集并回收气态含磷化合物的回收设备。 根据本发明的污水生物处理装置的一些实施方案,第七设备是选 自能够根据 Wuhrmann工艺、 A/0工艺、 Bardenpho工艺、 Phoredox 工艺、 A70工艺、 倒置 A70工艺、 UCT工艺、 MUCT工艺、 VIP工艺、 0WASA工艺、 JHB工艺、 TNCU工艺、 Dephanox工艺、 BCFS工艺、 MSBR 工艺、 SBR工艺、 AB工艺、 氧化沟工艺、 生物膜工艺、 流动床工艺或 其组合的进行污水生物处理的设备。 在另一方面,本发明还提供一种降低来自污水生物处理过程的污 泥中碳、氮和磷含量的方法, 包括将污泥作为污泥进料通过上述污泥 — II/73—
处理方法来降低其中碳、 氮和磷的含量。 在另一方面,本发明还提供一种降低污水中碳、氮和磷含量的方 碳、 氮和磷的含量。 在另一方面,本发明还提供一种回收来自污水生物处理过程的污 泥中磷的方法, 包括( i )将污泥作为污泥进料通过上述污泥处理方 法将其中的含磷化合物,特别是以溶液形式存在的含磷化合物,转化 为气态含磷化合物而逸出, 和(ii ) 回收步骤(i ) 中逸出的气态含 磷化合物。 在另一方面, 本发明还提供一种回收污水中磷的方法, 包括(i ) 水作为污水进料通过上述
物,特别是以溶液形式存在的含磷化合物,转化为气态含磷化合物而 逸出, 和(ii ) 回收步骤(i ) 中逸出的气态含磷化合物。 在另一方面,本发明还提供一种污泥减量化处理方法,所述方法 包括以下步骤:
(a) 将任选的污水进料和来自污水生物处理过程的第一污 泥引入给氧处理区 (优选曝气池) 中;
( b ) 对给氧处理区中的混合液进行给氧处理;
(c) 将经给氧处理的混合液引入缺氧处理区 (优选沉淀池) 中进行处理, 得到第二污泥和上清液; 和
(d) 将第二污泥的至少部分循环回给氧处理区,以及任选地 将第二污泥的剩余部分排出; 其中排出的第二污泥的剩余部分的 MLSS 总量小于第一污泥的 MLSS 总量; 所述给氧处理可以以间歇曝气或连续曝气的方式进行。 MLSS 是'混合液悬浮固体浓度 (mixed liquor suspended solids)的 简写,它又称为混合液污泥浓度, 它表示的是在曝气池单位容积混合 液内所含有的活性污泥固体物的总重量(mg/L)。 根据本发明的污泥减量化处理方法的一些实施方案,在步骤( d ) 中, 将至少 60%、 优选至少 65%、 优选至少 70%、 更优选至少 75 %、 更优选至少 80%、 更优选至少 85%、 更优选至少 90%、 更优选 至少 93%、 更优选至少 95%、 更优选至少 98%、 最优选基本上 100 %的第二污泥循环回给氧处理区。 根据本发明的污泥减量化处理方法的一些实施方案, 步骤(b) 的给氧处理时间为 0.1 ~4小时,优选 0.5~2小时,更优选 0.5~ 1.5 小时。 根据本发明的污泥减量化处理方法的一些实施方案,给氧处理区 中经给氧处理的混合液的出口溶解氧浓度为 0.1 ~ 4mg/L,优选 1.5 ~ 3mg/L, 更优选 2~3mg/L。 根据本发明的污泥减量化处理方法的一些实施方案,给氧处理区 的污泥浓度为 3000 ~ 30000mg/L, 优选 3000 ~ 20000mg/L, 更优选 4000 ~ 15000mg/Lo 根据本发明的污泥减量化处理方法的一些实施方案,还包括回收 步骤(b)和 /或 (c) 中产生的气态含磷化合物的步骤。 在另一方面, 本发明还提供一种污泥减量化处理装置, 包括: 给氧处理区,其具有接收第一污泥的第一入口、接收至少部分第 二污泥的第二入口和任选的接收污水进料的第三入口;其中所述第一 污泥来自污水生物处理过程; 所述给氧处理区用于对接收的第一污 泥、第二污泥和污水进料进行给氧处理; 所述给氧处理可以以间歇曝 气或连续曝气的方式进行; 缺氧处理区,用于将给氧处理区得到的混合液进行处理,形成上 清液和第二污泥; 和 循环装置, 用于将至少部分第二污泥循环回给氧处理区。 才艮据本发明的污泥减量化处理装置的一些实施方案,循环装置将 至少 60 %、优选至少 65 %、优选至少 70 %、 更优选至少 75 %、 更优 选至少 80 %、 更优选至少 85 %、 更优选至少 90 %、 更优选至少 93 %、 更优选至少 95 %、 更优选至少 98 %、 最优选基本上 100 %的第 二污泥循环回给氧处理区。 根据本发明的污泥减量化处理装置的一些实施方案,给氧处理区 经设置使得给氧处理时间为 0. 1 ~ 4小时,优选 0. 5 ~ 2小时, 更优选 0. 5 - 1. 5小时。 根据本发明的污泥减量化处理装置的一些实施方案,还包括磷回 收装置, 用于回收给氧处理区和缺氧处理区中产生的气态含磷化合 物。 在另一方面,本发明还提供一种污泥减量化污水处理方法, 包括 使污水进料在包括例如曝气池的给氧处理区、例如沉淀池的缺氧处理 区和生物处理区的污水生物处理设备中顺序经历给氧处理、 缺氧和 / 或沉淀处理和污水生物处理; 其特征在于将分别在生物处理区和缺氧处理区中存在和 /或形成 的第一污泥的至少一部分和第二污泥的至少一部分循环回给氧处理 区, 从而在对污水进料进行生物处理的同时使污泥得以消减。 在另一方面,本发明还提供一种污泥减量化污水处理方法, 包括 以下步骤:
( a ) 将污水进料和来自步骤(d ) 的至少一部分第二污泥和 来自步骤(g )的至少一部分第一污泥引入给氧处理区, 优选曝气池, 中;
( b ) 对给氧处理区中的混合液进行给氧处理;
( c ) 将经给氧处理的混合液引入例如沉淀池的缺氧处理区, 优选沉淀池, 中进行处理, 得到第二污泥和上清液;
( d ) 将至少一部分第二污泥循环回给氧处理区,以及任选地 将第二污泥的剩余部分排出, 其中第二污泥的剩余部分的 MLSS总量 小于步骤(a ) 引入给氧处理区的所述至少一部分第一污泥的 MLSS
( e ) 将从缺氧处理区分离出的上清液和任选的其它污水进 料引入污水生物处理区;
( f ) 在污水生物处理区中对上清液和所述任选的其它污水 进料进行生物处理得到第一污泥和出水;
( g ) 将至少一部分第一污泥循环回给氧处理区,任选地将第 一污泥的另一部分循环回污水生物处理区,以及任选地将第一污泥的 剩余部分排出; 所述给氧处理可以以间歇曝气或连续曝气的方式进行。 根据本发明的污泥减量化污水处理方法的一些实施方案,在步骤
(d) 中, 将至少 60%、 优选至少 65%、 优选至少 70%、 更优选至 少 75%、 更优选至少 80%、 更优选至少 85%、 更优选至少 90%、 更 优选至少 93%、 更优选至少 95%、 更优选至少 98%、 最优选基本上 100 %的第二污泥循环回给氧处理区。 根据本发明的污泥减量化污水处理方法的一些实施方案,在步骤 (g) 中, 将至少 60%、 优选至少 65%、 优选至少 70%、 更优选至 少 75%、 更优选至少 80%、 更优选至少 85%、 更优选至少 90%、 更 优选至少 93%、 更优选至少 95%、 更优选至少 98%、 最优选基本上 100 %的第二污泥循环回给氧处理区。 根据本发明的污泥减量化污水处理方法的一些实施方案, 步骤 (b)的给氧处理时间为 0.1 ~4小时,优选 0.5~2小时,更优选 0.5 ~ 1.5小时。 根据本发明的污泥减量化污水处理方法的一些实施方案,给氧处 理区中经给氧处理的混合液的出口溶解氧浓度为 0. l~4mg/L, 优选 1.5 - 3mg/L, 更优选 2~3mg/L。 根据本发明的污泥减量化污水处理方法的一些实施方案,给氧处 理区的污泥浓度为 3000 ~ 30000mg/L, 优选 3000 ~ 20000mg/L, 更优 选 4000 ~ 15000mg/L。 根据本发明的污泥减量化污水处理方法的一些实施方案,还包括 回收产生的气态含磷化合物的步骤。 根据本发明的污泥减量化污水处理方法的一些实施方案, 步骤 (f )的生物处理是才艮据 Wuhrmann工艺、 A/0工艺、 Bardenpho工艺、 Phoredox工艺、 A2/0工艺、 倒置 A2/0工艺、 UCT工艺、 MUCT工艺、 VIP工艺、 OWASA工艺、 JHB工艺、 TNCU工艺、 Dephanox工艺、 BCFS 工艺、 MSBR工艺、 SBR工艺、 AB工艺、 氧化沟工艺、 生物膜工艺、 流动床工艺或其组合的污水生物处理步骤。 在另一方面,本发明还提供一种污泥减量化污水处理装置,所述 设备包括顺序连通的例如曝气池的给氧处理区、例如沉淀池的缺氧处 理区和污水生物处理区, 其特征在于给氧处理区具有污水进料入口、 与缺氧处理区连通的第二污泥回流管线和与污水生物处理区连通的 第一污泥回流管线,并且所述污水生物处理的设置使得排出缺氧处理 区的第二污泥的 MLSS总量小于从污水生物处理区循环回给氧处理区 的第一污泥的 MLSS总量。 在另一方面,本发明还提供一种污泥减量化污水处理装置,包括:
-给氧处理区,优选曝气池,其具有接收至少部分第一污泥的第 一入口、接收至少部分第二污泥的第二入口和接收污水进料的第三入 口; 所述给氧处理区用于对接收的第一污泥、第二污泥和污水进料进 行给氧处理; 所述给氧处理可以以间歇曝气或连续曝气的方式进行;
-缺氧处理区,优选沉淀池,用于将给氧处理区得到的混合液进 行缺氧处理, 形成上清液和第二污泥;
-污水生物处理区,任选具有其它污水进料入口,用于对所述上 清液和任选的其它污水进料进行生物处理, 形成第一污泥和出水;
-第一循环装置, 用于将至少部分第一污泥循环回给氧处理区;
-第二循环装置, 用于将至少部分第二污泥循环回给氧处理区;
-任选的第一污泥排出装置, 用于将第一污泥的剩余部分排出; -任选的第二污泥排出装置, 用于将第二污泥的剩余部分排出。 根据本发明的污泥减量化污水处理装置的一些实施方案,第二循 环装置将至少 60%、优选至少 65%、优选至少 70%、 更优选至少 75 %、 更优选至少 80%、 更优选至少 85%、 更优选至少 90%、 更优选 至少 93%、 更优选至少 95%、 更优选至少 98%、 最优选基本上 100 %的第二污泥循环回给氧处理区。 根据本发明的污泥减量化污水处理装置的一些实施方案,第一循 环装置将至少 60%、优选至少 65%、优选至少 70%、 更优选至少 75 %、 更优选至少 80%、 更优选至少 85%、 更优选至少 90%、 更优选 至少 93%、 更优选至少 95%、 更优选至少 98%、 最优选基本上 100 %的第二污泥循环回给氧处理区。 根据本发明的污泥减量化污水处理装置的一些实施方案,给氧处 理区经设置使得给氧处理时间为 0.1 ~ 4小时,优选 0.5 ~ 2小时,更 优选 0.5~1.5小时。 根据本发明的污泥减量化污水处理装置的一些实施方案,还包括 磷回收装置, 用于回收污水处理装置中产生的气态含磷化合物。 才艮据本发明的污泥减量化污水处理装置的一些实施方案,生物处 理区是能够根据 Wuhrmann工艺、 A/0工艺、 Bardenpho工艺、 Phoredox 工艺、 A70工艺、 倒置 A70工艺、 UCT工艺、 MUCT工艺、 VIP工艺、 0WASA工艺、 JHB工艺、 TNCU工艺、 Dephanox工艺、 BCFS工艺、 MSBR 工艺、 SBR工艺、 AB工艺、 氧化沟工艺、 生物膜工艺、 流动床工艺或 其组合进行污水生物处理的设备。 本发明的发明人惊奇地发现,采用上述污泥处理方法或污泥减量 化处理方法可以实现长期稳定运行而无需排泥并且无污泥积累。 因 此,本发明的污泥处理方法或污泥减量化处理方法能够基本上消除污 泥排放, 彻底解决了污泥排放问题, 具有巨大的社会和经济意义。 本发明的上述污泥处理方法或污泥减量化处理方法可以方便地 与各种合适的污水生物处理方法结合从而形成的新的污水生物处理 方法。特别地, 所述污水生物处理方法产生的剩余污泥可以由本发明 的污泥处理方法处理而消解。此外, 由本发明的污泥处理方法产生的 出水(上清液)通常呈中性(即 pH值在 6 - 8之间, 尤其在 6. 5 ~ 7. 5 之间),因此无需调节 pH值即可通过进一步的污水生物处理得到符合 排放标准的净化出水。尤其特别地,本发明的污水生物处理方法可在 基本不排泥的情况下仍然取得良好的除磷效果。 与传统污水生物处理方法相比,新的污水生物处理方法能够显著 减少甚至完全消除污泥排放,并且还具有良好的污水处理效果和出水 水质、更小的设备占地面积、更少的建设成本和运行成本以及更高的 抗冲击负荷能力和运行稳定性。本发明的上述污泥处理方法或污泥减 量化处理方法还特别适合用于改造各种现有的污水生物处理装置以 便显著减少甚至完全消除污泥排放。 附图说明 图 1为现有技术中传统活性污泥法的工艺流程示意图。 图 2 为根据本发明污泥处理方法的一种实施方式的工艺流程示 意图。 图 3为才艮据本发明污水生物处理方法或污泥减量化污水(生物) 处理方法的一种实施方式的工艺流程示意图。 图 4 示出才艮据本发明污水生物处理方法或污泥减量化污水生物 处理方法的另一种实施方式的工艺流程的示意图。 图 5 为可用于本发明污水生物处理方法的氧化沟污水处理工艺 的流程图。 图 6为可用于本发明污水生物处理方法的 SBR污水处理工艺的流 程图。 图 7为可用于本发明污水生物处理方法的 AB法污水处理工艺的 流程图。
流程图。 图 9
流程图。 图 10为可用于本发明污水生物处理方法的 MSBR污水处理工艺的 流程图。 图 11示出才艮据本发明污水生物处理方法的一种实施方式的工艺 流程的示意图。 图 12示出才艮据本发明污水生物处理方法的一种实施方式的工艺 流程的示意图。 图 13示出才艮据本发明污水生物处理方法的一种实施方式的工艺 流程的示意图。 发明详述 为了进一步了解本发明,下面结合附图对本发明的一些优选实施 方案进行描述。应当理解,这些描述只是为了进一步说明本发明的特 征和优点, 而不是对本发明权利要求保护范围的限制。 在本发明中, 术语 "污水,,是指任何可用生物处理方法处理的主 要含有机污染物的污水, 包括任何合适的工业废水、生活污水及其任 意组合,特别是城市生活污水。 污水可以是从产生污水的地点直接得 到污水、通过管网搜集得到污水、将污水贮存一定时间后得到的污水、 或者是将污水经过发酵、 酸碱调节、 成分调节、 浓度调节以及沉淀、 过滤、 离心等生物、 化学和 /或物理处理之后得到的污水。 在本发明中, 术语 "污水生物处理"是指利用微生物的代谢作用 使污水中的有机污染物转化为稳定的无害物质的过程。根据微生物对 氧的需求, 可以分为好氧生物处理、 厌氧生物处理等。 好氧生物处理根据微生物在水中存在的状态,可分为活性污泥法 和生物膜法。活性污泥法是目前最广泛应用的污水生物处理方法,其 中将空气鼓入含有大量有机物质的污水中,经过一定时间后, 水中即 形成生物絮凝体一一活性污泥,在活性污泥上栖息、生活着大量的微 生物,这些微生物以水中的有机物质为食料,获得能量并不断增长繁 殖, 从而使污水得到净化。 活性污泥法的基本流程如图 1所示。 生物 膜法是通过污水流经固体填料,在填料上生成污泥状的生物膜,生物 膜上繁殖着大量的微生物起到与活性污泥同样的净化污水的作用。生 物膜法的设施包括生物滤池、生物转盘、生物接触氧化和生物流化床 等。 厌氧生物处理是利用兼性厌氧菌和专性厌氧菌在无氧条件下降 解有机污染物的处理技术。厌氧生物处理的设施包括普通消化池、厌 氧滤池、 厌氧污泥床、 厌氧转盘、 挡板式厌氧反应器等。 由于污水中的污染物质多种多样,往往需要几种处理方法结合才 能达到净化目的。常见的污水生物处理法的例子包括活性污泥法、 0SA ( Ox i c-Se t t l ing-Anaerob i c ) 工艺、 厌氧生物处理工艺 (例: ¾口厌氧 生物滤池、厌氧生物转盘、厌氧接触法、上流式厌氧污泥床和分段厌 氧消化法等)、 Wuhrmann工艺、 A/0工艺、 Bardenpho工艺、 Phoredox 工艺、 A2/0工艺、 倒置 A2/0工艺、 UCT工艺、 MUCT工艺、 VIP工艺、 0WASA工艺、 JHB工艺、 TNCU工艺、 Dephanox工艺、 BCFS工艺、 SBR ( Sequenc ing Ba tch Reac tor Ac t iva ten S ludge Proces s ) 工艺、 MSBR工艺、 AB工艺、 生物膜工艺例如生物滤池、 生物转盘、 生物接 触氧化法、生物流化床和曝气生物滤池等、以及上述各种工艺的任意 合适的组合。 在本发明中, 术语 "污泥"是指污水生物处理过程中产生的任何 含有活性污泥的污泥。活性污泥是污水中的生物形成的絮凝体,主要 含有水和各种微生物, 例如好氧菌、 厌氧菌和兼性菌, 还有真菌、 藻 类、原生动物等。 随着污泥的驯化和所处环境的改变, 污泥中各种微 生物类群也会发生例如数量和比例的变化甚至基因突变等以适应生 存环境。按污水的来源来分, 污泥的例子可以包括: 生活污水污泥和 工业废水污泥。按污泥的来源来分, 污泥的例子通常可以包括: 来自 活性污泥法二次沉淀池的排泥(也成为剩余污泥或剩余活性污泥,其 主要成分为微生物和水)、 来自生物膜法二次沉淀的排泥(也称为腐 殖污泥, 主要成分为脱落的生物膜)、 来自污水处理厂初次沉淀池的 排泥(也称为初次沉淀污泥, 主要成分为固体有机物和微生物等)、 废水经厌氧处理后排出的污泥(也称为厌氧污泥)、 将上述污泥经消 化后的污泥(也称消化污泥或熟污泥)、 以及来自化学沉淀池的污泥 (也称为化学污泥)等。按污泥的不同阶段来分, 污泥的例子可以包 括: 生污泥或新鲜污泥(即, 未经任何处理的污泥)、 浓缩污泥、 消 化污泥、脱水污泥、 干化污泥等。 本发明的污泥可以是上述任何污泥 及其组合, 特别是含水量为 90%以上、 95%以上、优选 97%以上的剩余 污泥, 优选新鲜污泥。 在本发明中, 术语 "混合液" 是指上述污泥与水形成的混合物, 也称为泥水混合物或泥水混合液。合适的混合液中的污泥具有良好的 沉降性能, 特别是在曝气和沉淀过程中不发生污泥膨胀或污泥上浮。 通常, 混合液的污泥体积指数(SVI , 常用 SVI3Q表示, 指混合液在 100 OmL量筒中静置 30分钟以后, 1克活性污泥悬浮固体所占的体积 , 单位为 mL/g )有利地为小于给氧处理时发生污泥膨胀的最小值, 例 如 SVI3Q可以小于 200ml/g, 小于 150ml/g, 小于 100ml /g, 或小于 50ml/g。 在本发明中, 术语 "浓缩混合液"是指将上述混合液经分离除去 至少部分水后得到的污泥浓度提高的混合液,在一些情况中也称为污 泥,例如第一浓缩混合液也可以称为第一污泥。所述分离可以是沉淀 分离、 离心分离、 过滤分离等。 在沉淀分离的情形中, 混合液中的污 泥逐渐下沉形成处于混合液上部的上清液和处于混合液下部的污泥 浓度增加的浓缩混合液。 在一些情况中, 可以将占整个混合液体积 5 ~ 85% (例如: 5 - 10%, 10 - 15%, 15 - 20%, 20 - 25%, 25 - 30%, 30 - 35%, 35 - 40%, 40 - 45%, 45 - 50%, 50 - 55%, 55 - 60%, 65 - 70%, 70 - 75%, 75 - 80%, 80 ~ 85% ) 的下部混合液作为浓缩混合液。 在本发明中, 术语 "给氧处理"是指使氧与混合液接触, 尤其是 含氧气体(例如空气)与混合液接触。 在本发明中, "给氧处理" 可 以通过任何能够使含氧气体与混合液接触的方法来实现,例如通过将 含氧气体通入流动的或非流动的混合液中进行,特别是用含氧气体对 混合液曝气来实现。好氧处理即是典型的给氧处理。给氧处理可以在 任何合适的条件下以任何合适的方式进行,例如在常压、加压、常温、 低温和 /或升温条件下以鼓风曝气、 机械曝气、 射流曝气等方式在合 适的设备例如曝气池、 氧化沟、 流化床、 移动床或膜设备等中进行。 优选使用曝气池曝气。任何合适的含有氧气的气体都可用于曝气,优 选使用空气曝气。在给氧处理中, 混合液的溶解氧浓度可以逐渐升高 到期望值。给氧处理的时间一般由混合液在给氧处理装置中的停留时 间(或混合液与氧接触的时间)以及通入的含氧气体的量来确定。通 常, 在给氧处理中, 好氧生物和兼性生物得到增长, 而厌氧生物受到 抑制。 在本发明中, 术语 "缺氧处理"是指基本上避免含氧气体与混合 液接触。缺氧处理可以通过任何能够基本避免含氧气体与混合液接触 的方法来实现。 例如, 通过停止曝气和任选的脱气过程来实现。在本 发明中, 无论是否存在硝态氮, 只要基本上不存在溶解氧, 例如溶解 氧水平低于 0. lmg/L时, 即可认为是处于缺氧处理状态。 也就是说, 在一些文献中所述的缺氧条件 (有硝态氮无溶解氧)和厌氧条件 (无 硝态氮无溶解氧)下都可以进行本发明的缺氧处理。 在一些情形中, 随着含氧气体的逸出和溶解氧的消耗,溶解氧浓度可以逐渐 P条低到期 望值, 例如约等于 Omg/L的水平。 特别地, 缺氧处理可以通过在停止 曝气的情况下使混合液在沉淀池中緩慢流动的方式实现。合适的沉淀 池可以是平流式、竖流式和辐流式沉淀池。缺氧处理的时间一般由混 合液在缺氧处理装置中的停留时间确定。通常, 在缺氧处理中, 厌氧 生物和兼性生物得到增长, 而好氧生物受到抑制。 在本发明中, 术语 "污泥量"也称污泥含量, 通常是指污泥或污 水或混合液或浓缩混合液中的固体含量或悬浮物含量。固体或悬浮物 解的有机物质)。在一些情况下,污泥量也可以用 MLSS总量表示。 MLSS 是混合液悬浮固体浓度(mixed l iquor suspended so l ids)的简写, 它又称为混合液污泥浓度,它表示的是在曝气池单位容积混合液内所 含有的活性污泥固体物的总重量(mg/L)。 在一个方面,本发明提供一种污泥处理方法,其中所述污泥产生 于污水生物处理过程, 所述方法包括: (1 )将污泥进料与第一混合液 混合得到第二混合液; ( 2 )将第一混合液进行给氧处理得到第三混合 液; (3 )将第三混合液进行缺氧处理得到第四混合液; (4 )将第四混 合液分离得到上清液和第一浓缩混合液; (5 )将上清液排出; 将至少 部分第一浓缩混合液返回步骤(1 )用作第一混合液, 其中未返回步 骤(1 ) 的第一浓缩混合液的污泥量小于污泥进料的污泥量。 根据本发明的污泥处理方法, 未返回步骤(1 ) 的第一浓缩混合 液的污泥量小于污泥进料的污泥量, 也即是说存在污泥量的净输入。 特别是在第一浓缩混合液全部返回步骤(1 ) 的情况下, 污泥量的净 输入就是污泥进料的污泥量(如图 1所示)。 本发明的发明人惊奇地发现,在长期运行时,尽管存在污泥量的 净输入,混合液中的污泥量仍然保持在相对稳定的水平而不会无限制 地增长, 该水平受污泥进料的成分和流量以及其他操作条件的影响, 例如在存在污水进料时, 也受污水进料的流量的影响。 因此, 本发明 的污泥处理方法是一种污泥减量化处理方法。也就是说,本发明的污 泥处理方法能够消解污泥进料中的污泥,使污泥减量。在优选的实施 方案中, 本发明的污泥处理方法可以在污泥进料连续加入的情况下, 长期稳定地运行而无需排泥, 从而消除了污泥的排放。 此外, 本发明 的发明人还惊奇地发现, 即便污泥进料具有较高含量的碳、 氮和磷, 并且不排出任何第一浓缩混合液,上清液中碳、氮的磷含量也能保持 在较低水平, 也就是说, 本发明的污泥处理方法具有显著的去除碳、 氮和磷的效果。 不受任何理论的约束,本发明的发明人认为本发明的污泥处理方 法能够长期稳定地运行而无需排泥的部分可能原因如下。 首先, 由于排出的污泥量小于外加的污泥量, 混合液中的污泥量 本应持续增长,然而在稳定运行中混合液的污泥浓度尽管很高但并未 持续增加而是在高水平下保持稳定(也就是说在稳定运行中, 系统中 混合液的污泥量基本保持不变), 因此可以认为混合液中的生物类群 处于消长平衡的状态, 即新增的污泥量(包括污泥进料的污泥量和混 合液中生物繁殖而增加的污泥量)和死亡并消解的污泥量达到了动态 平衡, 因而没有污泥量的净增长。 在已知的各种污水生物处理方法中, 由于生物的增殖,无论二沉 池的污泥是否回流返回工艺的上游,都有剩余污泥排出。就整个工艺 而言, 由于通常只有污水原水进料而没有污泥的净输入, 因此排出的 污泥量总是大于外加的污泥量。此外, 由于二沉池出水中溶解性有机 物浓度必须处于很低的水平以便满足出水排放要求,曝气池必须采用 足够高的曝气量和足够长的曝气时间以降低水中溶解性有机物的浓 度。 然而, 在好氧条件下, 低有机物浓度通常有利于丝状菌的增殖而 导致污泥膨胀。 同时, 高曝气量和长曝气时间也进一步增加了含较高 浓度污泥的混合液发生污泥膨胀的可能性。 因此,在已知的各种活性 污泥工艺中, 曝气池中的污泥浓度通常难以达到较高水平,也就是说 无法实现生物类群的消长平衡状态。 另外, 由于生物对恶劣环境(例 如较低的营养物浓度)的抵抗, 已知的污泥好氧处理方法和污泥厌氧 处理方法通常仅能消解不足 60%的污泥(也即无法将污泥完全消解), 因此采用这些方法的工艺也仍然需要排出一定量的剩余污泥。 在本发明的污泥处理方法中, 由于主要目的是消解污泥,排出的 上清液中溶解性有机物的浓度可不受限制而处于较高水平,因此有利 地限制了丝状菌的增殖, P条低了需氧量(例如曝气量), 从而减小了 给氧处理例如曝气时发生污泥膨胀的可能性。此夕卜,较高水平的溶解 性有机物为生物体提供了足够的营养,形成了有利于生物的代谢、繁 殖和程序死亡的环境,使得污泥中的生物体在大量繁殖的同时也大量 地消解。 此外, 在本发明的污泥处理方法中, 污泥交替、反复地经历了给 氧处理和缺氧处理,有利于菌胶团细菌的增殖, 污泥的沉降速度和澄 清效果得到提高。 因此,本发明的污泥处理方法可以实现高污泥浓度 而不发生污泥膨胀。 另外, 由于第一浓缩混合液通常大量甚至全部回流返回步骤(1 ) 使得污泥龄相对较长(例如数月、 数年甚至更长), 因此繁殖速率较 慢的能分解难降解物质的微生物得以正常生长,增强了污泥的分解作 用。 同时在高污泥浓度条件下, 依次经过给氧处理和缺氧处理, 混合 液中的可生物降解物质和难生物降解物质(包括死亡生物体)都得到 了快速有效的消解, 使得含碳、 氮、磷等的化合物成为溶解性有机物 随上清液排出或成为挥发性物质而逸出。 综上所述,在本发明的污泥处理方法中, 混合液中的污泥具有优 异的沉降性能和较低的需氧量(例如曝气量)并且能够降解各种有机 物质(包括死亡生物体)使之成为水溶性物质或气态物质, 因此混合 液可以具有相当高的污泥浓度使生物类群处于消长平衡状态而不发 生污泥膨胀,从而使得本发明的污泥处理方法能够长期稳定地运行以 减少甚至完全消除污泥排放。 在一些实施方案中, 步骤( 2 )的给氧处理和步骤( 3 )的缺氧处 理可以在同一构筑物或容器中以续批的方式进行。 例如, 步骤(1 ) 至( 4 )可以在同一构筑物或容器中进行, 其中在步骤( 1 )中将一批 污泥进料与前批污泥进料处理后得到第一浓缩混合液(作为第一混合 液)混合得到第二混合液, 在步骤(2 ) 中将第二混合液进行给氧处 理得到第三混合液, 在步骤(3 ) 中将第三混合液进行缺氧处理得到 第四混合液, 在步骤(4 ) 中将第四混合液分离得到上清液和第一浓 缩混合液, 在步骤( 5 )中将上清液排出并且将至少部分(优选全部 ) 第一浓缩混合液留在所述构筑物或容器中并用作步骤(1 )的第一混 合液, 然后将下一批污泥进料引入所述构筑物或容器并重复上述步 骤。 步骤(5 ) 中, 上清液可以通过能够将上清液排出的设备例如排 液管来排出。采用续批的方式可以节约用地和建设投资。在一些实施 方案中 , 步骤( 2 )的给氧处理和步骤( 3 )的缺氧处理可以在步骤( 4 ) 的分离前反复地进行一次或多次。 在另一些实施方案中, 在本发明的污泥处理方法中, 步骤(2 ) 的给氧处理和步骤(3 ) 的缺氧处理可以在不同的构筑物或容器中以 半连续或连续的方式进行。 例如, 步骤(1 )至(6 )可以在不同的构 筑物中半连续(即一些步骤以连续方式运行而另一些步骤以间歇方式 运行的情形)或连续地进行, 其中在步骤(1 ) 中将污泥进料间歇或 连续地引入第一构筑物并与第一混合液混合得到第二混合液,将第二 混合液间歇或连续地引入第二构筑物以间歇或连续地进行步骤( 2 ) 的给氧处理得到第三混合液,将第三混合液间歇或连续地引入第三构 筑物以间歇或连续地进行步骤(3 )的缺氧处理得到第四混合液, 将 第四混合液通过分离设备间歇或连续地进行步骤(4 ) 的分离以得到 上清液和第一浓缩混合液, 在步骤(5 ) 中将上清液间歇或连续地排 出,将至少部分第一浓缩混合液间歇或连续地引入第一区,并任选地 将第一浓缩混合液的剩余部分间歇或连续地排出, 其中未返回步骤 ( 1 )的第一浓缩混合液的污泥量小于污泥进料的污泥量。 第一、 第 二和第三构筑物可以是各自独立的不同构筑物或者是同一构筑物的 不同区域。如果步骤( 3 )的缺氧处理以沉淀方式进行,那么步骤 ( 4 ) 的分离可以与步骤(3 )在同一构筑物中同时进行(也就是说第三构 筑物也用作分离设备)。 在步骤(5 )中, 上清液可以通过能够将上清 液排出的设备例如排液管排出,第一浓缩混合液可以通过例如污泥回 流管引入第一构筑物。采用半连续或连续的方式可以有利地改善污泥 处理的效率。各步骤是否以间歇或连续方式进行主要根据污泥进料的 流量和成分以及各设备的操作条件来确定,以便有利地优化和稳定运 行从而获得最佳的处理效果。 在本发明的污泥处理方法中, 在步骤(5 )中未返回步骤(1 )的 第一浓缩混合液的污泥量小于污泥进料的污泥量。在一些情形中,在 步骤( 5 )中基本上全部第一浓缩混合液都返回步骤( 1 )用作第一混 合液, 因此基本上没有排出第一浓缩混合液。 然而, 也不排除在连续 操作的某些情况下,瞬时排出的第一浓缩混合液的污泥量大于污泥进 料的污泥量,只要在长期运行中排出的第一浓缩混合液的剩余部分的 污泥量的平均值小于污泥进料的污泥量的平均值从而存在污泥量的 净输入即可。根据本发明的污泥处理方法的一些实施方案,在步骤( 5 ) 中未返回步骤(1 )的第一浓缩混合液的污泥量至多为污泥进料的污 泥量的下列任意比例之一, 例如约 95°/。、 约 85°/。、 约 70%, 约 50°/。、 约 30%, 约 25%, 约 20%, 约 15%, 约 10%, 约 5%, 约 3%, 约 1%, 约 0%。 该比例有利地为约 0%, 也就是说将步骤( 5 )的第一浓缩混合液基本 上全部返回步骤(1)用作第一混合液。 此外, 该比例特别有利地小 于约 30%, 约 25%, 约 20%, 约 15%, 约 10%, 约 5%, 约 3%, 约 1%, 尤其是约 0%, 以便获得较长的泥龄。 不受任何理论约束, 较长的泥 龄使得繁殖速率较慢的能分解难降解物质的微生物得以正常生长,增 强了污泥的分解作用。 同时, 该比例小于约 30%, 约 25%, 约 20%, 约 15%, 约 10%, 约 5%, 约 3%, 约 1%, 尤其是约 0%, 这样也有利于 提高第一、 第二、 第三和第四混合液的污泥浓度。 在一些方案中, 第一浓缩混合液的流量可以为污泥进料流量(在 存在污水进料的情况下,为污水进料和污泥进料的总流量)的 10% ~ 1000%, 例: ¾口 10~20%、 20 - 30%, 30 - 40%, 40 - 60%, 60 - 80%, 80 - 100%, 100 - 150%, 150 - 200%, 200 - 400%, 400 - 600%, 600 ~ 800%、 800 ~ 1000%。该比例也称为第一浓缩混合液的回流比。 合适的回流比有利地使给氧处理时间和 /或缺氧处理时间为期望值。 在一些情况下, 合适的回流比可以较小, 例如为 10~20%、 20-30 %、 30 - 40%, 40 - 60%, 以有利地节约动力消耗。在另一些情况下, 合适的回流比可以较大,例如为 60~80%、 80 ~ 100%、 100 ~ 150%、 150 - 200%, 200 - 400%, 400 - 600%, 600 - 800%, 800 - 1000% 以获得较短的给氧处理时间和 /或缺氧处理时间。 优选的回流比为 50 ~ 150%。 在本发明的污泥处理方法的一些实施方案中, 步骤(2) 的给氧 处理时间小于好氧微生物成为优势群类的时间(例如小于好氧微生物 的世代周期, 例如小于约 5小时), 并且步骤(3)的缺氧处理时间小 于厌氧微生物成为优势群类的时间 (例如小于厌氧微生物的世代周 期, 例如小于约 40小时), 从而使得兼性微生物成为优势群类。 不受 任何理论约束, 可以认为, 由于常温下兼性微生物的世代周期约为 0.2 ~ 0.5 小时, 以兼性微生物为优势群类的污泥在经历交替的给氧 处理(好氧条件)和缺氧处理(缺氧条件和 /或厌氧条件) 时将会发 生大量的生物增殖和生物程序死亡,从而大量消化和降解 (主要包括 而随上清液排出或成为气态化合物而逸出,这在高污泥浓度条件下尤 其明显。 在一些实施方案中, 步骤(2) 的给氧处理时间可以小于例如 5 小时以免好氧微生物成为优势群类,同时还可以大于例如 0.1小时以 使兼性微生物得到足够的增殖并充分抑制厌氧微生物的增殖,从而有 利地使兼性微生物成为优势群类。在一些情形中,给氧处理时间可以 为 0.1 ~ 4小时, 优选 0.5 ~ 2小时, 更优选 0.5 ~ 1.5小时, 例如选 自 0.1~0.2小时、 0.2 ~ 0.3小时、 0.3 ~ 0.4小时、 0.4 ~ 0.5小时、 0.5 ~ 0.6小时、 0.6 ~ 0.8小时、 0.8~1小时、 1~1.2小时、 1.2 ~ 1.5小时、 1.5 ~ 1.8小时、 1.8~2小时、 2 ~ 2.2小时、 2.2 ~ 2.5小 时、 2.5~3小时和 3.5~4小时。 在一些实施方案中, 步骤(2) 的 给氧处理以间歇或连续方式进行,例如以间歇曝气或连续曝气的方式 进行。 在一些实施方案中, 步骤(3) 的缺氧处理时间可以小于例如 6 小时以免厌氧微生物成为优势群类并有利于减小装置尺寸,同时还可 以大于例如 0.1 小时以使兼性微生物得到足够的增殖并充分抑制好 氧微生物的增殖,从而使兼性微生物成为优势群类。缺氧处理时间可 以为 0.8 ~ 6小时,优选 1 ~ 4小时,更优选 1 ~ 3小时,例如选自 0.8 ~ 1小时、 1~1.2小时、 1.2 ~ 1.4小时、 1.4 ~ 1.6小时、 1.6 ~ 1.8小 时、 1.8~2小时、 2 ~ 2.5小时、 2.5~3小时、 3 ~ 3.5小时、 3.5 ~ 4 小时、 4 ~ 4.5小时、 4.5~5小时、 5~5.5小时和 5.5~6小时。 在 一些实施方案中, 步骤(3)的缺氧处理可以沉淀方式进行。 在缺氧 处理以沉淀方式进行时,缺氧处理时间有利地大于 0.5小时,特别有 利地大于 1小时以使沉淀充分完成,同时有利地小于 4小时以减小装 置尺寸。 在一些实施方案中, 给氧处理时间与缺氧处理时间的比为 1: 0.5-1: 6, 优选 1: 1 ~ 1: 3, 更优选 1: 1.5~ 1: 2, 最优选 1: 2, 例 如选自 1: 0.5 ~ 1: 0.6、 1: 0.6~ 1: 0.7、 1: 0.7- 1: 0.8、 1: 0.8 ~ 1: 0.9、 1: 0.9-1: K 1: 1~1: 1.1、 1: 1.1~1: 1.2、 1: 1.2 ~ 1: 1.3、 1: 1.3 ~ 1: 1.4、 1: 1.4 ~ 1: 1.5、 1: 1.5 ~ 1: 1.6、 1: 1.6 ~ 1: 1.7、 1: 1.7 ~ 1: 1.8、 1: 1.8-1: 1.9, 1: 1.9-1: 2, 1:2-1:2.1, 1: 2.1~1:2.2、 1: 2.3 ~ 1: 2.4、 1: 2.4 ~ 1: 2.5、 1: 2.5 ~ 1: 2.6、 1: 2.6 ~ 1: 2.8、 1: 2.8 ~ 1: 3、 1: 3-1: 3.2、 1: 3.2~ 1: 3.4、 1: 3.4 ~ 1: 3.6、 1: 3.6 ~ 1: 3.8、 1: 3.8 ~ 1: 4、 1: 4 ~ 1: 4.5、 1: 4.5 ~ 1: 5、 1: 5 ~ 1: 5.5和 1: 5.5 ~ 1: 6, 以有利 地使兼性微生物成为优势群类。 在一些实施方案中,为使污泥经历足够的给氧处理以便有利地使 兼性微生物成为优势群类并促进污泥的消化和水解, 步骤(2) 的第 三混合液的溶解氧浓度可以为 0.1 - 4mg/L, 优选 1.5 - 3mg/L, 更优 选 2 ~ 3mg/L,例如选自 0.1 ~ 0.3mg/L、 0.3 ~ 0.5mg/L、 0.5 ~ 0.7mg/L、 0.7 ~ 0.9mg/L、 0.9 ~ 1. lmg/L、 1.1 ~ 1.3mg/L、 1.3-1.5mg/L、 1.5 ~ 1.7mg/L、 1.7 ~ 1.9mg/L、 1.9 ~ 2. lmg/L, 2.1 ~ 2.3mg/L、 2.3 ~
2.5mg/L、 2.5 ~ 2.7mg/L、 2.7 ~ 2.9mg/L、 2.9 ~ 3. lmg/L, 3.1 -
3.3mg/L、 3.3~ 3.5mg/L, 3.5 ~ 3.7mg/L和 3.7 ~ 3.9mg/L。 在一些实施方案中, 在步骤( 1 )之前将污泥进料进行给氧处理。 不受任何理论的限制,可以认为这样更有利于使兼性微生物成为优势 群类。 此外, 当污泥进料来自活性污泥工艺的二沉池时, 由于污泥进 料中的有机物含量相当低,污泥进料中的生物在给氧处理时将主要发 生内源消化从而减小了污泥量。 同时,这样的给氧处理也可以减轻步 骤( 2 )的给氧处理的需氧量(例如曝气量), 进一步减少第一区发生 污泥膨胀的可能性。在一些实施方案中, 污泥进料给氧处理的时间可 以为 0.1 ~0.5小时、 0.5~1小时、 1~1.5小时、 1.5 ~2小时和 2~
2.5小时, 处理后污泥进料的溶解氧浓度选自 0.1~ 0.5mg/L、 0.5- lmg/L、 l ~ 1.5mg/L、 1.5 ~ 2mg/L、 2 ~ 2.5mg/L、 2.5 ~ 3mg/L、 3~
3.5mg/L和 3.5 ~ 4mg/L。在一些实施方案中,这样的给氧处理以间歇 或连续方式进行, 例如以间歇或连续曝气的方式进行。 在一些实施方案中,为使污泥经历充分的缺氧处理以便有利地使 兼性微生物成为优势群类并促进污泥的消化和水解, 在步骤(2)和 (3)之间可以对第三混合液进行脱氧处理。 例如, 可用脱气池进行 脱氧处理,其中混合液中的含氧气泡上浮,从而使混合液的溶解氧含 量不再增长, 为随后的缺氧处理做好准备。在根据本发明的污泥处理 方法的一些实施方案中, 脱氧处理的时间可以为 0.1 ~ 0.2 小时、 0.2 ~ 0.3小时、 0.3 ~ 0.5小时、 0.5~0.8小时和 0.8~1小时, 处 理后的第三混合液的溶解氧浓度选自小于 0. lmg/L, 小于 0.05mg/L 和约 0mg/L。 在一些实施方案中, 给氧处理时间: 脱氧处理时间: 缺氧处理时 间的比例可以为 1: ( 0.1 ~ 0.5 ): ( 0.5 ~ 4 ), 优选 1: (0.1 -0.3): (1~ 3),更优选为 1: ( 0.1 ~ 0.2 ): ( 1.5 ~ 2.5 ),例如优选为 1: 0.1: 1或 1: 0.15: 2。 在一些实施方案中,在本发明的污泥处理方法中, 污泥进料可以 是一股或多股污泥进料,优选新鲜污泥进料,各股污泥进料可以相同 或不同。 通常, 污泥进料的含水率例如为至少 40%, 至少 60%, 至少 80%, 至少 90%, 至少 95%, 至少 98%或更高, 优选 97%或更高。 在一 些情况下,污泥进料也可以是干污泥等低含水量污泥及其与水、污水、 有机营养物或其它污泥进料的混合物。 根据本发明的污泥处理方法的一些实施方案, 步骤(1)还包括 将污水进料引入第一混合液。 在存在污水进料的情形中, 步骤(1) 中污泥进料与污水进料的流量比可以选自 1: 100 ~ 1: 50、 1: 50 - 1:20、 1: 20-1: 10, 1: 10-1: 5, 1: 5~ 1: 2、 1:2~1: 1.5、 1: 1.5 ~ 1: 1、 1: 1~1: 0.8、 1: 0.8 ~ 1: 0.5、 1: 0.5 ~ 1: 0.2、 1: 0.2-1: 0.1, 1: 0.1 ~ 1: 0.05、 1: 0.05 - 1: 0.02和 1: 0.02 - 1: 0.01。 在一些实施方案中,步骤( 2 )中第二混合液的污泥体积指数( SVI, 常用 SVI3Q表示, 指混合液在 lOOOmL量筒中静置 30分钟以后, 1克 活性污泥悬浮固体所占的体积, 单位为 mL/g)应当小于给氧处理时 发生污泥膨胀的最小值。 根据本发明的污泥处理方法的一些实施方 案, 污泥体积指数例如 SVI3Q可以小于 300ml/g, 小于 200ml/g, 小于 150ml/g, 小于 100ml/g, 或小于 50ml/g。 在一些实施方案中, 步骤(1) 中第二混合液的污泥浓度可以为 使生物处于消长平衡状态时的浓度。根据一些实施方案, 在步骤(1) 中第二混合液的污泥浓度为至少约 2500 ~ 3000mg/L、 3000 - 3500mg/L、 3500 - 4000mg/L, 4000 - 4500mg/L, 4500 ~ 5000mg/L, 5000 ~ 5500mg/L、 5500 - 6000mg/L, 6000 - 6500mg/L, 6500 - 7000mg/L、 7000 - 7500mg/L, 7500 - 8000mg/L, 8000 ~ 8500mg/L, 8500 - 9000mg/L , 9000 - 9500mg/L , 9500 - l OOOOmg/L , 10000 - 12000mg/L、 12000 - 14000mg/L , 14000 - 16000mg/L , 16000 - 18000mg/L、 18000 ~ 20000mg/L和至少约 20000mg/L, 优选 3000 - 20000mg/L, 更优选 4000 ~ 15000mg/L。 在一些实施方案中,上述污泥处理方法还包括回收气态含磷化合 物的回收步骤。 气态含磷化合物包括步骤(2 )和 /或步骤(3 ) 中产 生的磷化氢等。 例如, 该回收步骤可以与步骤(2 )和 /或步骤(3 ) 同时进行以回收步骤( 2 )和 /或步骤( 3 )中产生的气态含磷化合物。 该回收步骤可以是任何合适的回收气态含碌混合物的方法,例如可以 是能够将气态含磷物质转化为液态或固态物质的方法,例如可以通过 冷冻或者通过用能够物理和 /或化学吸附气态含磷物质的吸收剂的吸 收、冲洗或吸附来进行该回收步骤。所述吸收剂可以是能够溶解该气 态含磷化合物的物质或能够与该气态含磷化合物反应的物质。 例如, 能够吸收磷化氢气体的物质包括例如高锰酸钾溶液、高锰酸钾和苛性 碱的混合溶液、 氯化铁溶液、 次溴酸钠溶液等。 对于磷化氢, 还可用 活性碳等吸附剂吸附,或用臭氧氧化成低毒物或者在严格控制下燃烧 等方式进行回收。 在另一方面, 本发明还提供一种污水生物处理方法, 包括
( 1 )将污泥进料与第一混合液混合得到第二混合液;
( 2 )将第二混合液进行给氧处理得到第三混合液;
( 3 )将第三混合液进行缺氧处理得到第四混合液;
( 4 )将第四混合液分离得到上清液和第一浓缩混合液;
( 5 )将上清液排出; 将至少部分第一浓缩混合液返回步骤( 1 ) 用作第一混合液, 其中未返回步骤(1 ) 的第一浓缩混合液的污泥量 小于污泥进料的污泥量;
( 6 )将至少部分步骤( 5 )的上清液进行污水生物处理得到第二 浓缩混合液和净化出水;
( 7 )将净化出水排出; 以及任选地将至少部分步骤( 6 )的第二 浓缩混合液返回步骤(1 )用作污泥进料; 其中将污水进料引入步骤(1 )与污泥进料和第一混合液混合得 到第二混合液和 /或引入步骤(6 ) 中与所述至少部分步骤(5 ) 的上 清液一起进行污水生物处理。 可见步骤( 1 )至( 5 )组成了前述本发明的污泥处理方法。 因此, 本发明的污水生物处理方法实际上是前述本发明的污泥处理方法在 污水生物处理中的应用。由于本发明的污泥处理方法中排出的上清液 通常仍含有较高浓度的可溶性有机污染物,该上清液通常需要进一步 处理才能达到环境安全的排放标准。 因此, 在一些实施方案中, 污水 进料引入步骤( 1 ), 由此步骤( 1 )至( 5 )形成的本发明的污泥处理 方法可以作为一级生物处理步骤置于作为二级生物处理的步骤( 6 ) 的污水生物处理之前, 污水进料先经过该一级生物处理得到上清液, 然后上清液作为进料经二级生物处理得到净化出水。优选该净化出水 是环境安全的, 符合通常的排放标准。 同时, 二级生物处理中产生的 剩余污泥(即: 第二浓缩混合液)可以作为污泥进料在一级生物处理 中得到消解,从而有利地减少甚至避免整个污水生物处理中的污泥排 放。 在另一些实施方案中, 污水进料由步骤(6 ) 引入, 由此从污水 进料的角度来看, 步骤( 1 )至( 5 )形成的本发明的污泥处理方法置 于步骤( 6 )的污水生物处理之后, 主要用于消解步骤( 6 )的污水生 物处理中产生的剩余污泥(即: 第二浓缩混合液)。 同时, 步骤(5) 的上清液也可以作为污水进料引入步骤( 6 )。在再另一些实施方案中, 污水进料也可以同时引入步骤(1)和步骤(6)。 在一些实施方案中, 可以将步骤(6)的第二浓缩混合液的 1~ 10%、 10-20%, 20 - 30%, 30 - 40%, 40 - 50%, 50 - 60%, 60 - 70%, 70 - 80%, 80 - 85%, 85 - 90%, 90 ~ 95%或 95 - 100%, 特别有利地是 基本上 100%用作步骤 ( 1 )的污泥进料, 以便有利地利用上述污泥处 理方法将第二浓缩混合液部分地甚至基本上完全消解,从而使整个污 水生物处理方法排出的污泥减少甚至基本上完全消除。在一些实施方 案中, 来自步骤(6)的第二浓缩混合液占步骤(1)的污泥进料的比 例为 1~10%、 10-20%, 20 - 30%, 30 - 40%, 40 - 50%, 50 - 60%, 60- 70%、 70 - 80%, 80 - 85%, 85 - 90%, 90 ~ 95%或 95 ~ 100%。 根据本发明的污水生物处理方法,前述本发明的污泥处理方法作 为第一生物处理步骤可以与任何适合作为第二生物处理步骤的污水 生物处理方法结合。与单独采用作为第二生物处理步骤的污水生物处 理方法时相比,本发明的污水生物处理方法显著减少甚至完全消除了 剩余污泥的排放, 同时获得了良好的处理效果。 在本发明的污水生物处理方法中, 如果污水进料在步骤(1)和 步骤(6) 中同时引入, 引入步骤(1)的污水进料与引入步骤(6) 的污水进料的比例可以根据需要任意选择, 以有利地平衡系统的负 荷, 优化整个污水生物处理方法的效果。 在一些实施方案中, 特别有利地在步骤(1)中将污水进料引入。 由于步骤(1)的混合液具有很高的污泥浓度, 可以有利地对抗污水 进料的水量和污染物等方面的冲击负荷,同时高浓度的污泥也可以加 快反应速度使污水进料中的污染物在高浓度污泥作用下高效、快速消 解,一些难降解物质也可在第一生物处理步骤中逐渐降解为易降解物 质, 从而有利于改善污水处理效果、 缩小整个污水处理装置的体积、 节约用地、减少设备投资和运转费用。这一点对 COD通常较低的污水, 例如城市生活污水的处理尤其有利, 因为步骤( 1 )至( 5 )组成的污 泥处理过程实际上将部分污泥进料转化为易降解的物质从而适当增 加了上清液中的 COD浓度,使得后续针对上清液进行生物处理的过程 能够更加有效地去除水中的磷和氮,从而提高净化出水的品质。因此, 本发明特别适合于 COD值低于 500mg/L,低于 350mg/L,低于 300mg/L, 低于 250mg/L, 低于 200mg/L, 低于 150mg/L或低于 100mg/L的污水 进行污水生物处理。 当然,在污水进料中各种污染物的比例不平衡而 导致碳源缺乏时,也可以在在污水进料中补充合适的碳源,例如醇类 例如甲醇和其它有机营养物例如淀粉、 糖蜜等。 根据本发明的污水生物处理方法可以特别有利地将任何排出剩 余污泥的污水生物处理方法(例如各种常规的好氧污水生物处理方法 和厌氧污水生物处理方法)作为步骤(6 )的污水生物处理步骤。 在 一些实施方案中,步骤( 6 )的污水生物处理步骤可以是根据 Wuhrmann 工艺、 A/0工艺、 Bardenpho工艺、 Phoredox工艺、 A2/0工艺、 倒置 A70工艺、 UCT工艺、 MUCT工艺、 VIP工艺、 0WASA工艺、 JHB工艺、 TNCU工艺、 Dephanox工艺、 BCFS工艺、 MSBR工艺、 SBR工艺、 AB 工艺、 氧化沟工艺、 生物膜工艺、 流动床工艺或其组合的污水生物处 理步骤。 图 3 示出才艮据本发明污水生物处理方法的一些实施方案的工艺 流程的示意图, 其中 "进水" 代表污水进料, "污泥消解装置" 代表 能够进行根据本发明的污泥处理方法(即步骤( 1 )至( 5 ) )的装置, "常规污水处理装置" 代表能够进行步骤(6 ) 的污水生物生物处理 步骤的任意合适的污水处理装置, "出水 "代表净化出水, "剩余污泥 回流" 代表用作步骤(1 ) 的污泥进料的第二浓缩混合液。 图 4 示出才艮据本发明污水生物处理方法的另一些实施方案的工 艺流程的示意图,其中各个术语与图 3中术语的意思相同,而 "污泥" 代表另一来源的污泥进料。 图 5为传统氧化沟污水处理工艺流程图。该工艺可以作为本发明 污水生物处理方法的步骤(6 ) 的污水生物处理步骤, 其中 "进水" 可以是步骤(5 ) 的上清液和 /或污水进水, "出水" 意指净化出水, "剩余污泥" 可以作为步骤(1 ) 的污泥进料。 图 6为传统 SBR污水处理工艺流程图。该工艺可以作为本发明污 水生物处理方法的步骤(6 )的污水生物处理步骤, 其中各个术语的 意思同图 5。 SBR ( Sequenc ing Batch Reactor Act ivaten Sludge Process )是序批式活性污泥法, 好氧池的入水紧贴池底由过水洞进 入 SBR池, 污水透过 SBR池中的污泥层出水时, 污泥层能够起到过滤 和截留的作用, P条低了出水中悬浮物的含量,使得出水水质优于普通 二沉池的出水。本发明还采用空气堰控制出水, 防止曝气期间的悬浮 物进入出水堰从而可有效地控制出水悬浮物。 图 7为传统 AB法污水处理工艺流程图。 该工艺可以作为本发明 污水生物处理方法的步骤(6 ) 的污水生物处理步骤, 其中各个术语 的意思同图 5。 图 8为 A/0法污水处理工艺流程图。该工艺可以作为本发明污水 生物处理方法的步骤(6 ) 污水处理步骤, 其中各个术语的意思同图 5。 图 9为 A20法污水处理工艺流程图。该工艺可以作为本发明污水 生物处理方法的步骤(6 ) 的污水生物处理步骤, 其中各个术语的意 思同图 5。 图 10为 MSBR污水处理工艺流程图。该工艺可以作为本发明污水 生物处理方法的步骤(6 ) 的污水生物处理步骤, 其中各个术语的意 思同图 5。 在另一方面,本发明还提供一种用于上述污泥处理方法的污泥处 理装置, 包括: 能够将污泥进料与第一混合液混合得到第二混合液的 第一设备;能够将第二混合液进行给氧处理得到第三混合液的第二设 备; 能够将第三混合液进行缺氧处理得到第四混合液的第三设备; 能 够将第四混合液分离得到上清液和第一浓缩混合液的第四设备;能够 将上清液排出的第五设备;能够将至少部分第一浓缩混合液引入第一 设备并且使未返回第一设备的第一浓缩混合液的污泥量小于污泥进 料的污泥量的第六设备。 在一些实施方案中,第一设备可以是任意合适的能够混合污泥进 料与混合液的构筑物或容器。 第二设备可以与第一设备是同一设备, 或者是不同的设备,例如与第一设备水利学连通的能够使含氧气体例 如空气与混合液接触的设备,例如带有曝气设备的曝气池。第三设备 可以与第一设备和第二设备是同一设备,其在例如停止曝气的情况下 实现缺氧处理(以序批方式运行); 或者第三设备与第二设备可以是 不同的设备,例如与第二设备水利学连通的能够基本上避免含氧气体 与混合物接触的构筑物或容器(例如沉淀池)(以连续或半连续方式 运行)。第四设备可以与第一设备、第二设备和第三设备为同一设备, 或者仅与第三设备为同一设备, 其在例如停止曝气和 /或搅拌的情况 下通过例如沉淀来实现上清液与第一浓缩混合液的分离(以序批方式 运行); 或者第四设备可以为独立的与第三设备连通的能够将混合液 分离得到上清液和第一浓缩混合液的设备,例如独立的沉淀池、 离心 分离设备或过滤分离设备(以连续或半连续方式运行)。 第五设备可 以是任意合适的能够从第四设备中取出上清液的设备, 例如排水口、 排水管、 汲水器等。 第六设备可以与第一设备、 第二设备、 第三设备 和第四设备为同一设备(以序批方式运行); 或者为独立的能够将至 少部分第一浓缩混合液从第四设备输送到第一设备的设备,例如与第 一设备和第四设备水利学连通的任选具有输送泵和控制阀的回流管 (以连续或半连续方式运行)。 第六设备还任选地具有能够让第一浓 缩混合液的剩余部分排出的设备, 例如具有控制阀的排液口或排液 管,以控制未返回第一设备的第一浓缩混合液的污泥量小于污泥进料 的污泥量。 在一些实施方案中, 第二设备可以是曝气池、 氧化沟、 流化床、 移动床或膜设备等, 优选为曝气池, 更优选为推流式矩形曝气池。 第 三设备优选为沉淀池, 更优选为推流式矩形沉淀池。 才艮据本发明的污泥处理装置的一些实施方案,所述污泥处理装置 还包括与第一设备连通的能够对污泥进料进行给氧处理的设备,例如 污泥预曝气设备。 才艮据本发明的污泥处理装置的一些实施方案,所述污泥处理装置 还包括设置在第二设备和第三设备之间并分别与其水利学连通的能 够进行脱氧处理的脱氧设备, 例如脱气池。 根据本发明的污泥处理装置的一些实施方案,其中第二设备经设 计使得给氧处理时间能够选自 0. 1 ~ 0. 2小时、 0. 2 ~ 0. 3小时、 0. 3 ~ 0.4小时、 0.4 ~ 0.5小时、 0.5 ~ 0.6小时、 0.6 ~ 0.8小时、 0.8 ~ 1 小时、 2小时、 1.2 ~ 1.5小时、 1.5 ~ 1.8小时、 1.8~2小时、 2-2.2小时、 2.2 ~ 2.5小时、 2.5 ~ 3小时和 3.5 ~ 4小时,优选 1.5 ~
3小时。 例如, 当以连续方式运行时, 可以根据第二设备中第二混合 液的流量,将期望的给氧处理时间作为第二混合液的停留时间来确定 第二设备的体积。 根据本发明的污泥处理装置的一些实施方案,其中第三设备经设 计使得缺氧处理时间能够选自 0.8 ~ 1小时、 1 ~ 1.2小时、 1.2 ~ 1.4 小时、 1.4 ~ 1.6小时、 1.6 ~ 1.8小时、 1.8~2小时、 2 ~ 2.5小时、 2.5~3小时、 3 ~ 3.5小时、 3.5~4小时、 4 ~ 4.5小时、 4.5 ~ 5小 时、 5~5.5小时和 5.5~6小时, 优选 3~4小时。 例如, 当以连续 方式运行时,可以根据第三设备中第三混合液的流量,将期望的缺氧 处理时间作为第三混合液的停留时间来确定第二设备的体积。 在一些情况下,第二设备和第三设备经设计使得给氧处理时间与 缺氧处理时间的比能够选自 1:0.5 ~ 1:1、 1:1-1:1.5, 1:1.5-1: 2、 1:2-1:2.5, 1: 2.5-1: 3, 1: 3-1: 3.6, 1:3.6-1:4, 1:4-1:4.5, 1:4.5 ~ 1:5、 1: 5~1: 5.5和 1: 5.5~1: 6, 优选 1: 1 ~ 1: 3。 例如, 当以连续方式运行时 ,可以根据期望的给氧处理时间与缺氧处理时间 的比来确定第二设备与第三设备的体积比。 才艮据本发明的污泥处理装置的一些实施方案,所述污泥处理装置 还包括能够收集并回收气态含磷化合物的回收设备。例如,该回收设 备可以与第二设备和 I或第三设备连通以将第二设备和 I或第三设备 中产生的气态含磷化合物回收。在一些实施方案中,该回收设备可以 是冷冻设备、燃烧设备、或者具有固体或液体吸附剂的吸附塔、吸收 罐等。 在另一方面,本发明还提供一种用于上述污水生物处理方法的污 水生物处理装置, 包括: 能够将污泥进料与第一混合液混合得到第二 混合液的第一设备;能够将第二混合液进行给氧处理得到第三混合液 的第二设备;能够将第三混合液进行缺氧处理得到第四混合液的第三 设备;能够将第四混合液分离得到上清液和第一浓缩混合液的第四设 备; 能够将上清液排出的第五设备; 能够将至少部分第一浓缩混合液 引入第一设备并且使未返回第一设备的第一浓缩混合液的污泥量小 于污泥进料的污泥量的第六设备;能够将至少部分第五设备排出的上 清液进行污水生物处理得到第二浓缩混合液和净化出水的第七设备; 能够将净化出水排出的第八设备; 能够将污水进料引入第一设备和 / 或第七设备的第九设备,以及任选的能够将至少部分第二浓缩混合液 引入第一设备的第十设备。 根据本发明的污水生物处理装置的一些实施方案,第七设备是能 够根据 Wuhrmann工艺、 A/0工艺、 Bardenpho工艺、 Phoredox工艺、 A2/0工艺、 倒置 A2/0工艺、 UCT工艺、 MUCT工艺、 VIP工艺、 0WASA 工艺、 JHB工艺、 TNCU工艺、 Dephanox工艺、 BCFS工艺、 MSBR工艺、 SBR工艺、 AB工艺、 氧化沟工艺、 生物膜工艺、 流动床工艺或其组合 进行污水生物处理的设备。 在另一方面,本发明还提供一种污泥减量化污水处理系统,包括: 常规污水处理装置和与其进水口连接的污泥消解装置,所述常规污水 处理装置的剩余污泥管连接至污泥消解装置。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述污 泥消解装置包括高浓度污泥反应装置。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述污 泥消解装置包括厌氧沉淀装置,所述高浓度污泥反应装置的出水口与 厌氧沉淀装置的入水口连接, 所述厌氧沉淀装置包括第一污泥回流 管, 所述第一污泥回流管连接至高浓度污泥反应装置。 根据本发明的污泥减量化污水处理系统的一些实施方案,所述剩 余污泥回流管将全部剩余污泥回流至污泥消解装置。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述污 泥消解装置包括厌氧沉淀装置,所述高浓度污泥反应装置的出水口与 厌氧沉淀装置的入水口连接, 所述厌氧沉淀装置包括第一污泥回流 管,所述第一污泥回流管连接至高浓度污泥反应装置,所述剩余污泥 回流管将全部剩余污泥回流至污泥消解装置。 根据本发明的污泥减量化污水处理系统的一些实施方案,其特征 在于, 高浓度污泥反应装置的污泥浓度为 4000mg/L ~ 20000mg/L; 例 如 6000mg/L、 8000mg/L、 10000mg/L , 12000mg/L、 14000mg/L、 15000mg/L 、 16000mg/L或者 18000mg/L。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述高 浓度污泥反应装置的水力停留时间为 1. 5h ~ 3. Oh , 出口溶解氧为 lmg/L ~ 1. 5mg/L a. 5mg/L ~ 2mg/L, 2mg/L ~ 2. 5mg/L或 2. 5mg/L ~ 3mg/L。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述污 泥回流管将 0. 4Q - 0. 7Q的污泥回流至高浓度污泥反应装置。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述高 浓度污泥反应装置与厌氧沉淀装置之间设置脱氧装置。 根据本发明的污泥减量化污水处理系统的一些实施方案,还包括 剩余污泥曝气池,所述常规污水处理装置的剩余污泥管先连接至剩余 污泥曝气池, 剩余污泥曝气池再与高浓度污泥反应装置连接。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述污 泥消解装置的进水口处设置预处理装置,所述预处理装置为至少一级 格册。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述预 处理装置为两级格栅。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述常 规污水处理装置包括依次串联的厌氧反应装置、好氧反应装置和沉淀 装置,沉淀装置包括第二污泥回流管和剩余污泥管,所述第二污泥回 流管连接至厌氧反应装置。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述好 氧反应装置为好氧池或氧化沟。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述常 规污水处理装置包括依次串联的厌氧反应装置、缺氧反应装置、好氧 反应装置和沉淀装置, 沉淀装置包括第三污泥回流管和剩余污泥管, 所述第三污泥回流管连接至缺氧反应装置。 根据本发明的污泥减量化污水处理系统的一些实施方案,所述沉 淀装置为 SBR池或沉淀池。 才艮据本发明的污泥减量化污水处理系统的一些实施方案, 所述 SBR 池的污泥浓度为 2000mg/L ~ 4000mg/L, 溶解氧含量为 2mg/L ~ 4mg/L,在一周期内静沉时间为 lh ~ 1. 5h, 恒水位排水时间为 1. 5h ~ 2. 5h。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述第 二污泥回流管连接至厌氧反应装置, 将 0. 5Q - 1Q的污泥回流至厌氧 反应装置。 才艮据本发明的污泥减量化污水处理系统的一些实施方案,所述第 三污泥回流管连接至厌氧反应装置, 将 0. 5Q - 1Q的污泥回流至厌氧 反应装置。 在另一方面,本发明还提供一种污泥减量化污水处理方法,其特 征在于, 包括: 步骤 a )使污水与污泥的混合液进行污泥消解反应; 步骤 b )将污泥消解反应后的污水进行常规污水处理; 步骤 c )将处理后的污水排出, 使常规污水处理产生的剩余污泥 回流参与污泥消解反应。 根据本发明的污泥减量化污水处理方法的一些实施方案,其特征 在于, 所述步骤 a )中污泥消解反应包括对污水和污泥的混合液进行 高浓度污泥反应。 才艮据本发明的污泥减量化污水处理方法的一些实施方案,所述步 骤 a )中污泥消解反应包括对高浓度污泥反应后的污水与污泥的混合 液进行厌氧沉淀, 经厌氧沉淀的污泥回流参与高浓度污泥反应。 根据本发明的污泥减量化污水处理方法的一些实施方案,所述剩 余污泥回流为全部回流。 才艮据本发明的污泥减量化污水处理方法的一些实施方案,所述步 骤 a )中污泥消解反应包括对高浓度污泥反应后的污水与污泥的混合 液进行厌氧沉淀,经厌氧沉淀的污泥回流参与高浓度污泥反应,所述 剩余污泥回流为全部回流。 才艮据本发明的污泥减量化污水处理方法的一些实施方案,所述高 浓度污泥反应时,污泥浓度为 4000mg/L - 20000mg/L;例如 6000mg/L、 8000mg/L、 10000mg/L , 12000mg/L、 14000mg/L、 15000mg/L 、 16000mg/L或者 18000mg/L。 才艮据本发明的污泥减量化污水处理方法的一些实施方案,所述高 浓度污泥反应的水力停留时间为 1. 5h ~ 3. Oh,出口溶解氧为 lmg/L ~ 1. 5mg/L Λ. 5mg/L ~ 2mg/L, 2mg/L ~ 2. 5mg/L或 2. 5mg/L ~ 3mg/L。 根据本发明的污泥减量化污水处理方法的一些实施方案,所述厌 氧沉淀的污泥回流参与高浓度污泥反应的回流比为 0. 4Q - 0. 7Q。 才艮据本发明的污泥减量化污水处理方法的一些实施方案,所述高 浓度污泥反应后的污水和污泥的混合液先进行脱氧再进行厌氧沉淀。 才艮据本发明的污泥减量化污水处理方法的一些实施方案,所述剩 余污泥先进行污泥曝气再进行高浓度污泥反应。 才艮据本发明的污泥减量化污水处理方法的一些实施方案,所述污 泥曝气的溶解氧含量为 0. 2mg/L - 0. 9mg/L。 才艮据本发明的污泥减量化污水处理方法的一些实施方案,污水进 行污泥消解反应前先进行预处理, 清除杂物。 才艮据本发明的污泥减量化污水处理方法的一些实施方案,所述步 骤 b )中常规污水处理包括厌氧反应、 好氧反应和沉淀, 好氧反应后 的污水经过沉淀后排出, 产生的污泥回流参与厌氧反应。 才艮据本发明的污泥减量化污水处理方法的一些实施方案,所述步 骤 b ) 中常规污水处理包括厌氧反应、 缺氧反应、 好氧反应和沉淀, 好氧反应后的污水经过沉淀后排出, 产生的污泥回流参与厌氧反应。 根据本发明的污泥减量化污水处理方法的一些实施方案,所述产 生的污泥回流参与厌氧反应的回流比为 0. 5Q ~ 1Q。 根据本发明的污泥减量化污水处理方法的一些实施方案,所述沉 淀采用 SBR工艺。 才艮据本发明的污泥减量化污水处理方法的一些实施方案, 所述 SBR 工艺采用的污泥浓度为 2000mg/L ~ 4000mg/L , 溶解氧含量为 2mg/L ~ 4mg/L, 在一周期内静沉时间为 lh ~ 1. 5h, 恒水位排水时间 为 1. 5h ~ 2. 5h。 在另一方面,本发明还提供一种污泥减量化污水处理系统,其特 征在于, 包括: 依次串联的高浓度污泥反应装置、厌氧沉淀装置和常 规污水处理装置,所述厌氧沉淀装置的污泥回流管连接至高浓度污泥 反应装置,所述常规污水处理装置的剩余污泥管与高浓度污泥反应装 置连接。 根据本发明的污泥减量化污水处理系统的一些实施方案,高浓度 污泥反应装置的污泥浓度为 4000mg/L ~ 20000mg/L ; 例如至少 6000mg/L、 至少 8000mg/L、 至少 10000mg/L, 至少 12000mg/L、 至少 14000mg/L、 至少 15000mg/L、 至少 16000mg/L或者至少 18000mg/L。 在一些实施方案中, 本发明的污水生物处理装置可以是如图 11、 12或 13所示流程的装置, 其中污泥消解装置包括依次串联的高浓度 污泥反应池、 脱氧池和厌氧沉淀池。 污泥消解池前优选设置预处理装置, 预处理装置为至少一级格 栅, 格栅是污水处理厂的第一道处理设施, 具体可设置两级格栅, 首 先通过第一级格栅将污水中较大的悬浮物去除,然后污水再通过第二 级格栅进一步去除较小的悬浮物,第一级格栅的栅条净距大于第二级 格栅的栅条净距, 如: 第一级格栅为粗格栅, 栅条净距 20腿, 安装 角度 60度, 第二级格栅为细格栅, 栅条净距 6mm, 安装角度 60度。 高浓度污泥反应装置具体为高浓度污泥反应池,在高浓度污泥反 应池中对预处理后的污水、厌氧沉淀装置回流的污泥和由系统末端的 沉淀装置回流的剩余污泥进行曝气混合,采用推流式矩形池型。在沉 淀装置与高浓度污泥反应装置之间设置剩余污泥曝气池,剩余污泥曝 气池与沉淀装置和高浓度污泥反应装置之间分别通过剩余污泥管连 接, 回流的剩余污泥流入剩余污泥曝气池中, 污水和厌氧沉淀装置回 流的污泥直接流入高浓度污泥反应池,然后经过曝气后的剩余污泥再 流入高浓度污泥反应池与污水和污泥的混合液充分混合。 高浓度污泥反应池在较高的污泥浓度下运行, 水力停留时间短, 以兼氧、好氧的方式运行, 高浓度污泥反应池与后续的厌氧沉淀装置 之间还存在污泥循环,本发明中来自厌氧沉淀装置的污泥向高浓度污 泥反应池回流。 由于来自各时段的污水水质水量不均匀且波动性较 大, 高浓度污泥反应池还可以起到緩冲的作用,避免冲击负荷对生化 处理的影响。 厌氧沉淀装置具体为厌氧沉淀池,厌氧沉淀池中的污泥回流入高 浓度污泥反应池与污水和剩余污泥共同参与反应,可采用无堵塞污泥 泵实现污泥循环。作为优选, 高浓度污泥反应装置与厌氧沉淀装置之 间还包括脱氧装置,污水和污泥的混合液进行脱氧后再进入厌氧沉淀 池, 避免将溶解氧带入厌氧沉淀池中, 对厌氧反应造成影响。 常规污水处理装置包括依次串联的厌氧反应装置、好氧反应装置 和沉淀装置。厌氧池优选采用推流式, 池内设置折流板, 也可以采用 完全混合式,来自系统末端的沉淀装置的污泥回流入厌氧池与污水混 合。好氧反应装置为好氧池,也可以是其它常规的好氧反应装置如氧 化沟, 串联在厌氧池之后。好氧池中设置曝气装置, 如采用三叶罗茨 鼓风机和 He280型动力扩散旋混曝气装置。 沉淀装置具有沉淀功能, 沉淀装置设置污泥回流管和剩余污泥 管, 可以为 SBR ( Sequencing Batch Reactor Act ivaten Sludge Process )池, 也可以为沉淀池。 SBR是序 4比式活性污泥法, 好氧池 的入水紧贴池底由过水洞进入 SBR池,污水透过 SBR池中的污泥层出 水时, 污泥层能够起到过滤和截留的作用, P条低了出水中悬浮物的含 量,使得出水水质优于普通二沉池的出水。本发明还采用空气堰控制 出水,防止曝气期间的悬浮物进入出水堰从而可有效地控制出水悬浮 物。
SBR池与厌氧池之间连接有污泥回流管路,厌氧池、好氧池和 SBR 池组成 OSA ( Oxic- Sett l ing- Anaerobic )工艺, 即好氧 -沉淀 -厌氧 法,是在常规的活性污泥法中设置一个厌氧段,使微生物交替进入好 氧和厌氧环境, 细菌在好氧阶段所获 ATP 不能立即用于合成新的细 胞, 而是在厌氧段作为维持细胞生命活动的能量被消耗,微生物分解 和合成代谢相对分离, 而不像通常条件下紧密偶联,从而达到污泥减 量的效果。 0SA工艺能够使污泥产生量下降, 改善污泥的沉降性能, 增加脱除氨氮的能力。
SBR池与高浓度污泥反应池之间连接有剩余污泥管, 产生的剩余 污泥不外排, 而是回流至前端的高浓度污泥反应池。 为了 SBR池恒水位运行和循环连续排水, SBR池设为两组并联运 行。从高污泥负荷池到 SBR池按照由高到低的位置依次串联布置,使 得污水能够依靠重力自流, 减少污水提升次数, 节约电能; 且各个处 理单元采用组合式连体结构, 多池串联推流,省去各处理单元之间大 量的管路和仪表,还使污水在反应装置中的流动呈现出整体推流而在 不同区域内为完全混合的复杂流态, 保证了处理效果。 作为优选,污泥消解反应包括污水和污泥的混合液进行高浓度污 泥反应, 高浓度污泥反应的水力停留时间为 1. 5h ~ 3. Oh, 例如 2h或 2. 5h, 出口溶解氧为 lmg/L ~ 1. 5mg/L 、 1. 5mg/L ~ 2mg/L、 2mg/L - 2. 5mg/L或 2. 5mg/L ~ 3mg/L, 污泥浓度为 4000mg/L ~ 20000mg/L, 可具体为至少 4000mg/L、 至少 6000mg/L、 至少 8000mg/L、 至少 10000mg/L、 至少 12000mg/L、 至少 14000mg/L、 至少 15000mg/L、 至 少 16000mg/L、 至少 18000mg/L或至少 20000mg/L。 污泥消解反应还优选包括厌氧沉淀,对高浓度污泥反应后的污水 与污泥的混合液进行厌氧沉淀,经厌氧沉淀的污泥回流参与高浓度污 泥反应, 回流比为 0. 4Q ~ 0. 7Q, 例如 0. 5 Q或 0. 6Q。 污泥和预处理后的污水的混合液进行污泥消解反应,具体为: 先 进入高浓度污泥反应池进行曝气,同时将污水与由 SBR池回流的剩余 污泥以及厌氧沉淀池回流的污泥充分混合。作为优选,剩余污泥先在 剩余污泥曝气池中进行曝气后再进入高浓度污泥反应池。剩余污泥也 可不曝气直接进入高浓度污泥反应池。厌氧沉淀池回流的污泥直接进 入高浓度污泥反应池。 剩余污泥优选全部回流至高浓度污泥反应池, 这样可以达到零排放的效果。 在剩余污泥曝气池中溶解氧含量为 0. 2mg/L - 0. 9mg/L , ^ 0. 3mg/L、 0. 4mg/L、 0. 5mg/L、 0. 6mg/L、 0. 7mg/L、 0. 8mg/L。 污泥与污水混合后, 污水中的有机物得到降解并 发生硝化反应, 高浓度污泥反应池中水力停留时间为 1. 5h ~ 3. Oh, 如 2h或 2. 5h, 污泥浓度为 4000mg/L ~ 20000mg/L, 可具体为至少 4000mg/L、 至少 6000mg/L、 至少 8000mg/L、 至少 10000mg/L、 至少 12000mg/L、 至少 14000mg/L、 至少 15000mg/L、 至少 16000mg/L、 至 少 18000mg/L或至少 20000mg/L。 有独立的污泥回流, 厌氧沉淀池向 高浓度污泥反应池回流污泥的回流比为 0. 4Q ~ 0. 7Q, 例如 0. 5 Q或 0. 6Q, 污泥浓度较高,为普通活性污泥处理工艺的 3 ~ 5倍或更多倍, 有效增强了该系统的抗冲击负荷能力。高浓度的活性污泥能有效分解 有机物, 对水质、 水量、 pH值和有毒物质的冲击有极好的緩冲作用, 同时也为后段稳定的处理效果提供了更为可靠的保障。 采用鼓风曝 气, 出口溶解氧为 lmg/L ~ 1. 5mg/L 、 1. 5mg/L - 2mg/L、 2mg/L - 2. 5mg/L或 2. 5mg/L - 3mg/L。 由高浓度污泥反应池流出经脱氧后污水进入厌氧沉淀池,同时厌 氧沉淀池中沉淀的污泥与常规污水处理产生的剩余污泥回流至高浓 度污泥反应池,且厌氧沉淀池的回流污泥为连续循环回流。 高浓度污 泥反应池中的混合污泥始终经历好氧、厌氧交替过程, 好氧、厌氧微 生物都不能获得优势, 最大程度的完成了剩余污泥的水解过程。 水解可将大分子有机物转化为可生物降解的小分子有机物,而在 严格的厌氧条件下, 将水解产生的小分子有机物(rdcod生物降解) 进一步转化为 VFAs (挥发性脂肪酸),这些都是污泥水解产生出来 "潜 在" 内碳源一有机碳。有机碳可大幅度提高污水脱除氨氮效率, 节省 了外加碳源。城市污水处理厂由于碳源不足脱除氨氮效果较差,这是 城市污水处理厂的普遍现象。 在碳源丰富的状态下会产生能量泄露, 即所谓的解偶联现象, 底物利用率低。 由于剩余污泥回流, 污泥停留 时间无穷大,在解偶联的作用下能够完成惰性物质的分解,化能自养 菌完成了剩余污泥无机物消解,化能异养菌完成了剩余污泥有机物消 解, 系统不会出现惰性物质的积累,从而实现城市污水处理厂剩余污 泥零排放。经试验,厌氧沉淀池回流的污泥和常规污水处理产生的剩 余污泥被大量消化, 能够达到消长平衡,厌氧沉淀池和 SBR池都不向 外排泥, 且反应稳定, 达到了污泥的零排放。 污水由厌氧沉淀池流出后进入厌氧池。厌氧沉淀池、厌氧池和好 氧池构成 A70工艺, 污水在厌氧池中与经过常规污水处理产生的回 流污泥混合,充分脱除氨氮, 然后污泥与污水的混合液一起进入好氧 池中,通过好氧菌的代谢作用将污水中的有机物进一步吸附、氧化和 P条解, 并发生硝化反应。 最后污水经沉淀装置沉淀后出水, 沉淀装置优选为 SBR池, SBR 池中污泥回流至厌氧池的回流比为 0. 5Q ~ 1Q, 剩余污泥回流至高浓 度污泥反应池中。由于进入 SBR池的污水已经有效地降解了水中的有 机物, 水质比较稳定, 通过 SBR池的曝气作用后, 污水中有机物的降 解更加彻底,且 SBR池在周期静止沉淀时会产生一个清晰的、 高密度 的污泥层,该污泥层可以起到污泥过滤器的作用,对改善出水质量和 反硝化具有重要作用。 SBR池中的污泥浓度为 2000mg/L ~ 4000mg/L, 溶解氧含量为 2mg/L ~ 4mg/L, 在一周期内 SBR池中静沉时间为 lh ~ 1. 5h, 优选 lh, 静沉时, 污水在池内进行反硝化和沉淀作用, 恒水 位排水时间为 1. 5h ~ 2. 5h, 优选 2h。 厌氧池、 好氧池和 SBR池组成 0SA 工艺, 回流污泥回流到厌氧 池, 有效地抑制丝状菌, 防止出现污泥膨胀, 改善了污泥沉降性能, 能够减少污泥产生量。 对于好氧微生物, ATP形成所需的能量来源于 外部有机物基质的氧化过程, 当好氧微生物处于厌氧条件时, 由于有 机物质的降解情况与好氧降解的情况完全不同,所释放的能量大幅度 减少, 污泥本身没有足够的能量用于自身的增长, 而不得不利用其体 内储存的 ATP作为能源来供其正常的生理活动需要。 因此,处于此阶 段的微生物细胞内储存的 ATP将被大量消耗, 使污泥量呈减少的趋 势。 这时若要进行生物合成, 微生物必须进行必要的能量储存, 如果 细胞内没有足量的 ATP储存, 细胞自身的合成将不能继续进行, 因此 已经消耗了大量 ATP的微生物再进入到营养丰富的好氧池时,微生物 只能通过细胞的异化作用进行内源消化来满足自身对能量的需求,这 种厌氧、好氧的交替增强了这一异化作用, 使得能量解耦更大, 污泥 产生量减少。厌氧池同时也起到了水解酸化作用,增加了污水的可生 化性。 因此,根据本发明的污泥处理装置可以特别有利地用于改造已有 的各种活性污泥法污水处理装置。例如在已有污水处理装置附近增建 根据本发明的污泥处理装置,将已有污水处理装置的剩余污泥作为污 泥进料引入该污泥处理装置,并且将该污泥处理装置排出的上清液作 为污水进水的一部分引入已有污水处理装置。这样,利用本发明的污 泥处理装置可以将已有污水处理装置的剩余污泥基本上完全消解使 得改造后的污水处理装置基本不排泥,同时含有大量可生物降解有机 物的上清液也特别有利于已有污水处理装置对氮和磷的去除从而解 决碳源不足的问题,这对 COD较低的城市生物污水尤为有利。如果将 污水进料改为从本发明的污泥处理装置引入,还可以利用新建污泥处 理装置中高浓度的污泥来快速高效地消解污水进料中的污染物,进一 步提高污水处理效率和效果。 实施例 1: 在本文实施例中, 符号 1 代表吨; DS代表干污泥; m3代表立方 米; d代表天; COD代表化学耗氧量。 装置和设计参数: 根据本发明的污泥处理方法和污水生物处理方法,建设了污水处 理能力为 20000m7d的污水处理厂, 其工艺流程如图 11所示, 其中 高浓度污泥反应池(用于给氧处理)、 脱气池和厌氧沉淀池(用于缺 氧处理)构成了污泥消解装置 (即才艮据本发明的污泥处理装置), 而 厌氧池、好氧池和 SBR池构成了常规污水处理装置(即根据本发明污 水处理装置中的污水生物处理设备)。 来自污泥消解装置中厌氧沉淀 池的污泥(即第一浓缩混合液, 全部用作第一混合液)、 来自常规污 水处理装置中 SBR池的剩余污泥(即第二浓缩混合液,全部用作污泥 进料 )和经格栅处理后的污水进水(即污水进料 )混合得到第二混合 液。 第二混合液在高浓度污泥反应池中经曝气处理后得到第三混合 液。第三混合液进入脱气池经脱氧后进入厌氧沉淀池,在厌氧沉淀池 中经过沉淀处理(缺氧处理)后得到的第四混合液已同时分离为处于 上层的上清液和处于下层的第一浓缩混合液。第一浓缩混合液作为污 泥回流经污泥回流管返回高浓度污泥反应池。上清液进入常规污水处 理装置, 经厌氧池、 好氧池和 SBR池处理后得到出水(即净化出水) 和剩余污泥(即第二浓缩混合液)。 剩余污泥经过剩余污泥曝气池曝 气后返回高浓度污泥反应池。 该污水处理厂自 2008年 7月至今的运行情况表明, 污泥产率一 直保持着基本为 OtDS/ (万 m3污水 * d)的水平, 实现了污泥的零排放。 作为对比, 处理类似污水的相邻城市污水处理厂的产泥率通常为 (1.04 - 1.64) tDS/ (万 m3污水 '天) ,平均为 1.25tDS/ (万 m3污水 -d)。 排放的净化出水的水质可以参考从 2008年 9月到 2009年 5月试 验得到的净化出水的总量、 C0D、 氨氮监测数据(见表 1), 其中高浓 度污泥反应池的平均曝气时间控制在 0.25-3.5小时,厌氧沉淀池的 沉淀时间控制在 1~5小时, 曝气时间与沉淀时间的比值控制在 1: 0.8-1: 5之间。在整个试验期间, 污水处理装置没有排出任何污泥。 表 1: 2008年 9月到 2009年 5月期间每月净化出水的总量、 平 均 COD和平均氨氮数据
Figure imgf000057_0001
《城镇污水处理厂污染物排放标准》 GB18918- 2002 中规定 COD 的最高允许排放浓度的一级 B标准: 60mg/L,氨氮的最高允许排放浓 度的一级 B标准: 水温 >12°C时为 8mg/L, 水温 <12°C时为 15 mg/L。 由表 1的监测数据可以看出,应用了本发明提供的城市污水处理 系统, 排放水中的 COD 和氨氮无论是气温低还是气温高均达到了 GB18918-2002一级 B标准。 在 2008年 9月到 2009年 5月试验中,还观察到高浓度污泥反应 池中的污泥浓度始终处于相当高的水平, 见表 2。 表 2: 2008年 9月到 2009年 5月期间高浓度污泥反应池中第二 混合液的污泥浓度的月平均值
Figure imgf000058_0001
为了进一步考察污泥消解装置 (即污泥处理装置) 的运行情况, 测定了污水进料、 第二混合液水相和上清液的 C0D、 氨氮以及总磷含 量, 见表 3。 表 3: 在不同时间分别测定的污水进料、 第二混合液水相和上清 液的 C0D、 氨氮以及总磷含量值(mg/L )
Figure imgf000058_0002
由表 3可见, 从污泥消解装置排出的上清液中的 C0D、 氨氮和总 磷显著地比第二混合液水相的相应值低。对于本实施例的污泥消解装 置而言, 污水进料和污泥进料是其净输入, 除了上清液之外没有污泥 或其它的固体或液体输出,并且污泥消解装置中也没有发现污泥的积 为可随上清液排出的形式外,其余部分都在污泥消解装置中得到了消 解, 由此实现了剩余污泥的减量化。 不受任何理论约束, 可以认为消 解的生物体和固体物在污泥消解装置中转化为气体形式而逸出。就整 个污水处理装置而言, 污水进料中的污染物质(主要以 C0D、 氨氮和 总磷表示)在污水处理装置中转化为气态物质而逸出, 因此在得到净 化出水的同时没有污泥和其它固体或液体物质排出。 实施例 2: 根据本发明的污泥处理方法和污水生物处理方法,改造了一座以 MSBR (即 A70后接 SBR )工艺运行的现有污水处理厂。 改造后的污水 处理厂的污水处理能力为 20000m7d, 其工艺流程也可以用图 11表 示, 其中各项参数与实施例 1的相同。 改造后的污水处理厂已经运行了一年多, 污泥产率基本为 OtDS/ (万 m3污水 . d) , 同样基本实现了污泥的零排放, 且 COD冬季 平均排放浓度为 24. 3 mg/L, 夏季平均排放浓度为 27. 56 mg/L, 氨氮 冬季平均排放浓度为 8. 85mg/L, 夏季平均排放浓度为 4. 07 mg/L, 达 到了 GB18918-2002一级 B标准。 使用本发明提供的污泥处理方法,新建污水处理系统或是通过对 现有的常规污水处理装置进行改造,将高浓度污泥反应、厌氧沉淀和 常规污水处理工艺结合来处理污水, 均能够改善污泥的沉降性能,抑 制污泥膨胀, 实现剩余污泥的消解,使得整个污水处理系统产生的剩 余污泥减量甚至达到污泥零排放。 以上对本发明所提供的污泥减量化污水处理系统及方法进行了 详细介绍。 说明书和权利要求中描述方法时用于指代各个步骤的编 号, 除非特别指明或经上下文能够唯一确定之外,并不代表各个步骤 的顺序。本文中应用了具体个例对本发明的原理及实施方式进行了阐 述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思 想。应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发 明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和 修饰也落入本发明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种污泥处理方法, 包括以下步骤:
( 1 ) 将来自污水生物处理过程的污泥进料与第一混合液混合得到 第二混合液;
(2) 将第二混合液进行给氧处理得到第三混合液;
( 3 ) 将第三混合液进行缺氧处理得到第四混合液;
(4) 将第四混合液分离得到上清液和第一浓缩混合液;
( 5 ) 将上清液排出,并且将至少部分第一浓缩混合液返回步骤( 1 ) 用作第一混合液, 其中未返回步骤(1) 的第一浓缩混合液的污泥量 小于污泥进料的污泥量。
2、 根据权利要求 1的污泥处理方法, 在步骤( 5 ) 中, 将至少 60 %、 优选至少 65%、 更优选至少 70%、 更优选至少 75%、 更优选至 少 80%、 更优选至少 85%、 更优选至少 90%、 更优选至少 93%、 更 优选至少 95%、 更优选至少 98%、 最优选基本上 100%的第一浓缩 混合液返回步骤( 1 )用作第一混合液,并且任选地将未返回步骤( 1 ) 的第一浓缩混合液排出。
3、 根据上述权利要求中任何一项的污泥处理方法, 在步骤(1) 中, 将有机营养物、 污泥进料和第一混合液混合得到第二混合液, 所 述有机营养物优选为污水进料。
4、 根据权利要求 3的污泥处理方法, 其中步骤( 1 ) 中污泥进料 与污水进料的流量比为 1: 0.01 ~ 1: 100, 优选 1: 0.1~ 1: 10, 更优选 为 1: 0.5 ~ 1: 5。 5、 根据上述权利要求中任何一项的污泥处理方法,其中步骤( 2 ) 的给氧处理时间为 0.1 ~4小时,优选 0.5~2小时,更优选 0.5~ 1.5 小时。
6、 根据上述权利要求中任何一项的污泥处理方法,其中步骤( 3 ) 的缺氧处理时间为 0.8~6小时,优选 1~4小时,更优选 1~3小时。
7、 根据上述权利要求中任何一项的污泥处理方法,其中给氧处理 时间与缺氧处理时间的比为 1:0.5 ~ 1:6, 优选 1:1~1:3, 更优选 1:1.5-1:2, 最优选 1:2。
8、 根据上述权利要求中任何一项的污泥处理方法,其中步骤( 2 ) 的给氧处理以间歇曝气或连续曝气的方式进行。
9、 根据上述权利要求中任何一项的污泥处理方法, 其中在步骤 ( 2 )中,第三混合液的溶解氧浓度为 0.1 ~ 4mg/L,优选 1.5 ~ 3mg/L, 更优选 2 ~ 3mg/L。
10、 根据上述权利要求中任何一项的污泥处理方法,其中步骤( 3 ) 和步骤(4) 以沉淀方式进行。
11、 根据上述权利要求中任何一项的污泥处理方法, 其中在步骤 (1) 中, 第二混合液的污泥浓度为 3000 ~ 30000mg/L, 优选 3000 ~
20000mg/L, 更优选 4000 ~ 15000mg/L。
12、 根据上述权利要求中任何一项的污泥处理方法,还包括回收步 骤(2)和 /或(3) 中产生的气态含磷化合物的回收步骤。
13、 一种污水生物处理方法, 包括:
( 1 )将来自污水生物处理过程的污泥进料和第一混合液混合得到第 二混合液;
( 2 )将第二混合液进行给氧处理得到第三混合液;
(3)将第三混合液进行缺氧处理得到第四混合液;
(4)将第四混合液分离得到上清液和第一浓缩混合液;
( 5 )将上清液排出, 并且将至少部分第一浓缩混合液返回步骤( 1 ) 用作第一混合液, 其中未返回步骤(1) 的第一浓缩混合液的污泥量 小于污泥进料的污泥量;
( 6 )将至少部分步骤( 5 )的上清液和任选的部分污水进料进行污水 生物处理得到第二浓缩混合液和净化出水;
( 7 )将净化出水排出, 并且任选地将至少部分步骤( 6 )的第二浓缩 混合液返回步骤( 1 )用作污泥进料; 其中将污水进料在步骤(1) 中与污泥进料和第一混合液混合得到第 二混合液和 /或在步骤(6) 中与所述至少部分步骤(5) 的上清液一 起进行污水生物处理, 优选将至少部分污水进料在步骤(1) 中与污 泥进料和第一混合液混合得到第二混合液,更优选将全部污水进料在 步骤(1) 中与污泥进料和第一混合液混合得到第二混合液。
14、 根据权利要求 13的污水生物处理方法, 在步骤( 5 )中, 将至 少 60%、优选至少 65%、 更优选至少 70%、 更优选至少 75%、 更优 选至少 80%、 更优选至少 85%、 更优选至少 90%、 更优选至少 93 %、 更优选至少 95%、 更优选至少 98%、 最优选基本上 100%的第 一浓缩混合液返回步骤(1)用作第一混合液, 并且任选地将未返回 步骤(1)的第一浓缩混合液排出。
15、 根据上述权利要求 13 ~ 14中任何一项的污水生物处理方法, 其中步骤(2) 的给氧处理时间为 0.1 ~4小时, 优选 0.5~2小时, 更优选 0.5-1.5小时。
16、 根据上述权利要求 13 ~ 15中任何一项的污水生物处理方法, 其中步驟(3)的缺氧处理时间为 0.8~ 6小时, 优选 1~4小时, 更 优选 1~3小时。
17、 根据上述权利要求 13 ~ 16中任何一项的污水生物处理方法, 其中给氧处理时间与缺氧处理时间的比为 1: 0.5 ~ 1: 6, 优选 1: 1~ 1: 3, 更优选 1: 1.5 ~ 1:2, 最优选 1:2。
18、 根据上述权利要求 13 ~ 17中任何一项的污水生物处理方法, 其中步骤(2)的给氧处理以间歇曝气或连续曝气的方式进行。
19、 根据上述权利要求 13 ~ 18中任何一项的污水生物处理方法, 其中在步骤(2) 中, 第三混合液的溶解氧浓度为 0. l~4mg/L, 优选 1.5 - 3mg/L, 更优选 2~3mg/L。
20、 根据上述权利要求 13 ~ 19中任何一项的污水生物处理方法, 其中步骤(3)和步骤(4) 以沉淀方式进行。
21、 根据上述权利要求 13 ~ 20中任何一项的污水生物处理方法, 其中在步骤(1) 中, 第二混合液的污泥浓度为 3000 ~ 30000mg/L, 优选 3000 ~ 20000mg/L, 更优选 4000 - 15000mg/L。
22、 根据上述权利要求 13 ~ 21中任何一项的污水生物处理方法, 还包括回收步骤(2)和 /或 (3) 中产生的气态含磷化合物的回收步 骤。
23、 根据权利要求 13 ~ 22中任何一项的污水生物处理方法, 其中 步骤( 7 )中返回步骤( 1 )用作污泥进料的第二浓缩混合液占第二浓 缩混合液的比例为 1 ~ 100%, 优选约 80 - 100%, 更优选约 100°/。。
24、 根据权利要求 13 ~ 23中任何一项的污水生物处理方法, 其中 步骤(7 ) 中返回步骤(1 ) 的第二浓缩混合液占步骤(1 )的污泥进 料的比例为 1 ~ 100%, 优选约 80 ~ 100°/。, 更优选约 100%。
25、 根据权利要求 13 ~ 24中任何一项的污水生物处理方法, 其中 步骤(6 )是选自才艮据 Wuhrmann工艺、 A/0工艺、 Bardenpho工艺、 Phoredox工艺、 A2/0工艺、 倒置 A2/0工艺、 UCT工艺、 MUCT工艺、 VIP工艺、 0WASA工艺、 JHB工艺、 TNCU工艺、 Dephanox工艺、 BCFS 工艺、 MSBR工艺、 SBR工艺、 AB工艺、 氧化沟工艺、 生物膜工艺、 流动床工艺或其组合的污水生物处理步骤。
26、 一种用于根据权利要求 1-12中任何一项的污泥处理方法的污 泥处理装置, 包括: 能够将污水进料、 污泥进料与第一混合液混合得 到第二混合液的第一设备;能够将第二混合液进行给氧处理得到第三 混合液的第二设备;能够将第三混合液进行缺氧处理得到第四混合液 的第三设备;能够将第四混合液分离得到上清液和第一浓缩混合液的 第四设备; 能够将上清液排出的第五设备; 能够将至少部分第一浓缩 混合液作为第一混合液引入第一设备并且使未返回第一设备的第一 浓缩混合液的污泥量小于污泥进料的污泥量的第六设备。
27、 根据权利要求 26的污泥处理装置, 其中第二设备经设置使得 给氧处理时间为 0. 1 ~ 4小时, 优选 0. 5 ~ 2小时, 更优选 0. 5 ~ 1. 5 小时。
28、 根据权利要求 26 ~ 27中任何一项的污泥处理装置, 其中第三 设备经设置使得缺氧处理时间为 0. 8 ~ 6小时,优选 1 ~ 4小时, 更优 选 1 ~ 3小时。
29、 根据权利要求 26 ~ 28中任何一项的污泥处理装置, 其中第二 设备和第三设备经设置使得给氧处理时间与缺氧处理时间的比为 1: 0. 5 - 1: 6, 优选 1: 1 ~ 1: 3, 更优选 1: 1. 5 ~ 1: 2, 最优选 1: 2。
30、 根据权利要求 26 ~ 29中任何一项的污泥处理装置, 其中第二 设备是曝气池。
31、 根据权利要求 26 ~ 30中任何一项的污泥处理装置, 其中第三 设备和第四设备是沉淀池。
32、 根据权利要求 26 ~ 31中任何一项的污泥处理装置, 其中所述 污泥处理装置还包括能够收集并回收气态含磷化合物的回收设备。
33、 一种用于根据权利要求 13 ~ 15中任一项的污水生物处理方法 的污水生物处理装置, 包括: 能够将污泥进料与第一混合液混合得到 第二混合液的第一设备;能够将第二混合液进行给氧处理得到第三混 合液的第二设备;能够将第三混合液进行缺氧处理得到第四混合液的 第三设备;能够将第四混合液分离得到上清液和第一浓缩混合液的第 四设备; 能够将上清液排出的第五设备; 能够将至少部分第一浓缩混 合液作为第一混合液引入第一设备并且使未返回第一设备的第一浓 缩混合液的污泥量小于污泥进料的污泥量的第六设备;能够将至少部 分第五设备排出的上清液进行污水生物处理得到第二浓缩混合液和 净化出水的第七设备; 能够将净化出水排出的第八设备; 能够将污水 进料弓 1入第一设备和 /或第七设备的第九设备; 以及任选的能够将至 少部分第二浓缩混合液引入第一设备的第十设备。
34、 根据权利要求 33的污水生物处理装置, 其中第二设备经设置 使得给氧处理时间为 0.1 ~ 4小时, 优选 0.5 ~ 2小时, 更优选 0.5 ~ 1.5小时。
35、 根据权利要求 33~ 34中任何一项的污水生物处理装置, 其中 第三设备经设置使得缺氧处理时间为 0.8 ~ 6小时, 优选 1 ~ 4小时, 更优选 1~ 3小时。
36、 根据权利要求 33~ 35中任何一项的污水生物处理装置, 其中 第二设备和第三设备经设置使得给氧处理时间与缺氧处理时间的比 为 1: 0.5 ~ 1: 6, 优选 1: 1 ~ 1: 3, 更优选 1: 1.5 ~ 1: 2, 最优选 1: 2。
37、 根据权利要求 33~ 36中任何一项的污水生物处理装置, 其中 第二设备是曝气池。
38、 根据权利要求 33~ 37中任何一项的污泥处理装置, 其中第三 设备和第四设备是沉淀池。
39、 根据权利要求 33~ 38中任何一项的污泥处理装置, 其中所述 污泥处理装置还包括能够收集并回收气态含磷化合物的回收设备。
40、 根据权利要求 33~ 39中任何一项的污水生物处理装置, 其中 第七设备是能够根据 Wuhrmann工艺、 A/0工艺、 Bardenpho工艺、 Phoredox工艺、 A2/0工艺、 倒置 A2/0工艺、 UCT工艺、 MUCT工艺、 VIP工艺、 0WASA工艺、 JHB工艺、 TNCU工艺、 Dephanox工艺、 BCFS 工艺、 MSBR工艺、 SBR工艺、 AB工艺、 氧化沟工艺、 生物膜工艺、 流动床工艺或其组合的进行污水生物处理的设备。
41、 一种降低来自污水生物处理过程的污泥中碳、氮和磷含量的方 法,包括将污泥作为污泥进料通过根据权利要求 1 ~ 12中任何一项的 污泥处理方法来降低其中碳、 氮和磷的含量。
42、 一种降低污水中碳、氮和磷含量的方法, 包括将污水作为污水 进料通过根据权利要求 13~25中任何一项的污水生物处理方法来降 低其中碳、 氮和磷的含量。
43、 一种回收来自污水生物处理过程的污泥中磷的方法, 包括(i) 将污泥作为污泥进料通过根据权利要求 1~12 中任何一项的污泥处 理方法将其中的含磷化合物, 特别是以溶液形式存在的含磷化合物, 转化为气态含磷化合物而逸出, 和(ii) 回收步骤(i) 中逸出的气 态含磷化合物。
44、 一种回收污水中磷的方法, 包括( i )将污水作为污水进料通 过根据权利要求 13~25中任何一项的污水生物处理方法将其中的含 磷化合物,特别是以溶液形式存在的含磷化合物,转化为气态含磷化 合物而逸出, 和(ii)回收步骤(i) 中逸出的气态含磷化合物。
45、 一种污泥减量化处理方法, 所述方法包括以下步骤:
( a ) 将任选的污水进料和来自污水生物处理过程的第一污泥引入 好氧处理区, 优选曝气池, 中;
( b ) 对好氧处理区中的混合液进行好氧处理;
(c) 将经好氧处理的混合液引入缺氧处理区,优选沉淀池, 中进行 处理, 得到第二污泥和上清液; 和
(d) 将第二污泥的至少部分循环回好氧处理区,以及任选地将第二 污泥的剩余部分排出; 其中排出的第二污泥的剩余部分的 MLSS 总量小于第一污泥的 MLSS 总量; 所述好氧处理可以以间歇曝气或连续曝气的方式进行。
46、 根据权利要求 45的污泥减量化处理方法,其中在步骤(d)中, 将至少 60%、优选至少 65%、优选至少 70%、 更优选至少 75%、 更 优选至少 80%、 更优选至少 85%、 更优选至少 90%、 更优选至少 93 %、 更优选至少 95%、 更优选至少 98%、 最优选基本上 100%的第 二污泥循环回好氧处理区。
47、 根据权利要求 45-46之任一的污泥减量化处理方法,其中步骤 (b)的好氧处理时间为 0.1 ~4小时,优选 0.5~2小时,更优选 0.5~
1.5小时。
48、 根据权利要求 45-47之任一的污泥减量化处理方法,其中好氧 处理区中经好氧处理的混合液的出口溶解氧浓度为 0. l~4mg/L, 优 选 1.5 ~ 3mg/L, 更优选 2 ~ 3mg/L。
49、 根据权利要求 45-48之任一的污泥减量化处理方法,其中好氧 处理区的污泥浓度为 3000 ~ 30000mg/L, 优选 3000 ~ 20000mg/L, 更 优选 4000 - 15000mg/Lo
50、 根据权利要求 45-49之任一的污泥减量化处理方法,还包括回 收步骤(b)和 /或 (c) 中产生的气态含磷化合物的步骤。
51、 一种污泥减量化处理装置, 包括: 好氧处理区, 其具有接收第一污泥的第一入口、 接收至少部分第 二污泥的第二入口和任选的接收污水进料的第三入口;其中所述第一 污泥来自污水生物处理过程; 所述好氧处理区用于对接收的第一污 泥、第二污泥和污水进料进行好氧处理; 所述好氧处理可以以间歇曝 气或连续曝气的方式进行; 缺氧处理区, 用于将好氧处理区得到的混合液进行处理, 形成上 清液和第二污泥; 和 循环装置, 用于将至少部分第二污泥循环回好氧处理区。
52、 根据权利要求 51的污泥减量化处理装置, 其中循环装置将至 少 60 %、优选至少 65 %、优选至少 70 %、 更优选至少 75 %、 更优选 至少 80 %、 更优选至少 85 %、 更优选至少 90 %、 更优选至少 93 %、 更优选至少 95 %、 更优选至少 98 %、 最优选基本上 100 %的第二污 泥循环回好氧处理区。
53、 根据权利要求 51-52之任一的污泥减量化处理装置,其中好氧 处理区经设置使得好氧处理时间为 0. 1 ~ 4小时, 优选 0. 5 ~ 2小时, 更优选 0. 5 - 1. 5小时。
54、 根据权利要求 51-53之任一的污泥减量化处理装置,还包括磷 回收装置,用于回收好氧处理区和缺氧处理区中产生的气态含磷化合 物。
55、 一种污泥减量化污水处理方法,包括使污水进料在包括例如曝 气池的好氧处理区、例如沉淀池的缺氧处理区和生物处理区的污水生 物处理设备中顺序经历好氧处理、 缺氧和 /或沉淀处理和污水生物处 理; 其特征在于将分别在生物处理区和缺氧处理区中存在和 /或形成 的第一污泥的至少一部分和第二污泥的至少一部分循环回好氧处理 区, 从而在对污水进料进行生物处理的同时使污泥得以消减。
56、 一种污泥减量化污水处理方法, 包括以下步骤:
( a ) 将污水进料和来自步骤(d ) 的至少一部分第二污泥和来自步 骤(g ) 的至少一部分第一污泥引入好氧处理区, 优选曝气池, 中; ( b ) 对好氧处理区中的混合液进行好氧处理;
( c ) 将经好氧处理的混合液引入例如沉淀池的缺氧处理区,优选沉 淀池, 中进行处理, 得到第二污泥和上清液;
(d) 将至少一部分第二污泥循环回好氧处理区,以及任选地将第二 污泥的剩余部分排出, 其中第二污泥的剩余部分的 MLSS总量小于步 骤(a) 引入好氧处理区的所述至少一部分第一污泥的 MLSS总量;
( e ) 将从缺氧处理区分离出的上清液和任选的其它污水进料引入 污水生物处理区;
( f ) 在污水生物处理区中对上清液和所述任选的其它污水进料进 行生物处理得到第一污泥和出水;
( g ) 将至少一部分第一污泥循环回好氧处理区,任选地将第一污泥 的另一部分循环回污水生物处理区,以及任选地将第一污泥的剩余部 分排出; 所述好氧处理可以以间歇曝气或连续曝气的方式进行。
57、 根据权利要求 55-56之任一的污泥减量化污水处理方法,其中 在步骤(d) 中, 将至少 60%、 优选至少 65%、 优选至少 70%、 更 优选至少 75%、 更优选至少 80%、 更优选至少 85%、 更优选至少 90 %、 更优选至少 93%、 更优选至少 95%、 更优选至少 98%、 最优选 基本上 100%的第二污泥循环回好氧处理区。
58、 根据权利要求 55-57之任一污泥减量化污水处理方法,其中在 步骤(g) 中, 将至少 60%、 优选至少 65%、 优选至少 70%、 更优 选至少 75%、 更优选至少 80%、 更优选至少 85%、 更优选至少 90 %、 更优选至少 93%、 更优选至少 95%、 更优选至少 98%、 最优选 基本上 100 %的第二污泥循环回好氧处理区。
59、 根据权利要求 55-58之任一的污泥减量化污水处理方法,其中 步骤(b ) 的好氧处理时间为 0. 1 ~ 4小时, 优选 0. 5 ~ 2小时, 更优 选 0. 5 ~ 1. 5小时。
60、 根据权利要求 55-59之任一的污泥减量化处理方法,其中好氧 处理区中经好氧处理的混合液的出口溶解氧浓度为 0. l ~ 4mg/L, 优 选 1. 5 ~ 3mg/L, 更优选 2 ~ 3mg/L。
61、 根据权利要求 55-60之任一的污泥减量化处理方法,其中好氧 处理区的污泥浓度为 3000 ~ 30000mg/L, 优选 3000 ~ 20000mg/L, 更 优选 4000 - 15000mg/Lo
62、 根据权利要求 55-61之任一的污泥减量化处理方法,还包括回 收产生的气态含磷化合物的步骤。
63、 根据权利要求 55-62之任一的污泥减量化污水生物处理方法, 其中步骤( f )的生物处理是才艮据 Wuhrmann工艺、 A/0工艺、 Bardenpho 工艺、 Phoredox工艺、 A2/0工艺、 倒置 A2/0工艺、 UCT工艺、 MUCT 工艺、 VIP工艺、 0WASA工艺、 JHB工艺、 TNCU工艺、 Dephanox工艺、 BCFS工艺、 MSBR工艺、 SBR工艺、 AB工艺、 氧化沟工艺、 生物膜工 艺、 流动床工艺或其组合的污水生物处理步骤。
64、 一种污泥减量化污水处理装置,所述设备包括顺序连通的例如 曝气池的好氧处理区、 例如沉淀池的缺氧处理区和污水生物处理区, 其特征在于好氧处理区具有污水进料入口、与缺氧处理区连通的第二 污泥回流管线和与污水生物处理区连通的第一污泥回流管线,并且所 述污水生物处理的设置使得排出缺氧处理区的第二污泥的 MLSS总量 小于从污水生物处理区循环回好氧处理区的第一污泥的 MLSS总量。
65、 一种污泥减量化污水处理装置, 包括:
-好氧处理区,优选曝气池,其具有接收至少部分第一污泥的第一入 口、 接收至少部分第二污泥的第二入口和接收污水进料的第三入口; 所述好氧处理区用于对接收的第一污泥、第二污泥和污水进料进行好 氧处理; 所述好氧处理可以以间歇曝气或连续曝气的方式进行;
-缺氧处理区,优选沉淀池,用于将好氧处理区得到的混合液进行缺 氧处理, 形成上清液和第二污泥;
-污水生物处理区,任选具有其它污水进料入口,用于对所述上清液 和任选的其它污水进料进行生物处理, 形成第一污泥和出水;
-第一循环装置, 用于将至少部分第一污泥循环回好氧处理区;
-第二循环装置, 用于将至少部分第二污泥循环回好氧处理区;
-任选的第一污泥排出装置, 用于将第一污泥的剩余部分排出;
-任选的第二污泥排出装置, 用于将第二污泥的剩余部分排出。
66、 根据权利要求 64-65的污泥减量化污水处理装置,其中, 第二 循环装置将至少 60 %、 优选至少 65 %、 优选至少 70 %、 更优选至少 75 %、 更优选至少 80 %、 更优选至少 85 %、 更优选至少 90 %、 更优 选至少 93 %、更优选至少 95 %、更优选至少 98 %、最优选基本上 100 %的第二污泥循环回好氧处理区。
67、 根据权利要求 64-66之任一的污泥减量化污水处理装置,其中 第一循环装置将至少 60 %、 优选至少 65 %、 优选至少 70 %、 更优选 至少 75 %、 更优选至少 80 %、 更优选至少 85 %、 更优选至少 90 %、 更优选至少 93%、 更优选至少 95%、 更优选至少 98%、 最优选基本 上 100%的第二污泥循环回好氧处理区。
68、 根据权利要求 64-67之任一的污泥减量化污水处理装置,其中 好氧处理区经设置使得好氧处理时间为 0.1 ~4 小时, 优选 0.5~2 小时, 更优选 0.5~1.5小时。
69、 根据权利要求 64-68之任一的污泥减量化污水处理装置,还包 括磷回收装置, 用于回收污水处理装置中产生的气态含磷化合物。
70、 根据权利要求 64-69之任一的污泥减量化污水处理装置,其中 生物处理区是能够根据 Wuhrmarm工艺、 A/0工艺、 Bardenpho工艺、 Phoredox工艺、 A2/0工艺、 倒置 A2/0工艺、 UCT工艺、 MUCT工艺、 VIP工艺、 0WASA工艺、 JHB工艺、 TNCU工艺、 Dephanox工艺、 BCFS 工艺、 MSBR工艺、 SBR工艺、 AB工艺、 氧化沟工艺、 生物膜工艺、 流动床工艺或其组合进行污水生物处理的设备。
PCT/CN2010/073333 2009-12-01 2010-05-28 污泥处理方法和装置及其在污水生物处理中的应用 WO2011066736A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2012541300A JP5685265B2 (ja) 2009-12-01 2010-05-28 汚水生物処理方法を用いた汚泥処理方法、及び汚泥処理装置と装置
BR112012013332-2A BR112012013332B1 (pt) 2009-12-01 2010-05-28 método e aparelho para tratamento biológico de esgoto
AU2010327284A AU2010327284B2 (en) 2009-12-01 2010-05-28 Sludge treatment method and apparatus thereof and application to wastewater bio-treatment
MX2012006387A MX2012006387A (es) 2009-12-01 2010-05-28 Metodos y aparatos para el tratamiento de lodos y el uso del mismo para el tratamiento biologico de aguas residuales.
CN2010800014682A CN102149645B (zh) 2009-12-01 2010-05-28 污泥处理方法和装置及其在污水生物处理中的应用
EP10834169.4A EP2508490A4 (en) 2009-12-01 2010-05-28 MUD PROCESSING METHOD AND DEVICE THEREFOR, AND ITS APPLICATION IN THE BIODEWORKING OF WASTE WATER
US13/509,599 US8932466B2 (en) 2009-12-01 2010-05-28 Method and apparatus for sluge treatment and use thereof in sewage biotreatment
EA201290421A EA024049B1 (ru) 2009-12-01 2010-05-28 Способ и устройство для обработки ила и применение указанных способа и устройства для биоочистки сточных вод
NZ60089210A NZ600892A (en) 2009-12-01 2010-05-28 Sludge treatment method and apparatus thereof and application to wastewater bio-treatment
CA2780716A CA2780716C (en) 2009-12-01 2010-05-28 Method and apparatus for sludge treatment and use thereof in sewage biotreatment
ARP100104423 AR079612A1 (es) 2009-12-01 2010-11-30 Metodo y aparato para el tratamiento de lodos y uso del mismo para el tratamiento biologico de aguas residuales
IL219714A IL219714A (en) 2009-12-01 2012-05-10 Method and system for the treatment of sludge and their use in biological treatment of sewage
ZA2012/04301A ZA201204301B (en) 2009-12-01 2012-06-12 Method and apparatus for sludge treatment and use thereof in sewage biotreatment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200910249722 2009-12-01
CN200910249722.X 2009-12-01
CN201010000737 2010-01-15
CN201010000737.5 2010-01-15

Publications (1)

Publication Number Publication Date
WO2011066736A1 true WO2011066736A1 (zh) 2011-06-09

Family

ID=44114610

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2010/073333 WO2011066736A1 (zh) 2009-12-01 2010-05-28 污泥处理方法和装置及其在污水生物处理中的应用
PCT/CN2010/079323 WO2011066790A1 (zh) 2009-12-01 2010-12-01 废水预处理方法及应用该预处理方法的污水处理方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079323 WO2011066790A1 (zh) 2009-12-01 2010-12-01 废水预处理方法及应用该预处理方法的污水处理方法

Country Status (16)

Country Link
US (2) US8932466B2 (zh)
EP (2) EP2508490A4 (zh)
JP (2) JP5685265B2 (zh)
KR (2) KR101601193B1 (zh)
CN (2) CN102149645B (zh)
AR (1) AR079612A1 (zh)
AU (2) AU2010327284B2 (zh)
BR (2) BR112012013332B1 (zh)
CA (2) CA2780716C (zh)
EA (2) EA024049B1 (zh)
IL (2) IL219714A (zh)
MX (1) MX2012006387A (zh)
MY (2) MY168200A (zh)
NZ (2) NZ600892A (zh)
WO (2) WO2011066736A1 (zh)
ZA (2) ZA201204302B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129191A (zh) * 2019-04-10 2019-08-16 山东大学 一种废弃纸箱高效产甲烷及资源化处理系统及其处理方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986226B1 (fr) * 2012-01-27 2014-02-14 Veolia Water Solutions & Tech Procede de traitement d'un effluent en vue d'en abattre la teneur en phosphates comprenant une etape de traitement thermique en voie humide optimise, et installation correspondante
CN104211275B (zh) * 2013-06-03 2016-02-17 李进民 污水生物处理装置和方法
CN103387315A (zh) * 2013-07-29 2013-11-13 绍兴水处理发展有限公司 预处理和两段曝气式组合技术对污水的处理工艺
US9399591B2 (en) * 2014-05-02 2016-07-26 Baker Hughes Incorporated Nitrogen-containing compounds for bacterial control in water based fluids
RU2636707C1 (ru) * 2016-12-09 2017-11-27 Общество с ограниченной ответственностью "Джи-Эс-Пи Прожект" Способ и установка для биологической очистки сточных вод
CN106865751B (zh) * 2017-03-01 2020-09-25 北京恩菲环保技术有限公司 控制生物池污泥膨胀的方法及污水处理方法
CN107117767B (zh) * 2017-04-18 2020-09-25 青海省化工设计研究院有限公司 一种石油化工废水的处理方法
CN108218141A (zh) * 2018-03-07 2018-06-29 重庆庚业新材料科技有限公司 一种塑料行业废水处理站
CN108862589B (zh) * 2018-07-25 2024-02-23 苏州市排水有限公司 一种多模式一体化污水处理系统
CN111039497A (zh) * 2018-10-15 2020-04-21 上海方合正环境工程科技股份有限公司 污水处理系统及方法
CN109336253B (zh) * 2018-11-30 2021-10-01 金锣水务有限公司 一种污水生物处理装置和方法
CN110482686B (zh) * 2019-03-26 2023-12-12 浙江海牛环境科技股份有限公司 一种适用于氧化沟生物脱氮的降耗提效的系统及方法
CN111825301B (zh) * 2019-04-16 2022-04-22 哈尔滨工业大学 一种基于解偶联剂3,3’,4’,5-四氯水杨酰苯胺调质的强化污泥脱水过程的方法
CN110182942A (zh) * 2019-05-30 2019-08-30 中国市政工程中南设计研究总院有限公司 一种高效活性污泥处理工艺
CN110745949A (zh) * 2019-09-27 2020-02-04 中车环境科技有限公司 两段法生物强化脱氮工艺
CN112978914A (zh) * 2019-12-16 2021-06-18 江苏孚璋生物技术有限公司 一种连续流自动化生活污水处理设备双污泥污泥龄的控制方法
CN111875213A (zh) * 2020-07-24 2020-11-03 新疆泰沅水务技术有限公司 一种离心式沉淀浓缩池及使用方法
CN112093902A (zh) * 2020-09-17 2020-12-18 于清 间歇式变速流化床污水处理工艺及其装置
CN112591979A (zh) * 2020-11-17 2021-04-02 上海宏昶环保工程有限公司 一种污水处理工艺
CN112607854A (zh) * 2020-12-02 2021-04-06 北京工业大学 一种sbr反应器中快速调控活性污泥恶性膨胀的方法
CN112794593A (zh) * 2020-12-09 2021-05-14 中信环境技术(广州)有限公司 一种污泥低温碳化脱水液的处理方法和处理系统
CN113087290A (zh) * 2021-03-26 2021-07-09 西南石油大学 一种含硫污水处理系统及其处理工艺
CN113402122B (zh) * 2021-06-25 2022-09-02 杭州热电集团股份有限公司 一种废水处理系统
CN115259562B (zh) * 2022-08-04 2024-01-23 恩格拜(武汉)生态科技有限公司 一种气浮浮渣污泥调理方法
CN117263417A (zh) * 2023-07-12 2023-12-22 南京乾唐环境科技有限公司 一种用于城镇污水处理的mbbr装置及其方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1101628A (zh) * 1994-10-27 1995-04-19 中国纺织大学 污泥常温酸化水解——三相生物处理方法
US20020030003A1 (en) 2000-09-07 2002-03-14 O'leary Kevin P. Activated sludge wastewater treatment system and method
EP1302446A1 (en) * 1997-12-19 2003-04-16 Shinko Pantec Kabushika Kaisha Method for sludge reduction in a waste water treatment system
JP2004041953A (ja) * 2002-07-12 2004-02-12 Mitsubishi Kakoki Kaisha Ltd 有機性排水の処理方法および装置
CN1935708A (zh) * 2006-10-19 2007-03-28 北京科技大学 一种具有降解生物污泥和脱氮作用的处理装置及其操作方法
JP2008114161A (ja) * 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd 排水処理方法及び装置
CN101428939A (zh) * 2008-12-18 2009-05-13 上海宝钢工程技术有限公司 冷轧废水深度处理回用系统

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980556A (en) 1974-01-25 1976-09-14 Ontario Research Foundation Adsorption biooxidation treatment of waste waters to remove contaminants therefrom
US4130481A (en) * 1977-02-14 1978-12-19 Fmc Corporation Maintaining optimum settling rate of activated sludge
US4168228A (en) * 1977-06-15 1979-09-18 Standard Oil Company Of Indiana Waste water purification
JPS558835A (en) 1978-07-04 1980-01-22 Shinryo Air Conditioning Co Ltd Treatment of surplus sludge
DE2952342A1 (de) * 1979-12-24 1981-07-02 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur biologischen reinigung von abwasser
JPS60222198A (ja) * 1984-04-20 1985-11-06 Matsushita Electric Ind Co Ltd 集合住宅の有機性廃棄物処理装置
US4999111A (en) * 1988-06-02 1991-03-12 Orange Water And Sewer Authority Process for treating wastewater
US4956094A (en) * 1988-12-22 1990-09-11 Biospherics Incorporated Enhanced phosphate removal from bod-containing wastewater
JPH0330900A (ja) * 1989-06-28 1991-02-08 Ebara Infilco Co Ltd 浄化槽汚泥の処理方法
JPH0675708B2 (ja) * 1990-01-09 1994-09-28 東京都 液中のリン除去方法
JPH0783877B2 (ja) 1991-02-06 1995-09-13 株式会社荏原製作所 有機性汚水の処理方法
JP2678123B2 (ja) * 1992-12-24 1997-11-17 日本碍子株式会社 下水の処理方法
US5374353A (en) * 1993-01-21 1994-12-20 Murphy; D. Thomas Aeration train and aeration apparatus for biological purification of wastewater
US6015496A (en) * 1993-04-12 2000-01-18 Khudenko; Boris M. In-sewer treatment of wastewater and sludges
US5441634A (en) 1993-07-06 1995-08-15 Edwards Laboratories, Inc. Apparatus and method of circulating a body of fluid containing a mixture of solid waste and water and separating them
JP2987103B2 (ja) * 1996-05-16 1999-12-06 ドリコ株式会社 間欠曝気法
US5989428A (en) * 1996-06-21 1999-11-23 Goronszy; Mervyn Charles Controlling wastewater treatment by monitoring oxygen utilization rates
JP3212909B2 (ja) 1997-06-13 2001-09-25 神鋼パンテツク株式会社 有機性廃液の処理方法及びその処理装置
EP1131266A4 (en) * 1998-09-28 2004-05-12 Glen D Lindbo WASTEWATER TREATMENT TANK WITH INFLUENTIAL DOORS AND PRE-REACTION AREA WITH BEVELLED PART TURNED OUT
JP2000185299A (ja) * 1998-12-22 2000-07-04 Toray Ind Inc 余剰汚泥減容化方法
US6783679B1 (en) 1999-10-19 2004-08-31 Pmc Technologies, Inc. Waste treatment process
JP3669246B2 (ja) * 2000-04-04 2005-07-06 栗田工業株式会社 浄化槽汚泥又はメタン醗酵汚泥の脱水方法
KR20000037463A (ko) * 2000-04-26 2000-07-05 지영호 폐수내의 효과적인 탈질과 탈인을 위한 혐기, 호기와무산소조의 순차 결합
KR100327154B1 (ko) * 2000-10-13 2002-03-13 박호군 바이오메이커를 이용한 고농도 유기성 폐수의 처리 방법
JP2003275719A (ja) * 2002-03-25 2003-09-30 Toto Ltd 厨芥排水処理装置およびその運転方法
US6770200B2 (en) * 2002-09-09 2004-08-03 Environmental Dynamics, Inc. Method and apparatus for enhancing wastewater treatment in lagoons
JP2004105872A (ja) * 2002-09-19 2004-04-08 Hitachi Plant Eng & Constr Co Ltd 廃水処理方法
KR20040031359A (ko) * 2002-10-04 2004-04-13 엄태경 질소 및 인의 제거를 위한 하수의 고도처리장치 및 방법
JP2004188281A (ja) * 2002-12-10 2004-07-08 Hoomaa Clean Kk 廃水処理方法及び廃水処理装置
JP2004267881A (ja) 2003-03-07 2004-09-30 Japan Sewage Works Agency 汚水の処理方法
US6884354B1 (en) * 2003-06-16 2005-04-26 Glen R. Calltharp System and process for the treatment of wastewater
JP2005066381A (ja) 2003-08-22 2005-03-17 Kobelco Eco-Solutions Co Ltd 有機性廃水の処理方法とその処理装置
JP4248375B2 (ja) * 2003-11-28 2009-04-02 住友重機械エンバイロメント株式会社 有機性汚泥の処理方法及び装置
JP4501496B2 (ja) * 2004-03-30 2010-07-14 栗田工業株式会社 有機性排水の生物処理方法
JP4218565B2 (ja) 2004-03-29 2009-02-04 株式会社日立製作所 下水処理方法,下水処理制御システム、及び下水処理設備
JP2006061743A (ja) * 2004-08-24 2006-03-09 Asahi Kasei Clean Chemical Co Ltd 余剰汚泥の処理方法及び処理装置
KR200371942Y1 (ko) 2004-10-12 2005-01-06 주식회사 기술환경 활성토양미생물을 이용한 하폐수의 고도처리장치
JP4765045B2 (ja) * 2005-07-22 2011-09-07 株式会社西原環境 固液分離装置および固液分離システム
JP4900556B2 (ja) * 2005-09-09 2012-03-21 栗田工業株式会社 排水処理プラントの運転管理方法
CN1769212B (zh) * 2005-09-14 2010-05-05 哈尔滨工业大学 分段进水生物脱氮方法中采用水力控制污泥龄的方法
JP2007105631A (ja) * 2005-10-13 2007-04-26 Sumiju Kankyo Engineering Kk 有機性排水の処理方法及び装置
JP2007105630A (ja) 2005-10-13 2007-04-26 Sumiju Kankyo Engineering Kk 有機性排水の処理方法
CN1778725A (zh) * 2005-10-14 2006-05-31 单明军 节能型焦化废水脱氮工艺
JP5315587B2 (ja) 2005-12-27 2013-10-16 栗田工業株式会社 有機物含有排水の処理装置及び処理方法
TWI304796B (en) 2006-02-13 2009-01-01 Archilife Res Foundation Treating method for biological waste
TWI316923B (en) 2006-02-17 2009-11-11 Ind Tech Res Inst System and method for treating carbon, nitrogen, phosphorous containing wastewater
JP2007260664A (ja) * 2006-02-28 2007-10-11 Toray Ind Inc 有機性廃水処理方法、有機性廃水用の膜分離活性汚泥処理装置、及び、ろ過摂食性微小動物製剤の製造方法
CN101045577A (zh) * 2006-03-29 2007-10-03 中国石化上海石油化工股份有限公司 一种采用活性污泥法去除污水氨氮的方法
JP4687597B2 (ja) * 2006-07-25 2011-05-25 株式会社Ihi 廃水の活性汚泥処理方法及び活性汚泥処理装置
JP4690265B2 (ja) 2006-08-04 2011-06-01 メタウォーター株式会社 排水処理方法
JP4017657B1 (ja) * 2007-05-15 2007-12-05 株式会社日本プラント建設 有機物含有排水の処理方法
JP5034778B2 (ja) * 2007-08-24 2012-09-26 栗田工業株式会社 膜分離式排水処理方法および装置
CN101229948A (zh) * 2008-01-11 2008-07-30 哈尔滨工业大学 厌氧-好氧两段膜生物反应器处理城市污水的方法
JP2009214073A (ja) * 2008-03-12 2009-09-24 Unitika Ltd 含窒素有機性廃水の処理方法及び処理装置
CN101381185B (zh) * 2008-07-21 2011-09-07 北京桑德环保集团有限公司 焦化废水脱氮处理方法及处理设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1101628A (zh) * 1994-10-27 1995-04-19 中国纺织大学 污泥常温酸化水解——三相生物处理方法
EP1302446A1 (en) * 1997-12-19 2003-04-16 Shinko Pantec Kabushika Kaisha Method for sludge reduction in a waste water treatment system
US20020030003A1 (en) 2000-09-07 2002-03-14 O'leary Kevin P. Activated sludge wastewater treatment system and method
JP2004041953A (ja) * 2002-07-12 2004-02-12 Mitsubishi Kakoki Kaisha Ltd 有機性排水の処理方法および装置
CN1935708A (zh) * 2006-10-19 2007-03-28 北京科技大学 一种具有降解生物污泥和脱氮作用的处理装置及其操作方法
JP2008114161A (ja) * 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd 排水処理方法及び装置
CN101428939A (zh) * 2008-12-18 2009-05-13 上海宝钢工程技术有限公司 冷轧废水深度处理回用系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129191A (zh) * 2019-04-10 2019-08-16 山东大学 一种废弃纸箱高效产甲烷及资源化处理系统及其处理方法

Also Published As

Publication number Publication date
BR112012013336B1 (pt) 2019-07-09
NZ600892A (en) 2014-05-30
AU2010327284B2 (en) 2013-06-20
AR079612A1 (es) 2012-02-08
ZA201204302B (en) 2013-08-28
CN102485668B (zh) 2014-10-01
AU2010327284A1 (en) 2012-04-26
BR112012013332A2 (pt) 2016-03-01
NZ600897A (en) 2014-05-30
US9169143B2 (en) 2015-10-27
BR112012013332B1 (pt) 2019-10-29
KR101601193B1 (ko) 2016-03-21
CA2780721C (en) 2017-01-17
US20120234751A1 (en) 2012-09-20
EA201290421A1 (ru) 2013-01-30
MY168200A (en) 2018-10-15
KR20120113746A (ko) 2012-10-15
EA024803B1 (ru) 2016-10-31
EA201290399A1 (ru) 2013-01-30
IL219713A0 (en) 2012-07-31
CN102149645B (zh) 2011-11-16
US8932466B2 (en) 2015-01-13
EP2508490A4 (en) 2013-07-17
CA2780721A1 (en) 2011-06-09
WO2011066790A1 (zh) 2011-06-09
JP5643836B2 (ja) 2014-12-17
EP2508490A1 (en) 2012-10-10
KR20120096559A (ko) 2012-08-30
EP2508487A1 (en) 2012-10-10
MY178078A (en) 2020-10-01
IL219714A (en) 2015-09-24
KR101665636B1 (ko) 2016-10-24
JP2013512096A (ja) 2013-04-11
CN102149645A (zh) 2011-08-10
JP2013512098A (ja) 2013-04-11
IL219713A (en) 2015-09-24
IL219714A0 (en) 2012-07-31
AU2010327173A1 (en) 2012-07-19
CN102485668A (zh) 2012-06-06
EP2508487A4 (en) 2013-07-17
CA2780716C (en) 2015-05-26
MX2012006387A (es) 2012-10-03
CA2780716A1 (en) 2011-06-09
EA024049B1 (ru) 2016-08-31
ZA201204301B (en) 2013-08-28
US20120228217A1 (en) 2012-09-13
BR112012013336A2 (pt) 2016-03-01
AU2010327173B2 (en) 2015-01-22
JP5685265B2 (ja) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2011066736A1 (zh) 污泥处理方法和装置及其在污水生物处理中的应用
CN106745743B (zh) 一种污水脱氮除磷系统
CN101279794B (zh) 强化内源反硝化的膜-生物反应器脱氮除磷工艺及装置
WO2012155790A1 (zh) 一种利用微生物处理煤化工废水总氮的方法
CN111268872A (zh) 一种农药废水处理工艺及其处理装置
CN112110615A (zh) 一种城镇污水厂提标改造处理工艺与系统
CN111153508A (zh) 一种餐厨污水多级处理工艺
CN109867352B (zh) 一种利用厌氧mbr实现含氮废水自养深度脱氮的方法
CN113716689B (zh) 一种基于硫还原与硫自养反硝化的混合营养型脱氮方法
TWI445673B (zh) 污泥處理方法和裝置及其在污水生物處理中的應用
CN100417604C (zh) 硝基苯废水或苯胺废水或其混合废水的全生化处理方法
CN111592104A (zh) 一种餐厨垃圾消化液的短程高效生物处理装置及处理方法
CN115385450B (zh) 一种硫自养泥法snd-msad深度脱氮除碳工艺
CN213357071U (zh) 一种实现低氨氮废水短程硝化-厌氧氨氧化脱氮稳定运行的系统
CN114349290A (zh) 一种基于mbbr污水处理工艺的强化除磷方法
CN110697991B (zh) 一种垃圾渗沥液生物处理工艺及系统
CN111072234A (zh) Zonber高效节能的小型污水处理集成装置
Kong et al. Biological treatment of refractory organic compounds in coal gasification wastewater: A review
CN115745180B (zh) 一种污水强化脱氮的处理方法
CN115557643B (zh) 一种城镇生活污水处理系统及资源化利用方法
CN216005573U (zh) 便携式可移动黑臭水体净化装置
CN115872563A (zh) 一种多段ao-mbbr零碳源污水脱氮方法
CN114180710A (zh) 模块式一体化污水处理设备及其污水处理方法
CN117430266A (zh) 一种市政污水处理方法及原位扩容增产方法
CN116143292A (zh) 能源自给型城市污水处理系统与方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001468.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010327284

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010327284

Country of ref document: AU

Date of ref document: 20100528

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 219714

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2780716

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13509599

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1308/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012541300

Country of ref document: JP

Ref document number: 2010834169

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201002575

Country of ref document: TH

Ref document number: 12012501086

Country of ref document: PH

Ref document number: MX/A/2012/006387

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20127017006

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201290421

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012013332

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012013332

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120601