WO2011065292A1 - タッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法 - Google Patents

タッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法 Download PDF

Info

Publication number
WO2011065292A1
WO2011065292A1 PCT/JP2010/070618 JP2010070618W WO2011065292A1 WO 2011065292 A1 WO2011065292 A1 WO 2011065292A1 JP 2010070618 W JP2010070618 W JP 2010070618W WO 2011065292 A1 WO2011065292 A1 WO 2011065292A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
touch panel
protective film
manufacturing
transparent conductive
Prior art date
Application number
PCT/JP2010/070618
Other languages
English (en)
French (fr)
Inventor
美崎 克紀
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2011543223A priority Critical patent/JP5323945B2/ja
Priority to EP10833138.0A priority patent/EP2492780B1/en
Priority to US13/511,147 priority patent/US8709265B2/en
Publication of WO2011065292A1 publication Critical patent/WO2011065292A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a method for manufacturing a touch panel in which touch electrodes are formed of a transparent conductive film on an insulating transparent substrate, and a method for manufacturing a display device including the touch panel.
  • a liquid crystal display device as a display device with a touch panel has a configuration in which a transparent touch panel is superimposed on an image display surface of a liquid crystal panel, and an image displayed on the liquid crystal panel can be viewed through the touch panel. it can.
  • a liquid crystal display device presses the surface on the viewing side of the touch panel, that is, the surface on the side on which the display image of the liquid crystal panel is observed, with a fingertip or an input pen in accordance with the displayed image. The position can be detected. Thereby, the input content of a touch panel can be reflected in control of apparatus used, such as PDA.
  • a touch electrode of a transparent conductive film is formed as a planar pattern on an insulating transparent substrate such as glass or film.
  • a projection capacitive method in which touch electrodes are arranged at a predetermined interval has been attracting attention in recent years because it corresponds to so-called multi-touch that simultaneously detects a plurality of touch points.
  • the touch electrode formed on the portion overlapping the image display surface of the display panel is formed of a transparent conductive film.
  • the connection terminal for outputting the potential of the touch electrode to an external circuit board and the lead-out wiring for connecting the touch electrode and the connection terminal are made of a metal material such as aluminum having a resistance value lower than that of the transparent conductive film. Formed by a metal layer.
  • the metal layer is used as a connection terminal or a lead-out wiring, the surface of the metal layer is covered with a protective film in order to prevent the metal layer from being oxidized or peeled off.
  • a connection member such as a flexible printed circuit board (FPC) that connects the touch panel and the external circuit
  • FIG. 33 is a cross-sectional view showing an example of a manufacturing process of a conventional capacitive touch panel.
  • 33 (a), 33 (b), and 33 (c) the left diagram shows the portion where the touch electrode is formed, that is, the portion along the line AA ′ in FIG. 1 showing the electrode pattern.
  • the cross section of the corresponding A section is shown.
  • 33 (a), 33 (b), and 33 (c) the center diagram shows the portion where the lead wiring is formed, that is, the portion along the line BB ′ in FIG. 1 showing the electrode pattern.
  • the cross section of the B section corresponding to is shown.
  • FIGS. 33 (a), 33 (b) and 33 (c) the diagram on the right side shows the portion where the connection terminal is formed, that is, the portion along the line CC ′ in FIG. 1 showing the electrode pattern.
  • the cross section of the C section corresponding to is shown.
  • an aluminum (Al) layer and a molybdenum (Mo) layer covering the aluminum layer are formed on the entire surface of a transparent substrate 701 made of glass or transparent film by sputtering.
  • a resist film is formed thereon by sequentially laminating. Then, the resist film is exposed and developed using a mask so that the resist film is left only in a portion where the lead wiring and the connection terminal are formed. Thereafter, etching is performed using the remaining resist film as a mask.
  • a metal layer made of a laminate of the aluminum layer 711 and the molybdenum layer 712 is formed in the portion where the lead-out wiring and the connection electrode are formed.
  • a transparent conductive film layer such as ITO (Indium Tin Oxide) is formed on the transparent substrate 701 by a sputtering method. And after apply
  • a transparent conductive film layer 713 is formed on the stacked body of the aluminum layer 711 and the molybdenum layer 712 in the touch electrode portion and the connection terminal portion. A structure in which the transparent conductive film 713 is formed is shown in FIG.
  • a protective film 714 made of SiN, SiO 2 or transparent resin is formed on the entire surface of the transparent substrate 701 by a CVD method or the like. Then, the protective film 714 is etched using the resist pattern, thereby forming an opening 715 in the connection terminal portion.
  • a touch panel including the touch electrode 702, the floating electrode 703, the extraction electrode 704, and the connection terminal 705 is manufactured.
  • the touch electrode 702 includes a transparent conductive film layer 713 formed as a planar pattern.
  • the floating electrode 703 includes a transparent conductive film layer 713 disposed between the touch electrodes 702 and 702.
  • the extraction electrode 704 is a stacked body of an aluminum layer 711 and a molybdenum layer 712.
  • the connection terminal 705 is formed by stacking an aluminum layer 711, a molybdenum layer 712, and a transparent conductive film layer 713.
  • a protective film 714 made of a transparent resin is formed on the entire panel except for the opening 715 on the connection terminal 705.
  • the lead wiring may be formed in two layers on the transparent substrate so as not to conduct each other.
  • the connection terminals are also formed in two layers according to the layer where the lead wiring to which the connection terminals are connected is formed.
  • 34 and 35 are cross-sectional views showing an example of the manufacturing process of the capacitive touch panel in which the lead-out wiring is three-dimensionally divided into two layers.
  • FIG. 7 shows a cross section of a portion D corresponding to a DD ′ arrow line portion in FIG. 6 showing an electrode pattern.
  • the central view shows the portion where the lead-out wiring is formed, that is, the electrode pattern EE in FIG. 'The cross section of the E section corresponding to the line of sight is shown.
  • the diagram on the right side shows the portion where the connection terminal is formed, that is, the FF in FIG. 6 showing the electrode pattern. 'The cross section of the F portion corresponding to the line of sight is shown.
  • an aluminum layer and a molybdenum layer covering the aluminum layer are sequentially stacked on the entire surface of a transparent substrate 801 made of glass or transparent film by a sputtering method, and a resist film is formed thereon. Then, the resist film is exposed and developed to leave the resist film only in the first layer, that is, the lower layer directly formed on the transparent substrate, in the portion where the lead-out wiring and the connection terminal are formed. Etching is performed using the remaining resist film as a mask. As a result, as shown in FIG. 34A, a laminated body of an aluminum layer 811 and a molybdenum layer 812 is formed in a portion where the first layer lead-out wiring and the first layer connection electrode are formed.
  • a first protective film 813 made of SiN, SiO 2 or transparent resin having a function as an interlayer insulating film between the first layer and the second layer is formed by a CVD method. Form by such as.
  • an aluminum layer and a molybdenum layer covering the aluminum layer are sequentially formed again by sputtering on the first protective film 813 thus formed, and a resist film is formed thereon. Then, the resist film is exposed and developed to leave the resist film only in the second layer, that is, the upper layer on the surface side of the touch panel, where the lead-out wiring and the connection terminal are formed. Etching is performed using the remaining resist film as a mask. As a result, as shown in FIG. 34C, a laminated body of the aluminum layer 814 and the molybdenum layer 815 is formed in the portion where the second layer lead-out wiring and the second layer connection electrode are formed.
  • the patterned resist film is left in a portion other than the upper portion of the laminated body of the aluminum layer 811 and the molybdenum layer 812 serving as the connection terminals of the first layer.
  • the first protective film 813 is etched using this resist film as a mask to provide an opening 816 to expose the surface of the molybdenum layer 812. This state is shown in FIG.
  • a transparent conductive film layer such as ITO is formed on the surface of the first protective film 813 by a CVD method or the like.
  • a patterned resist film is formed in accordance with the planar pattern of the floating electrode formed between the touch electrodes.
  • the resist film is left so as to cover the opening 816 of the first protective film 813 in the F portion where the connection terminal is formed.
  • etching is performed using this resist film as a mask, and as shown in FIG. 35 (b), a portion where the touch electrode and floating electrode of the D portion are formed, and a portion covering the connection terminal of the first layer of the F portion, Then, the patterned transparent conductive film layer 817 is left.
  • a second-layer protective film 818 made of SiN, SiO 2 or transparent resin is formed on the entire surface of the transparent substrate 801 by a CVD method or the like.
  • a resist film is formed by patterning, leaving portions where the first layer connection terminals and the second layer connection terminals are formed. Etching is performed using this resist film as a mask, and an opening 819 and an opening 820 are formed in the second protective film 818.
  • the floating electrode 803, the first-layer lead electrode 804a, the second-layer lead electrode 804b, the first-layer connection terminal 805a, and the second-layer connection A touch panel in which the terminals 805b are formed is manufactured.
  • the floating electrode 803 is covered with the second-layer protective film 818 and is formed between the touch electrode 802 and the touch electrode 802.
  • the surface of the first layer connection terminal 805a and the second layer connection terminal 805b is exposed from the openings 816, 819, and 820 provided in the first layer protective film 813 and the second layer protective film 818. .
  • a first exposure mask is necessary to form a metal layer pattern of the lead wiring 704 and the connection terminal 705 made of the aluminum film 711 and the molybdenum film 712.
  • a second exposure mask is necessary to form the touch electrode 702 and the floating electrode 703 and to pattern the transparent conductive film layer 713 serving as a protective film for the metal layer of the connection terminal 705.
  • a third exposure mask is required in order to form an opening 715 to be a through hole for establishing conduction in a connection terminal 705 formation portion.
  • a first exposure mask is required to form the pattern of the first layer lead-out wiring 804a and the first layer connection terminal 805a, which are respectively constituted by the aluminum film 811 and the molybdenum film 812. .
  • a second exposure mask is necessary to form a pattern of the second-layer lead-out wiring 804b and the second-layer connection terminal 805b, each composed of the aluminum film 814 and the molybdenum film 815.
  • a third exposure mask for forming an opening 816 for exposing the connection terminal 805a of the first layer is required in the protective film 813 of the first layer.
  • the transparent conductive film 817 serving as a film protecting the touch electrode 802
  • the floating electrode 803, the metal layer of the first connection terminal 805a and the metal layer of the second connection terminal 805b 4 exposure masks are required.
  • a fifth exposure mask is necessary to form openings 819 and 820 serving as through holes in the second protective film 818 where connection terminals 805a and 805b are to be formed. It becomes.
  • the increase in the number of exposure masks also means an increase in the number of mask alignments, which increases the misalignment of the formed layers, leading to a decrease in pattern accuracy of the manufactured touch panel.
  • an object of the following embodiments is to provide a method for manufacturing a touch panel in which the number of exposure masks necessary for pattern formation is reduced, and a method for manufacturing a display device including the touch panel.
  • a transparent conductive film layer and a metal layer are sequentially stacked on an insulating transparent substrate, and then the transparent conductive film layer and the metal layer are formed using the same resist pattern.
  • a protective film is formed to cover the transparent conductive film layer and the metal layer, and an opening that penetrates the protective film is provided at a predetermined position of the protective film.
  • the metal layer is removed by etching using the protective film formed to expose the transparent conductive film layer, thereby forming at least one of a touch electrode and a connection terminal that outputs the potential of the touch electrode to the outside of the touch panel To do.
  • the touch panel manufacturing method according to an embodiment of the present invention can reduce the number of exposure masks necessary for pattern formation.
  • FIG. 1 is a plan view showing an electrode pattern of a touch panel that is manufactured by the touch panel manufacturing method according to the first embodiment and that has a one-layer lead wiring.
  • FIG. 2 is a cross-sectional view illustrating a manufacturing process of the touch panel manufacturing method according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a manufacturing process of the touch panel manufacturing method according to the first application example of the first embodiment.
  • FIG. 4 is a cross-sectional view illustrating a manufacturing process of a touch panel manufacturing method according to a second application example of the first embodiment.
  • FIG. 5: is sectional drawing which shows the manufacturing process of the manufacturing method of the touchscreen concerning the 3rd application example of 1st Embodiment.
  • FIG. 1 is a plan view showing an electrode pattern of a touch panel that is manufactured by the touch panel manufacturing method according to the first embodiment and that has a one-layer lead wiring.
  • FIG. 2 is a cross-sectional view illustrating a manufacturing process of the touch panel manufacturing method
  • FIG. 6 is a plan view showing an electrode pattern of a touch panel that is manufactured by the touch panel manufacturing method according to the second embodiment and in which the touch electrode, the lead-out wiring, and the connection terminal each have a two-layer structure.
  • FIG. 7 is a cross-sectional view illustrating an initial part of a manufacturing process in the touch panel manufacturing method according to the second embodiment.
  • FIG. 8 is a cross-sectional view showing an intermediate part of the manufacturing process in the touch panel manufacturing method according to the second embodiment.
  • FIG. 9 is a cross-sectional view showing the latter part of the manufacturing process in the touch panel manufacturing method according to the second embodiment.
  • FIG. 10 is a cross-sectional view showing an intermediate part of the manufacturing process in the method for manufacturing a touch panel according to the first application example of the second embodiment.
  • FIG. 11 is sectional drawing which shows the latter part of a manufacturing process in the manufacturing method of the touchscreen concerning the 1st application example of 2nd Embodiment.
  • FIG. 12 is a cross-sectional view showing an intermediate part of the manufacturing process in the touch panel manufacturing method according to the second application example of the second embodiment.
  • FIG. 13 is sectional drawing which shows the latter part of a manufacturing process in the manufacturing method of the touchscreen concerning the 2nd application example of 2nd Embodiment.
  • FIG. 14 is a cross-sectional view illustrating an initial part of a manufacturing process in the touch panel manufacturing method according to the third application example of the second embodiment.
  • FIG. 15 is a cross-sectional view showing an intermediate part of the manufacturing process in the touch panel manufacturing method according to the third application example of the second embodiment.
  • FIG. 16 is sectional drawing which shows the latter part of a manufacturing process in the manufacturing method of the touchscreen concerning the 3rd application example of 2nd Embodiment.
  • FIG. 17 is sectional drawing which shows the intermediate part of a manufacturing process in the manufacturing method of the touchscreen concerning the 4th application example of 2nd Embodiment.
  • FIG. 18 is a cross-sectional view showing the latter part of the manufacturing process in the touch panel manufacturing method according to the fourth application example of the second embodiment.
  • FIG. 19 is a plan view showing an electrode pattern of a touch panel that is manufactured by the touch panel manufacturing method according to the third embodiment and in which a part of the lead-out wiring is a connection wiring.
  • FIG. 20 is a cross-sectional view illustrating the manufacturing process of the touch panel manufacturing method according to the third embodiment.
  • FIG. 21 is a cross-sectional view illustrating a manufacturing process of a touch panel manufacturing method according to an application example of the third embodiment.
  • FIG. 22 is a plan view showing an electrode pattern of a touch panel that is manufactured by the touch panel manufacturing method according to the first modification of the third embodiment and in which a part of the lead-out wiring is a connection wiring.
  • FIG. 23 is a cross-sectional view showing a manufacturing process in the touch panel manufacturing method according to the first modification of the third embodiment.
  • FIG. 24 is a cross-sectional view illustrating a manufacturing process of a touch panel manufacturing method according to an application example of the first modification of the third embodiment.
  • FIG. 25 is a plan view showing an electrode pattern of a touch panel that is manufactured by the touch panel manufacturing method according to the second modification of the third embodiment and in which a part of the lead-out wiring is a connection wiring.
  • FIG. 26 is a cross-sectional view illustrating a manufacturing process of the touch panel manufacturing method according to the second modification of the third embodiment.
  • FIG. 27 is a cross-sectional view illustrating a manufacturing process of a touch panel manufacturing method according to an application example of the second modification example of the third embodiment.
  • FIG. 28 is a plan view showing an electrode pattern of a touch panel that is manufactured by a touch panel manufacturing method according to another embodiment and in which a part of the lead-out wiring is a connection wiring.
  • FIG. 26 is a cross-sectional view illustrating a manufacturing process of the touch panel manufacturing method according to the second modification of the third embodiment.
  • FIG. 27 is a cross-sectional view illustrating a manufacturing process of a touch panel manufacturing method according to an application example of the second modification example of the third
  • FIG. 29 is a cross-sectional view illustrating a manufacturing process of a touch panel manufacturing method according to another embodiment.
  • FIG. 30 is a flowchart illustrating a first manufacturing method among the manufacturing methods of the display device including the touch panel according to the fourth embodiment.
  • FIG. 31 is a flowchart illustrating a second manufacturing method among the methods of manufacturing a display device including a touch panel according to the fourth embodiment.
  • FIG. 32 is a cross-sectional view illustrating a configuration of a liquid crystal display device manufactured by a method for manufacturing a display device including a touch panel according to the fourth embodiment.
  • FIG. 33 is a cross-sectional view showing a manufacturing process of a conventional manufacturing method in a touch panel in which the lead wiring has a one-layer structure.
  • FIG. 30 is a flowchart illustrating a first manufacturing method among the manufacturing methods of the display device including the touch panel according to the fourth embodiment.
  • FIG. 31 is a flowchart illustrating a second manufacturing method among the methods of manufacturing a display
  • FIG. 34 is a cross-sectional view showing the first half of the manufacturing process of the conventional manufacturing method in a touch panel having two-layer lead wiring.
  • FIG. 35 is a cross-sectional view showing the latter half of the manufacturing process of the conventional manufacturing method in a touch panel having two-layer lead wiring.
  • a transparent conductive film layer and a metal layer are sequentially stacked on an insulating transparent substrate, and then the transparent conductive film layer and the metal layer are formed using the same resist pattern.
  • a protective film is formed to cover the transparent conductive film layer and the metal layer, and an opening that penetrates the protective film is provided at a predetermined position of the protective film.
  • the metal layer is removed by etching using the protective film, and the transparent conductive film layer is exposed to form at least one of a touch electrode and a connection terminal that outputs the potential of the touch electrode to the outside of the touch panel (First method).
  • a touch panel in which touch electrodes, lead-out wirings, and connection terminals are formed in the same layer can be manufactured using two exposure masks. Specifically, by a first exposure mask for forming a transparent conductive film layer and a metal layer in a predetermined electrode pattern, and a second exposure mask for forming an opening at a predetermined position of the protective film, A touch panel having the above-described configuration can be manufactured. For this reason, the manufacturing process can be simplified and reduced by reducing the number of masks as compared with the conventional touch panel manufacturing method, which requires at least three exposure masks to manufacture a touch panel having the same electrode pattern. Cost reduction can be realized. Moreover, it becomes possible to manufacture a touch panel with high accuracy with little mask displacement by reducing the number of mask alignments.
  • the surface transparent conductive film layer is laminated on the metal layer, the surface transparent conductive film layer is formed into a predetermined electrode pattern using the same resist pattern, and the formed surface It is preferable to modify the portion of the transparent conductive film layer that becomes the connection terminal so as not to be removed by the etching (second method).
  • the protective film is composed of an organic resin film, and after the transparent conductive film layer is exposed by the etching, the protective film is partially dissolved, It is preferable to smooth the wall surface of the opening (third method).
  • the transparent conductive layer of the first layer and the metal layer of the first layer are sequentially stacked on the transparent substrate, and the transparent conductive layer of the first layer is formed using the same resist pattern.
  • a film layer and a first metal layer are formed in a predetermined electrode pattern, and the first protective film covering the first transparent conductive layer and the first metal layer is formed, and the first layer is formed.
  • a second transparent conductive film layer and a second metal layer are sequentially stacked on the protective film, and the second transparent conductive film layer and the second metal layer are formed using the same resist pattern. Forming a layer in a predetermined electrode pattern, forming a second protective film covering the second transparent conductive film layer and the second metal layer, and forming the first protective film and the second protective film.
  • a touch panel in which the touch electrode, the lead electrode, and the connection terminal are formed in a two-layer structure can be formed by using three exposure masks. That is, a predetermined opening is formed in the first exposure mask for forming the first layer electrode pattern, the second exposure mask for forming the second layer electrode pattern, and the protective films of the first layer and the second layer.
  • the touch panel described above can be manufactured with the third exposure mask for forming the part.
  • the protective film of the first layer and the protective film of the second layer are made of the same material, and the opening of the first layer in the protective film of the first layer is formed.
  • the resist pattern formed on the second-layer protective film is used as a mask to form simultaneously with the opening of the second layer in the second-layer protective film (fifth method).
  • the protective film of the first layer is made of a material different from that of the protective film of the second layer, and the opening of the first layer in the protective film of the first layer Is preferably formed using the protective film of the second layer in which the opening of the second layer is formed as a mask (sixth method).
  • the protective film of the second layer is composed of an organic resin film, and the first transparent conductive film layer and the first layer are formed by the etching. After exposing the transparent conductive film layer of the second layer, the protective film of the second layer is partially dissolved to smooth each wall surface of the opening portion of the first layer and the opening portion of the second layer. (Seventh method). By doing in this way, even when a touch electrode, an extraction electrode, and a connection terminal are formed by a two-layer structure, it can prevent that a protective film is damaged at the time of use of a touch panel. Therefore, a touch panel with higher durability can be manufactured by the above-described method.
  • a part of the lead-out wiring that connects the touch electrode and the connection terminal is configured by a connection wiring formed in a layer different from the touch electrode and the connection terminal.
  • the opening of the protective film is also formed in a portion to be a connection portion between the connection wiring and the lead-out wiring, and a connection portion between the connection wiring and the lead-out wiring has the predetermined electrode pattern.
  • the connection wiring is formed by patterning a conductive film formed on the protective film with a resist pattern (eighth method).
  • a touch panel in which a part of the lead-out wiring forms a connection wiring can be manufactured with three exposure masks. Specifically, the first exposure mask for forming the transparent conductive film layer and the metal layer in a predetermined electrode pattern, the second exposure mask for forming the opening of the protective film, and the connecting wiring The touch panel described above can be manufactured by using the third exposure mask for forming.
  • connection wiring is provided at a portion where the lead-out wiring intersects three-dimensionally (ninth method). Since the lead-out wiring can be three-dimensionally crossed by this connection wiring, the design flexibility of the lead-out wiring can be increased.
  • portions other than the part of the lead-out wiring are configured by the connection wiring, and a portion where the lead-out wiring intersects three-dimensionally is the same as the touch electrode and the connection terminal. It is preferable to be provided in the layer (tenth method).
  • the touch panel can be manufactured by using the three exposure masks as in the above-described eighth method.
  • the resist pattern remains on the connection wiring and serves as a protective film for the connection wiring (11th method). . Thereby, it is possible to protect the connection wiring without forming a new protective film.
  • an insulating surface protective film is formed in a portion other than the exposed transparent conductive film layer so as to cover the connecting wiring ( 12th method). Thereby, it can prevent that a metal layer touches air and oxidizes with a surface protective film.
  • a floating electrode that is not electrically connected to the touch electrode is provided between the touch electrodes, and the floating electrode is the transparent conductive material simultaneously with the touch electrode. It is preferably formed from a film layer (13th method).
  • the manufacturing method of the display apparatus provided with the touch panel concerning one embodiment of the present invention uses the transparent substrate of the touch panel manufactured by the manufacturing method of the touch panel as described in any one of the 1st to 13th methods as a substrate.
  • a display panel is manufactured (fourteenth method).
  • the transparent substrate of the touch panel can be used as the substrate of the display panel.
  • a display device including a touch panel with high electrode pattern formation accuracy can be manufactured at low cost by utilizing the features of the touch panel manufacturing method of the present invention.
  • a method for manufacturing a display device including a touch panel including a touch panel according to an embodiment of the present invention, after forming a display panel having a front substrate and a rear substrate, the front substrate of the display panel is used as a transparent substrate.
  • a touch panel is formed by the touch panel manufacturing method according to any one of the thirteenth methods (fifteenth method).
  • the transparent substrate of the touch panel and the substrate of the display panel can be used together.
  • the display panel is preferably a liquid crystal panel (sixteenth method).
  • the projection capacitive touch panel formed on the glass-made transparent substrate as a touch panel An example will be described.
  • the manufacturing method of the touch panel in each of the following embodiments is not limited to the projective capacitive type, and various types of touch electrode using the transparent conductive film layer formed as a planar pattern on the transparent substrate. It can be used as a method for manufacturing a touch panel.
  • each drawing referred to below is necessary for the description of the touch panel manufacturing method and the constituent members of the display device formed by the manufacturing method of the touch panel and the display device including the touch panel for convenience of description. Only the main members are shown in a simplified manner. Therefore, the manufacturing method of a touch panel and the manufacturing method of a display device including a touch panel can be applied as a manufacturing method of a touch panel and a display device including arbitrary constituent members that are not shown in the drawings to be referred to. Moreover, the dimension of the member in each figure, especially the dimension of the thickness direction of a touch panel do not necessarily faithfully represent the dimension of an actual component member, the dimension ratio of each member, and the like.
  • FIG. 1 is a plan view showing a touch electrode pattern in a touch panel 100 manufactured by the touch panel manufacturing method according to the first embodiment.
  • a touch electrode 2 is formed by forming a transparent conductive film layer such as ITO as a planar pattern on a glass substrate 1 which is an insulating transparent substrate. Since the touch panel 100 of the present embodiment is a projection capacitive type, the touch electrode 2 is formed so that a plurality of substantially rectangular electrode patterns having the same size are arranged as shown in FIG. In the touch panel of this embodiment, ten electrode patterns are arranged in two rows in the vertical direction in the horizontal direction, and a total of 20 electrode patterns are provided.
  • the arrangement pattern of the touch electrodes 2 is not limited to that shown in FIG. Therefore, the shape of the electrode pattern of the touch electrode 2 does not have to be the rectangular shape shown in FIG. 1, and the number of electrode patterns arranged horizontally and vertically is not limited to 10 ⁇ 2.
  • the touch electrodes are arranged at a predetermined interval, for example, about 200 ⁇ m to 800 ⁇ m so that the patterned touch electrode can sense the position of the user's finger touching the touch electrode. It is necessary to arrange so as to have an interval. Therefore, there is a region where the touch electrode is not formed between the touch electrodes.
  • the floating electrode 3 formed of a transparent conductive film layer such as ITO is provided in the gap portion between the touch electrodes 2 as in the touch electrode 2.
  • the floating electrode 3 makes it difficult for the user to visually recognize the electrode pattern of the touch electrode 2.
  • the floating electrode 3 prevents the potential of the touch electrode from fluctuating due to accumulation of undesired floating charges in the space between the touch electrodes 2 where the touch electrode 2 is not formed.
  • the arrangement interval and shape of the floating electrode 3 are not limited as in the touch electrode 2.
  • a rectangular floating electrode 3 having a long side having the same length as the long side of the touch electrode 2 is provided between the touch electrodes 2 adjacent in the horizontal direction in FIG. 1. Be placed. Further, in FIG.
  • rectangular floating electrodes 3 having various aspect ratios are formed between the touch electrodes 2 adjacent in the vertical direction so as to avoid the connection wiring 6 that connects the touch electrodes 2 to each other. Yes. These are merely examples of the shape and arrangement of the floating electrode 3, and do not limit the shape of the floating electrode 3.
  • the floating electrode 3 that makes the touch electrode 2 difficult to be visually recognized by the user is not an essential component for the touch panel 100. Therefore, also in this embodiment and other embodiments, the floating electrode 3 is not necessarily formed as the electrode pattern of the touch panel manufactured by the touch panel manufacturing method. Of course, in this case, a portion where no electrode is formed exists between the patterned touch electrodes 2.
  • the touch electrode 2 is connected to a connection terminal 5 formed at one end of the glass substrate 1 through a lead wiring 4 provided around a detection region for detecting a touch position by the touch electrode 2. .
  • each touch electrode 2 is connected to a connection terminal by a lead wire 4 formed in a peripheral region of the touch position detection region and a connection wire 6 that connects the touch electrodes 2 in the touch position detection region. 5 is connected.
  • four connection terminals 5 are provided in the touch panel 100 according to the present embodiment.
  • the touch position is detected by grasping the change in capacitance caused by the fingertip or the like approaching the touch electrode 2 as the change in voltage of the four connection terminals 5.
  • FIG. 2 is a cross-sectional view showing an example of a manufacturing process of the touch panel manufacturing method according to the present embodiment.
  • the diagram on the left shows the portion where the touch electrode 2 and the floating electrode 3 are formed, that is, the AA in FIG. 1 showing the electrode pattern. 'Shows a cross section of the line of sight. In the following description, the portion taken along the line A-A ′ in FIG.
  • the central view shows the portion where the lead-out wiring is formed, that is, the electrode line BB ′ in FIG.
  • the cross section of the part is shown.
  • the diagram on the right side shows the part where the connection terminals are formed, that is, the electrode line pattern CC ′ in FIG.
  • the cross section of the part is shown. In the following description, the portion taken along the line C-C ′ in FIG.
  • the metal layer 12c is sequentially laminated by a sputtering method.
  • a resist film (not shown) is formed on the BM metal layer 12c which is the uppermost layer of the metal layer 12.
  • the resist film is covered with a mask and exposed to light and developed by a normal photolithography method, the A portion touch electrode 2 and the floating electrode 3, the B portion lead wiring 4, the C portion connection terminal 5 shown in FIG.
  • the resist pattern is left in the portion of the connection wiring 6 not shown in FIG.
  • connection wiring 6 for connecting the touch electrodes 2 in the touch position detection region is formed in the same manner as the touch electrode 2 in the manufacturing method. There is no particular mention in the specification. Further, detailed description regarding the connection wiring 6 is also omitted.
  • the same resist pattern is used to form aluminum with a mixed acid solution of phosphoric acid, acetic acid and nitric acid.
  • the layer 12b and the MoN layer 12a are etched.
  • the transparent conductive film layer 11 is etched with an oxalic acid solution using the same resist pattern. Thereafter, the resist film remaining on the BM metal layer 12c is stripped and removed with a resist stripping solution.
  • FIG. 2A shows the state in which the laminated body is formed in this way.
  • a protective film 13 of SiN is formed on the glass substrate 1 by using a CVD method so as to cover the laminated body of the transparent conductive film layer and the metal layer. Then, using a photolithography method, a resist film is left on the portion other than the portion that becomes the touch electrode 2 and the floating electrode 3 in the A portion and the portion other than the portion that becomes the connection terminal 5 in the C portion.
  • the protective film 13 is etched by dry etching (RIE method) using a fluorine-based gas.
  • RIE method dry etching
  • openings 15 and 16 that pass through the protective film 13 are formed in the A portion, and openings 14 that pass through the protective film 13 are formed in the C portion, respectively.
  • the BM metal layer 12c formed on the surface is exposed.
  • the resist film remaining on the protective film 13 is stripped and removed with a resist stripping solution. This state is shown in FIG.
  • the BM metal layer 12c is etched with an acid-based mixed acid solution using the protective film 13 with the penetrating openings 14, 15, 16 formed as a mask, and then the aluminum layer 12b is mixed with a mixed acid solution of phosphoric acid, acetic acid and nitric acid.
  • the MoN layer 12a is continuously etched.
  • the metal layer 12 is removed and the transparent conductive film layer 11 is exposed in the A portion that is the touch position detection region and the C portion that is the region where the connection terminals are formed.
  • part B where the lead-out wiring is formed since the protective film 13 remains, the laminate of the transparent conductive film layer 11 and the metal layer 12 covered with the protective film 13 remains.
  • the electrode pattern shown in FIG. 1 is configured, and the touch electrode 2 and the floating electrode 3 configured by the transparent conductive film layer 11 are formed in the portion A.
  • the lead-out wiring 4 whose resistance value is lowered by laminating the metal layer 12 on the transparent conductive film layer 11 is formed in a state covered with the protective film 13.
  • an opening 14 serving as a via hole for connection is formed in the protective film 13 so that the connection terminal 5 made of the transparent conductive film layer 11 is exposed.
  • the touch electrode 2 having the electrode pattern shown in FIG. 1 is connected.
  • the lead-out wiring 4 connected to the terminal 5 can be formed by laminating a metal film 12 having a low resistance value.
  • the exposure mask used at this time is a first exposure mask for patterning the transparent conductive film layer 11 and the metal layer 12 as shown in FIG. 2 (a), and protection as shown in FIG. 2 (b).
  • a total of two second exposure masks for forming the openings 14, 15, 16 are formed at predetermined positions of the film 13.
  • the touch panel manufacturing method of the present embodiment can reduce the number of masks to be used. As a result, the touch panel can be manufactured at a low cost, and pattern displacement due to mask alignment errors is unlikely to occur.
  • FIG. 3 is a cross-sectional view showing a first application example in the touch panel manufacturing method of the present embodiment.
  • FIG. 2 (a), 3 (b), and 3 (c) are shown in FIG. 2 (a), which shows a cross section of each part in the touch panel manufacturing method of the present embodiment.
  • FIG. 2B and FIG. 2C are the same parts. That is, the left diagram shows a portion (A portion) taken along the line A-A ′ of FIG. 1, which is a portion where the touch electrode 2 and the floating electrode 3 are formed. Further, the center diagram is a portion (B portion) taken along the line BB ′ in FIG. 1 where the lead-out wiring 4 is formed, and the right diagram is a portion where the connection terminal 5 is formed. A portion (C portion) taken along line CC ′ in FIG. 1 is shown.
  • a transparent conductive film layer 11 such as ITO is formed on the entire surface of a glass substrate 1 which is a transparent substrate, and then a MoN layer 12a, an aluminum layer 12b and a BM metal for forming a metal layer 12 are formed.
  • the layer 12c is sequentially laminated by a sputtering method.
  • a resist pattern is formed by photolithography, and the metal layer 12 and the transparent conductive film layer 11 are etched using this resist pattern. Thereafter, the resist film is removed.
  • FIG. 3A shows this state, in which the portion that becomes the touch electrode 2 and the floating electrode 3 in the A portion, the portion that becomes the lead wiring 4 in the B portion, and the portion that becomes the connection terminal 5 in the C portion.
  • a laminate of the transparent conductive film layer 11 and the metal layer 12 is formed with the electrode pattern shown in FIG.
  • a transparent organic resin film 17 as a protective film is applied to the entire surface of the glass substrate 1, and openings 19 and 20 are formed in the A portion and openings 18 are formed in the C portion by photolithography. The surface of the laminate of the film layer 11 and the metal layer 12 is exposed. This state is shown in FIG.
  • the transparent organic resin film 17 having openings 18, 19, and 20 formed at predetermined positions is used as a mask to etch the BM metal layer 12c with an acid-based mixed acid solution, and then with a mixed acid solution of phosphoric acid, acetic acid, and nitric acid.
  • the aluminum layer 12b and the MoN layer 12a are continuously etched.
  • the metal layer 12 is removed and the transparent conductive film layer 11 is exposed in the portion A which is a touch position detection region and the portion C where the connection terminal is formed.
  • the laminated body of the transparent conductive film layer 11 and the metal layer 12 covered with the transparent organic resin film 17 remains. This state is shown in FIG.
  • the transparent organic resin film 17 is irradiated with ultraviolet rays having an exposure amount 7 to 8 times the optimum exposure when the resin film is cured, and used for the transparent organic resin film 17 having an environmental temperature of 200 ° C.
  • the transparent organic resin film 17 is annealed under melt conditions suitable for the material being used.
  • the transparent organic resin layer 17 is partially dissolved to expose the surfaces of the touch electrode 2 and the floating electrode 3, and the openings 19 and 20 of the A portion and the surface of the connection terminal 5 are exposed.
  • Each wall surface of the opening 18 is smooth as shown in FIG.
  • the openings 14, 15, 16 of the protective film 13 are compared with the surface area of the metal layer 12 in the portions that become the touch electrode 2, the floating electrode 3, and the connection terminal 5.
  • the size of the bottom portion of the is reduced. For this reason, after etching the metal layer 12 using the protective film 13 as a mask, the touch electrode 2, the floating electrode 3, and the connection terminal 5 are surrounded by a head like an umbrella as shown in FIG.
  • the protective film 13 having an open shape remains.
  • the cross-sectional shape of the protective film 13 is umbrella-shaped and there is a portion having a larger area on the surface side than the bottom surface side, an object is easily caught on the umbrella-shaped protruding portion when the touch panel is used. May be damaged. If it does so, a damaged part may turn into the foreign material on the surface of a touchscreen, and the transparent conductive film layer patterned with the protective film may peel off.
  • the first application example as shown in FIG. 3 includes an annealing process for smoothing the shape of the wall surface of the opening of the protective film, thereby preventing the protective film from being damaged or peeled off when the touch panel is used. Thus, a highly reliable touch panel can be obtained.
  • the annealing process used in the first application example shown in FIG. 3 smoothes the cross-sectional shape of the protective film under the melt conditions of the protective film of the touch panel, and uses a mask such as a photolithography method.
  • a smooth cross-sectional shape is not obtained by the exposure and development process. Therefore, also in the first application example, the lead-out wiring 4 having the electrode pattern shown in FIG. 1 and connecting the touch electrode 2 and the connection terminal 5 is formed using the metal film 12 having a low resistance value.
  • a touch panel can be manufactured with a total of two masks.
  • FIG. 4 is a cross-sectional view showing a second application example in the touch panel manufacturing method of the present embodiment.
  • the A part, the B part, and the C part are respectively the same as in FIG. 2 and FIG.
  • a MoN layer 12a, an aluminum layer 12b, and a metal layer 12 are formed after a transparent conductive film layer 11 such as ITO is formed on the entire surface of the glass substrate 1 which is a transparent substrate.
  • the MoNb layer 12d is sequentially laminated by a sputtering method. Thereafter, by using a photolithography method, as shown in FIG. 4A, a portion that becomes the touch electrode 2 and the floating electrode 3 in the A portion, a portion that becomes the lead-out wiring 4 in the B portion, and a connection terminal in the C portion 5, the transparent conductive film layer 11 and the metal layer 12 are formed on the respective portions.
  • a protective film 21 made of SiN or a transparent organic resin is applied to the entire surface of the glass substrate 1, and a photolithography method is used to form a portion A which is a touch position detection region and a portion C where connection terminals are formed. Openings 22 and 23 are provided.
  • the opening 23 of the A part is a large opening that exposes the entire detection region for detecting the touch position where the touch electrode 2 and the floating electrode 3 are formed. This is different from the configuration of the above-described embodiment shown in FIG.
  • the opening 22 of the C part where the connection terminal 5 is formed is an opening having a larger opening area than the formation pattern of the transparent conductive film layer 11 and the metal layer 12. The configuration is different.
  • the MoNb layer 12d, the aluminum layer 12b, and the MoN layer 12a are etched with a mixed acid solution of phosphoric acid, acetic acid, and nitric acid.
  • the transparent conductive film layer 11 is exposed in the portion A which is the touch position detection region and the portion C where the connection terminal 5 is formed. This state is shown in FIG.
  • the areas of the openings 22 and 23 of the protective film 21 in the portions where the touch electrode 2, the floating electrode 3 and the connection terminal 5 are formed are increased.
  • the cross-sectional shape of the protective film does not become an umbrella shape with a large head. Therefore, according to the manufacturing method of the second application example, a highly reliable touch panel that can prevent the protective film from being broken or peeled off can be obtained by using two exposure masks.
  • the openings 14, 18, and 22 are provided from the laminated body of the transparent conductive film layer 11 and the metal layer 12.
  • the metal layer 12 was removed using the protective films 13, 17, and 21 as a mask.
  • the surface of the connection terminal 5 can be prevented from being oxidized by removing the metal layer 12 as described above. Thereby, it is possible to prevent a connection failure from easily occurring between the connection terminal 5 and an FPC (not shown) for outputting the potential of the touch electrode serving as a touch position detection signal from the connection terminal 5.
  • connection terminal 5 since the connection terminal 5 is arranged in the peripheral area of the touch position detection area of the touch panel, it need not be transparent. Since the connection terminal 5 is a part that requires higher electrical conductivity like the lead-out wiring 4, it is preferable that the metal layer 12 be laminated on the transparent conductive film layer 11.
  • a method for manufacturing a touch panel including the connection terminal 5 on which the low-resistance metal layer 12 is laminated will be described below as a third application example of the present embodiment.
  • FIG. 5 is a cross-sectional view showing a third application example.
  • 5A, FIG. 5B, and FIG. 5C are the same as FIG. 2, FIG. 3, and FIG. 4, respectively.
  • a MoN layer 12a, an aluminum layer 12b, and a metal layer 12 are formed after a transparent conductive film layer 11 such as ITO is formed on the entire surface of the glass substrate 1 which is a transparent substrate.
  • the MoNb layer 12d is sequentially laminated by a sputtering method. Then, a surface transparent conductive film layer 24 such as ITO is again formed on the MoNb layer 12d by sputtering or the like.
  • the portion that becomes the touch electrode 2 and the floating electrode 3 in the A portion, the portion that becomes the lead wiring 4 in the B portion, and the portion that becomes the connection terminal 5 in the C portion are transparent.
  • a laminate of the conductive film layer 11, the metal layer 12, and the surface transparent conductive film layer 24 is formed using a resist pattern.
  • a protective film 25 of SiN is formed on the entire surface of the glass substrate 1 by sputtering or the like. And as shown in FIG.5 (b), the part used as the connection terminal 5 of a touchscreen is irradiated with the laser beam 26, the surface transparent conductive film layer 24 is laser-annealed, the composition is modified, and it etches later. It is prevented from being etched by the etching solution used in the process.
  • an opening 27 and an opening 28 are formed in the protective film 25 of the A portion that is a touch position detection portion and the C portion where the connection terminals are formed.
  • the touch electrode 2 and the floating electrode 3 are formed as the opening 28 of the A portion as in the second application example.
  • a large opening is formed so as to expose the entire detection region of the touch position where the is formed.
  • the opening of the opening part 27 of the C part is larger than the width of the formation pattern of the laminate of the transparent conductive film layer 11, the metal layer 12 and the surface transparent conductive film layer 24. The area is smaller.
  • the surface transparent conductive film layer 24 is etched with an oxalic acid solution, and then the MoNb layer 12d, the aluminum layer 12b, and the MoN layer 12a are etched with a mixed acid solution of phosphoric acid, acetic acid, and nitric acid.
  • the transparent conductive film layer 11 constituting the touch electrode 2 and the floating electrode 3 is exposed in the portion A which is the touch position detection region.
  • the clear transparent conductive film layer 24 is not etched with oxalic acid. Therefore, in these B part and C part, the laminated body of the transparent conductive film layer 11, the metal layer 12, and the surface transparent conductive film layer 24 remains as it is.
  • the touch electrode 2 and the floating electrode 3 are formed of the transparent conductive film layer 11, and the touch panel includes the low-resistance lead-out wiring 4 and the connection terminal 5. Can be manufactured using two exposure masks.
  • a large opening 28 is provided so that the entire detection area of the touch position where the touch electrode 2 and the floating electrode 3 are formed is exposed.
  • openings 19 and 20 corresponding to the touch electrode 2 and the floating electrode 3 may be provided as in the touch panel manufacturing method of the present embodiment shown in FIG.
  • the opening 27 of the portion where the connection terminal 5 of the C part is formed has an opening area smaller than the width of the formation pattern of the laminated body of the transparent conductive film layer 11, the metal layer 12 and the surface transparent conductive film layer 24. It is important to.
  • the area of the opening portion 27 of the C portion is larger than the width of the laminated body of the transparent conductive film layer 11 and the metal layer 12 as in the opening portion 22 of the second application example shown in FIG. This is because etching is performed in the same manner as the metal layer 12 formed in the A portion.
  • the surface transparent conductive film layer 24 is modified by laser annealing, it is not easily etched, but the metal layer 12 is exposed when the area of the opening 27 is large and the metal layer 12 is exposed. This is because 12 is etched and the connection terminal 5 cannot be formed.
  • the thickness of the glass substrate 1 is 0.7 mm
  • the thickness of the transparent conductive film layer 11 is 70 nm as an example.
  • the MoN layer 12a forming the metal layer 12 is 50 nm
  • the aluminum layer 12b is 150 nm
  • the BM metal layer 12c is 100 nm
  • the MoNb layer 12d is 100 nm
  • the protective films 13, 17, 21, and 25 are 3 ⁇ m. .
  • the example using ITO was shown in the above-mentioned embodiment as the transparent conductive film layer 11 and the surface transparent conductive film layer 24, IZO, ZnO, etc. can be used in addition.
  • the metal layer in the above-described embodiment, an example of a three-layered structure of a MoN layer, an aluminum layer, and a BM metal layer and an example of a three-layered structure of a MoN layer, an aluminum layer, and a MoNb layer are shown. It is desirable to use properly depending on the use environment and display quality.
  • a black metal film such as a chromium oxide film or an oxide film of an alloy containing nickel (Ni), molybdenum (Mo), aluminum (Al), or titanium (Ti) can be used.
  • the metal layer is not limited to a three-layer laminate, and a single layer composed of a BM layer and a two-layer laminate such as MoN, BM metal, MoN, or the like can be used.
  • SiN film and the SiO 2 film are exemplified as the protective films 13, 17, and 25 that are not partially dissolved after the formation
  • SiON or the like can be used in addition.
  • an epoxy resin, an acrylic resin, a novolac resin, or the like can be used as the transparent organic resin used as the protective film 21 in the case where it is partially dissolved after formation to smooth the wall surface of the opening.
  • an etchant that can satisfactorily and selectively etch the film is used.
  • a mixed acid solution of nitric acid, phosphoric acid and acetic acid can be used for etching a metal film, and oxalic acid or the like can be used for etching a transparent conductive film layer.
  • a resist agent for forming a resist pattern a novolac resin, an acrylic resin, or the like can be used. Further, NaOH or KOH can be used as a developer for the resist film. As a stripping solution for the resist film, NMP, amine, glycol ether, or the like can be used.
  • FIG. 6 is a plan view showing an electrode pattern of the touch panel 200 manufactured by the touch panel manufacturing method according to the second embodiment.
  • the touch panel 200 is provided with a touch electrode in which a transparent conductive film layer made of ITO is formed as a planar pattern on a glass substrate 101 which is an insulating transparent substrate.
  • the touch electrodes 102a and 102b, the lead-out wirings 104a and 104b, and the connection terminals 105a and 105b are each formed in a two-layer structure that is divided into two upper and lower layers. This point is different from the electrode pattern of the touch panel 100 according to the first embodiment shown in FIG.
  • the touch panel 100 of FIG. 6 in order to prevent the drawing from becoming unnecessarily complicated, the shape and arrangement of the touch electrodes 102a and 102b and the connection terminals 105a and 105b except that the lead-out wirings 104a and 104b partially intersect three-dimensionally.
  • the connecting terminal is formed as a two-layer structure.
  • a manufacturing method is described in which the touch panel 200 in which the touch electrodes 102a and 102b, the lead-out wirings 104a and 104b, and the connection terminals 105a and 105b are formed in a two-layer structure is exposed with a small number of exposure masks. To do.
  • the touch panel 200 manufactured by the touch panel manufacturing method of the present embodiment also has ten substantially rectangular touch electrodes of the same size in the horizontal direction, as in the touch panel 100 shown in FIG. 1.
  • a total of 20 rows in two rows are arranged in the direction.
  • This touch electrode is composed of a transparent electrode layer formed directly on the glass substrate 101, and the first-layer touch electrode 102a, which is a lower layer, and the first-layer touch electrode 102a are arranged in the thickness direction of the touch panel. And a second layer touch electrode 102b which is an upper layer formed in a different layer.
  • These touch electrodes 102a and 102b are arranged so as to be alternately arranged in a plan view.
  • each touch electrode 102a, 102b need not be the rectangular shape shown in FIG. 6, and the number of patterns arranged horizontally and vertically is not limited to 10 ⁇ 2, as shown in FIG. It is the same as the case of.
  • the floating electrode 103 formed of ITO is provided between the touch electrodes 102 and on the same first layer as the touch electrode 102a. Note that there is no restriction on the arrangement and shape of the floating electrode 103, which is the same as the touch electrode pattern of the touch panel 100 shown in FIG. Moreover, although the case where the floating electrode 103 is formed in the same layer as the first-layer touch electrode 102a has been shown, in the present embodiment, this is not an essential requirement, and thus the same as the second-layer touch electrode 102b. A floating electrode 103 may be formed in the layer.
  • the floating electrode 103 that makes it difficult for the user to visually recognize the touch electrode 102 is not an essential component of the touch panel 200, and is similar to the touch panel 100 shown in FIG.
  • the lead-out wiring and the connection terminal are also formed separately in the first layer as the lower layer and the second layer as the upper layer, like the touch electrode.
  • the lead-out wiring 104a and the connection terminal 105a are formed in the same first layer as the touch electrode 102a and the floating electrode 103
  • the lead-out wiring 104b and the connection terminal 105b are formed in the same second layer as the touch electrode 102b. Is formed.
  • FIGS. 7 to 9 are cross-sectional views showing an example of the manufacturing process.
  • FIG. 7A, FIG. 7B, FIG. 8A, FIG. 8B, FIG. 9A, and FIG. 9B, the left side diagrams show the touch electrodes 102a, 102b, and 7 shows a cross-sectional configuration of a portion where the floating electrode 103 is formed, that is, a portion taken along line DD ′ in FIG. In the following description, a portion taken along the line D-D ′ in FIG.
  • 7 shows a cross-sectional configuration of the formed part, that is, the part taken along the line EE ′ in FIG. In the following description, the portion taken along the line E-E ′ in FIG.
  • FIGS. 7A, 7B, 8A, 8B, 9A, and 9B the right side views show the connection terminals 105a and 105b.
  • 7 shows a cross-sectional configuration of the formed part, that is, the part taken along the line FF ′ in FIG. In the following description, the portion taken along the line F-F ′ in FIG.
  • the MoN layer 112a, the aluminum layer 112b, and the metal layer 112 are formed.
  • the MoNb layer 112c is sequentially laminated by a sputtering method.
  • a resist film (not shown) is formed on the MoNb layer 112c which is the uppermost layer of the metal layer 112.
  • the resist film is covered with a predetermined mask, exposed and developed, and exposed to light and developed, and the portion that becomes the first layer touch electrode 102a and the floating electrode 103 in the D portion, and the first layer lead wiring 104a in the E portion.
  • the resist pattern is left in the portions to be the portions and the portions to be the connection terminals 105a of the first layer in the F portion.
  • the MoNb layer 112c, the aluminum layer 112b and the MoN layer 112a are simultaneously etched with a mixed acid solution of phosphoric acid, acetic acid and nitric acid. Further, the transparent conductive film layer 111 is etched with an oxalic acid solution using the same resist pattern.
  • a first-layer protective film 113 made of, for example, SiN is formed on the entire surface of the glass substrate 101 by using a CVD method.
  • the protective film 113 of the first layer is a film that insulates and separates the second layer and the first layer.
  • the MoN layer 115a, the aluminum layer 115b and the MoNb layer 115c for forming the metal layer 115 are formed by sputtering. Laminate in order.
  • a resist film (not shown) is formed on the MoNb layer 115c which is the uppermost layer of the metal layer 115. Then, by a normal photolithography method in which the resist film is covered with a predetermined mask and exposed and developed, the portion to be the touch electrode 102b of the second layer of the D portion, the second of the E portion, similarly to the first layer. The resist pattern is left on the portion of the layer that becomes the lead wiring 104b and the portion that becomes the connection terminal 105b of the second layer in the F portion.
  • the MoNb layer 115c, the aluminum layer 115b and the MoN layer 115a are simultaneously etched with a mixed acid solution of phosphoric acid, acetic acid and nitric acid. Further, the transparent conductive film layer 114 is etched with an oxalic acid solution using the same resist pattern.
  • a second-layer protective film 116 made of, for example, SiN is formed on the entire surface of the glass substrate 101 by the CVD method.
  • the photolithography method except for the portions that become the first layer touch electrode 102a, the floating electrode 103, and the second layer touch electrode 102b in the D portion, and the first layer connection terminals 105a and the second layer in the F portion.
  • the resist film is left other than the portion that becomes the connection terminal 105b.
  • the second protective film 116 and the first protective film 113 are etched by dry etching (RIE method) using a fluorine-based gas.
  • RIE method dry etching
  • openings 119, 120, and 121 are formed in the D portion
  • openings 117 and 118 are formed in the F portion, respectively, and the surface of the laminated body of the first transparent conductive layer 111 and the metal layer 112, and The surfaces of the laminated body of the second transparent conductive film layer 114 and the metal layer 115 are exposed.
  • the resist film remaining on the second protective film 116 is stripped and removed with a resist stripping solution. This state is the state of FIG.
  • the first protective film 113 and the second protective film 116 having openings 117, 118, 119, 120, and 121 formed at predetermined positions as masks.
  • a mixed acid solution of phosphoric acid, acetic acid, and nitric acid is used.
  • the MoNb layers 112c and 115c, the aluminum layers 112b and 115b, and the MoN layers 112a and 115a are continuously etched.
  • the first layer metal layer 112 and the second layer metal layer 115 are removed in the D portion which is a touch position detection region and the F portion where the connection terminal 105 is formed, and the first layer is removed.
  • the transparent conductive film layer 111 and the second transparent conductive film layer 114 are exposed.
  • the first-layer protective film 113 and the second-layer protective film 116 remain. Therefore, in the first layer, the laminate of the transparent conductive film layer 11 and the metal layer 112 covered with the protective film 113 remains, and in the second layer, the transparent conductive film layer 114 and the metal covered with the protective film 116 are left. A stack of layers 115 remains.
  • the first layer touch electrode 102a and the floating electrode 103 constituted by the first transparent conductive film layer 111 are formed in the portion D, and the first layer A second-layer touch electrode 102b constituted by the two transparent conductive film layers 114 is formed.
  • the lead-out wiring 104a in which the metal layer 112 is laminated and the resistance value is lowered is formed on the first layer in a state of being covered with the first-layer protective film 113 and the second-layer protective film 116. Is done.
  • the lead-out wiring 104b in which the metal layer 115 is stacked on the second layer and the resistance value is lowered is formed in a state of being covered with the second-layer protective film 116.
  • the transparent conductive layer 111 is formed.
  • the connection terminal 105b of the 2nd layer which consists of the connection terminal 105a of the 1st layer and the transparent conductive film layer 114 is exposed.
  • the touch panel manufacturing method of the present embodiment shown in FIGS. 7 to 9 a configuration having an electrode pattern separated into two layers as shown in FIG. 6 can be realized.
  • the lead-out wiring 104a that connects the touch electrode 102a and the connection terminal 105a and the lead-out wiring 104b that connects the touch electrode 102b and the connection terminal 105b are connected to the metal film 112 having a low resistance value, 115 can be laminated.
  • a total of three exposure masks are used. Specifically, as shown in FIG. 7A, a first exposure mask for patterning the transparent conductive film layer 111 and the metal layer 112 formed in the first layer is necessary. Further, as shown in FIG. 8A, a second exposure mask for patterning the transparent conductive film layer 114 and the metal layer 115 formed in the second layer is necessary. Further, as shown in FIG. 8A, a third layer for forming openings 117, 118, 119, 120, 121 at predetermined positions of the first protective film 113 and the second protective film 116 is provided. Exposure masks are required.
  • the touch panel manufacturing method of the present embodiment is a touch panel manufacturing method in which the touch electrode pattern is formed in two layers, and the manufacturing cost is low and the pattern shift due to the mask alignment error is unlikely to occur. Is the method.
  • each part of D part, E part, and F part which each figure of Fig.10 (a), FIG.10 (b), FIG.11 (a) and FIG.11 (b) has shown is the above-mentioned this embodiment. It is the same as that of FIGS. 7-9 which showed the cross-section of each part with the manufacturing method of a touch panel. That is, the D part, the E part, and the F part respectively indicate a D-D 'arrow line part, an E-E' arrow line part, and an F-F 'arrow line part in FIG.
  • the first layer protective film and the second layer protective film are not formed of the same material. That is, the protective film of the first layer and the protective film of the second layer are formed of different materials, for example, the protective film of the first layer is an SiN film and the protective film of the second layer is a transparent organic resin, for example. Yes.
  • the protective film 113 of the first layer is formed. Then, a laminated body of the second transparent conductive film layer 114 and the metal layer 115 which are upper layers is formed on the protective film 113.
  • the process up to here is the same as the manufacturing method of the touch panel of the present embodiment shown in order in FIGS. 7A, 7B, and 8A. For this reason, the illustration of the manufacturing process so far is omitted.
  • FIG. 10 (a) showing this state shows the same state as FIG. 8 (a).
  • the entire surface of the first protective film 113 is covered so as to cover the stacked body of the second transparent conductive film layer 114 and the second metal layer 115. Then, a second layer protective film 122 made of a transparent organic resin is formed.
  • an opening 127 is formed in the second layer of the protective film 122 made of a transparent organic resin and becomes the touch electrode 102a in the D part, and the floating electrode 103 and An opening 126 is formed in each portion.
  • an opening 125 is formed in the second layer of the protective film 122 at a portion to be the second layer touch electrode 102b.
  • an opening 124 is formed in a portion that becomes the connection terminal 105a of the first layer in the F portion, and an opening 123 is formed in a portion that becomes the connection terminal 105b of the second layer.
  • the first-layer protective film 113 is etched by dry etching (RIE method) using a fluorine-based gas using the protective film 122 that remains without forming an opening as a mask.
  • RIE method dry etching
  • an opening 128 is formed in the first protective film 113 using the opening 124 formed in the second protective film 122, and the second layer is protected.
  • Openings 129 are formed in the first-layer protective film 113 using the openings 126 formed in the film 122.
  • the opening 130 is formed in the first protective film 113 using the opening 127 formed in the second protective film 122.
  • a mixed acid solution of phosphoric acid, acetic acid and nitric acid is used.
  • the MoNb layers 112c and 115c, the aluminum layers 112b and 115b, and the MoN layers 112a and 115a are continuously etched.
  • the metal layers 112 and 115 are removed and the transparent conductive film layers 111 and 114 are exposed in the D portion which is a touch position detection region and the F portion where the connection terminals 105a and 105b are formed.
  • the first-layer protective film 113 and the second-layer protective film 116 remain, so that the transparent conductive film layers 111 and 111 covered with the protective films 113 and 116, A laminate of 114 and metal layers 112 and 115 remains.
  • the two-layer touch panel 200 constituting the electrode pattern shown in FIG. 6 can be formed.
  • the second protective film 122 is formed of a transparent organic resin different from SiN, which is the first protective film material, the manufacturing method shown in FIGS.
  • the second protective film 116 and the first protective film 113 cannot be etched at a time to form an opening.
  • etching for forming the openings 128 to 130 of the first-layer protective film 113 can be performed. .
  • a total of three exposure masks are used. Specifically, a first exposure mask for patterning the first transparent conductive film layer 111 and the metal layer 112, and a second exposure mask for patterning the second transparent conductive film layer 114 and the metal layer 115 are used. 10 is a third exposure mask for forming openings 123 to 127 in the second protective film 122 as shown in FIG.
  • the touch panel 200 shown in FIG. can be manufactured with low cost and high accuracy.
  • each part of D part, E part, and F part which each figure of Fig.12 (a), FIG.12 (b), FIG.13 (a) and FIG.13 (b) has shown is the said this embodiment. It is the same as that of FIGS. 7-11 which showed the manufacturing method of the touchscreen, and the manufacturing method of the 1st application example. That is, the D part, the E part, and the F part respectively indicate a D-D 'arrow line part, an E-E' arrow line part, and an F-F 'arrow line part in FIG.
  • a first touch panel made of SiO 2 is used .
  • a single-layer protective film 113 is formed.
  • a laminated body of the second transparent conductive film layer 114 and the metal layer 115 is formed on the protective film 113, and a second protective film 122 made of a transparent organic resin is further formed.
  • an opening 127 is formed in the second layer of the protective film 122 by a photolithography method, and the opening 126 is formed in the portion of the D portion that becomes the touch electrode 102a of the first layer, and the portion of the D layer that becomes the floating electrode 103 Form.
  • an opening 125 is formed in a portion that becomes the touch electrode 102b of the second layer
  • an opening 124 is formed in a portion that becomes the connection terminal 105a of the first layer in the F portion, and a portion that becomes the connection terminal 105b of the second layer. Openings 123 are respectively formed.
  • FIG. 12A shows this state, that is, the same state as FIG. 10B of the first application example.
  • openings 124, 126, and 127 formed in the protective film 122 of the second layer that is a transparent organic resin Openings 128 to 130 are formed in the first protective film 113 by the RIE method.
  • the opening area of the upper portions of the openings 128 to 130 formed in the first protective film 113 is equal to the second protective film 122.
  • Etching conditions are controlled so as to have an area larger than the opening area under the openings 124, 126, and 127 formed in FIG.
  • the openings 128, 129, and 130 formed in the first protective film 113 are the openings 124, 126, and 127 formed in the second protective film 122. This is different from the first application example formed in a continuous shape.
  • phosphoric acid, acetic acid, and acetic acid are used as a mask with the first protective film 113 in which the openings 128 to 130 are formed and the second protective film 122 in which the openings 123 to 127 are formed.
  • the MoNb layers 112c and 115c, the aluminum layers 112b and 115b, and the MoN layers 112a and 115a are successively etched with a mixed acid solution of nitric acid.
  • FIG. 13A since the metal layers 112 and 115 are removed, the transparent conductive film layers 111 and 114 are exposed in the D portion and the F portion.
  • the second protective film 122 which is a transparent organic resin film, is irradiated with ultraviolet rays having an exposure amount 7 to 8 times the optimum exposure for curing, and the environmental temperature is 200.degree. Annealing is performed under melt conditions suitable for organic resin films.
  • each can be a smooth surface continuous from the glass substrate 101 side.
  • the openings 131 to 135 that expose the touch electrodes 102a and 102b, the floating electrode 103, and the connection terminals 105a and 105b are continuously provided on the smooth wall surface. It can form in the cross-sectional shape which has. For this reason, when the touch panel is used, the step portions of the first layer protective film 113 and the second layer protective film 122 are caught, and the first layer protective film 113 and the second layer protective film 122 are damaged and damaged. It is possible to prevent the portion from becoming a foreign substance on the surface of the touch panel.
  • the patterned touch electrodes 102a and 102b, the floating electrode 103, and the connection terminals 105a and 105b can be prevented from being disadvantageously peeled off.
  • a touch panel can be obtained.
  • the annealing process used in the touch panel manufacturing method of the second application example smoothes the cross-sectional shape of the protective film 122 under the melt condition of the second protective film 122. Therefore, a new exposure / development process using a mask is not required. Therefore, the second application example also has the lead-out wirings 104a and 104b having the electrode patterns separated into two layers and the metal films 112 and 115 having low resistance values laminated as shown in FIG.
  • the touch panel can be manufactured with a total of three masks.
  • D part, E part, and F part are respectively the DD ′ arrow line, EE ′ arrow line, and FF ′ arrow line in FIG. Shows the part.
  • the MoN layer 112a for forming the metal layer 112 is formed after forming the transparent conductive film layer 111 such as ITO on the entire surface of the glass substrate 101 which is a transparent substrate.
  • the aluminum layer 112b and the MoNb layer 112c are sequentially stacked by a sputtering method.
  • the MoNb layer 112c, the aluminum layer 112b, the MoN layer 112a and the transparent conductive film layer 111 are formed. Etch. This state is the state shown in FIG. 14A, which is the same state as FIG. 7A illustrating the manufacturing method of the present embodiment.
  • a first protective film 136 made of a transparent organic resin film is formed on the entire surface of the glass substrate 101. Then, openings 139, 138, and 137 are formed in the first layer of the protective film 136 by portions of the first layer touch electrode 102 a, the floating electrode 103, and the connection terminal 105 a, respectively, by a normal photolithography method. Then, the MoNb layer 112c which is the uppermost layer of the metal layer 112 is exposed. At this time, as shown in FIG. 14B, the laminated body of the transparent conductive film layer 111 and the metal layer 112, which becomes the first lead wiring 104a formed in the E portion, is formed by the first protective film 136. Covered.
  • the first MoN layer 115a, the second aluminum layer 115b, and the third layer that form the metal layer 115 are formed.
  • the MoNb layers 115c as layers are sequentially stacked by a sputtering method.
  • the D layer second layer touch electrode 102b, the E portion second layer lead-out wiring 104b, and the F portion second layer A stacked body of the transparent conductive film layer 114 and the metal layer 115 is formed in a portion to be the connection terminal 105b.
  • a second protective film 140 made of a transparent organic resin film is formed over the entire surface of the glass substrate 101. Then, by photolithography, as shown in FIG. 15 (b), openings 145, 144, and 144, respectively, are formed in the portions to be the first layer touch electrode 102a, the floating electrode 103, and the second layer touch electrode 102b in the D portion. 143 is formed. In addition, openings 142 and 141 are formed in the portions to be the first layer connection terminals 105a and the second layer connection terminals 105b in the F portion, respectively.
  • the openings formed in the second protective film 140 as shown in FIG.
  • the portions 145, 144, 142 and the openings 139, 138, 137 formed in the first protective layer 136 are connected.
  • the opening 145 formed in the second protective layer 140 and the opening 139 formed in the first protective film 136 are connected, and the opening formed in the second protective film 140 is formed.
  • the portion 144 and the opening 138 formed in the first-layer protective film 136 are connected.
  • the opening 142 formed in the second protective film 140 and the opening 137 formed in the first protective film 136 are connected.
  • FIG. 16A shows a state where the metal layers 112 and 115 are removed.
  • the wall surface can be a continuous and smooth surface.
  • the metal films 112 and 115 having the electrode pattern separated into two layers and having a low resistance value shown in FIG. 6 are laminated.
  • the touch panel 200 having the lead wirings 104a and 104b can be obtained.
  • the total number of exposure masks used at this time is four. Specifically, first, as shown in FIG. 14A, a first exposure mask is required for patterning the transparent conductive film layer 111 and the metal layer 112 formed in the first layer. Further, as shown in FIG. 14B, a second exposure mask for forming predetermined openings 137, 138, 139 in the first protective film 136 is necessary. Furthermore, as shown in FIG. 15A, a third exposure mask for patterning the transparent conductive film layer 114 and the metal layer 115 formed in the second layer is necessary. Then, as shown in FIG. 15B, a fourth exposure mask for forming openings 141, 142, 143, 144, and 145 at predetermined positions of the second protective film 140 is necessary.
  • the first-layer insulating film 136 and the second-layer insulating film 140 are exposed with separate masks. And need to be patterned. Therefore, the total number of exposure masks required becomes four, which is one more than the touch panel manufacturing method according to the above-described embodiment.
  • a touch panel using a transparent organic resin, which is an acrylic resin, for the first-layer protective film 136 and the second-layer protective film 140 and having an electrode pattern having a two-layer structure is illustrated. It is possible to manufacture with a smaller number of masks than the required number of masks (5) by the conventional manufacturing method shown in FIG. 34 and FIG.
  • the portions D, E, and F are respectively the DD ′ arrow line, the EE ′ arrow line, and the FF ′ arrow line in FIG. The part of is shown.
  • FIG. 17A shows a state in which the laminated body of the second transparent conductive film layer 114 and the metal layer 115 is patterned.
  • a second protective film 151 made of a transparent organic resin is formed on the first protective film 113.
  • openings 127, 125, 126, 124, and 123 were formed, respectively.
  • an opening is formed in the D portion so as to expose the entire detection area of the touch position where the touch electrodes 102a and 102b and the floating electrode 103 are formed.
  • a portion 154 is formed.
  • the openings 153 and 152 formed in the portions to be the connection terminals 105a and 105b of the F portion have a laminated body of the transparent electrodes 111 and 114 and the metal layers 112 and 115 having the opening areas serving as the connection terminals 105a and 105b. It is formed larger than the area.
  • the fourth application example is different from the first additional application example.
  • the first protective film 113 of SiO 2 is etched by dry etching (RIE method) using a fluorine-based gas using the second protective film 151 as a mask.
  • RIE method dry etching
  • the transparent conductive film layer 114 and the metal layer 115 are formed in the second layer touch electrode 102b and the second layer connection terminal 105b.
  • the first protective film 113 formed under the stacked body is prevented from being etched.
  • the top and side surfaces of the substrate are exposed.
  • the MoNb layers 112c and 115c, the aluminum layers 112b and 115b, and the MoN layers 112a and 115a are successively etched with a mixed acid solution of phosphoric acid, acetic acid, and nitric acid.
  • the metal layers 112 and 115 are removed and the transparent conductive film layers 111 and 114 are exposed in the D portion which is the touch position detection region and the F portion where the connection terminals 105a and 105b are formed.
  • the second-layer touch electrode 102b and the connection terminal 105b are positioned on the first-layer protective layer 113 remaining below.
  • a total of three exposure masks are used. Specifically, a first exposure mask for patterning the transparent conductive film layer 111 and the metal layer 112 formed in the second layer is necessary. In addition, a second exposure mask for patterning the transparent conductive film layer 114 and the metal layer 115 formed in the first layer is necessary. Furthermore, as shown in FIG. 17B, a third exposure mask for forming openings 152, 153, 154 at predetermined positions of the protective film 151 is necessary.
  • the touch panel surface uses a transparent organic resin such as a transparent acrylic resin as the protective film, and has the electrode pattern shape shown in FIG. 6 and exposes the entire touch position detection region. 200 can be manufactured accurately at low cost using three masks.
  • touch panel manufacturing method and application examples according to the present embodiment have been described above.
  • a touch panel having a touch electrode pattern in which touch electrodes, lead-out wirings, and connection terminals are formed in two upper and lower layers can be manufactured with a smaller number of exposure masks than in the conventional manufacturing method.
  • the manufacturing cost of the touch panel can be reduced, and the number of mask alignments can be reduced. Therefore, by using each of the manufacturing methods described above, errors are less likely to occur during the manufacture of the touch panel.
  • the film thickness of each layer illustrated in the manufacturing method of the touch panel in the above-described embodiment is basically the same as that shown as the first embodiment.
  • the thickness of the glass substrate 1 is 0.7 mm, and the thickness of the first transparent conductive film layer 111 and the second transparent conductive film layer 114 is 70 nm.
  • the MoN layers 112a and 115a forming the first metal layer 112 and the second metal layer 115 are 50 nm, and the aluminum layers 112b and 115b are 150 nm.
  • the MoNb layers 112c and 115c are 100 nm, and the first protective films 113 and 136 and the second protective films 122, 140, and 151 are 3 ⁇ m.
  • the various materials described in the first embodiment can be used.
  • the touch electrode and the connection terminal are formed in the same layer, but at least a part of the lead-out wiring is connected by a layer different from the layer in which the touch electrode and the connection terminal are formed, so-called connection.
  • the present invention relates to a method for manufacturing a touch panel having replacement wiring.
  • FIG. 19 is a plan view showing an electrode pattern of the touch panel 300 manufactured by the touch panel manufacturing method of the present embodiment.
  • the touch panel 300 includes a touch electrode 202 in which a transparent conductive film layer made of ITO is formed as a planar pattern on a glass substrate 201 which is an insulating transparent substrate.
  • the lead-out wiring 204 that connects the touch electrode 202 and the connection terminal 205 is interrupted in the layer in which the touch electrode 202 and the connection terminal 205 are formed.
  • the lead-out wiring 204 has a three-dimensionally intersecting portion that has a cross shape in plan due to the connection wiring 207 formed in different layers.
  • the shape and basic arrangement pattern of the touch electrode 202, the lead wiring 204 and the connection terminal 205 are formed in the same layer as the touch electrode 2. This is the same as the electrode pattern of the first embodiment shown in FIG. However, when the electrode pattern becomes finer or the area around the touch position detection area is narrow and it is difficult to route the lead-out wiring 204 with only one plane, the lead-out wiring 204 is three-dimensional as shown in FIG. In some cases, a switching portion including a switching wiring 207 for crossing may be formed.
  • the touch panel 300 showing the electrode pattern in FIG. 19 the arrangement and shape of the touch electrodes 202 themselves, the point that the floating electrodes 203 are arranged between the touch electrodes 202, and the like are the same as those in the touch panel 100 shown in FIG. Therefore, detailed description is omitted.
  • FIG. 20 is a cross-sectional view showing an example of the manufacturing process of the manufacturing method of the touch panel 300 shown in FIG.
  • FIG. 20A, FIG. 20B, and FIG. 20C each show four diagrams.
  • the leftmost diagram shows a cross-sectional configuration of the portion taken along the line G-G ′ in FIG. 19 showing the electrode pattern, that is, the portion where the touch electrode 202, the floating electrode 203, and the two lead wires 204 are formed.
  • the second view from the left is the HH ′ arrow portion in FIG. 19, that is, the portion where the connection terminal 205 is formed.
  • the cross-sectional structure is shown. In the following description, the portion taken along the line H-H ′ in FIG.
  • the third view from the left is the portion along the line II ′ in FIG.
  • the cross-sectional structure of the connection part with the connection wiring 207 is shown. In the following description, the portion taken along the line I-I 'in FIG.
  • the rightmost diagram shows the portion along line JJ ′ in FIG. 19 showing the electrode pattern, that is, the touch electrode 202 and the lead wiring.
  • the cross-sectional structure of the connection part with 204 is shown. In the following description, the portion taken along the line J-J ′ in FIG.
  • the MoN layer 212a, the aluminum layer 212b, and the metal layer 212 are formed.
  • the MoN layer 212c is sequentially stacked by a sputtering method.
  • a resist film 213 serving as a protective film is formed on the MoN layer 212c which is the uppermost layer of the metal layer 212.
  • an opening 216 is formed in the resist film 213 corresponding to the detection region of the touch position including the touch electrode 202 and the floating electrode 203 by a normal photolithography method.
  • an opening 215 is formed in a portion where the connection terminal 205 is formed, and an opening 214 is formed in a portion serving as a connection portion between the lead-out wiring 204 and the connection wiring 207 by photolithography. To do.
  • a conductive film 217 such as Mo to be a connection wiring is formed by sputtering or the like, and a resist film 218 is formed on the conductive film 217, and then a resist film 218 is formed on a portion to be the connection wiring 207. Remain.
  • the conductive film 217 and the metal layer 212 MoN layer 212c, aluminum layer 212b, and MoN layer 212a
  • Etching is performed with a mixed acid solution of phosphoric acid, acetic acid and nitric acid.
  • the resist film 218 on the connection wiring 207 is left to serve as a protective film for the connection wiring 207.
  • the touch panel 300 includes the lead-out wiring 204 formed by laminating the transparent conductive film layer 211 and the low-resistance metal layer 212 and the connection wiring 207 that three-dimensionally intersects the lead-out wiring 204.
  • a second exposure mask for forming openings 214, 215, and 216 in the resist film 213, and a third exposure for patterning the resist film 218 necessary for forming the connection wiring 207 are provided. A mask is required.
  • the touch panel 300 having the connection wiring 207 and having a high degree of design freedom in the arrangement of the lead-out wiring 204 can be manufactured with a small number of exposure masks. Thereby, the manufacturing cost of the touch panel can be reduced, and the manufacturing accuracy can be improved by reducing the number of mask alignments.
  • FIG. 21 is a cross-sectional view showing an application example of the touch panel manufacturing method of the present embodiment.
  • the four diagrams in FIGS. 21 (a) and 21 (b) are the second diagram from the left, as in FIG. 20, where the left end diagram is the portion GG ′ in FIG.
  • FIG. 19 shows the H portions that are HH ′ arrow line portions in FIG.
  • the third diagram from the left is the I portion which is the line of view along II ′ in FIG. 19, and the rightmost diagram is the JJ ′ arrow in FIG.
  • the portion J which is the line of sight, is shown.
  • the MoN layer 212a, the aluminum layer 212b, and the MoN layer 212c are formed after the transparent conductive film layer 211 such as ITO is formed on the entire surface of the glass substrate 201 that is a transparent substrate.
  • a metal layer 212 made of is laminated and patterned.
  • three openings 214, 215, and 216 are formed in the resist film 213 by photolithography.
  • the resist film 213 is annealed at a temperature of 220 ° C. for 50 minutes, for example.
  • a conductive film 217 such as Mo to be a connection wiring is formed by sputtering or the like, and a resist film 218 is formed on the conductive film 217, and then a resist film 218 is formed on a portion to be the connection wiring 207. Remain.
  • a conductive layer 217 and a metal layer 212 MoN layer 212c, aluminum in the formation portion of the touch electrode 202, the floating electrode 203, and the connection terminal 205 are formed using a mixed acid solution of phosphoric acid, acetic acid, and nitric acid. Layer 212b and MoN layer 212a) are etched. The state after etching is shown in FIG.
  • the configuration shown in FIG. 21A is the same as the configuration in FIG. 20C, but the configuration shown in FIG. 20C is different in that the formed resist film 213 is annealed. Is different.
  • the resist film 218 on the connecting wiring 207 is stripped with a stripping solution.
  • the annealed resist film 213 is not peeled off because it is cured.
  • a resist film 219 which is a surface protective film, the portion other than the portion where the G portion touch electrode 202 and the floating electrode 203 are formed, and the portion other than the portion where the H portion connection terminal 205 is formed, Then, the resist film 219 is left.
  • the metal layer laminated on the transparent conductive film 211 in the lead-out wiring 204 in the connection portion between the touch electrode 202 and the lead-out wiring 204, the metal layer laminated on the transparent conductive film 211 in the lead-out wiring 204.
  • a side end face of 212 can be covered with a resist film 219 which is a surface protective film.
  • the touch panel has an electrode pattern in which the lead-out wiring is formed in a layer different from the touch electrode and the connection terminal as the connection wiring.
  • FIG. 22 is a plan view showing an electrode pattern of the touch panel 400 manufactured by the touch panel manufacturing method of the first modification.
  • the touch panel 400 includes a touch electrode 302 in which a transparent conductive film layer made of ITO is formed as a planar pattern on a glass substrate 301 that is an insulating transparent substrate.
  • connection terminals 305 for outputting a touch position signal detected by the touch electrode 302 to the outside of the touch panel 400 are formed on the glass substrate 301.
  • the lead wirings 304 that connect the touch electrodes 302 and the connection terminals 305 are formed as connection wirings in a layer different from the touch electrodes 302 and the connection terminals 305. That is, in the touch panel 400, the touch electrode 302 and the lead wiring 304 formed in different layers are electrically connected through a through hole provided in the connection portion 308.
  • connection terminal 305 and the lead wiring 304 formed in different layers are electrically connected through a through hole provided in the connection portion 307. Further, in the touch panel 400, the lead-out wiring 304 and the lead-out wiring crossing portion 310 formed in the same layer as the touch electrode 302 and the connection terminal 305 are provided in the connection portion 309 so that the lead-out wirings are three-dimensionally crossed. Connected with holes.
  • the arrangement pattern of the touch electrodes 302 and the point that the floating electrode 303 is arranged between the touch electrodes 302 are the same as those of the touch panel 100 shown in FIG. Omitted.
  • FIG. 23 is a cross-sectional view showing an example of the manufacturing process of the manufacturing method of the touch panel 400 shown in FIG.
  • FIGS. 23A, 23B, and 23C three views are shown, respectively, but the left view shows the electrode pattern KK ′ in FIG.
  • the cross-section of the part indicated by the arrow, that is, the part where the touch electrode 302, the floating electrode 303, the connection terminal 305, and the connection part 307 between the lead-out wiring 304 and the connection terminal 305 are formed is shown.
  • the center diagram is a portion taken along the line LL ′ in FIG. 22, that is, a connection portion between the touch electrode 302 and the lead wiring 304.
  • the cross section of the part in which 308 was formed is shown.
  • the portion indicated by the line L-L ′ in FIG. 22 is referred to as an L portion.
  • the right-hand side view shows the line MM ′ in FIG. 22, that is, the lead-out wiring 304 and the lead-out wiring 304.
  • the cross section of the periphery of the connection part 309 with the extraction wiring intersection part 310 part which crosses three-dimensionally is shown.
  • a transparent conductive film layer 311 such as ITO and a Mo layer 312 as a metal layer are sputtered on the entire surface of the glass substrate 301 which is a transparent substrate. Are sequentially stacked. Then, as shown in FIG. 23 (a), the laminated body of the transparent conductive film layer 311 and the metal layer 312 is formed with a touch position detection region where the touch electrode 302 and the floating electrode 303 are formed, and a connection terminal 305. A pattern is formed on the connection portion 308 between the extraction electrode 304 and the touch electrode 302 which are the portion and the connection wiring.
  • the laminated body of the transparent conductive film layer 311 and the metal layer 312 includes a connection portion 307 between the extraction electrode 304 and the connection terminal 305, an extraction wiring intersection portion 310 portion, and an extraction electrode 304 and an extraction wiring intersection portion 310 portion.
  • the connection portion 309 is also patterned.
  • a resist film 313 as a protective film is formed on the Mo layer 312.
  • an opening 317 is formed on the left side of the L portion in the drawing where the connection portion 308 between the touch electrode 302 and the lead wire 304 is formed, and the connection between the lead wire 304 and the lead wire intersection 310 is formed.
  • Two openings 314 and 315 are formed in the M portion where the portion 309 is provided.
  • an aluminum layer 320 and a MoN layer 321 are stacked and formed as a metal layer for forming the lead-out wiring 304 which is a connection wiring by using a sputtering method. Then, the resist film 322 is left in portions that become the lead wiring 304, the connection portion 307, the connection portion 308, and the connection portion 309, respectively.
  • the MoN layer 321, the aluminum layer 320, and the Mo layer 312 as a metal layer stacked on the transparent conductive film layer 311 are etched with a mixed acid solution of phosphoric acid, acetic acid and nitric acid.
  • the transparent conductive film layer 311 constituting the touch electrode 302, the floating electrode 303, and the connection terminal 305 is exposed.
  • a gap 323 formed in the resist film 322 is formed so that the three-dimensionally intersecting portion between the lead-out wiring 304 and the lead-out wiring intersection 310 does not come into contact with each other and become conductive.
  • a predetermined interval is secured between the lead-out wiring 304 and the connection portion 309.
  • the resist film 322 remaining on the lead-out wiring 304 and the connection portions 307, 308, and 309 functions as an oxidation protection film that covers the surfaces of the lead-out wiring 304 and the connection portions 307, 308, and 309. Leave it.
  • the touch panel 400 including the lead-out wiring 304 made of a metal layer that is formed as a connection wiring in a layer different from the touch electrode 302 and the connection terminal 305 and can realize low resistance is provided.
  • a total of three masks can be manufactured. Specifically, when manufacturing the touch panel 400, a first exposure mask for patterning the transparent conductive film layer 311 and the metal layer 312 is necessary. Further, a second exposure mask for forming openings 314, 315, 316, 317, 318, and 319 in the resist film 313 is necessary. Furthermore, a third exposure mask is required for patterning the resist film 322 necessary for forming the lead-out wiring 304 that is a switching wiring.
  • the touch panel 400 including the low-resistance lead-out wiring 304 can be manufactured with a small number of masks. Therefore, the cost for manufacturing the mask can be reduced, and the manufacturing accuracy can be improved by reducing the number of times of mask alignment.
  • FIG. 24 is a cross-sectional view showing an application example of the manufacturing method of the first modification. 24A and FIG. 24B, as in FIG. 23, the left side shows the K portion, which is the portion along the line KK ′ in FIG. 22, and the central view shows FIG. FIG. 22 shows the L portion that is the line of LL ′ and the right side of FIG. 22 shows the portion of M that is the line of MM ′.
  • a transparent conductive film layer 311 such as ITO and a Mo layer 312 as a metal layer are sequentially laminated on the entire surface of the glass substrate 301 which is a transparent substrate by a sputtering method. Then, pattern it. Then, openings 314, 315, 316, 317, 318, and 319 are formed in the resist film 313 formed on the entire surface by photolithography.
  • the manufacturing method is the same as that of the first modified example described with reference to FIG.
  • the resist film 313 is hardened by, for example, annealing at a temperature of 220 ° C. for 50 minutes.
  • an aluminum layer 320 and a MoN layer 321 are stacked and formed as a metal layer for forming the lead-out wiring 304 that is a connection wiring, and then the patterned resist film 322 is formed on the aluminum layer 320 and the MoN layer 321. Use to etch.
  • This etched state is shown in FIG.
  • the configuration of FIG. 24A is the same as the configuration of FIG. 23C, but the configuration of FIG. 23C is that the formed resist film 313 is annealed. Is different.
  • the resist film 322 on the lead-out wiring 304 and the connection portions 307, 308, and 309 is stripped with a stripping solution. At this time, since the annealed resist film 313 is cured, it is not peeled off.
  • the resist film 324 which is a surface protective film, the portion other than the portion where the touch electrode 302 and the floating electrode 303 are formed in the K portion and the L portion, and the portion other than the portion where the connection terminal 305 is formed in the K portion. Then, the resist film 324 is left.
  • a total of four touch panels 400 covered with the resist film 324 which is the surface protective film having the same thickness except for the portion where the touch position detection region and the connection terminal 305 are formed are provided. It can be manufactured with a single mask. Specifically, a first exposure mask for patterning a laminate of the transparent conductive film 311 and the metal layer 312, a first exposure mask for forming openings 314, 315, 316, 317, 318, and 319 in the resist film 313. Two exposure masks are required.
  • a fourth exposure mask for patterning the resist film 324 is necessary.
  • the side end face of the film can be covered with a resist film 324 which is a surface protective film.
  • the metal layers 312, 320, The side end face of 321 can be covered with a resist film 324.
  • the touch panel has a structure in which the lead-out wirings are three-dimensionally crossed by the connection wiring and the side surfaces of the lead-out wiring are not etched.
  • FIG. 25 is a plan view showing an electrode pattern of the touch panel 500 manufactured by the manufacturing method of the second modified example.
  • the touch panel 500 includes a touch electrode 402 in which a transparent conductive film layer made of ITO is formed as a planar pattern on a glass substrate 401 which is an insulating transparent substrate.
  • the touch panel 500 is formed with connection terminals 405 for outputting a touch position signal detected by the touch electrode 402 to the outside of the touch panel 500 at an end portion on the glass substrate 401.
  • the lead-out wiring 404 that connects the touch electrode 402 and the connection terminal 405 is formed in the peripheral region of the touch panel 500.
  • a part of the lead-out wiring 404 is three-dimensionally crossed with a connection wiring 407 formed in a different layer from the lead-out wiring 404 in other parts.
  • the lead-out wiring 404 and the connection wiring 407 are electrically connected by a connection portion in a through hole formed in a protective film serving as an insulating layer that separates the lead-out wiring 404 and the connection wiring 407 in other parts. .
  • the touch electrode 500 is similar to the touch panel 300 illustrated in FIG. 19 in that the touch electrode 402 itself has an arrangement pattern, the floating electrode 403 is disposed between the touch electrodes 402, and the like. Detailed description is omitted.
  • FIG. 26 is a cross-sectional view showing an example of the manufacturing process of the manufacturing method of the touch panel 500 shown in FIG.
  • FIGS. 26 (a), 26 (b), and 26 (c) three diagrams are shown.
  • the left diagram shows OO ′ in FIG. 25 showing the electrode pattern.
  • a cross-sectional configuration of a portion indicated by an arrow, that is, a touch electrode 402, a floating electrode 403, a lead wiring 404, and a connection portion between the lead wiring 404 and the connection terminal 405 is illustrated.
  • a portion taken along the line O-O ′ in FIG. 25 is referred to as an O portion.
  • the central diagram shows the portion along the line PP ′ in FIG. 25 showing the electrode pattern, that is, the touch electrode 402 and the lead wiring.
  • the cross-sectional structure of the part in which the connection part with 404 was formed is shown.
  • a portion taken along the line P-P ′ in FIG. 25 is referred to as a P portion.
  • FIGS. 26 (a), 26 (b) and 26 (c) the diagram on the right side shows the QQ 'arrow line portion in FIG. A cross-sectional configuration of a portion that intersects three-dimensionally via a connecting wire 407 is shown. In the following description, the portion taken along the line Q-Q 'in FIG.
  • a transparent conductive film layer 411 such as ITO and a metal layer composed of a MoN layer 412a, an aluminum layer 412b, and a MoN layer 412c are formed on the entire surface of the glass substrate 401 which is a transparent substrate. 412 are sequentially stacked by a sputtering method or the like.
  • a resist film (not shown) is formed so as to cover the MoN layer 412c which is the uppermost layer of the metal layer 412, and the touch electrode 402, the floating electrode 403, the lead wiring 404, the connection terminal 405, etc. are formed by a predetermined photolithography method. The pattern is formed. Thereafter, the laminated body of the transparent conductive film layer 411 and the metal layer 412 is patterned into a predetermined shape shown in FIG. 26A using a mixed acid solution of phosphoric acid, acetic acid and nitric acid using the resist film as a mask.
  • a resist film 413 as a protective film is formed on the MoN layer 412c.
  • the resist film 413 is formed on the right side portion of the O portion and the right portion of the P portion where the touch electrode 402 and the floating electrode 403 are formed by a normal photolithography method.
  • an opening 416 is formed.
  • an opening 417 is formed in the resist film 413 at the left end portion in the drawing of the O portion where the connection terminal is formed by photolithography, and is opened in the Q portion which is a connection portion between the lead-out wiring 404 and the connection wiring 407.
  • the portions 414 are formed respectively.
  • the side surface of the laminated body of the transparent conductive film layer 411 and the metal layer 412 that become the lead wiring 404 is not exposed.
  • the size of the opening portions 414 and 415 formed in the connecting wire forming portion shown in the Q portion is smaller than the area of the laminated body of the transparent conductive film layer 411 and the metal layer 412.
  • a metal layer 418 such as a Mo layer is formed by sputtering as a metal layer for forming the connection wiring 407.
  • the MoN layer 418 to be the connection wiring 407 with a mixed acid solution of phosphoric acid, acetic acid, and nitric acid using the patterned resist films 413 and 419 as a mask. Pattern.
  • the touch electrode 402, the floating electrode 403, and the metal layer 412 remaining on the transparent conductive film layer 411 that becomes the connection terminal 405 are etched to form the touch electrode 402, the floating electrode 403, and the connection terminal 405.
  • the transparent conductive film layer 411 is exposed.
  • the patterned resist film 419 remaining on the connection wiring 407 functions as a protective film covering the surface of the connection wiring 407 and is left without being removed. Thereby, the configuration as shown in FIG. 26C is obtained.
  • the side surface of the lead-out wiring 404 is not exposed when the connection wiring 407 is formed. Therefore, it is possible to prevent the aluminum layer 412b forming the lead wiring 404 from being eroded during the etching for forming the openings 415 and 414. Accordingly, it is possible to prevent the aluminum layer 412b having a low resistance value from being eroded during etching to increase the resistance value.
  • the manufacturing method according to the second modification described above includes the lead-out wiring 404 formed by overlapping the low-resistance metal layer 412 and the connection wiring 407 for three-dimensionally intersecting the lead-out wiring 404.
  • the touch panel 500 can be manufactured with a total of three masks. Specifically, in the manufacturing method of the touch panel 500 described above, a first exposure mask for patterning the transparent conductive film layer 411 and the metal layer 412 is necessary. Further, a second exposure mask for forming openings 414, 415, 416, and 417 in the resist film 413 is necessary. Further, a resist film 419 for forming the switching wiring 407 is patterned, and a third exposure mask for removing the metal layer 412 remaining on the transparent conductive film layer 411 such as the touch electrode 402 is necessary. is there.
  • the touch panel 500 including the low-resistance lead-out wiring 404 can be manufactured with a small number of masks. Therefore, it is possible to reduce the mask manufacturing cost and improve the manufacturing accuracy by reducing the number of mask alignments.
  • connection electrode 407 is formed using a Mo layer.
  • the configuration of the connection wiring is the same as that of the metal layer 412. That is, it is good also as a 3 layer structure of a MoN layer, an aluminum layer, and a MoN layer.
  • FIG. 27 is a cross-sectional view showing an application example of the manufacturing method of the second modification. 27A and 27B, in the same way as FIG. 26, the left side is the O portion, which is the portion of the line OO ′ in FIG. 25, and the central view is FIG.
  • FIG. 25 shows a P portion that is a portion along line P-P 'in FIG. 25, and a right portion shows a portion Q that is a portion along line Q-Q' in FIG.
  • a three-layer configuration of a transparent conductive film layer 411 such as ITO, a MoN layer 412a, an aluminum layer 412b, and a MoN layer 412c is formed on the entire surface of the glass substrate 401, which is a transparent substrate.
  • the metal layers 412 are sequentially stacked and then patterned into a predetermined planar shape.
  • four openings 414, 415, 416, and 417 are formed on the resist film 413 that is a protective film formed on the entire surface by photolithography.
  • the manufacturing method is the same as that of the second modification described with reference to FIG.
  • the resist film 413 is hardened by, for example, annealing at a temperature of 220 ° C. for 50 minutes.
  • etching is performed using a patterned resist film 419.
  • the metal layer 412 over the transparent conductive film layer 411 constituting the touch electrode 402, the floating electrode 403, and the connection terminal 405 is removed by etching.
  • the structure obtained by this is shown in FIG.
  • the configuration of FIG. 27A is the same as the configuration of FIG. 26C, but is that the formed resist film 413 is annealed, so that FIG. Different from the configuration.
  • the resist film 419 on the connecting wiring 407 is stripped with a stripping solution.
  • the annealed resist film 413 is not peeled off because it is cured.
  • a resist film 420 that is a surface protective film, on the portions other than the portions where the touch electrodes 402 and the floating electrodes 403 of the O portion and the P portion are formed and the portions other than the portions where the connection terminals 405 are formed of the O portion
  • the resist film 420 is left.
  • the touch panel 500 in which the portions other than the touch position detection region and the connection terminal 405 are covered with the protective film 420 having the same thickness is manufactured using a total of four masks.
  • openings 414, 415, 416, and 417 are formed in the resist layer 413, which is a first exposure mask for patterning the laminate of the transparent conductive film layer 411 and the metal layer 412.
  • a second exposure mask is required.
  • the resist film 419 for forming the connection wiring 407 is patterned, and the resist film 420 serving as a protective layer covering the surface of the touch panel and the third exposure mask for exposing the transparent conductive film layer 411 is patterned.
  • a fourth exposure mask is necessary for this purpose.
  • connection portion between the connection terminal 405 and the lead electrode 404, and the touch electrode 402 and the lead wire 404.
  • the side end face of the metal layer 412 can be covered with a resist film 420 which is a protective film at the connection portion.
  • the film thicknesses of the members not shown in the first embodiment are, for example, as follows.
  • the film thickness of the Mo film for forming the connection wirings 207 and 407 and the lead-out wiring 304 is, for example, 100 nm, and the resist films 218 and 322 that remain as protective films formed on the connection wiring 207 and the lead-out wirings 304 and 407 are used.
  • the film thickness of 419 is, for example, 1.6 nm.
  • the film thickness of the resist films 219, 324, and 420 serving as surface protective films covering the entire surface of the touch panel described as an application example is, for example, 1.6 nm.
  • the manufacturing method of the touch panel having the connection wiring described as the third embodiment may be applied to other modes that can be manufactured by reducing the number of exposure masks. Let me mention.
  • the touch panel manufacturing method described as another embodiment is a touch panel manufacturing method in which the lead-out wiring is three-dimensionally crossed by the connection wiring, and the connection wiring is not a metal film but is formed of a transparent conductive film such as ITO. It is a manufacturing method of a touch panel.
  • FIG. 28 is a plan view showing an electrode pattern of a touch panel 600 manufactured by another method for manufacturing a touch panel.
  • the touch panel 600 includes a touch electrode 502 in which a transparent conductive film formed of ITO is formed as a planar pattern on a glass substrate 501 that is an insulating transparent substrate.
  • connection terminals 505 for outputting a touch position signal detected by the touch electrode 502 to the outside of the touch panel 600 are formed on the end portion on the glass substrate 501.
  • a lead-out wiring 504 that connects the touch electrode 502 and the connection terminal 505 is formed in the peripheral region of the touch panel 600.
  • the lead-out wiring 504 is partly crossed by a connection wiring 508 made of a transparent conductive film formed in a different layer from the lead-out wiring 504 in other parts.
  • the lead-out wiring 504 and the connection wiring 508 are electrically connected by a connection portion in a through hole formed in a protective film that separates the lead-out wiring 504 and the connection wiring 508 in other parts.
  • the touch electrode 502 and the floating electrode 503 disposed between the touch electrodes are not directly formed on the glass substrate 501 but are formed in the same layer as the connection wiring 508. Is formed. For this reason, the touch electrode 502 and the lead-out wiring 504 are electrically connected by the connection portion 507 that penetrates the protective film.
  • the arrangement pattern of the touch electrodes 502 itself, the point that the floating electrodes 503 are arranged between the touch electrodes 502, and the like are the same as those of the touch panel 300 shown in FIG. Detailed description is omitted.
  • FIG. 29 is a cross-sectional view showing an example of the manufacturing process of the manufacturing method of the touch panel 600 shown in FIG.
  • FIG. 28 shows the RR ′ in FIG. 28 showing the electrode pattern.
  • a cross-sectional configuration of a portion indicated by an arrow, that is, a portion where the touch electrode 502, the floating electrode 503, and the lead-out wiring 504 are formed is illustrated.
  • the portion indicated by the arrow line R-R ′ in FIG. 28 is referred to as an R portion.
  • the second view from the left shows the SS ′ arrow line portion in FIG. 28, that is, the connection terminal 505.
  • the cross-sectional structure of the part is shown. In the following description, the portion taken along the line S-S ′ in FIG.
  • FIGS. 29A, 29B, and 29C the third view from the left shows the portion taken along the line TT ′ in FIG. 28, that is, the touch electrode 502 and the lead wiring 504.
  • the cross-sectional structure of the connection part is shown.
  • a portion taken along the line T-T ′ in FIG. 28 is referred to as a T portion.
  • the diagram on the right end side shows the line U-U 'in FIG. 28, that is, the lead-out wirings 504 are connected wirings.
  • intersects three-dimensionally via is shown.
  • a portion taken along the line U-U ′ in FIG. 28 is referred to as a U portion.
  • an aluminum film 511 and a MoN film 512 are stacked and formed as a metal layer on the entire surface of the glass substrate 501 which is a transparent substrate by a sputtering method or the like.
  • a resist film (not shown) is formed so as to cover the MoN film 512, and a portion that becomes the lead wiring 504 of the R portion, the T portion, and the U portion, and the connection wiring 508 of the U portion are drawn out by a normal photolithography method.
  • the resist film is patterned at the connection portion with the wiring 504 and the portion that becomes the connection terminal 505 of the S portion.
  • the metal layers 511 and 512 are etched using this resist film to obtain a predetermined shape pattern shown in FIG.
  • a resist film 513 as a protective film is formed on the MoN layer 512.
  • an opening 517 that is a portion where the connection terminal 505 is formed is formed in the S portion by a normal photolithography method.
  • an opening 516 serving as a connection portion 507 between the touch electrode 502 and the extraction electrode 504 is formed in the T portion by photolithography, and a connection portion between the switching wiring 508 and the extraction electrode 504 is formed in the U portion. Openings 514 and 515 are formed.
  • annealing is performed at a temperature of 220 ° C. for 50 minutes to cure the resist film 513.
  • a transparent conductive film layer 518 such as ITO is formed on the entire surface of the glass substrate 501.
  • a resist film (not shown) is formed, and a portion that becomes the touch electrode 502, a portion that becomes the floating electrode 503, a portion that becomes the connection terminal 505, and a connection portion 507 between the touch electrode 502 and the lead-out wiring 504 by a normal photolithography method.
  • the resist film is patterned at a portion to be the connection electrode 508 that connects the lead-out wirings 504 to each other.
  • the transparent conductive film layer 518 such as ITO is etched with oxalic acid. Further, the resist film remaining on the transparent conductive film layer 518 is stripped and removed with a stripping solution. In this way, the configuration shown in FIG.
  • connection terminal 505 in which the low-resistance metal layers 511 and 512 and the transparent conductive film layer 518 are stacked, the connection portion 507, and the connection for crossing the lead-out wiring 504 are three-dimensionally crossed.
  • the touch panel 600 including the replacement wiring 508 can be manufactured with a total of three masks. Specifically, in the other embodiments described above, a first exposure mask for patterning the metal layers 511 and 512 forming the lead-out wiring 504 is necessary.
  • a third exposure mask for patterning is required.
  • the low resistance metal layers 511 and 512 can be stacked on the lead-out wiring 504 and the connection terminal 505, and the connection wiring 508 is provided so that the pattern design of the lead-out wiring 504 has a high degree of freedom.
  • the touch panel 600 can be manufactured with a small number of masks. Therefore, the cost for manufacturing the touch panel can be reduced, and the manufacturing accuracy can be improved by reducing the number of mask alignments.
  • FIG. 30 is a flowchart showing a first manufacturing method of a liquid crystal display device in which the display panel is a liquid crystal panel as an example of a manufacturing method of a display device including a touch panel manufactured by the touch panel manufacturing method described above.
  • the touch panel is manufactured on a transparent glass substrate by the manufacturing method of the touch panel described as the first to third embodiments.
  • a touch panel process is included (step S1).
  • the glass substrate on which touch electrodes and the like are formed on one surface by this touch panel process is handled as a front substrate located on the front side which is the image viewing side of the liquid crystal display device (step S2).
  • a color filter layer, a black matrix (BM) layer, a counter electrode, a protective film, and the like are formed on the surface of the front substrate opposite to the side where the touch electrodes are formed by a normal color filter forming process (CF process).
  • CF process normal color filter forming process
  • an alignment film or the like for directing the liquid crystal molecules in a predetermined direction is formed (step S3).
  • a front substrate which is a CF substrate with a touch panel in which a touch pal is formed on one surface and a CF layer is formed on the other surface, is obtained (step S4).
  • a glass substrate is formed corresponding to the pixel electrode and the gate line, source line, and pixel electrode for applying a voltage signal for image display to the pixel electrode by a TFT process which is a normal active substrate forming process.
  • a TFT as a switching element is formed (step S5).
  • a protective film, an alignment film for aligning liquid crystal molecules, and the like are appropriately formed.
  • a back substrate which is a TFT substrate located on the back side of the liquid crystal panel, is obtained (step S6).
  • Step S7 a sealing resin is applied in a frame shape to the surface of either the front substrate or the back substrate, the liquid crystal layer is dropped, and the one substrate is bonded to the other substrate.
  • the liquid crystal panel is obtained by curing the sealing resin (step S8).
  • liquid crystal display device provided with the touch panel is obtained.
  • the liquid crystal display device provided with the touch panel has a plurality of liquid crystal display panels continuously formed on one glass substrate, the liquid crystal panel is touched after the sealing resin is cured to become a liquid crystal panel. It is divided according to the size of the attached liquid crystal display device (step S9).
  • FIG. 31 is a flowchart showing a second manufacturing method of the display device including the touch panel manufactured by the above-described touch panel manufacturing method.
  • step S11 in the second manufacturing method, first, on one surface of a glass substrate, a color filter layer, a black matrix (BM) layer, a counter electrode, A protective film and an alignment film for directing liquid crystal molecules in a predetermined direction are formed (step S11).
  • a color filter layer As shown in FIG. 31, in the second manufacturing method, first, on one surface of a glass substrate, a color filter layer, a black matrix (BM) layer, a counter electrode, A protective film and an alignment film for directing liquid crystal molecules in a predetermined direction are formed (step S11).
  • BM black matrix
  • a front substrate which is a CF substrate having a CF layer formed on one surface is obtained (step S12).
  • the TFT electrode which is a normal active substrate forming process, is formed on another glass substrate in correspondence with the pixel electrode, the gate line, the source line, and the pixel electrode for applying a voltage signal for image display to the pixel electrode.
  • a TFT as a switching element is formed.
  • a protective film, an alignment film for aligning liquid crystal molecules, and the like are appropriately formed (step S13).
  • a back substrate which is a TFT substrate located on the back side of the liquid crystal panel is obtained (step S14).
  • a sealing resin is applied in a frame shape to the surface of either the front substrate or the back substrate, and a liquid crystal layer is dropped to bond the one substrate to the other substrate. (Step S15).
  • the liquid crystal panel is obtained by curing the sealing resin.
  • a touch panel is manufactured on the front surface substrate of the liquid crystal panel, that is, the outer surface of the substrate which is a CF substrate, by the above-described touch panel manufacturing method (step) S16).
  • the liquid crystal display device provided with the touch panel is formed.
  • the liquid crystal panel is divided according to the size of the liquid crystal display device with a touch panel (step S17). ).
  • FIG. 32 is a diagram showing a cross-sectional configuration of the liquid crystal display device obtained by the manufacturing method shown in FIG. 30 or FIG.
  • a transmissive liquid crystal display device having the touch panel 100 described as the first embodiment on a front substrate will be described.
  • a liquid crystal display device 1000 with a touch panel includes a touch panel 100 that detects a touch position from the outside and a liquid crystal panel 1100 that is a display panel.
  • the touch panel 100 and the liquid crystal panel 1100 are laminated, and a front substrate that is one substrate constituting the liquid crystal panel 1100 also serves as the glass substrate 1 of the touch panel 100.
  • the liquid crystal panel 1100 is a general transmissive liquid crystal panel, and a liquid crystal layer 1300 is formed between a front substrate 1 and a rear substrate 1200 which are two glass substrates constituting the liquid crystal panel 1100. Yes.
  • a color filter (not shown) is formed corresponding to each pixel for displaying a color image.
  • a counter electrode (not shown) that applies a predetermined voltage to the liquid crystal layer 12 is provided on the inner surface of the front substrate 1.
  • pixel electrodes are arranged in a matrix so as to form a plurality of rows and a plurality of columns.
  • an image is displayed by changing the alignment state of the liquid crystal molecules of the liquid crystal layer 1300 by adjusting the potential between the pixel electrode and the counter electrode of the front substrate 1.
  • a region of the rear substrate 1200 where the pixel electrodes are formed becomes a display region of the liquid crystal panel 1100.
  • the display area of the liquid crystal panel 1100 substantially coincides with the touch position detection area of the touch panel 100.
  • a plurality of gate lines arranged in the row direction of pixel electrodes, a plurality of source lines arranged in the column direction, and orthogonal gate lines and source lines, which are not shown, are shown.
  • TFTs are provided in the vicinity of the intersections with and connected to the respective pixel electrodes. By sequentially applying a gate voltage to this gate line, the TFT as a switching element is turned on and selected for each row, and each pixel electrode belonging to the selected row is required for image display via the source line. A large voltage is applied.
  • the upper side of the touch panel 100 in the drawing and the lower side of the rear substrate 1200 of the liquid crystal panel 1100 are paired with a liquid crystal layer 1300 to control the transmitted light and display an image to display an image.
  • the polarizing plates are arranged in a state where the polarization angles are different from each other by a predetermined angle.
  • an insulating film that covers the electrodes and switching elements described above is formed on the inner surface of the front substrate 1 and the rear substrate 1200 of the liquid crystal panel 1100 facing the liquid crystal layer 1300, and further on the surface, liquid crystal molecules are formed.
  • An alignment film that defines the arrangement direction is formed. Since the configuration of these insulating films and alignment films is common for liquid crystal panels, illustration and detailed description thereof are omitted.
  • a backlight (not shown) that irradiates irradiation light necessary for displaying an image on the liquid crystal panel 1100 is disposed.
  • the backlight of the liquid crystal display device 1000 with a touch panel according to the present embodiment includes, for example, a light source such as a side light type or an edge light type, a flat light guide and a cold cathode fluorescent tube or a light emitting diode provided on the side surface. Can be used.
  • a light source is arranged in a plane on the back surface of the liquid crystal panel 1100 so as to irradiate light to the liquid crystal panel 1100 side, and the light emitted from the light source is passed through an optical sheet such as a condensing sheet or a diffusion sheet. It is also possible to use a direct light type backlight that irradiates the light source.
  • the light source of the backlight is not limited to a cold cathode fluorescent tube and a light emitting diode, and various types such as a hot cathode fluorescent tube and an EL light emitter can be used.
  • the front substrate on which the touch panel is formed is described as a color filter substrate.
  • the liquid crystal display device obtained by the above-described manufacturing method is not limited to this, and the front substrate on which the touch panel is formed may be an active matrix substrate and the back substrate may be a color filter substrate.
  • a so-called CF-on-array liquid crystal panel in which a color filter is formed on an active matrix substrate can be used.
  • the so-called active matrix type is exemplified as the configuration of the liquid crystal panel.
  • the liquid crystal display device obtained by the above-described manufacturing method is not limited to this, and may be a so-called simple matrix liquid crystal panel.
  • the driving method of the liquid crystal panel is not limited to the so-called vertical alignment method in which a voltage is applied between opposing substrates, and other driving methods such as an IPS method in which a voltage is applied in the plane direction of the substrate can also be adopted. .
  • the liquid crystal panel itself is not limited to a so-called transflective type or a transflective type that uses light emitted from the backlight for image display, and the external light that is transmitted through the front substrate 1 and is incident on the rear substrate is reflected.
  • a reflective liquid crystal panel that is reflected by an electrode and used for image display may be used. In this case, the backlight and the above-described polarizing plate arranged outside the back substrate (lower side in FIG. 32) become unnecessary.
  • the display panel of the display device is not limited to the one using a liquid crystal panel, and various flat plate displays such as an organic and inorganic electroluminescence (EL) panel, a plasma display panel (PDP), and a field emission display. It may be.
  • EL organic and inorganic electroluminescence
  • PDP plasma display panel
  • field emission display It may be.
  • the touch panel may be configured to be laminated with a display panel and fixed with an adhesive. That is, the glass substrate of the touch panel and the front substrate of the display panel may be separate substrates.
  • the touch panel substrate does not serve as a front substrate for a display panel such as a liquid crystal panel as described above
  • the touch panel substrate may be, for example, a flexible resin substrate other than the glass substrate described in the above embodiment. Etc. can also be used.
  • the present invention is industrially applicable as a method for manufacturing a touch panel and a method for manufacturing a display device including a touch panel.

Abstract

パターン形成に必要な露光マスクの枚数を低減したタッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法を提供する。透明基板(1)上に透明導電膜層(11)及び金属層(12)を積層し、同一のレジストパターンを用いて該透明導電膜層(11)及び金属層(12)を所定の電極パターンとする。該透明導電膜層(11)及び金属層(12)を覆う保護膜(13)を形成して、該保護膜(13)の所定位置に開口部(14,15,16)を設ける。該開口部(14,15,16)が設けられた前記保護膜(13)を用いたエッチングによって前記金属層(12)を除去し、前記透明導電膜層(11)を露出させることにより、タッチ電極(2)及び接続端子(5)の少なくとも一方を形成する。

Description

タッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法
 本発明は、絶縁性の透明基板上に透明導電膜によってタッチ電極が形成されたタッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法に関する。
 近年、パーソナル・デジタル・アシスタント(PDA)、パームトップコンピュータ、携帯用ゲーム機器などの普及に伴って、表示装置と組み合わせ可能な入力手段として、透明な基板上に形成されたタッチパネルが広く用いられている。
 例えば、タッチパネル付きの表示装置としての液晶表示装置では、液晶パネルの画像表示面に透明なタッチパネルを重ねた構成を有していて、該タッチパネルを通して液晶パネルに表示される画像を観視することができる。このような液晶表示装置は、表示される画像に合わせて、タッチパネルの視認側の面、すなわち、液晶パネルの表示画像を観察する側の表面を、指先や入力ペンなどによって押圧した場合に、その位置を検出可能に構成されている。これにより、タッチパネルの入力内容をPDAなどの使用機器の制御に反映させることができる。
 透明基板を用いたタッチパネルの一例としての静電容量方式のタッチパネルは、ガラスやフィルムなどの絶縁性の透明基板上に、透明導電膜のタッチ電極が平面的なパターンとして形成されている。特に、タッチ電極が所定の間隔で配置されている投影型の静電容量方式は、複数のタッチ点を同時に検出するいわゆるマルチタッチに対応しているため、近年特に注目が集まっている。
 このような静電容量方式のタッチパネルでは、表示パネルの画像表示面と重なる部分に形成されるタッチ電極は透明導電膜によって形成される。一方、タッチ電極の電位を外部の回路基板に出力するための接続端子や、タッチ電極と接続端子とを接続する引き出し配線は、透明導電膜よりも抵抗値が低いアルミなどの金属材料を用いた金属層によって形成される。金属層を接続端子や引き出し配線として用いる場合には、金属層の酸化や剥がれを防止するために該金属層の表面が保護膜によって覆われる。しかしながら、接続端子の少なくとも一部は、タッチパネルと外部回路とをつなぐフレキシブルプリント基板(FPC)などの接続部材が接続されるために、保護膜で覆われることなく露出している必要がある。
 図33は、従来の静電容量方式タッチパネルの製造工程の一例を示す断面図である。なお、図33(a)、図33(b)及び図33(c)において、左側の図が、タッチ電極が形成された部分、すなわち電極パターンを示す図1におけるA-A’矢視線部分に相当するA部の断面を示している。また、図33(a)、図33(b)及び図33(c)において、中央の図が、引き出し配線が形成されている部分、すなわち電極パターンを示す図1におけるB-B’矢視線部分に相当するB部の断面を示している。さらに、図33(a)、図33(b)及び図33(c)において、右側の図が、接続端子が形成されている部分、すなわち電極パターンを示す図1におけるC-C’矢視線部分に相当するC部の断面を示している。
 図33に示すように、従来のタッチパネルの製造方法では、ガラス製または透明フィルム製の透明基板701上の全面に、アルミ(Al)層及び該アルミ層を覆うモリブデン(Mo)層をスパッタ法によって順次積層して、その上にレジスト膜を形成する。そして、このレジスト膜を、引き出し配線及び接続端子が形成される部分にのみレジスト膜を残すようにマスクを用いて露光し、現像する。その後、残ったレジスト膜をマスクとしてエッチングを行う。その結果、図33(a)に示すように、引き出し配線及び接続電極が形成される部分に、アルミ層711及びモリブデン層712の積層体からなる金属層が形成される。
 続いて、透明基板701上に、ITO(Indium Tin Oxide)などの透明導電膜層をスパッタ法により形成する。そして、透明導電膜層上に図示しないレジスト膜を塗布した後、露光現像して、タッチ電極部分及び接続端子部分にレジスト膜を残存させる。このレジスト膜をマスクとして透明導電膜層をエッチングすることにより、タッチ電極部分及び接続端子部分のアルミ層711及びモリブデン層712の積層体上に、透明導電膜層713を形成する。該透明導電膜713が形成された構成を図33(b)に示す。
 その後、SiN、SiO2または透明樹脂製の保護膜714を、CVD法などによって透明基板701の全面に形成する。そして、レジストパターンを用いて保護膜714をエッチングすることにより、接続端子部分に開口部715を形成する。
 このようにして、図33(c)に示すように、タッチ電極702、フローティング電極703、引き出し電極704及び接続端子705を備えたタッチパネルが製造される。ここで、タッチ電極702は、平面的なパターンとして形成された透明導電膜層713からなる。フローティング電極703は、タッチ電極702,702間に配置される透明導電膜層713からなる。引き出し電極704は、アルミ層711及びモリブデン層712の積層体である。接続端子705は,アルミ層711、モリブデン層712及び透明導電膜層713を積層してなる。なお、このタッチパネルでは、接続端子705上の開口715部分を除くパネル全面に、透明樹脂製の保護膜714が形成されている。
 次に、従来のタッチパネルの製造方法の別の例を説明する。タッチ電極パターンが細かい場合や引き出し配線を配置する領域が狭い場合などには、透明基板上に、引き出し配線を、互いに導通しないように2層に分けて形成することがある。この場合には、接続端子が接続される引き出し配線が形成されている層に合わせて、接続端子も2層に分けて形成する。
 図34及び図35は、引き出し配線が立体的に2層に分けて形成されている静電容量方式タッチパネルの製造工程の一例を示す断面図である。
 なお、図34の(a)~(c)及び図35の(a)~(c)において、左側の図が、タッチ電極が形成された部分、すなわち2層に分かれた引き出し配線を有するタッチパネルの電極パターンを示す図6におけるD-D’矢視線部分に相当するD部の断面を示している。また、図34の(a)~(c)及び図35の(a)~(c)において、中央の図が、引き出し配線が形成されている部分、すなわち電極パターンを示す図6におけるE-E’矢視線部分に相当するE部の断面を示している。さらに、図34の(a)~(c)及び図35の(a)~(c)において、右側の図が、接続端子が形成されている部分、すなわち電極パターンを示す図6におけるF-F’矢視線部分に相当するF部の断面を示している。
 まず、ガラス製または透明フィルム製の透明基板801上の全面に、アルミ層及び該アルミ層を覆うモリブデン層をスパッタ法によって順次積層して形成し、その上にレジスト膜を形成する。そして、このレジスト膜を露光現像して、第1層、すなわち、透明基板上に直接形成される下側の層において、引き出し配線及び接続端子が形成される部分にのみレジスト膜を残す。この残ったレジスト膜をマスクとして用いてエッチングを行う。その結果、図34(a)に示すように、第1層の引き出し配線及び第1層の接続電極が形成される部分に、アルミ層811及びモリブデン層812の積層体が形成される。
 続いて、図34(b)に示すように、第1層と第2層との層間絶縁膜としての機能を有する、SiN、SiO2または透明樹脂製の第1層の保護膜813をCVD法などによって形成する。
 次に、形成された第1層の保護膜813上に、アルミ層及び該アルミ層を覆うモリブデン層を、再びスパッタ法によって順次積層して形成し、その上にレジスト膜を形成する。そして、このレジスト膜を露光現像して、第2層、すなわち、タッチパネルの表面側である上側の層において、引き出し配線及び接続端子が形成される部分にのみレジスト膜を残す。この残ったレジスト膜をマスクとして用いてエッチングを行う。その結果、図34(c)に示すように、第2層の引き出し配線及び第2層の接続電極が形成される部分にアルミ層814及びモリブデン層815の積層体が形成される。
 次に、第1層の保護膜813において、該第1層の接続端子となるアルミ層811及びモリブデン層812の積層体の上方以外の部分に、パターン化されたレジスト膜を残存させる。このレジスト膜をマスクとして第1層の保護膜813をエッチングして開口部816を設け、モリブデン層812の表面を露出させる。この状態を、図35(a)に示す。
 続いて、第1層の保護膜813の表面に、CVD法などによってITOなどの透明導電膜層を形成する。そして、タッチ電極とタッチ電極との間に形成されるフローティング電極の平面的パターンに合わせて、パターン化されたレジスト膜を形成する。このとき同時に、接続端子が形成されるF部において、第1層の保護膜813の開口部816を覆うようにレジスト膜を残存させる。そして、このレジスト膜をマスクとしてエッチングを行い、図35(b)に示すように、D部のタッチ電極及びフローティング電極が形成される部分と、F部の第1層の接続端子を覆う部分とに、パターン化された透明導電膜層817を残存させる。
 次に、透明基板801の全面に、SiN、SiO2または透明樹脂製の第2層の保護膜818をCVD法などによって形成する。第2層の保護膜818上に、第1層の接続端子及び第2層の接続端子が形成される部分を残してレジスト膜をパターン化して形成する。このレジスト膜をマスクとしてエッチングを行い、第2層の保護膜818に開口部819及び開口部820を形成する。この結果、図35(c)に示すように、フローティング電極803と、第1層の引き出し電極804aと、第2層の引き出し電極804bと、第1層の接続端子805aと、第2層の接続端子805bとが形成されたタッチパネルが製造される。ここで、フローティング電極803は、第2層の保護膜818に覆われていて、且つ、タッチ電極802とタッチ電極802の間に形成されている。第1層の接続端子805a及び第2層の接続端子805bは、第1層の保護膜813及び第2層の保護膜818に設けられた開口部816,819,820から表面が露出している。
 なお、例えば特開2008-233976号公報には、タッチ電極とともに引き出し配線や接続端子を透明導電膜層によって形成する場合、タッチ電極と引き出し配線との電気的導通を確実なものとするために、両者の接続部分の透明導電膜をタッチ電極部分よりも厚くすることが提案されている。
 上記従来のタッチパネルの製造方法では、図33に示した引き出し配線704や接続端子705が1層構造のタッチパネルの場合でも、少なくとも3枚の露光マスクが必要となる。すなわち、まず、アルミ膜711とモリブデン膜712とからなる引き出し配線704及び接続端子705の金属層のパターンを形成するために、第1の露光マスクが必要である。そして、タッチ電極702及びフローティング電極703を構成するとともに、接続端子705の金属層の保護膜となる透明導電膜層713をパターンニングするために、第2の露光マスクが必要である。さらに、保護膜714において、接続端子705形成部分に導通を取るためのスルーホールとなる開口715を形成するために、第3の露光マスクが必要となる。
 また、図34及び図35に示すように、引き出し配線804及び接続端子805の金属層を2層構造として形成するタッチパネルの場合には、少なくとも5枚の露光マスクが必要となる。すなわち、まず、アルミ膜811とモリブデン膜812とによってそれぞれ構成される、第1層の引き出し配線804a及び第1層の接続端子805aのパターンを形成するために、第1の露光マスクが必要である。そして、アルミ膜814とモリブデン膜815とによってそれぞれ構成される、第2層の引き出し配線804b及び第2層の接続端子805bのパターンを形成するために、第2の露光マスクが必要である。また、第1層の保護膜813に、第1層の接続端子805aを露出させるための開口部816を形成するための第3の露光マスクが必要となる。そして、タッチ電極802、フローティング電極803、第1層の接続端子805aの金属層及び第2層の接続端子805bの金属層をそれぞれ保護する膜となる透明導電膜817をパターンニングするために、第4の露光マスクが必要である。さらに、第2層の保護膜818において、接続端子805a,805bが形成される部分に、導通を取るためのスルーホールとなる開口部819,820を形成するために、第5の露光マスクが必要となる。
 このように、多数の露光マスクを用いることは、多数回の露光現像工程を経てレジストパターンを形成し、形成されたレジストパターンを用いて多数回のエッチング工程を行うことになる。そのため、タッチパネルの製造コスト及び製造時間の増大に繋がる。また、露光マスクの枚数が増えることは、マスクの位置あわせ回数が増えることでもあるため、形成された各層の位置あわせのずれが増大する要因となり、製造されたタッチパネルのパターン精度の低下に繋がる。
 そこで、以下の実施形態では、パターン形成に必要な露光マスクの枚数を低減したタッチパネルの製造方法、及び、このタッチパネルを備えた表示装置の製造方法を提供することを目的とする。
 本発明の一実施形態にかかるタッチパネルの製造方法は、絶縁性の透明基板上に透明導電膜層及び金属層を順に積層した後、同一のレジストパターンを用いて、該透明導電膜層及び金属層を所定の電極パターンに形成し、該透明導電膜層及び前記金属層を覆う保護膜を形成して、該保護膜の所定位置に該保護膜を貫通する開口部を設け、該開口部が設けられた前記保護膜を用いて前記金属層をエッチングによって除去して前記透明導電膜層を露出させることにより、タッチ電極及び該タッチ電極の電位をタッチパネルの外部に出力する接続端子の少なくとも一方を形成する。
 本発明の一実施形態にかかるタッチパネルの製造方法により、パターン形成に必要な露光マスクの枚数を低減することができる。
図1は、第1の実施形態にかかるタッチパネルの製造方法によって製造され、且つ、引き出し配線が1層構造であるタッチパネルの電極パターンを示す平面図である。 図2は、第1の実施形態にかかるタッチパネルの製造方法の製造工程を示す断面図である。 図3は、第1の実施形態の第1の応用例にかかるタッチパネルの製造方法の製造工程を示す断面図である。 図4は、第1の実施形態の第2の応用例にかかるタッチパネルの製造方法の製造工程を示す断面図である。 図5は、第1の実施形態の第3の応用例にかかるタッチパネルの製造方法の製造工程を示す断面図である。 図6は、第2の実施形態にかかるタッチパネルの製造方法で製造され、且つ、タッチ電極、引き出し配線及び接続端子が、それぞれ2層構造となっているタッチパネルの電極パターンを示す平面図である。 図7は、第2の実施形態にかかるタッチパネルの製造方法において、製造工程の初期の部分を示す断面図である。 図8は、第2の実施形態にかかるタッチパネルの製造方法において、製造工程の中間の部分を示す断面図である。 図9は、第2の実施形態にかかるタッチパネルの製造方法において、製造工程の後期の部分を示す断面図である。 図10は、第2の実施形態の第1の応用例にかかるタッチパネルの製造方法において、製造工程の中間の部分を示す断面図である。 図11は、第2の実施形態の第1の応用例にかかるタッチパネルの製造方法において、製造工程の後期の部分を示す断面図である。 図12は、第2の実施形態の第2の応用例にかかるタッチパネルの製造方法において、製造工程の中間の部分を示す断面図である。 図13は、第2の実施形態の第2の応用例にかかるタッチパネルの製造方法において、製造工程の後期の部分を示す断面図である。 図14は、第2の実施形態の第3の応用例にかかるタッチパネルの製造方法において、製造工程の初期の部分を示す断面図である。 図15は、第2の実施形態の第3の応用例にかかるタッチパネルの製造方法において、製造工程の中間の部分を示す断面図である。 図16は、第2の実施形態の第3の応用例にかかるタッチパネルの製造方法において、製造工程の後期の部分を示す断面図である。 図17は、第2の実施形態の第4の応用例にかかるタッチパネルの製造方法において、製造工程の中間の部分を示す断面図である。 図18は、第2の実施形態の第4の応用例にかかるタッチパネルの製造方法において、製造工程の後期の部分を示す断面図である。 図19は、第3の実施形態にかかるタッチパネルの製造方法で製造され、且つ、引き出し配線の一部が繋ぎ替え配線となっているタッチパネルの電極パターンを示す平面図である。 図20は、第3の実施形態にかかるタッチパネルの製造方法の製造工程を示す断面図である。 図21は、第3の実施形態の応用例にかかるタッチパネルの製造方法の製造工程を示す断面図である。 図22は、第3の実施形態の第1の変形例にかかるタッチパネルの製造方法で製造され、且つ、引き出し配線の一部が繋ぎ替え配線となっているタッチパネルの電極パターンを示す平面図である。 図23は、第3の実施形態の第1の変形例にかかるタッチパネルの製造方法において、製造工程を示す断面図である。 図24は、第3の実施形態の第1の変形例の応用例にかかるタッチパネルの製造方法の製造工程を示す断面図である。 図25は、第3の実施形態の第2の変形例にかかるタッチパネルの製造方法で製造され、且つ、引き出し配線の一部が繋ぎ替え配線となっているタッチパネルの電極パターンを示す平面図である。 図26は、第3の実施形態の第2の変形例にかかるタッチパネルの製造方法の製造工程を示す断面図である。 図27は、第3の実施形態の第2の変形例の応用例にかかるタッチパネルの製造方法の製造工程を示す断面図である。 図28は、他の形態にかかるタッチパネルの製造方法で製造され、且つ、引き出し配線の一部が繋ぎ替え配線となっているタッチパネルの電極パターンを示す平面図である。 図29は、他の形態にかかるタッチパネルの製造方法の製造工程を示す断面図である。 図30は、第4の実施形態にかかるタッチパネルを備えた表示装置の製造方法のうち第1の製造方法を説明するフローチャートである。 図31は、第4の実施形態にかかるタッチパネルを備えた表示装置の製造方法のうち第2の製造方法を説明するフローチャートである。 図32は、第4の実施形態にかかるタッチパネルを備えた表示装置の製造方法によって製造される液晶表示装置の構成を示す断面図である。 図33は、引き出し配線が1層構造であるタッチパネルにおいて、従来の製造方法の製造工程を示す断面図である。 図34は、引き出し配線が2層構造であるタッチパネルにおいて、従来の製造方法の製造工程の前半を示す断面図である。 図35は、引き出し配線が2層構造であるタッチパネルにおいて、従来の製造方法の製造工程の後半を示す断面図である。
 本発明の一実施形態にかかるタッチパネルの製造方法は、絶縁性の透明基板上に透明導電膜層及び金属層を順に積層した後、同一のレジストパターンを用いて、該透明導電膜層及び金属層を所定の電極パターンに形成し、該透明導電膜層及び前記金属層を覆う保護膜を形成して、該保護膜の所定位置に該保護膜を貫通する開口部を設け、該開口部が設けられた前記保護膜を用いたエッチングによって前記金属層を除去し、前記透明導電膜層を露出させることにより、タッチ電極及び該タッチ電極の電位をタッチパネルの外部に出力する接続端子の少なくとも一方を形成する(第1の方法)。
 上記方法により、例えば、タッチ電極、引き出し配線及び接続端子が同じ層に形成されているタッチパネルを、2枚の露光マスクによって製造することができる。具体的には、透明導電膜層及び金属層を所定の電極パターンに形成するための第1の露光マスク、及び、保護膜の所定位置に開口部を形成するための第2の露光マスクによって、上述の構成のタッチパネルを製造することができる。このため、同じ電極パターンを有するタッチパネルの製造には最低でも3枚の露光マスクが必要であった従来のタッチパネルの製造方法に比べて、マスク枚数が低減されることによる製造工程の簡略化及び低コスト化を実現することができる。また、マスクの位置あわせ回数の低減によるマスク位置ずれの少ない高い精度でタッチパネルを製造することが可能になる。
 前記第1の方法において、前記金属層上に表面透明導電膜層を積層した後、前記同一のレジストパターンを用いて該表面透明導電膜層を所定の電極パターンに形成し、前記形成された表面透明導電膜層のうち前記接続端子となる部分を、前記エッチングによって除去されないように改質することが好ましい(第2の方法)。
 こうすることで、抵抗値の低い金属層が積層されているとともに露出表面が透明導電膜層によって覆われて保護された接続端子を有するタッチパネルを、マスク枚数を増やすことなく製造することが可能になる。
 前記第1または第2の方法において、前記保護膜は、有機樹脂膜によって構成されていて、前記エッチングによって前記透明導電膜層を露出させた後、前記保護膜を部分的に溶解させて、前記開口部の壁面を滑らかにすることが好ましい(第3の方法)。
 これにより、タッチパネルの使用時に保護膜の破損を防止することができる。すなわち、上述の方法によって、保護膜の開口部の壁面の凹凸がなくなるため、タッチパネル使用時に該壁面での引っ掛かりをなくすことができ、耐久性の優れたタッチパネルを製造することができる。
 前記第1の方法において、前記透明基板上に、第1層の前記透明導電膜層及び第1層の前記金属層を順に積層して、同一のレジストパターンを用いて該第1層の透明導電膜層及び第1層の金属層を所定の電極パターンに形成し、該第1層の透明導電膜層及び第1層の金属層を覆う第1層の前記保護膜を形成し、該第1層の保護膜上に第2層の透明導電膜層及び第2層の金属層を順に積層して、同一のレジストパターンを用いて前記第2層の透明導電膜層及び前記第2層の金属層を所定の電極パターンに形成し、該第2層の透明導電膜層及び該第2層の金属層を覆う第2層の保護膜を形成し、該第1層の保護膜及び該第2層の保護膜の所定位置に、該第1層の保護膜を貫通する第1層の開口部と、前記第2層の保護膜を貫通する第2層の開口部とを設け、該第1層の開口部が設けられた前記第1層の保護膜及び該第2層の開口部が設けられた前記第2層の保護膜を用いたエッチングによって、前記第1層の金属層及び前記第2層の金属膜を除去し、前記第1層の透明導電膜層及び前記第2層の透明導電膜層を露出させることにより、前記タッチ電極及び前記接続端子の少なくとも一方を形成することが好ましい(第4の方法)。
 これにより、タッチ電極、引き出し電極及び接続端子が2層構造で形成されたタッチパネルを、3枚の露光マスクによって形成することができる。すなわち、第1層の電極パターンを形成するための第1の露光マスクと、第2層の電極パターンを形成する第2の露光マスクと、第1層及び第2層の保護膜に所定の開口部を形成するための第3の露光マスクとによって上述のタッチパネルを製造することができる。
 前記第4の方法において、前記第1層の保護膜及び前記第2層の保護膜は、同一の材料によって構成されていて、前記第1層の保護膜における前記第1層の開口部を、前記第2層の保護膜上に形成されたレジストパターンをマスクとして用いて、第2層の保護膜における前記第2層の開口部と同時に形成することが好ましい(第5の方法)。こうすることで、3枚の露光マスクによってタッチパネルを製造することができる。
 また、前記第4の方法において、前記第1層の保護膜は、前記第2層の保護膜とは異なる材料によって構成されていて、前記第1層の保護膜における前記第1層の開口部を、前記第2層の開口部が形成された前記第2層の保護膜をマスクとして用いて形成することが好ましい(第6の方法)。これにより、第1層の保護膜及び第2層の保護膜が異なる材料であっても、同じく3枚の露光マスクでタッチパネルを製造することができる。
 前記第4から第6の方法のうちいずれか一つの方法において、前記第2層の保護膜は、有機樹脂膜によって構成されていて、前記エッチングによって、前記第1層の透明導電膜層及び前記第2層の前記透明導電膜層を露出させた後、前記第2層の保護膜を部分的に溶解させて、前記第1層の開口部及び前記第2層の開口部の各壁面を滑らかにすることが好ましい(第7の方法)。このようにすることで、タッチ電極、引き出し電極及び接続端子が2層構造によって形成されている場合でも、タッチパネルの使用時において、保護膜が破損することを防止できる。したがって、上述の方法によって、耐久性のより高いタッチパネルを製造することができる。
 前記第1の方法において、前記タッチ電極と前記接続端子とを接続する引き出し配線は、その一部分が、該タッチ電極及び該接続端子とは異なる層に形成された繋ぎ替え配線によって構成されていて、前記保護膜の前記開口部は、前記繋ぎ替え配線と前記引き出し配線との接続部分となる部分にも形成されていて、前記繋ぎ替え配線と前記引き出し配線との接続部分は、前記所定の電極パターンの一部として形成され、前記繋ぎ替え配線を、前記保護膜上に形成された導電膜をレジストパターンによってパターンニングすることにより形成することが好ましい(第8の方法)。
 このようにすることで、引き出し配線の一部が繋ぎ替え配線を構成しているタッチパネルを、3枚の露光マスクによって製造することができる。具体的には、透明導電膜層及び金属層を所定の電極パターンに形成するための第1の露光マスクと、保護膜の開口部を形成するための第2の露光マスクと、繋ぎ替え配線を形成するための第3の露光マスクとによって、上述のタッチパネルを製造することができる。
 前記第8の方法において、前記繋ぎ替え配線は、前記引き出し配線が立体的に交差する部分に設けられることが好ましい(第9の方法)。この繋ぎ替え配線によって、引き出し配線を立体交差させることができるため、該引き出し配線の設計自由度を高めることができる。
 前記第8の方法において、前記引き出し配線は、前記一部分以外の部分も、前記繋ぎ替え配線によって構成されていて、前記引き出し配線が立体的に交差する部分は、前記タッチ電極及び前記接続端子と同じ層に設けられていることが好ましい(第10の方法)。
 このような構成でも、上述の第8の方法と同様、3枚の露光マスクによって、タッチパネルを製造することができる。
 前記第8から第10の方法のうちいずれか一つの方法において、前記レジストパターンは、前記繋ぎ替え配線上に残存して、該繋ぎ替え配線の保護膜となることが好ましい(第11の方法)。これにより、新たな保護膜を形成することなく、繋ぎ替え配線を保護することができる。
 前記第8から第10の方法のうちいずれか一つの方法において、前記繋ぎ替え配線を覆うように、前記露出した透明導電膜層以外の部分に絶縁性の表面保護膜を形成することが好ましい(第12の方法)。これにより、表面保護膜によって、金属層が空気に触れて酸化するのを防止することができる。
 前記第1から第12の方法のうちいずれか一つの方法において、前記タッチ電極同士の間に、該タッチ電極と導通しないフローティング電極を有し、該フローティング電極は、前記タッチ電極と同時に前記透明導電膜層から形成されることが好ましい(第13の方法)。
 このようにすることで、タッチ電極の電極パターンが使用者に視認されることを抑制することができる。しかも、タッチ電極形成部分で不所望な浮遊電荷が生じるのを抑制することができる。
 本発明の一実施形態にかかるタッチパネルを備えた表示装置の製造方法は、第1から第13の方法のいずれか一つに記載のタッチパネルの製造方法によって製造されたタッチパネルの透明基板を基板として、表示パネルを製造する(第14の方法)。
 これにより、タッチパネルの透明基板を、表示パネルの基板として兼用することができる。また、本発明のタッチパネルの製造方法の特長を活かして、低コストで電極パターンの形成精度が高いタッチパネルを備えた表示装置を製造することができる。
 また、本発明の一実施形態にかかるタッチパネルを備えた表示装置の製造方法は、前面基板及び背面基板を有する表示パネルを形成した後、該表示パネルの前記前面基板を透明基板として、第1から第13の方法のいずれか一つに記載のタッチパネルの製造方法によってタッチパネルを形成する(第15の方法)。
 このような製造方法によっても、タッチパネルの透明基板と表示パネルの基板とを兼用することができる。
 前記第14または第15の方法において、前記表示パネルは、液晶パネルであることが好ましい(第16の方法)。
 以下、本発明の一実施形態にかかるタッチパネルの製造方法、および、タッチパネルを備えた表示装置の製造方法について、それぞれ具体的な実施形態を用いて図面を参照しながら説明する。
 なお、以下のタッチパネルの製造方法、および、タッチパネルを備えた表示装置の製造方法の各実施形態の説明では、タッチパネルとして、ガラス製の透明基板上に形成された、投影型静電容量式のタッチパネルを例示して説明する。しかし、以下の各実施形態におけるタッチパネルの製造方法は、投影型静電容量式のものに限らず、透明基板上に平面的なパターンとして形成された透明導電膜層をタッチ電極とする、各種のタッチパネルの製造方法として用いることができる。
 また、以下で参照する各図は、説明の便宜上、タッチパネルの製造方法、および、該タッチパネルを備えた表示装置の製造方法により形成されるタッチパネルおよび表示装置の構成部材のうち、説明のために必要な主要部材のみを簡略化して示したものである。従って、タッチパネルの製造方法、および、タッチパネルを備えた表示装置の製造方法は、参照する各図に示されていない任意の構成部材を備えたタッチパネルおよび表示装置の製造方法として適用することができる。また、各図中の部材の寸法、特に、タッチパネルの厚さ方向の寸法は、実際の構成部材の寸法および各部材の寸法比率等を必ずしも忠実に表したものではない。
 (第1の実施の形態)
 まず、タッチ電極や引き出し配線、接続端子が、透明基板上に1層に形成されたタッチパネルの製造方法を、第1の実施形態として説明する。
 図1は、第1の実施形態にかかるタッチパネルの製造方法で製造されるタッチパネル100において、タッチ電極パターンを示す平面図である。
 タッチパネル100には、絶縁性の透明基板であるガラス基板1上に、ITOなどの透明導電膜層を平面的なパターンとして形成することにより、タッチ電極2が形成されている。本実施形態のタッチパネル100は投影型静電容量方式であるため、タッチ電極2は、図1に示すように、同じ大きさの略長方形の電極パターンが複数並ぶように形成されている。本実施形態のタッチパネルでは、横方向に10個の電極パターンが縦方向に上下2列並んでいて、合計20個の電極パターンを有している。
 なお、タッチ電極2の配置パターンは、図1に示すものに限らない。したがって、タッチ電極2の電極パターンの形状は、図1に示した長方形状である必要はなく、また、横・縦に配列される電極パターンの個数も、10×2に限られない。
 投影型静電容量方式のタッチパネルでは、パターン化されたタッチ電極がその近傍に触れた使用者の指の位置を感知可能なように、タッチ電極同士は、所定の間隔、例えば200μm~800μm程度の間隔を有するように配置する必要がある。このため、タッチ電極同士の間には、タッチ電極が形成されていない領域が存在する。
 本実施形態のタッチパネル100では、図1に示すように、タッチ電極2同士の間隔部分に、タッチ電極2と同じくITOなどの透明導電膜層によって形成されたフローティング電極3が設けられている。
 なお、フローティング電極3は、タッチ電極2の電極パターンを使用者が視認しにくくする。また、フローティング電極3は、タッチ電極2が形成されていないタッチ電極2同士の間隔部分に不所望な浮遊電荷が貯まってタッチ電極の電位が変動することを防止する。このため、フローティング電極3の配置間隔や形状には、タッチ電極2のような制約はない。図1に示す本実施形態のタッチパネル100では、図1において横方向に隣り合うタッチ電極2同士の間には、タッチ電極2の長辺と同じ長さの長辺を有する長方形のフローティング電極3が配置される。また、図1において縦方向に隣り合うタッチ電極2同士の間には、タッチ電極2同士を接続する接続配線6を避けるようにして、さまざまな縦横比を有する四角形のフローティング電極3が形成されている。これらはあくまでもフローティング電極3の形状及び配置を例示するものに過ぎず、フローティング電極3の形状を制限するものではない。
 また、タッチ電極2を使用者に視認されにくくするフローティング電極3は、タッチパネル100として必須の構成要件ではない。したがって、本実施形態をはじめ、他の実施形態においても、タッチパネルの製造方法において製造されるタッチパネルの電極パターンとして、フローティング電極3は必ずしも形成されていることを要しない。当然ながら、この場合には、パターン化されたタッチ電極2同士の間には、電極の形成されていない部分が存在することになる。
 タッチ電極2は、該タッチ電極2によってタッチ位置を検出するための検出領域の周囲に設けられた引き出し配線4を介して、ガラス基板1の一端部に形成された接続端子5に接続されている。具体的には、各タッチ電極2は、タッチ位置の検出領域の周辺領域に形成された引き出し配線4と、タッチ位置の検出領域内でタッチ電極2同士を接続する接続配線6とによって、接続端子5に接続されている。本実施形態のタッチパネル100では、4つの接続端子5が設けられている。そして、本実施形態のタッチパネル100では、タッチ電極2に指先などが近づくことによって生じる静電容量の変化を、この4つの接続端子5の電圧の変化として把握することで、タッチ位置を検出する。
 図2は、本実施形態にかかるタッチパネルの製造方法の、製造工程の一例を示す断面図である。
 図2(a)、図2(b)及び図2(c)において、左側の図が、タッチ電極2とフローティング電極3とが形成された部分、すなわち電極パターンを示した図1におけるA-A’矢視線の部分の断面を示している。以下の説明では、図1におけるA-A’矢視線の部分をA部と称する。
 また、図2(a)、図2(b)及び図2(c)において、中央の図が、引き出し配線が形成されている部分、すなわち電極パターンを示す図1におけるB-B’矢視線の部分の断面を示している。以下の説明では、図1におけるB-B’矢視線の部分をB部と称する。
 そして、図2(a)、図2(b)及び図2(c)において、右側の図が、接続端子が形成されている部分、すなわち電極パターンを示す図1におけるC-C’矢視線の部分の断面を示している。以下の説明では、図1におけるC-C’矢視線の部分をC部と称する。
 本実施形態のタッチパネルの製造方法では、透明基板であるガラス基板1上の全面に、ITOなどの透明導電膜層11を形成した後、金属層12を形成するMoN層12a、アルミ層12b及びBMメタル層12cを、スパッタ法によって順に積層する。
 その後、金属層12の最も上層であるBMメタル層12cの上に、図示しないレジスト膜を形成する。このレジスト膜をマスクで覆って露光、現像するという通常のフォトリソグラフィ法によって、図1に示すA部のタッチ電極2及びフローティング電極3、B部の引き出し配線4、C部の接続端子5、さらに図2には図示されない接続配線6の部分に、レジストパターンを残存させる。
 なお、タッチ位置の検出領域においてタッチ電極2同士を接続する接続配線6は、製造方法上、タッチ電極2と全く同様に形成されるものであるため、説明の煩雑化を回避するために以下本明細書において特に言及しない。また、接続配線6に関する詳細な説明も省略する。
 次に、上述のように形成されたレジストパターンをマスクとして、酸系の混酸液にてBMメタル層12cをエッチングした後、同一のレジストパターンを用いて、燐酸、酢酸及び硝酸の混酸液によってアルミ層12b及びMoN層12aをエッチングする。更に、同一のレジストパターンを用いて、蓚酸液によって透明導電膜層11をエッチングする。その後、BMメタル層12c上に残っているレジスト膜を、レジスト剥離液にて剥離除去する。
 このようにして、図1に示すような電極パターンを有する透明導電膜層11及び金属層12の積層体が形成される。このように積層体が形成された状態を図2(a)に示す。
 次に、透明導電膜層及び金属層の積層体を覆うように、例えばSiNの保護膜13を、CVD法を用いてガラス基板1上に形成する。そして、フォトリソグラフィ法を用いて、A部のタッチ電極2及びフローティング電極3となる部分以外の部分、及び、C部の接続端子5となる部分以外の部分に、それぞれ、レジスト膜を残存させる。
 その後、残存させたレジスト膜をマスクとして、フッ素系のガスを用いたドライエッチング(RIE法)によって保護膜13をエッチングする。これにより、A部に保護膜13を貫通する開口部15,16を、C部に保護膜13を貫通する開口部14をそれぞれ形成して、透明導電膜層11及び金属層12の積層体の表面に形成されたBMメタル層12cを露出させる。そして、保護膜13上に残っているレジスト膜を、レジスト剥離液で剥離除去する。この状態を図2(b)に示す。
 次に、貫通した開口部14,15,16が形成された保護膜13をマスクとして、酸系の混酸液によってBMメタル層12cをエッチングした後、燐酸、酢酸及び硝酸の混酸液によってアルミ層12b及びMoN層12aを連続してエッチングする。この結果、タッチ位置の検出領域であるA部と、接続端子が形成される領域であるC部とでは、金属層12が除去されて、透明導電膜層11が露出する。引き出し配線が形成されるB部では、保護膜13が残存しているので、該保護膜13によって覆われた透明導電膜層11及び金属層12の積層体が残っている。
 このようにして、図1に示した電極パターンが構成されるとともに、A部に、透明導電膜層11によって構成されたタッチ電極2及びフローティング電極3が形成される。B部には、透明導電膜層11に金属層12が積層されることによって抵抗値が引き下げられた引き出し配線4が、保護膜13によって覆われた状態で形成される。そして、C部では、保護膜13に接続のためのビアホールとなる開口部14が形成されることによって、透明導電膜層11からなる接続端子5が露出する。
 図2(a)、図2(b)及び図2(c)に製造工程を示した、本実施形態のタッチパネルの製造方法によれば、図1に示した電極パターンを有するタッチ電極2と接続端子5とを接続する引き出し配線4を、抵抗値の低い金属膜12を積層して形成することができる。このとき使用する露光マスクは、図2(a)に示すように透明導電膜層11及び金属層12をパターン化するための第1の露光マスク、及び、図2(b)に示すように保護膜13の所定の位置に、開口部14,15,16を形成するための第2の露光マスクの合計2枚となる。
 このため、図33に示すように3枚の露光マスクを必要とする従来の製造方法と比較して、本実施形態のタッチパネルの製造方法は、使用するマスクの数を低減することができる。これにより、タッチパネルを低コストで製造することができ、また、マスクの位置合わせ誤差に起因するパターンのずれが発生しにくい。
 次に、図1の電極パターンを有するタッチパネルの製造方法について、いくつかの応用例を説明する。
 図3は、本実施形態のタッチパネルの製造方法において、第1の応用例を示す断面図である。
 なお、図3(a)、図3(b)及び図3(c)の各図が示している部分は、上記本実施形態のタッチパネルの製造方法において各部の断面を示した図2(a)、図2(b)及び図2(c)とそれぞれ同じ部分である。すなわち、左側の図が、タッチ電極2及びフローティング電極3が形成された部分である図1のA-A’矢視線の部分(A部)を示している。また、中央の図が、引き出し配線4が形成されている部分である図1のB-B’矢視線の部分(B部)を、右側の図が、接続端子5が形成されている部分である図1のC-C’矢視線の部分(C部)を、それぞれ示している。
 図3に示すように、まず、透明基板であるガラス基板1上の全面に、ITOなどの透明導電膜層11を形成した後、金属層12を形成するMoN層12a、アルミ層12b及びBMメタル層12cを、スパッタ法によって順に積層する。そして、フォトリソグラフィ法によってレジストパターンを形成し、このレジストパターンを用いて金属層12及び透明導電膜層11をエッチングする。その後、レジスト膜の除去を行う。図3(a)は、この状態を示していて、A部のタッチ電極2及びフローティング電極3となる部分、B部の引き出し配線4となる部分、及び、C部の接続端子5となる部分に、透明導電膜層11及び金属層12の積層体が図1に示す電極パターンで形成される。
 次に、保護膜としての透明有機樹脂膜17をガラス基板1上の全面に塗布し、フォトリソグラフィ法によってA部に開口部19,20、C部に開口部18をそれぞれ形成して、透明導電膜層11及び金属層12の積層体の表面を露出させる。この状態を図3(b)に示す。
 次に、所定位置に開口部18,19,20が形成された透明有機樹脂膜17をマスクとして、酸系の混酸液によってBMメタル層12cをエッチングした後、燐酸、酢酸及び硝酸の混酸液によってアルミ層12b及びMoN層12aを連続してエッチングする。この結果、タッチ位置の検出領域であるA部と、接続端子が形成される領域であるC部とでは、金属層12が除去されて透明導電膜層11が露出する。引き出し配線4が形成されるB部では、透明有機樹脂膜17によって覆われた透明導電膜層11及び金属層12の積層体が残っている。この状態を図3(c)に示す。
 その後、透明有機樹脂膜17に対して、樹脂膜を硬化させる場合の最適露光の7倍から8倍の露光量の紫外線を照射して、環境温度が200℃など、透明有機樹脂膜17に用いられている材料に適したメルト条件で透明有機樹脂膜17をアニールする。その結果、透明有機樹脂層17が部分的に溶解して、タッチ電極2及びフローティング電極3の表面を露出させるA部の開口部19,20、及び、接続端子5の表面を露出させるC部の開口部18の各壁面が、図3(d)に示すような滑らかなものとなる。
 図2に示した本実施形態のタッチパネルの製造方法では、タッチ電極2、フローティング電極3及び接続端子5となる部分の金属層12の表面積に比べて、保護膜13の開口部14,15,16の底面部の大きさが小さくなる。このため、保護膜13をマスクとして金属層12をエッチングした後、タッチ電極2、フローティング電極3及び接続端子5の周囲には、図2(c)に示すように、頭部が傘のように開いた形状を呈する保護膜13が残存する。
 このように、保護膜13の断面形状が傘状になって、底面側よりも表面側に面積が大きくなる部分が存在すると、タッチパネル使用時にこの傘状の突起部分に物体が引っかかりやすく、保護膜が破損するおそれが生じる。そうすると、破損部分がタッチパネルの表面の異物になったり、保護膜とともにパターン化された透明導電膜層が剥がれてしまったりすることが考えられる。これに対し、図3に示すような第1の応用例では、保護膜の開口部の壁面の形状を滑らかにするアニール工程を備えているため、タッチパネル使用時の保護膜の破損や剥がれを防止して、信頼性の高いタッチパネルを得ることができる。
 なお、図3に示す第1の応用例で用いられたアニール工程は、タッチパネルの保護膜のメルト条件下において該保護膜の断面形状を滑らかにするものであり、フォリソグラフィ法のようなマスクによる露光現像工程によって滑らかな断面形状を得るものではない。このため、第1の応用例においても、図1に示した電極パターンを有し、且つ、タッチ電極2及び接続端子5を接続する引き出し配線4を抵抗値の低い金属膜12を用いて形成したタッチパネルを、合計2枚のマスクで製造することができる。
 次に、図4は、本実施形態のタッチパネルの製造方法における第2の応用例を示す断面図である。なお、図4(a)、図4(b)及び図4(c)の各図におけるA部、B部、C部は、上記図2や図3と同様に、それぞれ、図1におけるA-A’矢視線で示すA部、図1におけるB-B’矢視線で示すB部、図1におけるC-C’矢視線で示すC部である。
 図4に示す第2の応用例では、透明基板であるガラス基板1上の全面に、ITOなどの透明導電膜層11を形成した後、金属層12を形成するMoN層12a、アルミ層12b及びMoNb層12dを、スパッタ法によって順に積層する。その後、フォトリソグラフィ法を用いて、図4(a)に示すように、A部のタッチ電極2及びフローティング電極3となる部分、B部の引き出し配線4となる部分、及び、C部の接続端子5となる部分に、それぞれ、透明導電膜層11及び金属層12の積層体を形成する。
 次に、SiNまたは透明有機樹脂の保護膜21をガラス基板1上の全面に塗布し、フォトリソグラフィ法を用いて、タッチ位置の検出領域であるA部と接続端子が形成されるC部とに、開口部22,23を設ける。ここで、第2の応用例にかかるタッチパネルの製造方法では、A部の開口部23を、タッチ電極2及びフローティング電極3が形成されるタッチ位置を検出する検出領域全体を露出させる大きな開口部としている点で図2に示した上述の実施形態の構成とは異なる。また、接続端子5が形成されるC部の開口部22を、透明導電膜層11及び金属層12の形成パターンよりも開口面積が大きな開口部としている点で、図2に示した本実施形態の構成とは異なる。
 その後、保護膜21をマスクとして、燐酸、酢酸及び硝酸の混酸液によってMoNb層12d、アルミ層12b及びMoN層12aをエッチングする。これにより、タッチ位置の検出領域であるA部と接続端子5が形成される領域であるC部とにおいて、透明導電膜層11を露出させる。この状態を図4(c)に示す。
 図4(c)に示すように、第2の応用例では、タッチ電極2、フローティング電極3及び接続端子5の形成部分における保護膜21の開口部22,23の面積を大きくしているため、図2(c)に示す上述の実施形態のように、保護膜の断面形状が頭部の大きい傘状となることがない。したがって、第2の応用例の製造方法によれば、保護膜の破損や剥がれを防止可能な耐久性の面で信頼性の高いタッチパネルを、2枚の露光マスクによって得ることができる。
 以上、本実施形態、第1の応用例及び第2の応用例として説明したタッチパネルの製造方法では、透明導電膜層11及び金属層12の積層体から、開口部14,18,22が設けられた保護膜13,17,21をマスクとして、金属層12を除去した。金属層12がタッチパネルの表面に露出すると外気に触れて容易に酸化されるため、上述のように金属層12を除去することによって接続端子5の表面の酸化を防止することができる。これにより、接続端子5と、該接続端子5からタッチ位置検出信号となるタッチ電極の電位を出力するための図示しないFPCなどとの間で接続不良が生じやすくなることを防止できる。
 一方、接続端子5は、タッチパネルのタッチ位置検出領域の周辺領域に配置されるものであるために透明である必要はない。接続端子5は、引き出し配線4と同様により高い導通性が求められる部分であるため、むしろ透明導電膜層11に金属層12が積層されている方が好ましい。
 このように低抵抗の金属層12が積層された接続端子5を備えたタッチパネルの製造方法を、以下、本実施形態の第3の応用例として説明する。
 図5は、第3の応用例を示す断面図である。なお、図5(a)、図5(b)及び図5(c)の各図におけるA部、B部、C部も、上記図2、図3及び図4と同様、それぞれ、図1におけるA-A’矢視線の部分、図1におけるB-B’矢視線の部分、図1におけるC-C’矢視線の部分を示す。
 図5に示す第3の応用例では、透明基板であるガラス基板1上の全面に、ITOなどの透明導電膜層11を形成した後、金属層12を形成するMoN層12a、アルミ層12b及びMoNb層12dを、スパッタ法にて順に積層する。そして、MoNb層12d上に、再びITOなどの表面透明導電膜層24をスパッタ法などによって形成する。
 その後、図5(a)に示すように、A部のタッチ電極2及びフローティング電極3となる部分、B部の引き出し配線4となる部分、及び、C部の接続端子5となる部分に、透明導電膜層11、金属層12及び表面透明導電膜層24の積層体を、レジストパターンを用いて形成する。
 次に、SiNの保護膜25をガラス基板1上の全面にスパッタ法などによって形成する。そして、図5(b)に示すように、タッチパネルの接続端子5となる部分にレーザー光26を照射して、表面透明導電膜層24をレーザーアニールしてその組成を改質し、後のエッチング工程で使用されるエッチング液によってエッチングされないようにする。
 続いて、フォトリソグラフィ法を用いて、タッチ位置検出部分であるA部及び接続端子が形成されるC部の保護膜25に、開口部27及び開口部28を形成する。ここで、図5(c)に示すように、第3の応用例にかかるタッチパネルの製造方法では、A部の開口部28として、上記第2の応用例と同様、タッチ電極2及びフローティング電極3が形成されるタッチ位置の検出領域全体を露出させるような大きな開口部が形成される。また、C部の接続端子5が形成される部分では、透明導電膜層11、金属層12及び表面透明導電膜層24の積層体の形成パターンの幅よりも、C部の開口部27の開口面積の方が小さい。
 その後、保護膜25をマスクとして、蓚酸液によって表面透明導電膜層24をエッチングした後、燐酸、酢酸及び硝酸の混酸液によってMoNb層12d、アルミ層12b及びMoN層12aをエッチングする。このようにすることで、図5(d)に示すように、タッチ位置の検出領域であるA部には、タッチ電極2及びフローティング電極3を構成する透明導電膜層11が露出する。
 一方、積層体の最上層の表面透明導電膜層24が保護膜25によって覆われているB部と、最上層の表面透明導電膜層24がレーザーアニールにより改質されたれたC部とでは、表明透明導電膜層24が蓚酸ではエッチングされない。そのため、これらのB部及びC部では、透明導電膜層11、金属層12及び表面透明導電膜層24の積層体がそのまま残存する。
 このように、第3の応用例のタッチパネルの製造方法によれば、タッチ電極2及びフローティング電極3が透明導電膜層11によって形成され、且つ、低抵抗な引き出し配線4及び接続端子5を有するタッチパネルを、2枚の露光マスクを用いて製造することができる。
 なお、図5(c)に示すように、タッチ電極2及びフローティング電極3が形成されるタッチ位置の検出領域全体が露出するような大きな開口部28が設けられているが、この開口部28は、第3の応用例の構成において必須のものではない。例えば、図2に示す本実施形態のタッチパネルの製造方法のように、タッチ電極2及びフローティング電極3にそれぞれ対応するような開口部19,20を設けてもよい。
 一方、C部の接続端子5が形成される部分の開口部27は、透明導電膜層11、金属層12及び表面透明導電膜層24の積層体の形成パターンの幅よりも、開口面積を小さくすることが重要である。このC部の開口部27の面積が、上記図4に示した第2の応用例の開口部22のように、透明導電膜層11及び金属層12の積層体の幅よりも大きい場合には、A部に形成された金属層12と同様にエッチングされてしまうからである。すなわち、エッチング工程において、表面透明導電膜層24はレーザーアニールによって改質されているため、容易にエッチングされないものの、開口部27の面積が大きくて金属層12が露出していると、該金属層12がエッチングされてしまい、接続端子5を形成できなくなるからである。
 以上の説明では、図1に示すような1層のタッチ電極パターンを有するタッチパネル100の製造方法について、基本となる実施形態及びその応用例について図面を用いて説明した。これらの全ての形態において、従来の製造方法よりも少ない2枚の露光マスクで所望のタッチ電極パターンを有するタッチパネルを製造することができる。また、タッチパネルの製造方法として工程を簡略化できるため、製造時間及び製造コストを低減することができる。さらに、露光マスクの位置あわせ回数を低減することができるため、電極パターンの形成精度の高いタッチパネルが得られる。
 なお、上述の実施形態におけるタッチパネルの製造方法で例示した各層の膜厚は、一例として、ガラス基板1の厚さが0.7mmであり、透明導電膜層11の厚さが70nmである。また、例えば、金属層12を形成するMoN層12aが50nmであり、アルミ層12bが150nm、BMメタル層12cが100nm、MoNb層12dが100nm、保護膜13,17,21,25が3μmである。
 また、透明導電膜層11及び表面透明導電膜層24として、上述の実施形態ではITOを用いる例を示したが、その他にIZO、ZnOなどが使用できる。金属層として、上述の実施形態ではMoN層、アルミ層及びBMメタル層の3層の積層体の例と、MoN層、アルミ層及びMoNb層の3層の積層体の例を示したが、これらは、使用環境や表示品位に応じて適宜使い分けることが望ましい。なお、BMメタル層として、酸化クロム膜やニッケル(Ni)、モリブデン(Mo)、アルミ(Al)、チタン(Ti)を含んだ合金の酸化膜などの黒色金属膜を用いることができる。また、金属層は、3層の積層体に限らず、BM層及びMoNなどの2層の積層体、BMメタル、MoNなどからなる単層を用いることができる。
 また、形成後に部分的に溶解させない保護膜13,17,25として、SiN膜やSiO2膜を例示したが、他にSiONなどを用いることができる。一方、形成後に部分的に溶解させて開口部の壁面を滑らかにする場合の保護膜21として用いられる透明有機樹脂として、エポキシ樹脂、アクリル樹脂、ノボラック樹脂などを用いることができる。
 なお、透明導電膜層11や表面透明導電膜層24,金属層12,保護膜13,17,21,25として、上記例示して説明した材料と異なる材料を用いる場合には、当然ながら、各膜を良好に選択的にエッチングできるエッチング液を用いることとなる。具体的には、エッチング液として、例えば、金属膜をエッチングする場合には硝酸、燐酸及び酢酸の混酸液を、透明導電膜層をエッチングする場合には蓚酸などをそれぞれ用いることができる。
 また、レジストパターンを形成するレジスト剤としては、ノボラック樹脂、アクリル樹脂などを用いることができる。さらに、レジスト膜の現像液としては、NaOH、KOHを用いることができる。レジスト膜の剥離液としては、NMP、アミン、グリコルエーテルなどを用いることかできる。
 (第2の実施の形態)
 次に、タッチ電極や引き出し配線、接続端子が、絶縁性の透明基板上にそれぞれ2層構造として形成されたタッチパネルの製造方法を、第2の実施形態として説明する。
 図6は、第2の実施形態にかかるタッチパネルの製造方法で製造されたタッチパネル200の電極パターンを示す平面図である。
 タッチパネル200には、絶縁性の透明基板であるガラス基板101上に、ITOにより構成された透明導電膜層を平面的なパターンとして形成したタッチ電極が設けられている。本実施形態のタッチパネル200は、タッチ電極102a,102b、引き出し配線104a,104b及び接続端子105a,105bが、それぞれ上下2つの層に分かれた2層構造で形成されている。この点が、図1に示した第1の実施形態にかかるタッチパネル100の電極パターンと異なっている。
 図6では、必要以上に図面が煩雑になることを防ぐために、引き出し配線104a,104bが一部分で立体的に交差している以外は、タッチ電極102a,102b及び接続端子105a,105bの形状や配置は図1のタッチパネル100と同じとしている。しかしながら、タッチ電極のパターンが細かい場合や、タッチ電極が形成されたタッチ位置検出領域の周囲の領域が狭く、引き出し配線の引き回しが困難な場合には、タッチ電極、引き出し配線、及び、これらに接続される接続端子を、2層構造として形成することがある。本実施形態では、このように、タッチ電極102a,102bや引き出し配線104a,104b、接続端子105a,105bが2層構造で形成されるタッチパネル200を、少ない数の露光マスクで露光する製造方法を説明する。
 図6に示すように、本実施形態のタッチパネルの製造方法で製造されるタッチパネル200も、図1に示したタッチパネル100と同様、同じ大きさの略長方形のタッチ電極が横方向に10個、縦方向に2列の合計20個、並ぶように設けられている。このタッチ電極は、ガラス基板101上に直接形成された透明電極層によって構成される、下層である第1層のタッチ電極102aと、この第1層のタッチ電極102aとはタッチパネルの厚さ方向の異なる層に形成された、上層である第2層のタッチ電極102bとを有する。これらのタッチ電極102a,102bは、平面視で、交互に並ぶように配置されている。
 なお、各タッチ電極102a,102bのパターン形状は、図6に示した長方形状である必要はなく、また、横・縦に配置されるパターンの個数も10×2に限らない点は、図1の場合と同様である。
 本実施形態のタッチパネルの製造方法によって製造されるタッチパネル200には、タッチ電極102同士の間で且つタッチ電極102aと同じ第1層に、ITOによって形成されたフローティング電極103が設けられている。なお、フローティング電極103の配置や形状について何ら制約がないことは、図1で示したタッチパネル100のタッチ電極パターンと同じである。また、フローティング電極103が、第1層のタッチ電極102aと同じ層に形成される場合を示したが、本実施形態では、これは必須の要件ではないため、第2層のタッチ電極102bと同じ層にフローティング電極103が形成されていてもよい。
 また、タッチ電極102を使用者に視認されにくくするフローティング電極103はタッチパネル200として必須の構成要件ではない点も、図1に示すタッチパネル100と同様である。
 本実施形態のタッチパネル200では、引き出し配線及び接続端子も、タッチ電極と同様、下層である第1層と上層である第2層とに分かれて形成されている。具体的には、引き出し配線104a及び接続端子105aが、タッチ電極102a及びフローティング電極103と同じ第1層に形成されていて、引き出し配線104b及び接続端子105bが、タッチ電極102bと同じ第2層に形成されている。
 次に、本実施形態にかかるタッチパネルの製造方法を、製造工程の一例を示す断面図である図7から図9を用いて説明する。
 なお、図7(a)、図7(b)、図8(a)、図8(b)、図9(a)及び図9(b)において、左側の図が、タッチ電極102a、102b及びフローティング電極103が形成された部分、すなわち図6におけるD-D’矢視線の部分の断面構成を示している。以下の説明において、図6におけるD-D’矢視線の部分をD部と称する。
 また、図7(a)、図7(b)、図8(a)、図8(b)、図9(a)及び図9(b)において、中央の図が、引き出し配線104a、104bが形成されている部分、すなわち図6におけるE-E’矢視線の部分の断面構成を示している。以下の説明において、図6におけるE-E’矢視線の部分をE部と称する。
 さらに、図7(a)、図7(b)、図8(a)、図8(b)、図9(a)及び図9(b)において、右側の図が、接続端子105a、105bが形成されている部分、すなわち図6におけるF-F’矢視線の部分の断面構成を示している。以下の説明において、図6におけるF-F’矢視線の部分をF部と称する。
 本実施形態のタッチパネル200の製造方法では、透明基板であるガラス基板101上の全面に、ITOなどの透明導電膜層111を形成した後、金属層112を形成するMoN層112a、アルミ層112b及びMoNb層112cを、スパッタ法によって順に積層する。
 その後、金属層112の最上層であるMoNb層112cの上に、図示しないレジスト膜を形成する。このレジスト膜を所定のマスクで覆って露光、現像するという通常のフォトリソグラフィ法によって、D部の第1層のタッチ電極102a及びフローティング電極103となる部分、E部の第1層の引き出し配線104aとなる部分、及び、F部の第1層目の接続端子105aとなる部分に、レジストパターンを残存させる。
 次に、形成されたレジストパターンをマスクとして、燐酸、酢酸及び硝酸の混酸液によって、MoNb層112c、アルミ層112b及びMoN層112aを同時にエッチングする。更に、同一のレジストパターンを用いて、蓚酸液によって透明導電膜層111をエッチングする。
 その後、MoNb層112cの上に残っているレジスト膜を、レジスト剥離液にて剥離除去する。この状態を図7(a)に示す。
 次に、図7(b)に示すように、例えばSiNからなる第1層の保護膜113を、CVD法を用いてガラス基板101の全面に形成する。この第1層の保護膜113が、第2層と第1層とを絶縁分離する膜になる。
 次に、第1層の保護膜113上の全面に、ITOなどの透明導電膜層114を形成した後、金属層115を形成するMoN層115a、アルミ層115b及びMoNb層115cを、スパッタ法によって順に積層する。
 その後、金属層115の最上層であるMoNb層115cの上に、図示しないレジスト膜を形成する。そして、このレジスト膜を所定のマスクで覆って露光、現像するという通常のフォトリソグラフィ法によって、第1層と同様に、D部の第2層のタッチ電極102bとなる部分、E部の第2層の引き出し配線104bとなる部分、及び、F部の第2層の接続端子105bとなる部分に、レジストパターンを残存させる。
 次に、形成されたレジストパターンをマスクとして、燐酸、酢酸及び硝酸の混酸液によって、MoNb層115c、アルミ層115b及びMoN層115aを同時にエッチングする。さらに、同一のレジストパターンを用いて蓚酸液によって透明導電膜層114をエッチングする。
 その後、MoNb層115cの上に残っているレジスト膜を、レジスト剥離液にて剥離除去する。この状態を図8(a)に示す。
 次に、図8(b)に示すように、例えばSiNからなる第2層の保護膜116を、CVD法を用いてガラス基板101の全面に形成する。
 そして、フォトリソグラフィ法によって、D部の第1層のタッチ電極102a、フローティング電極103及び第2層のタッチ電極102bとなる部分以外、及び、F部の第1層の接続端子105a及び第2層の接続端子105bとなる部分以外に、レジスト膜を残存させる。
 その後、残存させたレジスト膜をマスクとして、フッ素系のガスを用いたドライエッチング(RIE法)によって第2層の保護膜116及び第1層の保護膜113をエッチングする。これにより、D部に開口部119,120,121を,F部に開口部117,118をそれぞれ形成して、第1層の透明導電膜層111及び金属層112の積層体の表面、及び、第2層の透明導電膜層114及び金属層115の積層体の表面をそれぞれ露出させる。そして、第2層の保護膜116上に残っているレジスト膜を、レジスト剥離液で剥離除去する。この状態が、図9(a)の状態である。
 次に、所定位置に開口部117,118,119,120,121が形成された第1層の保護膜113及び第2層の保護膜116をマスクとして、燐酸、酢酸及び硝酸の混酸液によって、MoNb層112c,115c、アルミ層112b,115b及びMoN層112a,115aを連続してエッチングする。この結果、タッチ位置の検出領域であるD部及び接続端子105が形成される領域であるF部では、第1層の金属層112及び第2層の金属層115が除去されて、第1層の透明導電膜層111及び第2層の透明導電膜層114が露出する。第1層の引き出し配線104a及び第2層の引き出し配線104bが形成されるE部では、第1層の保護膜113及び第2層の保護膜116が残存している。そのため、第1層では、保護膜113によって覆われた透明導電膜層11及び金属層112の積層体が残っていて、第2層では、保護膜116によって覆われた透明導電膜層114及び金属層115の積層体が残っている。
 このようにして、図9(b)に示すように、D部に、第1層の透明導電膜層111によって構成された第1層のタッチ電極102a及びフローティング電極103が形成されるとともに、第2層の透明導電膜層114によって構成された第2層のタッチ電極102bが形成される。E部には、第1層に、金属層112が積層されて抵抗値が引き下げられた引き出し配線104aが、第1層の保護膜113及び第2層の保護膜116によって覆われた状態で形成される。また、E部には、第2層に、金属層115が積層されて抵抗値が引き下げられた引き出し配線104bが、第2層の保護膜116によって覆われた状態で形成される。そして、F部では、第1層の保護膜113及び第2層の保護膜116に、接続のためのビアホールとなる開口部118及び開口部117が形成されるため、透明導電膜層111からなる第1層の接続端子105a及び透明導電膜層114からなる第2層の接続端子105bが露出している。
 図7から図9に示す本実施形態のタッチパネルの製造方法によれば、図6に示すように2層に分離された電極パターンを有する構成を実現できる。また、この製造方法によれば、タッチ電極102aと接続端子105aとを接続する引き出し配線104a、及び、タッチ電極102bと接続端子105bとを接続する引き出し配線104bを、抵抗値の低い金属膜112,115を積層した構成とすることができる。
 このとき使用する露光マスクは、合計3枚である。具体的には、図7(a)に示すように第1層に形成される透明導電膜層111及び金属層112をパターン化するための第1の露光マスクが必要である。また、図8(a)に示すように第2層に形成される透明導電膜層114及び金属層115をパターン化するための第2の露光マスクが必要である。さらに、図8(a)に示すように第1層の保護膜113及び第2層の保護膜116の所定の位置に、開口部117,118,119,120,121を形成するための第3の露光マスクが必要である。
 このため、図34及び図35に示した従来の製造方法では、最低限5枚必要であったマスクを3枚に減らすことができる。そのため、本実施形態のタッチパネルの製造方法は、タッチ電極のパターンが2層に形成されたタッチパネルの製造方法として、製造コストが安く、且つ、マスク合わせ誤差に起因するパターンのずれが発生しにくい製造方法である。
 次に、図10及び図11を用いて、本実施形態における第1の応用例のタッチパネルの製造方法について説明する。なお、図10(a)、図10(b)、図11(a)及び図11(b)の各図が示しているD部、E部及びF部の各部分は、上述の本実施形態のタッチパネルの製造方法で各部の断面構造を示した図7から図9と同様である。すなわち、D部、E部及びF部は、それぞれ、図6におけるD-D’矢視線の部分、E-E’矢視線の部分、F-F’矢視線の部分を示している。
 第1の応用例のタッチパネルの製造方法は、上述の本実施形態のタッチパネルの製造方法とは異なり、第1層の保護膜と第2層の保護膜とが同じ材料によって形成されていない。すなわち、第1層の保護膜が例えばSiN膜で、第2層の保護膜が例えば透明有機樹脂というように、第1層の保護膜と第2層の保護膜とが異なる材料によって形成されている。
 第1の応用例のタッチパネルの製造方法でも、透明基板101上に、下層である第1層の透明導電膜層111及び金属層112の積層体を形成した後、第1層の保護膜113を形成し、該保護膜113上に上層である第2層の透明導電膜層114及び金属層115の積層体を形成する。ここまでは、図7(a)、図7(b)及び図8(a)に順次示した上記本実施形態のタッチパネルの製造方法と同じである。このため、ここまでの製造工程の図示は省略する。この状態を示す図10(a)は、図8(a)と同じ状態を示している。
 次に、第1の応用例のタッチパネルの製造方法では、第2層の透明導電膜層114及び第2層の金属層115の積層体を覆うように、第1層の保護膜113上の全面に、透明有機樹脂製の第2層の保護膜122を形成する。
 そして、フォトリソグラフィ法によって、図10(b)に示すように、透明有機樹脂製の第2層の保護膜122に、D部でタッチ電極102aとなる部分に開口部127を、フローティング電極103となる部分に開口部126を、それぞれ形成する。また、第2層の保護膜122には、第2層のタッチ電極102bとなる部分に開口部125を形成する。また、F部で第1層の接続端子105aとなる部分に開口部124を、第2層の接続端子105bとなる部分に開口部123を、それぞれ形成する。
 その後、開口部が形成されずに残存している保護膜122をマスクとして、フッ素系のガスを用いたドライエッチング(RIE法)によって第1層の保護膜113をエッチングする。具体的には、図11(a)に示すように、第2層の保護膜122に形成された開口部124を用いて第1層の保護膜113に開口部128を、第2層の保護膜122に形成された開口部126を用いて第1層の保護膜113に開口部129を、それぞれ形成する。また、第2層の保護膜122に形成された開口部127を用いて第1層の保護膜113に開口部130を形成する。
 次に、開口部128~130が形成された第1層の保護膜113及び開口部123~127が形成された第2層の保護膜122をマスクとして、燐酸、酢酸及び硝酸の混酸液によって、MoNb層112c,115c、アルミ層112b,115b及びMoN層112a,115aを連続してエッチングする。この結果、タッチ位置の検出領域であるD部及び接続端子105a,105bが形成される領域であるF部では、金属層112,115が除去されて、透明導電膜層111,114が露出する。引き出し配線104a,104bが形成されるE部では、第1層の保護膜113及び第2層の保護膜116が残存しているので、保護膜113,116によって覆われた透明導電膜層111,114及び金属層112,115の積層体が残っている。
 このようにして、図11(b)に示すように、図6に示す電極パターンを構成する2層構造のタッチパネル200を形成することができる。
 本実施形態の第1の応用例では、第2層の保護膜122を第1層の保護膜材料であるSiNとは異なる透明有機樹脂によって形成したため、図7から図9に示す製造方法のように、第2層の保護膜116及び第1層の保護膜113を一度にエッチングして開口部を形成することはできない。しかしながら、第2層の透明有機樹脂製の保護膜116に形成した開口部124,126,127を用いて、第1層の保護膜113の開口部128~130を形成するエッチングを行うことができる。
 このため、本実施形態の第1の応用例のタッチパネルの製造方法においても、使用する露光マスクは、合計3枚となる。具体的には、第1層の透明導電膜層111及び金属層112をパターン化するための第1の露光マスク、第2層の透明導電膜層114及び金属層115をパターン化するための第2の露光マスク、図10(b)に示すように、第2層の保護膜122に開口部123~127を形成するための第3の露光マスクである。
 したがって、本実施形態の第1の応用例では、タッチパネルの第1層の保護膜と第2層の保護膜とを異なる材料で形成した場合でも、図6に示すタッチパネル200を、3枚のマスクを用いて、低コストで精度良く製造することができる。
 次に、本実施形態の第2の応用例のタッチパネルの製造方法について、図12及び図13を用いて説明する。なお、図12(a)、図12(b)、図13(a)及び図13(b)の各図が示しているD部、E部及びF部の各部分は、上記本実施形態のタッチパネルの製造方法や第1の応用例の製造方法を示した図7から図11と同様である。すなわち、D部、E部及びF部は、それぞれ、図6におけるD-D’矢視線の部分、E-E’矢視線の部分及びF-F’矢視線の部分を示している。
 本実施形態の第2の応用例のタッチパネルの製造方法は、透明基板101上に、第1層の透明導電膜層111及び金属層112の積層体が形成された後、例えばSiO2からなる第1層の保護膜113が形成される。そして、該保護膜113上に、第2層の透明導電膜層114及び金属層115の積層体が形成され、さらに透明有機樹脂製の第2層の保護膜122が形成される。
 続いて、第2層の保護膜122には、フォトリソグラフィ法によって、D部の第1層のタッチ電極102aとなる部分に開口部127を、フローティング電極103となる部分に開口部126を、それぞれ形成する。また、第2層のタッチ電極102bとなる部分に開口部125を、さらに、F部の第1層の接続端子105aとなる部分に開口部124を、第2層の接続端子105bとなる部分に開口部123を、それぞれ形成する。ここまでが、上述の第1の応用例と同じである。この状態、すなわち第1の応用例の図10(b)と同じ状態を、図12(a)に示す。
 次に、この第2の応用例の製造方法においても、透明有機樹脂である第2層の保護膜122に形成された開口124,126,127を用いて、フッ素系のガスを用いたドライエッチング(RIE法)によって第1層の保護膜113に開口部128~130を形成する。ここで、第2の応用例では、図12(b)に示すように、第1層の保護膜113に形成された開口部128~130の上部の開口面積が、第2層の保護膜122に形成された開口124,126,127の下部の開口面積よりも大きな面積を有するように、エッチング条件をコントロールする。この点が、図11(a)に示すように第1層の保護膜113に形成された開口部128,129,130が第2層の保護膜122に形成された開口部124,126,127と連続する形状で形成される、第1の応用例とは異なる。
 そして、第2の応用例では、開口部128~130が形成された第1層の保護膜113及び開口部123~127が形成された第2層の保護膜122をマスクとして、燐酸、酢酸及び硝酸の混酸液によって、MoNb層112c,115c、アルミ層112b,115b及びMoN層112a,115aを連続してエッチングする。この結果、図13(a)に示すように、金属層112,115が除去されるため、D部及びF部において、透明導電膜層111,114が露出する。
 次に、透明有機樹脂膜である第2の保護膜122に、硬化させる時の最適露光の7倍から8倍の露光量の紫外線を照射して、環境温度が200℃など、材料である透明有機樹脂膜に適したメルト条件でアニールする。その結果、タッチ電極102a、102b及びフローティング電極103の表面を露出させるD部の開口部133~135の壁面,及び、接続端子105a,105bの表面を露出させるF部の開口部131,132の壁面を、それぞれ、図13(b)に示すように、ガラス基板101側から連続する滑らかな面にすることができる。
 このように、第2の応用例におけるタッチパネル200の製造方法では、タッチ電極102a,102b、フローティング電極103、接続端子105a,105bを露出させるような開口部131~135を、連続して滑らかな壁面を有する断面形状に形成することができる。このため、タッチパネルの使用時に、第1層の保護膜113や第2層の保護膜122の段差部が引っかかり、第1層の保護膜113や第2層の保護膜122が破損してその破損部分がタッチパネルの表面の異物となることを防止できる。また、第1層の保護膜113や第2層の保護膜122とともに、パターン化されたタッチ電極102a,102bや、フローティング電極103,接続端子105a,105bが剥がれるといった不都合を防止できる信頼性の高いタッチパネルを得ることができる。
 なお、図13(b)に示すように第2の応用例のタッチパネルの製造方法で用いられたアニール工程は、第2層の保護膜122のメルト条件下で該保護膜122の断面形状を滑らかにするものであり、マスクによる新たな露光現像工程は必要としない。したがって、第2の応用例においても、図6に示すように2層に分離された電極パターンを有し、且つ、抵抗値の低い金属膜112,115が積層された引き出し配線104a,104bを有するタッチパネルを、合計3枚のマスクによって製造することができる。
 次に、本実施形態の第3の応用例にかかるタッチパネルの製造方法について、図14から図16を用いて説明する。図14から図16の各図において、D部、E部、F部は、それぞれ、図6におけるD-D’矢視線の部分、E-E’矢視線の部分及びF-F’矢視線の部分を示している。
 第3の応用例にかかるタッチパネルの製造方法では、まず、透明基板であるガラス基板101上の全面に、ITOなどの透明導電膜層111を形成した後、金属層112を形成するMoN層112a、アルミ層112b及びMoNb層112cを、スパッタ法によって順に積層する。そして、図示しないレジスト膜を形成して、通常のフォトリソグラフィ法によって所定のレジストパターンを形成した後、このレジストパターンをマスクとして、MoNb層112c、アルミ層112b、MoN層112a及び透明導電膜層111をエッチングする。この状態が図14(a)に示す状態であり、本実施形態の製造方法を説明した図7(a)と同じ状態である。
 次に、図14(b)に示すように、透明有機樹脂膜による第1層の保護膜136を、ガラス基板101の全面に形成する。そして、第1層の保護膜136に、通常のフォトリソグラフィ法によって、第1層のタッチ電極102a、フローティング電極103及び接続端子105aとなる部分に、それぞれ、開口部139,138,137を形成して、金属層112の最上層であるMoNb層112cを露出させる。このとき、図14(b)に示すように、E部に形成される第1層の引き出し配線104aとなる透明導電膜層111及び金属層112の積層体は、第1層の保護膜136によって覆われている。
 次に、第1層の保護膜136上に、ITOなどの透明導電膜層114を形成した後、金属層115を形成する第1層のMoN層115a、第2層のアルミ層115b及び第3層のMoNb層115cを、スパッタ法によって順に積層する。そして、レジスト膜を用いた通常のフォトリソグラフィ法によって、第1層と同様に、D部の第2層のタッチ電極102b、E部の第2層の引き出し配線104b及びF部の第2層の接続端子105bとなる部分に、透明導電膜層114及び金属層115の積層体を形成する。これにより、図15(a)に示す状態とする。
 次に、透明有機樹脂膜による第2層の保護膜140をガラス基板101の全面に亘って形成する。そして、フォトリソグラフィ法によって、図15(b)に示すように、D部における第1層のタッチ電極102a、フローティング電極103及び第2層のタッチ電極102bとなる部分にそれぞれ開口部145、144,143を形成する。また、F部における第1層の接続端子105a及び第2層の接続端子105bとなる部分に、それぞれ開口部142,141を形成する。
 このとき、第1層の保護膜136には、既に開口部137,138,139が形成されているため、図15(b)に示すように、第2層の保護膜140に形成された開口部145,144,142と第1層の保護層136に形成された開口部139,138,137とが繋がる。具体的には、第2層の保護層140に形成された開口部145と第1層の保護膜136に形成された開口部139とが繋がり,第2層の保護膜140に形成された開口部144と第1層の保護膜136に形成された開口部138とが繋がる。さらに、第2層の保護膜140に形成された開口部142と第1層の保護膜136に形成された開口部137とが繋がる。これにより、D部のタッチ電極102a、102b、フローティング電極103及びF部の接続端子105a、105bとなる部分にそれぞれ形成された、第1層の透明導電膜層111及び金属層112の積層体、または第2層の透明導電膜層114及び金属層115の積層体が露出することになる。
 その後、開口部141~145が形成された第2層の保護膜140及び開口部137~139が形成された第1層の保護層136をマスクとして用いてエッチングを行い、D部及びF部において、透明導電膜層111,114に積層された金属層112,115を除去する。金属層112,115を除去した状態を示した図が、図16(a)である。
 その後、透明有機樹脂膜の第1層の保護膜136及び第2層の保護膜140を溶かすのに適したメルト条件で、アニールを行う。これにより、タッチ電極102a,102b及びフローティング電極103の表面を露出させるD部の開口部148,150,149の壁面、及び、接続端子105a,105bの表面を露出させるF部の開口部146,147の壁面を、図16(b)に示すように、連続した滑らかな面にすることができる。
 図14から図16に示す第3の応用例の製造方法によれば、図6に示す2層に分離された電極パターンを有し、且つ、抵抗値の低い金属膜112,115が積層された引き出し配線104a,104bを有するタッチパネル200を得ることができる。
 このとき使用する露光マスクは、合計4枚である。具体的には、まず、図14(a)に示すように第1層に形成される透明導電膜層111及び金属層112をパターン化するための第1の露光マスクが必要である。また、図14(b)に示すように第1層の保護膜136に所定の開口部137,138,139を形成するための第2の露光マスクが必要である。さらに、図15(a)に示すように第2層に形成される透明導電膜層114及び金属層115をパターン化するための第3の露光マスクが必要である。そして、図15(b)に示すように第2層の保護膜140の所定の位置に、開口部141,142,143,144,145を形成するための第4の露光マスクが必要である。
 このように、タッチ電極を微細化して電極数(チャネル数)を増やし、タッチパネルのタッチ感度を上げるために、第1層の絶縁膜136と第2層の絶縁膜140とを別々のマスクで露光してパターンニングする必要がある。そのため、必要となる露光マスクの枚数は、合計4枚となり、上述の本実施形態にかかるタッチパネルの製造方法に比べて1枚多くなってしまう。しかし、この第3の応用例によれば、第1層の保護膜136及び第2層の保護膜140にアクリル樹脂である透明有機樹脂を用いるとともに2層構造の電極パターンを有するタッチパネルを、図34及び図35で示した従来の製造方法で必要なマスク枚数(5枚)よりも少ないマスク枚数で製造することができる。
 次に、図17及び図18を用いて、本実施形態の第4の応用例にかかるタッチパネルの製造方法について説明する。なお、図17及び図18におけるD部、E部、F部の各部分は、それぞれ、図6におけるD-D’矢視線の部分、E-E’矢視線の部分及びF-F’矢視線の部分を示している。
 第4の応用例にかかる製造方法は、第1層の透明導電膜層111及び金属層112の積層体をパターン化した後、例えばSiO2からなる第1層の保護膜を形成し、第2層の透明導電膜層114及び金属層115の積層体をパターン化するまでの工程は、上述の第1の応用例と同じであるため図示を省略する。第2層の透明導電膜層114及び金属層115の積層体がパターン化された状態を図17(a)に示す。
 続いて、第1層の保護膜113上に、透明有機樹脂からなる第2層の保護膜151を形成する。ここで、図10及び図11に示した第1の応用例では、第2層の保護膜122のD部のタッチ電極102a,102b、フローティング電極103及びF部の接続端子105a,105bとなる部分に、それぞれ、開口部127,125,126,124,123を形成した。しかし、この第4の応用例では、図17(b)に示すように、D部には、タッチ電極102a,102b及びフローティング電極103が形成されるタッチ位置の検出領域全体を露出させるように開口部154が形成されている。また、F部の接続端子105a,105bとなる部分に形成された開口部153,152は、その開口面積が、接続端子105a,105bとなる透明電極111,114及び金属層112,115の積層体の面積よりも大きく形成されている。以上の点で、この第4の応用例は、第1の追応用例とは異なっている。
 続いて、フッ素系のガスを用いたドライエッチング(RIE法)により、第2層の保護膜151をマスクとして、SiO2の第1層の保護膜113をエッチングする。このとき、エッチング条件を制御して、図18(a)に示すように、第2層のタッチ電極102b及び第2層の接続端子105bとなる部分において、透明導電膜層114及び金属層115の積層体の下に形成されている第1層の保護膜113がエッチングされないようにする。
 そして、図18(a)に示すように、いずれも第1層として形成される、タッチ電極102a、フローティング電極103及び接続端子105aとなる部分において、透明導電膜層111及び金属層112の積層体の上面及び側面を露出させる。
 次に、燐酸、酢酸及び硝酸の混酸液によって、MoNb層112c,115c、アルミ層112b,115b及びMoN層112a,115aを連続してエッチングする。この結果、タッチ位置の検出領域であるD部、及び、接続端子105a,105bが形成される領域であるF部では、金属層112,115が除去されて、透明導電膜層111,114が露出する。このとき、第2層のタッチ電極102b及び接続端子105bは、下方に残存した第1層の保護層113上に位置する。
 第4の応用例においても、使用する露光マスクは、合計3枚となる。具体的には、第2層に形成される透明導電膜層111及び金属層112をパターン化するための第1の露光マスクが必要である。また、第1層に形成される透明導電膜層114及び金属層115をパターン化するための第2の露光マスクが必要である。さらに、図17(b)に示すように、保護膜151の所定の位置に開口152,153,154を形成するための第3の露光マスクが必要である。
 したがって、第4の応用例によって、タッチパネル表面の保護膜に透明なアクリル樹脂などの透明有機樹脂を用いるとともに、図6に示す電極パターン形状を有し、タッチ位置検出領域の全体を露出させたタッチパネル200を、3枚のマスクを用いて低コストで精度良く製造できる。
 以上、本実施形態にかかるタッチパネルの製造方法及びその応用例について説明した。これらのタッチパネルの製造方法によって、上下2層にタッチ電極や引き出し配線、接続端子が形成されたタッチ電極パターンを有するタッチパネルを、従来の製造方法よりも少ない枚数の露光マスクによって製造することができる。これにより、タッチパネルの製造コストを低減できるとともに、マスクの位置合わせ回数を低減することができる。したがって、上述の各製造方法を用いることによって、タッチパネルの製造時に誤差が発生しにくい。
 なお、上述の実施形態におけるタッチパネルの製造方法において例示した各層の膜厚は、基本的に第1の実施形態として示したものと同じである。
 例えば、ガラス基板1の厚さが0.7mmであり、第1層の透明導電膜層111及び第2層の透明導電膜層114の厚さが70nmである。また、例えば、第1層の金属層112及び第2層の金属層115を形成するMoN層112a,115aが50nmであり、アルミ層112b,115bが150nmである。さらに、例えば、MoNb層112c,115cが100nmであり、第1層の保護膜113,136及び第2層の保護膜122,140,151が3μmである。
 また、透明導電膜層や保護膜の形成材料、及び、レジスト膜やエッチング液などとして用いることができる材料なども、第1の実施形態において説明した各種材料を用いることができる。
 (第3の実施の形態)
 次に、タッチパネルの製造方法の第3の実施形態について説明する。この実施形態は、タッチ電極及び接続端子が同じ1層に形成されているが、引き出し配線の少なくとも一部分が、タッチ電極や接続端子が形成された層とは異なる層でつなぎ直された、いわゆる繋ぎ替え配線を有するタッチパネルの製造方法に関する。
 図19は、本実施形態のタッチパネルの製造方法で製造されるタッチパネル300の電極パターンを示す平面図である。
 タッチパネル300は、絶縁性の透明基板であるガラス基板201上に、ITOからなる透明導電膜層が平面的なパターンとして形成されたタッチ電極202を有している。本実施形態のタッチパネル300では、タッチ電極202と接続端子205とを接続する引き出し配線204が、タッチ電極202や接続端子205が形成された層において途切れている。そして、引き出し配線204は、異なる層に形成された繋ぎ替え配線207によって、平面的には十字状になる立体交差部分を有している。
 図19では、必要以上に図面が煩雑になることを防ぐために、タッチ電極202、引き出し配線204及び接続端子205の形状、基本的な配置パターンは、引き出し配線4がタッチ電極2と同じ層に形成された図1に示す第1の実施形態の電極パターンと同様としている。しかしながら、電極パターンが細かくなった場合や、タッチ位置検出領域の周辺の領域が狭く、一つの平面だけでは引き出し配線204の引き回しが困難な場合には、図19に示すように引き出し配線204を立体交差させるための繋ぎ替え配線207を備えた継ぎ換え部が形成されることがある。
 なお、図19に電極パターンを示すタッチパネル300において、タッチ電極202自体の配列や形状、タッチ電極202同士の間にフローティング電極203が配置されている点などは、図1に示すタッチパネル100と同様であるため、詳細な説明は省略する。
 図20は、図19に示すタッチパネル300の製造方法の製造工程の一例を示す断面図である。
 なお、図20(a)、図20(b)及び図20(c)には、それぞれ、4つの図が示されている。左端の図が、電極パターンを示した図19におけるG-G’矢視線部分、すなわち、タッチ電極202、フローティング電極203及び2本の引き出し配線204が形成された部分の断面構成を示している。以下の説明において、図19におけるG-G’矢視線の部分をG部と称する。
 また、図20(a)、図20(b)及び図20(c)において、左から2番目の図が、図19におけるH-H’矢視線部分、すなわち、接続端子205が形成された部分の断面構成を示している。以下の説明において、図19におけるH-H’矢視線の部分をH部と称する。
 さらに、図20(a)、図20(b)及び図20(c)において、左から3番目の図が、電極パターンを示した図19におけるI-I’矢視線部分、すなわち、引き出し配線204と繋ぎ替え配線207との接続部分の断面構成を示している。以下の説明において、図19におけるI-I’矢視線の部分をI部と称する。
 そして、図20(a)、図20(b)及び図20(c)において、右端の図が、電極パターンを示した図19におけるJ-J’矢視線部分、すなわち、タッチ電極202と引き出し配線204との接続部分の断面構成を示している。以下の説明において、図19におけるJ-J’矢視線の部分をJ部と称する。
 本実施形態のタッチパネル300の製造方法では、透明基板であるガラス基板201上の全面に、ITOなどの透明導電膜層211を形成した後、金属層212を構成するMoN層212a、アルミ層212b及びMoN層212cを、スパッタ法によって順に積層する。
 その後、金属層212の最上層であるMoN層212cの上に、保護膜となるレジスト膜213を形成する。このレジスト膜213に、通常のフォトリソグラフィ法によって、図20(b)に示すように、タッチ電極202及びフローティング電極203を含むタッチ位置の検出領域に対応して、開口部216を形成する。また、レジスト膜213において、フォトリソグラフィ法によって、接続端子205が形成される部分に開口部215を、及び、引き出し配線204と繋ぎ替え配線207との接続部となる部分に開口部214をそれぞれ形成する。
 次に、繋ぎ替え配線となるMoなどの導電膜217をスパッタ法などによって成膜し、該導電膜217にレジスト膜218を重ねて形成した後、継ぎ換え配線207となる部分にレジスト膜218を残存させる。
 その後、レジスト膜213,218をマスクとして、導電膜217と、タッチ電極202、フローティング電極203及び接続端子205の形成部分の金属層212(MoN層212c、アルミ層212b及びMoN層212a)とを、燐酸、酢酸及び硝酸の混酸液によってエッチングする。なお、繋ぎ替え配線207上のレジスト膜218は、繋ぎ替え配線207の保護膜とするために残存させる。こうすることで、図20(c)の状態となる。
 本実施形態のタッチパネルの製造方法では、透明導電膜層211及び低抵抗の金属層212が積層されてなる引き出し配線204と、該引き出し配線204を立体交差させる繋ぎ替え配線207とを備えたタッチパネル300を、合計3枚のマスクによって製造できる。具体的には、タッチパネル300の製造には、透明導電膜211及び金属層212の積層体をパターンニングするための第1の露光マスクが必要である。また、レジスト膜213に開口部214,215,216を形成するための第2の露光マスク、及び、繋ぎ替え配線207を形成するために必要なレジスト膜218をパターンニングするための第3の露光マスクが必要である。
 このため、繋ぎ替え配線207を備えていて、引き出し配線204の配置の設計自由度が高いタッチパネル300を、少ない数の露光マスクで製造することができる。これにより、タッチパネルの製造コストの削減することができるとともに、マスクの位置あわせ回数の低減による製造精度の向上を図れる。
 次に、本実施形態の応用例にかかるタッチパネルの製造方法について説明する。
 図21は、本実施形態のタッチパネルの製造方法の応用例を示す断面図である。なお、図21(a)及び図21(b)における4つの図は、図20と同様、左端の図が図19におけるG-G’矢視線部分であるG部を、左から2番目の図が図19におけるH-H’矢視線部分であるH部を、それぞれ示している。また、図21(a)及び図21(b)において、左から3番目の図が図19におけるI-I’矢視線部分であるI部を、右端の図が図19におけるJ-J’矢視線部分であるJ部を、それぞれ示している。
 本実施形態の応用例にかかるタッチパネルの製造方法では、透明基板であるガラス基板201上の全面に、ITOなどの透明導電膜層211を形成した後、MoN層212a、アルミ層212b及びMoN層212cからなる金属層212を積層してパターン化する。その後、フォトリソグラフィ法によって、レジスト膜213に3つの開口214,215,216を形成する。以上の点までは、図20を用いて説明したタッチパネルの製造方法と同じである。
 その後、本応用例では、レジスト膜213を、たとえば温度220℃で50分のアニール処理をする。
 次に、繋ぎ替え配線となるMoなどの導電膜217をスパッタ法などによって成膜し、該導電膜217にレジスト膜218を重ねて形成した後、継ぎ換え配線207となる部分にレジスト膜218を残存させる。その後、レジスト膜213,218をマスクとして、燐酸、酢酸及び硝酸の混酸液によって、導電膜217と、タッチ電極202、フローティング電極203及び接続端子205の形成部分の金属層212(MoN層212c、アルミ層212b及びMoN層212a)とをエッチングする。エッチングされた後の状態を図21(a)に示す。
 この図21(a)に示す構成は、図20(c)の構成と外形的には同じであるが、形成されたレジスト膜213がアニールされている点で、図20(c)の構成とは異なる。
 続いて、剥離液にて繋ぎ替え配線207上のレジスト膜218を剥離する。このとき、アニールされたレジスト膜213は、硬化しているため剥離されない。
 最後に、表面保護膜であるレジスト膜219を塗布形成した後、G部のタッチ電極202及びフローティング電極203の形成部分以外の部分、及び、H部の接続端子205形成部分以外の部分に、それぞれ、レジスト膜219を残存させる。
 したがって、上述の応用例の製造方法によって、タッチ電極202とフローティング電極203とが形成されたタッチ位置検出領域及び接続端子205を除いた部分が同じ厚さの表面保護膜によって覆われたタッチパネル300を、合計4枚のマスクによって製造できる。具体的には、上述の応用列の製造方法では、透明導電膜層及び金属層の積層体をパターンニングするための第1のマスク、レジスト膜213に開口214,215,216を形成するための第2のマスクが必要である。また、継ぎ換え配線217を形成するために必要なレジスト膜218をパターンニングするための第3のマスク、タッチパネルの表面を覆う表面保護層となるレジスト膜219をパターンニングするための第4のマスクが必要である。
 特に、本応用例によれば、図21(b)のJ部に示すように、タッチ電極202と引き出し配線204との接続部分では、引き出し配線204において、透明導電膜211に積層された金属層212の側部端面を、表面保護膜であるレジスト膜219によって覆うことができる。これにより、金属層212が空気に触れて酸化するなどの不都合を回避することができる。
 次に、本実施形態の第1の変形例のタッチパネルの製造方法を説明する。この変形例では、タッチパネルは、引き出し配線が、繋ぎ替え配線として、タッチ電極や接続端子とは異なる層に形成された電極パターンを有する。
 図22は、第1の変形例のタッチパネルの製造方法によって製造されるタッチパネル400の電極パターンを示す平面図である。
 タッチパネル400は、絶縁性の透明基板であるガラス基板301上に、ITOによって構成された透明導電膜層が平面的なパターンとして形成されたタッチ電極302を有する。また、タッチパネル400では、タッチ電極302で検出したタッチ位置信号をタッチパネル400の外部へ出力するための接続端子305が、ガラス基板301上に形成されている。これらのタッチ電極302と接続端子305とを接続する引き出し配線304は、タッチ電極302や接続端子305とは異なる層に、繋ぎ替え配線として形成されている。すなわち、タッチパネル400では、異なる層に形成されたタッチ電極302と引き出し配線304とが接続部分308に設けられた貫通孔で電気的に接続されている。また、タッチパネル400では、異なる層に形成された接続端子305と引き出し配線304とが、接続部分307に設けられた貫通孔で電気的に接続されている。また、タッチパネル400では、引き出し配線同士が立体交差するように、引き出し配線304と、タッチ電極302や接続端子305と同じ層に形成された引き出し配線交差部310とが接続部分309に設けられた貫通孔で接続されている。
 なお、図22において、タッチ電極302の配列パターンや、タッチ電極302同士の間にフローティング電極303が配置されている点などは、図1に示したタッチパネル100と同様であるため、詳細な説明は省略する。
 図23は、図22に示すタッチパネル400の製造方法の製造工程の一例を示す断面図である。
 なお、図23(a)、図23(b)及び図23(c)において、それぞれ、3つの図が示されているが、左側の図が、電極パターンを示した図22におけるK-K’矢視線部分、すなわち、タッチ電極302、フローティング電極303、接続端子305、及び、引き出し配線304と接続端子305との接続部分307が形成された部分の断面を示している。以下の説明において、図22におけるK-K’矢視線の部分をK部と称する。
 また、図23(a)、図23(b)及び図23(c)において、中央の図が、図22におけるL-L’矢視線部分、すなわち、タッチ電極302と引き出し配線304との接続部分308が形成された部分の断面を示している。以下の説明において、図22におけるL-L’矢視線の部分をL部と称する。
 さらに、図23(a)、図23(b)及び図23(c)において、右側の図が、図22におけるM-M’矢視線部分、すなわち、引き出し配線304と、該引き出し配線304に対して立体交差する引き出し配線交差部310部分との接続部分309の周辺の断面を示している。以下の説明において、図22におけるM-M’矢視線の部分をM部と称する。
 本実施形態の第1の変形例のタッチパネル400の製造方法では、透明基板であるガラス基板301上の全面に、ITOなどの透明導電膜層311と、金属層としてのMo層312とをスパッタ法によって順に積層する。そして、図23(a)に示すように、透明導電膜層311及び金属層312の積層体を、タッチ電極302及びフローティング電極303が形成されるタッチ位置の検出領域、接続端子305が形成される部分、及び、繋ぎ替え配線である引き出し電極304とタッチ電極302との接続部分308にパターン形成する。また,透明導電膜層311及び金属層312の積層体は、引き出し電極304と接続端子305との接続部分307,引き出し配線交差部310部分、及び、引き出し電極304と引き出し配線交差部310部分との接続部分309にもパターン形成される。
 その後、Mo層312の上に保護膜であるレジスト膜313を形成する。このレジスト膜313において、通常のフォトリソグラフィ法によって、図23(b)に示すように、タッチ電極302及びフローティング電極303が形成されるK部の図中右側部分及びL部の図中右側部分に、開口部316を形成する。また、レジスト膜313において、接続端子305が形成されるK部の図中左端部分に開口部319を形成するとともに、引き出し配線304と接続端子305との接続部分307が形成されるK部の図中中央部分に開口部318を形成する。さらに、レジスト膜313において、タッチ電極302と引き出し配線304との接続部分308が形成されるL部の図中左側に開口部317を形成するとともに、引き出し配線304と引き出し配線交差部310との接続部分309が設けられるM部に、2つの開口部314,315を形成する。
 次に、繋ぎ替え配線である引き出し配線304を形成する金属層として、例えばアルミ層320及びMoN層321を、スパッタ法を用いて積層形成する。そして、引き出し配線304、接続部分307、接続部分308及び接続部分309となる部分に、それぞれ、レジスト膜322を残存させる。
 その後、このレジストパターンをマスクとして、燐酸、酢酸及び硝酸の混酸液によって、MoN層321、アルミ層320、及び、透明導電膜層311上に積層された金属層としてのMo層312をエッチングする。これにより、タッチ電極302、フローティング電極303及び接続端子305を構成する透明導電膜層311を露出させる。また、図23(c)のL部に示すように、引き出し配線304と引き出し配線交差部310との立体交差部分では、互いに接触して導通しないように、レジスト膜322に形成された隙間部323によって、引き出し配線304と接続部分309との間に所定の間隔を確保する。
 このとき、引き出し配線304及び接続部分307,308,309上に残存するレジスト膜322は、引き出し配線304及び接続部分307,308,309の表面を覆う酸化保護膜として機能するため、除去せずに残しておく。
 第1の変形例の製造方法では、タッチ電極302及び接続端子305とは異なる層に繋ぎ替え配線として形成され、且つ、低抵抗を実現可能な金属層からなる引き出し配線304を備えたタッチパネル400を、合計3枚のマスクによって製造することができる。具体的には、タッチパネル400を製造する際には、透明導電膜層311及び金属層312をパターンニングするための第1の露光マスクが必要である。また、レジスト膜313に開口314,315,316、317,318,319を形成するための第2の露光マスクが必要である。さらに、継ぎ換え配線である引き出し配線304を形成するために必要なレジスト膜322をパターンニングするための第3の露光マスクが必要である。
 これにより、低抵抗の引き出し配線304を備えたタッチパネル400を、少ない数のマスクによって製造することができる。したがって、マスク製造のコストを削減できるとともに、マスク位置あわせ回数の低減によって製造精度の向上を図れる。
 次に、第1の変形例の製造方法の応用例について説明する。
 図24は、第1の変形例の製造方法の応用例を示す断面図である。なお、図24(a)及び図24(b)における3つの図は、図23と同様、左側の図が図22におけるK-K’矢視線部分であるK部を、中央の図が図22におけるL-L’矢視線部分であるL部を、右側の図が図22におけるM-M’矢視線部分であるM部をそれぞれ示している。
 第1の変形例の製造方法の応用例では、透明基板であるガラス基板301上の全面に、ITOなどの透明導電膜層311と、金属層としてのMo層312とをスパッタ法によって順に積層した後、パターン化する。そして、全面に形成したレジスト膜313に、フォトリソグラフィ法によって、開口314,315,316、317,318、319を形成する。ここまでは、図23を用いて説明した第1の変形例の製造方法と同じである。
 その後、本応用例では、レジスト膜313を、たとえば温度220℃で50分のアニール処理を行って硬化させる。
 次に、繋ぎ替え配線である引き出し配線304を形成する金属層として、アルミ層320及びMoN層321を積層形成した後、これらのアルミ層320及びMoN層321を、パターン化されたレジスト膜322を用いてエッチングする。このエッチングした状態を図24(a)に示す。この図24(a)の構成は、図23(c)構成と外形的には同じであるが、形成されているレジスト膜313がアニールされたものである点で、図23(c)の構成とは異なる。
 続いて、剥離液によって、引き出し配線304及び接続部分307,308,309上のレジスト膜322を剥離する。このとき、アニールされたレジスト膜313は、硬化しているため、剥離されない。
 最後に、表面保護膜であるレジスト膜324を塗布した後、K部及びL部におけるタッチ電極302及びフローティング電極303の形成部分以外の部分、及び、K部の接続端子305形成部分以外の部分に、レジスト膜324を残存させる。
 これにより、第1の変形例の応用例では、タッチ位置検出領域及び接続端子305が形成される部分以外が同じ厚さの表面保護膜であるレジスト膜324によって覆われたタッチパネル400を、合計4枚のマスクによって製造することができる。具体的には、透明導電膜311及び金属層312の積層体をパターンニングするための第1の露光マスク、レジスト膜313に開口314,315,316,317,318,319を形成するための第2の露光マスクが必要である。また、継ぎ換え配線である引き出し配線304及び接続部分307,308,309を形成するために必要なレジスト膜322をパターンニングするための第3の露光マスク、タッチパネルの表面を覆う表面保護層となるレジスト膜324をパターンニングするための第4の露光マスクが必要である。
 特に、本応用例によれば、図24(b)のK部の左側に示す接続端子305と引き出し配線304との接続部分307において、金属層312及び繋ぎ替え配線を形成する金属層320,321の側部端面を、表面保護膜であるレジスト膜324によって覆うことができる。同様に、L部の右側に示すタッチ電極302と引き出し配線304との接続部分308や,M部に示す引き出し配線304と引き出し配線交差部310との接続部分309においても、金属層312,320,321の側部端面をレジスト膜324によって覆うことができる。これにより、金属層312,320,321が、空気に触れて酸化するなどの不都合を回避することができる。
 次に、本実施形態の第2の変形例のタッチパネルの製造方法を説明する。この第2の変形例では、タッチパネルは、引き出し配線が、繋ぎ替え配線によって立体交差していて、引き出し配線の側面がエッチングされない構造である。
 図25は、第2の変形例の製造方法で製造されるタッチパネル500の電極パターンを示す平面図である。
 タッチパネル500は、絶縁性の透明基板であるガラス基板401上に、ITOによって構成された透明導電膜層が平面的なパターンとして形成されたタッチ電極402を有する。また、タッチパネル500には、タッチ電極402で検出されたタッチ位置信号をタッチパネル500の外部へ出力するための接続端子405が、ガラス基板401上の端部に形成されている。これらのタッチ電極402と接続端子405とを接続する引き出し配線404は、タッチパネル500の周辺部領域に形成されている。また、引き出し配線404は、その一部で、他の部分の引き出し配線404とは異なる層に形成された繋ぎ替え配線407と立体交差している。引き出し配線404と繋ぎ替え配線407とは、他の部分の引き出し配線404と繋ぎ替え配線407とを隔てる絶縁層となる保護膜に形成された貫通孔内の接続部分によって電気的に接続されている。
 なお、図25では、タッチパネル500において、タッチ電極402自体の配列パターンや、タッチ電極402同士の間にフローティング電極403が配置されている点などは、図19に示すタッチパネル300と同様であるため、詳細な説明は省略する。
 図26は、図25に示すタッチパネル500の製造方法の製造工程の一例を示す断面図である。
 なお、図26(a)、図26(b)及び図26(c)において、それぞれ、3つの図が示されているが、左側の図が、電極パターンを示した図25におけるO-O’矢視線部分、すなわち、タッチ電極402、フローティング電極403、引き出し配線404、及び、引き出し配線404と接続端子405との接続部分の断面構成を示している。以下の説明において、図25におけるO-O’矢視線の部分をO部と称する。
 また、図26(a)、図26(b)及び図26(c)において、中央の図が、電極パターンを示した図25におけるP-P’矢視線部分、すなわち、タッチ電極402と引き出し配線404との接続部分が形成された部分の断面構成を示している。以下の説明において、図25におけるP-P’矢視線の部分をP部と称する。
 さらに、図26(a)、図26(b)及び図26(c)において、右側の図が、電極パターンを示した図25におけるQ-Q’矢視線部分、すなわち、引き出し配線404同士が、繋ぎ替え配線407を介して立体的に交差している部分の断面構成を示している。以下の説明において、図25におけるQ-Q’矢視線の部分をQ部と称する。
 第2の変形例のタッチパネル500の製造方法では、透明基板であるガラス基板401上の全面に、ITOなどの透明導電膜層411と、MoN層412a、アルミ層412b及びMoN層412cからなる金属層412とをスパッタリング法などによって、順次積層して形成する。
 続いて、金属層412の最上層であるMoN層412cを覆うように、図示しないレジスト膜を形成し、所定のフォトリソグラフィ法によって、タッチ電極402やフローティング電極403,引き出し配線404、接続端子405などのパターンを形成する。その後、レジスト膜をマスクとして、燐酸、酢酸及び硝酸の混酸液によって透明導電膜層411及び金属層412の積層体を、図26(a)に示す所定の形状にパターニングする。
 その後、MoN層412c上に保護膜であるレジスト膜413を形成する。このレジスト膜413には、通常のフォトリソグラフィ法によって、図26(b)に示すように、タッチ電極402及びフローティング電極403が形成されるO部の図中右側部分及びP部の図中右側部分に、開口部416を形成する。また、レジスト膜413には、フォトリソグラフィ法によって、接続端子が形成されるO部の図中左端部分に開口部417を、引き出し配線404と繋ぎ替え配線407との接続部分であるQ部に開口部414を、それぞれ形成する。
 このとき、この第2の変形例にかかるタッチパネル500の製造方法では、図26(b)に示すように、引き出し配線404となる透明導電膜層411及び金属層412の積層体の側面が露出しないように、Q部に示す繋ぎ替え配線の形成部分に形成される開口部414,415の大きさは、透明導電膜層411及び金属層412の積層体の面積よりも小さい。
 次に、繋ぎ替え配線407を形成する金属層として、例えばMo層などの金属層418を、スパッタ法を用いて形成する。そして、繋ぎ替え配線407となる部分にレジスト膜419を残存させた後、パターン化されたレジスト膜413,419をマスクとして、燐酸、酢酸及び硝酸の混酸液によって繋ぎ替え配線407となるMoN層418をパターン化する。同時に、タッチ電極402、フローティング電極403及び接続端子405となる部分の透明導電膜層411上に残存している金属層412をエッチングして、タッチ電極402、フローティング電極403及び接続端子405を形成する透明導電膜層411を露出させる。
 この時、繋ぎ替え配線407上に残存するパターン化されたレジスト膜419は、繋ぎ替え配線407の表面を覆う保護膜として機能するため、除去せずに残しておく。これにより、図26(c)のような構成が得られる。
 第2の変形例の製造方法では、上記のように、繋ぎ替え配線407を形成する際に、引き出し配線404の側面が露出しないようになっている。このため、開口部415,414を形成するエッチングの際に、引き出し配線404を形成するアルミ層412bが浸食されることを防止することができる。これにより、抵抗値が低いアルミ層412bがエッチング時に浸食されて、抵抗値が高くなってしまうことを防止することができる。
 上記説明した第2の変形例の製造方法では、低抵抗の金属層412を重ねて形成された引き出し配線404と、該引き出し配線404を立体的に交差させるための繋ぎ替え配線407とを備えたタッチパネル500を、合計3枚のマスクによって製造することができる。具体的には、上述のタッチパネル500の製造方法では、透明導電膜層411及び金属層412をパターンニングするための第1の露光マスクが必要である。また、レジスト膜413に開口414,415,416,417を形成するための第2の露光マスクが必要である。さらに、継ぎ換え配線407を形成するためのレジスト膜419をパターンニングするとともに、タッチ電極402などの透明導電膜層411上に残存する金属層412を除去するための第3の露光マスクが必要である。
 これにより、低抵抗の引き出し配線404を備えたタッチパネル500を、少ない数のマスクによって製造することができる。したがって、マスク製造のコストを削減できるとともに、マスクの位置あわせ回数の低減による製造精度の向上を図れる。
 なお、上記本実施形態の第2の変形例にかかる製造方法では、繋ぎ替え電極407を、Mo層を用いて形成した。しかしながら、繋ぎ替え配線を形成するためのエッチング工程において、該繋ぎ替え配線は透明絶縁膜411上に残っている金属層412と同時にエッチングされるため、繋ぎ替え配線の構成を金属層412と同じ構成、すなわち、MoN層、アルミ層及びMoN層の3層構成としてもよい。
 次に、第2の変形例の製造方法の応用例について説明する。
 図27は、第2の変形例の製造方法の応用例を示す断面図である。なお、図27(a)及び図27(b)における3つの図は、図26と同様、左側の図が図25におけるO-O’矢視線部分であるO部を、中央の図が図25におけるP-P’矢視線部分であるP部を、右側の図が図25におけるQ-Q’矢視線部分であるQ部をそれぞれ示している。
 第2の変形例の製造方法の応用例では、透明基板であるガラス基板401上の全面に、ITOなどの透明導電膜層411と、MoN層412a、アルミ層412b、MoN層412cの3層構成の金属層412とを順次積層した後、所定の平面形状にパターン化する。そして、全面に形成した保護膜であるレジスト膜413に、フォトリソグラフィ法によって、4つの開口414,415,416、417を形成する。ここまでは、図26を用いて説明した第2の変形例の製造方法と同じである。
 その後、本応用例では、レジスト膜413を、たとえば温度220℃で50分のアニール処理を行って硬化させる。
 次に、繋ぎ替え配線407を形成する金属層として、Mo層418を形成した後、パターン化されたレジスト膜419を用いてエッチングを行う。このとき、同時に、タッチ電極402、フローティング電極403及び接続端子405を構成する透明導電膜層411上の金属層412をエッチングして除去する。これによって得られる構成を図27(a)に示す。この図27(a)の構成は、図26(c)の構成と外形的には同じであるが、形成されているレジスト膜413がアニールされたものである点で、図26(c)の構成とは異なる。
 続いて、剥離液によって繋ぎ替え配線407上のレジスト膜419を剥離する。このとき、アニールされたレジスト膜413は、硬化しているため剥離されない。
 最後に、表面保護膜であるレジスト膜420を塗布形成した後、O部及びP部のタッチ電極402及びフローティング電極403の形成部分以外、及び、O部の接続端子405形成部分以外の部分に、レジスト膜420を残存させる。
 これにより、第2の変形例の応用例では、タッチ位置検出領域及び接続端子405の形成部分以外が同じ厚さの保護膜420で覆われたタッチパネル500を、合計4枚のマスクによって製造することができる。具体的には、上述の製造方法では、透明導電膜層411及び金属層412の積層体をパターンニングするための第1の露光マスク、レジスト層413に開口414,415,416、417を形成するための第2の露光マスクが必要である。また、繋ぎ替え配線407を形成するためのレジスト膜419をパターンニングし、透明導電膜層411を露出させるための第3の露光マスク、タッチパネルの表面を覆う保護層となるレジスト膜420をパターンニングするための第4の露光マスクが必要である。
 特に、本応用例によれば、図27(b)のO部の左側やP部の右側に示すように、接続端子405と引き出し電極404との接続部分、及び、タッチ電極402と引き出し配線404との接続部分で、金属層412の側部端面を保護膜であるレジスト膜420によって覆うことができる。これにより、金属層412が空気に触れて酸化するなどの不都合を回避することができる。
 なお、上記本実施形態のタッチパネルの製造方法において例示した各層の膜厚は、基本的に第1の実施形態として示したものと同じであるため、詳細な説明を省略する。
 第1の実施形態では示されなかった部材の各膜厚は、例えば以下のとおりである。繋ぎ替え配線207,407及び引き出し配線304を形成するMo膜の膜厚は、例えば100nmであり、繋ぎ替え配線207及び引き出し配線304,407上に形成される保護膜として残存させるレジスト膜218,322、419の膜厚は、例えば1.6nmである。また、応用例として説明した、タッチパネル全面を覆う表面保護膜としてのレジスト膜219,324,420の膜厚としては、例えば1.6nmである。
 (他の形態について)
 以上、本発明の第3の実施形態として、引き出し配線の少なくとも一部が他の層に形成される繋ぎ替え配線を有するタッチパネルの製造方法について、変形例や応用例を、図面を用いて説明した。
 ここで、本発明の実施形態ではないが、第3の実施形態として説明してきた繋ぎ替え配線を有するタッチパネルの製造方法について、露光マスクの数を低減して製造することができる他の形態にも言及しておく。
 他の形態として説明するタッチパネルの製造方法は、引き出し配線が繋ぎ替え配線で立体交差するタッチパネルの製造方法であって、繋ぎ替え配線が金属膜ではなく、ITOなどの透明導電膜によって構成されているタッチパネルの製造方法である。
 図28は、他の形態のタッチパネルの製造方法によって製造されるタッチパネル600の電極パターンを示す平面図である。
 タッチパネル600は、絶縁性の透明基板であるガラス基板501上に、ITOによって形成された透明導電膜が平面的なパターンとして形成されたタッチ電極502を有する。また、タッチパネル600では、タッチ電極502で検出されたタッチ位置信号をタッチパネル600の外部へ出力するための接続端子505が、ガラス基板501上の端部に形成されている。これらのタッチ電極502と接続端子505とを接続する引き出し配線504は、タッチパネル600の周辺部領域に形成されている。引き出し配線504は、一部で、他の部分の引き出し配線504とは異なる層に形成された透明導電膜からなる繋ぎ替え配線508によって立体交差している。引き出し配線504と繋ぎ替え配線508とは、他の部分の引き出し配線504と繋ぎ替え配線508とを隔てる保護膜に形成された貫通孔内の接続部分によって電気的に接続されている。
 また、この実施形態で示すタッチパネル600は、タッチ電極502とタッチ電極間に配置されるフローティング電極503とが、ガラス基板501上に直接形成されているのではなく、繋ぎ替え配線508と同じ層に形成されている。このため、タッチ電極502と引き出し配線504とは、保護膜を貫通する接続部分507によって電気的に導通している。
 なお、図28に示すタッチパネル600において、タッチ電極502自体の配列パターンや、タッチ電極502同士の間にフローティング電極503が配置されている点などは、図19に示すタッチパネル300と同様であるため、詳細な説明は省略する。
 図29は、図28に示すタッチパネル600の製造方法の製造工程の一例を示す断面図である。
 なお、図29(a)、図29(b)及び図29(c)において、それぞれ、4つの図が示されているが、左端の図が、電極パターンを示した図28におけるR-R’矢視線部分、すなわち、タッチ電極502、フローティング電極503及び引き出し配線504が形成された部分の断面構成を示している。以下の説明において、図28におけるR-R’矢視線の部分をR部と称する。
 また、図29(a)、図29(b)及び図29(c)において、左から2番目の図が、図28におけるS-S’矢視線部分、すなわち、接続端子505が形成されている部分の断面構成を示している。以下の説明において、図28におけるS-S’矢視線の部分をS部と称する。
 さらに図29(a)、図29(b)及び図29(c)において、左から3番目の図が、図28におけるT-T’矢視線の部分を、すなわち、タッチ電極502と引き出し配線504との接続部分の断面構成を示している。以下の説明において、図28におけるT-T’矢視線の部分をT部と称する。
 そして、図29(a)、図29(b)及び図29(c)において、右端側の図が、図28におけるU-U’矢視線部分、すなわち、引き出し配線504同士が、繋ぎ替え配線を介して立体的に交差している部分の断面構成を示している。以下の説明において、図28におけるU-U’矢視線の部分をU部と称する。
 他の形態であるタッチパネル600の製造方法では、まず、透明基板であるガラス基板501上の全面に、金属層として、アルミ膜511及びMoN膜512をスパッタリング法などによって積層して形成する。
 続いて、MoN膜512を覆うように図示しないレジスト膜を形成し、通常のフォトリソグラフィ法によって、R部、T部及びU部の引き出し配線504となる部分、U部の繋ぎ替え配線508と引き出し配線504との接続部分、及び、S部の接続端子505となる部分で、レジスト膜をパターンニングする。そして、このレジスト膜を用いて金属層511,512をエッチングして、図29(a)に示す所定の形状パターンとする。
 その後、MoN層512上に保護膜であるレジスト膜513を形成する。このレジスト膜513において、通常のフォトリソグラフィ法によって、図29(b)に示すように、S部に接続端子505の形成部分である開口517を形成する。また、レジスト膜513において、フォトリソグラフィ法によって、T部にタッチ電極502と引き出し電極504との接続部分507となる開口部516を、U部に繋ぎ替え配線508と引き出し電極504との接続部分となる開口部514,515をそれぞれ形成する。
 その後、例えば温度220℃で50分のアニール処理をして、レジスト膜513を硬化させる。
 続いて、ITOなどの透明導電膜層518を、ガラス基板501の全面に形成する。そして、図示しないレジスト膜を形成し、通常のフォトリソグラフィ法によって、タッチ電極502となる部分、フローティング電極503となる部分、接続端子505となる部分、タッチ電極502と引き出し配線504との接続部分507となる部分、及び、引き出し配線504同士を接続する繋ぎ替え電極508となる部分で、レジスト膜をパターンニングする。その後、このパターンニングされたレジスト膜をマスクとして、蓚酸によってITOなどの透明導電膜層518をエッチングする。さらに、透明導電膜層518上に残っているレジスト膜を、剥離液によって剥離除去する。このようにして、図29(c)に示す構成となる。
 以上説明した他の実施形態によれば、低抵抗の金属層511、512と透明導電膜層518とが積層された接続端子505と、接続部分507と,引き出し配線504を立体交差するための繋ぎ替え配線508とを備えたタッチパネル600を、合計3枚のマスクによって製造することができる。具体的には、上述の他の実施形態では、引き出し配線504を形成する金属層511,512をパターンニングするための第1の露光マスクが必要である。また、レジスト層513に開口514,515,516,517を形成するための第2の露光マスク、及び、タッチ電極402、接続端子505の保護膜507及び繋ぎ替え配線508となる透明導電膜層518をパターンニングするための第3の露光マスクが必要である。
 これにより、引き出し配線504及び接続端子505に低抵抗の金属層511、512を積層することができ、且つ、繋ぎ替え配線508を有していて引き出し配線504のパターン設計に高い自由度を備えたタッチパネル600を、少ない数のマスクによって製造することができる。したがって、タッチパネル製造上のコストを削減できるとともに、マスクの位置あわせ回数の低減による製造精度の向上を図れる。
 (第4の実施形態)
 次に、以上説明したタッチパネルの製造方法によって形成されたタッチパネルを備えた表示装置の製造方法について、図面を用いて説明する。
 図30は、以上説明したタッチパネルの製造方法により製造されたタッチパネルを備えた表示装置の製造方法の一例として、表示パネルが液晶パネルである液晶表示装置の第1の製造方法を示すフローチャートである。
 図30に示すように、液晶表示装置の第1の製造方法は、まず、第1の実施形態から第3の実施形態として説明してきたタッチパネルの製造方法によって、透明なガラス基板にタッチパネルを製造するタッチパネル工程を有する(ステップS1)。
 このタッチパネル工程によって一方の面にタッチ電極などが形成されたガラス基板を、液晶表示装置の画像観視側である前面側に位置する前面基板として取り扱う(ステップS2)。
 そして、前面基板のタッチ電極が形成されている側とは反対側の表面に、通常のカラーフィルタ形成工程(CF工程)によって、カラーフィルタ層、ブラックマトリクス(BM)層、対向電極、保護膜、及び、液晶分子を所定の方向に向けるための配向膜などを形成する(ステップS3)。
 このようにして、一方の表面にタッチパルが、他方の表面にCF層がそれぞれ形成されたタッチパネル付きCF基板である前面基板が得られる(ステップS4)。
 続いて、ガラス基板に、通常のアクティブ基板形成工程であるTFT工程によって、画素電極や、該画素電極に画像表示のための電圧信号を印加するゲート線、ソース線、画素電極に対応して形成されるスイッチング素子としてのTFTを形成する(ステップS5)。また、この工程では、保護膜や、液晶分子を配向させるための配向膜などが適宜形成される。
 このようにして、液晶パネルの背面側に位置するTFT基板である背面基板が得られる(ステップS6)。
 続いて、液晶工程において、前面基板もしくは背面基板のいずれか一方の基板の表面に、封止樹脂を枠状に塗布し、液晶層を滴下して、該一方の基板を他方の基板と貼り合わせる(ステップS7)。
 その後、封止樹脂を硬化させることにより、液晶パネルが得られる(ステップS8)。
 得られた液晶パネルの両外面に、互いに偏光方向が異なるように2枚の偏光板が貼り付けられ、液晶パネルの背面側にバックライト装置が配置される。これにより、タッチパネルを備えた液晶表示装置が得られる。なお、タッチパネルを備えた液晶表示装置が、1枚のガラス基板に複数の液晶表示パネルが連続して形成される場合、液晶パネルは、封止樹脂が硬化されて液晶パネルとなった後に、タッチパネル付き液晶表示装置のサイズに合わせて分断される(ステップS9)。
 図31は、上述のタッチパネルの製造方法によって製造されたタッチパネルを備えた表示装置の第2の製造方法を示すフローチャートである。
 図31に示すように、第2の製造方法では、まず、ガラス基板の一方の表面に、通常のカラーフィルタ形成工程(CF工程)によって、カラーフィルタ層、ブラックマトリクス(BM)層、対向電極、保護膜、及び、液晶分子を所定の方向に向けるための配向膜などを形成する(ステップS11)。
 このようにして、一方の表面にCF層が形成されたCF基板である前面基板が得られる(ステップS12)。
 続いて、別のガラス基板に通常のアクティブ基板形成工程であるTFT工程によって、画素電極、該画素電極に画像表示のための電圧信号を印加するゲート線、ソース線、画素電極に対応して形成されるスイッチング素子としてのTFTを形成する。また、この工程では、保護膜や、液晶分子を配向させるための配向膜などが適宜形成される(ステップS13)。
 このようにして、液晶パネルの背面側に位置するTFT基板である背面基板が得られる(ステップS14)。
 続いて、液晶工程では、前面基板もしくは背面基板のいずれか一方の基板の表面に、封止樹脂を枠状に塗布し、液晶層を滴下して、該一方の基板を他方の基板と貼り合わせる(ステップS15)。
 その後、封止樹脂を硬化させることにより、液晶パネルが得られる。
 続いて、必要に応じて液晶パネルを研磨して薄型化した後、液晶パネルの前面基板、すなわちCF基板である基板の外側の表面に、上述のタッチパネルの製造方法によって、タッチパネルを製造する(ステップS16)。
 得られた液晶パネルの両外面に、互いに偏光方向が異なるように2枚の偏光板が貼り付けられるとともに、液晶パネルの背面側にバックライト装置が配置される。これにより、タッチパネルを備えた液晶表示装置が形成される。なお、タッチパネルを備えた液晶表示装置が、1つのガラス基板に複数の液晶表示パネルが連続して形成される場合、液晶パネルは、タッチパネル付き液晶表示装置のサイズに合わせて分断される(ステップS17)。
 図32は、図30もしくは図31に示す製造方法で得られる液晶表示装置の断面構成を示す図である。なお、本実施形態では、一例として、第1の実施形態として説明したタッチパネル100を前面基板に有する透過型液晶表示装置を説明する。
 図32に示すように、本実施形態にかかるタッチパネル付き液晶表示装置1000は、外部からのタッチ位置を検出するタッチパネル100と、表示パネルである液晶パネル1100とを備えている。タッチパネル100と液晶パネル1100とは積層されていて、該液晶パネル1100を構成する一つの基板である前面基板がタッチパネル100のガラス基板1を兼ねている。
 液晶パネル1100は、一般的な透過型の液晶パネルであって、液晶パネル1100を構成する2つのガラス製の基板である前面基板1と背面基板1200との間に、液晶層1300が形成されている。
 前面基板1の内表面には、カラー画像表示のためにそれぞれの画素に対応して図示しないカラーフィルタが形成されている。また、前面基板1の内表面には、液晶層12に所定の電圧を印加する図示しない対向電極が設けられている。
 背面基板1200の内表面には、複数の行および複数の列を形成するようにマトリクス状に図示しない画素電極が配置されている。液晶パネル1100では、この画素電極と前面基板1の対向電極との間の電位を調整することによって、液晶層1300の液晶分子の配向状態を変化させて画像表示が行われる。この背面基板1200の画素電極が形成されている領域が液晶パネル1100の表示領域となる。この液晶パネル1100の表示領域は、タッチパネル100のタッチ位置の検出領域とほぼ一致している。
 また、背面基板1200の表示領域には、いずれも図示しない、画素電極の行方向に配置された複数のゲート線、列方向に配置された複数のソース線、及び、直交するゲート線とソース線との交点近傍に配置され、それぞれの画素電極に接続されたTFTが設けられている。このゲート線に順次ゲート電圧を印加することで、行ごとにスイッチング素子であるTFTがオンとなって選択され、選択された行に属するそれぞれの画素電極に、ソース線を介して画像表示に必要な電圧が印加される。
 図32におけるタッチパネル100の図中上側、及び、液晶パネル1100の背面基板1200の図中下側には、液晶層1300と組み合わされることで透過光を制御して画像表示を行うための図示しない一対の偏光板が、各偏光角を所定角度異ならせた状態で配置されている。また、液晶パネル1100の前面基板1及び背面基板1200における液晶層1300に面する内表面には、上記した電極類やスイッチング素子を覆う絶縁膜が形成されていて、そのさらに表面には液晶分子の配列方向を定める配向膜が形成されている。これらの絶縁膜や配向膜の構成は、液晶パネルとして一般的なものであるので、図示及び詳細な説明を省略する。
 また、液晶パネル1100の背面には、液晶パネル1100で画像を表示するために必要な照射光を照射する図示しないバックライトが配置される。本実施形態のタッチパネル付き液晶表示装置1000のバックライトは、例えば、サイドライト型またはエッジライト型と呼ばれる、平板状の導光体とその側面に設けられた冷陰極蛍光管または発光ダイオードなどの光源とを有するものを用いることができる。また、液晶パネル1100の背面に、液晶パネル1100側に光を照射するように光源を平面的に配置して、光源からの照射光を集光シートや拡散シートなどの光学シートを介して液晶パネルに照射する、直下型とばれるタイプのバックライトを用いることもできる。なお、バックライトの光源としては、冷陰極蛍光管や発光ダイオードに限らず、熱陰極蛍光管やEL発光体など各種のものを用いることができる。
 上記の説明では、タッチパネルが形成される前面基板をカラーフィルタ基板として説明した。しかしながら、上述の製造方法によって得られる液晶表示装置は、これに限らず、タッチパネルが形成される前面基板をアクティブマトリクス基板として、背面基板をカラーフィルタ基板としてもよい。また、アクティブマトリクス基板上にカラーフィルタが形成された、いわゆるCFオンアレイ形式の液晶パネルとすることもできる。
 また、上記の説明では、液晶パネルの構成として、いわゆるアクティブマトリクス方式のものを例示した。しかしながら、上述の製造方法によって得られる液晶表示装置は、これに限らず、いわゆる単純マトリクス方式の液晶パネルとすることもできる。また、液晶パネルの駆動方法も、対向する基板間に電圧を印加する、いわゆる垂直配向方式に限らず、基板の平面方向に電圧を印加するIPS方式など、他の駆動方式も採用することができる。
 さらに、液晶パネル自体も、バックライトからの照射光を画像表示に用いる透過型または半透過型と呼ばれるものに限らず、前面基板1を透過して入射する外光を背面基板に形成された反射電極で反射させて画像表示に用いる、反射型の液晶パネルであってもよい。この場合にはバックライト、及び、背面基板の外側(図32における下側)に配置される上述の偏光板が不要となる。
 上記実施形態では、タッチパネルと積層されて画像表示を行う表示装置として、液晶パネルを用いた液晶表示装置の例について説明した。しかしながら、表示装置の表示パネルとして液晶パネルを用いたものに限らず、有機および無機のエレクトロルミネッセンス(EL)パネルや、プラズマディスプレイパネル(PDP)、さらには、電界放出型ディスプレイなど各種の平板型ディスプレイであってもよい。
 以上、タッチパネルの製造方法と、タッチパネルを備えた表示装置の製造方法について、具体的な実施形態を、図面を用いて説明した。しかし、タッチパネルの製造方法及び該タッチパネルを備えた表示装置の製造方法は、上述の各実施形態には限定されない。
 例えば、タッチパネルは、表示パネルと積層されて接着剤で固着される構成であってもよい。すなわち、タッチパネルのガラス基板と表示パネルの前面基板とが別々の基板であってもよい。
 なお、このように、タッチパネルの基板が液晶パネルなどの表示パネルの前面基板を兼ねない場合には、タッチパネルの基板として、上記の実施形態で説明したガラス基板以外に、例えば可撓性の樹脂基板なども用いることができる。
 本発明は、タッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法として産業上利用可能である。

Claims (16)

  1.  絶縁性の透明基板上に透明導電膜層及び金属層を順に積層した後、同一のレジストパターンを用いて、該透明導電膜層及び金属層を所定の電極パターンに形成し、
     前記透明導電膜層及び前記金属層を覆う保護膜を形成して、該保護膜の所定位置に該保護膜を貫通する開口部を設け、
     前記開口部が設けられた前記保護膜を用いたエッチングによって前記金属層を除去し、前記透明導電膜層を露出させることにより、タッチ電極及び該タッチ電極の電位をタッチパネルの外部に出力する接続端子の少なくとも一方を形成する、タッチパネルの製造方法。
  2.  前記金属層上に表面透明導電膜層を積層した後、前記同一のレジストパターンを用いて該表面透明導電膜層を所定の電極パターンに形成し、
     前記形成された表面透明導電膜層のうち前記接続端子となる部分を、前記エッチングによって除去されないように改質する、請求項1に記載のタッチパネルの製造方法。
  3.  前記保護膜は、有機樹脂膜によって構成されていて、
     前記エッチングによって前記透明導電膜層を露出させた後、前記保護膜を部分的に溶解させて、前記開口部の壁面を滑らかにする、請求項1または2に記載のタッチパネルの製造方法。
  4.  前記透明基板上に、第1層の前記透明導電膜層及び第1層の前記金属層を順に積層して、同一のレジストパターンを用いて該第1層の透明導電膜層及び第1層の金属層を所定の電極パターンに形成し、
     前記第1層の透明導電膜層及び第1層の金属層を覆う第1層の前記保護膜を形成し、
     前記第1層の保護膜上に第2層の透明導電膜層及び第2層の金属層を順に積層して、同一のレジストパターンを用いて前記第2層の透明導電膜層及び前記第2層の金属層を所定の電極パターンに形成し、
     前記第2層の透明導電膜層及び前記第2層の金属層を覆う第2層の保護膜を形成し、
     前記第1層の保護膜及び前記第2層の保護膜の所定位置に、該第1層の保護膜を貫通する第1層の開口部と、前記第2層の保護膜を貫通する第2層の開口部とを設け、
     前記第1層の開口部が設けられた前記第1層の保護膜及び前記第2層の開口部が設けられた前記第2層の保護膜を用いたエッチングによって、前記第1層の金属層及び前記第2層の金属膜を除去し、前記第1層の透明導電膜層及び前記第2層の透明導電膜層を露出させることにより、前記タッチ電極及び前記接続端子の少なくとも一方を形成する、請求項1に記載のタッチパネルの製造方法。
  5.  前記第1層の保護膜及び前記第2層の保護膜は、同一の材料によって構成されていて、
     前記第1層の保護膜における前記第1層の開口部を、前記第2層の保護膜上に形成されたレジストパターンをマスクとして用いて、該第2層の保護膜における前記第2層の開口部と同時に形成する、請求項4に記載のタッチパネルの製造方法。
  6.  前記第1層の保護膜は、前記第2層の保護膜とは異なる材料によって構成されていて、
     前記第1層の保護膜における前記第1層の開口部を、前記第2層の開口部が形成された前記第2層の保護膜をマスクとして用いて形成する、請求項4に記載のタッチパネルの製造方法。
  7.  前記第2層の保護膜は、有機樹脂膜によって構成されていて、
     前記エッチングによって、前記第1層の透明導電膜層及び前記第2層の前記透明導電膜層を露出させた後、前記第2層の保護膜を部分的に溶解させて、前記第1層の開口部及び前記第2層の開口部の各壁面を滑らかにする、請求項4から6のいずれか1項に記載のタッチパネルの製造方法。
  8.  前記タッチ電極と前記接続端子とを接続する引き出し配線は、その一部分が、該タッチ電極及び該接続端子とは異なる層に形成された繋ぎ替え配線によって構成されていて、
     前記保護膜の前記開口部は、前記繋ぎ替え配線と前記引き出し配線との接続部分となる部分にも形成されていて、
     前記繋ぎ替え配線と前記引き出し配線との接続部分は、前記所定の電極パターンの一部として形成され、
     前記繋ぎ替え配線を、前記保護膜上に形成された導電膜をレジストパターンによってパターンニングすることにより形成する、請求項1に記載のタッチパネルの製造方法。
  9.  前記繋ぎ替え配線は、前記引き出し配線が立体的に交差する部分に設けられる、請求項8に記載のタッチパネルの製造方法。
  10.  前記引き出し配線は、前記一部分以外の部分も、前記繋ぎ替え配線によって構成されていて、
     前記引き出し配線が立体的に交差する部分は、前記タッチ電極及び前記接続端子と同じ層に設けられている、請求項8に記載のタッチパネルの製造方法。
  11.  前記レジストパターンは、前記繋ぎ替え配線上に残存して、該繋ぎ替え配線の保護膜となる、請求項8から10のいずれか1項に記載のタッチパネルの製造方法。
  12.  前記繋ぎ替え配線を覆うように、前記露出した透明導電膜層以外の部分に絶縁性の表面保護膜を形成する、請求項8から10のいずれか1項に記載のタッチパネルの製造方法。
  13.  前記タッチ電極同士の間に、該タッチ電極と導通しないフローティング電極を有し、
     前記フローティング電極は、前記タッチ電極と同時に前記透明導電膜層から形成される、請求項1から12のいずれか1項に記載のタッチパネルの製造方法。
  14.  請求項1から13のいずれか1項に記載のタッチパネルの製造方法によって製造されたタッチパネルの透明基板を基板として、表示パネルを製造する、タッチパネルを備えた表示装置の製造方法。
  15.  前面基板及び背面基板を有する表示パネルを形成した後、該表示パネルの前記前面基板を透明基板として、請求項1から13のいずれか1項に記載のタッチパネルの製造方法によってタッチパネルを形成する、タッチパネルを備えた表示装置の製造方法。
  16.  前記表示パネルは、液晶パネルである、請求項14または15に記載のタッチパネルを備えた表示装置の製造方法。
PCT/JP2010/070618 2009-11-26 2010-11-18 タッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法 WO2011065292A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011543223A JP5323945B2 (ja) 2009-11-26 2010-11-18 タッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法
EP10833138.0A EP2492780B1 (en) 2009-11-26 2010-11-18 A touch panel manufacturing method, and a method for manufacturing a display device provided with a touch panel
US13/511,147 US8709265B2 (en) 2009-11-26 2010-11-18 Method for manufacturing touch panel and method for manufacturing display device provided with touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-269037 2009-11-26
JP2009269037 2009-11-26

Publications (1)

Publication Number Publication Date
WO2011065292A1 true WO2011065292A1 (ja) 2011-06-03

Family

ID=44066396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070618 WO2011065292A1 (ja) 2009-11-26 2010-11-18 タッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法

Country Status (4)

Country Link
US (1) US8709265B2 (ja)
EP (1) EP2492780B1 (ja)
JP (1) JP5323945B2 (ja)
WO (1) WO2011065292A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125191A1 (ja) * 2012-02-24 2013-08-29 パナソニック株式会社 入力装置
JP2013250633A (ja) * 2012-05-30 2013-12-12 Toppan Printing Co Ltd フィルム状静電容量型タッチパネル及びその製造方法並びに画像表示装置
CN103733169A (zh) * 2011-06-20 2014-04-16 日东电工株式会社 静电电容式触摸面板
CN103927045A (zh) * 2013-12-30 2014-07-16 上海天马微电子有限公司 一种触控基板的制备方法
JP2015069573A (ja) * 2013-09-30 2015-04-13 株式会社コベルコ科研 入力装置に用いられる電極、およびその製造方法
CN104812571A (zh) * 2013-08-01 2015-07-29 Lg化学株式会社 具有三维结构的金属图形的制造方法
KR20160017828A (ko) * 2014-08-06 2016-02-17 삼성디스플레이 주식회사 터치 스크린 패널의 제조 방법 및 터치 스크린 패널
DE102015224103A1 (de) 2014-12-05 2016-06-09 Mitsubishi Electric Corporation Touch-Panel-Struktur und Verfahren zu deren Herstellung, und Anzeigevorrichtung und Verfahren zu deren Herstellung
US9727189B2 (en) 2014-06-26 2017-08-08 Mitsubishi Electric Corporation Touch panel structure, method for manufacturing touch panel structure and method for manufacturing display apparatus
US9857617B2 (en) 2014-08-25 2018-01-02 Japan Display Inc. Liquid crystal display device
JP2018101144A (ja) * 2012-04-26 2018-06-28 三菱電機株式会社 表示装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130200377A1 (en) * 2012-02-06 2013-08-08 Shenzhen China Star Optoelectronics Technology Co. Ltd Thin film transistor array substrate and method for manufacturing the same
US9366922B2 (en) * 2012-02-07 2016-06-14 Shenzhen China Star Optoelectronics Technology Co., Ltd. Thin film transistor array and method for manufacturing the same
KR102008739B1 (ko) 2012-12-21 2019-08-09 엘지이노텍 주식회사 터치 패널
CN104850281A (zh) * 2014-02-18 2015-08-19 谭本志 电容式触摸屏的制作工艺
CN104915077B (zh) * 2014-03-13 2017-11-28 乐金显示有限公司 触摸感应显示装置
KR102299875B1 (ko) * 2014-11-07 2021-09-07 엘지디스플레이 주식회사 터치 패널, 이의 제조 방법 및 터치 패널 일체형 유기 발광 표시 장치
KR102312314B1 (ko) * 2015-01-28 2021-10-13 삼성디스플레이 주식회사 터치 센서 장치 및 그 제조 방법
CN104698709A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 一种阵列基板和液晶显示面板
JP6562706B2 (ja) * 2015-05-13 2019-08-21 三菱電機株式会社 面デバイス、タッチスクリーン及び液晶表示装置
CN105138958B (zh) * 2015-07-27 2020-06-23 联想(北京)有限公司 一种电子设备、显示屏以及面板
EP3396500A4 (en) * 2015-12-25 2019-05-08 Fujikura Ltd. WIRING BODY, WIRING SUBSTRATE, AND TOUCH SENSOR
KR20180031846A (ko) * 2016-09-19 2018-03-29 삼성디스플레이 주식회사 표시 장치
WO2019065967A1 (ja) * 2017-09-29 2019-04-04 株式会社ジャパンディスプレイ 指紋検出装置及び表示装置
JP2019091346A (ja) * 2017-11-16 2019-06-13 株式会社ジャパンディスプレイ 表示装置
KR20230103286A (ko) * 2021-12-31 2023-07-07 엘지디스플레이 주식회사 표시 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010918A (en) * 1998-02-10 2000-01-04 Fed Corporation Gate electrode structure for field emission devices and method of making
WO2007144993A1 (ja) * 2006-06-12 2007-12-21 Sharp Kabushiki Kaisha タッチパネル、表示装置及びタッチパネルの製造方法
JP2008233976A (ja) 2007-03-16 2008-10-02 Sharp Corp タッチパネル、表示装置、及びタッチパネルの製造方法
JP2009129604A (ja) * 2007-11-21 2009-06-11 Seiko Epson Corp 表示装置及び有機el装置の製造方法、有機el装置及び電子機器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663607B2 (en) * 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
TWI256976B (en) 2000-08-04 2006-06-21 Hannstar Display Corp Method of patterning an ITO layer
DE602004031959D1 (de) * 2003-09-22 2011-05-05 Tpo Hong Kong Holding Ltd Zeigebauelements
KR100970958B1 (ko) * 2003-11-04 2010-07-20 삼성전자주식회사 터치 스크린 기능을 갖는 액정 표시 장치 및 그의 제조 방법
KR101282397B1 (ko) * 2004-12-07 2013-07-04 삼성디스플레이 주식회사 표시 장치용 배선, 상기 배선을 포함하는 박막 트랜지스터표시판 및 그 제조 방법
KR101328624B1 (ko) * 2006-05-11 2013-11-13 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
TWI334503B (en) * 2007-10-12 2010-12-11 Au Optronics Corp Touch-sensing flat panel display and method for manufacturing the same
US8101442B2 (en) * 2008-03-05 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing EL display device
TWI464808B (zh) * 2008-07-21 2014-12-11 Au Optronics Corp 薄膜電晶體陣列基板及其製作方法
US20110006998A1 (en) * 2009-07-10 2011-01-13 Sunggu Kang Patterning of thin film conductive and passivation layers
US8475872B2 (en) * 2009-08-19 2013-07-02 Apple Inc. Patterning of thin film layers
CN102023440B (zh) * 2009-09-15 2012-07-04 群康科技(深圳)有限公司 触控屏幕及其制造方法
CN102033379B (zh) * 2009-09-30 2012-08-15 群康科技(深圳)有限公司 液晶显示器与其制造方法
TWI413829B (zh) * 2010-04-20 2013-11-01 Au Optronics Corp 反射式觸控顯示面板及其製造方法
US8388852B2 (en) * 2010-07-30 2013-03-05 Apple Inc. Method for fabricating touch sensor panels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010918A (en) * 1998-02-10 2000-01-04 Fed Corporation Gate electrode structure for field emission devices and method of making
WO2007144993A1 (ja) * 2006-06-12 2007-12-21 Sharp Kabushiki Kaisha タッチパネル、表示装置及びタッチパネルの製造方法
JP2008233976A (ja) 2007-03-16 2008-10-02 Sharp Corp タッチパネル、表示装置、及びタッチパネルの製造方法
JP2009129604A (ja) * 2007-11-21 2009-06-11 Seiko Epson Corp 表示装置及び有機el装置の製造方法、有機el装置及び電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2492780A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103733169B (zh) * 2011-06-20 2016-08-17 日东电工株式会社 静电电容式触摸面板
CN103733169A (zh) * 2011-06-20 2014-04-16 日东电工株式会社 静电电容式触摸面板
US10025432B2 (en) 2011-06-20 2018-07-17 Nitto Denko Corporation Capacitive touch panel
WO2013125191A1 (ja) * 2012-02-24 2013-08-29 パナソニック株式会社 入力装置
JP2018101144A (ja) * 2012-04-26 2018-06-28 三菱電機株式会社 表示装置
JP2013250633A (ja) * 2012-05-30 2013-12-12 Toppan Printing Co Ltd フィルム状静電容量型タッチパネル及びその製造方法並びに画像表示装置
US10034385B2 (en) 2013-08-01 2018-07-24 Lg Chem, Ltd. Method of preparing metal pattern having 3D structure
CN104812571A (zh) * 2013-08-01 2015-07-29 Lg化学株式会社 具有三维结构的金属图形的制造方法
JP2015069573A (ja) * 2013-09-30 2015-04-13 株式会社コベルコ科研 入力装置に用いられる電極、およびその製造方法
TWI584962B (zh) * 2013-09-30 2017-06-01 神戶製鋼所股份有限公司 Used in the input device of the electrode
KR101847751B1 (ko) * 2013-09-30 2018-04-10 가부시키가이샤 고베 세이코쇼 입력 장치에 사용되는 전극, 및 그 제조 방법
CN103927045A (zh) * 2013-12-30 2014-07-16 上海天马微电子有限公司 一种触控基板的制备方法
US9727189B2 (en) 2014-06-26 2017-08-08 Mitsubishi Electric Corporation Touch panel structure, method for manufacturing touch panel structure and method for manufacturing display apparatus
KR20160017828A (ko) * 2014-08-06 2016-02-17 삼성디스플레이 주식회사 터치 스크린 패널의 제조 방법 및 터치 스크린 패널
KR102341436B1 (ko) * 2014-08-06 2021-12-23 삼성디스플레이 주식회사 터치 스크린 패널의 제조 방법 및 터치 스크린 패널
US9857617B2 (en) 2014-08-25 2018-01-02 Japan Display Inc. Liquid crystal display device
US9864474B2 (en) 2014-12-05 2018-01-09 Mitsuibishi Electric Corporation Method for manufacturing touch panel structure, and method for manufacturing display apparatus
DE102015224103A1 (de) 2014-12-05 2016-06-09 Mitsubishi Electric Corporation Touch-Panel-Struktur und Verfahren zu deren Herstellung, und Anzeigevorrichtung und Verfahren zu deren Herstellung

Also Published As

Publication number Publication date
US8709265B2 (en) 2014-04-29
US20120241408A1 (en) 2012-09-27
EP2492780A4 (en) 2013-05-22
EP2492780B1 (en) 2014-07-02
JP5323945B2 (ja) 2013-10-23
JPWO2011065292A1 (ja) 2013-04-11
EP2492780A1 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5323945B2 (ja) タッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法
JP5265020B2 (ja) タッチパネル付き表示装置
JP5538566B2 (ja) タッチパネル及びそれを備えた表示装置並びにタッチパネルの製造方法
JP5538567B2 (ja) タッチパネル及びそれを備えた表示装置並びにタッチパネルの製造方法
JP5518084B2 (ja) タッチパネルおよびこれを備えた表示装置
US8717333B2 (en) Electrostatic capacity type touch panel, display device and process for producing electrostatic capacity type touch panel
JP5456177B2 (ja) タッチパネル及びそれを備えた表示装置並びにタッチパネルの製造方法
JP2010160745A (ja) カラーフィルタ、および、表示装置
US9182844B2 (en) Touch panel, display device provided with touch panel, and method for manufacturing touch panel
JP2008009921A (ja) 入力装置、及びその製造方法
WO2014021223A1 (ja) タッチパネルおよびタッチパネルの製造方法
JP2010072584A (ja) 表示装置用基板、および、表示装置
JP5927915B2 (ja) タッチパネルセンサ基板及びその基板の製造方法
JP6707836B2 (ja) タッチパネル一体型有機エレクトロルミネッセンス表示装置用センサ電極基材、タッチパネル一体型有機エレクトロルミネッセンス表示装置、およびタッチパネル一体型有機エレクトロルミネッセンス表示装置の製造方法
JP2013003915A (ja) 投影型静電容量式タッチパネルセンサー及びその製造方法、投影型静電容量式タッチパネルセンサーを備えた表示装置
KR20100067236A (ko) 터치 패널, 이의 제조 방법 및 이를 이용한 액정 표시 장치
WO2013191024A1 (ja) タッチパネル、タッチパネルを備える表示装置及びタッチパネルの製造方法
WO2014002833A1 (ja) タッチパネル、タッチパネルを備える表示装置及びタッチパネルの製造方法
KR20150058629A (ko) 터치 스크린이 내장된 액정표시장치
KR20100102950A (ko) 터치 스크린 패널의 제조 방법 및 그에 의해 제조된 터치 스크린 패널
JP2008009920A (ja) 入力装置、及びその製造方法
WO2010032352A1 (ja) タッチパネル及びそれを備えた表示装置並びに液晶表示装置
JP2013180918A (ja) ガラス基板の製造方法、電極パターン付きガラス基板の製造方法
JP2017004367A (ja) 電極付きカラーフィルタ基板、該基板を含む表示装置、ならびに該基板及び表示装置の製造方法
JP2010122296A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543223

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13511147

Country of ref document: US

Ref document number: 2010833138

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE