JP2009129604A - 表示装置及び有機el装置の製造方法、有機el装置及び電子機器 - Google Patents

表示装置及び有機el装置の製造方法、有機el装置及び電子機器 Download PDF

Info

Publication number
JP2009129604A
JP2009129604A JP2007301308A JP2007301308A JP2009129604A JP 2009129604 A JP2009129604 A JP 2009129604A JP 2007301308 A JP2007301308 A JP 2007301308A JP 2007301308 A JP2007301308 A JP 2007301308A JP 2009129604 A JP2009129604 A JP 2009129604A
Authority
JP
Japan
Prior art keywords
layer
light emitting
region
light
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007301308A
Other languages
English (en)
Inventor
Tatsuya Onizuka
達也 鬼塚
Takeshi Koshihara
健 腰原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007301308A priority Critical patent/JP2009129604A/ja
Publication of JP2009129604A publication Critical patent/JP2009129604A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】成膜工程及びフォトリソグラフィー工程の繰り返し回数を低減しつつ、3原色を出射する各々の画素毎に異なる共振長を設定する。
【解決手段】第1の発光領域85Rと、第3の発光領域85Bと、に第1の層厚を有する第1の透明材料層51を形成する第1の工程と、第2の発光領域85Gと、第1の発光領域85Rと、第3の発光領域85Bと、の3つの発光領域を少なくとも含む領域に、第1の透明材料層51に対して選択的にエッチング可能な第2の層厚を有する第2の透明材料層52を形成する第2の工程と、第1の発光領域85Rと第2の発光領域85Gに形成された第2の透明材料層52上にレジスト層79を形成する第3の工程と、レジスト層79で覆われていない領域の第2の透明材料層52をエッチングして除去する第4の工程と、を順に行なうことを特徴とする表示装置の製造方法。
【選択図】図4

Description

本発明は、表示装置及び有機EL装置の製造方法、有機EL装置及び電子機器に関する。
近年、携帯電話あるいはパーソナルコンピュータ等の表示画面に用いる表示装置として、有機エレクトロルミネッセンス(以下、「有機EL」と称する。)素子を発光素子として備える画素を表示面に規則的に配列して画像を形成する有機EL装置が考えられている。各々の発光素子は、対向するように形成された陽極と陰極との間に、少なくとも発光層(有機EL層)を含む機能層を備えており、上述の陽極と陰極との間に電流が流れると光を発光して上記表示面から出射する。カラー画像を表示する有機EL装置の場合、少なくとも赤、緑、青の3原色の光を出射する画素を備えることが必要となる。
有機EL素子を用いて3原色の光を得る方法としては、白色光を発光する有機EL層を用い、該白色光をカラーフィルタで特定の波長範囲の光を強調して有色光とする構成がある。また、上記3原色の夫々の光を発光する有機EL層を用いる構成、さらには該構成の有機EL素子にカラーフィルタを組み合わせて、色純度をより一層向上させた光を出射する構成もある。
しかし、いずれの場合もカラーフィルタのみでは色純度の向上に限界があり、またカラーフィルタに吸収される光による消費電力の増加も問題となる。そこで、機能層を狭持する、夫々の発光波長に対応する共振長を有するマイクロキャビティ構造(微細共振器)を形成して、発光素子から出射される段階(カラーフィルタを透過する前の段階)の光の色純度を向上させる構成の有機EL素子が提案されている。
3原色を出射する各々の画素毎に異なる共振長を設定する構成としては、発光特性への影響を抑制するために、陽極として用いる透明導電材料層の厚さを上記画素毎に変化させる構成が一般的である(特許文献1参照)。また、透明導電材料層の厚さを3原色の画素毎に変化させる方法としては、透明導電材料層の成膜とフォトリソグラフィーによるパターニングを夫々3回行なう方法が提案されている(特許文献2参照)。
特許第2797883号公報 特開2007−026849号公報
しかし、成膜工程及びフォトリソグラフィー工程を複数回繰り返すことは、プロセスの複雑化及び製造コストの上昇につながるという問題がある。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]
素子基板上に配置された、異なる色の光を夫々出射する複数の画素の各々に、反射層と、半透過反射層と、上記反射層と上記半透過反射層との間に形成された、透明導電材料からなる陽極と少なくとも発光層を含む機能層とを備える多層構造体と、を備え、上記発光層で生じた光を上記反射層と上記半透過反射層との間で共振させることにより特定の波長の光を強調できる発光素子、を備える表示装置の製造方法であって、第1の色の光を出射する第1の画素の上記発光素子が形成される領域である第1の発光領域と、第3の色の光を出射する第3の画素の上記発光素子が形成される領域である第3の発光領域と、に第1の層厚を有する第1の透明材料層を形成する第1の工程と、第2の色の光を出射する第2の画素の上記発光素子が形成される領域である第2の発光領域と、上記第1の発光領域と、上記第3の発光領域と、の3つの発光領域を少なくとも含む領域に、上記第1の透明材料層に対して選択的にエッチング可能な第2の層厚を有する第2の透明材料層を形成する第2の工程と、上記第1の発光領域と上記第2の発光領域に形成された上記第2の透明材料層上にフォトレジスト層を形成する第3の工程と、上記フォトレジスト層で覆われていない領域の上記第2の透明材料層をエッチングして除去する第4の工程と、を順に行なうことを特徴とする表示装置の製造方法。
このような製造方法によれば、2回のフォトリソグラフィー工程により、上記第1〜第3の発光領域の各々に夫々異なる層厚の透明材料層を形成できる。その結果上記第1〜第3の発光領域の各々に夫々異なる共振長を設定でき、製造コストを低減しつつ表示品質を向上できる。
なお、上述の「波長」とは所定の範囲の波長を意味する。また、上述の「共振長」とは、上記反射層と上記半透過反射層との間の光学的距離(層厚と屈折率の積)を意味する。
[適用例2]
上述の表示装置の製造方法であって、上記第1の透明材料層及び上記第2の透明材料層は透明導電材料からなることを特徴とする表示装置の製造方法。
このような製造方法によれば、上記透明材料層を陽極として用いることができ、製造コストをより一層低減できる。
[適用例3]
上述の表示装置の製造方法であって、上記半透過反射層は陰極の少なくとも一部を兼ねており、上記反射層は上記素子基板と上記陽極との間に形成されており、上記表示装置は、上記発光層で生じた光を上記素子基板とは反対の側から出射させるトップエミッション型の表示装置であって、上記第1の工程を行なう前に、上記第1の発光領域と上記第2の発光領域と上記第3の発光領域とに上記反射層を形成する第5の工程と、上記基板上の、少なくとも上記反射層が形成されている領域に、上記反射層を覆う第3の層厚を有する第3の透明材料層を形成する第6の工程と、を順に行なうことを特徴とする表示装置の製造方法。
上記第1〜第3の発光領域に3層の透明材料層を形成することにより、(変数が3つとなることから)上記第1〜第3の発光領域の各々に任意の共振長を設定できる。また、上記第1及び第2の透明材料層をエッチングする際には、上記反射層を保護する保護膜を用いることが好ましく、上記第3の透明材料層はかかる機能を果たすことができる。したがって、このような製造方法によれば、製造コストの増加を抑制しつつ表示品質がより一層向上したトップエミッション型の表示装置を得ることができる。
[適用例4]
上述の表示装置の製造方法であって、上記反射層は陰極の少なくとも一部を兼ねており、上記半透過反射層は上記基板と上記陽極との間に形成されており、上記表示装置は、上記発光層で生じた光を上記基板の側から出射させるボトムエミッション型の表示装置であって、上記第1の工程を行なう前に、上記第1の発光領域と上記第2の発光領域と上記第3の発光領域とに上記半透過反射層を形成する第7の工程と、上記素子基板上の、少なくとも上記半透過反射層が形成されている領域に、上記半透過反射層を覆う、第3の層厚を有する第3の透明材料層を形成する第8の工程と、を順に行なうことを特徴とする表示装置の製造方法。
上記第1〜第3の発光領域に3層の透明材料層を形成することにより、上記第1〜第3の発光領域の各々に任意の共振長を設定できる。また、上記第1及び第2の透明材料層をエッチングする際には、上記反射層を保護する保護膜を用いることが好ましく、上記第3の透明材料層はかかる機能を果たすことができる。したがって、このような製造方法によれば、製造コストの増加を抑制しつつ表示品質がより一層向上したボトムエミッション型の表示装置を得ることができる。
[適用例5]
上述の表示装置の製造方法であって、上記複数の画素は、少なくとも赤色光を出射する赤画素と、緑色光を出射する緑画素と、青色光を出射する青画素と、の3種類の画素を含むことを特徴とする表示装置の製造方法。
このような製造方法によれば、3原色を出射することによりカラー表示が可能な表示装置を得ることができる。
[適用例6]
上述の表示装置の製造方法であって、上記第1の透明材料層は結晶性ITOからなり、上記第2の透明材料層はアモルファスITOからなり、上記第3の透明材料層は窒化シリコンからなることを特徴とする表示装置の製造方法。
ITOは仕事関数が大きいため、上記陽極として用いた場合表示品質を向上できる。また、アモルファスのITOは結晶性のITOに対して高い選択比でエッチング可能である。したがって、このような製造方法によれば、陽極を好ましい材料で形成しつつ、画素ごとに任意の共振長を設定できる。したがって、製造コストの増加を抑制しつつ、表示品質がより一層向上した表示装置を得ることができる。
[適用例7]
上述の表示装置の製造方法であって、上記第4の工程の後に、上記フォトレジスト層を除去する第9の工程と、上記第2の透明材料層を加熱することにより結晶化させる第10の工程と、を順に行なうことを特徴とする表示装置の製造方法。
このような製造方法によれば、上記陽極を結晶性のITOのみで形成できる。したがって、表示品質がより一層向上した表示装置を得ることができる。
[適用例8]
上述の表示装置の製造方法であって、上記発光層は有機エレクトロルミネッセンス層であり、上記発光素子は有機エレクトロルミネッセンス素子であることを特徴とする表示装置の製造方法。
有機エレクトロルミネッセンス素子は色再現性や発光効率等が優れているため、このような構成により、表示品質がより一層向上した表示装置を得ることができる。
[適用例9]
上述の表示装置の製造方法で製造されたことを特徴とする表示装置。
このような構成により、表示品質の優れた表示装置を低コストで得ることが可能となる。
[適用例10]
上述の表示装置を備えることを特徴とする電子機器。
このような構成の表示装置を備えることにより、表示品質の優れた電子機器を低コストで得ることが可能となる。
[適用例11]
3以上のサブ領域を含む発光領域に、反射層と、半透過反射層と、上記反射層と上記半透過反射層との間に形成された、透明導電材料からなる陽極と少なくとも発光層を含む機能層とを備える多層構造体と、を備え、上記発光層で生じた光を上記反射層と上記半透過反射層との間で共振させることできる発光素子の製造方法であって、第1のサブ領域と、第3のサブ領域と、に第1の層厚を有する第1の透明導電材料層を形成する第1の工程と、第2のサブ領域と、上記第1のサブ領域と、上記第3のサブ領域と、を含む領域に、上記第1の透明導電材料層に対して選択的にエッチング可能な第2の層厚を有する第2の透明導電材料層を形成する第2の工程と、上記第1のサブ領域と上記第2のサブ領域に形成された上記第2の透明導電材料層上にフォトレジスト層を形成する第3の工程と、上記フォトレジスト層で覆われていない領域の上記第2の透明導電材料層をエッチングして除去する第4の工程と、を順に行なうことを特徴とする発光素子の製造方法。
このような製造方法によれば、2回のフォトリソグラフィー工程により、1つの発光素子の発光領域に含まれる3つのサブ領域の各々に夫々異なる層厚の透明材料層を形成して、該3つのサブ領域の各々に夫々異なる共振長を設定できる。したがって、特定の波長範囲の光が強調されることを抑制でき、白色光の出射が可能になる。
[適用例12]
上述の発光素子の製造方法であって、上記発光層は有機エレクトロルミネッセンス層であることを特徴とする発光素子の製造方法。
有機エレクトロルミネッセンス層を発光層に用いた発光素子は色再現性や発光効率等が優れているため、このような構成により表示品質がより一層向上した発光素子を得ることができる。
以下、図面を参照し、本発明を具体化した有機EL装置の製造方法を述べる。なお、以下に示す各図においては、各構成要素を図面上で認識され得る程度の大きさとするため、該各構成要素の寸法や比率を実際のものとは適宜に異ならせてある。
(第1の実施形態)
図1は、第1の実施形態にかかる製造方法の対象となる有機EL装置の全体構成を示す回路構成図である。表示領域100内に規則的に配置された個々の画素を個別に制御して表示領域100に画像を形成する、アクティブマトリクス型の有機EL装置の回路構成図である。表示領域100には、複数の走査線102と、走査線102と直交する複数の信号線104と、信号線104と平行に延びる複数の電源供給線106が形成されている。上記3種類の配線で囲まれる方形の区画が画素25である。
表示領域100の周辺には、走査線駆動回路120、及び信号線駆動回路130が形成されている。走査線102には、走査線駆動回路120から、図示しない外部回路より供給される各種信号に応じて走査信号が順次供給される。そして、信号線104には信号線駆動回路130から画像信号が供給され、電源供給線106には図示しない外部回路から画素駆動電流が供給される。なお、走査線駆動回路120の動作と信号線駆動回路130の動作とは、同期信号線140を介して外部回路から供給される同期信号により相互に同期が図られている。
各々の画素25は、走査線102を介して走査信号がゲート電極に供給されるスイッチング用TFT108と、スイッチング用TFT108を介して信号線104から供給される画素信号を保持する保持容量110と、保持容量110によって保持された画素信号がゲート電極に供給される駆動用TFT112と、駆動用TFT112を介して電源供給線106から駆動電流が流れ込む発光素子(有機EL素子)20と、を備えている。後述するように、発光素子20は画素電極である陽極56と、表示領域100の全範囲に渡って共通電位となる陰極55とで発光層を含む機能層40を狭持しており(図2等を参照)、上記駆動電流は陽極56に供給される。
走査線102が駆動されスイッチング用TFT108がオン状態になると、その時点の信号線104の電位が保持容量110に保持され、保持容量110の状態に応じて駆動用TFT112のレベルが決まる。そして、駆動用TFT112を介して電源供給線106から陽極56に駆動電流が流れ、さらに機能層40を介して陰極55に駆動電流が流れる。その結果、機能層40は駆動電流の大きさに応じて発光する。
各々の画素25は各々の画素が発光する光の色に対応する、夫々異なる型の発光素子20を備えている。具体的には、第1の画素としての赤画素25Rは第1の色の光としての赤色光を射出する赤色光発光素子20Rを備え、第2の画素としての緑画素25Gは第2の色の光としての緑色光を射出する緑色光発光素子20Gを備え、第3の画素としての青画素25Bは第3の色の光としての青色光を射出する青色光発光素子20Bを備えている。個々の画素25が独立に制御され、各々の発光素子20が駆動電流の大きさに応じて発光することにより、表示領域100にカラー画像が形成される。
図2は、第1の実施形態にかかる製造方法の対象となる有機EL装置の模式断面図である。矢印の方向に光を出射するトップエミッション型の有機EL装置の表示領域100内の断面図である。素子基板10上に形成された、赤画素25Rを構成する赤色光発光素子20Rと駆動用TFT112、緑画素25Gを構成する緑色光発光素子20Gと駆動用TFT112、及び青画素25Bを構成する青色光発光素子20Bと駆動用TFT112、を対向基板11上に形成されたカラーフィルタ層30等と共に模式的に示している。なお、スイッチング用TFT108(図1参照)等は図示を省略している。
各々の画素において、発光素子が形成され、発光層で生じた光が出射される領域が発光領域である。赤画素25Rが備える発光領域が第1の発光領域85R、緑画素25Gが備える発光領域が第2の発光領域85G、青画素25Bが備える発光領域が第3の発光領域85B、である。各々の発光領域は、反射層58が形成される領域と略一致しており、隔壁77で区画されている。
素子基板10は、接着層12により、カラーフィルタ層30を備える対向基板11と貼り合されている。カラーフィルタ層30は、規則的に配置された赤色カラーフィルタ30R、緑色カラーフィルタ30G、及び青色カラーフィルタ30Bを備え、各々のカラーフィルタはブラックマトリクス35で区画されている。そして、赤色光発光素子20Rには赤色カラーフィルタ30Rが、緑色光発光素子20Gには緑色カラーフィルタ30Gが、そして青色光発光素子20Bには青色カラーフィルタ30Bが、夫々対向するように貼り合されている。
素子基板10上には、ポリシリコン層からなるチャネル領域60と酸窒化シリコン等からなるゲート絶縁膜70とポリシリコンあるいはAl(アルミニウム)等からなるゲート電極62と、からなる駆動用TFT112が形成され、該TFTの上層には酸窒化シリコン等からなる第1層間絶縁膜71が積層されている。そして、第1層間絶縁膜71の一部が選択的に除去され、チャネル領域60と導通するドレイン電極64及びソース電極66が形成されている。
上記双方の電極の上層には、酸窒化シリコン等からなる第2層間絶縁膜72が積層されている。第2層間絶縁膜72上の、各々の発光領域85(R,G,B)には、層厚の30〜80nmのAl(アルミニウム)からなる反射層58が形成されている。そして反射層58を覆うように、第3の透明材料層としての窒化シリコン層50が形成されている。窒化シリコン層50は後述するコンタクトホールの形成領域を除く全域に形成されているが、反射層58を覆えばよく、他の領域には形成しなくても良い。
そして第2層間絶縁膜72上の反射層58の上層には、該反射層を窒化シリコン層50を介して被うように、結晶性のITO(酸化インジウム・錫合金)からなる陽極56が形成されている。そして陽極56は第2層間絶縁膜72及び窒化シリコン層50の一部を選択的に除去して形成されたコンタクトホールを介してドレイン電極64と接続している。したがって、陽極56は駆動用TFT112と導通し、電源供給線106から供給される駆動電流を、後述する機能層40に供給できる。
第2層間絶縁膜72及び陽極56の上層には隔壁77が形成され、隣り合う発光素子の間を区画している。隔壁77は、ポリイミド等の有機又は無機の絶縁材料層材料層を、陽極56と反射層58とが重なる領域が露出するようにパターニングして形成されている。
陽極56、及び隔壁77の上層には、機能層40、半透過反射層としての陰極55、そして封止層59が順に積層されている。機能層40は、正孔注入輸送層41と白色発光層43Wと電子注入輸送層45とからなる。窒化シリコン層50と陽極56と機能層40との積層体が多層構造体であり、透光性を有している。
そして、封止層59まで積層された素子基板10は、接着層12を介して対向基板11と接着される。上記各層は、少なくとも表示領域100(図1参照)の全面を被うように形成されている。そして陰極55は、表示領域100の外部の領域で接地している。
上述の各層の形成材料は以下の通りである。
正孔注入輸送層41は、陽極56上に積層される正孔注入層と該正孔注入層上に積層される正孔輸送層との2層からなっている。正孔注入層は真空蒸着法により形成されるアリールアミン類やフタロシアニン類等からなる層であり、層厚は40〜60nmである。正孔輸送層も同じく真空蒸着法によって形成されるアリールアミン類等からなる層であり、層厚は15〜30nmである。
白色発光層43Wは有機EL層であり、青色光を発光する有機EL層と赤色光を発光する有機EL層とを積層して形成されている。上述の青色光と赤色光の、双方の発光光を合わせて白色光としている。上記双方の層は共に真空蒸着法により形成される。青色光を発光する層は、ホスト材料としてのDPVBi(ジスチリルビフェニル誘導体)やPESB等にドーパント材料としてのスチリルアミン誘導体等が混入されて形成されている。赤色光を発光する層は、ホスト材料としてのAlq3(アルミキノリノール錯体)等に、ドーパント材料としてのDCM(ジアノメチレンピラン誘導体)等が混入されて形成されている。
電子注入輸送層45は、白色発光層43W上に積層される電子輸送層と該電子輸送層上に積層される電子注入層との2層からなっている。電子輸送層は真空蒸着法により形成されるAlq3(アルミキノリノール錯体)等からなる層であり、層厚は15〜20nmである。電子注入層はスパッタ法により形成されるLiF(弗化リチウム)からなる層である。層厚は略1nmであり、透光性を有している。
陰極55は、層厚が略5nmのAl、あるいは層厚が略10nmのMgAg(マグネシウム・銀合金)からなり、半透過反射性を有している。そして封止層59は、層厚略200nmの酸化シリコンからなる。
上述したように、反射層58は反射性を有するAlで形成され、陽極56及び窒化シリコン層50は透光性を有している。したがって、白色発光層43W内で生じた光のうち陽極56の方向に向かった光は反射層58で反射されて陰極55の方へ向かう。上述したように陰極55は半透過反射性を有している。したがって、上述の反射光及び、白色発光層43W内で生じた光のうち陰極55の方向に向かった光は、略半分が反射されて、上述の多層構造体を透過した後、再度反射層58の表面で反射する。つまり、白色発光層43W内で生じた光は、陽極56と陰極55との間で反射を繰り返す。そして、かかる反射の繰り返しにより、陽極56と陰極55との間の光学的距離で規定される特定の波長範囲の光が強調される。したがって、陽極56と陰極55との間には微細な共振構造、すなわちマイクロキャビティ構造15が形成されていることとなる。白色発光層43W内で生じた光(白色光)はマイクロキャビティ構造15内で共振して、特定の波長(波長範囲)の光が強調されて有色光となる。そしてカラーフィルタ層30を透過することでより一層色純度が向上した光となって、対向基板11側から出射される。
反射層58と窒化シリコン層50との界面と、陰極55と電子注入輸送層45との界面と、の間の光学的距離が共振長である。白色光を赤色光等の特定の色の光とする為に、上記の共振長は3種類の発光素子毎に異なった値を有している。赤色光発光素子20Rの共振長が90R、緑色光発光素子20G領域の共振長が90G、そして青色光発光素子20B領域の共振長が90Bである。
機能層40の発光特性に影響を与えずに異なる値の共振長を設定するために、図2に示す有機EL装置では陽極56の層厚を発光素子毎に変化させている。かかる変化は、一般的には、ITO膜の成膜とパターニングを3回ずつ繰り返して形成するが、それではかなりの工数を要することとなる。本実施形態にかかる有機EL装置の製造方法は、上記の3種類の共振長を2回のパターニングで形成するものである。
図3は、第1の実施形態にかかる製造方法の対象となる有機EL装置であって、図2に示す有機EL装置とは異なる有機EL装置の模式断面図である。矢印の方向に光を出射するボトムエミッション型の有機EL装置の模式断面図である。図2に示すトップエミッション型の有機EL装置とはカラーフィルタの形成位置や反射層等の一部の構成要素の態様が異なっているが、それ以外の構成要素について概ね共通している。そこで、共通する構成要素には同一の符号を付与し説明の記載は省略している。
図3に示す有機ELは、陰極55が層厚略100nmのAlで形成されており、透光性を全く有していない。したがって、白色発光層43W内で生じた光のうち陰極55に向かった光を全て反射する反射層として機能している。一方、図2に示す有機EL装置では反射層58が形成されている部分には半透過反射層54が形成されており、反射層を兼ねる陰極55との間にマイクロキャビティ構造15が形成されている。共振長が発光素子20間で異なる点は図2に示す有機EL装置と同様である。したがって、白色発光層43W内で生じた光を共振により特定の波長の光を強調して有色光とした上で、素子基板10側から出射できる。
また、第1層間絶縁膜71と第2層間絶縁膜72との間に第3層間絶縁膜73が形成されている。そして、第3層間絶縁層73内の半透過反射層54と対向する領域にカラーフィルタ層30が形成されている。つまり、赤色光発光素子20Rの上記領域には赤色カラーフィルタ30Rが、緑色光発光素子20Gの上記領域には緑色カラーフィルタ30Gが、青色光発光素子20Bの上記領域には青色カラーフィルタ30Bが夫々形成されている。上述の光は、カラーフィルタ層30を透過することで、より一層色純度が向上した光となって出射される。
図4及び5に、第1の実施形態にかかる有機EL装置の形成方法を示す。図4及び5、そして後述する第2及び第3の実施形態にかかる有機EL装置の形成方法を示す図において、陽極56が形成される領域以外の部分は図示する必要がない。したがって、各々の発光素子の陽極56が形成される領域のみを図示し、他の領域あるいは構成要素(例えば駆動用TFT112等)は図示を省略する。
また、第1の実施形態にかかる陽極56の形成方法は、図2に示すトップエミッション型の有機EL装置を例に示している。図3に示すボトムエミッション型の有機EL装置の場合は、反射層58が半透過反射層54となる。その他の構成要素及び該構成要素の寸法等は同一である。
まず、図4(a)に示すように、3種類全ての発光素子の発光領域85(R,G,B)に、Alからなる反射層58を形成する。形成は素子基板10全面に形成したAl層をフォトリソグラフィーによりパターニングして行なう。かかる工程が第5の工程である。
そして次に、第6の工程として反射層58を覆うように、層厚23nmの窒化シリコン層50を形成する。なお、反射層58は図示しない第2層間絶縁膜72(図2参照)上に形成される。
窒化シリコン層50は、素子基板10(図2参照)の少なくとも表示領域100を含む領域に形成する。かかる工程が第6の工程である。なお、この後、図示しないコンタクトホール形成工程を実施する。窒化シリコン層50及び第2層間絶縁膜72の一部が除去して、ドレイン電極64(図2参照)の一部を露出させる。
次に、図4(b)に示すように、素子基板10の少なくとも表示領域100を含む領域に、スパッタ法により透明導電材料からなる第1の透明材料層としての結晶性ITO層51を形成する。結晶性ITO層51の層厚は54nmである。
そして次に、結晶性ITO層51が形成された素子基板10の、赤色光発光素子20Rと青色光発光素子20Bとにおける、将来的に陽極56が形成される領域(以下、「陽極形成領域」と称する。)80にフォトレジスト層79を形成する。上述したように反射層58が形成される領域が発光領域85(R,G,B)である。また、反射層58は、窒化シリコン層50を介して陽極56で覆われている。したがって、陽極形成領域80は、発光領域85(R,G,B)を完全に含む領域であり、発光領域85と該発光領域の周囲を囲む若干の枠状(あるいは環状)の領域とを合せた領域となる。
次に、図4(c)に示すように、フォトレジスト層79で覆われていない領域の結晶性ITO層51をエッチングにより除去する。そして、次にフォトレジスト層79を除去する。その結果、赤色光発光素子20Rと青色光発光素子20Bとの陽極形成領域80にのみ、島状にパターニングされた層厚54nmの結晶性ITO層51が形成される。ここまでの工程(島状の結晶性ITO層を形成する工程)が第1の工程である。
次に、図4(d)に示すように、素子基板10の少なくとも表示領域100を含む領域に、透明導電材料からなる第2の透明材料層としてのアモルファス(非結晶性)ITO層52を形成する。層厚は86nmである。かかる工程が、第2の工程である。なお、アモルファスITO層52は、結晶性ITO層51の形成に用いたものと同一のスパッタ装置を用い、成膜時の温度を低下させることで形成できる。
次に、図5(a)に示すように、結晶性ITO層51が形成された素子基板10の、赤色光発光素子20Rの陽極形成領域80及び緑色光発光素子20Gの陽極形成領域80に、フォトレジスト層79を形成する。かかる工程が、第3の工程である。なお、上述したように、上記双方の陽極形成領域80は発光領域85(R,G)を含んでいる。
次に、図5(b)に示すように、フォトレジスト層79で覆われていない領域のアモルファスITO層52を、結晶性ITO層51に対して選択的にエッチングして除去する。その結果、青色光発光素子20Bの陽極形成領域80には、島状にパターニングされた結晶性ITO層51が、層厚を54nmに保ったままでそのまま残される。かかる工程が、第4の工程である。
蓚酸((COOH)2)、例えば関東化学社製のITO−06Nをエッチング液に用いれば、上述の選択的なエッチングが可能である。該エッチング液は、アモルファスITO層52を、青色光発光素子20Bの陽極形成領域80を除く領域を覆う窒化シリコン層50に対しても選択的にエッチングできる。
次に、図5(c)に示すように、赤色光発光素子20Rと緑色光発光素子20Gとの陽極形成領域80に形成されているフォトレジスト層79を除去する。かかる工程が、第9の工程である。その結果、赤色光発光素子20Rと青色光発光素子20Bとの陽極形成領域80にのみ、アモルファスITO層52が形成される。
この段階で、赤色光発光素子20Rの陽極形成領域80には、層厚54nmの結晶性ITO層51と層厚86nmのアモルファスITO層52との(合計の層厚が140nmの)積層体が形成される。また、緑色光発光素子20Gの陽極形成領域80には、層厚86nmのアモルファスITO層52が形成される。また、青色光発光素子20Bの陽極形成領域80には、層厚54nmの結晶性ITO層51が形成される。
次に図5(d)に示すように、アモルファスITO層52をアニールして、結晶性ITO層にする。かかる工程が、第10の工程である。上記アニールの条件は150℃で10ないし20分である。かかる条件であれば、反射層58の形成材料であるAlが影響を受けることを回避できる。
アモルファスのITOから結晶性のITOへの変換においては層厚の減少等はなく、層形成時の層厚が維持される。したがって、赤色光発光素子20Rの陽極形成領域80には層厚23nmの窒化シリコン層50と層厚140nmの結晶性ITO層51とからなる層厚163nmの積層体が形成され、緑色光発光素子20Gの陽極形成領域80には層厚23nmの窒化シリコン層50と層厚86nmの結晶性ITO層51とからなる層厚109nmの積層体が形成され、青色光発光素子20Bの陽極形成領域80には層厚23nmの窒化シリコン層50と層厚54nmの結晶性ITO層51とからなる層厚77nmの積層体が形成される。
上述したように、陽極56(図2等参照)は結晶性のITOで形成されている。したがって、上述の、陽極形成領域80に形成したITO層は、陽極56として機能させることができる。したがって、かかる製造方法により膜層形成(成膜)工程及びフォトリソグラフィー工程を2回ずつ繰り返すことで、3通りの夫々異なる層厚の陽極を形成できる。そして、結晶性ITO層51(すなわち陽極56)上に、上述の3種類の画素25間で共通の機能層等を形成すれば、各々の画素の発光素子に形成されるマイクロキャビティ構造15(図2等参照)に、夫々異なる3通りの共振長(90R等)を形成できる。
ここで、窒化シリコン層50と結晶性ITO層51とアモルファスITO層52の層厚は任意に設定できる。したがって、窒化シリコン層50、結晶性ITO層51、及びアモルファスITO層52の3層の膜層の屈折率を1と仮定すると、
窒化シリコン層50の層厚=A、
結晶性ITO層51の層厚=B、
アモルファスITO層52の層厚=C、
とした場合、
赤色光発光素子20Rの共振長=A+B+C・・・・(式1)、
緑色光発光素子20Gの共振長=A+C・・・・・・(式2)、
青色光発光素子20Bの共振長=A+B・・・・・・(式3)、
と、3元一次連立方程式の形となり、各々の発光素子の共振長を任意に設定でき、各々の発光素子で夫々異なる波長範囲の光を強調することができる。したがって、膜層形成工程及びフォトリソグラフィー工程を夫々1回分減らすことにより、製造コストを抑制しつつ表示品質が向上した有機EL装置を得ることができる。
また、膜層形成(成膜)工程及びフォトリソグラフィー工程を各1回減らせるため、工程数削減による不良率低減効果(歩留り向上効果)も得ることができ、製造コストをより一層抑制できる。
なお、図3に示すボトムエミッション型の有機EL装置の場合、上述の第5の工程としての反射層58の形成工程に替わり、第7の工程として半透過反射層54を形成する。そして、上述の第6の工程と同様に、第8の工程として素子基板10(図2参照)の少なくとも表示領域100を含む領域に窒化シリコン層50を形成する。半透過反射層54は層厚14nmと非常に薄いAlからなり、半透過反射性を有している。そのため、白色発光層43Wで生じた光の略半分を透過し、略半分を陰極55へ向けて反射することでマイクロキャビティ構造15を形成できる。
以下は、トップエミッション型の有機EL装置の形成と同様に、コンタクトホール形成工程を経て、上述の第1〜4の工程を実施して、3通りの夫々異なる層厚の陽極56を形成する。
(第2の実施形態)
図6は、第2の実施形態にかかる製造方法の対象となる有機EL装置の全体構成を示す回路構成図である。図1に示す有機EL装置と同様に、表示領域100内に規則的に配置された個々の画素を個別に制御して表示領域100に画像を形成する、アクティブマトリクス型の有機EL装置の回路構成図である。白色光を出射する白画素25Wがあることを除くと、図1に示す有機EL装置と概ね共通の構成である。そこで、共通する構成要素には同一の符号を付与し説明の記載は省略する。
図6に示す有機EL装置は、赤、緑、青の3原色に白色を加えた4色でカラー画像を形成している。白色表示を、白色光を射出する画素を用いて行なうことで、3原色の混合により白色表示を行なう方法に比べて消費電力を低減している。
図7は、第2の実施形態にかかる製造方法の対象となる有機EL装置の模式断面図である。矢印の方向に光を出射するトップエミッション型の有機EL装置の表示領域100内の断面図である。図2に示す有機EL装置に白画素25Wを加えた構成であり、それ以外は図2に示す有機EL装置と概ね共通の構成である。そこで、共通する構成要素には同一の符号を付与し説明の記載は省略する。なお、白色カラーフィルタ30Wは、無色透明の樹脂層である。
図示するように、白画素25Wが備える白色光発光素子20Wの陽極56は、発光領域85W内で階段状に形成され、層厚が3段階に変化している。他の構成要素の層厚は、発光領域85(R,G,B)内で一定である。したがって、マイクロキャビティ構造15内における第1の共振91と第2の共振92と第3の共振93とは夫々異なる値を有している。
白色光を射出させる場合に重要となるのが共振長の設定である。発光素子20内には必然的にマイクロキャビティ構造15が形成される。マイクロキャビティ構造15内の共振長が均一である場合、白色光を生じる発光層を用いても、該白色光に含まれるいずれかの波長の光が共振により強調されるため、完全な白色光を得ることは困難となる。そこで図7に示す有機EL装置では、白色光発光素子20Wの陽極56の層厚を段階的に変化させることにより、マイクロキャビティ構造15により特定の波長の光のみが強調されることを抑制して、より完全に近い白色光を出射している。
なお、上記の有機EL装置において、第1の共振91は赤色光発光素子20Rの共振長90Rと同一であり、第2の共振92は緑色光発光素子20Gの共振長90Gと同一であり、第3の共振93は青色光発光素子20Bの共振長90Bと同一である。したがって、図4〜5に示す第1の実施形態の製造方法と同一の工程を白色光発光素子20Wの陽極形成領域80(図8等参照)内で実施することで、他の工程を加えることなく陽極56を階段状に形成できる。
図8及び9に、第2の実施形態にかかる有機EL装置の形成方法を示す。上述したように、第1の実施形態の製造方法と同一の工程を、他の3種類の画素に実施しつつ、白色光発光素子20Wの陽極形成領域80でも実施している。したがって図8の(a)〜(d)は、図4の(a)〜(d)に対応しており、同様に、図9の(a)〜(d)は、図5の(a)〜(d)に対応している。例えば、白画素25Wの陽極形成領域80で図8(a)に示す工程が行なわれている間には、他の3種類の画素の陽極形成領域80においても、図4(a)に示す工程が行なわれている。
まず、図8(a)に示すように、白色光発光素子20Wの第2層間絶縁膜72(図2参照)上における発光領域85Wに、Al層をフォトリソグラフィーによりパターニングして反射層58を形成する。そして次に、反射層58を覆うように、層厚23nmの窒化シリコン層50を形成する。
次に、図8(b)に示すように、素子基板10の少なくとも表示領域100を含む領域に、層厚54nmの結晶性ITO層51を形成する。そして次に、陽極形成領域80を構成する3つのサブ領域のうちの第1のサブ領域81と第3のサブ領域83とにフォトレジスト層79を形成する。
なお、上記3つのサブ領域の各々は、陽極形成領域80の一部を含むと共に、発光領域85(R,G,B)の一部を含んでいる。
次に、図8(c)に示すように、フォトレジスト層79で覆われていない領域の結晶性ITO層51をエッチングにより除去した後、フォトレジスト層79を除去する。その結果、第1のサブ領域81と第3のサブ領域83とに、島状にパターニングされた層厚54nmの結晶性ITO層51が形成される。
次に、図8(d)に示すように、少なくとも陽極形成領域80を含む領域に、層厚86nmのアモルファスITO層52を形成する。第1のサブ領域81と第3のサブ領域83とに、層厚54nmの結晶性ITO層51と層厚86nmのアモルファスITO層52との積層体(層厚140nm)が形成され、第2のサブ領域82には窒化シリコン層50の上に層厚86nmのアモルファスITO層52が直接形成される。
次に、図9(a)に示すように、第1のサブ領域81と第2のサブ領域82とに、アモルファスITO層52を覆うようにフォトレジスト層79を形成する。
次に、図9(b)に示すように、フォトレジスト層79で覆われていない領域のアモルファスITO層52を、結晶性ITO層51に対して選択的にエッチングして除去する。エッチング条件は第1の実施形態で用いたものと同一である。その結果、第3のサブ領域83ではアモルファスITO層52が除去されて、結晶性ITO層51が露出する。
次に、図9(c)に示すように、フォトレジスト層79を全て除去する。以上の工程により、第1のサブ領域81には、層厚54nmの結晶性ITO層51と層厚86nmのアモルファスITO層52との(合計の層厚が140nmの)積層体が形成される。また、第2のサブ領域82には、層厚86nmのアモルファスITO層52が形成される。また、第3のサブ領域83には、層厚54nmの結晶性ITO層51が形成される。
次に、図9(d)に示すように、アモルファスITO層52を加熱して、結晶性ITO層51と同質の結晶性ITO層にする。その結果、第1のサブ領域81には層厚140nmの結晶性ITO層51が形成され、第2のサブ領域82には層厚86nmの結晶性ITO層51が形成され、第3のサブ領域83には層厚54nmの結晶性ITO層51が形成される。
上述したように、陽極形成領域80に形成した結晶性ITO層は、陽極56として機能させることができる。したがって、かかる製造方法により膜層形成工程及びフォトリソグラフィー工程を2回ずつ繰り返すことで、1つの発光領域85内でサブ領域毎に夫々異なる3通りの層厚を有する階段状の陽極56を形成でき、1つのマイクロキャビティ構造15内に互いに異なる3通り共振長を設定できる。その結果、特定の波長の光のみが強調されて白色光が着色されることを抑制でき、製造コストを抑制しつつ、表示品質が向上し消費電力が低減された有機EL装置を得ることができる。
(第3の実施形態)
図10は、第3の実施形態にかかる製造方法の対象となる有機EL装置の模式断面図である。矢印の方向に光を出射するトップエミッション型の有機EL装置の、表示領域100(図1参照)内の断面図である。図2に示す有機EL装置に3原色以外の第4の色の光を発光する第4の発光素子22を備え第4の色の光を出射する第4の画素24を加えた構成であり、その他の構成は、発光層を除いて、図2に示す有機EL装置と略同一である。そのため、共通する構成要素には同一の符号を付与し説明の記載は省略している。
本実施形態にかかる有機EL装置は、発光素子20毎に夫々異なる発光層が形成されている。すなわち、赤色光発光素子20Rには赤色光発光層43Rが、緑色光発光素子20Gには緑色光発光層43Gが、青色光発光素子20Bには青色光発光層43Bが、そして、第4の発光素子22には第4の発光層44が、夫々形成されている。各々の画素が発光する光の色に合わせて発光素子20毎に異なる発光層を形成し、さらに共振により各々の画素が発光する波長範囲の光を強調することで、より一層表示品質を向上させている。
上記第4の色の光は白色光ではない。したがって、第4のカラーフィルタ34は無色ではなく、該第4の色の波長範囲を除く範囲の波長の光を吸収する樹脂層である。また、第4の発光素子22の発光領域は、第4の発光領域84と称する。第4の発光領域84には、他の画素の発光領域と同様に、第4の色の光を強調することが可能な第4の共振長94を有するマイクロキャビティ構造15が形成されている。
図11及び12に、第3の実施形態にかかる有機EL装置の形成方法を示す。第1の実施形態で述べたように、陽極56が形成される領域以外の部分は図示する必要がない。したがって、各々の発光素子の陽極形成領域80のみを図示し、他の領域あるいは構成要素は図示を省略する。
まず、図11(a)に示すように、反射層58が形成されている素子基板10(図2等参照)の、少なくとも表示領域100(図1参照)を含む領域に、第2の窒化シリコン層49を形成する。第2の窒化シリコン層49の層厚は任意であり、第4の色の波長に基づいて決定することが好ましい。そして、第2の窒化シリコン層49を形成後、第4の発光領域84にフォトレジスト層79を形成する。
次に、図11(b)に示すように、第2の窒化シリコン層49をエッチングして、フォトレジスト層79が形成されている領域以外の領域から除去する。第4の発光領域84にのみ、第2の窒化シリコン層49が形成される。
次に、図11(c)に示すように、素子基板10の少なくとも表示領域100を含む領域に、窒化シリコン層50を形成する。第4の発光領域84では、窒化シリコン層50と第2の窒化シリコン層49との積層体が形成される。すなわち、他の発光素子の窒化シリコン層50よりも層厚が厚い窒化シリコン層が形成された状態となる。
次に、図11(d)に示すように、素子基板10の少なくとも表示領域100を含む領域に、結晶性ITO層51を形成する。そして、結晶性ITO層51が形成された素子基板10の、赤色光発光素子20Rの陽極形成領域80、及び青色光発光素子20Bの陽極形成領域80に、フォトレジスト層79を形成する。なお、上述したように、上記双方の陽極形成領域80は発光領域85(R,B)を含んでいる。
次に、図11(e)に示すように、フォトレジスト層79で覆われていない領域の結晶性ITO層51をエッチングして除去する。そして、上記エッチング後にフォトレジスト層79を除去する。赤色光発光素子20Rの陽極形成領域80、及び青色光発光素子20Bの陽極形成領域80に、島状にパターニングされた結晶性ITO層51が形成される。
次に、図12(a)に示すように、素子基板10の少なくとも表示領域100を含む領域に、アモルファスITO層52を形成する。
次に、図12(b)に示すように、アモルファスITO層52が形成された素子基板10の、赤色光発光素子20Rと第4の発光素子22と緑色光発光素子20Gとの陽極形成領域80にフォトレジスト層79を形成する。なお、上述したように、緑色光発光素子20Gの陽極形成領域80は第2の発光領域85Gを含んでいる。
次に、図12(c)に示すように、フォトレジスト層79で覆われていない領域のアモルファスITO層52を、結晶性ITO層51に対して選択的にエッチングして除去する。エッチング条件は第1の実施形態で用いたものと同一である。その結果、青色光発光素子20Bの陽極形成領域80ではアモルファスITO層52が除去されて、結晶性ITO層51が露出する。
次に、図12(d)に示すように、フォトレジスト層79を除去する。赤色光発光素子20Rと第4の発光素子22と緑色光発光素子20Gとの陽極形成領域80に、島状にパターニングされたアモルファスITO層52が形成される。
以上の工程を行なった結果、赤色光発光素子20Rの陽極形成領域80には、窒化シリコン層50と結晶性ITO層51とアモルファスITO層52との積層体が形成される。そして、第4の発光素子22の陽極形成領域80には、窒化シリコン層50と第2の窒化シリコン層49とアモルファスITO層52との積層体が形成される。そして、緑色光発光素子20Gの陽極形成領域80には、窒化シリコン層50とアモルファスITO層52との積層体が形成される。そして、青色光発光素子20Bの陽極形成領域80には、窒化シリコン層50と結晶性ITO層51との積層体が形成される。つまり、4種類の層厚の薄膜から選択された2ないし3種類の薄膜からなる積層体が形成される。したがって、上述の4種類の層厚を任意に設定できる場合、4元一次連立方程式の形となり、4種類の発光素子の陽極形成領域80に形成される積層体の全体の層厚を任意に設定できる。
次に、図12(e)に示すように、アモルファスITO層52を加熱して、結晶性ITO層51と同質の結晶性ITO層にする。その結果、赤色光発光素子20Rの陽極形成領域80では、結晶性ITO層51とアモルファスITO層52とが一体化して上記双方の薄膜の厚さを合計した層厚の結晶性ITO層51が形成される。また、第4の発光素子22と緑色光発光素子20Gとの陽極形成領域80では、窒化シリコン層の上に結晶性ITO層51が形成される。
上述したように、陽極形成領域80に形成された結晶性のITO層は陽極56として機能させることができる。したがって、かかる製造方法により膜層形成工程及びフォトリソグラフィー工程を3回ずつ繰り返すことで、4通りの夫々異なる層厚の陽極56と窒化シリコン層50との積層体を形成でき、各々の発光素子に形成されるマイクロキャビティ構造15(図2等参照)に、夫々異なる4通りの共振長(90R等)を形成できる。したがって、製造コストを膜層形成工程及びフォトリソグラフィー工程を夫々1回分低減しつつ、表示品質が向上した有機EL装置を得ることができる。
なお、上記各層の層厚は任意であり、第2の窒化シリコン層以外は第1の実施形態と同様に設定してもよく、全く異なる値に設定してもよい。
(電子機器)
次に、上述の第1〜第3の実施形態にかかる有機EL装置を、電子機器としてのモバイル型のパーソナルコンピュータに適用した例について説明する。図13は、このパーソナルコンピュータの構成を示す斜視図である。図13において、パーソナルコンピュータ160は、キーボード162を備えた本体部164と、実施形態にかかる有機EL装置を用いて構成された表示ユニット166と、を備えている。パーソナルコンピュータ160は、製造コストを抑制しつつ表示品質を向上させた表示ユニット166を用いているため、低いコストと高い表示品質を両立している。
なお、上述したパーソナルコンピュータ160以外にも、種々の電子機器に適用することができる。例えば、携帯電話、デジタルスチルカメラ、表示テレビジョン、エンジニアリングワークステーション(EWS)、ベージャ、ワードプロセッサ、ビューファインダ型又はモニタ直視型のビデオレコーダ、電子手帳、電子卓上計算機、カーナビゲーション装置、POS端末、タッチパネルを備えた装置などの電子機器に適用することが可能である。
第1の実施形態の対象となる有機EL装置の全体構成を示す回路構成図。 第1の実施形態の対象となるトップエミッション型の有機EL装置の模式断面図。 第1の実施形態の対象となるボトムエミッション型の有機EL装置の模式断面図。 第1の実施形態にかかる陽極の形成方法を示す図。 第1の実施形態にかかる陽極の形成方法を示す図。 第2の実施形態の対象となる有機EL装置の全体構成を示す回路構成図。 第2の実施形態の対象となるの有機EL装置の模式断面図。 第2の実施形態にかかる陽極の形成方法を示す図。 第2の実施形態にかかる陽極の形成方法を示す図。 第3の実施形態の対象となる有機EL装置の模式断面図。 第3の実施形態にかかる陽極の形成方法を示す図。 第3の実施形態にかかる陽極の形成方法を示す図。 電子機器としてのモバイル型のパーソナルコンピュータを示す図。
符号の説明
10…素子基板、11…対向基板、12…接着層、15…マイクロキャビティ構造、20…発光素子、20B…青色光発光素子、20G…緑色光発光素子、20R…赤色光発光素子、20W…白色光発光素子、22…第4の発光素子、24…第4の画素、25…画素、25B…第3の画素としての青画素、25G…第2の画素としての緑画素、25R…第1の画素としての赤画素、25W…白画素、30…カラーフィルタ層、30B…青色カラーフィルタ、30G…緑色カラーフィルタ、30R…赤色カラーフィルタ、30W…白色カラーフィルタ、34…第4のカラーフィルタ、35…ブラックマトリクス、40…機能層、41…正孔注入輸送層、43B…青色光発光層、43G…緑色光発光層、43R…赤色光発光層、43W…白色光発光層、44…第4の発光層、45…電子注入輸送層、49…第2の透明材料層(もちろん下地に対して選択的にエッチング可能なもの)50…透明材料層としての窒化シリコン層、51…透明導電材料からなる第1の透明材料層としての結晶性ITO層、52…透明導電材料からなる第2の透明材料層としてのアモルファスITO層、54…半透過反射層、55…陰極、56…陽極、58…反射層、59…封止層、60…チャネル領域、62…ゲート電極、64…ドレイン電極、66…ソース電極、70…ゲート絶縁膜、71…第1層間絶縁膜、72…第2層間絶縁膜、73…第3層間絶縁膜、77…隔壁、79…フォトレジスト層、80…陽極形成領域、81…第1のサブ領域、82…第2のサブ領域、83…第3のサブ領域、84…第4の発光領域、85B…第3の発光領域、85G…第2の発光領域、85R…第1の発光領域、90B…青色光発光素子の共振長、90G…緑色光発光素子の共振長、90R…赤色光発光素子の共振長、91…第1の共振長、92…第2の共振長、93…第3の共振長、94…第4の共振長、100…表示領域、102…走査線、104…信号線、106…電源供給線、108…スイッチング用TFT、110…保持容量、112…駆動用TFT、120…走査線駆動回路、130…信号線駆動回路、140…同期信号線、160…パーソナルコンピュータ、162…キーボード、164…本体部、166…表示ユニット。

Claims (12)

  1. 素子基板上に配置された、異なる色の光を夫々出射する複数の画素の各々に、
    反射層と、半透過反射層と、前記反射層と前記半透過反射層との間に形成された、透明導電材料からなる陽極と少なくとも発光層を含む機能層とを備える多層構造体と、を備え、前記発光層で生じた光を前記反射層と前記半透過反射層との間で共振させることにより特定の波長の光を強調できる発光素子、
    を備える表示装置の製造方法であって、
    第1の色の光を出射する第1の画素の前記発光素子が形成される領域である第1の発光領域と、第3の色の光を出射する第3の画素の前記発光素子が形成される領域である第3の発光領域と、に第1の層厚を有する第1の透明材料層を形成する第1の工程と、
    第2の色の光を出射する第2の画素の前記発光素子が形成される領域である第2の発光領域と、前記第1の発光領域と、前記第3の発光領域と、の3つの発光領域を少なくとも含む領域に、前記第1の透明材料層に対して選択的にエッチング可能な第2の層厚を有する第2の透明材料層を形成する第2の工程と、
    前記第1の発光領域と前記第2の発光領域に形成された前記第2の透明材料層上にフォトレジスト層を形成する第3の工程と、
    前記フォトレジスト層で覆われていない領域の前記第2の透明材料層をエッチングして除去する第4の工程と、
    を順に行なうことを特徴とする表示装置の製造方法。
  2. 前記第1の透明材料層及び前記第2の透明材料層は透明導電材料からなることを特徴とする請求項1に記載の表示装置の製造方法。
  3. 請求項1又は2に記載の表示装置の製造方法であって、
    前記半透過反射層は陰極の少なくとも一部を兼ねており、
    前記反射層は前記素子基板と前記陽極との間に形成されており、
    前記表示装置は、前記発光層で生じた光を前記素子基板とは反対の側から出射させるトップエミッション型の表示装置であって、
    前記第1の工程を行なう前に、
    前記第1の発光領域と前記第2の発光領域と前記第3の発光領域とに前記反射層を形成する第5の工程と、
    前記基板上の、少なくとも前記反射層が形成されている領域に、前記反射層を覆う第3の層厚を有する第3の透明材料層を形成する第6の工程と、
    を順に行なうことを特徴とする表示装置の製造方法。
  4. 請求項1又は2に記載の表示装置の製造方法であって、
    前記反射層は陰極の少なくとも一部を兼ねており、
    前記半透過反射層は前記基板と前記陽極との間に形成されており、
    前記表示装置は、前記発光層で生じた光を前記基板の側から出射させるボトムエミッション型の表示装置であって、
    前記第1の工程を行なう前に、
    前記第1の発光領域と前記第2の発光領域と前記第3の発光領域とに前記半透過反射層を形成する第7の工程と、
    前記素子基板上の、少なくとも前記半透過反射層が形成されている領域に、前記半透過反射層を覆う、第3の層厚を有する第3の透明材料層を形成する第8の工程と、
    を順に行なうことを特徴とする表示装置の製造方法。
  5. 前記複数の画素は、少なくとも赤色光を出射する赤画素と、緑色光を出射する緑画素と、青色光を出射する青画素と、の3種類の画素を含むことを特徴とする請求項1〜4のいずれか一項に記載の表示装置の製造方法。
  6. 請求項1〜5のいずれか一項に記載の表示装置の製造方法であって、
    前記第1の透明材料層は結晶性ITOからなり、
    前記第2の透明材料層はアモルファスITOからなり、
    前記第3の透明材料層は窒化シリコンからなることを特徴とする表示装置の製造方法。
  7. 請求項6に記載の表示装置の製造方法であって、
    前記第4の工程の後に、前記フォトレジスト層を除去する第9の工程と、前記第2の透明材料層を加熱することにより結晶化させる第10の工程と、を順に行なうことを特徴とする表示装置の製造方法。
  8. 請求項1〜7のいずれか一項に記載の表示装置の製造方法であって、
    前記発光層は有機エレクトロルミネッセンス層であり、前記発光素子は有機エレクトロルミネッセンス素子であることを特徴とする表示装置の製造方法。
  9. 請求項1〜8のいずれか一項に記載の表示装置の製造方法で製造されたことを特徴とする表示装置。
  10. 請求項9に記載の表示装置を備えることを特徴とする電子機器。
  11. 3以上のサブ領域を含む発光領域に、反射層と、半透過反射層と、前記反射層と前記半透過反射層との間に形成された、透明導電材料からなる陽極と少なくとも発光層を含む機能層とを備える多層構造体と、を備え、前記発光層で生じた光を前記反射層と前記半透過反射層との間で共振させることできる発光素子の製造方法であって、
    第1のサブ領域と、第3のサブ領域と、に第1の層厚を有する第1の透明導電材料層を形成する第1の工程と、
    第2のサブ領域と、前記第1のサブ領域と、前記第3のサブ領域と、を含む領域に、前記第1の透明導電材料層に対して選択的にエッチング可能な第2の層厚を有する第2の透明導電材料層を形成する第2の工程と、
    前記第1のサブ領域と前記第2のサブ領域に形成された前記第2の透明導電材料層上にフォトレジスト層を形成する第3の工程と、
    前記フォトレジスト層で覆われていない領域の前記第2の透明導電材料層をエッチングして除去する第4の工程と、
    を順に行なうことを特徴とする発光素子の製造方法。
  12. 請求項11に記載の発光素子の製造方法であって、
    前記発光層は有機エレクトロルミネッセンス層であることを特徴とする発光素子の製造方法。
JP2007301308A 2007-11-21 2007-11-21 表示装置及び有機el装置の製造方法、有機el装置及び電子機器 Withdrawn JP2009129604A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301308A JP2009129604A (ja) 2007-11-21 2007-11-21 表示装置及び有機el装置の製造方法、有機el装置及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301308A JP2009129604A (ja) 2007-11-21 2007-11-21 表示装置及び有機el装置の製造方法、有機el装置及び電子機器

Publications (1)

Publication Number Publication Date
JP2009129604A true JP2009129604A (ja) 2009-06-11

Family

ID=40820348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301308A Withdrawn JP2009129604A (ja) 2007-11-21 2007-11-21 表示装置及び有機el装置の製造方法、有機el装置及び電子機器

Country Status (1)

Country Link
JP (1) JP2009129604A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056016A (ja) * 2008-08-29 2010-03-11 Fujifilm Corp カラー表示装置及びその製造方法
WO2011065292A1 (ja) * 2009-11-26 2011-06-03 シャープ株式会社 タッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法
WO2012019528A1 (zh) * 2010-08-13 2012-02-16 牧东光电(苏州)有限公司 触控面板线路单边外扩的方法
JP2014078536A (ja) * 2010-03-15 2014-05-01 Pioneer Electronic Corp 有機el装置
US8969111B2 (en) 2011-09-26 2015-03-03 Sharp Kabushiki Kaisha Method for manufacturing display device
US9269924B2 (en) 2013-06-05 2016-02-23 Seiko Epson Corporation Electro-optical apparatus, manufacturing method for electro-optical apparatus, and electronic device
WO2021155627A1 (zh) * 2020-02-07 2021-08-12 武汉华星光电半导体显示技术有限公司 Oled 显示装置
CN113299695A (zh) * 2021-04-14 2021-08-24 福州大学 一种色转换层的像素隔离矩阵结构及方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056016A (ja) * 2008-08-29 2010-03-11 Fujifilm Corp カラー表示装置及びその製造方法
WO2011065292A1 (ja) * 2009-11-26 2011-06-03 シャープ株式会社 タッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法
JP5323945B2 (ja) * 2009-11-26 2013-10-23 シャープ株式会社 タッチパネルの製造方法、及び、タッチパネルを備えた表示装置の製造方法
US8709265B2 (en) 2009-11-26 2014-04-29 Sharp Kabushiki Kaisha Method for manufacturing touch panel and method for manufacturing display device provided with touch panel
JP2014078536A (ja) * 2010-03-15 2014-05-01 Pioneer Electronic Corp 有機el装置
WO2012019528A1 (zh) * 2010-08-13 2012-02-16 牧东光电(苏州)有限公司 触控面板线路单边外扩的方法
US8969111B2 (en) 2011-09-26 2015-03-03 Sharp Kabushiki Kaisha Method for manufacturing display device
US9269924B2 (en) 2013-06-05 2016-02-23 Seiko Epson Corporation Electro-optical apparatus, manufacturing method for electro-optical apparatus, and electronic device
US9634067B2 (en) 2013-06-05 2017-04-25 Seiko Epson Corporation Electro-optical apparatus, manufacturing method for electro-optical apparatus, and electronic device
US10115778B2 (en) 2013-06-05 2018-10-30 Seiko Epson Corporation Electro-optical apparatus, manufacturing method for electro-optical apparatus, and electronic device
US10541289B2 (en) 2013-06-05 2020-01-21 Seiko Epson Corporation Electro-optical apparatus, manufacturing method for electro-optical apparatus, and electronic device
US10991779B2 (en) 2013-06-05 2021-04-27 Seiko Epson Corporation Electro-optical apparatus, manufacturing method for electro-optical apparatus, and electronic device
WO2021155627A1 (zh) * 2020-02-07 2021-08-12 武汉华星光电半导体显示技术有限公司 Oled 显示装置
CN113299695A (zh) * 2021-04-14 2021-08-24 福州大学 一种色转换层的像素隔离矩阵结构及方法
CN113299695B (zh) * 2021-04-14 2024-01-02 福州大学 一种色转换层的像素隔离矩阵结构及方法

Similar Documents

Publication Publication Date Title
JP7216862B2 (ja) 発光装置
KR101454752B1 (ko) 유기발광다이오드표시장치 및 그 제조 방법
JP4548253B2 (ja) 有機エレクトロルミネッセンス装置、及び有機エレクトロルミネッセンス装置の製造方法
US11424307B2 (en) Organic light-emitting diode apparatus with color film shielding layer, fabrication method thereof, display panel, and display apparatus
KR102261610B1 (ko) 유기 발광 표시 장치
JP2009129604A (ja) 表示装置及び有機el装置の製造方法、有機el装置及び電子機器
JP2005197011A (ja) 表示装置及びその製造方法
JP2005038833A (ja) 発光装置及び発光装置の作製方法
JP2010244693A (ja) 有機el装置および有機el装置の製造方法、ならびに電子機器
KR20160072010A (ko) 유기 발광 표시 장치 및 이의 제조 방법
JP2004119197A (ja) 有機elパネルおよびその製造方法、それを用いた電気光学パネル並びに電子機器
JP2010211984A (ja) 有機el装置および有機el装置の製造方法、ならびに電子機器
JP2010272447A (ja) 有機el装置、有機el装置の製造方法、および電子機器
JP2013089444A (ja) 有機発光装置、有機発光装置の製造方法及び電子機器
US9472583B2 (en) Method of manufacturing display apparatus using etching buffer layer
JP2010251095A (ja) 有機el装置および有機el装置の製造方法、ならびに電子機器
JP4284971B2 (ja) 有機elパネルの製造方法
JP2005189304A (ja) 電気光学装置、電気光学装置の製造方法、電子機器
JP2012174356A (ja) 表示装置およびその製造方法
US20240147811A1 (en) Display device and manufacturing method thereof
US20240147774A1 (en) Display device and manufacturing method thereof
JP2010040355A (ja) 基板の処理方法、成膜方法及び有機el装置の製造方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201