WO2014021223A1 - タッチパネルおよびタッチパネルの製造方法 - Google Patents
タッチパネルおよびタッチパネルの製造方法 Download PDFInfo
- Publication number
- WO2014021223A1 WO2014021223A1 PCT/JP2013/070353 JP2013070353W WO2014021223A1 WO 2014021223 A1 WO2014021223 A1 WO 2014021223A1 JP 2013070353 W JP2013070353 W JP 2013070353W WO 2014021223 A1 WO2014021223 A1 WO 2014021223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- touch panel
- patterning
- electrode
- conductive film
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0445—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04107—Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04111—Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/032—Materials
- H05K2201/0326—Inorganic, non-metallic conductor, e.g. indium-tin oxide [ITO]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10128—Display
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
- H05K3/061—Etching masks
- H05K3/064—Photoresists
Definitions
- the present invention relates to a touch panel and a touch panel manufacturing method, and more particularly to a cover glass integrated touch panel and a touch panel manufacturing method.
- the touch panel is used with a cover glass or a cover film.
- the touch panel and the cover glass are bonded to each other, bubbles and foreign matters may be mixed in, which causes a decrease in yield.
- a cover glass-integrated touch panel configuration in which a sensor electrode is formed on the back surface (the surface opposite to the operation surface) of the cover glass to form a touch panel is known. That is, in this configuration, the touch panel substrate also serves as a cover glass (cover film).
- an electrode extending in a first direction and an electrode extending in a second direction, which is a direction intersecting the first direction, are provided on one side of one transparent substrate.
- a projected capacitive touch panel is described in which a black mask portion (light-shielding portion) made of a light-shielding material is provided around the transparent substrate.
- the black mask portion is provided so as to cover, for example, the electrode wiring formed on the peripheral portion of the transparent substrate and the signal processing connection portion from the viewing side. It is disclosed that a pigment type color filter material is used as the black mask portion.
- a configuration is known in which a light shielding portion is provided in a non-sensing area of the touch panel, and wiring and the like are formed so as not to be visually recognized by the user.
- a conductive film such as a sensor electrode or a wiring is formed across a region where the light shielding portion is formed and a region where the light shielding portion is not formed, the conductive film may be interrupted by a step due to the light shielding portion. .
- the surface roughness of the light shielding part is large, it becomes difficult to form a homogeneous conductive film on the light shielding part. Therefore, it is necessary to form a planarizing film that covers the light shielding portion.
- the number of manufacturing steps increases.
- the touch panel manufacturing method disclosed herein includes a sensor electrode including a first electrode and a second electrode that intersect each other in plan view, an interlayer insulating film that insulates the first electrode from the second electrode, and the sensor electrode.
- a touch panel manufacturing method comprising: a wiring electrically connected to the wiring; a light shielding portion formed so as to overlap the wiring in a plan view; and a planarization film formed to cover the light shielding portion, Patterning a first transparent conductive film to form a layer including a part of the sensor electrode; and patterning a high conductive film having a lower electrical resistance than the first transparent conductive film to form a layer including the wiring
- the touch panel disclosed herein is a touch panel including a sensor electrode including a first electrode and a second electrode that intersect each other in plan view, and a first transparent conductive layer formed by patterning the first transparent conductive film; A high conductive layer formed by patterning a high conductive film having a lower electrical resistance than the first transparent conductive film, a light shielding layer formed by patterning the light shielding film, and an insulation formed by patterning the insulating film A layer.
- the first transparent conductive layer includes a part of the sensor electrode, and the light shielding layer and the insulating layer are formed between the first transparent conductive layer and the highly conductive layer.
- a touch panel manufacturing method with a reduced number of steps can be obtained. Moreover, according to this invention, the touch panel which can be manufactured with few processes is obtained.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a display device with a touch panel according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing a schematic configuration of a display device with a touch panel according to another embodiment of the present invention.
- FIG. 3 is a plan view showing a schematic configuration of the touch panel according to the first embodiment of the present invention.
- 4 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, D-D ′, and E-E ′ in FIG. 3.
- FIG. 5 is a plan view showing one of the X electrodes extracted.
- FIG. 6 is a plan view showing one of the Y electrodes extracted.
- FIG. 5 is a plan view showing one of the X electrodes extracted.
- FIG. 7A is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first embodiment of the present invention.
- FIG. 7B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first embodiment of the present invention.
- FIG. 7C is a cross-sectional view for explaining the touch panel manufacturing method according to the first embodiment of the present invention.
- FIG. 7D is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first embodiment of the present invention.
- FIG. 7E is a cross-sectional view for explaining the touch panel manufacturing method according to the first embodiment of the present invention.
- FIG. 8 is a plan view illustrating a schematic configuration of the touch panel according to the first comparative example.
- FIG. 9 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, D-D ′, and E-E ′ in FIG. 8.
- FIG. 10A is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first comparative example.
- FIG. 10B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first comparative example.
- FIG. 10C is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first comparative example.
- FIG. 10D is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first comparative example.
- FIG. 10E is a cross-sectional view for explaining the manufacturing method of the touch panel according to the first comparative example.
- FIG. 10F is a cross-sectional view for illustrating the method for manufacturing the touch panel according to the first comparative example.
- FIG. 10G is a cross-sectional view for explaining the method for manufacturing the touch panel according to the first comparative example.
- FIG. 11 is a plan view illustrating a schematic configuration of a touch panel according to a second comparative example.
- FIG. 12 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, D-D ′, and E-E ′ in FIG. 11.
- FIG. 13A is a cross-sectional view for explaining the method for manufacturing the touch panel according to the second comparative example.
- FIG. 13A is a cross-sectional view for explaining the method for manufacturing the touch panel according to the second comparative example.
- FIG. 13B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the second comparative example.
- FIG. 13C is a cross-sectional view for explaining the method for manufacturing the touch panel according to the second comparative example.
- FIG. 13D is a cross-sectional view for explaining the method for manufacturing the touch panel according to the second comparative example.
- FIG. 13E is a cross-sectional view for explaining the method for manufacturing the touch panel according to the second comparative example.
- FIG. 14 is a top view which shows schematic structure of the touchscreen concerning the 2nd Embodiment of this invention.
- FIG. 15 is a cross-sectional view taken along lines A-A ′, B-B ′, D-D ′, and E-E ′ in FIG. 14.
- FIG. 16 is a top view which shows schematic structure of the touchscreen concerning the 3rd Embodiment of this invention.
- FIG. 17 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, D-D ′, and E-E ′ in FIG. 16.
- FIG. 18A is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
- FIG. 18B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
- FIG. 18C is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
- FIG. 18A is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
- FIG. 18B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
- FIG. 18C is a cross-
- FIG. 18D is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
- FIG. 18E is a cross-sectional view for explaining the method for manufacturing the touch panel according to the third embodiment of the present invention.
- FIG. 19 is a plan view showing a schematic configuration of a touch panel according to the fourth embodiment of the present invention.
- 20 is a cross-sectional view taken along lines A-A ′, B-B ′, D-D ′, and E-E ′ in FIG. 19.
- FIG. 21: is a top view which shows schematic structure of the touchscreen concerning the 5th Embodiment of this invention.
- FIG. 21 is a top view which shows schematic structure of the touchscreen concerning the 5th Embodiment of this invention.
- FIG. 22 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, D-D ′, and E-E ′ in FIG. 21.
- FIG. 23A is sectional drawing for demonstrating the manufacturing method of the touchscreen concerning the 5th Embodiment of this invention.
- FIG. 23B is sectional drawing for demonstrating the manufacturing method of the touchscreen concerning the 5th Embodiment of this invention.
- FIG. 23C is a cross-sectional view for explaining the method for manufacturing the touch panel according to the fifth embodiment of the present invention.
- FIG. 23D is a cross-sectional view for describing the method for manufacturing the touch panel according to the fifth embodiment of the present invention.
- FIG. 23A is sectional drawing for demonstrating the manufacturing method of the touchscreen concerning the 5th Embodiment of this invention.
- FIG. 23B is sectional drawing for demonstrating the manufacturing method of the touchscreen concerning the 5th Embodiment of this invention.
- FIG. 23C is a cross-sectional view
- FIG. 23E is a cross-sectional view for explaining the method for manufacturing the touch panel according to the fifth embodiment of the present invention.
- FIG. 23F is a cross-sectional view for explaining the method for manufacturing the touch panel according to the fifth embodiment of the present invention.
- FIG. 24 is a plan view showing a schematic configuration of a touch panel according to the sixth embodiment of the present invention.
- FIG. 25 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, D-D ′, and E-E ′ in FIG. 24.
- FIG. 26A is a cross-sectional view for explaining the method for manufacturing the touch panel according to the sixth embodiment of the present invention.
- FIG. 26A is a cross-sectional view for explaining the method for manufacturing the touch panel according to the sixth embodiment of the present invention.
- FIG. 26B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the sixth embodiment of the present invention.
- FIG. 26C is a cross-sectional view for explaining the touch panel manufacturing method according to the sixth embodiment of the present invention.
- FIG. 26D is a cross-sectional view for explaining the method for manufacturing the touch panel according to the sixth embodiment of the present invention.
- FIG. 26E is a cross-sectional view for explaining the method for manufacturing the touch panel according to the sixth embodiment of the present invention.
- FIG. 26F is a cross-sectional view for explaining the method for manufacturing the touch panel according to the sixth embodiment of the present invention.
- FIG. 27 is a plan view showing a schematic configuration of a touch panel according to the seventh embodiment of the present invention.
- FIG. 27 is a plan view showing a schematic configuration of a touch panel according to the seventh embodiment of the present invention.
- FIG. 28 is a cross-sectional view taken along lines A-A ′, B-B ′, D-D ′, and E-E ′ in FIG. 27.
- FIG. 29 is a plan view showing a schematic configuration of a touch panel according to an eighth embodiment of the present invention.
- FIG. 30 is a cross-sectional view taken along lines A-A ′, B-B ′, C-C ′, D-D ′, and E-E ′ in FIG. 29.
- FIG. 31A is a cross-sectional view for explaining the touch panel manufacturing method according to the eighth embodiment of the present invention.
- FIG. 31B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the eighth embodiment of the present invention.
- FIG. 31A is a cross-sectional view for explaining the touch panel manufacturing method according to the eighth embodiment of the present invention.
- FIG. 31B is a cross-sectional view for explaining the method for manufacturing the touch panel according to the eighth embodiment of the present invention.
- FIG. 31C is a cross-sectional view for explaining the method for manufacturing the touch panel according to the eighth embodiment of the present invention.
- FIG. 31D is a cross-sectional view for explaining the touch panel manufacturing method according to the eighth embodiment of the present invention.
- FIG. 31E is a cross-sectional view for explaining the touch panel manufacturing method according to the eighth embodiment of the present invention.
- FIG. 31F is a cross-sectional view for describing the method for manufacturing the touch panel according to the eighth embodiment of the present invention.
- FIG. 32 is a table summarizing the configuration of the touch panel according to each embodiment of the present invention.
- FIG. 33 is a table summarizing the configuration of the touch panel according to each embodiment of the present invention and the configuration of the touch panel according to the comparative example.
- a touch panel manufacturing method includes a sensor electrode including a first electrode and a second electrode that intersect each other in plan view, an interlayer insulating film that insulates the first electrode and the second electrode, and A method of manufacturing a touch panel, comprising: a wiring electrically connected to the sensor electrode; a light shielding portion formed so as to overlap the wiring in plan view; and a planarization film formed so as to cover the light shielding portion.
- the first transparent conductive film is patterned to form a layer including a part of the sensor electrode; and the high conductive film having a lower electrical resistance than the first transparent conductive film is patterned to form the wiring.
- the step of patterning the light shielding film and the step of patterning the insulating film are performed between the step of patterning the first transparent conductive film and the step of patterning the high conductive film (first aspect).
- the planarizing film and the interlayer insulating film are formed by one patterning. Thereby, the number of steps (number of masks) can be reduced as compared with the case where these are separately patterned.
- the step of patterning the light shielding film and the step of patterning the insulating film are performed between the step of patterning the first transparent conductive film and the step of patterning the high conductive film.
- an insulating film can be formed between the layer formed by patterning the first transparent conductive film and the layer formed by patterning the high conductive film.
- the layer formed by patterning the first transparent conductive film includes a part of the sensor electrode. Therefore, the other part of the sensor electrode can be formed with the insulating film interposed therebetween. Thereby, the 1st electrode and 2nd electrode which mutually cross
- the layer formed by patterning the first transparent conductive film and the layer formed by patterning the high conductive film may intersect without short-circuiting. it can.
- the light shielding portion can be covered with the planarizing film. Therefore, the first transparent conductive film or the high conductive film is not interrupted by the step due to the light shielding portion. Further, even when the surface roughness of the light shielding portion is large, the first transparent conductive film or the high conductive film can be formed uniformly.
- the high conductive film includes a metal film and a light-shielding conductive film having a light absorption rate higher than that of the metal film (second aspect).
- the high conductive film includes a light-shielding conductive film having a high light absorption rate. This makes it difficult to visually recognize a metal film having a high reflectance.
- the light-shielding conductive film is preferably an indium oxide film (third aspect).
- the metal film and the light-shielding conductive film can be etched with the same etchant. Therefore, the high conductive film can be patterned at a time.
- a part of the sensor electrode may be formed by the high conductive film (fourth aspect).
- a part of the sensor electrode and the wiring are formed by one patterning. Thereby, the number of steps can be reduced as compared with the case where these are separately patterned.
- the step of patterning the first transparent conductive film, the step of patterning the light shielding film, the step of patterning the insulating film, and the step of patterning the high conductive film may be performed in this order.
- the step of patterning the high conductive film, the step of patterning the light shielding film, the step of patterning the insulating film, and the step of patterning the first transparent conductive film may be performed in this order.
- Any one of the first to third aspects may further include a step of patterning the second transparent conductive film, and a part of the sensor electrode may be formed by the second transparent conductive film (seventh aspect). ).
- the sensor electrode becomes less visible.
- the step of patterning the second transparent conductive film, the step of patterning the high conductive film, the step of patterning the light shielding film, the step of patterning the insulating film, and the first transparent conductive film may be performed in this order (eighth aspect).
- the second electrode includes a plurality of island-shaped electrodes and a connecting portion that connects the adjacent island-shaped electrodes, and the first electrode and the island-shaped electrode are formed of the first transparent electrode.
- the connection part may be formed of the second transparent conductive film (a ninth aspect).
- the second electrode includes a plurality of island-shaped electrodes and a connecting portion that connects the adjacent island-shaped electrodes, and the first electrode and the island-shaped electrode are formed of the second transparent electrode.
- the connection part may be formed of the first transparent conductive film (tenth aspect).
- the step of patterning the first transparent conductive film, the step of patterning the light shielding film, the step of patterning the insulating film, the step of patterning the second transparent conductive film, and the high conductive film May be performed in this order (eleventh aspect).
- a touch panel is a touch panel including a sensor electrode including a first electrode and a second electrode that intersect with each other in a plan view, and is formed by patterning a first transparent conductive film.
- the first transparent conductive layer includes a part of the sensor electrode, and the light shielding layer and the insulating layer are formed between the first transparent conductive layer and the highly conductive layer (first configuration).
- the high conductive film preferably includes a metal film and a light-shielding conductive film having a light absorption rate higher than that of the metal film (second configuration).
- the light-shielding conductive film is preferably an indium oxide film (third configuration).
- the highly conductive layer may include a part of the sensor electrode (fourth configuration).
- a second transparent conductive layer formed by patterning a second transparent conductive film is further provided, and the second transparent conductive layer may include a part of the sensor electrode.
- Good (fifth configuration).
- FIG. 1 is a cross-sectional view illustrating a schematic configuration of a display device 100 with a touch panel according to an embodiment of the present invention.
- a display device with a touch panel 100 includes a touch panel 1, a liquid crystal display device 101, polarizing plates 102 and 103, and a patch 104.
- Polarizing plates 102 and 103 are disposed on the front and back surfaces of the liquid crystal display device 101.
- the touch panel 1 is attached to the polarizing plate 103 by the adhesive material 104.
- the touch panel 1 has a sensor electrode on the surface on the liquid crystal display device 101 side, which will be described in detail later.
- the sensor electrode forms a capacitance between the sensor electrode and a finger close to the touch panel 1.
- the touch panel 1 detects the position of a finger or the like based on the change in capacitance.
- a light shielding portion is formed in a predetermined area of the touch panel 1.
- the light shielding portion can hide a portion that the user does not want to see.
- the parts that the user does not want to see are, for example, the wiring and terminals of the touch panel 1 and the terminals of the liquid crystal display device 101.
- the liquid crystal display device 101 includes a color filter substrate 1011, a TFT (Thin Film Transistor) substrate 1014, a sealing material 1012, and a liquid crystal 1013.
- the color filter substrate 1011 and the TFT substrate 1014 are arranged to face each other.
- a sealing material 1012 is formed on the peripheral edge portions of the color filter substrate 1011 and the TFT substrate 1014, and a liquid crystal 1013 is sealed therein.
- the TFT substrate 1014 has a larger area than the color filter substrate 1011. In a region where the TFT substrate 1014 and the color filter substrate 1011 are pasted together, a terminal (not shown) is formed. This terminal is connected to a drive circuit (not shown) via, for example, an FPC (Flexible Printed Circuit).
- FPC Flexible Printed Circuit
- the TFT substrate 1014 includes pixel electrodes and TFTs (not shown).
- the pixel electrode and the TFT are formed in a matrix.
- a TFT including amorphous silicon or an In—Ga—Zn—O based semiconductor can be used, but a TFT including an In—Ga—Zn—O based semiconductor with high electron mobility is preferably used.
- the color filter substrate 1011 includes a color filter (not shown) and a common electrode.
- the color filter is regularly formed so as to correspond to the pixel electrode of the TFT substrate 1014.
- the common electrode is uniformly formed in the active area of the TFT substrate 1014.
- the liquid crystal display device 101 drives the TFT of the TFT substrate 1014, generates an electric field between any pixel electrode and the common electrode, and controls the orientation of the liquid crystal 1013.
- the liquid crystal display device 101 controls transmission and non-transmission of light for each pixel by the orientation of the liquid crystal 1013 and the polarizing plates 102 and 103. As a result, an image is displayed on the liquid crystal display device 101.
- the substrate of the touch panel 1 also serves as a cover glass or a cover film. That is, it is not necessary to further bond a cover glass or a cover film on the touch panel 1. Thereby, a manufacturing process can be simplified. Moreover, the fall of the yield by mixing of the bubble and foreign material which occur when bonding the touch panel 1 and a cover glass or a cover film can be avoided. Furthermore, by omitting a member such as a cover glass, the liquid crystal display device 101 can be thinned and the light transmittance can be improved.
- FIG. 2 is a cross-sectional view showing a schematic configuration of a display device 200 with a touch panel according to another embodiment of the present invention.
- the display device with a touch panel 200 further includes a switch liquid crystal panel 105, a polarizing plate 106, and an adhesive material 107 in addition to the configuration of the display device with a touch panel 100.
- the switch liquid crystal panel 105 is attached to the polarizing plate 103 by the adhesive material 104.
- the polarizing plate 106 is disposed on the surface of the switch liquid crystal panel 105 opposite to the liquid crystal display device 101.
- the touch panel 1 is attached to the polarizing plate 106 with the adhesive material 107.
- the switch liquid crystal panel 105 includes a control substrate 1051, a counter substrate 1054, a sealing material 1052, and a liquid crystal 1053.
- the control substrate 1051 and the counter substrate 1054 are disposed to face each other.
- a sealing material 1052 is formed on the peripheral edge portions of the control substrate 1051 and the counter substrate 1054, and a liquid crystal 1053 is sealed inside.
- the control board 1051 includes a control electrode (not shown).
- the control electrodes are regularly arranged on the control board 1051.
- the counter substrate 1054 includes a common electrode (not shown).
- the common electrode is uniformly formed in the active area of the counter substrate 1054.
- the switch liquid crystal panel 105 generates an electric field between an arbitrary control electrode and a common electrode, and changes the alignment of the liquid crystal 1053.
- the display device 200 with a touch panel switches between the two-dimensional display mode and the three-dimensional display mode as follows.
- the liquid crystal 1053 of the switch liquid crystal panel 105 is uniformly oriented. Thereby, the image displayed on the liquid crystal display device 101 is displayed as it is.
- the switch liquid crystal panel 105 regularly changes the orientation of the liquid crystal 1053.
- the liquid crystal 1053 functions as a lens due to a difference in refractive index accompanying a change in orientation.
- the display device 200 with a touch panel causes the liquid crystal display device 101 to display images that are photographed from multiple directions in a line. The images that are regularly arranged and displayed are separated by the liquid crystal 1053.
- the display device 200 with a touch panel is observed at an optimal position, different images reach the left and right eyes. That is, the display device 200 with a touch panel performs three-dimensional display by a so-called parallax method in the three-dimensional display mode.
- the substrate of the touch panel 1 also serves as a cover glass or a cover film.
- FIG. 3 is a plan view schematically showing a schematic configuration of the touch panel 1 according to the first embodiment of the present invention.
- 4 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG.
- the touch panel 1 includes a substrate 10, a light shielding unit 11, an interlayer insulating film 121, a planarizing film 122, an X electrode (first electrode) 14, a Y electrode (second electrode) 15, a terminal 16, a wiring 171, a ground wiring 172, and a relay.
- An electrode 18 and a protective film 19 are provided.
- the substrate 10 has translucency.
- the substrate 10 is, for example, a glass substrate or a transparent resin film.
- the substrate 10 may have a surface coated with a passivation film or the like.
- the light shielding portion 11, the interlayer insulating film 121, the planarizing film 122, the X electrode 14, the Y electrode 15, the terminal 16, the wiring 171, the ground wiring 172, the relay electrode 18, and the protective film 19 are formed on one surface of the substrate 10.
- this surface is disposed on the liquid crystal display device 101 side.
- the touch panel 1 has a sensing area V and a non-sensing area P.
- the sensing area V is an area that is detected when a finger or the like touches the touch panel 1. That is, the region where the sensor electrodes (X electrode 14 and Y electrode 15) are formed is the sensing region V.
- the sensing area V is not limited to the rectangular area as shown in FIG. 3, and can take any shape. Further, it may be a discontinuous region.
- the sensing area V is preferably used so as to overlap with the display area of the liquid crystal display device 101. According to this configuration, the user can specify a position corresponding to the image displayed on the liquid crystal display device 101.
- the non-sensing area P is arranged on the right side and the lower part of the sensing area V.
- the arrangement of the non-sensing area P is arbitrary.
- the non-sensing region P may be arranged so as to surround the four sides of the sensing region V.
- the non-sensing region P may be arranged so as to contact only one side of the sensing region V.
- the light shielding part 11 is formed on the entire surface of the non-sensing area P.
- the light shielding unit 11 may be formed only in a part of the non-sensing region P.
- the light shielding part 11 has a light shielding property. The light shielding part 11 can prevent the user from seeing components formed in a layer farther from the substrate 10 than the light shielding part 11.
- the light shielding portion 11 is formed by mixing a negative resist with a pigment, for example. Therefore, the light shielding portion 11 is likely to have an insufficient amount of exposure at the pattern end, and it is difficult to form a forward taper shape (a cross section having a convex shape toward the opposite side of the substrate 10). Therefore, a step is easily formed at the boundary between the region where the light shielding portion 11 is formed and the region where the light shielding portion 11 is not formed (for example, the boundary between the sensing region V and the non-sensing region P). Further, the surface roughness of the light shielding film 11 depends on the particle diameter of the pigment. When the surface roughness of the light shielding film 11 is large, it is difficult to form a uniform film on the light shielding film 11.
- a planarizing film 122 is formed so as to cover the light shielding portion 11.
- the material and forming method of the planarizing film 122 will be described later.
- the planarizing film 122 can be formed into a forward tapered shape relatively easily. Therefore, the level difference formed by the light shielding part 11 can be eliminated. Further, the planarization film 122 can smooth the surface. Therefore, a uniform film can be formed on the planarizing film 122 even when the surface roughness of the light shielding portion 11 is large.
- FIG. 5 is a plan view showing one of the X electrodes 14 extracted.
- the X electrode 14 includes a plurality of island-shaped electrodes 141 arranged along one direction, and a connection portion 142 that connects adjacent island-shaped electrodes 141.
- FIG. 6 is a plan view showing one of the Y electrodes 15 extracted.
- the Y electrode 15 includes a plurality of island-shaped electrodes 151 arranged along a direction intersecting the X electrode 14 and a connection portion 152 that connects the adjacent island-shaped electrodes 151.
- the island-shaped electrode 141 and the connecting portion 142 of the X electrode 14 and the island-shaped electrode 152 of the Y electrode 15 are formed of a material having translucency and conductivity.
- the island-shaped electrodes 141 and 151 and the connection part 142 are transparent conductive films such as ITO (Indium Tin Oxide) or IZO (Inzium Zinc Oxide), for example.
- the connection portion 152 of the Y electrode 15 is formed by the same process and the same material as the wiring 171 and the ground wiring 172. This material will be described later.
- An interlayer insulating film 121 is formed at a location where the X electrode 14 and the Y electrode 15 intersect.
- the connecting portion 152 of the Y electrode 15 connects adjacent island electrodes 151 via the interlayer insulating film 121. With this configuration, the X electrode 14 and the Y electrode 15 are insulated from each other.
- the interlayer insulating film 121 is formed by the same material and the same process as the planarizing film 122 as described later.
- the terminal 16 is formed in the non-sensing area P.
- the terminal 16 is connected to a drive circuit (not shown) via, for example, an FPC. Therefore, the terminal 16 is exposed from the protective film 19 and the like. Therefore, the terminal 16 is preferably formed of a material having high corrosion resistance.
- the terminal 16 is formed of the same process and the same material as the island-shaped electrodes 141 and 151, the connection portion 142, and the relay electrode 18 as described later. Accordingly, the terminal 16 is a transparent conductive film such as ITO or IZO.
- the terminal 16 is formed closer to the substrate 10 than the light shielding portion 11 and the planarizing film 16.
- a contact hole 11 a is formed in the light shielding portion 11, and a contact hole 122 a is formed in the planarizing film 122.
- the wiring 171 electrically connects the X electrode 14 and the terminal 16.
- the wiring 171 also electrically connects the Y electrode 15 and the terminal 16.
- the ground wiring 172 is connected only to the terminal 16 and is not connected to the X electrode 14 and the Y electrode 15.
- the ground wiring 172 functions as a shield line that shields electromagnetic noise.
- Most of the wiring 171 and the ground wiring 172 are formed in a portion overlapping the light shielding portion 11 and the planarizing film 122 in plan view. As described above, with this configuration, most of the wiring 171 and the ground wiring 172 can be prevented from being visually recognized by the user. Even when the surface roughness of the light shielding portion 11 is large, the wiring 171 and the ground wiring 172 can be formed uniformly by the planarization film 122.
- the wiring 171 and the terminal 16 are in contact via the contact hole 11 b formed in the light shielding portion 11 and the contact hole 122 b formed in the planarization film 122. Similarly, the ground wiring 172 and the terminal 16 are in contact via the contact holes 11b and 122b.
- a relay electrode 18 is formed at a location where the wiring 171 and the ground wiring 172 intersect in plan view. As described above, the relay electrode 18 is formed by the same material and the same process as the island-shaped electrodes 141 and 151, the connection portion 142, and the terminal 16. The relay electrode 18 is formed closer to the substrate 10 than the light shielding portion 11 and the planarizing film 122. The ground wiring 172 and the relay electrode 18 are in contact with each other through a contact hole 11 c formed in the light shielding portion 11 and a contact hole 122 c formed in the planarizing film 122. With this configuration, the ground wiring 172 and the wiring 171 can be crossed in a plan view without being short-circuited.
- the wiring 171 and the ground wiring 172 preferably have low electrical resistance.
- the wiring 171 and the ground wiring 172 are formed of the same material as the connection portion 152 of the Y electrode 15. As shown in FIG. 3, part of the wiring 171 and the ground wiring 172 and the connection part 152 do not overlap with the light shielding part 11 in plan view. Therefore, the wiring 171, the ground wiring 172, and the connection portion 152 may be visually recognized at these locations. In addition, the wiring 171 and the ground wiring 172 may be visually recognized at the location where the contact holes 11 b and 11 c are formed in the light shielding portion 11.
- the wiring 171 has a layered structure including a metal film 171A having a low electrical resistance and a light-shielding conductive film 171B having a higher light absorption rate than the metal film 171A.
- the wiring 171 includes the light-shielding conductive film 171B having a high light absorption rate, the wiring 171 can be made less visible compared to the case where the wiring 171 is formed using only the metal film 171A having a high reflectance. In this case, it is preferable that the light shielding conductive film 171B and the metal film 171A are laminated in this order from the substrate 10 side.
- the ground wiring 172 preferably has a layered structure including a metal film and a light-shielding conductive film. Also in this case, it is preferable that the light-shielding conductive film and the metal film are laminated in this order from the substrate 10 side.
- the connection portion 152 also preferably has a layered structure including the metal film 152A and the light-shielding conductive film 152B. Also in this case, it is preferable that the light shielding conductive film 152B and the metal film 152A are laminated in this order from the substrate 10 side.
- the light-shielding conductive films of the light-shielding conductive films 171B and 152B and the ground wiring 172 for example, a black resin containing carbon at a high concentration to enhance conductivity can be used.
- the light shielding conductive films of the light shielding conductive films 171B and 152B and the ground wiring 172 are more preferably indium oxide films.
- indium oxide films By using indium oxide films as the light-shielding conductive films of the light-shielding conductive films 171B and 152B and the ground wiring 172, the metal films 171A and 152A and the metal film of the ground wiring 172 can be etched simultaneously with the same etchant.
- the protective film 19 is formed so as to cover substantially the entire surface of the substrate 10. As described above, a part of the terminal 16 is exposed without being covered with the protective film 19.
- the protective film 19 is formed of a translucent insulating material.
- the protective film 19 may be an organic material or an inorganic material.
- FIGS. 7A to 7E are sectional views taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG. is there.
- the transparent conductive film is patterned to form the island-shaped electrode 141 and the connecting portion 142 of the X electrode 14, the island-shaped electrode 151 of the Y electrode 15, the terminal 16, and the relay electrode 18.
- a uniform transparent conductive film is formed by sputtering or CVD (Chemical Vapor Deposition).
- the transparent conductive film is, for example, ITO or IZO.
- the formed transparent conductive film is patterned by, for example, photolithography. Specifically, a mask made of a photoresist is formed at a place where the island-shaped electrodes 141 and 151, the connection portion 142, the terminal 16, and the relay electrode 18 are to be formed. Then, the remaining part is removed by etching.
- Etching can be performed using, for example, a mixed acid of phosphoric acid, acetic acid, and nitric acid, or oxalic acid.
- annealing is performed in a temperature range of 200 to 250 ° C. By this annealing, the amorphous transparent conductive film is polycrystallized.
- the light shielding part 11 is formed by patterning the light shielding film.
- the light shielding film is obtained by dispersing a pigment in an acrylic resin or a novolac resin.
- a printing method such as a screen printing method or a flexographic printing method, an ink jet method, or a photolithography method can be used.
- the light shielding portion 11 is formed at a predetermined position, and contact holes 11a, 11b, and 11c (see FIG. 3) are formed.
- the insulating film is patterned to form an interlayer insulating film 121 and a planarizing film 122.
- an organic insulating material whose main component is acrylic resin, novolac resin, epoxy resin, alkyl resin, phenol resin, or silicon resin can be used.
- a printing method such as a screen printing method or a flexographic printing method, an ink jet method, or a photolithography method can be used.
- an interlayer insulating film 121 and a planarizing film 122 are formed at predetermined positions, and contact holes 122a, 122b, and 122c (see FIG. 3) are formed.
- the insulating film may have a laminated structure of an inorganic insulating material (SiN, SiO, etc.) and the above organic insulating material.
- a film of an inorganic insulating material is formed by, for example, CVD.
- the organic insulating material is patterned on the inorganic insulating material film by the patterning method.
- the inorganic insulating material film is dry-etched. In this way, the interlayer insulating film 121 and the planarizing film 122, which are formed by laminating the inorganic insulating material and the organic insulating material in this order, are obtained.
- the planarizing film 122 preferably has a forward tapered shape in cross section.
- the interlayer insulating film 121 preferably has a forward tapered cross section.
- a forward tapered shape can be formed by performing exposure using a photomask whose light transmittance changes step by step.
- a forward taper shape can be formed by adjusting the ink formulation and controlling the viscosity, wetting with the underlying layer, or surface tension.
- the high conductive film is patterned to form the wiring 171 and the connection portion 152.
- the ground wiring 172 (see FIG. 3) is also formed in this step.
- the high conductive film has a lower electrical resistance than at least the transparent conductive film.
- the high conductive film preferably has a layered structure including a metal film and a light-shielding conductive film having a higher light absorption rate than the metal film. As will be described later, the high conductive film may be formed by stacking more layers.
- the light absorption rate of the light-shielding conductive film is preferably 96% or more.
- a black resin can be used for the light-shielding conductive film.
- the light-shielding conductive film is patterned by, for example, a printing method such as a screen printing method or a flexographic printing method, an ink-jet method, or a photolithography method, so that the light-shielding conductive film 171B of the wiring 171 and the light-shielding conductive film of the ground wiring 172 are connected.
- the light shielding conductive film 152B of the portion 152 is formed.
- An indium oxide film can also be used as the light-shielding conductive film.
- the indium oxide film is formed by sputtering, for example. In this case, etching can be performed collectively with the metal film to be formed next, and the number of steps can be reduced.
- the metal film preferably has a low electric resistance, and for example, Al is used.
- Al is brought into contact with a conductive oxide film such as ITO, galvanic corrosion may occur due to a difference in ionization tendency. Therefore, a laminated structure with a metal having high corrosion resistance is preferable. Therefore, for example, a laminated film of MoNb, Al, and MoNb, a laminated film of MoN, Al, and MoN, or a laminated film of Mo, Al, and Mo is preferably used as the metal film.
- a metal film or a laminated film of a light-shielding conductive film and a metal film is patterned by photolithography. Specifically, a mask made of a photoresist is formed at a place where the wiring 171, the ground wiring 172, and the connection portion 152 are formed. Then, the remaining part is removed by etching. Etching can be performed using, for example, a mixed acid of phosphoric acid, acetic acid, and nitric acid. If this mixed acid is used, the light-shielding conductive film and the metal film can be etched together.
- the wiring 171, the ground wiring 172, and the connection portion 152 are formed using the same material and the same process.
- a protective film 19 is formed so as to cover the entire surface of the substrate 10.
- the protective film 19 may use either an organic material or an inorganic material.
- the organic material is, for example, an acrylic resin, and is formed by a spin coater or a slit coater.
- the inorganic material is SiN, for example, and is formed by CVD. In either case, the protective film 19 is formed using a mask or the like so that a part of the terminal 16 is exposed.
- the touch panel 1 includes a transparent conductive layer (X electrode 14, island electrode 151 of Y electrode 15, etc.) formed by patterning a transparent conductive film, and a light shielding layer formed by patterning a light shielding film. (Light shielding portion 11), insulating layer (interlayer insulating film 121 and planarization film 122) formed by patterning an insulating film, and high conductive layer (wiring 171 and Y electrode formed by patterning a high conductive film) 15 connecting portions 152 and the like) are formed in this order.
- the planarizing film 122 and the interlayer insulating film 121 are formed by one patterning. Thereby, the number of steps (number of masks) can be reduced as compared with the case where these are separately patterned.
- the step of patterning the light shielding film (FIG. 7B) and the step of patterning the insulating film (FIG. 7C) include the step of patterning the transparent conductive film (FIG. 7A) and the step of patterning the high conductive film (FIG. 7). 7D).
- the connecting portion 142 of the X electrode 14 and the connecting portion 152 of the Y electrode 15 can be crossed in plan view with the interlayer insulating film 121 interposed therebetween.
- the relay electrode 18 and the wiring 171 can be crossed in plan view with the light shielding portion 11 and the planarizing film 122 interposed therebetween.
- the wiring 171 and the ground wiring 172 are formed on the planarizing film 122. Therefore, the wiring 171 and the ground wiring 172 are not interrupted by the step of the light shielding unit 11. Even when the surface roughness of the light shielding portion 11 is large, the wiring 171 and the ground wiring 172 can be formed uniformly.
- FIG. 8 is a plan view showing a schematic configuration of the touch panel 9 according to the first comparative example.
- FIG. 9 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG.
- the touch panel 9 includes a substrate 10, a light shielding unit 11, a planarizing film 92, interlayer insulating films 931 and 932, an X electrode 94, a Y electrode 95, a terminal 16, a wiring 971, a ground wiring 972, a relay electrode 943 and 953, and a protective film. 19 is provided.
- the light shielding portion 11 is formed so as to cover the non-sensing region P of the substrate 10, and then the planarizing film 92 is formed so as to cover the entire substrate 10 including the light shielding portion 11.
- the X electrode 94 and the Y electrode 95 are formed on the planarizing film 92.
- the X electrode 94 and the Y electrode 95 are all formed of a transparent conductive film. That is, the island electrode 941 and the connection portion 942 of the X electrode 94 and the island electrode 951 and the connection portion 952 of the Y electrode 95 are formed of a transparent conductive film. Note that the terminal 16 and the relay electrodes 943 and 953 are also formed of a transparent conductive film.
- the wiring 971 and the ground wiring 972 are formed of a metal film.
- the X electrode 94 and the wiring 971 are electrically connected via the relay electrode 943.
- the Y electrode 95 and the wiring 971 are electrically connected through the relay electrode 953.
- the terminal 16 and the wiring 971 are in direct contact.
- the terminal 16 and the ground wiring 972 are in direct contact.
- the wiring 971, the ground wiring 972, and a part of the terminal 16 are covered with an interlayer insulating film 932.
- the wiring 971 and the relay electrode 953 are in contact with each other through a contact hole 932 a formed in the interlayer insulating film 932. With this configuration, the relay electrode 953 and the ground wiring 972 are crossed with the interlayer insulating film 932 interposed therebetween.
- FIGS. 10A to 10G are sectional views taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG. is there.
- the light shielding part 11 is formed by patterning the light shielding film.
- a planarizing film 92 is formed. Similar to the planarization film 122, the planarization film 92 can be mainly composed of an acrylic resin, a novolac resin, an epoxy resin, an alkyl resin, a phenol resin, or a silicon resin. These films are formed by, for example, a spin coater or a slit coater to form the planarizing film 92.
- the transparent conductive film is patterned to form the connection portion 942 of the X electrode 94, the island electrode 951 of the Y electrode 95, the relay electrode 943, and the terminal 16.
- the island electrode 941 of the X electrode 94 is also formed in this step.
- the metal film is patterned to form a wiring 971 and a ground wiring 972.
- the insulating film is patterned to form interlayer insulating films 931 and 932.
- a contact hole 932a is also formed at the same time.
- a transparent conductive film different from that shown in FIG. 10C is patterned to form a connection portion 952 of the Y electrode 95 and a relay electrode 953.
- a protective film 19 is formed.
- a step of patterning the light shielding film (FIG. 10A), a step of forming the planarizing film 92 (FIG. 10B), a step of patterning the transparent conductive film (FIG. 10C), The step of patterning the metal film (FIG. 10D), the step of patterning the insulating film (FIG. 10E), the step of patterning another transparent conductive film (FIG. 10F), and the step of forming the protective film 19 (FIG. 10G) Seven steps are required.
- patterning is performed by photolithography, film formation, resist coating, exposure, etching, resist stripping, and cleaning are necessary for each step. As the number of processes increases, production capacity and yield decrease, and production costs increase.
- the step of patterning the transparent conductive film (FIG. 7A), the step of patterning the light shielding film (FIG. 7B), and the step of patterning the insulating film (FIG. 7C).
- a step of patterning the high conductive film (FIG. 7D), and a step of forming the protective film 19 (FIG. 7E). That is, the number of steps (number of masks) can be reduced as compared with the touch panel 9.
- FIG. 11 is a plan view showing a schematic configuration of the touch panel 91 according to the second comparative example. 12 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG.
- the touch panel 91 is different from the touch panel 9 in the formation order of the constituent elements. Therefore, the stacking order of each film is different.
- FIGS. 13A to 13E are cross-sectional views taken along the lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG. is there.
- the light shielding part 11 and the flat film 92 are formed on the substrate 10. Since the steps up to here are the same as those of the touch panel 9, illustration is omitted (see FIGS. 10A and 10B).
- the transparent conductive film is patterned to form the connection portion 952 of the Y electrode 95 and the relay electrode 953.
- the insulating film is patterned to form interlayer insulating films 931 and 932.
- a contact hole 932a is also formed at the same time.
- a transparent conductive film different from that shown in FIG. 13A is patterned to form the connection portion 942 of the X electrode 94, the island electrode 951 of the Y electrode 95, the relay electrode 943, and the terminal 16. .
- the island electrode 941 of the X electrode 94 is also formed in this step.
- the metal film is patterned to form a wiring 971 and a ground wiring 972.
- a protective film 19 is formed.
- the step of patterning the light shielding film, the step of forming the planarizing film 92, the step of patterning the transparent conductive film (FIG. 13A), and the patterning of the insulating film are performed. Seven steps are required: the step (FIG. 13B), the step of patterning another transparent conductive film (FIG. 13C), the step of patterning the metal film (FIG. 13D), and the step of forming the protective film 19 (FIG. 13F). It is. According to the manufacturing method of touch panel 1 concerning a 1st embodiment of the present invention, the number of processes can be reduced.
- the display devices with a touch panel 100 and 200 may include any of touch panels 2 to 8 described below instead of the touch panel 1.
- FIG. 14 is a plan view schematically showing a schematic configuration of the touch panel 2 according to the second embodiment of the present invention.
- FIG. 15 is a cross-sectional view taken along lines AA ′, BB ′, DD ′, and EE ′ in FIG.
- the touch panel 2 has a different terminal configuration compared to the touch panel 1.
- a terminal 16 is formed of a transparent conductive film.
- the ends of the wiring 171 and the ground wiring 172 form terminals. That is, in the touch panel 2, the wiring 171 and the ground wiring 172 are exposed through the contact hole 19 a formed in the protective film 19. Then, the wiring 171 and the ground wiring 172 are connected to an external drive circuit or the like through the contact hole 19a.
- an inorganic film is preferably used as the protective film 19 in order to prevent corrosion of the wiring 171 and the ground wiring 172.
- the contact resistance of the terminal portion can be lowered.
- the exposed portion (terminal 16) is formed of a transparent conductive film and has high corrosion resistance. Therefore, the protective film 19 can be made thinner than the touch panel 2.
- FIG. 16 is a plan view showing a schematic configuration of the touch panel 3 according to the third embodiment of the present invention. 17 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG.
- the touch panel 3 is different from the touch panel 1 in the formation order of the constituent elements. Therefore, the stacking order of each film is different.
- the terminal 16 is formed on the planarizing film 122. Therefore, the contact hole 122a (see FIG. 3) formed in the planarization film 122 in the touch panel 1 is not necessary in the touch panel 3.
- FIGS. 18A to 18E are sectional views taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG. is there.
- the high conductive film is patterned to form the wiring 171 and the connection portion 152.
- the ground wiring 172 is also formed in this step.
- the high conductive film preferably has a laminated structure of a metal film and a light-shielding conductive film.
- the light shielding part 11 is formed by patterning the light shielding film.
- the insulating film is patterned to form an interlayer insulating film 121 and a planarizing film 122.
- the planarization film 122 also serves to protect the wiring 171 and the ground wiring 172. Therefore, the insulating film is preferably formed thick.
- the insulating film preferably has a stacked structure of an inorganic insulating material and an organic insulating material.
- the transparent conductive film is patterned to form the island-shaped electrode 141 and the connecting portion 142 of the X electrode 14, the island-shaped electrode 151 of the Y electrode 15, the terminal 16, and the relay electrode 18.
- a protective film 19 is formed.
- the touch panel 3 includes a highly conductive layer (such as the wiring 171 and the connecting portion 152 of the Y electrode 15) formed by patterning a highly conductive film, and a light shielding layer (light shielding layer) formed by patterning the light shielding film.
- a highly conductive layer such as the wiring 171 and the connecting portion 152 of the Y electrode 15
- a light shielding layer light shielding layer
- Part 11 an insulating layer (interlayer insulating film 121 and planarization film 122) formed by patterning an insulating film, and a transparent conductive layer (X electrode 14, Y electrode 15) formed by patterning a transparent conductive film.
- the island-shaped electrodes 151 and the like are formed in this order.
- the configuration of the touch panel 3 can also reduce the number of processes as compared with the configurations of the touch panel 9 and the touch panel 91.
- FIG. 19 is a plan view schematically showing a schematic configuration of the touch panel 4 according to the fourth embodiment of the present invention.
- 20 is a cross-sectional view taken along lines AA ′, BB ′, DD ′, and EE ′ in FIG.
- 172A indicates a metal film that forms part of the ground wiring 172
- 172B indicates a light shielding conductive film that forms part of the ground wiring 172.
- Touch panel 4 has a different terminal configuration compared to touch panel 3.
- the terminal of the touch panel 4 has a configuration in which a wiring 171 or a ground wiring 172 and a terminal 16 formed of a transparent conductive film are laminated in this order.
- the entire terminal 16 is covered with a protective film 19.
- a part of the terminal 16 is exposed by the contact hole 19 a formed in the protective film 19 in addition to the contact hole 11 a formed in the light shielding unit 11 and the contact hole 122 a formed in the planarizing film 122. I am letting.
- the terminal 16 is connected to an external drive circuit or the like through the contact holes 11a, 122a, and 19a.
- a terminal having a lower resistance can be formed as compared with the configuration of the touch panel 3.
- the touch panel 4 is further different in the configuration of the connection portion between the wiring 171 and the Y electrode 15.
- the touch panel 4 further includes a relay electrode 453 formed integrally with the island electrode 151 of the Y electrode 15.
- the relay electrode 453 is formed of the same material and the same process as the island-shaped electrode 141 and the connecting portion 142 of the X electrode 14, the island-shaped electrode 151 of the Y electrode 15, and the terminal 16.
- the relay electrode 453 is in contact with the wiring 171 through the contact hole 11 d formed in the light shielding portion 11 and the contact hole 122 d formed in the planarization film 122.
- the ground wiring 172 is not changed compared to the configuration of the touch panel 3. That is, unlike the touch panel 3 (FIG. 16), the ground wiring 172 is not relayed by the relay electrode 18. Therefore, the resistance of the ground wiring 172 can be reduced.
- the wiring 171 and the Y electrode 15 can be brought into direct contact. That is, unlike the touch panel 4, it is not necessary to go through a contact hole. Therefore, the wiring 171 can have a low resistance.
- FIG. 21 is a plan view schematically showing a schematic configuration of the touch panel 5 according to the fifth embodiment of the present invention. 22 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG.
- the touch panel 5 is obtained by replacing the Y electrode 15 with the Y electrode 55 in the configuration of the touch panel 3 (see FIG. 16).
- the Y electrode 55 includes an island electrode 151 and a connection portion 552.
- the connection part 152 of the Y electrode 15 provided in the touch panel 3 is formed of the same material and the same process as the wiring 171 and the ground wiring 172.
- the connection part 552 of the Y electrode 55 provided in the touch panel 5 is formed of a transparent conductive film.
- FIGS. 23A to 23F are sectional views taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG. is there.
- a transparent conductive film is patterned to form a connection portion 552.
- the transparent conductive film is, for example, ITO or IZO.
- the transparent conductive film is formed by, for example, CVD or sputtering, and is patterned by photolithography.
- a wiring 171 is formed by patterning the high conductive film.
- the ground wiring 172 (see FIG. 21) is also formed in this step.
- the high conductive film preferably has a laminated structure of a metal film and a light-shielding conductive film.
- the light shielding part 11 is formed by patterning the light shielding film.
- the insulating film is patterned to form an interlayer insulating film 121 and a planarizing film 122. Also in this embodiment, the planarization film 122 plays a role of protecting the wiring 171 and the ground wiring 172. Therefore, the insulating film is preferably formed thick.
- the insulating film preferably has a stacked structure of an inorganic insulating material and an organic insulating material.
- a transparent conductive film different from that shown in FIG. 23A is patterned so that the island-shaped electrode 141 and the connecting portion 142 of the X electrode 14, the island-shaped electrode 151 of the Y electrode 55, the terminal 16, and the relay are formed.
- the electrode 18 is formed.
- the transparent conductive film of FIG. 23E is called a first transparent conductive film
- the transparent conductive film of FIG. 23A is called a second transparent conductive film.
- the first transparent conductive film and the second transparent conductive film are, for example, ITO or IZO.
- the first transparent conductive film and the second transparent conductive film may be the same material or different materials.
- the first transparent conductive film and the second transparent conductive film may be the same in film formation method and patterning method, or may be different.
- the touch panel 5 includes a second transparent conductive layer (connection portion 552 of the Y electrode 55) formed by patterning the second transparent conductive film, and a high conductive layer formed by patterning the high conductive film. (Wiring 171 etc.), a light shielding layer (light shielding portion 11) formed by patterning the light shielding film, an insulating layer (interlayer insulating film 121 and planarization film 122) formed by patterning the insulating film, A first transparent conductive layer (X electrode 14, island electrode 151 of Y electrode 55, etc.) formed by patterning one transparent conductive film is formed in this order.
- connection portion 552 of the Y electrode 55 is formed of the second transparent conductive film. Therefore, as in the touch panels 1 to 4, the connection portion 552 can be made less visible compared to the case where the connection portion 152 of the Y electrode 15 is formed of a high conductive film.
- the touch panel 5 includes a step of patterning the second transparent conductive film (FIG. 23A), a step of patterning the high conductive film (FIG. 23B), a step of patterning the light shielding film (FIG. 23C), and a patterning of the insulating film. It can be manufactured by six steps: a step of performing (FIG. 23D), a step of patterning the first transparent conductive film (FIG. 23E), and a step of forming the protective film 19 (FIG. 23F). Therefore, the number of processes can be reduced as compared with the configurations of the touch panel 9 and the touch panel 91.
- FIG. 24 is a plan view schematically showing a schematic configuration of the touch panel 6 according to the sixth embodiment of the present invention.
- 25 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG.
- the touch panel 6 differs from the touch panel 5 (FIG. 21) in the formation order of the constituent elements. Therefore, the stacking order of each film is different.
- the touch panel 6 is different from the touch panel 5 in the configuration of the connection portion between the X electrode 14 and the wiring 171 and the configuration of the connection portion between the Y electrode 55 and the wiring 171.
- the touch panel 6 includes relay electrodes 643 and 653 instead of the relay electrode 18 of the touch panel 5.
- the X electrode 14 and the wiring 171 are connected via the relay electrode 643.
- the relay electrode 643 is formed of the same material and the same process as the connection portion 552 of the Y electrode 55.
- the island electrode 141 of the X electrode 14 and the relay electrode 643 are in direct contact.
- the relay electrode 643 and the wiring 171 are in contact via the contact hole 11 e formed in the light shielding portion 11 and the contact hole 122 e formed in the planarization film 122.
- the relay electrode 653 is formed of the same material and the same process as the connection portion 552 of the Y electrode 55.
- the island-shaped electrode 151 of the Y electrode 55 and the relay electrode 653 are in direct contact.
- the relay electrode 653 and the wiring 171 are in contact with each other through a contact hole 11 d formed in the light shielding portion 11 and a contact hole 122 d formed in the planarizing film 122.
- FIGS. 26A to 26F are sectional views taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG. is there.
- the transparent conductive film (second transparent conductive film) is patterned to form the island-shaped electrode 141 and the connecting portion 142 of the X electrode 14 and the island-shaped electrode 151 of the Y electrode 55.
- the high conductive film is patterned to form a wiring 171 and a ground wiring 172.
- the high conductive film preferably has a laminated structure of a metal film and a light-shielding conductive film.
- the light shielding part 11 is formed by patterning the light shielding film.
- the interlayer insulating film 121 and the planarizing film 122 are formed by patterning the insulating film. Also in this embodiment, the planarization film 122 plays a role of protecting the wiring 171 and the ground wiring 172. Therefore, the insulating film is preferably formed thick.
- the insulating film preferably has a stacked structure of an inorganic insulating material and an organic insulating material.
- a transparent conductive film (first transparent conductive film) different from FIG. 26A is patterned to form the connection portion 552 of the Y electrode 55, the terminal 16, and the relay electrodes 643 and 653.
- the first transparent conductive film and the second transparent conductive film may be the same material or different materials.
- the first transparent conductive film and the second transparent conductive film may be the same in film formation method and patterning method, or may be different.
- the touch panel 6 includes a second transparent conductive layer (X electrode 14, island electrode 151 of Y electrode 55, etc.) formed by patterning the second transparent conductive film, and a high conductive film patterned.
- the film 122) and the first transparent conductive layer (such as the connecting portion 552 of the Y electrode 55) formed by patterning the first transparent conductive film are formed in this order.
- the number of processes can be reduced as compared with the configurations of the touch panel 9 and the touch panel 91.
- the ground wiring 172 is not changed compared to the configuration of the touch panel 5. That is, unlike the touch panel 5 (FIG. 21), the ground wiring 172 is not relayed by the relay electrode 18. Therefore, the resistance of the ground wiring 172 can be reduced.
- the wiring 171 and the Y electrode 15 can be brought into direct contact. That is, unlike the touch panel 6, it is not necessary to go through a contact hole. Therefore, the wiring 171 can have a low resistance.
- FIG. 27 is a plan view schematically showing a schematic configuration of the touch panel 7 according to the seventh embodiment of the present invention.
- FIG. 28 is a cross-sectional view taken along lines AA ′, BB ′, DD ′, and EE ′ in FIG.
- the touch panel 7 has a different terminal configuration compared to the touch panel 6.
- the terminal of the touch panel 7 has a configuration in which a wiring 171 or a ground wiring 172 and a terminal 16 formed of a transparent conductive film are laminated in this order.
- the entire terminal 16 is covered with a protective film 19.
- a part of the terminal 16 is exposed by the contact hole 19 a formed in the protective film 19 in addition to the contact hole 11 a formed in the light shielding portion 11 and the contact hole 122 a formed in the planarizing film 122. I am letting.
- the terminal 16 is connected to an external drive circuit or the like through the contact holes 11a, 122a, and 19a.
- the touch panel 7 it is possible to form a terminal having a lower resistance than the configuration of the touch panel 6.
- the touch panel 7 further differs in the configuration of the connection portion between the wiring 171 and the Y electrode 55.
- the wiring 171 and the island electrode 151 of the Y electrode 55 are in direct contact.
- the relay electrode 18 is formed at a location where the wiring 171 and the ground wiring 172 intersect.
- the ground wiring 172 and the relay electrode 18 are in contact with each other through a contact hole 11 c formed in the light shielding portion 11 and a contact hole 122 c formed in the planarizing film 122. With this configuration, the wiring 171 and the ground wiring 172 can be crossed in a plan view without being short-circuited.
- the wiring 171 can be reduced in resistance.
- the ground wiring 172 is not changed. That is, the ground wiring 172 is not relayed by the relay electrode 18. Therefore, the resistance of the ground wiring 172 can be reduced.
- FIG. 29 is a plan view schematically showing a schematic configuration of the touch panel 8 according to the eighth embodiment of the present invention.
- 30 is a cross-sectional view taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG.
- the touch panel 8 is different from the touch panel 6 (FIG. 24) in the formation order of the constituent elements. Therefore, the stacking order of each film is different.
- the touch panel 8 includes a planarization insulating film 82 instead of the interlayer insulating film 121 and the planarization film 122 included in the touch panel 6.
- the planarization insulating film 82 is formed so as to cover substantially the entire surface of the substrate 10 including the connection portion 552 and the light shielding portion 11.
- the planarization insulating film 82 has both the function of the interlayer insulating film and the function of the planarization film.
- an interlayer insulating film 121 is formed at a location where the X electrode 14 and the Y electrode 55 intersect.
- a planarization insulating film 82 is formed so as to cover the substantially entire surface of the substrate 10 including the connection portion 552 of the Y electrode 55.
- the island electrode 151 of the Y electrode 55 and the connection portion 552 are in contact with each other through a contact hole 82 a formed in the planarization insulating film 82.
- the touch panel 8 further includes a wiring 971 and a ground wiring 972 instead of the wiring 171 and the ground wiring 172 of the touch panel 6. That is, the wiring 971 and the ground wiring 972 of the touch panel 8 are not a laminated structure of a metal film and a light-shielding conductive film, but are formed of a metal film.
- both the terminals 16 and the wirings 971 are formed in layers farther from the substrate 10 than the planarization insulating film 82. As shown in FIG. 30, the terminal 16 and the wiring 971 are in direct contact.
- the X electrode 14 and the wiring 971 are connected via the relay electrode 643.
- the island-shaped electrode 141 of the X electrode 14 and the relay electrode 643 are in contact via a contact hole 82 c formed in the planarization insulating film 82.
- the relay electrode 643 and the wiring 971 are in contact with each other through the contact hole 11 e formed in the light shielding portion 11 and the contact hole 82 e formed in the planarization insulating film 82.
- the Y electrode 55 and the wiring 971 are connected via the relay electrode 653.
- the island electrode 151 of the Y electrode 15 and the relay electrode 653 are in contact via a contact hole 82 b formed in the planarization insulating film 82.
- the relay electrode 653 and the wiring 971 are in contact via the contact hole 11 d formed in the light shielding portion 11 and the contact hole 82 d formed in the planarization insulating film 82.
- the wiring 971 is formed in the non-sensing area P and not formed in the sensing area V.
- the relay electrode 643 that connects the X electrode 14 and the wiring 971 and the relay electrode 653 that connects the Y electrode 55 and the wiring 971 are formed of a transparent conductive film. According to this configuration, even when the sensing region V is overlapped with the display region of the liquid crystal display device 101, the wiring 971 is not disposed in a portion overlapping the display region. Therefore, the wiring 971 is not visually recognized. Therefore, for example, the wiring structure 171 of the touch panel 6 does not have to be a stacked structure of a metal film and a light-shielding conductive film. Thereby, the manufacturing process can be further simplified.
- FIGS. 31A to 31F are sectional views taken along lines AA ′, BB ′, CC ′, DD ′, and EE ′ in FIG. is there.
- the transparent conductive film (first transparent conductive film) is patterned to form the connection portion 552 of the Y electrode 55 and the relay electrodes 643 and 653.
- the light shielding part 11 is formed by patterning the light shielding film.
- the planarizing insulating film 82 is formed by patterning the insulating film.
- the insulating film can be mainly composed of, for example, an acrylic resin, a novolac resin, an epoxy resin, an alkyl resin, a phenol resin, or a silicon resin, similarly to the touch panels 1 to 7.
- As the patterning method for example, a printing method such as a screen printing method or a flexographic printing method, an ink jet method, or a photolithography method can be used.
- a planarization insulating film 82 is formed, and contact holes 82a, 82b, 82c, 82d, and 82e are formed.
- a transparent conductive film (second transparent conductive film) different from that shown in FIG. 31A is patterned to form island-shaped electrodes 141 and connecting portions 142 of the X electrode 14, and island-shaped electrodes of the Y electrode 55. 151 and the terminal 16 are formed.
- the first transparent conductive film and the second transparent conductive film may be the same material or different materials.
- the first transparent conductive film and the second transparent conductive film may be the same or different in film formation method and patterning method.
- the metal film is patterned to form a wiring 971 and a ground wiring 972.
- the metal film (high conductive film) has a lower electrical resistance than the first transparent conductive film.
- the metal film is, for example, a laminated film of MoNb, Al, and MoNb. In this embodiment, a laminated structure of a metal film and a light shielding conductive film may be used.
- the touch panel 8 includes a first transparent conductive layer (such as the connection portion 552 of the Y electrode 55) formed by patterning the first transparent conductive film, and a light-shielding layer formed by patterning the light-shielding film ( A light shielding portion 11), an insulating layer (interlayer insulating film 121 and planarization film 122) formed by patterning an insulating film, and a second transparent conductive layer (X electrode) formed by patterning a second transparent conductive film. 14, the island-shaped electrode 151 of the Y electrode 55, etc.) and the highly conductive layer (wiring 971 etc.) formed by patterning the metal film are formed in this order.
- the configuration of the touch panel 8 can also reduce the number of processes as compared with the configurations of the touch panel 9 and the touch panel 91.
- “TP” represents a transparent conductive layer including island-shaped electrodes 141 and 151.
- BM is a light shielding layer
- OC is an insulating layer
- LB is a highly conductive layer (a layer made of a metal film and a light shielding conductive film)
- L is a highly conductive layer (a layer made of a metal film).
- BR” represents a transparent conductive layer including the connection portion 552
- “Pas” represents a layer including the protective film 19.
- “C” represents a layer including the planarization film 92
- “AI” represents a layer including the interlayer insulating films 931 and 932.
- the “terminal” column indicates which layer the terminal is formed of.
- TP / LB represents a configuration in which a transparent conductive layer including island-shaped electrodes 141 and 151 is laminated on a high conductive film.
- BR / LB represents a configuration in which a transparent conductive layer including a connection portion 552 is stacked on a high conductive film.
- the column of “ground wiring changeover” indicates which layer the ground wiring 172 or 971 is relayed to.
- the present invention can be industrially used as a touch panel and a touch panel manufacturing method.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Position Input By Displaying (AREA)
Abstract
工程数が削減されたタッチパネルの製造方法を提供する。タッチパネル(1)の製造方法は、第1透明導電膜をパターニングしてセンサ電極(14),(15)の一部を含む層を形成する工程と、前記第1透明導電膜よりも電気抵抗の低い高導電膜をパターニングして配線(171)を含む層を形成する工程と、遮光膜をパターニングして遮光部(11)を含む層を形成する工程と、前記遮光部(11)を含む層を形成した後、絶縁膜をパターニングして層間絶縁膜(121)および平坦化膜(122)を含む層を形成する工程とを含む。前記遮光膜をパターニングする工程および前記絶縁膜をパターニングする工程は、前記第1透明導電膜をパターニングする工程と前記高導電膜をパターニングする工程との間に行われる。
Description
本発明は、タッチパネルおよびタッチパネルの製造方法に関し、より詳しくは、カバーガラス一体型のタッチパネルおよびタッチパネルの製造方法に関する。
タッチパネルは、カバーガラスまたはカバーフィルムと貼り合せて使用される。タッチパネルとカバーガラスとを貼り合せる際、気泡や異物が混入することがあり、歩留まり低下の原因となっている。
従来、カバーガラスの裏面(操作面と反対側の面)にセンサ電極を形成してタッチパネルとした、カバーガラス一体型のタッチパネルの構成が知られている。すなわち、この構成では、タッチパネルの基板がカバーガラス(カバーフィルム)の役割を兼ねる。
特開2011-90443号公報には、1枚の透明基板の片側の面に、第1の方向に延びる電極と、前記第1の方向と交差する方向である第2の方向に延びる電極とが形成され、前記透明基板の周辺部に、遮光性を有する材料によるブラックマスク部(遮光部)が設けられていることを特徴とする投影型静電容量タッチパネルが記載されている。
ブラックマスク部は、例えば、透明基板の周辺部に形成される電極の引き廻し配線および信号処理用の接続部を視認側に対して覆い隠すように設けられている。ブラックマスク部として、顔料タイプのカラーフィルタ材料を用いることが開示されている。
上記のように、タッチパネルの非センシング領域に遮光部を設け、配線等を遮光部に重ねて形成することでユーザに視認されないようにする構成が知られている。しかしながら、センサ電極や配線等の導電膜を、遮光部が形成されている領域と形成されていない領域とにまたがって形成しようとすると、遮光部による段差によって、導電膜が途切れてしまう場合がある。また、遮光部の表面粗さが大きい場合、遮光部上に均質な導電膜を形成することが困難になる。そのため、遮光部を覆う平坦化膜を形成する必要がある。しかし、遮光部の形成に加えて平坦化膜の形成が必要になるため、製造工程数が増加してしまう。
本発明の目的は、工程数が削減されたタッチパネルの製造方法を提供することである。また、本発明の他の目的は、少ない工程数で製造することができるタッチパネルを提供することである。
ここに開示するタッチパネルの製造方法は、平面視において互いに交差する第1電極および第2電極を含むセンサ電極と、前記第1電極と前記第2電極とを絶縁する層間絶縁膜と、前記センサ電極に電気的に接続された配線と、前記配線と平面視において重なるように形成された遮光部と、前記遮光部を覆って形成された平坦化膜とを備えたタッチパネルの製造方法であって、第1透明導電膜をパターニングして前記センサ電極の一部を含む層を形成する工程と、前記第1透明導電膜よりも電気抵抗の低い高導電膜をパターニングして前記配線を含む層を形成する工程と、遮光膜をパターニングして前記遮光部を含む層を形成する工程と、前記遮光部を含む層を形成した後、絶縁膜をパターニングして前記層間絶縁膜および前記平坦化膜を含む層を形成する工程とを含む。前記遮光膜をパターニングする工程および前記絶縁膜をパターニングする工程は、前記第1透明導電膜をパターニングする工程と前記高導電膜をパターニングする工程との間に行われる。
ここに開示するタッチパネルは、平面視において互いに交差する第1電極および第2電極を含むセンサ電極を含むタッチパネルであって、第1透明導電膜がパターニングされて形成された第1透明導電層と、前記第1透明導電膜よりも電気抵抗の低い高導電膜がパターニングされて形成された高導電層と、遮光膜がパターニングされて形成された遮光層と、絶縁膜がパターニングされて形成された絶縁層とを備える。前記第1透明導電層は前記センサ電極の一部を含み、前記遮光層および前記絶縁層は、前記第1透明導電層および前記高導電層の間に形成される。
本発明によれば、工程数が削減されたタッチパネルの製造方法が得られる。また、本発明によれば、少ない工程数で製造することができるタッチパネルが得られる。
本発明の一実施形態にかかるタッチパネルの製造方法は、平面視において互いに交差する第1電極および第2電極を含むセンサ電極と、前記第1電極と前記第2電極とを絶縁する層間絶縁膜と、前記センサ電極に電気的に接続された配線と、前記配線と平面視において重なるように形成された遮光部と、前記遮光部を覆って形成された平坦化膜とを備えたタッチパネルの製造方法であって、第1透明導電膜をパターニングして前記センサ電極の一部を含む層を形成する工程と、前記第1透明導電膜よりも電気抵抗の低い高導電膜をパターニングして前記配線を含む層を形成する工程と、遮光膜をパターニングして前記遮光部を含む層を形成する工程と、前記遮光部を含む層を形成した後、絶縁膜をパターニングして前記層間絶縁膜および前記平坦化膜を含む層を形成する工程とを含む。前記遮光膜をパターニングする工程および前記絶縁膜をパターニングする工程は、前記第1透明導電膜をパターニングする工程と前記高導電膜をパターニングする工程との間に行われる(第1の態様)。
上記の態様によれば、平坦化膜と層間絶縁膜とを一回のパターニングで形成する。これによって、これらを別々にパターニングする場合と比較して、工程数(マスク数)を減らすことができる。
より具体的には、遮光膜をパターニングする工程および絶縁膜をパターニングする工程は、第1透明導電膜をパターニングする工程と高導電膜をパターニングする工程との間に行われる。これによって、第1透明導電膜がパターニングされて形成される層と、高導電膜がパターニングされて形成される層との間に、絶縁膜を形成することができる。第1透明導電膜がパターニングされて形成される層は、センサ電極の一部を含む。したがって、絶縁膜を間に挟んでセンサ電極の他の部分を形成することができる。これによって、互いに交差する第1電極と第2電極とを絶縁することができる。
また、平面視において遮光部と重なる領域においても、第1透明導電膜がパターニングされて形成される層と、高導電膜がパターニングされて形成される層とを、短絡させずに交差させることができる。このとき、遮光部を平坦化膜で覆うことができる。そのため、第1透明導電膜または高導電膜が遮光部による段差によって途切れることがない。また、遮光部の表面粗さが大きい場合でも、第1透明導電膜または高導電膜を均質に形成することができる。
上記第1の態様において、前記高導電膜は、金属膜と、前記金属膜よりも光吸収率の高い遮光導電膜とを含むことが好ましい(第2の態様)。
上記の態様によれば、高導電膜は、光吸収率の高い遮光導電膜を含む。これによって、反射率の高い金属膜が視認されにくくなる。
上記第2の態様において、前記遮光導電膜は酸化インジウム膜であることが好ましい(第3の態様)。
上記の態様によれば、金属膜と遮光導電膜とを同一のエッチャントでエッチングすることができる。したがって、高導電膜を一度にパターニングすることができる。
上記第1~第3のいずれかの態様において、前記センサ電極の一部は前記高導電膜によって形成されても良い(第4の態様)。
上記の態様によれば、センサ電極の一部と配線とを一回のパターニングで形成する。これによって、これらを別々にパターニングする場合と比較して、工程数を減らすことができる。
上記第4の態様において、前記第1透明導電膜をパターニングする工程、前記遮光膜をパターニングする工程、前記絶縁膜をパターニングする工程、および前記高導電膜をパターニングする工程をこの順番で行っても良い(第5の態様)。
上記第4の態様において、前記高導電膜をパターニングする工程、前記遮光膜をパターニングする工程、前記絶縁膜をパターニングする工程、および前記第1透明導電膜をパターニングする工程をこの順番で行っても良い(第6の態様)。
上記第1~第3のいずれかの態様において、第2透明導電膜をパターニングする工程をさらに含み、前記センサ電極の一部は前記第2透明導電膜によって形成されても良い(第7の態様)。
上記の態様によれば、センサ電極がより視認されにくくなる。
上記第7の態様において、前記第2透明導電膜をパターニングする工程、前記高導電膜をパターニングする工程、前記遮光膜をパターニングする工程、前記絶縁膜をパターニングする工程、および前記第1透明導電膜をパターニングする工程をこの順番で行っても良い(第8の態様)。
上記第8の態様において、前記第2電極は、複数の島状電極と、隣接する前記島状電極同士を接続する接続部とを含み、前記第1電極および島状電極は、前記第1透明導電膜によって形成され、前記接続部は、前記第2透明導電膜によって形成されても良い(第9の態様)。
上記第8の態様において、前記第2電極は、複数の島状電極と、隣接する前記島状電極同士を接続する接続部とを含み、前記第1電極および島状電極は、前記第2透明導電膜によって形成され、前記接続部は、前記第1透明導電膜によって形成されても良い(第10の態様)。
上記第7の態様において、前記第1透明導電膜をパターニングする工程、前記遮光膜をパターニングする工程、前記絶縁膜をパターニングする工程、前記第2透明導電膜をパターニングする工程、および前記高導電膜をパターニングする工程をこの順番で行っても良い(第11の態様)。
本発明の一実施形態にかかるタッチパネルは、平面視において互いに交差する第1電極および第2電極を含むセンサ電極を含むタッチパネルであって、第1透明導電膜がパターニングされて形成された第1透明導電層と、前記第1透明導電膜よりも電気抵抗の低い高導電膜がパターニングされて形成された高導電層と、遮光膜がパターニングされて形成された遮光層と、絶縁膜がパターニングされて形成された絶縁層とを備える。前記第1透明導電層は、前記センサ電極の一部を含み、前記遮光層および前記絶縁層は、前記第1透明導電層および前記高導電層の間に形成される(第1の構成)。
上記第1の構成において、前記高導電膜は、金属膜と、前記金属膜よりも光吸収率の高い遮光導電膜とを含むことが好ましい(第2の構成)。
上記第2の構成において、前記遮光導電膜は酸化インジウム膜であることが好ましい(第3の構成)。
上記第1~第3のいずれかの構成において、前記高導電層は前記センサ電極の一部を含んでも良い(第4の構成)。
上記第1~第3のいずれかの構成において、第2透明導電膜がパターニングされて形成された第2透明導電層をさらに備え、前記第2透明導電層は前記センサ電極の一部を含んでも良い(第5の構成)。
[実施の形態]
以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
[全体の構成]
図1は、本発明の一実施形態にかかるタッチパネル付き表示装置100の概略構成を示す断面図である。タッチパネル付き表示装置100は、タッチパネル1、液晶表示装置101、偏光板102および103、ならびに貼付材104を備えている。
図1は、本発明の一実施形態にかかるタッチパネル付き表示装置100の概略構成を示す断面図である。タッチパネル付き表示装置100は、タッチパネル1、液晶表示装置101、偏光板102および103、ならびに貼付材104を備えている。
液晶表示装置101の表裏の面に、偏光板102および103が配置されている。タッチパネル1は、貼付材104によって、偏光板103に貼り付けられている。
タッチパネル1は、詳しい構成は後述するが、液晶表示装置101側の面にセンサ電極を有している。センサ電極は、タッチパネル1に近接した指等との間に静電容量を形成する。タッチパネル1は、この静電容量の変化に基づいて、指等の位置を検出する。
また、タッチパネル1の所定の領域に、遮光部が形成されている。遮光部によって、ユーザに視認させたくない部分を隠すことができる。ユーザに視認させたくない部分とは、例えば、タッチパネル1の配線や端子、液晶表示装置101の端子等である。
液晶表示装置101は、カラーフィルタ基板1011、TFT(Thin Film Transistor)基板1014、シール材1012、および液晶1013を備えている。カラーフィルタ基板1011とTFT基板1014とは、互いに対向して配置されている。カラーフィルタ基板1011およびTFT基板1014の周縁部にはシール材1012が形成され、内部に液晶1013が封入されている。
TFT基板1014は、カラーフィルタ基板1011よりも大きな面積を有している。TFT基板1014とカラーフィルタ基板1011とを貼り合せてはみ出した領域には、図示しない端子が形成されている。この端子は、例えばFPC(Flexible Printed Circuit)を介して、図示しない駆動回路に接続される。
TFT基板1014は、図示しない画素電極とTFTとを備えている。画素電極とTFTとは、マトリクス状に形成されている。TFTとして、アモルファスシリコンやIn-Ga-Zn-O系半導体を含むものを用いることができるが、電子移動度の大きいIn-Ga-Zn-O系半導体を含むものを用いることが好ましい。
カラーフィルタ基板1011は、図示しないカラーフィルタと共通電極とを備えている。カラーフィルタは、TFT基板1014の画素電極と対応するように規則的に形成されている。共通電極は、TFT基板1014のアクティブエリアに一様に形成されている。
液晶表示装置101は、TFT基板1014のTFTを駆動して、任意の画素電極と共通電極との間に電界を生成し、液晶1013の配向を制御する。液晶表示装置101は、液晶1013の配向と、偏光板102および103とによって、画素ごとに光の透過と非透過とを制御する。これによって、液晶表示装置101に画像が表示される。
以上、タッチパネル付き表示装置100の概略構成を説明した。タッチパネル付き表示装置100においては、タッチパネル1の基板が、カバーガラスまたはカバーフィルムの役割を兼ねている。すなわち、タッチパネル1の上にさらにカバーガラスまたはカバーフィルムを貼り合わせる必要がない。これにより、製造工程を簡略化できる。また、タッチパネル1とカバーガラスまたはカバーフィルムとを貼り合せる際に起こる気泡や異物の混入による、歩留まりの低下を避けることができる。さらに、カバーガラス等の部材を省くことにより、液晶表示装置101を薄型化でき、光透過度を向上させることができる。
図2は、本発明の他の実施形態にかかるタッチパネル付き表示装置200の概略構成を示す断面図である。タッチパネル付き表示装置200は、タッチパネル付き表示装置100の構成に加えてさらに、スイッチ液晶パネル105、偏光板106、および貼付材107を備えている。
スイッチ液晶パネル105は、貼付材104によって偏光板103に貼り付けられている。偏光板106は、スイッチ液晶パネル105の、液晶表示装置101と反対側の面に配置されている。タッチパネル1は、貼付材107によって偏光板106に貼り付けられている。
スイッチ液晶パネル105は、制御基板1051、対向基板1054、シール材1052、および液晶1053を備えている。制御基板1051と対向基板1054とは、互いに対向して配置されている。制御基板1051および対向基板1054の周縁部にはシール材1052が形成され、内部に液晶1053が封入されている。
制御基板1051は、図示しない制御電極を備えている。制御電極は、制御基板1051に規則的に配置されている。対向基板1054は、図示しない共通電極を備えている。共通電極は、対向基板1054のアクティブエリアに一様に形成されている。スイッチ液晶パネル105は、任意の制御電極と共通電極との間に電界を生成し、液晶1053の配向を変化させる。
タッチパネル付き表示装置200は、以下のようにして、2次元表示モードと、3次元表示モードとを切り替える。
2次元表示モードでは、スイッチ液晶パネル105の液晶1053は一様に配向している。これにより、液晶表示装置101に表示された画像が、そのまま表示される。
3次元表示モードでは、スイッチ液晶パネル105は、液晶1053の配向を規則的に変化させる。配向の変化に伴う屈折率差により、液晶1053はレンズとして機能する。これに対応して、タッチパネル付き表示装置200は、液晶表示装置101に、多方向から撮影した画像を規則的に並べて表示させる。規則的に並べて表示された画像は、液晶1053によって分離される。最適な位置でタッチパネル付き表示装置200を観察すると、左右の眼に異なる画像が届く。すなわち、タッチパネル付き表示装置200は、3次元表示モードでは、いわゆる視差方式による3次元表示を行う。
以上、タッチパネル付き表示装置200の概略構成を説明した。タッチパネル付き表示装置200においても、タッチパネル1の基板が、カバーガラスまたはカバーフィルムの役割を兼ねている。
[タッチパネルの構成]
[第1の実施形態]
以下、タッチパネル1の構成について詳しく述べる。図3は、本発明の第1の実施形態にかかるタッチパネル1の概略構成を模式的に示す平面図である。図4は、図3におけるA-A’線、B-B’線、C-C’線、D-D’線およびE-E’線の各線に沿った断面図である。
[第1の実施形態]
以下、タッチパネル1の構成について詳しく述べる。図3は、本発明の第1の実施形態にかかるタッチパネル1の概略構成を模式的に示す平面図である。図4は、図3におけるA-A’線、B-B’線、C-C’線、D-D’線およびE-E’線の各線に沿った断面図である。
タッチパネル1は、基板10、遮光部11、層間絶縁膜121、平坦化膜122、X電極(第1電極)14、Y電極(第2電極)15、端子16、配線171、グランド配線172、中継電極18、および保護膜19を備えている。
基板10は透光性を有している。基板10は、例えばガラス基板または透明樹脂フィルムである。基板10は、表面がパシベーション膜等でコーティングされたものであっても良い。遮光部11、層間絶縁膜121、平坦化膜122、X電極14、Y電極15、端子16、配線171、グランド配線172、中継電極18、および保護膜19は、基板10の一方の面に形成されている。タッチパネル付き表示装置100において、この面が液晶表示装置101側になるように配置される。
タッチパネル1は、センシング領域Vと、非センシング領域Pとを有している。センシング領域Vは、指等がタッチパネル1に接触した際に、検知される領域である。すなわち、センサ電極(X電極14およびY電極15)が形成されている領域が、センシング領域Vである。センシング領域Vは、図3のような矩形領域に限らず、任意の形状を取り得る。また、非連続領域であっても良い。センシング領域Vは、好ましくは液晶表示装置101の表示領域と重ね合わせて使用される。この構成によれば、ユーザは、液晶表示装置101に表示された画像と対応する位置を指示することができる。
図3では、非センシング領域Pを、センシング領域Vの右側部と下部とに配置している。しかし、非センシング領域Pの配置の仕方は任意である。例えば、非センシング領域Pを、センシング領域Vの四辺を囲むように配置しても良い。あるいは、非センシング領域Pを、センシング領域Vの一辺にのみ接するように配置しても良い。
非センシング領域Pの概略全面に、遮光部11が形成されている。遮光部11は、非センシング領域Pの一部だけに形成されていても良い。遮光部11は遮光性を有している。遮光部11によって、遮光部11よりも基板10から遠い層に形成された構成要素を、ユーザから視認されないようにすることができる。
遮光部11は、例えば、ネガ型のレジストに顔料を混ぜて形成される。そのため、遮光部11は、パターン端部の露光量が不十分になり易く、順テーパ形状(断面が基板10と反対側に向かって凸の形状)にすることが困難である。そのため、遮光部11が形成されている領域と形成されていない領域との境界(例えばセンシング領域Vと非センシング領域Pとの境界)において、段差が形成され易い。また、遮光膜11の表面粗さは顔料の粒子径に依存する。遮光膜11の表面粗さが大きい場合、遮光膜11の上に均質な膜を形成することが困難になる。
遮光部11を覆って、平坦化膜122が形成されている。平坦化膜122の材質および形成方法については後述する。平坦化膜122は、比較的容易に順テーパ形状にすることができる。そのため、遮光部11によって形成される段差を解消することができる。また、平坦化膜122は表面を平滑にすることができる。そのため、遮光部11の表面粗さが大きい場合であっても、平坦化膜122の上に均質な膜を形成することができる。
図5は、X電極14の一つを抜き出して示す平面図である。X電極14は、一方向に沿って配置された複数の島状電極141と、隣接した島状電極141同士を接続する接続部142とを含んでいる。
図6は、Y電極15の一つを抜き出して示す平面図である。Y電極15は、X電極14と交差する方向に沿って配置された複数の島状電極151と、隣接した島状電極151同士を接続する接続部152とを含んでいる。
X電極14の島状電極141および接続部142、ならびにY電極15の島状電極152は、透光性および導電性を備えた材料で形成される。島状電極141および151、ならびに接続部142は、例えばITO(Indium Tin Oxide)またはIZO(Inzium Zinc Oxide)等の透明導電膜である。一方、Y電極15の接続部152は、配線171およびグランド配線172と同一工程および同一材料で形成される。この材料については後述する。
再び図3および図4を参照して、説明を続ける。X電極14とY電極15とが交差する箇所には、層間絶縁膜121が形成されている。Y電極15の接続部152は、層間絶縁膜121上を経由して、隣接した島状電極151同士を接続している。この構成によって、X電極14とY電極15とは、互いに絶縁されている。
層間絶縁膜121は、後述するように、平坦化膜122と同一材料および同一工程で形成される。
非センシング領域Pに、端子16が形成されている。端子16は、例えばFPCを介して図示しない駆動回路に接続される。そのため、端子16は保護膜19等から露出している。したがって、端子16は、耐食性の高い材料で形成されることが好ましい。端子16は、後述するように、島状電極141および151、接続部142、ならびに中継電極18と同一工程および同一材料で形成される。したがって、端子16は、例えばITOまたはIZO等の透明導電膜である。
図4に示すように、端子16は、遮光部11および平坦化膜16よりも基板10側に形成されている。端子16を露出させるため、遮光部11にはコンタクトホール11aが、平坦化膜122にはコンタクトホール122aが、それぞれ形成されている。
配線171は、X電極14と端子16とを電気的に接続している。配線171はまた、Y電極15と端子16とを電気的に接続している。グランド配線172は、端子16だけに接続され、X電極14およびY電極15には接続されていない。グランド配線172は、電磁ノイズを遮蔽するシールド線として機能する。
配線171およびグランド配線172の大部分は、遮光部11および平坦化膜122と平面視で重なる部分に形成されている。既述のように、この構成によって、配線171およびグランド配線172の大部分を、ユーザから視認されないようにすることができる。また、遮光部11の表面粗さが大きい場合であっても、平坦化膜122によって、配線171およびグランド配線172を均質に形成することができる。
配線171と端子16とは、遮光部11に形成されたコンタクトホール11b、および平坦化膜122に形成されたコンタクトホール122bを介して接触している。グランド配線172と端子16とも同様に、コンタクトホール11bおよび122bを介して接触している。
配線171とグランド配線172とが平面視において交差する箇所には、中継電極18が形成されている。中継電極18は、既述のように島状電極141および151、接続部142、ならびに端子16と同一材料および同一工程で形成される。中継電極18は、遮光部11および平坦化膜122よりも基板10側に形成されている。グランド配線172と中継電極18とは、遮光部11に形成されたコンタクトホール11c、および平坦化膜122に形成されたコンタクトホール122cを介して接触している。この構成によって、グランド配線172と配線171とを短絡させることなく、平面視において交差させることができる。
配線171およびグランド配線172は、電気抵抗が低いことが好ましい。一方、既述のように、配線171およびグランド配線172は、Y電極15の接続部152と同一の材料で形成される。図3に示すように、配線171およびグランド配線172の一部、ならびに接続部152は、平面視において遮光部11と重なっていない。したがって、これらの箇所で、配線171、グランド配線172、および接続部152が視認される場合がある。また、遮光部11にコンタクトホール11bおよび11cが形成された箇所で、配線171およびグランド配線172が視認される場合がある。
そこで、図4に示すように、配線171を、電気抵抗の低い金属膜171Aと、金属膜171Aよりも光吸収率の高い遮光導電膜171Bとを含む層状構造とすることが好ましい。配線171が光吸収率の高い遮光導電膜171Bを含むことで、反射率の高い金属膜171Aだけによって形成されている場合と比較して、配線171を視認されにくくすることができる。この場合、基板10側から、遮光導電膜171Bおよび金属膜171Aが、この順で積層していることが好ましい。
同様に、グランド配線172も、金属膜と、遮光導電膜とを含む層状構造であることが好ましい。この場合も、基板10側から、遮光導電膜および金属膜がこの順で積層していることが好ましい。また、接続部152も、金属膜152Aと、遮光導電膜152Bとを含む層状構造であることが好ましい。この場合も、基板10側から、遮光導電膜152Bおよび金属膜152Aがこの順で積層していることが好ましい。
遮光導電膜171B、152B、およびグランド配線172の遮光導電膜は、例えば、カーボンを高濃度に含有させて導電性を高めた黒色樹脂を用いることができる。遮光導電膜171B、152B、およびグランド配線172の遮光導電膜は、より好ましくは、酸化インジウム膜である。遮光導電膜171B、152B、およびグランド配線172の遮光導電膜を酸化インジウム膜とすることによって、金属膜171A、152A、およびグランド配線172の金属膜と、同一のエッチャントで同時にエッチングすることができる。
保護膜19は、基板10の概略全面を覆って形成されている。なお、上述のように端子16の一部は、保護膜19に覆われることなく露出している。保護膜19は、透光性の絶縁材料によって形成される。保護膜19は、有機系の材料であっても良いし、無機系の材料であっても良い。
[タッチパネル1の製造方法]
以下、図7A~図7Eを参照して、タッチパネル1の製造方法を説明する。なお、図7A~図7Eは、図3におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
以下、図7A~図7Eを参照して、タッチパネル1の製造方法を説明する。なお、図7A~図7Eは、図3におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
まず、図7Aに示すように、透明導電膜をパターニングしてX電極14の島状電極141および接続部142、Y電極15の島状電極151、端子16、ならびに中継電極18を形成する。まず、スパッタリングまたはCVD(Chemical Vapor Deposition)によって、一様な透明導電膜を形成する。透明導電膜は、例えばITOまたはIZOである。形成した透明導電膜を、例えばフォトリソグラフィによりパターニングする。具体的には、島状電極141および151、接続部142、端子16、ならびに中継電極18を形成する箇所にフォトレジストによるマスクを形成する。そして、残部をエッチングにより除去する。エッチングは例えば、燐酸、酢酸、および硝酸の混酸、またはシュウ酸を用いて行うことができる。パターニングの終了後に、200~250℃の温度範囲でアニールを行う。このアニールによって、アモルファスであった透明導電膜が多結晶化する。
次に、図7Bに示すように、遮光膜をパターニングして遮光部11を形成する。遮光膜は、例えば、アクリル樹脂またはノボラック樹脂に顔料を分散させたものである。パターニング方法として、例えばスクリーン印刷法、フレキソ印刷法等の印刷法、インクジェット法、またはフォトリソグラフィ法を用いることができる。遮光膜をパターニングすることによって、所定の位置に遮光部11を形成するとともに、コンタクトホール11a、11b、11c(図3を参照)を形成する。
次に、図7Cに示すように、絶縁膜をパターニングして層間絶縁膜121および平坦化膜122を形成する。絶縁膜は例えば、アクリル樹脂、ノボラック樹脂、エポキシ樹脂、アルキル樹脂、フェノール樹脂、またはシリコン樹脂を主成分とする有機系絶縁材料を用いることができる。パターニング方法として、例えばスクリーン印刷法、フレキソ印刷法等の印刷法、インクジェット法、またはフォトリソグラフィ法を用いることができる。絶縁膜をパターニングすることによって、所定の位置に層間絶縁膜121および平坦化膜122を形成するとともに、コンタクトホール122a、122b、および122c(図3を参照)を形成する。
絶縁膜は、無機系絶縁材料(SiN、SiO等)と上記の有機系絶縁材料との積層構造であっても良い。この場合、まず、無機系絶縁材料の膜を、例えばCVDによって成膜する。続いて、無機系絶縁材料の膜上において、有機系絶縁材料を上記パターニング方法によってパターニングする。そして、パターニングされた有機系絶縁材料による膜をマスクとして、無機系絶縁材料の膜をドライエッチングする。このようにして、無機系絶縁材料と有機系絶縁材料とがこの順で積層して形成された、層間絶縁膜121および平坦化膜122が得られる。
既述のように、平坦化膜122は、断面を順テーパ形状にすることが好ましい。同様に、層間絶縁膜121も、断面を順テーパ形状にすることが好ましい。フォトリソグラフィによってパターニングを行う場合には、段階的に光透過度が変化するフォトマスクを使用して露光を行うことで順テーパ形状を形成することができる。印刷法またはインクジェット法によってパターニングを行う場合には、例えばインク処方を調整して、粘度、下地層との濡れ、または表面張力を制御することで順テーパ形状を形成することができる。
次に、図7Dに示すように、高導電膜をパターニングして配線171および接続部152を形成する。図7Dには図示していないが、グランド配線172(図3を参照)もこの工程で形成する。高導電膜は、少なくとも透明導電膜よりも電気抵抗が低い。高導電膜は、既述のように、金属膜と、金属膜よりも光吸収率の高い遮光導電膜とを含む層状構造であることが好ましい。高導電膜は、後述するように、さらに多くの層を積層させたものであっても良い。
遮光導電膜の光吸収率は、好ましくは96%以上である。
遮光導電膜は、例えば黒色樹脂を用いることができる。この場合、遮光導電膜は例えばスクリーン印刷法、フレキソ印刷法等の印刷法、インクジェット法、またはフォトリソグラフィ法によってパターニングされて、配線171の遮光導電膜171B、グランド配線172の遮光導電膜、および接続部152の遮光導電膜152Bとなる。
遮光導電膜として、酸化インジウム膜を用いることもできる。酸化インジウム膜は、例えばスパッタリングによって成膜される。この場合、次に形成する金属膜と一括してエッチングすることができ、工程数を削減することができる。
続いて、金属膜を成膜する。金属膜は、電気抵抗が低いことが好ましく、例えばAlが用いられる。しかし、AlをITO等の導電酸化膜と接触させると、イオン化傾向の違いによるガルバニック腐食が発生する場合がある。そのため、耐食性の高い金属との積層構造とすることが好ましい。したがって、金属膜は例えば、MoNbとAlとMoNbとの積層膜、MoNとAlとMoNとの積層膜、またはMoとAlとMoとの積層膜等が好適に用いられる。
金属膜、または遮光導電膜と金属膜との積層膜を、フォトリソグラフィによりパターニングする。具体的には、配線171、グランド配線172、および接続部152を形成する箇所にフォトレジストによるマスクを形成する。そして、残部をエッチングにより除去する。エッチングは例えば、燐酸と酢酸と硝酸との混酸を用いて行うことができる。この混酸を用いれば、遮光導電膜と金属膜とを一括してエッチングすることができる。
このように、配線171、グランド配線172、および接続部152は、同一材料および同一工程で形成される。
最後に、図7Eに示すように、基板10の概略全面を覆って、保護膜19を形成する。
保護膜19は、有機系材料および無機系材料のどちらを用いても良い。有機系材料は例えばアクリル樹脂であり、スピンコータまたはスリットコータによって形成される。無機系材料は例えばSiNであり、CVDによって形成される。いずれも場合も、マスク等を用いて、端子16の一部が露出するように保護膜19を形成する。
保護膜19は、有機系材料および無機系材料のどちらを用いても良い。有機系材料は例えばアクリル樹脂であり、スピンコータまたはスリットコータによって形成される。無機系材料は例えばSiNであり、CVDによって形成される。いずれも場合も、マスク等を用いて、端子16の一部が露出するように保護膜19を形成する。
以上、本発明の第1の実施形態にかかるタッチパネル1の構成、および製造方法を説明した。
本実施形態にかかるタッチパネル1は、透明導電膜がパターニングされて形成された透明導電層(X電極14、Y電極15の島状電極151等)と、遮光膜がパターニングされて形成された遮光層(遮光部11)と、絶縁膜がパターニングされて形成された絶縁層(層間絶縁膜121および平坦化膜122)と、高導電膜がパターニングされて形成された高導電層(配線171およびY電極15の接続部152等)とが、この順で形成されたものである。
本実施形態にかかるタッチパネル1の製造方法によれば、平坦化膜122と層間絶縁膜121とを一回のパターニングで形成する。これによって、これらを別々にパターニングする場合と比較して、工程数(マスク数)を減らすことができる。
より具体的には、遮光膜をパターニングする工程(図7B)および絶縁膜をパターニングする工程(図7C)は、透明導電膜をパターニングする工程(図7A)と高導電膜をパターニングする工程(図7D)との間に行われる。これによって、例えば、X電極14の接続部142とY電極15の接続部152とを、層間絶縁膜121を間に挟んで、平面視において交差させることができる。また、中継電極18と配線171とを、遮光部11および平坦化膜122を間に挟んで、平面視において交差させることができる。このとき、配線171およびグランド配線172は平坦化膜122の上に形成される。そのため、配線171およびグランド配線172は、遮光部11の段差によって途切れることがない。また、遮光部11の表面粗さが大きい場合でも、配線171およびグランド配線172を均質に形成することができる。
[比較例1]
ここで、本実施形態にかかるタッチパネル1の効果を説明するため、仮想的な比較例について述べる。図8は、第1の比較例にかかるタッチパネル9の概略構成を示す平面図である。図9は、図8におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
ここで、本実施形態にかかるタッチパネル1の効果を説明するため、仮想的な比較例について述べる。図8は、第1の比較例にかかるタッチパネル9の概略構成を示す平面図である。図9は、図8におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
タッチパネル9は、基板10、遮光部11、平坦化膜92、層間絶縁膜931および932、X電極94、Y電極95、端子16、配線971、グランド配線972、中継電極943および953、ならびに保護膜19を備えている。
タッチパネル9では、まず、基板10の非センシング領域Pを覆って遮光部11が形成され、次に、遮光部11を含む基板10の全体を覆って平坦化膜92が形成される。X電極94およびY電極95等は、平坦化膜92の上に形成される。
X電極94およびY電極95は、すべて透明導電膜によって形成されている。すなわち、X電極94の島状電極941および接続部942、ならびにY電極95の島状電極951および接続部952は、透明導電膜で形成されている。なお、端子16、ならびに中継電極943および953も、透明導電膜で形成されている。
配線971およびグランド配線972は、金属膜で形成されている。
X電極94と配線971とは、中継電極943を介して電気的に接続されている。Y電極95と配線971とは、中継電極953を介して電気的に接続されている。端子16と配線971とは、直接接触している。同様に、端子16とグランド配線972とは、直接接触している。
配線971およびグランド配線972、ならびに端子16の一部は、層間絶縁膜932によって覆われている。配線971と中継電極953とは、層間絶縁膜932に形成されたコンタクトホール932aを介して接触している。この構成によって、中継電極953とグランド配線972とを、間に層間絶縁膜932を挟んで交差させている。
[タッチパネル9の製造方法]
以下、図10A~図10Gを参照して、タッチパネル9の製造方法の概略を説明する。なお、図10A~図10Gは、図8におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
以下、図10A~図10Gを参照して、タッチパネル9の製造方法の概略を説明する。なお、図10A~図10Gは、図8におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
まず、図10Aに示すように、遮光膜をパターニングして遮光部11を形成する。
次に、図10Bに示すように、平坦化膜92を形成する。平坦化膜92は、平坦化膜122と同様に、アクリル樹脂、ノボラック樹脂、エポキシ樹脂、アルキル樹脂、フェノール樹脂、またはシリコン樹脂を主成分とすることができる。これらの膜を、例えばスピンコータまたはスリットコータによって成膜して、平坦化膜92を形成する。
次に、図10Cに示すように、透明導電膜をパターニングしてX電極94の接続部942、Y電極95の島状電極951、中継電極943、および端子16を形成する。図10Cには図示していないが、X電極94の島状電極941もこの工程で形成する。
次に、図10Dに示すように、金属膜をパターニングして、配線971およびグランド配線972を形成する。
次に、図10Eに示すように、絶縁膜をパターニングして、層間絶縁膜931および932を形成する。コンタクトホール932aも同時に形成する。
次に、図10Fに示すように、図10Cとは別の透明導電膜をパターニングして、Y電極95の接続部952および中継電極953を形成する。
最後に、図10Gに示すように、保護膜19を形成する。
以上のように、タッチパネル9を製造するためには、遮光膜をパターニングする工程(図10A)、平坦化膜92を形成する工程(図10B)、透明導電膜をパターニングする工程(図10C)、金属膜をパターニングする工程(図10D)、絶縁膜をパターニングする工程(図10E)、別の透明導電膜をパターニングする工程(図10F)、および保護膜19を形成する工程(図10G)の、7つの工程が必要である。特に、パターニングがフォトリソグラフィ法によって行われる場合は、それぞれの工程について、成膜、レジスト塗布、露光、エッチング、レジスト剥離および洗浄が必要である。工程数が多くなると、生産能力および歩留まりが低下し、生産コストが高くなる。
これに対し、本発明の第1の実施形態にかかるタッチパネル1は、透明導電膜をパターニングする工程(図7A)、遮光膜をパターニングする工程(図7B)、絶縁膜をパターニングする工程(図7C)、高導電膜をパターニングする工程(図7D)、および保護膜19を形成する工程(図7E)の、5つの工程によって製造することができる。すなわち、タッチパネル9と比較して、工程数(マスク数)を削減することができる。
[比較例2]
図11は、第2の比較例にかかるタッチパネル91の概略構成を示す平面図である。図12は、図11におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
図11は、第2の比較例にかかるタッチパネル91の概略構成を示す平面図である。図12は、図11におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
タッチパネル91は、タッチパネル9と比較して、構成要素の形成順序が異なっている。そのため、各膜の積層順序が異なっている。
[タッチパネル91の製造方法]
以下、図13A~図13Eを参照して、タッチパネル91の製造方法の概略を説明する。なお、図13A~図13Eは、図11におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
以下、図13A~図13Eを参照して、タッチパネル91の製造方法の概略を説明する。なお、図13A~図13Eは、図11におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
まず、基板10上に、遮光部11および平坦膜92を形成する。ここまでの工程は、タッチパネル9と同じであるので、図示を省略する(図10Aおよび図10Bを参照)。
次に、図13Aに示すように、透明導電膜をパターニングして、Y電極95の接続部952および中継電極953を形成する。
次に、図13Bに示すように、絶縁膜をパターニングして、層間絶縁膜931および932を形成する。コンタクトホール932aも同時に形成する。
次に、図13Cに示すように、図13Aとは別の透明導電膜をパターニングしてX電極94の接続部942、Y電極95の島状電極951、中継電極943、および端子16を形成する。図13Cには図示していないが、X電極94の島状電極941もこの工程で形成する。
次に、図13Dに示すように、金属膜をパターニングして、配線971およびグランド配線972を形成する。
最後に、図13Eに示すように、保護膜19を形成する。
このように、タッチパネル91を製造する場合もタッチパネル9と同様に、遮光膜をパターニングする工程、平坦化膜92を形成する工程、透明導電膜をパターニングする工程(図13A)、絶縁膜をパターニングする工程(図13B)、別の透明導電膜をパターニングする工程(図13C)、金属膜をパターニングする工程(図13D)、および保護膜19を形成する工程(図13F)の、7つの工程が必要である。本発明の第1の実施形態にかかるタッチパネル1の製造方法によれば、工程数を削減することができる。
[第2の実施形態]
タッチパネル付き表示装置100および200は、タッチパネル1に代えて、以下に説明するタッチパネル2~8のいずれかを備えていても良い。図14は、本発明の第2の実施形態にかかるタッチパネル2の、概略構成を模式的に示す平面図である。図15は、図14におけるA-A’線、B-B’線、D-D’線、およびE-E’線の各線に沿った断面図である。
タッチパネル付き表示装置100および200は、タッチパネル1に代えて、以下に説明するタッチパネル2~8のいずれかを備えていても良い。図14は、本発明の第2の実施形態にかかるタッチパネル2の、概略構成を模式的に示す平面図である。図15は、図14におけるA-A’線、B-B’線、D-D’線、およびE-E’線の各線に沿った断面図である。
タッチパネル2は、タッチパネル1と比較して、端子の構成が異なっている。
タッチパネル1では、透明導電膜によって端子16が形成されている。これに対し、タッチパネル2では、配線171およびグランド配線172の端部が端子を形成している。すなわち、タッチパネル2では、保護膜19に形成されたコンタクトホール19aによって、配線171およびグランド配線172を露出させている。そして、コンタクトホール19aを介して、配線171およびグランド配線172を、外部駆動回路等と接続させる。なお、タッチパネル2では、配線171およびグランド配線172の腐食を防止するため、保護膜19として無機膜を用いることが好ましい。
タッチパネル2の構成によれば、タッチパネル1の構成と比較して、すなわち、透明導電膜によって端子16を形成する場合と比較して、端子部分の接触抵抗を低くすることができる。
一方、タッチパネル1の構成によれば、露出部分(端子16)は透明導電膜によって形成されており、耐食性が高い。そのため、タッチパネル2と比較して保護膜19を薄くすることができる。
[第3の実施形態]
図16は、本発明の第3の実施形態にかかるタッチパネル3の概略構成を示す平面図である。図17は、図16におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
図16は、本発明の第3の実施形態にかかるタッチパネル3の概略構成を示す平面図である。図17は、図16におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
タッチパネル3は、タッチパネル1と比較して、構成要素の形成順序が異なっている。そのため、各膜の積層順序が異なっている。なお、本実施形態では、端子16は平坦化膜122の上に形成されている。そのため、タッチパネル1において平坦化膜122に形成されるコンタクトホール122a(図3を参照)は、タッチパネル3においては不要である。
[タッチパネル3の製造方法]
以下、図18A~図18Eを参照して、タッチパネル3の製造方法の概略を説明する。なお、図18A~図18Eは、図16におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
以下、図18A~図18Eを参照して、タッチパネル3の製造方法の概略を説明する。なお、図18A~図18Eは、図16におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
まず、図18Aに示すように、高導電膜をパターニングして配線171および接続部152を形成する。図18Aには図示していないが、グランド配線172(図16を参照)もこの工程で形成する。本実施形態においても、高導電膜は、金属膜と遮光導電膜の積層構造であることが好ましい。
次に、図18Bに示すように、遮光膜をパターニングして遮光部11を形成する。
次に、図18Cに示すように、絶縁膜をパターニングして層間絶縁膜121および平坦化膜122を形成する。本実施形態では、平坦化膜122は、配線171およびグランド配線172を保護する役割も果たす。そのため、絶縁膜は、厚く形成されることが好ましい。また、絶縁膜は、無機系絶縁材料と有機系絶縁材料との積層構造であることが好ましい。
次に、図18Dに示すように、透明導電膜をパターニングしてX電極14の島状電極141および接続部142、Y電極15の島状電極151、端子16、ならびに中継電極18を形成する。
最後に、図18Eに示すように、保護膜19を形成する。
以上、本発明の第3の実施形態にかかるタッチパネル3の構成、および製造方法を説明した。
本実施形態にかかるタッチパネル3は、高導電膜がパターニングされて形成された高導電層(配線171およびY電極15の接続部152等)と、遮光膜がパターニングされて形成された遮光層(遮光部11)と、絶縁膜がパターニングされて形成された絶縁層(層間絶縁膜121および平坦化膜122)と、透明導電膜がパターニングされて形成された透明導電層(X電極14、Y電極15の島状電極151等)とが、この順で形成されたものである。
タッチパネル3の構成によっても、タッチパネル9およびタッチパネル91の構成と比較して、工程数を削減することができる。
[第4の実施形態]
図19は、本発明の第4の実施形態にかかるタッチパネル4の、概略構成を模式的に示す平面図である。図20は、図19におけるA-A’線、B-B’線、D-D’線、およびE-E’線の各線に沿った断面図である。なお、図20において、172Aはグランド配線172の一部を構成する金属膜を示しており、172Bはグランド配線172の一部を構成する遮光導電膜を示している。
図19は、本発明の第4の実施形態にかかるタッチパネル4の、概略構成を模式的に示す平面図である。図20は、図19におけるA-A’線、B-B’線、D-D’線、およびE-E’線の各線に沿った断面図である。なお、図20において、172Aはグランド配線172の一部を構成する金属膜を示しており、172Bはグランド配線172の一部を構成する遮光導電膜を示している。
タッチパネル4は、タッチパネル3と比較して、端子の構成が異なっている。
タッチパネル4の端子は、配線171またはグランド配線172と、透明導電膜で形成される端子16とを、この順で積層させた構成である。そして、端子16の概略全体が保護膜19で覆われている。タッチパネル4では、遮光部11に形成されたコンタクトホール11a、および平坦化膜122に形成されたコンタクトホール122aに加えて、保護膜19に形成されたコンタクトホール19aによって、端子16の一部を露出させている。そして、コンタクトホール11a、122a、および19aを介して、端子16を外部駆動回路等と接続させる。
タッチパネル4の構成によれば、タッチパネル3の構成と比較して、より低抵抗の端子を形成することができる。
タッチパネル4はさらに、配線171とY電極15との接続部分の構成が異なっている。
タッチパネル4は、Y電極15の島状電極151と一体的に形成された、中継電極453をさらに備える。中継電極453は、X電極14の島状電極141および接続部142、Y電極15の島状電極151、ならびに端子16と、同一材料および同一工程で形成される。中継電極453は、遮光部11に形成されたコンタクトホール11d、および平坦化膜122に形成されたコンタクトホール122dを介して、配線171と接触している。
タッチパネル4の構成によれば、タッチパネル3の構成と比較して、グランド配線172の繋ぎ替えがない。すなわち、タッチパネル3(図16)のように、グランド配線172を中継電極18で中継させていない。そのため、グランド配線172を低抵抗にすることができる。
一方、タッチパネル3の構成によれば、配線171とY電極15とを直接接触させることができる。すなわち、タッチパネル4のように、コンタクトホールを介する必要がない。そのため、配線171を低抵抗にすることができる。
[第5の実施形態]
図21は、本発明の第5の実施形態にかかるタッチパネル5の、概略構成を模式的に示す平面図である。図22は、図21におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
図21は、本発明の第5の実施形態にかかるタッチパネル5の、概略構成を模式的に示す平面図である。図22は、図21におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
タッチパネル5は、タッチパネル3(図16を参照)の構成において、Y電極15をY電極55に置き換えたものである。Y電極55は、島状電極151と、接続部552とを備えている。タッチパネル3が備えるY電極15の接続部152は、配線171およびグランド配線172と同一材料および同一工程で形成される。これに対し、タッチパネル5が備えるY電極55の接続部552は、透明導電膜によって形成される。
[タッチパネル5の製造方法]
以下、図23A~図23Fを参照して、タッチパネル5の製造方法の概略を説明する。なお、図23A~図23Fは、図21におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
以下、図23A~図23Fを参照して、タッチパネル5の製造方法の概略を説明する。なお、図23A~図23Fは、図21におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
まず、図23Aに示すように、透明導電膜をパターニングして接続部552を形成する。透明導電膜は、例えばITOまたはIZOである。透明導電膜は、例えばCVDまたはスパッタリングにより成膜され、フォトリソグラフィによってパターニングされる。
次に、図23Bに示すように、高導電膜をパターニングして配線171を形成する。図23Bには図示していないが、グランド配線172(図21を参照)もこの工程で形成する。本実施形態においても、高導電膜は、金属膜と遮光導電膜の積層構造であることが好ましい。
次に、図23Cに示すように、遮光膜をパターニングして遮光部11を形成する。
次に、図23Dに示すように、絶縁膜をパターニングして層間絶縁膜121および平坦化膜122を形成する。本実施形態においても、平坦化膜122は、配線171およびグランド配線172を保護する役割を果たす。そのため、絶縁膜は、厚く形成されることが好ましい。また、絶縁膜は、無機系絶縁材料と有機系絶縁材料との積層構造であることが好ましい。
次に、図23Eに示すように、図23Aとは別の透明導電膜をパターニングしてX電極14の島状電極141および接続部142、Y電極55の島状電極151、端子16、ならびに中継電極18を形成する。ここで、図23Aの透明導電膜と図23Eの透明導電膜とを区別するため、図23Eの透明導電膜を第1透明導電膜、図23Aの透明導電膜を第2透明導電膜と呼んで参照する。第1透明導電膜および第2透明導電膜は、例えばITOまたはIZOである。第1透明導電膜と第2透明導電膜とは、同じ材料であっても良いし、異なる材料であっても良い。また、第1透明導電膜と第2透明導電膜とは、成膜方法およびパターニング方法が同じであっても良いし、異なっていても良い。
最後に、図23Fに示すように、保護膜19を形成する。
以上、本発明の第5の実施形態にかかるタッチパネル5の構成、および製造方法を説明した。
本実施形態にかかるタッチパネル5は、第2透明導電膜がパターニングされて形成された第2透明導電層(Y電極55の接続部552)と、高導電膜がパターニングされて形成された高導電層(配線171等)と、遮光膜がパターニングされて形成された遮光層(遮光部11)と、絶縁膜がパターニングされて形成された絶縁層(層間絶縁膜121および平坦化膜122)と、第1透明導電膜がパターニングされて形成された第1透明導電層(X電極14、Y電極55の島状電極151等)とが、この順で形成されたものである。
本実施形態にかかるタッチパネル5の構成によれば、Y電極55の接続部552は、第2透明導電膜によって形成されている。そのため、タッチパネル1~4のように、Y電極15の接続部152が高導電膜によって形成されている場合と比較して、接続部552を視認されにくくすることができる。
本実施形態にかかるタッチパネル5は、第2透明導電膜をパターニングする工程(図23A)、高導電膜をパターニングする工程(図23B)、遮光膜をパターニングする工程(図23C)、絶縁膜をパターニングする工程(図23D)、第1透明導電膜をパターニングする工程(図23E)、および保護膜19を形成する工程(図23F)の、6つの工程によって製造することができる。したがって、タッチパネル9およびタッチパネル91の構成と比較して、工程数を削減することができる。
[第6の実施形態]
図24は、本発明の第6の実施形態にかかるタッチパネル6の、概略構成を模式的に示す平面図である。図25は、図24におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
図24は、本発明の第6の実施形態にかかるタッチパネル6の、概略構成を模式的に示す平面図である。図25は、図24におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
タッチパネル6は、タッチパネル5(図21)と比較して、構成要素の形成順序が異なっている。そのため、各膜の積層順序が異なっている。
また、タッチパネル6は、タッチパネル5と比較して、X電極14と配線171との接続部分の構成、およびY電極55と配線171との接続部分の構成が異なっている。タッチパネル6は、タッチパネル5の中継電極18に代えて、中継電極643および653を備えている。
タッチパネル6では、X電極14と配線171とは、中継電極643を介して接続されている。中継電極643は、Y電極55の接続部552と同一材料および同一工程で形成される。X電極14の島状電極141と中継電極643とは、直接接触している。中継電極643と配線171とは、遮光部11に形成されたコンタクトホール11e、および平坦化膜122に形成されたコンタクトホール122eを介して接触している。
同様に、Y電極55と配線171とは、中継電極653を介して接続されている。中継電極653は、Y電極55の接続部552と同一材料および同一工程で形成される。Y電極55の島状電極151と中継電極653とは、直接接触している。中継電極653と配線171とは、遮光部11に形成されたコンタクトホール11d、および平坦化膜122に形成されたコンタクトホール122dを介して接触している。
[タッチパネル6の製造方法]
以下、図26A~図26Fを参照して、タッチパネル6の製造方法の概略を説明する。なお、図26A~図26Fは、図24におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
以下、図26A~図26Fを参照して、タッチパネル6の製造方法の概略を説明する。なお、図26A~図26Fは、図24におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
まず、図26Aに示すように、透明導電膜(第2透明導電膜)をパターニングしてX電極14の島状電極141および接続部142、ならびにY電極55の島状電極151を形成する。
次に、図26Bに示すように、高導電膜をパターニングして配線171、およびグランド配線172を形成する。本実施形態においても、高導電膜は、金属膜と遮光導電膜の積層構造であることが好ましい。
次に、図26Cに示すように、遮光膜をパターニングして遮光部11を形成する。
次に、図26Dに示すように、絶縁膜をパターニングして層間絶縁膜121および平坦化膜122を形成する。本実施形態においても、平坦化膜122は、配線171およびグランド配線172を保護する役割を果たす。そのため、絶縁膜は、厚く形成されることが好ましい。また、絶縁膜は、無機系絶縁材料と有機系絶縁材料との積層構造であることが好ましい。
次に、図26Eに示すように、図26Aとは別の透明導電膜(第1透明導電膜)をパターニングしてY電極55の接続部552、端子16、ならびに中継電極643および653を形成する。第1透明導電膜と第2透明導電膜とは、同じ材料であっても良いし、異なる材料であっても良い。また、第1透明導電膜と第2透明導電膜とは、成膜方法およびパターニング方法が同じであっても良いし、異なっていても良い。
最後に、図26Fに示すように、保護膜19を形成する。
以上、本発明の第6の実施形態にかかるタッチパネル6の構成、および製造方法を説明した。
本実施形態にかかるタッチパネル6は、第2透明導電膜がパターニングされて形成された第2透明導電層(X電極14、Y電極55の島状電極151等)と、高導電膜がパターニングされて形成された高導電層(配線171等)と、遮光膜がパターニングされて形成された遮光層(遮光部11)と、絶縁膜がパターニングされて形成された絶縁層(層間絶縁膜121および平坦化膜122)と、第1透明導電膜がパターニングされて形成された第1透明導電層(Y電極55の接続部552等)とが、この順で形成されたものである。
タッチパネル6の構成によっても、タッチパネル9およびタッチパネル91の構成と比較して、工程数を削減することができる。
タッチパネル6の構成によれば、タッチパネル5の構成と比較して、グランド配線172の繋ぎ替えがない。すなわち、タッチパネル5(図21)のように、グランド配線172を中継電極18で中継させていない。そのため、グランド配線172を低抵抗にすることができる。
一方、タッチパネル5の構成によれば、配線171とY電極15とを直接接触させることができる。すなわち、タッチパネル6のように、コンタクトホールを介する必要がない。そのため、配線171を低抵抗にすることができる。
[第7の実施形態]
図27は、本発明の第7の実施形態にかかるタッチパネル7の、概略構成を模式的に示す平面図である。図28は、図27におけるA-A’線、B-B’線、D-D’線、およびE-E’線の各線に沿った断面図である。
図27は、本発明の第7の実施形態にかかるタッチパネル7の、概略構成を模式的に示す平面図である。図28は、図27におけるA-A’線、B-B’線、D-D’線、およびE-E’線の各線に沿った断面図である。
タッチパネル7は、タッチパネル6と比較して、端子の構成が異なっている。
タッチパネル7の端子は、配線171またはグランド配線172と、透明導電膜で形成される端子16とを、この順で積層させた構成である。そして、端子16の概略全体が保護膜19で覆われている。タッチパネル7では、遮光部11に形成されたコンタクトホール11a、および平坦化膜122に形成されたコンタクトホール122aに加えて、保護膜19に形成されたコンタクトホール19aによって、端子16の一部を露出させている。そして、コンタクトホール11a、122a、および19aを介して、端子16を外部駆動回路等と接続させる。
タッチパネル7の構成によれば、タッチパネル6の構成と比較して、より低抵抗の端子を形成することができる。
タッチパネル7はさらに、配線171とY電極55との接続部分の構成が異なっている。タッチパネル7では、配線171とY電極55の島状電極151とが直接接触している。
また、タッチパネル7では、配線171とグランド配線172とが交差する箇所に中継電極18が形成されている。グランド配線172と中継電極18とは、遮光部11に形成されたコンタクトホール11c、および平坦化膜122に形成されたコンタクトホール122cを介して接触している。この構成によって、配線171とグランド配線172とを短絡させることなく、平面視において交差させることができる。
タッチパネル7の構成によれば、タッチパネル6の構成と比較して、配線171とY電極55の島状電極151とが直接接触しているため、配線171を低抵抗にすることができる。
一方、タッチパネル6の構成によれば、タッチパネル7の構成と比較して、グランド配線172の繋ぎ替えがない。すなわち、グランド配線172を中継電極18で中継させていない。そのため、グランド配線172を低抵抗にすることができる。
[第8の実施形態]
図29は、本発明の第8の実施形態にかかるタッチパネル8の、概略構成を模式的に示す平面図である。図30は、図29におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
図29は、本発明の第8の実施形態にかかるタッチパネル8の、概略構成を模式的に示す平面図である。図30は、図29におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
タッチパネル8は、タッチパネル6(図24)と比較して、構成要素の形成順序が異なっている。そのため、各膜の積層順序が異なっている。
また、タッチパネル8は、タッチパネル6が備える層間絶縁膜121および平坦化膜122に代えて、平坦化絶縁膜82を備えている。平坦化絶縁膜82は、接続部552および遮光部11を含む基板10の概略全面を覆って形成されている。本実施形態では、平坦化絶縁膜82が、層間絶縁膜の機能と平坦化膜の機能とを兼ねている。
タッチパネル6では、X電極14とY電極55とが交差する箇所に層間絶縁膜121が形成される。これに対し、タッチパネル8では、Y電極55の接続部552を含む基板10の概略全面を覆って、平坦化絶縁膜82が形成されている。Y電極55の島状電極151と接続部552とは、平坦化絶縁膜82に形成されたコンタクトホール82aを介して接触している。この構成によって、X電極14とY電極55とを短絡させることなく交差させることができる。
タッチパネル8はさらに、タッチパネル6の配線171およびグランド配線172に代えて、配線971およびグランド配線972を備えている。すなわち、タッチパネル8の配線971およびグランド配線972は、金属膜と遮光導電膜との積層構造ではなく、金属膜によって形成されている。
タッチパネル8では、端子16および配線971は、ともに平坦化絶縁膜82よりも基板10から遠い層に形成されている。図30に示すように、端子16と配線971とは、直接接触している。
タッチパネル8では、X電極14と配線971とは、中継電極643を介して接続されている。X電極14の島状電極141と中継電極643とは、平坦化絶縁膜82に形成されたコンタクトホール82cを介して接触している。中継電極643と配線971とは、遮光部11に形成されたコンタクトホール11e、および平坦化絶縁膜82に形成されたコンタクトホール82eを介して接触している。
同様に、Y電極55と配線971とは、中継電極653を介して接続されている。Y電極15の島状電極151と中継電極653とは、平坦化絶縁膜82に形成されたコンタクトホール82bを介して接触している。中継電極653と配線971とは、遮光部11に形成されたコンタクトホール11d、および平坦化絶縁膜82に形成されたコンタクトホール82dを介して接触している。
図29に示すように、配線971は非センシング領域Pに形成され、センシング領域Vには形成されない。X電極14と配線971とを接続する中継電極643、およびY電極55と配線971とを接続する中継電極653は、透明導電膜によって形成されている。この構成によれば、センシング領域Vが液晶表示装置101の表示領域と重ね合わされる場合であっても、配線971が表示領域と重なる部分に配置されることはない。そのため、配線971が視認されることがない。したがって、例えばタッチパネル6の配線171のように、金属膜と遮光導電膜の積層構造としなくても良い。これによって、製造工程をより簡略化することができる。
[タッチパネル8の製造方法]
以下、図31A~図31Fを参照して、タッチパネル8の製造方法の概略を説明する。なお、図31A~図31Fは、図29におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
以下、図31A~図31Fを参照して、タッチパネル8の製造方法の概略を説明する。なお、図31A~図31Fは、図29におけるA-A’線、B-B’線、C-C’線、D-D’線、およびE-E’線の各線に沿った断面図である。
まず、図31Aに示すように、透明導電膜(第1透明導電膜)をパターニングしてY電極55の接続部552、ならびに中継電極643および653を形成する。
次に、図31Bに示すように、遮光膜をパターニングして遮光部11を形成する。
次に、図31Cに示すように、絶縁膜をパターニングして平坦化絶縁膜82を形成する。絶縁膜は、タッチパネル1~7と同様に、例えばアクリル樹脂、ノボラック樹脂、エポキシ樹脂、アルキル樹脂、フェノール樹脂、またはシリコン樹脂を主成分とすることができる。パターニング方法として、例えばスクリーン印刷法、フレキソ印刷法等の印刷法、インクジェット法、またはフォトリソグラフィ法を用いることができる。平坦化絶縁膜82を形成するとともに、コンタクトホール82a、82b、82c、82dおよび82eを形成する。
次に、図31Dに示すように、図31Aとは別の透明導電膜(第2透明導電膜)をパターニングしてX電極14の島状電極141および接続部142、Y電極55の島状電極151、ならびに端子16を形成する。第1透明導電膜と第2透明導電膜とは、同じ材料であっても良いし異なる材料であっても良い。また、第1透明導電膜と第2透明導電膜とは、成膜方法およびパターニング方法が同じであっても良いし異なっていても良い。
次に、図31Eに示すように、金属膜をパターニングして配線971、およびグランド配線972を形成する。金属膜(高導電膜)は、第1透明導電膜よりも電気抵抗が低い。金属膜は例えばMoNbとAlとMoNbとの積層膜である。なお、本実施形態においても、金属膜と遮光導電膜との積層構造としても良い。
最後に、図32Fに示すように、保護膜19を形成する。
以上、本発明の第8の実施形態にかかるタッチパネル8の構成、および製造方法を説明した。
本実施形態にかかるタッチパネル8は、第1透明導電膜がパターニングされて形成された第1透明導電層(Y電極55の接続部552等)と、遮光膜がパターニングされて形成された遮光層(遮光部11)と、絶縁膜がパターニングされて形成された絶縁層(層間絶縁膜121および平坦化膜122)と、第2透明導電膜がパターニングされて形成された第2透明導電層(X電極14、Y電極55の島状電極151等)と、金属膜がパターニングされて形成された高導電層(配線971等)とが、この順で形成されたものである。
タッチパネル8の構成によっても、タッチパネル9およびタッチパネル91の構成と比較して、工程数を削減することができる。
[その他の実施形態]
以上、本発明の第1~第8の実施形態について説明した。各実施形態の構成を、図32および図33にまとめる。
以上、本発明の第1~第8の実施形態について説明した。各実施形態の構成を、図32および図33にまとめる。
図32および図33において、「1層」、「2層」・・・の欄は、基板10から近い順に形成された、各層の構成を表す。「TP」は、島状電極141および151を含む透明導電層を表す。「BM」は遮光層を、「OC」は絶縁層を、「LB」は高導電層(金属膜と遮光導電膜とによる層)を、「L」は高導電層(金属膜による層)を、「BR」は接続部552を含む透明導電層を、「Pas」は保護膜19を含む層を、それぞれ表す。また、タッチパネル9または91において、「C」は平坦化膜92を含む層を、「AI」は層間絶縁膜931および932を含む層を、それぞれ表す。
「端子」の欄は、端子が、上記のどの層によって形成されているかを示す。なお、「TP/LB」は高導電膜上に島状電極141および151を含む透明導電層が積層された構成を表す。「BR/LB」は高導電膜上に接続部552を含む透明導電層が積層された構成を表す。
「グランド配線繋ぎ替え」の欄は、グランド配線172または971が、上記のどの層によって中継されているかを示す。
本発明は上述の各実施形態のみに限定されず、発明の範囲内で種々の変更または組合せが可能である。
本発明は、タッチパネルおよびタッチパネルの製造方法として産業上の利用が可能である。
Claims (16)
- 平面視において互いに交差する第1電極および第2電極を含むセンサ電極と、
前記第1電極と前記第2電極とを絶縁する層間絶縁膜と、
前記センサ電極に電気的に接続された配線と、
前記配線と平面視において重なるように形成された遮光部と、
前記遮光部を覆って形成された平坦化膜とを備えたタッチパネルの製造方法であって、
第1透明導電膜をパターニングして前記センサ電極の一部を含む層を形成する工程と、
前記第1透明導電膜よりも電気抵抗の低い高導電膜をパターニングして前記配線を含む層を形成する工程と、
遮光膜をパターニングして前記遮光部を含む層を形成する工程と、
前記遮光部を含む層を形成した後、絶縁膜をパターニングして前記層間絶縁膜および前記平坦化膜を含む層を形成する工程とを含み、
前記遮光膜をパターニングする工程および前記絶縁膜をパターニングする工程は、前記第1透明導電膜をパターニングする工程と前記高導電膜をパターニングする工程との間に行われる、タッチパネルの製造方法。 - 前記高導電膜は、金属膜と、前記金属膜よりも光吸収率の高い遮光導電膜とを含む、請求項1に記載のタッチパネルの製造方法。
- 前記遮光導電膜は酸化インジウム膜である、請求項2に記載のタッチパネルの製造方法。
- 前記センサ電極の一部は前記高導電膜によって形成される、請求項1~3のいずれか一項に記載のタッチパネルの製造方法。
- 前記第1透明導電膜をパターニングする工程、前記遮光膜をパターニングする工程、前記絶縁膜をパターニングする工程、および前記高導電膜をパターニングする工程をこの順番で行う、請求項4に記載のタッチパネルの製造方法。
- 前記高導電膜をパターニングする工程、前記遮光膜をパターニングする工程、前記絶縁膜をパターニングする工程、および前記第1透明導電膜をパターニングする工程をこの順番で行う、請求項4に記載のタッチパネルの製造方法。
- 第2透明導電膜をパターニングする工程をさらに含み、
前記センサ電極の一部は前記第2透明導電膜によって形成される、請求項1~3のいずれか一項に記載のタッチパネルの製造方法。 - 前記第2透明導電膜をパターニングする工程、前記高導電膜をパターニングする工程、前記遮光膜をパターニングする工程、前記絶縁膜をパターニングする工程、および前記第1透明導電膜をパターニングする工程をこの順番で行う、請求項7に記載のタッチパネルの製造方法。
- 前記第2電極は、複数の島状電極と、隣接する前記島状電極同士を接続する接続部とを含み、
前記第1電極および島状電極は、前記第1透明導電膜によって形成され、
前記接続部は、前記第2透明導電膜によって形成される、請求項8に記載のタッチパネルの製造方法。 - 前記第2電極は、複数の島状電極と、隣接する前記島状電極同士を接続する接続部とを含み、
前記第1電極および島状電極は、前記第2透明導電膜によって形成され、
前記接続部は、前記第1透明導電膜によって形成される、請求項8に記載のタッチパネルの製造方法。 - 前記第1透明導電膜をパターニングする工程、前記遮光膜をパターニングする工程、前記絶縁膜をパターニングする工程、前記第2透明導電膜をパターニングする工程、および前記高導電膜をパターニングする工程をこの順番で行う、請求項7に記載のタッチパネルの製造方法。
- 平面視において互いに交差する第1電極および第2電極を含むセンサ電極を含むタッチパネルであって、
第1透明導電膜がパターニングされて形成された第1透明導電層と、
前記第1透明導電膜よりも電気抵抗の低い高導電膜がパターニングされて形成された高導電層と、
遮光膜がパターニングされて形成された遮光層と、
絶縁膜がパターニングされて形成された絶縁層とを備え、
前記第1透明導電層は前記センサ電極の一部を含み、
前記遮光層および前記絶縁層は前記第1透明導電層と前記高導電層との間に形成される、タッチパネル。 - 前記高導電膜は、金属膜と、前記金属膜よりも光吸収率の高い遮光導電膜とを含む、請求項12に記載のタッチパネル。
- 前記遮光導電膜は酸化インジウム膜である、請求項13に記載のタッチパネル。
- 前記高導電層は前記センサ電極の一部を含む、請求項12~14のいずれか一項に記載のタッチパネル。
- 第2透明導電膜がパターニングされて形成された第2透明導電層をさらに備え、
前記第2透明導電層は前記センサ電極の一部を含む、請求項12~14のいずれか一項に記載のタッチパネル。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/416,117 US20150177879A1 (en) | 2012-07-31 | 2013-07-26 | Touch panel and method of manufacturing touch panel |
CN201380039055.7A CN104487925B (zh) | 2012-07-31 | 2013-07-26 | 触摸面板和触摸面板的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012170546A JP2015180979A (ja) | 2012-07-31 | 2012-07-31 | タッチパネルおよびタッチパネルの製造方法 |
JP2012-170546 | 2012-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014021223A1 true WO2014021223A1 (ja) | 2014-02-06 |
Family
ID=50027900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/070353 WO2014021223A1 (ja) | 2012-07-31 | 2013-07-26 | タッチパネルおよびタッチパネルの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150177879A1 (ja) |
JP (1) | JP2015180979A (ja) |
CN (1) | CN104487925B (ja) |
WO (1) | WO2014021223A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015215831A (ja) * | 2014-05-13 | 2015-12-03 | アルプス電気株式会社 | 入力装置及び入力装置の製造方法 |
JP2015219350A (ja) * | 2014-05-16 | 2015-12-07 | 株式会社ジャパンディスプレイ | 表示装置およびその製造方法 |
JP2018106706A (ja) * | 2016-12-27 | 2018-07-05 | エルジー ディスプレイ カンパニー リミテッド | 表示装置 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103885660B (zh) * | 2014-03-12 | 2016-04-06 | 京东方科技集团股份有限公司 | 一种内嵌式触摸屏及显示装置 |
CN104765500B (zh) * | 2015-04-20 | 2018-07-17 | 合肥京东方光电科技有限公司 | 彩膜基板及其制作方法、显示装置 |
JP6706999B2 (ja) * | 2016-08-30 | 2020-06-10 | 株式会社ジャパンディスプレイ | 表示装置 |
JP6720048B2 (ja) * | 2016-10-18 | 2020-07-08 | 東洋アルミニウム株式会社 | パターンレスタッチパネル用導電シート |
CN110073319B (zh) * | 2016-12-14 | 2022-05-03 | 夏普株式会社 | 配线基板、位置输入装置、带位置输入功能的显示面板以及配线基板的制造方法 |
JP6942602B2 (ja) * | 2017-10-19 | 2021-09-29 | 株式会社ジャパンディスプレイ | 表示装置の製造方法 |
JP2019152817A (ja) * | 2018-03-06 | 2019-09-12 | シャープ株式会社 | パネルモジュール |
JP7221058B2 (ja) * | 2019-01-11 | 2023-02-13 | 株式会社ジャパンディスプレイ | 表示装置 |
CN110162220B (zh) * | 2019-05-28 | 2022-10-18 | 业成科技(成都)有限公司 | 触控装置及其制作方法 |
CN111552401B (zh) * | 2020-04-22 | 2022-05-10 | 业成科技(成都)有限公司 | 触控显示装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011186717A (ja) * | 2010-03-08 | 2011-09-22 | Daiwa Sangyo:Kk | 静電容量型タッチパネルとその製造方法 |
JP2011197709A (ja) * | 2010-03-17 | 2011-10-06 | Sony Corp | タッチパネルおよびその製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6958123B2 (en) * | 2001-06-15 | 2005-10-25 | Reflectivity, Inc | Method for removing a sacrificial material with a compressed fluid |
JP5443679B2 (ja) * | 2007-10-10 | 2014-03-19 | 株式会社ジャパンディスプレイ | 有機el表示装置 |
KR101427581B1 (ko) * | 2007-11-09 | 2014-08-07 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 및 그 제조 방법 |
CN101978343A (zh) * | 2008-03-26 | 2011-02-16 | 京瓷株式会社 | 触摸面板以及触摸面板型显示装置 |
CN201352342Y (zh) * | 2008-12-19 | 2009-11-25 | 洋华光电股份有限公司 | 改进的电容式触控感测结构 |
CN101464761A (zh) * | 2009-01-05 | 2009-06-24 | 中国南玻集团股份有限公司 | 电容式触控屏 |
JP5113773B2 (ja) * | 2009-01-20 | 2013-01-09 | 株式会社ジャパンディスプレイイースト | 表示装置 |
CN101571779A (zh) * | 2009-06-05 | 2009-11-04 | 中国南玻集团股份有限公司 | 电容式触控屏及其加工方法 |
CN101989160A (zh) * | 2009-08-07 | 2011-03-23 | 铼宝科技股份有限公司 | 电容式触控面板 |
CN101807132B (zh) * | 2010-03-11 | 2012-07-11 | 深圳莱宝高科技股份有限公司 | 面板构造 |
CN102243544B (zh) * | 2010-05-12 | 2013-08-14 | 群康科技(深圳)有限公司 | 触控屏、触控屏的制造方法及触控显示装置 |
JP5623894B2 (ja) * | 2010-12-14 | 2014-11-12 | 京セラディスプレイ株式会社 | タッチパネル |
CN102681712B (zh) * | 2011-03-18 | 2016-08-24 | 宸鸿科技(厦门)有限公司 | 触控装置及其制造方法 |
KR101868473B1 (ko) * | 2011-08-11 | 2018-06-19 | 엘지디스플레이 주식회사 | 터치 스크린 일체형 표시 장치 |
JP2015043112A (ja) * | 2011-12-21 | 2015-03-05 | シャープ株式会社 | タッチパネルおよびタッチパネル付き表示装置 |
JP2015057678A (ja) * | 2012-01-12 | 2015-03-26 | シャープ株式会社 | タッチパネルおよびタッチパネル付き表示装置 |
JP2015166889A (ja) * | 2012-07-02 | 2015-09-24 | シャープ株式会社 | タッチパネルおよびタッチパネル付き表示装置 |
-
2012
- 2012-07-31 JP JP2012170546A patent/JP2015180979A/ja active Pending
-
2013
- 2013-07-26 CN CN201380039055.7A patent/CN104487925B/zh not_active Expired - Fee Related
- 2013-07-26 US US14/416,117 patent/US20150177879A1/en not_active Abandoned
- 2013-07-26 WO PCT/JP2013/070353 patent/WO2014021223A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011186717A (ja) * | 2010-03-08 | 2011-09-22 | Daiwa Sangyo:Kk | 静電容量型タッチパネルとその製造方法 |
JP2011197709A (ja) * | 2010-03-17 | 2011-10-06 | Sony Corp | タッチパネルおよびその製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015215831A (ja) * | 2014-05-13 | 2015-12-03 | アルプス電気株式会社 | 入力装置及び入力装置の製造方法 |
JP2015219350A (ja) * | 2014-05-16 | 2015-12-07 | 株式会社ジャパンディスプレイ | 表示装置およびその製造方法 |
JP2018106706A (ja) * | 2016-12-27 | 2018-07-05 | エルジー ディスプレイ カンパニー リミテッド | 表示装置 |
US11137862B2 (en) | 2016-12-27 | 2021-10-05 | Lg Display Co., Ltd. | Display device |
US11513644B2 (en) | 2016-12-27 | 2022-11-29 | Lg Display Co., Ltd. | Display device having a touch sensor |
US11755156B2 (en) | 2016-12-27 | 2023-09-12 | Lg Display Co., Ltd. | Display device having a touch sensor |
Also Published As
Publication number | Publication date |
---|---|
CN104487925A (zh) | 2015-04-01 |
CN104487925B (zh) | 2017-04-26 |
JP2015180979A (ja) | 2015-10-15 |
US20150177879A1 (en) | 2015-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014021223A1 (ja) | タッチパネルおよびタッチパネルの製造方法 | |
US9280013B2 (en) | Touch panel configured to reduce effects of moisture, and display apparatus provided with touch panel | |
WO2014007155A1 (ja) | タッチパネルおよびタッチパネル付き表示装置 | |
US9727195B2 (en) | Touch panel and method for fabricating the same | |
JP6253923B2 (ja) | タッチセンサ内蔵有機エレクトロルミネッセンス装置 | |
JP5538566B2 (ja) | タッチパネル及びそれを備えた表示装置並びにタッチパネルの製造方法 | |
JP5717880B2 (ja) | タッチパネルおよびタッチパネル付き表示装置 | |
TWI459261B (zh) | 觸控立體顯示裝置 | |
US9182844B2 (en) | Touch panel, display device provided with touch panel, and method for manufacturing touch panel | |
TWI476656B (zh) | 觸控面板及其製造方法 | |
JP5827972B2 (ja) | タッチセンサ一体型表示装置 | |
US10684713B2 (en) | Display device and manufacturing method of the same | |
US20130076996A1 (en) | Integrated touch panel with display device and method of manufacturing the same | |
WO2013094570A1 (ja) | タッチパネルおよびタッチパネル付き表示装置 | |
WO2013008675A1 (ja) | タッチパネルおよびタッチパネル付き表示装置 | |
KR102007662B1 (ko) | 베젤이 최소화된 표시소자 | |
WO2014002833A1 (ja) | タッチパネル、タッチパネルを備える表示装置及びタッチパネルの製造方法 | |
WO2013191024A1 (ja) | タッチパネル、タッチパネルを備える表示装置及びタッチパネルの製造方法 | |
WO2013047381A1 (ja) | タッチパネルおよびタッチパネル付き表示装置 | |
US20230168757A1 (en) | Touch Panel and Preparation Method thereof, and Display Touch Apparatus | |
KR101971070B1 (ko) | 정전기 방지용 투명 전극을 포함하는 기판 및 그 제조 방법과 이를 포함하는 액정표시장치 | |
JP2010262199A (ja) | 表示装置及び表示装置の製造方法 | |
KR20120063355A (ko) | 터치 패널 일체형 표시 장치 및 그의 제조 방법 | |
JP2019074684A (ja) | 表示パネル用基板の製造方法 | |
JP2013114165A (ja) | 液晶表示装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13825072 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14416117 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13825072 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |