WO2011064970A1 - 負荷駆動システム、電動機駆動システム、および車両制御システム - Google Patents

負荷駆動システム、電動機駆動システム、および車両制御システム Download PDF

Info

Publication number
WO2011064970A1
WO2011064970A1 PCT/JP2010/006775 JP2010006775W WO2011064970A1 WO 2011064970 A1 WO2011064970 A1 WO 2011064970A1 JP 2010006775 W JP2010006775 W JP 2010006775W WO 2011064970 A1 WO2011064970 A1 WO 2011064970A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
carrier signal
phase inverter
control command
same
Prior art date
Application number
PCT/JP2010/006775
Other languages
English (en)
French (fr)
Inventor
俊 風間
北畠 真
田米 正樹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011527124A priority Critical patent/JP4825323B2/ja
Priority to US13/133,775 priority patent/US8680794B2/en
Priority to EP10832825.3A priority patent/EP2506414B1/en
Priority to CN201080003875.7A priority patent/CN102273058B/zh
Publication of WO2011064970A1 publication Critical patent/WO2011064970A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/08Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a noise reduction technique in a load drive system for driving a load such as an electric motor, particularly in a load drive system by PWM control.
  • motor drive systems used in a wide range of fields include three-phase AC motors (hereinafter sometimes simply referred to as “motors”), and three types of motors that convert DC power into AC power and feed the motors.
  • a phase inverter and a control unit for controlling the three-phase inverter For example, as a traveling motor for an electric vehicle or a hybrid vehicle, a permanent magnet type synchronous motor, a so-called brushless DC motor is employed.
  • PWM Pulse Width Modulation
  • U, V, and W phase arms the switching operation by the switching elements connected in series to the U, V, and W phase arms is performed at high speed, which is a major cause of high frequency switching noise.
  • the electric motor has a ground parasitic capacitance with respect to the frame ground, switching noise flows through the ground parasitic capacitance, which causes damage to the motor bearings and malfunction of peripheral devices.
  • Patent Document 1 discloses a noise reduction technique in a system in which one electric motor having two three-phase windings is driven by two three-phase inverters.
  • the first three-phase inverter has a sawtooth wave (for example, the voltage gradually increases from the first level to the second level, and drops to the first level instantly after reaching the second level.
  • the first carrier signal is a waveform that can be obtained by periodically repeating (1)
  • the second three-phase inverter uses the second carrier signal that is an inverted sawtooth wave obtained by inverting the sawtooth wave.
  • switching elements that constitute the same arm of the same phase means, for example, a switching element that constitutes the upper arm of the U phase in the first three-phase inverter and a U-phase in the second three-phase inverter.
  • the switching element that constitutes the upper arm means, for example, a switching element that constitutes the upper arm of the U phase in the first three-phase inverter and a U-phase in the second three-phase inverter. The switching element that constitutes the upper arm.
  • Patent Document 1 when two sets of a three-phase inverter and a three-phase AC motor are used, a noise reduction effect can be obtained.
  • a load drive system in which three three-phase inverters output a total of nine phase voltages to a three-phase AC motor as in the case where three sets of three-phase inverters and three-phase AC motors are configured, There is a problem. For example, consider a case where the first carrier signal is a sawtooth voltage, the second carrier signal is an inverted sawtooth voltage, and the third carrier signal is a sawtooth voltage.
  • the present invention has been made to solve the above problems, and proposes a noise reduction method with a high suppression effect in a load drive system in which a three-phase AC motor is driven by three three-phase inverters. Objective.
  • a load driving system is a load driving system for driving first, second and third loads, wherein an input terminal is connected to a DC power source, and an output terminal is the first terminal.
  • First, second, and third three-phase inverters individually connected to the first, second, and third loads, and a first carrier signal that is a sawtooth wave, and the first carrier signal And a saw having the same phase and frequency as the first carrier signal and having an inverted waveform with respect to the first carrier signal.
  • a second control unit that generates a second carrier signal that is a wave, and that operates the second three-phase inverter based on the second carrier signal; and a slope of the sawtooth wave of the first carrier signal;
  • the second A third carrier signal that is a triangular wave having a sawtooth slope of the carrier signal and is in the same phase with respect to the first carrier signal and the second carrier signal or a triangular wave whose phase is shifted by a half period
  • a third control unit that operates the third three-phase inverter based on the third carrier signal.
  • the switching between the first and second three-phase inverters whose state transition directions are opposite to each other occurs, so that the noise is canceled out.
  • the triangular wave used as the third carrier signal does not have a time at which the voltage instantaneously drops or instantly rises as seen by the sawtooth wave, the magnitude relationship between the control command and the carrier signal is U, The V and W phases are not switched at the same time. Therefore, it is possible to avoid the simultaneous switching of the same state transition direction in all three phases U, V, and W in the third three-phase inverter, and as a result, it is possible to avoid the switching noise from being superimposed in triplicate. be able to. Therefore, noise can be reduced as compared with the case where the sawtooth voltage is used for the third carrier signal.
  • the third carrier signal has a slope of the sawtooth wave of the first carrier signal and a slope of the sawtooth wave of the second carrier signal, and the same phase or a half-cycle phase shift with respect to these carrier signals. It is a triangular wave.
  • the switching timings coincide between the first and third three-phase inverters or between the second and third three-phase inverters.
  • the direction of the switching state transition of the third three-phase inverter is opposite to the first and second three-phase inverters, or between the first and third three-phase inverters, Switching in which the direction of state transition is opposite to each other occurs between the second and third three-phase inverters. This is synonymous with the ability to cancel switching noise generated by switching. Therefore, further noise reduction can be achieved.
  • FIG. 6 is a waveform diagram of a U-phase control command and first, second, and third carrier signals according to the first embodiment. It is an enlarged view of the waveform of each phase control command and the first, second and third carrier signals according to the first embodiment. It is a figure which shows the common mode noise simulation result which concerns on 1st Embodiment and a comparative example. It is a figure which shows the whole structure of the load drive system which concerns on 2nd Embodiment.
  • FIG. 6 is a waveform diagram of a U-phase control command and first, second, and third carrier signals according to a second embodiment.
  • FIG. 1 is a diagram showing an overall configuration of a load driving system according to a first embodiment of the present invention.
  • the load drive system 100 includes a DC power supply BA, three-phase AC motors 201, 202, 203, three-phase inverters 301, 302, 303, and a control circuit 400.
  • DC power supply BA is a DC power supply obtained by rectifying a power supply system or a DC power supply of a battery type (typically a secondary battery such as nickel metal hydride or lithium ion).
  • a battery type typically a secondary battery such as nickel metal hydride or lithium ion.
  • the three-phase AC motor 201 has a three-phase winding 211 that receives supply of three-phase AC power.
  • the three-phase AC motor 202 has a three-phase winding 212 that receives supply of three-phase AC power.
  • the three-phase AC motor 203 is different from the three-phase AC motor 201 in that the winding direction of the three-phase winding 213 is opposite to that of the three-phase winding 211 (details will be described in the next section).
  • the configuration is the same as that of the three-phase AC motor 201.
  • the three-phase inverter 301 has an input terminal connected to the DC power supply BA and an output terminal connected to the three-phase AC motor 201.
  • the three-phase inverter 301 includes a U-phase arm 301u, a V-phase arm 301v, and a W-phase arm 301w.
  • Each phase arm includes a switching element connected in series, a diode connected in parallel to the switching element, and a gate drive circuit GD for driving the switching element.
  • a switching element a power semiconductor element typified by IGBT or MOSFET is applied. When a MOSFET is used as a switching element, a parasitic diode may be used as a diode.
  • the three-phase inverters 302 and 303 have the same structure as the three-phase inverter 301. However, the input terminals of the three-phase inverters 302 and 303 are both connected to the DC power supply BA, but the output terminals are connected to the three-phase AC motors 202 and 203, respectively.
  • the control circuit 400 controls the operation of the three-phase inverters 301, 302, and 303. Details of the control circuit 400 will be described below.
  • the control circuit 400 includes a first control unit 401 that controls the operation of the three-phase inverter 301, a second control unit 402 that controls the operation of the three-phase inverter 302, and a third control that controls the operation of the three-phase inverter 303.
  • a unit 403 is provided.
  • the first control unit 401 includes a first carrier signal generation circuit 411 and a first PWM signal generation circuit group 421.
  • the first carrier signal generation circuit 411 generates a first carrier signal that is a sawtooth wave as indicated by 601 in FIG.
  • the first PWM signal generation circuit group 421 generates U-phase, V-phase, and W-phase PWM signals using the first carrier signal.
  • the second control unit 402 includes a carrier inversion circuit 412 and a second PWM signal generation circuit group 422.
  • the carrier inverting circuit 412 is, for example, an inverting amplifier circuit whose gain is set to 1, and outputs an output signal obtained by inverting the input voltage with reference to the reference voltage.
  • a second carrier signal 602 that is a sawtooth wave having the same frequency and phase as the first carrier signal and having an inverted waveform can be obtained. Since the gain is set to 1, the amplitudes of the first carrier signal and the second carrier signal are the same.
  • the second PWM signal generation circuit group 422 generates U-phase, V-phase, and W-phase PWM signals using the second carrier signal.
  • the third control unit 403 includes a carrier synthesis circuit 413 and a third PWM signal generation circuit group 423.
  • the carrier synthesis circuit 413 is a circuit that selectively outputs one of the first and second carrier signals for each period corresponding to a half cycle of the first carrier signal.
  • the third carrier signal 603 which is a triangular wave having the slope of the sawtooth wave of the first carrier signal and the slope of the sawtooth wave of the second carrier signal, is obtained.
  • the third PWM signal generation circuit group 423 generates U-phase, V-phase, and W-phase PWM signals using the third carrier signal.
  • the waveform of the third carrier signal 603 is a waveform in which two triangular waves are combined, but actually the carrier synthesis circuit 413 has two waveforms at the same time. It is not outputting a signal.
  • the carrier synthesizing circuit 413 selects the second carrier in the first half cycle and selects the first carrier signal in the second half cycle.
  • the control command is negative, the first carrier is selected in the first half cycle, and the second carrier signal is selected in the second half cycle.
  • the carrier synthesis circuit 413 includes a circuit for synthesizing the third carrier signal for the U phase, a circuit for synthesizing the third carrier signal for the V phase, and a circuit for synthesizing the third carrier signal for the W phase. It is included.
  • the three circuits are supplied with the positive / negative sign of the corresponding phase control command from each phase control command generation circuit or other control circuit, etc., and the three circuits correspond respectively based on the positive / negative information.
  • a third carrier signal for the phase to be synthesized is synthesized.
  • the first PWM signal generation circuit group 421 includes a first U-phase PWM signal generation circuit 421u, a first V-phase PWM signal generation circuit 421v, and a first W-phase PWM signal generation circuit 421w.
  • the first U-phase PWM signal generation circuit 421u includes a U-phase control command generation circuit 431u and a comparator 441u.
  • the U-phase control command generation circuit 431u generates a U-phase control command.
  • the U-phase control command generated by the U-phase control command generation circuit 431u is input to the inverting input terminal of the comparator 441u, and the first carrier signal is input to the non-inverting input terminal.
  • the pulse waveform drive signal that is the comparison result output from the comparator 441u is supplied as a first U-phase PWM signal to the U-phase arm 301u of the three-phase inverter 301 through the gate drive circuit GD.
  • the first V-phase PWM signal generation circuit 421v and the first W-phase PWM signal generation circuit 421w perform the same operation as the first U-phase PWM signal generation circuit 421u on the V phase and the W phase, respectively.
  • the second U-phase PWM signal generation circuit 422u includes a U-phase control command generation circuit 432u and a comparator 442u. Similar to the U-phase control command generation circuit 431u, the U-phase control command generation circuit 432u outputs a U-phase control command to the comparator 442u.
  • the U-phase control command generated by the U-phase control command generation circuit 432u is input to the inverting input terminal of the comparator 442u, and the second carrier signal is input to the non-inverting input terminal.
  • the pulse waveform driving signal output from the comparator 442u is supplied to the U-phase arm 302u of the three-phase inverter 302 via the gate driving circuit GD as the second U-phase PWM signal.
  • the second V-phase PWM signal generation circuit 422v and the second W-phase PWM signal generation circuit 422w perform the same operation as the second U-phase PWM signal generation circuit 422u on the V phase and the W phase, respectively.
  • the third U-phase PWM signal generation circuit 423u includes a U-phase control command generation circuit 433u and a comparator 443u. Similar to the U-phase control command generation circuit 431u, the U-phase control command generation circuit 433u outputs a U-phase control command to the comparator 443u.
  • the third carrier signal is input to the inverting input terminal of the comparator 443u, and the U-phase control command generated by the U-phase control command generating circuit 433u is input to the non-inverting input terminal.
  • the pulse waveform drive signal which is the comparison result output from the comparator 443u, is supplied as a third U-phase PWM signal to the U-phase arm 303u of the three-phase inverter 303 via the gate drive circuit GD.
  • the third V-phase PWM signal generation circuit 423v and the third W-phase PWM signal generation circuit 423w perform the same operation as the third U-phase PWM signal generation circuit 423u on the V phase and the W phase, respectively.
  • the U-phase control command generation circuits 431u, 432u, and 433u output U-phase control commands having the same phase and the same amplitude, that is, the phases and amplitudes of the U-phase control commands 501u, 502u, and 503u in FIG. I decided to.
  • the switching element of each arm of the three-phase inverter can surely simultaneously generate the state transition to ON and the state transition to OFF.
  • the U-phase control command generation circuits 431u, 432u, and 433u may be operated in synchronization.
  • this can be realized by a method of outputting a synchronization signal to the U-phase control command generation circuits 431u, 432u, and 433u.
  • the control gains of the U-phase control command generation circuits 431u, 432u, and 433u may be the same.
  • it can be realized by a method such as providing an automatic gain control circuit before the U-phase control command generation circuits 431u, 432u, and 433u. The same applies to the V-phase and W-phase control commands.
  • the comparators 441 and 442 turn on the switching element of the upper arm when the control command is larger than the carrier signal.
  • the comparator 443 turns off the switching element of the upper arm when the control command is larger than the carrier signal.
  • the ground parasitic capacitances of the three-phase AC motors 201, 202, and 203 are the same. By making the ground parasitic capacitance the same, the amount of noise current flowing through the ground parasitic capacitance of each three-phase AC motor can be made the same, and the noise cancellation effect can be improved. This is the same distance between the neutral point of the three-phase AC motor 201 and the ground, the distance between the neutral point of the three-phase AC motor 202 and the ground, and the distance between the neutral point of the three-phase AC motor 203 and the ground. This is possible. Further, as shown in FIG. 16, it is desirable to connect the neutral points of the three-phase AC motors and to ensure that the neutral points have the same potential. With this configuration, the potential at each neutral point can be reliably set to the same potential, and the noise canceling effect can be further improved.
  • transition time from on to off and the transition time from off to on are the same in the switching elements constituting the arms of each three-phase inverter. Thereby, it is possible to reliably cause the state transition to ON and the state transition to OFF to occur simultaneously in the switching element of each arm.
  • the PWM signal input to each arm via the gate drive circuit GD is dead to prevent a short circuit caused by turning on both the upper and lower arm switching elements of the same phase of the three-phase inverter. Time is provided.
  • the dead time provided in the PWM signal is assumed to be the same between the in-phase arms of the three-phase inverters.
  • the noise suppression effect can be improved by adopting a configuration in which the dead time can be adjusted.
  • FIG. 2 is a waveform diagram of a carrier signal and a U-phase control command according to the first embodiment.
  • FIG. 2A shows the first carrier signal 601 and the U-phase control command 501u input to the comparator 441u.
  • 2B shows the second carrier signal 602 and the U-phase control command 502u input to the comparator 442u
  • FIG. 2C shows the third carrier signal 603 and the U-phase input to the comparator 443u.
  • a control command 503u is shown.
  • FIG. 3 shows an enlarged view in which V-phase control commands 501v, 502v, and 503v and W-phase control commands 501w, 502w, and 503w are added to FIG.
  • the principle of noise reduction will be specifically described with reference to FIG.
  • the switching element of the upper arm of the U phase will be described as an example, but the V phase and the W phase can also be described by the same principle.
  • the magnitude relationship between the U-phase control command 501u and the first carrier signal 601 is switched in the first U-phase PWM signal generation circuit 421u, and the upper phase of the first three-phase inverter U-phase arm 301u is changed.
  • a state transition from on to off occurs in the switching element of the arm.
  • the second U-phase PWM signal generation circuit 422u the state transition of the switching element does not occur.
  • the third U-phase PWM signal generation circuit 423u the magnitude relationship between the U-phase control command 503u and the third carrier signal 603 is switched, and the switching element on the upper arm of the third three-phase inverter U-phase arm 303u is switched off.
  • a state transition to ON occurs. Therefore, at time (1), a state transition from ON to OFF and a state transition from OFF to ON opposite to this occur simultaneously between the first and third three-phase inverters.
  • the magnitude relationship between the U-phase control command 501u and the first carrier signal 601 is switched in the first U-phase PWM signal generation circuit 421u, so that the upper phase of the first three-phase inverter U-phase arm 301u is changed.
  • a state transition from OFF to ON occurs in the switching element of the arm.
  • the second U-phase PWM signal generation circuit 422u the magnitude relationship between the U-phase control command 502u and the second carrier signal 602 is switched, and the switching element of the upper arm of the second three-phase inverter U-phase arm 302u is turned on. A state transition to off occurs.
  • the third U-phase PWM signal generation circuit 423u the state transition of the switching element does not occur. Therefore, at time (2), a state transition from OFF to ON and a state transition from ON to OFF opposite to this occur simultaneously between the first and second three-phase inverters.
  • the first U-phase PWM signal generation circuit 421u does not cause a state transition of the switching element.
  • the second U-phase PWM signal generation circuit 422u the magnitude relationship between the U-phase control command 502u and the second carrier signal 602 is switched, and the switching element of the upper arm of the second three-phase inverter U-phase arm 302u is switched off. A state transition to ON occurs.
  • the third U-phase PWM signal generation circuit 423u the magnitude relationship between the U-phase control command 503u and the third carrier signal 603 is switched, and the switching element of the upper arm of the third three-phase inverter U-phase arm 303u is turned on. A state transition to off occurs. Therefore, at time (3), a state transition from OFF to ON and a state transition from ON to OFF opposite to this occur simultaneously between the second and third three-phase inverters.
  • waveforms of common mode noises flowing by switching in the U-phase arm 301u, the V-phase arm 301v, and the W-phase arm 301w of the three-phase inverter 301 are shown as 511u, 511v, and 511w in FIG. 3, respectively.
  • 512u, 512v, and 512w show the waveforms of common mode noise that flow due to switching in each phase arm of the three-phase inverter 302, respectively.
  • waveforms of common mode noises flowing by switching in each phase arm of the three-phase inverter 303 are shown in 513u, 513v, and 513w, respectively.
  • the common mode noise waveform flowing through the entire three-phase inverter 301 is represented by the sum of 511u, 511v, and 511w, which is indicated by 521.
  • the common mode noise waveform flowing through the entire three-phase inverter 302 is represented by the sum of 512u, 512v, and 512w, which is indicated by 522.
  • the common mode noise waveform flowing through the entire three-phase inverter 303 is represented by the sum of 513u, 513v, and 513w, and this is indicated by 523.
  • the common mode noise waveform flowing through the entire load driving system 100 is represented by the sum of 521, 522, and 523, which is indicated by 520.
  • the switching element of the upper arm of the first three-phase inverter U-phase arm 301u is turned off, and on the contrary, the switching element of the upper arm of the third three-phase inverter U-phase arm 303u.
  • common mode noise can be canceled.
  • two three-phase inverters can simultaneously generate mutually opposite state transitions between the switching elements of the corresponding arms.
  • common mode noise can be canceled at all timings. Therefore, the common mode noise flowing through the entire load driving system 100 can be completely canceled.
  • FIG. 4 shows the result of noise simulation performed to verify the noise reduction effect in this embodiment.
  • Reference numeral 530a in FIG. 4A is a comparative example, and the common when the first carrier signal 601 in the present embodiment is used for all of the first carrier signal, the second carrier signal, and the third carrier signal. It is a mode noise simulation result.
  • 530b in FIG. 4B is also a comparative example, and the first carrier signal 601 in the present embodiment is used as the first carrier signal and the third carrier signal, and the second carrier signal in the present embodiment is used as the second carrier signal.
  • It is a common mode noise simulation result at the time of using the carrier signal 602 of FIG. 530c in FIG. 4C is a common mode noise simulation result in the present embodiment. As is apparent from these noise simulation results, it can be seen that the noise is completely canceled by the configuration of the present embodiment.
  • the switching element can simultaneously generate a state transition from on to off and an opposite state transition from off to on. As a result, noise is canceled out, and a more excellent noise reduction effect can be exhibited.
  • a state transition to ON and a state transition to OFF are simultaneously generated in the switching element, a surge current generated between the DC power supply and the three-phase inverter can be canceled out. Therefore, not only the above-described common mode noise but also normal mode noise can be reduced.
  • the noise reduction method according to the present invention does not use various noise suppression components such as an EMI filter and a shield. Therefore, it is possible to reduce the use of various noise suppression components in the entire system, and to provide a low-cost and small load drive system.
  • FIG. 5 is a diagram showing an overall configuration of a load driving system according to the second embodiment of the present invention.
  • a load drive system 110 shown in FIG. 5 includes a three-phase AC motor 203, a three-phase inverter 303, and a control circuit 400 of the load drive system 100 shown in FIG. It is the structure replaced with.
  • a configuration different from the load drive system 100 according to the first embodiment will be described below.
  • the three-phase AC motor 204 has a three-phase winding 214 that receives supply of three-phase AC power.
  • the difference from the three-phase AC motor 203 is that the winding direction of the three-phase winding 214 is opposite to that of the three-phase winding 213 according to the first embodiment. That is, the winding directions of the three-phase windings 211, 212, and 214 in this embodiment are all the same.
  • the three-phase inverter 304 has the same configuration as the three-phase inverter 303 in the first embodiment. However, the input terminal of the three-phase inverter 304 is connected to the DC power supply BA, and the output terminal is connected to the three-phase AC motor 204.
  • the control circuit 410 controls the operation of the three-phase inverters 301, 302, and 304. Details of the control circuit 410 will be described below.
  • Control circuit 410 The control circuit 410 has a configuration in which the third control unit 403 in the control circuit 400 shown in FIG.
  • the third control unit 404 includes a 180-degree phase shift circuit 480, a carrier synthesis circuit 414, and a third PWM signal generation circuit group 424.
  • the first carrier signal and the second carrier signal are input to the input terminal of the 180 degree phase shift circuit 480.
  • the 180-degree phase shift circuit 480 advances or delays the input first carrier signal and second carrier signal by their half periods. That is, the 180 degree phase shift circuit 480 outputs a new first carrier signal and second carrier signal in which the phases of the inputted first carrier signal and second carrier signal are shifted by 180 degrees.
  • the carrier synthesis circuit 414 performs the same operation as the carrier synthesis circuit 413 in the first embodiment.
  • the third carrier signal in this embodiment is 180 degrees out of phase with the third carrier signal in the first embodiment, and becomes a triangular wave having a waveform as indicated by 604 in FIG. .
  • the third PWM signal generation circuit group 424 generates U-phase, V-phase, and W-phase PWM signals using the third carrier signal.
  • the third PWM signal generation circuit group 424 includes a control command generation circuit 434 and a comparator 444. Further, the PWM signal generation circuit groups 421, 422, 424, the control command generation circuits 431, 432, 434, and the comparators 441, 442, 444 shown in FIG. 2 collectively represent corresponding U, V, and W phase components. It is shown in a block diagram.
  • the control command generation circuit 434 generates a control command. The control command is input to the inverting input terminal of the comparator 444, and the third carrier signal generated by the carrier synthesis circuit 414 is input to the non-inverting input terminal.
  • the pulse signal that is the comparison result output from the comparator 444 is supplied to each phase arm of the three-phase inverter 304 as a third PWM signal.
  • FIG. 6 is a waveform diagram of carrier signals and control commands according to the second embodiment.
  • FIG. 6A shows the first carrier signal 601 and the U-phase control command 501u input to the comparator 441.
  • 6B shows the second carrier signal 602 and the U-phase control command 502u input to the comparator 442, and
  • FIG. 6C shows the third carrier signal 604 and the U-phase input to the comparator 444.
  • a control command 504u is shown.
  • the principle of common mode noise reduction will be specifically described with reference to FIG. Only the switching element of the upper arm of the U phase will be described as an example, but the V phase and the W phase can also be described by the same principle.
  • the magnitude relationship between the U-phase control command 501u and the first carrier signal 601 is switched in the first PWM signal generation circuit group 421, and switching of the upper arm of the U-phase arm of the three-phase inverter 301 is performed.
  • a state transition from on to off occurs in the element.
  • the state transition of the switching element does not occur. Therefore, at time (1), switching with the same state transition direction does not occur simultaneously between the three three-phase inverters.
  • the magnitude relationship between the U-phase control command 501u and the first carrier signal 601 is switched in the first PWM signal generation circuit group 421, and the switching element of the U-phase upper arm of the three-phase inverter 301 is switched.
  • the second PWM signal generation circuit group 422 the magnitude relationship between the U-phase control command 502u and the carrier signal 602 is switched, and the state transition from ON to OFF is performed by the switching element of the upper arm of the U-phase arm of the three-phase inverter 302. Occur.
  • the state transition of the switching element does not occur. Therefore, at time (2), the state transition from on to off and the state transition from off to on occur simultaneously between the two three-phase inverters.
  • the state transition of the switching element does not occur in the first PWM signal generation circuit group 421.
  • the magnitude relationship between the U-phase control command 502u and the second carrier signal 602 is switched, and the state transition from OFF to ON is performed by the switching element of the U-phase upper arm of the three-phase inverter 302. Occur.
  • the state transition of the switching element does not occur. Therefore, at time (3), the same switching in the direction of state transition between the three three-phase inverters does not occur simultaneously.
  • FIG. 7 shows the result of noise simulation performed to verify the noise reduction effect in the present embodiment.
  • Reference numeral 531a in FIG. 7A is a comparative example, and the first carrier signal 601 in the present embodiment is used as the first carrier signal and the third carrier signal, and the second carrier in the present embodiment is used as the second carrier signal. It is a common mode noise simulation result at the time of using the signal 602.
  • FIG. Reference numeral 531b in FIG. 7B represents a common mode noise simulation result in the present embodiment. As is clear from these noise simulation results, it can be seen that the noise is reduced also by the configuration of the present embodiment.
  • the switching element can cause the state transition from on to off and the state transition from off to on at the same time.
  • the noise cannot be completely canceled as in the embodiment, a better noise reduction effect can be realized as compared with the prior art.
  • the structure of the third three-phase AC motor 203 needs to be different from that of the three-phase AC motors 201 and 202, but in the present embodiment, the same as the three-phase AC motors 201, 202, and 204.
  • the three-phase AC motor can be used.
  • FIG. 8 is a diagram showing an overall configuration of a load driving system according to the third embodiment of the present invention.
  • the load drive system 120 shown in FIG. 8 includes the three-phase AC motor 203, the three-phase inverter 303, and the control circuit 400 of the load drive system 100 shown in FIG. It is the structure replaced with.
  • a configuration different from the load drive system 100 according to the first embodiment will be described below.
  • the three-phase AC motor 205 has a three-phase winding 215 that receives supply of three-phase AC power.
  • the three-phase winding 215 has the same structure as the three-phase winding 213 in the first embodiment. That is, the winding direction of the three-phase winding 215 is opposite to that of the three-phase windings 211 and 212.
  • the three-phase inverter 305 has the same configuration as the three-phase inverter 303 in the first embodiment. However, the input terminal of the three-phase inverter 305 is connected to the DC power supply BA, and the output terminal is connected to the three-phase AC motor 205.
  • the control circuit 420 controls the operation of the three-phase inverters 301, 302, and 305. Hereinafter, details of the control circuit 420 will be described.
  • Control circuit 420 has a configuration in which the third control unit 403 in the control circuit 400 illustrated in FIG. 1 is replaced with a third control unit 405 and a synchronization signal generation circuit 460 is newly provided.
  • the third control unit 405 includes a third carrier signal generation circuit 415 and a third PWM signal generation circuit group 425.
  • the third carrier signal generation circuit 415 is a circuit that generates a triangular wave having a slope of the sawtooth wave of the first carrier signal and a slope of the sawtooth wave of the second carrier signal.
  • a capacitor is charged and discharged, and a triangular wave is generated by repeating charging and discharging by comparing with two threshold voltages.
  • a triangular wave having a desired frequency can be obtained by changing the capacitance of the capacitor. It is done.
  • the third carrier signal generation circuit is configured to generate a third carrier signal 605 that is a triangular wave having a frequency 1 ⁇ 2 with respect to the first and second carrier signals.
  • the capacitance of the capacitor 415 is set.
  • the third PWM signal generation circuit group 425 generates U-phase, V-phase, and W-phase PWM signals using the third carrier signal.
  • the voltage corresponds to the second level (corresponding to the crest portion of the third carrier signal 605) from the first level (corresponding to the trough portion of the third carrier signal 605).
  • the voltage of the first carrier signal 601 gradually increases from the first level (corresponding to the valley of the first carrier signal 601) to the second level (first carrier signal 601). It corresponds to the time of increasing gradually.
  • the time at which the voltage gradually decreases from the second level to the first level in the third carrier signal 605 coincides with the time at which the voltage gradually decreases from the second level to the first level in the second carrier signal 602. To do. That is, the phase of the third carrier signal 605 is the same as that of the first carrier signal 601 and the second carrier signal 602.
  • the synchronization signal generation circuit 460 generates a synchronization signal for aligning the phases of the first carrier signal and the third carrier signal with the first carrier signal generation circuit and the third carrier signal generation in the first control unit 401. Output to the circuit 415.
  • the third PWM signal generation circuit group 425 includes a control command generation circuit 435 and a comparator 445.
  • the control command generation circuit 435 outputs a control command to the comparator 445.
  • the third carrier signal generated by the third carrier signal generation circuit 415 is input to the inverting input terminal of the comparator 445, and the control command generated by the control command generation circuit 435 is input to the non-inverting input terminal. .
  • the pulse signal that is the comparison result output from the comparator 445 is supplied to each phase arm of the three-phase inverter 305 as a third PWM signal.
  • the first control unit 401 and the second control unit 402 turn on the switching element of the upper arm when the control command is larger than the carrier signal.
  • the comparator 445 in the third control unit 405 turns off the switching element of the upper arm when the control command is larger than the carrier signal. If all of the three-phase AC motors 201, 202, and 205 have the same structure, the rotation direction of the three-phase AC motor 205 is opposite to that of the three-phase AC motors 201 and 202.
  • the three-phase AC motors 201, 202, and 205 are arranged in the same rotational direction by reversing the winding direction of the three-phase winding 215 with respect to the three-phase windings 211 and 212. It is said.
  • FIG. 9 is a waveform diagram of a carrier signal and a U-phase control command according to the third embodiment.
  • FIG. 9A shows the first carrier signal 601 and the U-phase control command 501u input to the comparator in the first control unit 401.
  • FIG. 9B shows the second carrier signal 602 and the U-phase control command 502 u input to the comparator in the second control unit 402, and
  • FIG. 9C shows the third carrier signal 602 input to the comparator 445.
  • Carrier signal 605 and U-phase control command 505u Compared to the third carrier signal 603 in the first embodiment, the third carrier signal 605 in this embodiment has the same phase and a frequency of 1 ⁇ 2.
  • the number of timings at which noise is canceled is half of the number of timings in the first embodiment. Therefore, the noise reduction effect is about half that of the first embodiment.
  • the control duty of the third three-phase inverter is different from that of the first and second three-phase inverters. The control duty of all three three-phase inverters can be made the same.
  • FIG. 10 shows the result of noise simulation performed to verify the noise reduction effect in the present embodiment.
  • 532a in FIG. 10A is a comparative example, and the first carrier signal 601 in the present embodiment is used as the first carrier signal and the third carrier signal, and the second carrier in the present embodiment is used as the second carrier signal.
  • It is a common mode noise simulation result at the time of using the signal 602.
  • FIG. Reference numeral 532b in FIG. 10B represents a common mode noise simulation result in the present embodiment.
  • I C ⁇ dv / dt.
  • the noise current I is proportional to the potential fluctuation dv / dt.
  • FIG. 10 when comparing the process from the highest common mode potential to the lowest common mode potential, it changes in one step in FIG. 10 (a), but changes in three steps in FIG. 10 (b).
  • dv / dt in FIG. 10B is 1/3 of dv / dt shown in FIG.
  • the present embodiment can reduce the noise current to 1/3 of the comparative example. Therefore, noise can also be reduced by the configuration of the present embodiment.
  • the switching element can simultaneously generate an on-state transition and an off-state transition, not only the common mode noise but also the normal mode noise described above. Can be reduced.
  • FIG. 11 is a diagram showing an overall configuration of a load drive system according to another modification (1) of the present invention.
  • the load drive system 130 shown in FIG. 11 has a configuration in which a three-phase AC motor 206 and a three-phase inverter 306 are newly added to the load drive system 120 shown in FIG. 8 and the control circuit 420 is replaced with a control circuit 430. is there.
  • the control circuit 420 is replaced with a control circuit 430. is there.
  • the three-phase AC motor 206 has a three-phase winding 216 that receives supply of three-phase AC power.
  • the winding direction of the three-phase winding 216 is the same as that of the three-phase winding 214 according to the third embodiment. Therefore, the winding direction of the three-phase windings 215 and 216 is opposite to the winding direction of the three-phase windings 211 and 212 in the present embodiment.
  • the three-phase inverter 306 has the same configuration as the three-phase inverter 305 in the third embodiment. However, the input terminal of the three-phase inverter 306 is connected to the DC power supply BA, and the output terminal is connected to the three-phase AC motor 206.
  • the control circuit 430 controls the operation of the three-phase inverters 301, 302, 305, and 306. Details of the control circuit 430 will be described below.
  • Control circuit 430 has a configuration in which a fourth control unit 406 is newly provided to the control circuit 420 illustrated in FIG.
  • the fourth control unit 406 includes a carrier inversion circuit 416 and a fourth PWM signal generation circuit group 426.
  • the carrier inverting circuit 416 performs the same operation as the carrier inverting circuit 412 in the first embodiment.
  • a fourth carrier signal 606 that is a triangular wave having the same frequency and an inverted waveform as the third carrier signal can be obtained.
  • the fourth PWM signal generation circuit group 426 generates U-phase, V-phase, and W-phase PWM signals using the fourth carrier signal.
  • the fourth PWM signal generation circuit group 426 includes a control command generation circuit 436 and a comparator 446.
  • Control command generation circuit 436 outputs a control command to comparator 446.
  • the fourth carrier signal generated by the carrier inverting circuit 416 is input to the inverting input terminal of the comparator 446, and the control command generated by the control command generating circuit 436 is input to the non-inverting input terminal.
  • the pulse signal that is the comparison result output from the comparator 446 is supplied to each phase arm of the three-phase inverter 306 as a fourth PWM signal.
  • the first control unit 401 and the second control unit 402 turn on the switching element of the upper arm when the control command is larger than the carrier signal.
  • the comparator 445 in the third control unit 405 and the comparator 446 in the fourth control unit 406 turn off the switching element of the upper arm when the control command is larger than the carrier signal.
  • the three-phase windings 216 and 212 are reversed in the winding direction of the three-phase windings 216, so that the three-phase AC motor 201, The rotation directions of 202, 205, and 206 are aligned.
  • FIG. 12 is a waveform diagram of a carrier signal and a U-phase control command according to another modification (1) of the present invention.
  • FIG. 12A shows the first carrier signal 601 and the U-phase control command 501u input to the comparator in the first control unit 401.
  • FIG. 12B shows the second carrier signal 602 and the U-phase control command 502 u input to the comparator in the second control unit 402, and
  • FIG. 12C shows the third carrier signal input to the comparator 445.
  • the carrier signal 605 and the U-phase control command 505u are shown, and
  • FIG. 12D shows the fourth carrier signal 606 and the U-phase control command 506u input to the comparator 446.
  • the principle of noise reduction will be specifically described with reference to FIG. Although only the switching element of the upper arm of the U phase will be described as an example, the V phase and the W phase can be described by the same principle.
  • the magnitude relationship between the U-phase control command 501u and the first carrier signal 601 is switched in the first control unit 401, and switching of the upper arm of the U-phase arm of the first three-phase inverter 301 is performed. A state transition from on to off occurs in the element. In the second control unit 402, the state transition of the switching element does not occur.
  • the third PWM signal generation circuit group 425 the magnitude relationship between the U-phase control command 505u and the third carrier signal 605 is switched, and the switching element of the upper arm of the U-phase arm of the third three-phase inverter 305 is switched off. A state transition to ON occurs.
  • the fourth PWM signal generation circuit group 426 the state transition of the switching element does not occur. Therefore, at time (1), a state transition from ON to OFF and a state transition from OFF to ON opposite to this occur simultaneously between the first and third three-phase inverters.
  • the magnitude relationship between the U-phase control command 501u and the first carrier signal 601 is switched in the first control unit 401, and switching of the upper arm of the U-phase arm of the first three-phase inverter 301 is performed.
  • a state transition from off to on occurs in the element.
  • the magnitude relationship between the U-phase control command 502u and the second carrier signal 602 is switched, and the switching element of the upper arm of the U-phase arm of the second three-phase inverter 302 switches from on to off. State transition occurs.
  • the state transition of the switching element does not occur. Therefore, at time (2), a state transition from OFF to ON and a state transition from ON to OFF opposite to this occur simultaneously between the first and second three-phase inverters.
  • the state transition of the switching element does not occur.
  • the magnitude relationship between the U-phase control command 502u and the second carrier signal 602 is switched, and the state transition from OFF to ON is performed by the switching element of the upper arm of the U-phase arm of the second three-phase inverter 302.
  • the third PWM signal generation circuit group 425 the magnitude relationship between the U-phase control command 505u and the third carrier signal 605 is switched, and the switching element of the upper arm of the U-phase arm of the third three-phase inverter 305 is switched on. A state transition to off occurs.
  • the fourth PWM signal generation circuit group 426 the state transition of the switching element does not occur. Therefore, at time (3), a state transition from OFF to ON and a state transition from ON to OFF opposite to this occur simultaneously between the second and third three-phase inverters.
  • the magnitude relationship between the U-phase control command 501u and the first carrier signal 601 is switched in the first control unit 401, and switching of the upper arm of the U-phase arm of the first three-phase inverter 301 is performed.
  • a state transition from on to off occurs in the element.
  • the second control unit 402 and the third PWM signal generation circuit group 425 the state transition of the switching element does not occur.
  • the fourth PWM signal generation circuit group 426 the magnitude relationship between the U-phase control command 506u and the fourth carrier signal 606 is switched, and the switching element of the upper arm of the U-phase arm of the fourth three-phase inverter 306 is switched off.
  • a state transition to ON occurs. Therefore, at time (4), a state transition from on to off and a state transition from off to on opposite to this occur simultaneously between the first and fourth three-phase inverters.
  • the first control unit 401 does not cause a state transition of the switching element.
  • the second control unit 402 the magnitude relationship between the U-phase control command 502u and the second carrier signal 602 is switched, and the state transition from OFF to ON is performed by the switching element of the upper arm of the U-phase arm of the second three-phase inverter 302. happenss.
  • the third PWM signal generation circuit group 425 the state transition of the switching element does not occur.
  • the fourth PWM signal generation circuit group 426 the magnitude relationship between the U-phase control command 506u and the fourth carrier signal 606 is switched, and the switching element of the upper arm of the U-phase arm of the fourth three-phase inverter 306 is turned on. A state transition to off occurs. Therefore, at time (5), the state transition from off to on and the opposite state transition from on to off occur simultaneously between the second and fourth three-phase inverters.
  • the third and fourth three-phase inverters it is possible to avoid simultaneous occurrence of switching with the same state transition direction in all of the U, V, and W phase arms. Furthermore, in this embodiment, at any timing, a state transition from ON to OFF and a state transition from OFF to ON opposite to this can be simultaneously generated in the switching element. As a result, noise is canceled out, and a more excellent noise reduction effect can be exhibited. In addition, since the switching element is turned on and off at the same time, the surge voltage generated between the DC power supply and the three-phase inverter can be canceled out. Therefore, it can cope with the reduction of normal mode noise.
  • Patent Document 2 As in Patent Document 1, a noise reduction method in an electric motor drive system is shown. The difference from Patent Document 1 is that a triangular wave voltage is used for the first carrier signal, and an inverted triangular wave voltage whose waveform is inverted with respect to the first carrier signal is used for the second carrier signal. By using triangular waves with the same period and having the same period as a set, it is possible to cause the switching element to generate an on-state transition and an off-state transition at the same time. It is done. However, the configuration of Patent Document 2 has a problem in that this noise canceling effect is limited to a timing in the vicinity of 50% duty. In this modification, when two three-phase inverters are configured, a highly effective noise reduction method is proposed regardless of the timing.
  • FIG. 13 is a diagram showing an overall configuration of a load drive system according to another modification (2) of the present invention.
  • the load drive system 140 includes a DC power supply BA, three-phase AC motors 207 and 208, three-phase inverters 307 and 308, and a control circuit 440.
  • the three-phase AC motor 207 has a three-phase winding 217 that receives supply of three-phase AC power.
  • the three-phase AC motor 208 is different from the three-phase AC motor 207 in that the winding direction of the three-phase winding 218 is opposite to that of the three-phase winding 217.
  • the three-phase AC motor 207 has a three-phase winding 217 that receives supply of three-phase AC power.
  • the three-phase AC motor 208 has a three-phase winding 218 that receives supply of three-phase AC power.
  • the difference from the three-phase AC motor 207 is that the winding direction of the three-phase winding 218 is three-phase winding. This is the opposite of 217.
  • the configuration of the three-phase inverters 307 and 308 is the same as that of the three-phase inverter 301 in the first embodiment. However, the input terminals of the three-phase inverters 307 and 308 are all connected to the DC power supply BA, but the output terminals are connected to the three-phase AC motors 207 and 208, respectively.
  • the control circuit 440 controls the operation of the three-phase inverters 307 and 308. Details of the control circuit 440 will be described below.
  • the control circuit 440 includes a first control unit 407 that controls the operation of the three-phase inverter 307 and a second control unit 408 that controls the operation of the three-phase inverter 308.
  • the first control unit 407 includes a first carrier signal generation circuit 417 and a first PWM signal generation circuit group 427.
  • the first carrier signal generation circuit 417 generates a first carrier signal.
  • a triangular wave is described as an example of the first carrier signal, but an effect similar to that of a triangular wave can be obtained by using a sawtooth wave.
  • the first PWM signal generation circuit group 427 generates U-phase, V-phase, and W-phase PWM signals using the first carrier signal.
  • the second control unit 408 includes a second PWM signal generation circuit group 428.
  • the second PWM signal generation circuit group 428 uses the first carrier signal generated by the first carrier signal generation circuit 417 to generate U-phase, V-phase, and W-phase PWM signals.
  • the first PWM signal generation circuit group 427 includes a control command generation circuit 437 and a comparator 447.
  • the control command generation circuit 437 outputs a control command to the comparator 447.
  • the control command generated by the control command generation circuit 437 is input to the inverting input terminal of the comparator 447, and the first carrier signal generated by the first carrier signal generation circuit 417 is input to the non-inverting input terminal. .
  • a pulse signal formed based on the comparison result output from the comparator 447 is supplied to each phase arm of the three-phase inverter 307 as a first PWM signal.
  • the second PWM signal generation circuit group 428 includes a control command generation circuit 438 and a comparator 448.
  • the control command generation circuit 438 outputs a control command to the comparator 448.
  • the first carrier signal generated by the first carrier signal generation circuit 417 is input to the inverting input terminal of the comparator 448, and the control command generated by the control command generation circuit 438 is input to the non-inverting input terminal. .
  • the pulse signal that is the comparison result output from the comparator 448 is supplied to each phase arm of the three-phase inverter 308 as a second PWM signal.
  • control command generation circuits 437 and 438 operate synchronously and output control commands having the same phase.
  • the comparator 447 turns on the switching element of the upper arm when the control command is larger than the carrier signal.
  • the comparator 448 turns off the switching element of the upper arm when the control command is larger than the carrier signal.
  • FIG. 14A and 14B are waveform diagrams of a carrier signal and a U-phase control command according to another modification (2) of the present invention.
  • FIG. 14A is a waveform diagram of the comparator 447, and FIG. Waveform diagrams at 448 are respectively shown.
  • FIG. 14 is a waveform diagram of a carrier signal and a U-phase control command according to another modification (2) of the present invention.
  • FIG. 14A shows the first carrier signal 607 and the U-phase control command 507 u input to the comparator 447.
  • FIG. 14B shows the second carrier signal 608 and the U-phase control command 508 u input to the comparator 448.
  • the principle of noise reduction will be specifically described with reference to FIG. Only the switching element of the upper arm of the U phase will be described as an example, but the V phase and the W phase can also be described by the same principle.
  • the magnitude relationship between the U-phase control command 507u and the first carrier signal 607 is switched in the first PWM signal generation circuit group 427, and the switching element of the U-phase upper arm of the three-phase inverter 307 is switched.
  • a state transition from on to off occurs.
  • the second PWM signal generation circuit group 428 the magnitude relationship between the U-phase control command 508u and the first carrier signal 608 is switched, and the switching element of the upper arm of the U-phase arm of the three-phase inverter 308 switches from OFF to ON. State transition occurs. Therefore, at time (1), the state transition from on to off and the opposite state transition from off to on occur simultaneously between the two three-phase inverters.
  • the magnitude relationship between the U-phase control command 507u and the first carrier signal 607 is switched in the first PWM signal generation circuit group 427, and switching of the upper arm of the U-phase arm of the three-phase inverter 307 is performed.
  • a state transition from off to on occurs in the element.
  • the second PWM signal generation circuit group 428 the magnitude relationship between the U-phase control command 508u and the first carrier signal 608 is switched, and the switching element of the upper arm of the U-phase arm of the three-phase inverter 308 switches from on to off. State transition occurs. Therefore, at time (2), the state transition from off to on and the opposite state transition from on to off occur simultaneously between the two three-phase inverters.
  • Patent Document 2 the noise canceling effect that is limited to when the duty is 50% can be obtained at all timings according to this modification. As a result, a more excellent noise reduction effect can be exhibited.
  • the third carrier signal is selected so as to avoid the simultaneous switching of the same state transition direction in all the U-phase, V-phase, and W-phase arms of the three-phase inverter. By doing so, the noise was reduced.
  • noise is reduced by using a conventional sawtooth voltage for the third carrier signal and shifting the phase of the portion of the sawtooth voltage waveform that falls or rises instantaneously between the U phase, V phase, and W phase. Suggest a method.
  • FIG. 15 is a diagram showing an overall configuration of a load driving system according to another modification (3) of the present invention.
  • the load drive system 150 includes a DC power supply BA, three-phase AC motors 209, 2010, 2011, three-phase inverters 309, 3010, 3011, and a control circuit 450.
  • the three-phase AC motor 209 has a three-phase winding 219 that receives supply of three-phase AC power.
  • the three-phase AC motor 2010 has a three-phase winding 2110 that receives supply of three-phase AC power.
  • the three-phase AC motor 2011 has a three-phase winding 2111 that receives supply of three-phase AC power.
  • the three-phase inverters 309, 3010, and 3011 have input terminals connected to the DC power supply BA and output terminals connected to the three-phase AC motors 209, 2010, and 2011, respectively.
  • the configuration of the three-phase inverters 309, 3010, and 3011 is the same as that of the three-phase inverter 301 in the first embodiment.
  • the control circuit 450 controls the operation of the three-phase inverters 309, 3010, 3011. Details of the control circuit 450 will be described below.
  • the control circuit 450 includes a first control unit 409 that controls the operation of the three-phase inverter 309, a second control unit 4010 that controls the operation of the three-phase inverter 3010, and a third control that controls the operation of the three-phase inverter 3011. Part 4011 is provided.
  • the first control unit 409 includes a first carrier signal generation circuit 419, phase shift circuits 479v and 479w, and a first PWM signal generation circuit group 429.
  • the first carrier signal generation circuit 419 performs the same operation as the first carrier signal generation circuit 411 in the first embodiment. However, the first carrier signal generation circuit 419 outputs the first carrier signal to the first PWM signal generation circuit group 429, the phase shift circuits 479v and 479w, and the second control unit 408.
  • the second control unit 4010 includes a carrier inversion circuit 4110, phase shift circuits 4710v and 4710w, and a second PWM signal generation circuit group 4210.
  • the carrier inverting circuit 4110 performs the same operation as the carrier inverting circuit 412 in the first embodiment. However, the carrier inversion circuit 4110 outputs the second carrier signal to the second PWM signal generation circuit group 4210 and the phase shift circuits 4710v and 4710w.
  • the third control unit 4011 includes phase shift circuits 4711v and 4711w and a third PWM signal generation circuit group 4211.
  • the first carrier signal input to the third control unit 4011 is output to the third PWM signal generation circuit group 4211 and the phase shift circuits 4711v and 4711w. In the next section, the operation of each phase shift circuit will be described.
  • V-phase shift circuits 479v to 4711v, W-phase shift circuits 479w to 4711w The V-phase phase shift circuits 479v, 4710v, and 4711v operate to shift the phase of the V-phase carrier signal input to each phase shift circuit by ⁇ .
  • W-phase shift circuits 479w, 4710w, and 4711w operate to shift the phase of the W-phase carrier signal input to each phase shift circuit by ⁇ ( ⁇ ⁇ ).
  • a three-phase inverter is obtained by shifting the phase of the sawtooth voltage waveform in the first carrier signal and the second carrier signal between the U phase, the V phase, and the W phase by shifting the phase of the sudden drop or rise in time.
  • the purpose is to avoid simultaneous switching of the same state transition direction in all of the U-phase, V-phase, and W-phase arms.
  • the phase of the portion that instantaneously drops or rises may be slightly shifted between the U phase, the V phase, and the W phase. Therefore, the phase difference shifted by each phase shift circuit is not particularly limited as long as the effect is not impaired.
  • the first PWM signal generation circuit group 429 includes a first U-phase PWM signal generation circuit 429u, a first V-phase PWM signal generation circuit 429v, and a first W-phase PWM signal generation circuit 429w.
  • the first U-phase PWM signal generation circuit 429u includes a U-phase control command generation circuit and a U-phase comparator.
  • the U-phase control command generated by the U-phase control command generation circuit is input to the inverting input terminal of the U-phase comparator, and the first U-phase carrier signal is input to the non-inverting input terminal.
  • the pulse signal that is the comparison result output from the U-phase comparator is supplied to the U-phase arm 309u of the three-phase inverter 309 as the first U-phase PWM signal.
  • the first V-phase PWM signal generation circuit 429v and the first W-phase PWM signal generation circuit 429w perform the same operation as the first U-phase PWM signal generation circuit 429u on the V-phase and the W-phase, respectively.
  • the second PWM signal generation circuit group 4210 and the third PWM signal generation circuit group 4211 perform the same operation as that of the first PWM signal generation circuit group 429 with respect to the second carrier signal and the first carrier signal, respectively. Do it.
  • the same phase control command generation circuit operates in synchronization and outputs a control command having the same phase.
  • the switching element of the upper arm of each three-phase inverter is turned on.
  • the third three-phase inverter it is possible to avoid the simultaneous occurrence of the same state transition direction in the U, V, and W phases. Further, at least the third V-phase phase shift circuit 4711v and the third W-phase phase shift circuit 4711w can be operated to obtain an effect (the phase shift circuit 479v is necessary as long as the effect is not impaired). 479w, 4710v, and 4710w may be operated).
  • FIG. 15 shows an example in which a phase shift circuit is used to generate a carrier signal whose phase is shifted between the U phase, the V phase, and the W phase.
  • the present invention is not limited to this, and other logic circuits are used.
  • a circuit may be configured.
  • FIG. 17 shows an overall configuration diagram in which a multi-winding three-phase AC motor 200 having first, second, and third windings is provided. Even in such a single three-phase AC motor having a plurality of windings, the same noise reduction effect can be provided by the control method of the present invention.
  • Embodiments 1 and 2 of the present invention show an example in which a carrier inverting circuit and a carrier synthesizing circuit are used to synthesize a third carrier signal.
  • the present invention is not limited to this, and the circuit may be configured using other logic circuits.
  • FIG. 18 an example in which the same carrier signal as in the first and second embodiments is generated by an independent third carrier signal generation circuit can be considered.
  • the wiring distance between the DC power supply BA and the first three-phase inverter, the wiring distance between the DC power supply BA and the second three-phase inverter, and the DC power supply BA and the first It is desirable that the wiring distance between the three three-phase inverters is the same. Thereby, it can arrange
  • a noise reduction effect can be obtained even when the phase of the same phase control command is shifted.
  • the first embodiment will be described as an example.
  • the switching element always undergoes an on-state transition and an off-state transition at the same time, and at times (1) and (3). In timing, switching with the same state transition direction does not occur simultaneously. Therefore, even when the phase of the same phase control command is deviated, the common mode noise cannot be completely canceled, but a better noise reduction effect can be realized as compared with the conventional case.
  • This is not limited to the first embodiment.
  • the three-phase inverter is described as being fed from a common DC power source, but the three-phase inverter may be fed from an individual DC power source.
  • the switching element causes the state transition from on to off and the state transition from off to on at the same time, that is, the switching timing is made coincident.
  • the state transition from on to off and the state transition from off to on occur simultaneously means the transition time from on to off (corresponding to the time when the voltage suddenly drops in the sawtooth wave) And the transition time from OFF to ON (corresponding to the time when the voltage suddenly rises in the inverted sawtooth wave) is overlapped. At this time, not only the case where the transition time from on to off and the transition time from off to on completely overlap, but also the case where at least a part of both transition times overlap each other are included.
  • FIG. 19 is a schematic diagram illustrating a configuration of an automobile 1300 including a vehicle control system 1200 according to the present modification. As shown in FIG. 19, the automobile 1300 includes a vehicle control system 1200 and wheels 1310 and 1311.
  • the vehicle control system 1200 includes a DC power supply BA, a control circuit 400, three-phase inverters 301 and 302, three-phase AC motors 201 and 202, and an air conditioner 1400.
  • the DC power supply BA, the control circuit 400, the three-phase inverters 301 and 302, and the three-phase AC motors 201 and 202 have the same configuration as in the first embodiment.
  • the air conditioner 1400 adjusts the air in the automobile 1300 and includes a three-phase inverter 303 and a three-phase AC motor 203.
  • Three-phase AC motors 201 and 202 are used as traveling motors that drive wheels 1310 and 1311, respectively.
  • the three-phase AC motor 203 provided in the air conditioner 1400 is used as an electric motor for an electric compressor that drives the air conditioner 1400.
  • any two of the three-phase AC motors 201, 202, 203 may be selected and used as a traveling motor, but the two three-phase AC motors used as the traveling motor are It is desirable to operate synchronously. Therefore, in this modification, the three-phase AC motors 201 and 202 that are driven based on the PWM signal using carrier signals having the same frequency are assigned as the traveling motors.
  • such a set of three-phase AC motors does not necessarily have to be assigned as a traveling motor, and can be appropriately changed depending on the configuration of the vehicle control system.
  • the present invention is not limited to the modification shown in FIG. 19, and the assignment of the three-phase AC motors 201, 202, and 203 can be changed as appropriate.
  • various configurations are conceivable, such as assigning the three-phase AC motors 201, 202, and 203 to a traveling motor, an electric compressor motor, and a generator motor, respectively.
  • the present invention can be suitably used for, for example, an electric motor drive system used as a power source for a hybrid vehicle, an electric vehicle, a fuel cell vehicle and the like that particularly require low noise characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

 3台の三相インバータを含む負荷駆動システムを構成する場合においても、制御デューティに関わらずノイズ抑制効果が高く、かつ小型な負荷駆動システムを提供する。 負荷211乃至213にそれぞれ個別に接続される三相インバータ301乃至303と、鋸波電圧を生成するとともに、当該鋸波電圧に基づき三相インバータ301を動作させる第1の制御部401と、反転鋸波電圧を生成するとともに、当該反転鋸波電圧に基づき三相インバータ302を動作させる第2の制御部402と、前記鋸波電圧の傾きと前記反転鋸波電圧の傾きとを有し、かつ、前記鋸波電圧および前記反転鋸波電圧に対し同位相である、または位相が半周期ずれた三角波を生成するとともに、当該三角波に基づき三相インバータ303を動作させる第3の制御部403とを備える。

Description

負荷駆動システム、電動機駆動システム、および車両制御システム
 本発明は、電動機などの負荷を駆動する負荷駆動システムにおいて、特にPWM制御による負荷駆動システムにおけるノイズ低減技術に関する。
 負荷駆動システムの中でも、広い分野で利用されている電動機駆動システムは、三相交流電動機(以下、単に電動機と記載することもある)と、直流電力を交流電力に変換して電動機に給電する三相インバータと、この三相インバータを制御する制御部を有する。例えば、電気自動車やハイブリッド自動車用の走行電動機としては、永久磁石式同期電動機、いわゆるブラシレスDC電動機が採用されている。
 三相インバータの出力である正弦波出力電圧を得る方法として、PWM(Pulse Width Modulation)制御が一般的に用いられている。PWM制御においては、U,V,Wの各相アームに直列接続されたスイッチング素子によるスイッチング動作が高速に行われているため、高周波のスイッチングノイズが発生する大きな原因となっている。また、電動機はフレームグラウンドとの間に対地寄生容量をもっているため、この対地寄生容量を介してスイッチングノイズが流れることによって、電動機のベアリング損傷や周辺機器の誤動作を引き起こす原因となる。
 これを解決する手段として、例えば、特許文献1では、2つの三相巻線を備えた1台の電動機を2台の三相インバータにより駆動するシステムにおけるノイズ低減手法が開示されている。この構成においては、第1の三相インバータでは鋸波(例えば、電圧が第1のレベルから第2のレベルまで漸増し、第2のレベルに到達したのち瞬時に第1のレベルまで降下することを周期的に繰り返すことによりできる波形)である第1のキャリア信号が用いられ、第2の三相インバータでは鋸波を反転させた反転鋸波である第2のキャリア信号が用いられている。このように、鋸波の第1のキャリア信号と反転鋸波の第2のキャリア信号を組で用いることにより、以下の2つの理由で、ノイズを低減することができる。ここでは、第1および第2の三相インバータにおいて同一相の同一アームを構成するスイッチング素子同士に着目して説明する。ここで、「同一相の同一アームを構成するスイッチング素子同士」とは、例えば、第1の三相インバータにおけるU相の上アームを構成するスイッチング素子と、第2の三相インバータにおけるU相の上アームを構成するスイッチング素子を指す。
 (1)鋸波において電圧が瞬時に降下する時刻、反転鋸波においては電圧が瞬時に上昇する時刻では、第1の三相インバータのスイッチング素子にはオフからオンへの状態遷移が起こるとすると、それと同時に第2の三相インバータのスイッチング素子では逆にオンからオフへの状態遷移が起こる。このように、2台の三相インバータ間のスイッチング素子間で、逆向きの状態遷移が同時に発生するため、これらのスイッチング素子の動作により生じるスイッチングノイズは互いに逆向きとなり、この結果、ノイズを相殺することができる。
 (2)上記以外の時刻では、鋸波と反転鋸波を用いることで、2台の三相インバータのスイッチング素子間で同方向の状態遷移が同時発生することを回避することができる。そのため、各スイッチング素子の動作によりスイッチングノイズが発生したとしても、それらが重畳することを回避することができる。
 これらの現象が第1および第2の三相インバータ間の対応するスイッチング素子同士で共通に生じるため、結果としてノイズを低減することができる。
特開2008-228399号公報 特開2008-109727号公報
 特許文献1の構成によると、三相インバータと三相交流電動機の組を2組で用いる場合には、ノイズ低減効果が得られる。しかしながら、三相インバータと三相交流電動機の組を3組構成する場合のように、3台の三相インバータが合計9相の相電圧を三相交流電動機に出力する負荷駆動システムにおいては次の問題点がある。例えば、第1のキャリア信号を鋸波電圧、第2のキャリア信号を反転鋸波電圧、第3のキャリア信号を鋸波電圧とした場合を考える。上記(1)で説明した時刻のように、鋸波において電圧が瞬時に降下する時刻および上昇する時刻で制御指令とキャリア信号の大小関係が入れ替わるとき、第1と第2の三相インバータ間では、上述したように互いに状態遷移の方向が逆のスイッチングが起こるため、ノイズは相殺されるものの、第3の三相インバータにおけるノイズは相殺されずに残ってしまう。さらに、電圧が瞬時に降下する時刻および上昇する時刻においては、制御指令とキャリア信号との大小関係がU、V、W相すべてで同時に入れ替わる。このため、第3の三相インバータではU、V、Wの三相すべてで状態遷移の方向が同一のスイッチングが同時発生し、第3の三相インバータで発生したノイズは、スイッチングノイズが三重に重畳したものとなってしまう。
 本発明は上記の問題点を解決するためになされたもので、3台の三相インバータで三相交流電動機を駆動するような負荷駆動システムにおける、抑制効果の高いノイズ低減方法を提案することを目的とする。
 上記目的を達成するため、本発明に係る負荷駆動システムは、第1、第2および第3の負荷を駆動する負荷駆動システムであって、入力端子が直流電源に接続され、出力端子が前記第1、第2および第3の負荷にそれぞれ個別に接続される第1、第2および第3の三相インバータと、鋸波である第1のキャリア信号を生成するとともに、当該第1のキャリア信号に基づき前記第1の三相インバータを動作させる第1の制御部と、前記第1のキャリア信号に対し位相および周波数が同一であり、かつ、前記第1のキャリア信号に対し波形が反転した鋸波である第2のキャリア信号を生成するとともに、当該第2のキャリア信号に基づき前記第2の三相インバータを動作させる第2の制御部と、前記第1のキャリア信号の鋸波の傾きと前記第2のキャリア信号の鋸波の傾きとを有する三角波であって、前記第1のキャリア信号および前記第2のキャリア信号に対し同位相である、または位相が半周期ずれた三角波である第3のキャリア信号を生成するとともに、当該第3のキャリア信号に基づき前記第3の三相インバータを動作させる第3の制御部とを備えることを特徴とする。
 本発明によれば、第1と第2の三相インバータ間では、互いに状態遷移の方向が逆のスイッチングが起こるため、ノイズは相殺される。また、第3のキャリア信号として用いた三角波は、鋸波で見られたような電圧が瞬時に降下する時刻もしくは瞬時に上昇する時刻はないため、制御指令とキャリア信号との大小関係がU、V、W相すべてで同時に入れ替わることはない。よって、第3の三相インバータでU、V、Wの三相すべてで状態遷移の方向が同一のスイッチングが同時発生することを回避でき、その結果、スイッチングノイズが三重に重畳することを回避することができる。したがって、第3のキャリア信号に鋸波電圧を用いた場合と比較して、ノイズを低減することが可能である。
 さらに、第3のキャリア信号は、第1のキャリア信号の鋸波の傾きと第2のキャリア信号の鋸波の傾きとを有するとともに、これらのキャリア信号に対し同位相、または位相が半周期ずれた三角波である。このような構成によれば、第1と第3の三相インバータ間、もしくは、第2と第3の三相インバータ間において、スイッチングのタイミングが一致することとなる。このとき、第1と第2の三相インバータに対し、第3の三相インバータのスイッチングの状態遷移の方向が逆である場合には、第1と第3の三相インバータ間、もしくは、第2と第3の三相インバータ間で、状態遷移の方向が互いに逆のスイッチングが起こる。これは、スイッチングにより発生するスイッチングノイズを相殺できることと同義である。したがって、さらなるノイズ低減を図ることが可能となる。
第1の実施形態に係る負荷駆動システムの全体構成を示す図である。 第1の実施形態に係るU相制御指令と第1,第2,第3のキャリア信号の波形図である。 第1の実施形態に係る各相制御指令と第1,第2,第3のキャリア信号の波形の拡大図である。 第1の実施形態および比較例に係るコモンモードノイズシミュレーション結果を示す図である。 第2の実施形態に係る負荷駆動システムの全体構成を示す図である。 第2の実施形態に係るU相制御指令と第1,第2,第3のキャリア信号の波形図である。 第2の実施形態および比較例に係るコモンモードノイズシミュレーション結果を示す図である。 本発明の第3の実施形態に係る負荷駆動システムの全体構成を示す図である。 第3の実施形態に係るU相制御指令と第1,第2,第3のキャリア信号の波形図である。 第3の実施形態および比較例に係るコモンモードノイズシミュレーション結果を示す図である。 変形例(1)に係る負荷駆動システムの全体構成を示す図である。 変形例(1)に係るU相制御指令と第1,第2,第3,第4のキャリア信号の波形図である。 変形例(2)に係る負荷駆動システムの全体構成を示す図である。 変形例(2)に係るU相制御指令と第1のキャリア信号の波形図である。 変形例(3)に係る負荷駆動システムの全体構成を示す図である。 変形例(4)に係る負荷駆動システムの全体構成を示す図である。 変形例(5)に係る負荷駆動システムの全体構成を示す図である。 変形例(6)に係る負荷駆動システムの全体構成を示す図である。 変形例(12)に係る車両制御システムを備える自動車の構成を示す概略図である。
 以下、本発明を実施するための形態を、図面を参照しながら説明する。
 [第1の実施形態]
 〈構成〉
 (負荷駆動システム100)
 図1は、本発明の第1の実施形態に係る負荷駆動システムの全体構成を示す図である。
 負荷駆動システム100は、直流電源BA、三相交流電動機201,202,203、三相インバータ301,302,303、制御回路400を備える。
 直流電源BAは電源系統を整流して得られる直流電源、または、バッテリタイプ(代表的には、ニッケル水素またはリチウムイオン等の二次電池)の直流電源である。
 三相交流電動機201は、三相交流電力の供給を受ける三相巻線211を有する。三相交流電動機202は、三相交流電力の供給を受ける三相巻線212を有する。三相交流電動機203について、三相交流電動機201と異なる点は、三相巻線213の巻回方向が三相巻線211とは逆である点であり(次々項で詳述する)、その他の構成は三相交流電動機201と同様である。
 三相インバータ301は入力端子が直流電源BAに接続され、出力端子が三相交流電動機201に接続されている。三相インバータ301はU相アーム301u、V相アーム301v、W相アーム301wを備える。各相アームは直列接続されたスイッチング素子、スイッチング素子に並列接続されたダイオード、スイッチング素子を駆動するゲート駆動回路GDからなる。スイッチング素子には、IGBTやMOSFETに代表されるパワー半導体素子が適用される。MOSFETをスイッチング素子として使用する場合は、寄生ダイオードをダイオードとして使用する場合もあり得る。
 三相インバータ302,303は、三相インバータ301と同様の構造を有する。ただし、三相インバータ302,303の入力端子は、いずれも直流電源BAに接続されているが、出力端子はそれぞれ三相交流電動機202,203に接続されている。
 制御回路400は三相インバータ301,302,303の動作を制御する。以下、制御回路400の詳細について説明する。
 (制御回路400)
 制御回路400は、三相インバータ301の動作を制御する第1の制御部401、三相インバータ302の動作を制御する第2の制御部402、三相インバータ303の動作を制御する第3の制御部403を備える。
 第1の制御部401は、第1のキャリア信号発生回路411および第1のPWM信号生成回路群421を備える。第1のキャリア信号発生回路411は、図2(a)に601で示すような鋸波である第1のキャリア信号を生成する。第1のPWM信号生成回路群421は、第1のキャリア信号を用いて、U相、V相、W相のPWM信号を生成する。
 第2の制御部402は、キャリア反転回路412および第2のPWM信号生成回路群422を備える。キャリア反転回路412は、例えば、ゲインが1に設定された反転増幅回路であり、参照電圧を基準として入力電圧を反転させた出力信号を出力する。これにより、図2(b)に示すように、第1のキャリア信号に対し周波数および位相が同一で、波形が反転した鋸波である第2のキャリア信号602を得ることができる。なお、ゲインが1に設定されているので、第1のキャリア信号と第2のキャリア信号の振幅は同一である。第2のPWM信号生成回路群422は、第2のキャリア信号を用いて、U相、V相、W相のPWM信号を生成する。
 第3の制御部403は、キャリア合成回路413および第3のPWM信号生成回路群423を備える。キャリア合成回路413は、例えば、第1のキャリア信号の半周期に相当する期間ごとに、第1および第2のキャリア信号の何れかを選択的に出力する回路である。これにより、図2(c)に示すように、第1のキャリア信号の鋸波が有する傾きと、第2のキャリア信号の鋸波が有する傾きとを有する三角波である第3のキャリア信号603を得ることができる。第3のPWM信号生成回路群423は、第3のキャリア信号を用いて、U相、V相、W相のPWM信号を生成する。
 図2(c)で示したように、第3のキャリア信号603の波形は、2本の三角波が組み合わさったような波形であるが、実際にはキャリア合成回路413は同時刻に2本の信号を出力しているのではない。キャリア合成回路413は、制御指令が正の場合には、前半周期に第2のキャリアを選択し、後半周期には第1のキャリア信号を選択する。制御指令が負の場合には、前半周期に第1のキャリアを選択し、後半周期には第2のキャリア信号を選択する。このような構成にすることで、制御指令が正の場合にはキャリア信号も正のみの信号を、制御指令が負のときはキャリア信号も負のみの信号を出力することができる。図2において、キャリア合成回路413から実際に出力されている部分を実線で、実際には出力されていない部分を点線で示している。一方、キャリア合成回路413には、U相用の第3のキャリア信号を合成する回路、V相用の第3のキャリア信号を合成する回路およびW相用の第3のキャリア信号を合成する回路が含まれている。この3台の回路には、各相制御指令発生回路もしくは他の制御回路等から対応する相の制御指令の正負が入力されており、この正負の情報を基に、3台の回路はそれぞれ対応する相用の第3のキャリア信号を合成する。
 次項では、第1のPWM信号生成回路群421、第2のPWM信号生成回路群422および第3のPWM信号生成回路群423について詳細に説明する。
 (PWM信号生成回路群421、422、423)
 第1のPWM信号生成回路群421は、第1のU相PWM信号生成回路421u、第1のV相PWM信号生成回路421v、第1のW相PWM信号生成回路421wを備える。
 第1のU相PWM信号生成回路421uは、U相制御指令発生回路431uおよびコンパレータ441uを備える。U相制御指令発生回路431uは、U相の制御指令を発生させる。コンパレータ441uの反転入力端子にはU相制御指令発生回路431uで発生されたU相制御指令が入力され、非反転入力端子には第1のキャリア信号が入力される。コンパレータ441uから出力された比較結果であるパルス波形の駆動信号は、第1のU相PWM信号として、ゲート駆動回路GDを介して三相インバータ301のU相アーム301uに供給される。
 第1のV相PWM信号生成回路421vおよび第1のW相PWM信号生成回路421wは、第1のU相PWM信号生成回路421uと同様の動作をそれぞれ、V相およびW相に対して行う。
 第2のU相PWM信号生成回路422uは、U相制御指令発生回路432uおよびコンパレータ442uを備える。U相制御指令発生回路432uは、U相制御指令発生回路431uと同じく、U相制御指令をコンパレータ442uに出力する。コンパレータ442uの反転入力端子にはU相制御指令発生回路432uで発生されたU相制御指令が入力され、非反転入力端子には第2のキャリア信号が入力される。コンパレータ442uから出力された比較結果であるパルス波形の駆動信号は、第2のU相PWM信号として、ゲート駆動回路GDを介して三相インバータ302のU相アーム302uに供給される。
 第2のV相PWM信号生成回路422vおよび第2のW相PWM信号生成回路422wは、第2のU相PWM信号生成回路422uと同様の動作をそれぞれ、V相およびW相に対して行う。
 第3のU相PWM信号生成回路423uは、U相制御指令発生回路433uおよびコンパレータ443uを備える。U相制御指令発生回路433uは、U相制御指令発生回路431uと同じく、U相制御指令をコンパレータ443uに出力する。コンパレータ443uの反転入力端子には第3のキャリア信号が入力され、非反転入力端子にはU相制御指令発生回路433uで発生されたU相制御指令が入力される。コンパレータ443uから出力された比較結果であるパルス波形の駆動信号は、第3のU相PWM信号として、ゲート駆動回路GDを介して三相インバータ303のU相アーム303uに供給される。
 第3のV相PWM信号生成回路423vおよび第3のW相PWM信号生成回路423wは、第3のU相PWM信号生成回路423uと同様の動作をそれぞれ、V相およびW相に対して行う。
 なお、U相制御指令発生回路431u,432u,433uは、同位相かつ同振幅のU相制御指令を出力する、すなわち、図2におけるU相制御指令501u,502u,503uの位相および振幅を同一にすることとする。これにより、三相インバータの各アームのスイッチング素子に、オンへの状態遷移とオフへの状態遷移とを確実に同時発生させることができる。U相制御指令501u,502u,503uの位相を同一にするには、U相制御指令発生回路431u,432u,433uを同期して動作させればよい。具体的には、U相制御指令発生回路431u,432u,433uに同期信号を出力する等の方法により実現できる。同じく振幅を同一にするには、U相制御指令発生回路431u,432u,433uの制御ゲインが同一であればよい。具体的には、U相制御指令発生回路431u,432u,433uの前段階に自動ゲイン制御回路を設ける等の方法により実現できる。V相およびW相制御指令に対しても同様である。
 本実施形態においては、コンパレータ441,442では、キャリア信号より制御指令の方が大きい場合に、上アームのスイッチング素子をオンとする。これとは逆に、コンパレータ443では、キャリア信号より制御指令の方が大きい場合に、上アームのスイッチング素子をオフとする。このとき、三相交流電動機201,202,203を全て同じ構造とすれば、三相交流電動機203の回転方向は三相交流電動機201,202とは逆方向となる。しかし、三相巻線211および212に対し、三相巻線213の巻回方向を逆としているので、三相交流電動機201,202,203の回転方向を同一にすることができる。
 なお、三相交流電動機201,202,203それぞれの対地寄生容量は同一であることとする。対地寄生容量を同一にすることで、各三相交流電動機の対地寄生容量を通じて流れるノイズ電流量を同一にすることができ、ノイズ相殺効果向上を図ることができる。これは三相交流電動機201の中性点とアースとの距離,三相交流電動機202の中性点とアースとの距離,三相交流電動機203の中性点とアースとの距離を同一にすることで実施可能である。また、図16に示すように、各三相交流電動機の中性点を接続し、各中性点を確実に同電位とすることが望ましい。この構成により、各中性点の電位を確実に同電位にすることができ、ノイズ相殺効果をさらに向上させることができる。
 なお、各三相インバータのアームを構成するスイッチング素子において、オンからオフへの遷移時間と、オフからオンへの遷移時間とが同一であることとする。これにより、各アームのスイッチング素子に、オンへの状態遷移とオフへの状態遷移とを確実に同時発生させることができる。
 なお、通常、三相インバータの同一相の上アームと下アームのスイッチング素子の両方がオンとなることによる短絡防止のため、ゲート駆動回路GDを介して各アームに入力されるPWM信号にはデッドタイムが設けられる。ここで、デッドタイムの設定期間の差による、ノイズ抑制効果の低減を防ぐため、PWM信号に設けられるデッドタイムは、各三相インバータの同相アーム間において同一であることとする。スイッチング素子間で特性(例えば温度等)にバラツキがある場合は、デッドタイムを調整できる構成としておくことで、ノイズ抑制効果の向上を図ることができる。
 〈ノイズ低減原理〉
 図2は、第1の実施形態に係るキャリア信号とU相制御指令の波形図である。図2(a)はコンパレータ441uに入力される第1のキャリア信号601とU相制御指令501uを示している。図2(b)はコンパレータ442uに入力される第2のキャリア信号602とU相制御指令502uを示しており、図2(c)はコンパレータ443uに入力される第3のキャリア信号603とU相制御指令503uを示している。
 図2に対してさらに、V相制御指令501v,502v,503vおよびW相制御指令501w,502w,503wを書き足した拡大図を図3に示した。図3を用い、ノイズ低減の原理について具体的に説明する。わかりやすくするため、U相の上アームのスイッチング素子のみを例にとり説明するが、V相、W相についても同様の原理で説明できる。
 図3の時刻(1)では、第1のU相PWM信号生成回路421uにおいてU相制御指令501uと第1のキャリア信号601の大小関係が入れ替わり、第1の三相インバータU相アーム301uの上アームのスイッチング素子でオンからオフへの状態遷移が起こる。第2のU相PWM信号生成回路422uでは、スイッチング素子の状態遷移は起こらない。第3のU相PWM信号生成回路423uにおいては、U相制御指令503uと第3のキャリア信号603の大小関係が入れ替わり、第3の三相インバータU相アーム303uの上アームのスイッチング素子でオフからオンへの状態遷移が起こる。したがって、時刻(1)では、第1および第3の三相インバータ間で、オンからオフへの状態遷移と、これとは逆のオフからオンへの状態遷移とが同時に起こる。
 次に、時刻(2)では、第1のU相PWM信号生成回路421uにおいてU相制御指令501uと第1のキャリア信号601の大小関係が入れ替わり、第1の三相インバータU相アーム301uの上アームのスイッチング素子でオフからオンへの状態遷移が起こる。第2のU相PWM信号生成回路422uにおいては、U相制御指令502uと第2のキャリア信号602の大小関係が入れ替わり、第2の三相インバータU相アーム302uの上アームのスイッチング素子でオンからオフへの状態遷移が起こる。第3のU相PWM信号生成回路423uでは、スイッチング素子の状態遷移は起こらない。したがって、時刻(2)では、第1および第2の三相インバータ間で、オフからオンへの状態遷移と、これとは逆のオンからオフへの状態遷移とが同時に起こる。
 続いて、時刻(3)において、第1のU相PWM信号生成回路421uでは、スイッチング素子の状態遷移は起こらない。第2のU相PWM信号生成回路422uにおいては、U相制御指令502uと第2のキャリア信号602の大小関係が入れ替わり、第2の三相インバータU相アーム302uの上アームのスイッチング素子でオフからオンへの状態遷移が起こる。第3のU相PWM信号生成回路423uにおいては、U相制御指令503uと第3のキャリア信号603の大小関係が入れ替わり、第3の三相インバータU相アーム303uの上アームのスイッチング素子でオンからオフへの状態遷移が起こる。したがって、時刻(3)では、第2および第3の三相インバータ間で、オフからオンへの状態遷移と、これとは逆のオンからオフへの状態遷移とが同時に起こる。
 上述した時刻(1)~(3)のタイミングに限定されず、どのようなタイミングにおいても、オンからオフへの状態遷移とオフからオンへの状態遷移とを同時発生させることができる。
 このときの、三相インバータ301のU相アーム301u,V相アーム301v,W相アーム301wにおけるスイッチングにより流れるコモンモードノイズの波形を、それぞれ図3の511u,511v,511wに示した。同じく、三相インバータ302の各相アームにおけるスイッチングにより流れるコモンモードノイズの波形を、それぞれ512u,512v,512wに示した。さらに、三相インバータ303の各相アームにおけるスイッチングにより流れるコモンモードノイズの波形を、それぞれ513u,513v,513wに示した。
 三相インバータ301全体に流れるコモンモードノイズ波形は511u,511v,511wの足し合わせで表され、これを521で示した。同じく、三相インバータ302全体に流れるコモンモードノイズ波形は512u,512v,512wの足し合わせで表され、これを522で示した。さらに、三相インバータ303全体に流れるコモンモードノイズ波形は513u,513v,513wの足し合わせで表され、これを523で示した。
 そして、負荷駆動システム100全体に流れるコモンモードノイズ波形は521,522,523の足し合わせで表され、これを520で示した。例えば、時刻(1)では、第1の三相インバータU相アーム301uの上アームのスイッチング素子をオフとし、これとは逆に、第3の三相インバータU相アーム303uの上アームのスイッチング素子をオンとすることにより、コモンモードノイズを相殺することができる。時刻(1)に限らず、本実施形態においてはどのようなタイミングにおいても、2台の三相インバータにおいて、対応する各アームのスイッチング素子間で互いに逆向きの状態遷移を同時発生させることができ、結果として、全てのタイミングでコモンモードノイズを相殺することができる。したがって、負荷駆動システム100全体に流れるコモンモードノイズを完全に相殺することができる。
 〈ノイズシミュレーション結果〉
 本実施形態におけるノイズ低減効果を実証するために行ったノイズシミュレーション結果を図4に示す。図4(a)の530aは比較例であり、第1のキャリア信号、第2のキャリア信号および第3のキャリア信号の全てに、本実施形態における第1のキャリア信号601を用いた場合のコモンモードノイズシミュレーション結果である。同じく、図4(b)の530bも比較例であり、第1のキャリア信号および第3のキャリア信号として本実施形態における第1のキャリア信号601、第2のキャリア信号として本実施形態における第2のキャリア信号602を用いた場合のコモンモードノイズシミュレーション結果である。図4(c)の530cは本実施形態におけるコモンモードノイズシミュレーション結果である。これらのノイズシミュレーション結果から明らかなように、本実施形態のような構成により、ノイズが完全に相殺していることがわかる。
 以上、本実施形態によれば、第3の三相インバータにおいて、U、V、W相アームの全てで状態遷移の方向が同一のスイッチングが同時に起こることを回避できる。さらに、本実施形態では、どのようなタイミングでも、スイッチング素子にオンからオフへの状態遷移と,これとは逆のオフからオンへの状態遷移とを同時に発生させることができる。この結果、ノイズが相殺され、より優れたノイズ低減効果を発揮することが可能となる。それに加え、スイッチング素子においてオンへの状態遷移とオフへの状態遷移を同時に発生させるため、直流電源と三相インバータの間に発生するサージ電流も相殺することができる。よって、上述したコモンモードノイズだけではなく、ノーマルモードノイズの低減にも対応できる。
 また、本発明によるノイズ低減手法では、EMIフィルターやシールドなどの各種ノイズ抑制部品を使用しない。したがって、システム全体で各種ノイズ抑制部品の使用を削減することができ、低コストかつ小型な負荷駆動システムを提供することが可能である。
 [第2の実施形態]
 〈構成〉
 (負荷駆動システム110)
 図5は、本発明の第2の実施形態に係る負荷駆動システムの全体構成を示す図である。図5に示す負荷駆動システム110は、図1に示す負荷駆動システム100の三相交流電動機203、三相インバータ303および制御回路400を、それぞれ三相交流電動機204、三相インバータ304および制御回路410に置換した構成である。以下に第1の実施形態に係る負荷駆動システム100と相違する構成について説明する。
 三相交流電動機204は、三相交流電力の供給を受ける三相巻線214を有する。三相交流電動機203と異なる点は、三相巻線214の巻回方向が第1の実施形態に係る三相巻線213とは逆である点である。すなわち、本実施形態における三相巻線211,212,214の巻回方向は全て同一である。
 三相インバータ304は、第1の実施形態における三相インバータ303と同様の構成を有する。ただし、三相インバータ304の入力端子は直流電源BAに接続されており、出力端子は三相交流電動機204に接続されている。
 制御回路410は三相インバータ301,302,304の動作を制御する。以下、制御回路410の詳細について説明する。
 (制御回路410)
 制御回路410は、図1に示す制御回路400内の第3の制御部403を、第3の制御部404に置換した構成である。
 第3の制御部404は、180度位相シフト回路480、キャリア合成回路414および第3のPWM信号生成回路群424を備える。
 180度位相シフト回路480の入力端子には第1のキャリア信号および第2のキャリア信号が入力される。180度位相シフト回路480は、入力された第1のキャリア信号および第2のキャリア信号を、それらの半周期分進め又は遅延させる。すなわち、180度位相シフト回路480は、入力された第1のキャリア信号と第2のキャリア信号の位相を180度ずらした新たな第1のキャリア信号と第2のキャリア信号を出力する。
 キャリア合成回路414は、第1の実施形態におけるキャリア合成回路413と同様の動作を行う。しかし、本実施形態における第3のキャリア信号は、第1の実施形態における第3のキャリア信号に対し位相が180度ずれており、図6(c)の604で示すような波形の三角波となる。第3のPWM信号生成回路群424は、第3のキャリア信号を用いて、U相、V相、W相のPWM信号を生成する。
 次項では、第3のPWM信号生成回路群424について詳細に説明する。
 (PWM信号生成回路群424)
 第3のPWM信号生成回路群424は、制御指令発生回路434およびコンパレータ444を備える。また、図2に示すPWM信号生成回路群421,422,424、制御指令発生回路431,432,434およびコンパレータ441,442,444は、それぞれ相当するU、V、W相の構成要素をまとめてブロック図で示したものである。制御指令発生回路434は、制御指令を発生させる。コンパレータ444の反転入力端子には制御指令が入力され、非反転入力端子にはキャリア合成回路414で発生された第3のキャリア信号が入力される。コンパレータ444から出力された比較結果であるパルス信号は、第3のPWM信号として三相インバータ304の各相アームに供給される。
 本実施形態においては、コンパレータ441,442,444の全てで、キャリア信号より制御指令の方が大きい場合に、三相インバータの上アームのスイッチング素子をオンとする。
 〈ノイズ低減原理〉
 図6は、第2の実施形態に係るキャリア信号と制御指令の波形図である。図6(a)はコンパレータ441に入力される第1のキャリア信号601とU相制御指令501uを示している。図6(b)はコンパレータ442に入力される第2のキャリア信号602とU相制御指令502uを示しており、図6(c)はコンパレータ444に入力される第3のキャリア信号604とU相制御指令504uを示している。図6を用い、コモンモードノイズ低減の原理について具体的に説明する。U相の上アームのスイッチング素子のみを例にとり説明するが、V相、W相についても同様の原理で説明できる。
 図6の時刻(1)では、第1のPWM信号生成回路群421においてU相制御指令501uと第1のキャリア信号601の大小関係が入れ替わり、三相インバータ301のU相アームの上アームのスイッチング素子でオンからオフへの状態遷移が起こる。第2のPWM信号生成回路群422および第3のPWM信号生成回路群424では、スイッチング素子の状態遷移は起こらない。したがって、時刻(1)では、3台の三相インバータ間で状態遷移の方向が同一のスイッチングが同時に起こらない。
 次に、時刻(2)では、第1のPWM信号生成回路群421においてU相制御指令501uと第1のキャリア信号601の大小関係が入れ替わり、三相インバータ301のU相の上アームのスイッチング素子でオフからオンへの状態遷移が起こる。第2のPWM信号生成回路群422においては、U相制御指令502uとキャリア信号602の大小関係が入れ替わり、三相インバータ302のU相アームの上アームのスイッチング素子でオンからオフへの状態遷移が起こる。第3のPWM信号生成回路群424では、スイッチング素子の状態遷移は起こらない。したがって、時刻(2)では、2台の三相インバータ間でオンからオフへの状態遷移とオフからオンへの状態遷移とが同時に起こる。
 続いて、時刻(3)では、第1のPWM信号生成回路群421においてスイッチング素子の状態遷移は起こらない。第2のPWM信号生成回路群422ではU相制御指令502uと第2のキャリア信号602の大小関係が入れ替わり、三相インバータ302のU相の上アームのスイッチング素子でオフからオンへの状態遷移が起こる。第3のPWM信号生成回路群424ではスイッチング素子の状態遷移は起こらない。したがって、時刻(3)では、3台の三相インバータ間で状態遷移の方向は同一のスイッチングが同時に起こらない。
 上述した時刻(1)~(3)のタイミングに限定されず、どのようなタイミングにおいても、同様の効果を得ることができる。
 〈ノイズシミュレーション結果〉
 本実施形態におけるノイズ低減効果を実証するために行ったノイズシミュレーション結果を図7に示す。図7(a)の531aは比較例であり、第1のキャリア信号および第3のキャリア信号として本実施形態における第1のキャリア信号601、第2のキャリア信号として本実施形態における第2のキャリア信号602を用いた場合のコモンモードノイズシミュレーション結果である。図7(b)の531bは本実施形態におけるコモンモードノイズシミュレーション結果である。これらのノイズシミュレーション結果から明らかなように、本実施形態のような構成によっても、ノイズが低減していることがわかる。
 以上、本実施形態によれば、第3の三相インバータにおいて、U、V、W相アームの全てで、状態遷移の方向が同一のスイッチングが同時に起こることを回避できる。さらに、本実施形態では、時刻(2)のようなタイミングでは、スイッチング素子に、オンからオフへの状態遷移とオフからオンへの状態遷移とを同時に発生させることができるため、第1の実施形態のように完全にノイズを相殺することはできないものの、従来と比較して良好なノイズ低減効果を実現できる。また、第1実施形態では、第3の三相交流電動機203の構造を三相交流電動機201,202と違える必要があったが、本実施形態では、三相交流電動機201,202,204に同一の三相交流電動機を用いることができる。
 [第3の実施形態]
 〈構成〉
 (負荷駆動システム120)
 図8は、本発明の第3の実施形態に係る負荷駆動システムの全体構成を示す図である。図8に示す負荷駆動システム120は、図1に示す負荷駆動システム100の三相交流電動機203、三相インバータ303および制御回路400を、それぞれ三相交流電動機205、三相インバータ305および制御回路420に置換した構成である。以下に第1の実施形態に係る負荷駆動システム100と相違する構成について説明する。
 三相交流電動機205は、三相交流電力の供給を受ける三相巻線215を有する。三相巻線215は第1の実施形態における三相巻線213と同様の構造を有する。すなわち、三相巻線215の巻回方向は,三相巻線211,212に対して逆である。
 三相インバータ305は、第1の実施形態における三相インバータ303と同様の構成を有する。ただし、三相インバータ305の入力端子は直流電源BAに接続されており、出力端子は三相交流電動機205に接続されている。
 制御回路420は三相インバータ301,302,305の動作を制御する。以下、制御回路420の詳細について説明する。
 (制御回路420)
 制御回路420は、図1に示す制御回路400内の第3の制御部403を、第3の制御部405に置換し、新たに同期信号発生回路460を設けた構成である。
 第3の制御部405は、第3のキャリア信号発生回路415および第3のPWM信号生成回路群425を備える。
 第3のキャリア信号発生回路415は、第1のキャリア信号の鋸波の傾きと第2のキャリア信号の鋸波の傾きを有する三角波を発生する回路である。三角波発生回路では、キャパシタを充放電し、2つの閾値電圧との比較による充放電の繰り返しで三角波を発生させるが、このキャパシタの静電容量を変化させる等の方法で所望の周波数の三角波が得られる。本実施形態では、図9に示すように、第1および第2のキャリア信号に対し周波数が1/2の三角波である第3のキャリア信号605を生成するように、第3のキャリア信号発生回路415のキャパシタの静電容量等を設定する。第3のPWM信号生成回路群425は、第3のキャリア信号を用いて、U相、V相、W相のPWM信号を生成する。
 ここで、第3のキャリア信号605において電圧が第1のレベル(第3のキャリア信号605の谷の部分に相当する。)から第2のレベル(第3のキャリア信号605の山の部分に相当する。)に漸増する時刻は、第1のキャリア信号601において電圧が第1のレベル(第1のキャリア信号601の谷の部分に相当する。)から第2のレベル(第1のキャリア信号601の山の部分に相当する。)に漸増する時刻と一致する。また、第3のキャリア信号605において電圧が第2のレベルから第1のレベルに漸減する時刻は、第2のキャリア信号602において電圧が第2のレベルから第1のレベルに漸減する時刻と一致する。すなわち、第1のキャリア信号601および第2のキャリア信号602に対し、第3のキャリア信号605の位相は同一である。
 同期信号発生回路460は、第1のキャリア信号と第3のキャリア信号の位相をそろえるための同期信号を、第1の制御部401内の第1のキャリア信号発生回路および第3のキャリア信号発生回路415に出力する。
 次項では、第3のPWM信号生成回路群425について詳細に説明する。
 (PWM信号生成回路群425)
 第3のPWM信号生成回路群425は、制御指令発生回路435およびコンパレータ445を備える。制御指令発生回路435は、制御指令をコンパレータ445に出力する。コンパレータ445の反転入力端子には第3のキャリア信号発生回路415で発生された第3のキャリア信号が入力され、非反転入力端子には制御指令発生回路435で発生された制御指令が入力される。コンパレータ445から出力された比較結果であるパルス信号は、第3のPWM信号として、三相インバータ305の各相アームに供給される。
 本実施形態においては、第1の制御部401,第2の制御部402では、キャリア信号より制御指令の方が大きい場合に、上アームのスイッチング素子をオンとする。これとは逆に、第3の制御部405内のコンパレータ445では、キャリア信号より制御指令の方が大きい場合に、上アームのスイッチング素子をオフとする。三相交流電動機201,202,205を全て同じ構造とすれば、三相交流電動機205の回転方向は三相交流電動機201,202とは逆方向となる。第1の実施形態と同様に、三相巻線211および212に対し、三相巻線215の巻回方向を逆とすることで、三相交流電動機201,202,205の回転方向をそろえる構成としている。
 〈ノイズ低減原理〉
 図9は、第3の実施形態に係るキャリア信号とU相制御指令の波形図である。図9(a)は第1の制御部401内のコンパレータに入力される第1のキャリア信号601とU相制御指令501uを示している。図9(b)は第2の制御部402内のコンパレータに入力される第2のキャリア信号602とU相制御指令502uを示しており、図9(c)はコンパレータ445に入力される第3のキャリア信号605とU相制御指令505uを示している。第1の実施形態での第3のキャリア信号603に対し、本実施形態における第3のキャリア信号605は位相が同一であり、かつ、周波数を1/2としている。そのため、本実施形態において、ノイズが相殺されるタイミング数は、第1の実施形態におけるタイミング数の半分となる。したがって、ノイズの低減効果は第1の実施形態の場合の半分程度となる。また、第1および第2の実施形態においては、第3の三相インバータの制御デューティが、第1および第2の三相インバータとは異なっていたが、本実施形態の構成によれば、3台の三相インバータすべての制御デューティを同一とすることができる。
 〈ノイズシミュレーション結果〉
 本実施形態におけるノイズ低減効果を実証するために行ったノイズシミュレーション結果を図10に示す。図10(a)の532aは比較例であり、第1のキャリア信号および第3のキャリア信号として本実施形態における第1のキャリア信号601、第2のキャリア信号として本実施形態における第2のキャリア信号602を用いた場合のコモンモードノイズシミュレーション結果である。図10(b)の532bは本実施形態におけるコモンモードノイズシミュレーション結果である。ここで、ノイズ電流I、寄生容量Cおよびスイッチングによる電位変動dv/dtの関係はI=C×dv/dtで表される。すなわち、ノイズ電流Iは電位変動dv/dtに比例する。同図において、コモンモード電位の最も高い状態から最も低い状態に至る過程を比較すると、図10(a)では一段階で変化しているのに対し、図10(b)では三段階にわたって変化していることが分かる。これは図10(b)におけるdv/dtが、図10(a)に示すdv/dtの1/3であることを意味する。上記の関係式より、コモンモード電位の最も高い状態から最も低い状態に至る過程においては、本実施形態では比較例に対してノイズ電流を1/3に低減することができる。したがって、本実施形態のような構成によっても、ノイズの低減を図ることができる。
 以上、本実施形態によれば、第3の三相インバータにおいて、U、V、W相アームの全てで、状態遷移の方向が同一のスイッチングが同時に起こることを回避できる。また、第1の実施形態と比較すると効果は低いものの、スイッチング素子にオンへの状態遷移とオフへの状態遷移とを同時に発生させることができるため、上述したコモンモードノイズだけでなくノーマルモードノイズの低減にも対応できる。
 [その他の変形例]
 以上、本発明に係る負荷駆動システムについて、実施形態に基づいて説明したが、本発明はこれらの実施形態に限られない。例えば、以下のような変形例が考えられる。
 (1)上記の実施形態ではいずれも、3台の三相インバータで構成される負荷駆動システムについて説明した。本変形例では、4台の三相インバータにより構成される負荷駆動システムにおけるノイズ低減手法を提案する。
 〈構成〉
 (負荷駆動システム130)
 図11は、本発明のその他の変形例(1)に係る負荷駆動システムの全体構成を示す図である。
 図11に示す負荷駆動システム130は、図8に示す負荷駆動システム120に対して、新たに三相交流電動機206および三相インバータ306を設け、さらに制御回路420を制御回路430に置換した構成である。以下に第3の実施形態に係る負荷駆動システム120との相違点について説明する。
 三相交流電動機206は、三相交流電力の供給を受ける三相巻線216を有する。三相巻線216の巻回方向は、第3の実施形態に係る三相巻線214と同方向である。したがって、本実施形態における三相巻線211,212の巻回方向に対し、三相巻線215,216の巻回方向は逆となる。
 三相インバータ306は、第3の実施形態における三相インバータ305と同様の構成を有する。ただし、三相インバータ306の入力端子は直流電源BAに接続されており、出力端子は三相交流電動機206に接続されている。
 制御回路430は三相インバータ301,302,305,306の動作を制御する。以下、制御回路430の詳細について説明する。
 (制御回路430)
 制御回路430は、図8に示す制御回路420に対し、新たに第4の制御部406を設けた構成である。
 第4の制御部406は、キャリア反転回路416および第4のPWM信号生成回路群426を備える。キャリア反転回路416は、第1の実施形態におけるキャリア反転回路412と同様の動作を行う。これにより、図12(d)に示すように、第3のキャリア信号に対し周波数が同一で、波形が反転した三角波である第4のキャリア信号606を得ることができる。第4のPWM信号生成回路群426は、第4のキャリア信号を用いて、U相、V相、W相のPWM信号を生成する。
 次項では、第4のPWM信号生成回路群426について詳細に説明する。
 (PWM信号生成回路群426)
 第4のPWM信号生成回路群426は、制御指令発生回路436およびコンパレータ446を備える。制御指令発生回路436は、制御指令をコンパレータ446に出力する。コンパレータ446の反転入力端子にはキャリア反転回路416で発生された第4のキャリア信号が入力され、非反転入力端子には制御指令発生回路436で発生された制御指令が入力される。コンパレータ446から出力された比較結果であるパルス信号は、第4のPWM信号として、三相インバータ306の各相アームに供給される。
 したがって、本実施形態においては、第1の制御部401,第2の制御部402では、キャリア信号より制御指令の方が大きい場合に、上アームのスイッチング素子をオンとする。これとは逆に、第3の制御部405内のコンパレータ445,第4の制御部406内のコンパレータ446では、キャリア信号より制御指令の方が大きい場合に、上アームのスイッチング素子をオフとする。また、第3の実施形態での三相巻線215と同様に、三相巻線211および212に対し、三相巻線216の巻回方向を逆とすることで、三相交流電動機201,202,205,206の回転方向をそろえる構成としている。
 〈ノイズ低減原理〉
 図12は、本発明のその他の変形例(1)に係るキャリア信号とU相制御指令の波形図である。図12(a)は第1の制御部401内のコンパレータに入力される第1のキャリア信号601とU相制御指令501uを示している。図12(b)は第2の制御部402内のコンパレータに入力される第2のキャリア信号602とU相制御指令502uを示しており、図12(c)はコンパレータ445に入力される第3のキャリア信号605とU相制御指令505uを示しており、図12(d)はコンパレータ446に入力される第4のキャリア信号606とU相制御指令506uを示している。図12を用い、ノイズ低減の原理について具体的に説明する。U相の上アームのスイッチング素子のみを例にとり説明するが、V相、W相についても同様の原理で説明できる。
 図12の時刻(1)では、第1の制御部401においてU相制御指令501uと第1のキャリア信号601の大小関係が入れ替わり、第1の三相インバータ301のU相アームの上アームのスイッチング素子でオンからオフへの状態遷移が起こる。第2の制御部402では、スイッチング素子の状態遷移は起こらない。第3のPWM信号生成回路群425においては、U相制御指令505uと第3のキャリア信号605の大小関係が入れ替わり、第3の三相インバータ305のU相アームの上アームのスイッチング素子でオフからオンへの状態遷移が起こる。第4のPWM信号生成回路群426では、スイッチング素子の状態遷移は起こらない。したがって、時刻(1)では、第1および第3の三相インバータ間で、オンからオフへの状態遷移と、これとは逆のオフからオンへの状態遷移とが同時に起こる。
 次に、時刻(2)では、第1の制御部401においてU相制御指令501uと第1のキャリア信号601の大小関係が入れ替わり、第1の三相インバータ301のU相アームの上アームのスイッチング素子でオフからオンへの状態遷移が起こる。第2の制御部402においては、U相制御指令502uと第2のキャリア信号602の大小関係が入れ替わり、第2の三相インバータ302のU相アームの上アームのスイッチング素子でオンからオフへの状態遷移が起こる。第3のPWM信号生成回路群425および第4のPWM信号生成回路群426では、スイッチング素子の状態遷移は起こらない。したがって、時刻(2)では、第1および第2の三相インバータ間で、オフからオンへの状態遷移と、これとは逆のオンからオフへの状態遷移とが同時に起こる。
 続いて、時刻(3)において、第1の制御部401では、スイッチング素子の状態遷移は起こらない。第2の制御部402においてU相制御指令502uと第2のキャリア信号602の大小関係が入れ替わり、第2の三相インバータ302のU相アームの上アームのスイッチング素子でオフからオンへの状態遷移が起こる。第3のPWM信号生成回路群425においては、U相制御指令505uと第3のキャリア信号605の大小関係が入れ替わり、第3の三相インバータ305のU相アームの上アームのスイッチング素子でオンからオフへの状態遷移が起こる。第4のPWM信号生成回路群426にでは、スイッチング素子の状態遷移は起こらない。したがって、時刻(3)では、第2および第3の三相インバータ間で、オフからオンへの状態遷移と、これとは逆のオンからオフへの状態遷移とが同時に起こる。
 次に、時刻(4)では、第1の制御部401においてU相制御指令501uと第1のキャリア信号601の大小関係が入れ替わり、第1の三相インバータ301のU相アームの上アームのスイッチング素子でオンからオフへの状態遷移が起こる。第2の制御部402および第3のPWM信号生成回路群425では、スイッチング素子の状態遷移は起こらない。第4のPWM信号生成回路群426においては、U相制御指令506uと第4のキャリア信号606の大小関係が入れ替わり、第4の三相インバータ306のU相アームの上アームのスイッチング素子でオフからオンへの状態遷移が起こる。したがって、時刻(4)では、第1および第4の三相インバータ間で、オンからオフへの状態遷移と、これとは逆のオフからオンへの状態遷移とが同時に起こる。
 次に、時刻(5)において、第1の制御部401では、スイッチング素子の状態遷移は起こらない。第2の制御部402においてU相制御指令502uと第2のキャリア信号602の大小関係が入れ替わり、第2の三相インバータ302のU相アームの上アームのスイッチング素子でオフからオンへの状態遷移が起こる。第3のPWM信号生成回路群425では、スイッチング素子の状態遷移は起こらない。第4のPWM信号生成回路群426においては、U相制御指令506uと第4のキャリア信号606の大小関係が入れ替わり、第4の三相インバータ306のU相アームの上アームのスイッチング素子でオンからオフへの状態遷移が起こる。したがって、時刻(5)では、第2および第4の三相インバータ間で、オフからオンへの状態遷移と、これとは逆のオンからオフへの状態遷移とが同時に起こる。
 以上、本変形例によれば、第3および第4の三相インバータにおいて、U、V、W相アームの全てで、状態遷移の方向が同一のスイッチングが同時に起こることを回避できる。さらに、本実施形態では、どのようなタイミングでも、スイッチング素子にオンからオフへの状態遷移と、これとは逆のオフからオンへの状態遷移とを同時に発生させることができる。この結果、ノイズが相殺され、より優れたノイズ低減効果を発揮することが可能となる。また、スイッチング素子において同時にオンとオフを発生させるため、直流電源と三相インバータの間に発生するサージ電圧も相殺することができる。よって、ノーマルモードノイズの低減にも対応できる。
 (2)特許文献2においては、特許文献1と同じく、電動機駆動システムにおけるノイズ低減手法が示されている。特許文献1と異なる点は、第1のキャリア信号に三角波電圧を、第2のキャリア信号に、第1のキャリア信号に対し波形が反転した反転三角波電圧を用いている点である。互いに波形が反転しており、かつ同一周期の三角波を組で使うことで、スイッチング素子にオンへの状態遷移とオフへの状態遷移とを同時に発生させることができるため、ノイズの相殺効果が得られる。しかし、特許文献2の構成では、このノイズの相殺効果がデューティ50%近傍のタイミングに限られるという問題点がある。本変形例では、2台の三相インバータを構成する場合において、タイミングに関わらず効果の高いノイズ低減手法を提案するものである。
 〈構成〉
 (負荷駆動システム140)
 図13は、本発明のその他の変形例(2)に係る負荷駆動システムの全体構成を示す図である。
 負荷駆動システム140は、直流電源BA、三相交流電動機207,208、三相インバータ307,308、制御回路440を備える。
 三相交流電動機207は、三相交流電力の供給を受ける三相巻線217を有する。三相交流電動機208は、三相交流電動機207と比較して、三相巻線218の巻回方向が三相巻線217とは逆である点が異なる。
 三相交流電動機207は、三相交流電力の供給を受ける三相巻線217を有する。三相交流電動機208は、三相交流電力の供給を受ける三相巻線218を有しており、三相交流電動機207と異なる点は、三相巻線218の巻回方向が三相巻線217とは逆である点である。
 三相インバータ307,308の構成は、第1の実施形態における三相インバータ301と同様である。ただし、三相インバータ307,308の入力端子は、いずれも直流電源BAに接続されているが、出力端子はそれぞれ三相交流電動機207,208に接続されている。
 制御回路440は三相インバータ307,308の動作を制御する。以下、制御回路440の詳細について説明する。
 (制御回路440)
 制御回路440は、三相インバータ307の動作を制御する第1の制御部407、三相インバータ308の動作を制御する第2の制御部408を備える。
 第1の制御部407は、第1のキャリア信号発生回路417および第1のPWM信号生成回路群427を備える。第1のキャリア信号発生回路417は、第1のキャリア信号を生成する。本変形例では、第1のキャリア信号として三角波を例に挙げ説明するが、鋸波を用いても三角波と同様の効果が得られる。第1のPWM信号生成回路群427は、第1のキャリア信号を用いて、U相、V相、W相のPWM信号を生成する。
 第2の制御部408は、第2のPWM信号生成回路群428を備える。第2のPWM信号生成回路群428は、第1のキャリア信号発生回路417で発生された第1のキャリア信号を用いて、U相、V相、W相のPWM信号を生成する。
 次項では、第1のPWM信号生成回路群427および第2のPWM信号生成回路群428について詳細に説明する。
 (PWM信号生成回路群427、428)
 第1のPWM信号生成回路群427は、制御指令発生回路437およびコンパレータ447を備える。制御指令発生回路437は、制御指令をコンパレータ447に出力する。コンパレータ447の反転入力端子には制御指令発生回路437で発生された制御指令が入力され、非反転入力端子には第1のキャリア信号発生回路417で発生された第1のキャリア信号が入力される。コンパレータ447から出力される比較結果に基づいて形成されたパルス信号は、第1のPWM信号として、三相インバータ307の各相アームに供給される。
 第2のPWM信号生成回路群428は、制御指令発生回路438およびコンパレータ448を備える。制御指令発生回路438は、制御指令をコンパレータ448に出力する。コンパレータ448の反転入力端子には第1のキャリア信号発生回路417で発生された第1のキャリア信号が入力され、非反転入力端子には制御指令発生回路438で発生された制御指令が入力される。コンパレータ448から出力された比較結果であるパルス信号は、第2のPWM信号として、三相インバータ308の各相アームに供給される。
 なお、制御指令発生回路437,438は同期して動作しており、同じ位相の制御指令を出力する。
 本実施形態においては、コンパレータ447では、キャリア信号より制御指令の方が大きい場合に、上アームのスイッチング素子をオンとする。これとは逆に、コンパレータ448では、キャリア信号より制御指令の方が大きい場合に、上アームのスイッチング素子をオフとする。このとき、他の実施形態および変形例と同様、各三相交流電動機207,208の回転方向を同一にするため、三相巻線217に対し、三相巻線218の巻回方向を逆にする構成としている。
 〈ノイズ低減原理〉
 図14は、本発明のその他の変形例(2)に係るキャリア信号とU相制御指令の波形図であり、図14(a)はコンパレータ447での波形図を、図14(b)はコンパレータ448での波形図をそれぞれ示している。
 図14は、本発明のその他の変形例(2)に係るキャリア信号とU相制御指令の波形図である。図14(a)はコンパレータ447に入力される第1のキャリア信号607とU相制御指令507uを示している。図14(b)はコンパレータ448に入力される第2のキャリア信号608とU相制御指令508uを示している。図14を用い、ノイズ低減の原理について具体的に説明する。U相の上アームのスイッチング素子のみを例にとり説明するが、V相、W相についても同様の原理で説明できる。
 図14の時刻(1)では、第1のPWM信号生成回路群427においてU相制御指令507uと第1のキャリア信号607の大小関係が入れ替わり、三相インバータ307のU相の上アームのスイッチング素子でオンからオフへの状態遷移が起こる。第2のPWM信号生成回路群428においては、U相制御指令508uと第1のキャリア信号608の大小関係が入れ替わり、三相インバータ308のU相アームの上アームのスイッチング素子でオフからオンへの状態遷移が起こる。したがって、時刻(1)では2台の三相インバータ間で、オンからオフへの状態遷移と、これとは逆のオフからオンへの状態遷移とが同時に起こる。
 次に、時刻(2)では、第1のPWM信号生成回路群427においてU相制御指令507uと第1のキャリア信号607の大小関係が入れ替わり、三相インバータ307のU相アームの上アームのスイッチング素子でオフからオンへの状態遷移が起こる。第2のPWM信号生成回路群428においては、U相制御指令508uと第1のキャリア信号608の大小関係が入れ替わり、三相インバータ308のU相アームの上アームのスイッチング素子でオンからオフへの状態遷移が起こる。したがって、時刻(2)では2台の三相インバータ間で、オフからオンへの状態遷移と、これとは逆のオンからオフへの状態遷移とが同時に起こる。
 以上、特許文献2においては、デューティが50%時に限られていたノイズ相殺効果を、本変形例によれば、すべてのタイミングで得ることができる。結果、より優れたノイズ低減効果を発揮することが可能となる。
 (3)発明が解決しようとする課題で述べたように、3台の三相インバータで構成される負荷駆動システムにおいて、二種のキャリア信号のみでPWM信号を生成する場合には、第3の三相インバータのU相、V相、W相アームの全てで、状態遷移の方向が同一のスイッチングが同時に起こってしまう。上述した実施形態では、三相インバータのU相、V相、W相アームの全てで、状態遷移の方向が同一のスイッチングが同時に起こることを回避できるような波形を、第3のキャリア信号に選択することでノイズ低減を図った。本変形例では、第3のキャリア信号に従来の鋸波電圧を用い、その鋸波電圧の波形が瞬時に降下もしくは上昇する部分の位相をU相、V相、W相間でずらすことによるノイズ低減手法を提案する。
 〈構成〉
 (負荷駆動システム150)
 図15は本発明のその他の変形例(3)に係る負荷駆動システムの全体構成を示す図である。
 負荷駆動システム150は、直流電源BA、三相交流電動機209,2010、2011、三相インバータ309,3010,3011、制御回路450を備える。
 三相交流電動機209は、三相交流電力の供給を受ける三相巻線219を有する。三相交流電動機2010は、三相交流電力の供給を受ける三相巻線2110を有する。三相交流電動機2011は、三相交流電力の供給を受ける三相巻線2111を有する。
 三相インバータ309,3010,3011はそれぞれ入力端子が直流電源BAに接続され、出力端子がそれぞれ三相交流電動機209,2010,2011に接続されている。三相インバータ309,3010,3011の構成は、第1の実施形態における三相インバータ301と同様である。
 制御回路450は三相インバータ309,3010,3011の動作を制御する。以下、制御回路450の詳細について説明する。
 (制御回路450)
 制御回路450は、三相インバータ309の動作を制御する第1の制御部409、三相インバータ3010の動作を制御する第2の制御部4010、三相インバータ3011の動作を制御する第3の制御部4011を備える。
 第1の制御部409は、第1のキャリア信号発生回路419、位相シフト回路479v,479w、第1のPWM信号生成回路群429を備える。第1のキャリア信号発生回路419は、第1の実施形態における第1のキャリア信号発生回路411と同様の動作を行う。但し、第1のキャリア信号発生回路419は、第1のキャリア信号を第1のPWM信号生成回路群429、位相シフト回路479v,479wおよび第2の制御部408に出力する。
 第2の制御部4010は、キャリア反転回路4110、位相シフト回路4710v,4710w、第2のPWM信号生成回路群4210を備える。キャリア反転回路4110は、第1の実施形態におけるキャリア反転回路412と同様の動作を行う。但し、キャリア反転回路4110は、第2のキャリア信号を第2のPWM信号生成回路群4210、位相シフト回路4710v,4710wに出力する。
 第3の制御部4011は、位相シフト回路4711v,4711w、および第3のPWM信号生成回路群4211を備える。第3の制御部4011に入力された第1のキャリア信号は、第3のPWM信号生成回路群4211、位相シフト回路4711v,4711wに出力される。次項では各位相シフト回路の動作について説明する。
 (V相位相シフト回路479v~4711v,W相位相シフト回路479w~4711w)
 V相位相シフト回路479v,4710v,4711vは、当該各位相シフト回路に入力されたV相用キャリア信号の位相を、θだけずらす動作をする。W相位相シフト回路479w,4710w,4711wは、当該各位相シフト回路に入力されたW相用キャリア信号の位相を、φ(≠θ)だけずらす動作をする。
 本変形例では、第1キャリア信号および第2のキャリア信号における鋸波電圧の波形が、時間的に急降下もしくは急上昇する部分の位相をU相、V相、W相間でずらすことによって、三相インバータのU相、V相、W相アームの全てで、状態遷移の方向が同一のスイッチングが同時に起こるのを回避することを目的としている。そのためには、各PWM信号生成回路に入力される鋸波電圧の波形において、瞬時に降下もしくは上昇する部分の位相がU相、V相、W相間で少しでもずれていればよい。したがって、効果が損なわれない範囲であれば、各位相シフト回路がシフトさせる位相差は特に限定されない。
 次項では、第1のPWM信号生成回路群429、第2のPWM信号生成回路群4210および第3のPWM信号生成回路群4211について詳細に説明する。
 (PWM信号生成回路群429、4210、4211)
 第1のPWM信号生成回路群429は、第1のU相PWM信号生成回路429u、第1のV相PWM信号生成回路429v、第1のW相PWM信号生成回路429wを備える。
 第1のU相PWM信号生成回路429uは、U相制御指令発生回路およびU相用コンパレータを備える。U相用コンパレータの反転入力端子にはU相制御指令発生回路で発生されたU相制御指令が入力され、非反転入力端子には第1のU相用キャリア信号が入力される。U相用コンパレータから出力された比較結果であるパルス信号は、第1のU相PWM信号として、三相インバータ309のU相アーム309uに供給される。
 第1のV相PWM信号生成回路429vおよび第1のW相PWM信号生成回路429wは、第1のU相PWM信号生成回路429uと同様の動作をそれぞれ、V相およびW相に対して行う。
 第2のPWM信号生成回路群4210,第3のPWM信号生成回路群4211は、第1のPWM信号生成回路群429と同様の動作を、それぞれ第2のキャリア信号,第1のキャリア信号に対して行う。また、同一相制御指令発生回路は、同期して動作しており、位相が同一の制御指令を出力する。本変形例においては全てのコンパレータで、キャリア信号より制御指令の方が大きい場合に、各三相インバータの上アームのスイッチング素子をオンとする。
 以上のように、本変形例によれば、第3の三相インバータにおいて、U、V、W相すべてで状態遷移の方向が同一のスイッチングが同時に起こることを回避できる。また、最低限、第3のV相位相シフト回路4711vおよび第3のW相位相シフト回路4711wを動作させれば効果は得られる(効果が損なわれない範囲で、必要に応じて位相シフト回路479v、479w、4710vおよび4710wを動作させる構成としてもよい)。
 なお、図15では、U相、V相、W相間で位相をずらしたキャリア信号を生成するために、位相シフト回路を用いる例を示したが、これに限定されず、他のロジック回路を用いて回路を構成してもよい。
 (4)上記実施形態および変形例では三相交流電動機を複数台設けた構成を例に説明したが、本発明はこれに限定されず、三相巻線を複数有する単一の三相交流電動機を設けることとしてもよい。図17に第1、第2、および第3の巻線を有する、複数巻線三相交流電動機200を設けた全体構成図を示す。このような、複数巻線を有する単一の三相交流電動機においても、本発明の制御方法により、同様のノイズ低減効果を提供できる。
 (5)本発明の実施形態1および2では、第3のキャリア信号を合成するために、キャリア反転回路およびキャリア合成回路を用いる例を示しているが、第3のキャリア信号の生成方法は何らこれに限定されず、他のロジック回路を用いて回路を構成しても構わない。例えば、図18に示すように、独立する第3のキャリア信号発生回路により、実施形態1および2と同一のキャリア信号を生成する例が考えられる。
 (6)本発明の実施形態1~3においては、直流電源BAと第1の三相インバータ間の配線距離、直流電源BAと第2の三相インバータ間の配線距離、および直流電源BAと第3の三相インバータ間の配線距離が同一であることが望ましい。これにより、それぞれの配線距離間の寄生インダクタンスを同一になるように配置できる。このとき、例えば、直流電源BAと三相インバータ301、302および303との間に、コンデンサが並列に接続されている場合、コンデンサへのリップル電流も低減することができるため、コンデンサの使用本数を削減し、システムをさらに小型化することができる。
 (7)各実施形態および変形例の構成によれば、同一相制御指令の位相がずれている場合であっても、ノイズ低減効果を得ることができる。第1の実施形態を例にとって説明すると、図3の時刻(2)のタイミングでは必ずスイッチング素子にオンへの状態遷移とオフへの状態遷移とが同時に起こり、時刻(1),(3)のタイミングでは、状態遷移の方向が同一のスイッチングが同時に起こることはない。よって、同一相制御指令の位相がずれている場合でも、完全なコモンモードノイズの相殺はできないものの、従来と比較して良好なノイズ低減効果を実現できる。これは第1の実施形態に限定されない。上述したいずれの実施形態および変形例でも同様に、従来と比較して良好なノイズ低減効果を実現できる。
 (8)各図では、三相インバータが共通の直流電源から給電されるものとして説明したが、三相インバータが個別の直流電源から給電されることとしてもよい。
 (9)各図は、本発明が理解できる程度に配置関係を概略的に示してあるに過ぎず、従って、本発明は図示例に限定されるものではない。また、図を分かり易くするために、一部省略した部分がある。
 (10)上記の実施形態および変形例は単なる好適例に過ぎず、何らこれに限定されない。例えば、各図では負荷として三相交流電動機を例に挙げ説明したが、負荷は何らこれに限定されない。また、これらの実施形態および変形例に挙げた構成を、適宜好適に組み合わせることも可能である。
 (11)各構成成分間の特性差等が同一という場合、例えば、三相交流電動機それぞれの対地寄生容量が同一である等の場合においても、製造誤差等の範囲内での誤差は当然許容されるものとする。
 また、第1の実施形態における図3を用いたノイズ低減原理において、スイッチング素子にオンからオフへの状態遷移とオフからオンへの状態遷移とを同時に発生させる、すなわち、スイッチングのタイミングを一致させることにより、ノイズ低減が図られることを説明した。ここで、「オンからオフへの状態遷移とオフからオンへの状態遷移とが同時に発生」するとは、オンからオフへの遷移時間(鋸波において電圧が急降下する時間に対応)
とオフからオンへの遷移時間(反転鋸波において電圧が急上昇する時間に対応)とが重なっていることを指す。このとき、オンからオフへの遷移時間とオフからオンへの遷移時間とが完全に重なっている場合だけでなく、両遷移時間の少なくとも一部分同士が重なっている場合も含むものとする。
 (12)第1の実施形態に係る負荷駆動システム100を自動車に適用した変形例について説明する。
 図19は、本変形例に係る車両制御システム1200を備える自動車1300の構成を示す概略図である。図19に示すように、自動車1300は、車両制御システム1200と、車輪1310、1311を備える。
 車両制御システム1200は、直流電源BA、制御回路400、三相インバータ301,302、三相交流電動機201,202、エアコン1400を備える。直流電源BA、制御回路400、三相インバータ301,302、三相交流電動機201,202は、第1の実施形態と同様の構成である。エアコン1400は自動車1300内の空気の調整を行うものであり、三相インバータ303、三相交流電動機203からなる。
 三相交流電動機201,202は、それぞれ車輪1310,1311を駆動する走行用電動機として用いられている。一方、エアコン1400が備える三相交流電動機203は、エアコン1400を駆動する電動コンプレッサ用電動機として用いられている。
 ここで、三相交流電動機201,202,203のうちのいずれか2基を選択して走行用電動機として用いればよいのであるが、走行用電動機として用いられている2基の三相交流電動機は、同期して動作される方が望ましい。したがって、本変形例では、互いに周波数が同一のキャリア信号を用いたPWM信号に基づき駆動される三相交流電動機201,202を走行用電動機として割り当てている。しかしながら、必ずしもこのような三相交流電動機の組を走行用電動機として割り当てられている必要はなく、車両制御システムの構成によって適宜変更することが可能である。
 なお、図19に示す変形例に限定されず、適宜、三相交流電動機201,202,203の割り当てを変更することが可能である。例えば、三相交流電動機201,202,203を、それぞれ走行用電動機、電動コンプレッサ用電動機、発電機用電動機に割り当てる等、種々の構成が考えられる。
 なお、本変形例では、第1の実施形態に係る負荷駆動システムを自動車に適用した例を説明したが、第1の実施形態以外の他の実施形態ならびに変形例に係る負荷駆動システムの構成を用いることも可能である。
 本発明は、例えば、低ノイズ特性が特に要求されるハイブリッド自動車、電気自動車、燃料電池自動車等の動力源として用いる電動機駆動システムに好適に利用可能である。
 201~209,2010,2011 三相交流電動機
 211~219,2110,2111 三相巻線
 301~309,3010,3011 三相インバータ
 401,407,409 第1の制御部
 402,408,4010 第2の制御部
 403,404,405,4011 第3の制御部
 406 第4の制御部
 411,417,419 第1のキャリア信号発生回路
 415 第3のキャリア信号発生回路
 412,416,4110 キャリア反転回路
 413,414 キャリア合成回路
 421,427,429 第1のPWM信号生成回路群
 422,428,4210 第2のPWM信号生成回路群
 423,424,425,4211 第3のPWM信号生成回路群
 426 第4のPWM信号生成回路群
 431~438 制御指令発生回路 
 431u~433u U相制御指令発生回路
 441~448 コンパレータ
 441u~443u U相コンパレータ
 501u~508u U相制御指令
 501v~503v V相制御指令
 501w~503w W相制御指令

Claims (17)

  1.  第1、第2および第3の負荷を駆動する負荷駆動システムであって、
     入力端子が直流電源に接続され、出力端子が前記第1、第2および第3の負荷にそれぞれ個別に接続される第1、第2および第3の三相インバータと、
     鋸波である第1のキャリア信号を生成するとともに、当該第1のキャリア信号に基づき前記第1の三相インバータを動作させる第1の制御部と、
     前記第1のキャリア信号に対し位相および周波数が同一であり、かつ、前記第1のキャリア信号に対し波形が反転した鋸波である第2のキャリア信号を生成するとともに、当該第2のキャリア信号に基づき前記第2の三相インバータを動作させる第2の制御部と、
     前記第1のキャリア信号の鋸波の傾きと前記第2のキャリア信号の鋸波の傾きとを有する三角波であって、前記第1のキャリア信号および前記第2のキャリア信号に対し同位相である、または位相が半周期ずれた三角波である第3のキャリア信号を生成するとともに、当該第3のキャリア信号に基づき前記第3の三相インバータを動作させる第3の制御部と、を備える
     ことを特徴とする負荷駆動システム。
  2.  前記第2の制御部は、前記第1の制御部により生成された第1のキャリア信号を反転させることにより前記第2のキャリア信号を生成し、
     前記第3の制御部は、前記第1の制御部により生成された第1のキャリア信号と前記第2の制御部により生成された第2のキャリア信号を合成することにより前記第3のキャリア信号を生成すること
     を特徴とする請求項1に記載の負荷駆動システム。
  3.  前記第1、第2および第3の負荷は第1、第2および第3の電動機巻線であり、
     前記第1、第2および第3の電動機巻線の巻回方向がいずれも同じであり、
     前記第1の制御部は、
     前記第1のキャリア信号と第1の制御指令との比較結果である駆動信号を前記第1の三相インバータに供給することにより前記第1の三相インバータを動作させ、
     前記第2の制御部は、
     前記第2のキャリア信号と第2の制御指令との比較結果である駆動信号を前記第2の三相インバータに供給することにより前記第2の三相インバータを動作させ、
     前記第3の制御部は、
     前記第1のキャリア信号および前記第2のキャリア信号に対し、位相が半周期ずれた前記第3のキャリア信号を生成するとともに、前記第3のキャリア信号と第3の制御指令との比較結果である駆動信号を前記第3の三相インバータに供給することにより前記第3の三相インバータを動作させること
     を特徴とする請求項1に記載の負荷駆動システム。
  4.  前記第1、第2および第3の負荷は第1、第2および第3の電動機巻線であり、
     前記第3の電動機巻線の巻回方向が前記第1、第2の電動機巻線の巻回方向に対して逆であり、
     前記第1の制御部は、
     前記第1のキャリア信号と第1の制御指令との比較結果である駆動信号を前記第1の三相インバータに供給することにより前記第1の三相インバータを動作させ、
     前記第2の制御部は、
     前記第2のキャリア信号と第2の制御指令との比較結果である駆動信号を前記第2の三相インバータに供給することにより前記第2の三相インバータを動作させ、
     前記第3の制御部は、
     前記第1のキャリア信号および前記第2のキャリア信号に対し、位相および周波数が同一の前記第3のキャリア信号を生成し、前記第3のキャリア信号と第3の制御指令との比較結果を反転させた駆動信号を前記第3の三相インバータに供給することにより前記第3の三相インバータを動作させること
     を特徴とする請求項1に記載の負荷駆動システム。
  5.  前記第1、第2および第3の負荷は第1、第2および第3の電動機巻線であり、
     前記第3の電動機巻線の巻回方向が前記第1、第2の電動機巻線の巻回方向に対して逆であり、
     前記第1の制御部は、
     前記第1のキャリア信号と第1の制御指令との比較結果である駆動信号を前記前第1の三相インバータに供給することにより前記第1の三相インバータを動作させ、
     前記第2の制御部は、
     前記第2のキャリア信号と第2の制御指令との比較結果である駆動信号を前記第2の三相インバータに供給することにより前記第2の三相インバータを動作させ、
     前記第3の制御部は、
     前記第1のキャリア信号および前記第2のキャリア信号に対し、位相が同一であり、かつ周波数が1/2になるように前記第3のキャリア信号を生成し、前記第3のキャリア信号と第3の制御指令との比較結果を反転させた駆動信号を前記第3の三相インバータに供給することにより前記第3の三相インバータを動作させること
     を特徴とする請求項1に記載の負荷駆動システム。
  6.  前記負荷駆動システムは、さらに、
     前記第1、第2の電動機巻線の巻回方向に対し、巻線が逆方向に巻回されている第4の負荷である第4の電動機巻線を駆動し、さらに、
     入力端子が直流電源に接続され、出力端子が第4の負荷に接続される第4の三相インバータと、
     前記第3のキャリア信号に対し周波数が同一であり、かつ波形が反転した第4のキャリア信号を生成し、当該第4のキャリア信号と第4の制御指令との比較結果を反転させた駆動信号を前記第4の三相インバータに供給することにより前記第4の三相インバータを動作させる第4の制御部と
     を含むことを特徴とする請求項5に記載の負荷駆動システム。
  7.  前記第1、第2および第3の制御指令において、
     同一相制御指令間の位相および振幅が同一であることを特徴とする請求項3に記載の負荷駆動システム。
  8.  前記第1、第2および第3の三相インバータの各々は、U相アーム、V相アーム、W相アームから構成されており、
     同相のアームに供給される駆動信号に設けられたデッドタイムは同一である
     ことを特徴とする請求項3に記載の負荷駆動システム。
  9.  前記第1、第2および第3の制御指令を発生させる第1、第2および第3の制御指令発生回路の制御ゲインが、全て同一であることを特徴とする請求項3に記載の負荷駆動システム。
  10.  前記第1、第2および第3の電動機巻線の中性点が互いに接続されていることを特徴とする、請求項3に記載の負荷駆動システム。
  11.  前記第1、第2および第3の電動機巻線は単一の電動機に含まれている、
     または、第1、第2および第3の電動機に個別に含まれていること
     を特徴とする請求項3に記載の負荷駆動システム。
  12.  前記直流電源と前記第1の三相インバータ間の配線距離と、
     前記直流電源と前記第2の三相インバータ間の配線距離と、
     前記直流電源と第3の三相インバータ間の配線距離と
     が同一であることを特徴とする請求項1に記載の負荷駆動システム。
  13.  前記第1、第2および第3の負荷それぞれの対地寄生容量が同一であること
     を特徴とする請求項1に記載の負荷駆動システム。
  14.  前記第1、第2および第3の三相インバータを構成するスイッチング素子において、
     前記各スイッチング素子のオンからオフへの遷移時間と、オフからオンへの遷移時間とが同一であること
     を特徴とする請求項1に記載の負荷駆動システム。
  15.  前記第1、第2および第3の三相インバータの入力端子は共通の直流電源に接続されていることを特徴とする請求項1に記載の負荷駆動システム。
  16.  第1および第2の電動機巻線を駆動する電動機駆動システムであって、
     前記第2の電動機巻線の巻回方向が前記第1の電動機巻線の巻回方向に対して逆であり、
     入力端子が直流電源に接続され、出力端子が第1および第2の電動機巻線にそれぞれ接続される第1および第2の三相インバータと、
     第1のキャリア信号を生成するとともに、当該第1のキャリア信号と第1の制御指令との比較結果である駆動信号を前記第1の三相インバータに供給することにより前記第1の三相インバータを動作させる第1の制御部と、
     前記第1のキャリア信号に対し、位相および周波数が同一である第2のキャリア信号と第2の制御指令との比較結果を反転させた駆動信号を前記第2の三相インバータに供給することにより前記第2の三相インバータを動作させる第2の制御部と
     を備えることを特徴とする電動機駆動システム。
  17.  請求項1に記載の負荷駆動システムを備える車両制御システムであって、
     前記第1、第2の三相インバータの出力端子は、各々、第1、第2の走行用電動機に接続され、
     前記第3の三相インバータの出力端子は、電動コンプレッサ用電動機に接続される
     ことを特徴とする車両制御システム。
PCT/JP2010/006775 2009-11-26 2010-11-18 負荷駆動システム、電動機駆動システム、および車両制御システム WO2011064970A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011527124A JP4825323B2 (ja) 2009-11-26 2010-11-18 負荷駆動システム、電動機駆動システム、および車両制御システム
US13/133,775 US8680794B2 (en) 2009-11-26 2010-11-18 Load drive system, motor drive system, and vehicle control system
EP10832825.3A EP2506414B1 (en) 2009-11-26 2010-11-18 Load drive system, electric motor drive system and vehicle control system
CN201080003875.7A CN102273058B (zh) 2009-11-26 2010-11-18 负载驱动系统、电动机驱动系统以及车辆控制系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009268776 2009-11-26
JP2009-268776 2009-11-26

Publications (1)

Publication Number Publication Date
WO2011064970A1 true WO2011064970A1 (ja) 2011-06-03

Family

ID=44066084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006775 WO2011064970A1 (ja) 2009-11-26 2010-11-18 負荷駆動システム、電動機駆動システム、および車両制御システム

Country Status (5)

Country Link
US (1) US8680794B2 (ja)
EP (1) EP2506414B1 (ja)
JP (1) JP4825323B2 (ja)
CN (1) CN102273058B (ja)
WO (1) WO2011064970A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176215A (ja) * 2013-03-08 2014-09-22 Nsk Ltd モータ制御装置、これを使用した電動パワーステアリング装置及び車両
JPWO2016051742A1 (ja) * 2014-09-30 2017-07-20 パナソニックIpマネジメント株式会社 モータ制御装置、このモータ制御装置を備えるモータユニット、モータユニットを備える自動車、および、モータ制御方法
CN107959444A (zh) * 2018-01-19 2018-04-24 长安大学 五相逆变器双三相电机驱动电路及系统矢量控制方法
JP2019092345A (ja) * 2017-11-16 2019-06-13 株式会社ジェイテクト モータ制御装置
WO2021014947A1 (ja) * 2019-07-22 2021-01-28 ミネベアミツミ株式会社 モータ制御装置およびモータシステム
WO2021014948A1 (ja) * 2019-07-22 2021-01-28 ミネベアミツミ株式会社 モータ制御装置およびモータシステム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625147B2 (ja) * 2009-04-13 2011-02-02 パナソニック株式会社 同期電動機駆動システム
WO2012073983A1 (ja) * 2010-12-02 2012-06-07 株式会社 日立メディコ 陽極回転駆動装置およびx線撮影装置
JP6184712B2 (ja) * 2013-03-22 2017-08-23 Ntn株式会社 モータ駆動装置
WO2016132427A1 (ja) * 2015-02-16 2016-08-25 三菱電機株式会社 電力変換装置
US9887616B2 (en) * 2015-07-01 2018-02-06 Hella Corporate Center Usa, Inc. Electric power conversion apparatus with active filter
CN108093675B (zh) * 2015-08-28 2020-11-13 三菱电机株式会社 马达驱动装置、使用马达驱动装置的热泵装置以及冷冻空调装置
CN105450011B (zh) * 2015-12-31 2019-02-15 深圳市英威腾交通技术有限公司 一种逆变器
WO2017137324A1 (en) * 2016-02-08 2017-08-17 Abb Schweiz Ag Synchronising traction converters
FR3050337B1 (fr) * 2016-04-14 2020-01-10 Schneider Toshiba Inverter Europe Sas Procede et systeme de commande pour une installation de commande de moteur electrique
US20180361830A1 (en) * 2017-06-19 2018-12-20 Ford Global Technologies, Llc Dual electric drive a/c compressor system and method
WO2019026764A1 (ja) * 2017-08-04 2019-02-07 パナソニックIpマネジメント株式会社 電力変換装置、及び電力変換システム
JP6889837B2 (ja) * 2017-10-05 2021-06-18 株式会社ジェイテクト モータ制御装置
JP2019092344A (ja) 2017-11-16 2019-06-13 株式会社ジェイテクト モータ制御装置
JP7075587B2 (ja) 2018-05-01 2022-05-26 株式会社ジェイテクト モータ制御装置
US10587185B1 (en) 2019-04-16 2020-03-10 Ford Global Technology, Llc Dynamic carrier waveform modification to avoid concurrent turn-on/turn-off switching
EP4182180A1 (en) * 2020-07-17 2023-05-24 Cummins, Inc. Synchronized multi-inverter system with reduced ripple current in dc link
TWI740592B (zh) * 2020-07-30 2021-09-21 新代科技股份有限公司 多軸馬達控制系統及其方法
CN117674680A (zh) * 2022-08-29 2024-03-08 中车株洲电力机车研究所有限公司 电驱系统、方法、装置、存储介质、电子设备及电动汽车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086918A (ja) * 2003-09-09 2005-03-31 Fanuc Ltd モータ駆動装置
JP2006014483A (ja) * 2004-06-25 2006-01-12 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2008109727A (ja) * 2006-10-23 2008-05-08 Nippon Soken Inc インバータ装置
JP2008193788A (ja) * 2007-02-02 2008-08-21 Tokyo Institute Of Technology 電力制御装置およびそれを備えた車両
JP2008228399A (ja) * 2007-03-09 2008-09-25 Nippon Soken Inc 車両用交流モータ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167775A (en) * 1978-03-27 1979-09-11 Exxon Research & Engineering Co. Controller for synthesizer circuit for generating three-tier waveforms
FR2451658A1 (fr) * 1979-03-16 1980-10-10 Asa Sa Installation perfectionnee pour la commande des variations de vitesse des boites a cames de machines textiles
JPS59204469A (ja) 1983-04-30 1984-11-19 Shinano Denki Kk インバ−タ装置
JPS6321427A (ja) 1986-07-16 1988-01-29 Matsushita Electric Ind Co Ltd 一体型空気調和機のフアンモ−タ台固定装置
US5142468A (en) * 1991-05-16 1992-08-25 General Atomics Power conditioning system for use with two PWM inverters and at least one other load
US5481451A (en) * 1992-10-30 1996-01-02 Arex Electronics Corporation AC-to-AC power inverter apparatus functioning without smoothing capacitor, and control method thereof
JPH06189593A (ja) * 1992-12-16 1994-07-08 Canon Inc モータ制御方法及び制御装置
US6864646B2 (en) * 2003-02-14 2005-03-08 General Motors Corporation Multiple inverter system with low power bus ripples and method therefor
JP4306298B2 (ja) 2003-03-28 2009-07-29 日産自動車株式会社 モーター制御装置
JP2006101675A (ja) 2004-09-30 2006-04-13 Mitsubishi Electric Corp モータ駆動装置
JP4663404B2 (ja) 2005-05-27 2011-04-06 株式会社デンソー 車載用高電圧モータ装置用コモンモードノイズキャンセル回路装置
JP4682727B2 (ja) * 2005-07-13 2011-05-11 パナソニック株式会社 モータ駆動装置
JP4661590B2 (ja) * 2005-12-27 2011-03-30 パナソニック株式会社 洗濯乾燥機のモータ駆動装置
JP5239234B2 (ja) 2006-10-16 2013-07-17 日産自動車株式会社 電力変換装置および電力変換方法
US8183820B2 (en) * 2008-07-21 2012-05-22 GM Global Technology Operations LLC Power processing systems and methods for use in plug-in electric vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086918A (ja) * 2003-09-09 2005-03-31 Fanuc Ltd モータ駆動装置
JP2006014483A (ja) * 2004-06-25 2006-01-12 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2008109727A (ja) * 2006-10-23 2008-05-08 Nippon Soken Inc インバータ装置
JP2008193788A (ja) * 2007-02-02 2008-08-21 Tokyo Institute Of Technology 電力制御装置およびそれを備えた車両
JP2008228399A (ja) * 2007-03-09 2008-09-25 Nippon Soken Inc 車両用交流モータ装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176215A (ja) * 2013-03-08 2014-09-22 Nsk Ltd モータ制御装置、これを使用した電動パワーステアリング装置及び車両
JPWO2016051742A1 (ja) * 2014-09-30 2017-07-20 パナソニックIpマネジメント株式会社 モータ制御装置、このモータ制御装置を備えるモータユニット、モータユニットを備える自動車、および、モータ制御方法
JP2019092345A (ja) * 2017-11-16 2019-06-13 株式会社ジェイテクト モータ制御装置
JP7054435B2 (ja) 2017-11-16 2022-04-14 株式会社ジェイテクト モータ制御装置
CN107959444A (zh) * 2018-01-19 2018-04-24 长安大学 五相逆变器双三相电机驱动电路及系统矢量控制方法
WO2021014947A1 (ja) * 2019-07-22 2021-01-28 ミネベアミツミ株式会社 モータ制御装置およびモータシステム
WO2021014948A1 (ja) * 2019-07-22 2021-01-28 ミネベアミツミ株式会社 モータ制御装置およびモータシステム
JP2021019458A (ja) * 2019-07-22 2021-02-15 ミネベアミツミ株式会社 モータ制御装置およびモータシステム
US11757394B2 (en) 2019-07-22 2023-09-12 Minebea Mitsumi Inc. Motor control device and motor system
JP7407534B2 (ja) 2019-07-22 2024-01-04 ミネベアミツミ株式会社 モータ制御装置およびモータシステム

Also Published As

Publication number Publication date
EP2506414A1 (en) 2012-10-03
US8680794B2 (en) 2014-03-25
US20110260656A1 (en) 2011-10-27
EP2506414B1 (en) 2019-01-02
JP4825323B2 (ja) 2011-11-30
EP2506414A4 (en) 2017-04-26
JPWO2011064970A1 (ja) 2013-04-11
CN102273058A (zh) 2011-12-07
CN102273058B (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
JP4825323B2 (ja) 負荷駆動システム、電動機駆動システム、および車両制御システム
US11342876B2 (en) Drive system and method of operation thereof for reducing DC link current ripple
JP6087666B2 (ja) 電力変換装置
JP7359932B2 (ja) 車両及びそのエネルギー変換装置と動力システム
Peng et al. An asymmetric three-level neutral point diode clamped converter for switched reluctance motor drives
US20120206076A1 (en) Motor-driving apparatus for variable-speed motor
US9621100B2 (en) Vehicular AC electric generator
CN111434028A (zh) 旋转电机控制装置
WO2012086095A1 (en) Motor-driving apparatus for driving three-phase motor of variable speed type
JP2011160617A (ja) Zソース昇圧回路
JP4784242B2 (ja) 電力変換システムおよびこれをを有する電動車両
JP5362657B2 (ja) 電力変換装置
WO2020045636A1 (ja) 回転電機制御装置
JP2008236889A (ja) インバータ装置
JP2009106098A (ja) 電力変換システム
JP7269576B2 (ja) 回転電機制御装置
JP7483567B2 (ja) 蓄電システム
JP2000324891A (ja) インバータ駆動モータ
Cai et al. An integrated multi-port power converter with small capacitance requirement for switched reluctance machine
JP4352806B2 (ja) 電力変換装置
JP2011166924A (ja) 三相可変速モータ駆動用モータ駆動装置
JP6895643B2 (ja) 電力変換装置
JP2021069249A (ja) 半導体装置及びモータ制御方法
JP2005137179A (ja) 電力変換装置及び電力変換方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003875.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13133775

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011527124

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010832825

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE