WO2011061862A1 - 生体情報を用いた認証システム及び認証装置 - Google Patents

生体情報を用いた認証システム及び認証装置 Download PDF

Info

Publication number
WO2011061862A1
WO2011061862A1 PCT/JP2009/069754 JP2009069754W WO2011061862A1 WO 2011061862 A1 WO2011061862 A1 WO 2011061862A1 JP 2009069754 W JP2009069754 W JP 2009069754W WO 2011061862 A1 WO2011061862 A1 WO 2011061862A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
authentication
living body
terminal
feature data
Prior art date
Application number
PCT/JP2009/069754
Other languages
English (en)
French (fr)
Inventor
三浦直人
清水春美
長坂晃朗
宮武孝文
松田友輔
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US13/510,320 priority Critical patent/US9076027B2/en
Priority to JP2011541781A priority patent/JP5605854B2/ja
Priority to PCT/JP2009/069754 priority patent/WO2011061862A1/ja
Priority to CN200980162428.3A priority patent/CN102598052B/zh
Priority to EP09851484.7A priority patent/EP2503509A4/en
Publication of WO2011061862A1 publication Critical patent/WO2011061862A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/24Character recognition characterised by the processing or recognition method
    • G06V30/242Division of the character sequences into groups prior to recognition; Selection of dictionaries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/50Maintenance of biometric data or enrolment thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/94Hardware or software architectures specially adapted for image or video understanding
    • G06V10/95Hardware or software architectures specially adapted for image or video understanding structured as a network, e.g. client-server architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns

Definitions

  • the present invention relates to an authentication system for authenticating an individual using a living body, and more particularly, to a high-speed and high-precision authentication technology.
  • finger vein authentication is known as a technique capable of realizing highly accurate authentication. Finger vein authentication realizes high authentication accuracy by using the vein pattern inside the finger and realizing high authentication accuracy and being more difficult to forge and tamper than fingerprint authentication.
  • biometric authentication devices are mounted on devices such as mobile phones, notebook PCs (Personal Computers), PDAs (Personal Digital Assistants), lockers, safes, printers, and the like to ensure the security of each device. It has increased.
  • biometric authentication has been used in recent years as a field to which biometric authentication is applied.
  • a so-called 1: 1 authentication that presents a living body after uniquely specifying registration data by inputting a PIN (Personal Identification Number) or presenting an ID card, etc. uses an ID card to reduce throughput.
  • so-called 1: N authentication in which authentication is performed only with a living body, is desired.
  • a biometric authentication device described in Patent Document 1 is known.
  • the authentication device described in Patent Document 1 discloses a technique in which registration data is spatially reduced and stored, and low-resolution data is collated at high speed.
  • Patent Document 2 discloses a method for obtaining the user's existence probability from the expected time when the user arrives at the terminal, and rearranging the collation order of 1: N data to search for the user at high speed. Further, in Patent Document 3, a plurality of registration data are searched at high speed using information on the pupil opening degree of the iris, and iris data having a similar hamming distance among a plurality of iris images is registered by omitting registration. A technique for suppressing the amount of data is disclosed.
  • JP2005-215883A JP 2008-250508 A
  • JP 2004-362619 A JP 2004-362619A
  • N authentication In order to realize 1: N authentication on a large scale, it is necessary to maintain high authentication accuracy while maintaining high-speed authentication.
  • N authentication since it is necessary to collate with a large number of registered data of registrants who are not the principals, it is erroneously determined to be another registrant, or a non-registrant is a registrant. It becomes easy to generate a stranger acceptance rate (FAR) in which it is determined that there is a person who erroneously recognizes the other person as the person. Therefore, it is a problem to reduce the acceptance rate of others.
  • FAR stranger acceptance rate
  • the registration data becomes enormous, a long time is required for the verification process, and there is a problem that the waiting time of the user increases.
  • Patent Document 1 can search registered data at high speed, but a method of authenticating with high accuracy is not disclosed in Patent Document 1.
  • the apparatus disclosed in Patent Document 2 can authenticate a registrant at high speed by changing the collation order according to the probability of the registrant authenticating.
  • speeding up of authentication when the registrant cannot be detected is not considered.
  • Patent Document 3 includes a suggestion to speed up authentication by narrowing a matching target from a plurality of registration data using a pupil opening index.
  • classification based on this index includes a lot of data showing a high degree of similarity with another person, so that it is difficult to authenticate at high speed.
  • the number of registered data to be verified can be reduced by selecting registered data.
  • N authentication at high speed since a large number of selected registered data are verified, It is difficult to execute such 1: N authentication at high speed.
  • Patent Document 3 focuses on reducing the amount of registered data of each person, and does not include a suggestion of a method for authenticating many registrants at high speed and with high accuracy.
  • a typical example of the invention disclosed in the present application is as follows. That is, an authentication system that authenticates an individual using characteristics of a living body, the input device for placing the living body, an imaging device that images the living body, and image processing that processes an image captured by the imaging device A storage device that stores a plurality of pre-registered first feature data including the features of the living body and second feature data generated from the first feature data by the image processing unit, and the imaging A collation processing unit that collates input data indicating a feature of a living body imaged by the apparatus with each of the first feature data and the second feature data, and each of the second feature data includes the first feature data
  • the authentication system is characterized in that the data is smaller than the data and includes at least a part of the characteristics of the living body. According to the present invention, it is possible to provide a high-speed and highly convenient
  • FIG. 1 is a diagram illustrating an overall configuration of the biometric authentication system according to the first embodiment.
  • FIG. 2 is a diagram for explaining the operation of the biometric authentication system according to the first embodiment.
  • 3A and 3B are flowcharts of the authentication process according to the first embodiment.
  • FIG. 4 is a diagram for explaining the relationship between the matching score and the acceptance of others according to the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the biometric authentication system according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of an authentication result synthesis method using a plurality of living bodies according to the first embodiment.
  • FIG. 7 is a flowchart of authentication threshold update processing according to the first embodiment.
  • FIG. 1 is a diagram illustrating an overall configuration of the biometric authentication system according to the first embodiment.
  • FIG. 2 is a diagram for explaining the operation of the biometric authentication system according to the first embodiment.
  • 3A and 3B are flowcharts of the authentication process according to the first embodiment.
  • FIG. 8A is a diagram illustrating an overall configuration of the biometric authentication system according to the second embodiment.
  • FIG. 8B is a diagram illustrating an example of a registration data list according to the second embodiment.
  • FIG. 9A is a diagram illustrating an overall configuration of a biometric authentication system according to the third embodiment.
  • FIG. 9B is a diagram illustrating an example of a travel time database according to the third embodiment.
  • 10A and 10B are flowcharts of authentication processing according to the third embodiment.
  • FIG. 11 is a diagram illustrating the relationship between the arrival possibility and the elapsed time according to the third embodiment.
  • FIG. 12A is a diagram illustrating an overall configuration of a biometric authentication system according to the fourth embodiment.
  • FIG. 12B is a diagram illustrating an example of posture information of a living body at the time of registration according to the fourth embodiment.
  • FIG. 12C is a diagram illustrating an example of posture information collation according to the fourth embodiment.
  • FIG. 13 is a flowchart of processing executed by the terminal according to the fourth embodiment.
  • FIG. 14 is a diagram for explaining the operation of a biometric authentication system according to a modification of the fourth embodiment.
  • FIG. 15 is a flowchart of processing executed by the terminal according to the modification of the fourth embodiment.
  • FIG. 16 is a diagram illustrating an overall configuration of a biometric authentication system according to the fifth embodiment.
  • FIG. 17A is a diagram illustrating an example of a test chart according to the fifth embodiment.
  • FIG. 17B to 17D are diagrams for explaining extraction of the common area by the test chart of the fifth embodiment.
  • FIG. 17E and FIG. 17F are diagrams for explaining a change in the collation score distribution due to the coordinate transformation according to the fifth embodiment.
  • FIG. 18 is a flowchart of authentication processing according to the fifth embodiment.
  • 19A and 19B are cross-sectional views illustrating a configuration example of the input device according to the sixth embodiment.
  • 20A and 20B are diagrams illustrating an overall configuration of the biometric authentication system according to the seventh embodiment.
  • FIG. 21 is a flowchart of authentication processing according to the seventh embodiment.
  • FIG. 1 is a diagram illustrating an overall configuration of a biometric authentication system using a finger vein according to the first embodiment.
  • the authentication system according to the first embodiment includes an input device 2, an authentication processing unit 10, a storage device 14, a display unit 15, an input unit 16, a speaker 17, and an image input unit 18.
  • the input device 2 includes a light source 3 installed in the housing and an imaging device 9 installed in the housing.
  • the image processing function portion of the authentication processing unit 10 or the image processing function including the image input unit 18 may be referred to as an image processing unit. In any case, the authentication processing unit 10 has an image processing function.
  • the light source 3 is a light emitting element such as an infrared LED (Light Emitting Diode), for example, and irradiates the finger 1 presented on the input device 2 with infrared light.
  • the imaging device 9 captures an image of the finger 1 presented on the input device 2.
  • the image input unit 18 acquires an image captured by the imaging device 9 of the input device 2 and inputs the acquired image to the authentication processing unit 10.
  • the authentication processing unit 10 includes a central processing unit (CPU: Central Processing Unit) 11, a memory 12, and various interfaces (IF) 13.
  • the CPU 11 performs various processes by executing a program stored in the memory 12.
  • the memory 12 stores a program executed by the CPU.
  • the memory 12 temporarily stores the image input from the image input unit 18.
  • the interface 13 connects the authentication processing unit 10 and an external device. Specifically, the interface 13 is connected to the input device 2, the storage device 14, the display unit 15, the input unit 16, the speaker 17, the image input unit 18, and the like.
  • the storage device 14 stores user registration data in advance.
  • the registration data is information for collating users, and is, for example, an image of a finger vein pattern.
  • the finger vein pattern image is an image obtained by capturing blood vessels (finger veins) distributed under the skin on the palm side of the finger as dark shadow patterns.
  • the display unit 15 is, for example, a liquid crystal display, and is an output device that displays information received from the authentication processing unit 10.
  • the input unit 16 is, for example, a keyboard, and transmits information input from the user to the authentication processing unit 10.
  • the speaker 17 is an output device that transmits information received from the authentication processing unit 10 as an acoustic signal (for example, voice).
  • FIG. 2 is a diagram for explaining the operation of the biometric authentication system according to the first embodiment.
  • the large-scale 1: N biometric authentication system shown in FIG. 2 holds registration data for verification of a plurality of sizes for one piece of biometric information, rearranges the registration data of the next layer while performing verification in multiple layers, and The authentication is completed when a predetermined other person acceptance rate is satisfied.
  • the large-scale 1: N biometric authentication system shown in FIG. 2 includes an input device 2, an authentication server 21 connected to the input device 2, and a registration database 22 connected to the authentication server 21.
  • the input device 2 includes a central processing unit (CPU) 11.
  • CPU central processing unit
  • the authentication server 21 includes a central processing unit (CPU) that performs various processes by executing a program, a memory that stores a program executed by the CPU, and an interface connected to other devices.
  • N authentication is registered in the system by presenting only biometric information without specifying its own registration data by inputting an ID or the like when a user (authenticated person) attempting authentication uses the authentication device.
  • this is an authentication method in which a plurality of (N cases) all registered data are collated to identify which registrant this user is.
  • N cases all registered data are collated to identify which registrant this user is.
  • the response decreases, and the probability of erroneously determining a registrant increases. For this reason, in practical use, it is important to study both speed and accuracy.
  • the biometric information registration data 23 is stored in a registration database 22 connected to the authentication server 21.
  • the registration data 23 is feature data (matching data) of a photographed living body part, and is compared with input data presented by the user, and a matching score that quantifies how similar the two are. Can be calculated.
  • the matching score is a numerical value indicating the similarity and difference between the two.
  • the collation data includes, for example, a template image in which a fingerprint or vein line drawing is emphasized, feature point information such as the position, direction, number of branches, brightness gradient direction, and sharpness of image quality of a line drawing, or feature points
  • a feature amount generally used for biometric authentication, such as structural data indicating a connection relationship between each other, can be used.
  • the registration data 23 is composed of a plurality of data of different sizes for the same living body.
  • it is composed of two pieces of registered data 25 of normal size and reduced data 24 in which the information amount is smaller than the normal size (for example, reduced to 1/4 size).
  • the reduced data 24 is used to execute a rough collation process at high speed, and enables registration data that matches the input living body to be detected at an early stage. Note that the reduction ratio and the number of reduced data to be generated can be arbitrarily determined according to the speed of the collation process.
  • the reduced data 24 for example, when the registration data is a template image, an image obtained by spatially reducing the template image, an image obtained by extracting a part of the template image, an image obtained by reducing the gradation of one pixel, or the like may be used. it can. Further, when the registration data is structure data, for example, each feature is calculated by calculating the S / N ratio of the image at the position corresponding to the feature point with respect to the biological image used when calculating the feature point. The reduced data 24 can be generated by obtaining the sharpness of the points and excluding feature points with low sharpness. The registration data is generated by photographing a living body with the input device 2, generating biometric feature data with the CPU 11, and further performing a reduction process on this data a plurality of times.
  • the input device 2 executes only imaging of the living body, transfers the captured image to the server 21, generates feature data by the CPU provided in the server 21, and executes processing for reducing the generated registration data,
  • the feature data and the reduced data may be stored in the registration database 22.
  • the collation is performed between the collation data reduced to the same size, and a collation score is obtained as a result of the collation.
  • the matching score is the degree of difference. That is, the collation score is lowered if the same living body as that at the time of registration is input, and the collation score is increased if a different living body is input.
  • Whether or not the authentication is successful is determined based on whether or not the matching score between the input data 28 and a certain registration data 23 is lower than a preset authentication threshold. If the verification score is lower than the authentication threshold, the pattern of the input data 28 and the pattern of the registration data 23 are similar, so that the user who presented this input data is likely to be a registrant, so that the authentication is successful. Is determined. On the other hand, if the matching score with any registered data 23 does not fall below the authentication threshold, authentication is rejected.
  • the matching score is preferably normalized between 0 and 1. The appearance frequency of the matching score varies depending on whether the matching score between the same living bodies or the matching data between different living bodies. When matching between the same living bodies, the matching score is low because of high similarity.
  • the matching score is high.
  • the distribution of the matching score has a certain width and spreads.
  • the average distance between the distribution of matching scores between the same living body and the distribution of matching scores between different living bodies varies depending on the biological information used, the processing method, and the data reduction ratio. However, if the distance between the distributions is far, authentication can be performed with higher accuracy. Therefore, in the data of each reduction ratio, the appearance frequency of the matching score of the same living body and the appearance frequency of the matching score of a different living body are evaluated in advance, and the evaluation result is held in the registration database 22.
  • two of the appearance frequency distribution 26 of the matching score in the reduced data and the appearance frequency distribution 27 of the matching score in the normal data are retained.
  • An authentication threshold is set for each distribution. Since the appearance frequency distribution 26 of the matching score in the reduced data is close to the distribution of the same living body and the distribution of different living bodies, it is difficult to determine whether or not they are the same living body.
  • the appearance probability distribution 27 of the matching score in the normal data the distance between the same living body distribution and the different living body distribution is larger than the distance of the reduced data, and it is easy to determine whether the living body is the same living body.
  • the authentication threshold for the reduced data and the authentication threshold for the normal data are different values.
  • the authentication threshold is closely related to the stranger acceptance rate, and is set so as not to exceed the upper limit of the stranger acceptance rate set in advance in the authentication system.
  • the outline of the authentication procedure is as follows. First, after the user presents the living body (here, the finger 1) to the input device 2, the camera 9 photographs the finger 1 presented. Then, the CPU 10 generates input biological data (input data) 28. At this time, two input data having different reduction ratios are generated in the same manner as the registration data generation, and the generated input data 28 is transferred to the server 21.
  • the server 21 collates the input data 28 with all the registered data, and finally determines whether or not authentication is possible.
  • the registration database 22 has a sufficient capacity for storing a large number of registration data, and the registration data is registered in advance. Furthermore, a case where an unregistered person presents a living body on the input device 2 is also considered.
  • the reduced data 24 of all registrants is collectively referred to as a reduced data group
  • the registration data 25 of all registrants having a normal size is collectively referred to as a normal data group.
  • the design policy regarding the error rate of 1: N authentication in the present embodiment will be described.
  • FRR False Rejection Ratio
  • FAR False Acceptance Ratio
  • the trade-off of the misauthentication rate is controlled using the following general properties.
  • the properties used in the present embodiment are that each user has a difference in device proficiency and complexity of biometric features. Therefore, when a common authentication threshold is set, the rejection rate for each user is different for each user. It is different.
  • the authentication system has a policy of setting an upper limit value of the acceptance rate of others acceptable in the system and reducing the rejection rate while guaranteeing that the risk of misauthentication due to the mistake is below a certain value. Design an authentication system with.
  • 3A and 3B are flowcharts illustrating authentication processing according to the first embodiment.
  • the outline of the verification processing procedure will be described. First, all the registered data of the smallest size of the reduced data are collated with the input data, then all the registered data of the hierarchy with the largest data size are collated sequentially with the input data, and finally the size that is not reduced All normal registration data and input data are collated.
  • the authentication system is a 1: N authentication system, an ID, PIN, or the like for specifying a user is not input.
  • the terminal captures the living body after detecting the presentation of the living body using, for example, a touch sensor, a push button switch, or a change in an image.
  • the terminal controls the camera, the light source, and the like so that the living body is clearly displayed. For example, when a living body is a finger and a finger vein is photographed, the finger is irradiated with infrared light, and transmitted light of the irradiated infrared light is photographed with an infrared camera, and the luminance value and vein of the photographed image are captured.
  • collation input data 28 is generated from the captured biometric information (S302).
  • the input data 28 generated in S302 is information that can be compared with the registration data 25.
  • reduced data of the feature pattern created from the input data is generated.
  • the reduction ratio and the number of generations are the same as the registration data, and can be compared with the registration data reduced to the same ratio.
  • a numerical value (collation score) indicating the similarity between each registered data and the input data is obtained.
  • the matching score indicates the degree of difference.
  • a method used in general pattern recognition can be adopted as a matching score between registered data and input data. For example, when collating template images, the amount of difference can be obtained from the sum of squares of the differences between overlapping pixel values. Further, when matching feature points, the similarity can be calculated using the ratio of the number of feature points that can be determined to be similar by comparing the attributes of the feature points to the number of all feature points.
  • a variable n for specifying registered data is initialized to 1 (S303). The variable n corresponds to the order of registration data.
  • n 1
  • N 1
  • N 1
  • S304 the presented biometric information (input data) 28 and the nth registration data are collated using the respective reduced data (S304).
  • the registration data collation order is determined, and the input data and the registration data are collated according to the determined order.
  • the collation order of the initial state for example, the order of registration, the order of use frequency, the order of importance of registrants (for example, order of position, order of customer importance), etc. can be arbitrarily set. In particular, if an order in which frequently used people are collated is set in advance, frequently used people are collated quickly, and the throughput of the entire system can be improved.
  • the reduced data of the registered data 25 with the earliest collation order is collated with the reduced data of the input data 28.
  • collation between reduced data is less accurate than similar data, but the collation process is faster because the data to be collated is small.
  • the calculation amount for comparing each pixel becomes 1 ⁇ 4, and both of them are considered while taking into account the spatial displacement of the living body.
  • the image shift width when comparing images is 1 ⁇ 4. For this reason, the total calculation amount is 1/16. Therefore, when collating between the reduced data spatially reduced to 1 ⁇ 2, it is possible to execute collation 16 times as large as the normal size registered data within the same time.
  • the collation process between the reduced data is sequentially executed for all registered data.
  • the data size and the collation process are designed so that collation of the reduced data of the minimum size is executed within the time-out time described later, so that collation with the registration data does not occur.
  • the authentication threshold is set at the boundary of the verification score that is lower than the other person acceptance rate of the authentication system set in advance.
  • the verification score is equal to or higher than the authentication threshold, 1 is added to n in order to perform verification with the next registered data (S308), and the verification is repeated in S304.
  • the authentication threshold is determined by the probability distribution, the authentication threshold for reduced data and the authentication threshold for normal data are different values.
  • the relationship between the authentication threshold and the error rate will be described. According to the appearance frequency distribution 26 of the collation score shown in FIG. 2, the collation result of the registrant and the collation result of the non-registrant are separated. From these two distributions, the relationship between the obtained matching score and the probability of being a registrant can be evaluated.
  • Equation (1) the probability that the result is a non-registered person can be expressed by Equation (1) using Bayesian probability.
  • x is a collation score
  • G is a registrant
  • I is a non-registrant.
  • x) P (x
  • I) * P (I) / P (x) P (x
  • x ⁇ Th) P (x ⁇ Th
  • the identity rejection rate can also be calculated using two probability distributions when using the Bayes probability.
  • the probability distribution of registrants and non-registrants is generally obtained by collecting a large number of actually measured data. However, for the following reasons, it is difficult to make the conditions such as the quality of the collected data and the number of collected data constant, and the reliability of the data usually does not match.
  • the number of authenticated user data that is the basis for creating the statistical distribution is, for example, when K data is collected, by collating the collected K data with each other, K ⁇ (K ⁇ 1) ways The non-registrant's matching score is obtained. For this reason, the number of data can be increased easily. Therefore, it is easy to improve the reliability of statistical data.
  • authentication propriety is determined using only the non-registrant distribution that can be observed relatively stably.
  • the error rate acceptance rate of others, rejection rate of the person
  • FAR stranger acceptance rate
  • FRR principal rejection rate
  • FIG. 4 is a diagram for explaining calculation of the acceptance rate (FAR) of others from the appearance frequency probability of the matching score.
  • a certain x was observed in the probability distribution P (x
  • the other person acceptance rate when this result is determined to be a registrant can be represented by the area of the area indicated by shading. Therefore, the above-described equation (3) of FAR (x) is derived.
  • FAR and FRR can be calculated based on the Bayesian probability described above.
  • the principal rejection rate and the stranger acceptance rate can be calculated using the following equations (5) and (6). If there are N registered data, the risk of accepting others increases roughly N times. Therefore, in order to realize the other person acceptance rate similar to 1: 1 authentication in 1: N authentication, a value 1 / N times the other person acceptance rate in 1: 1 authentication is used. Set to.
  • the verification is sequentially performed using the authentication threshold value determined as described above.
  • a collation score x satisfying FARn determined as described above was obtained.
  • the collation with the registration data is stopped, this user is determined as the corresponding registrant (S306), and the authentication is completed.
  • the registration data of the normal size of the registrant may be collated with the input data, and the registrant may be determined more reliably. Thereby, the reliability of the determination result can be further increased.
  • the collation with the remaining registered data is resumed assuming that the collation result of the reduced data is an error.
  • the collation with all the reduced data is repeated until a collation score lower than the authentication threshold appears.
  • any of the obtained matching scores may not satisfy FARn.
  • the verification result cannot be determined by this verification process, but this result is used for rearrangement for verification of the hierarchy of the next data size.
  • the waiting time of the user may exceed a practical time during the repeated processing. Therefore, an allowable timeout time is set, and the collation process is terminated when the set timeout time elapses (S307). If a matching score satisfying FARn is not obtained even after matching with all registered data, the matching process is continued using normal size data.
  • the processing order of the registered data is rearranged according to the above-described matching results (that is, in ascending order of the matching score) (S309). Since the reduced data includes the feature amount of the original collation data, the similarity of the collation data is high if the biometric information of the same person is between the biometric information of the same person, and the similarity of the collation data is low if the biometric information is of another person. Therefore, when the registration data is rearranged in the descending order of similarity and the next level collation process is executed, if the person to be authenticated is registered, there is a high possibility that the registered data of the person to be authenticated will appear earlier.
  • the collation processing is executed in two layers of one reduced data and one normal-size collation data.
  • three or more layers may be used. Good. In that case, the collation processing is executed in order from the layer with the smallest data size. Collation using normal-size data has almost the same flow as collation using reduced data.
  • a variable n for specifying registered data is initialized to 1 (S310), and then a matching score is calculated by matching the input data with the registered data represented by the variable n (S311).
  • a matching score is calculated by matching the input data with the registered data represented by the variable n (S311).
  • the verification score is equal to or greater than the authentication threshold Th2
  • 1 is added to n (S315) and the processing from S311 is repeated for the number of registration data in order to perform verification with the next registered data.
  • it is monitored whether or not a timeout has occurred (S314), and if a predetermined timeout time has elapsed, it is determined that the authentication has failed and the authentication process is terminated. Note that the measurement of the timeout time is started when the user presents the living body, and is determined to be timed out when a time (for example, 1 second) during which the user can wait for the authentication result from the start of the measurement has elapsed. .
  • collation data is configured in multiple layers in multiple sizes, collation is performed in order from the collation data of the hierarchy with the smallest data size, and the collation data of the next hierarchy is determined by the collation result of each hierarchy.
  • FIG. 5 is a diagram for explaining the operation of the biometric authentication system according to the first embodiment, and shows an example of speeding up by a rearrangement process.
  • the 1: N biometric authentication system holds registration data Z from registration data A, and holds reduced data z from reduced data a corresponding to the registered data.
  • the reduced data of the input data is compared with the reduced data of the registered data. For example, as a result of collating the input data d ′ with all registered data, the collation scores in the reduced data are arranged in the order of z, d, c... As a result, since the verification score does not fall below the authentication threshold Th1, the authentication is not completed, and the registration data (normal data) is rearranged in the verification score order. Then, the normal data of the input data is collated with the normal data of the registered data rearranged. First, since the collation score with the first rearranged Z exceeds the authentication threshold Th2, the authentication is not successful. However, the matching score with D in the next order was lower than the authentication threshold Th2.
  • the user is informed through the display, lamp, and / or speaker that the authentication has failed, and the user is prompted to input the next biometric information as necessary.
  • the user is prompted to input another registered finger.
  • the input of a biometric other than the finger vein is prompted.
  • request requiring presentation of several different biological body, you may enable it to determine freely the order in which a user presents a different biological body. If there is still a verification process that could not be completed due to a timeout, it takes some time for the device to complete imaging of the living body after the user presents the living body.
  • FIG. 6 shows an example of a method for synthesizing authentication results when authentication is performed using a plurality of living bodies in the first embodiment. In this embodiment, a case where finger veins of a plurality of fingers are input is illustrated.
  • Distribution 601 shows the appearance probability of the matching score when the first finger vein is presented. In order to simplify the explanation, only the distribution of the collation result based on the normal data that has not been reduced is shown.
  • Th_a the authentication threshold
  • the second finger vein is presented as described above.
  • the collation score by the presented second finger vein is obtained.
  • the authentication threshold in the calculation of the acceptance rate of others in a multidimensional matching score is multidimensional and is not uniquely determined unless there is a registrant distribution.
  • the threshold value is a nonlinear and complicated boundary. Such a boundary value can be determined by collecting a lot of reliable measured data and putting a lot of calculation cost.
  • the acceptance rate of others can be calculated from the multi-dimensional matching score distribution by using a general recognition technique such as calculation of Bayes probability or optimization by SVM (Support Vector Machine).
  • a general recognition technique such as calculation of Bayes probability or optimization by SVM (Support Vector Machine).
  • SVM Serial Vector Machine
  • a plurality of matching scores are reduced to one dimension, and an area smaller than the threshold can be uniquely determined as shown in FIG.
  • the acceptance rate should be calculated.
  • the average value of the matching score of the first living body and the matching score of the second living body is set as the matching score of the synthesis of the first and second living bodies will be described. However, you may calculate the average which weighted each collation score.
  • the weight in the case of assigning a weight to the collation score of each hierarchy can be determined by optimization by a general method such as principal component analysis.
  • principal component analysis When a non-registrant attempts authentication with the first finger vein, even if the matching score is accidentally lowered, the possibility that the matching score is similarly lowered with the second finger vein is low. Therefore, the average value of the matching score by the first finger vein and the matching score by the second finger vein is often slightly lower than the average value of all non-registrants.
  • the distribution of registrants and the distribution of non-registrants are distributions of average values of the first collation score and the second collation score as compared with the case where only the first living body is used.
  • the separation becomes larger.
  • the authentication threshold value Th_b for guaranteeing a predetermined other person acceptance rate shifts to a position further away from the registrant distribution. Therefore, when the finger veins of two different fingers are combined (602), When the finger vein is used (601), authentication is more easily performed. Similarly, when the second living body cannot be authenticated, the third living body is requested to be presented, and the average value of the matching scores by the first to third living bodies is obtained.
  • the authentication threshold Th_c is located farther from the registrant's distribution, and the probability that a registrant who is difficult to authenticate is also authenticated is increased. That is, the threshold value increases as the number of living organisms to be presented increases. However, the situation is different when the user repeatedly presents the same finger. When the matching score is accidentally low due to the input of the first finger vein of the non-registered person and the same finger is presented again, the matching score by the second finger vein is also a small value.
  • the authentication threshold is relaxed as shown in the distributions 602 and 604 according to the number of presentations, the threshold is raised by repeatedly presenting the same finger, and by repeating this, the total verification score of the non-registrants becomes the authentication threshold. Below. Therefore, when the same finger is presented, the distribution cannot be updated as described above. On the other hand, when a user presents a plurality of different living bodies, it is more convenient to present them in a free order than to specify which living bodies are presented in which order. In this case, it is assumed that the previously presented biological information is presented again.
  • the following synthesis is performed: The method solves this problem. First, every time a living body is presented, brute force matching with all living bodies presented by the user in the past is executed. And when a collation score turns into a value lower than a specific threshold value, for example, authentication threshold value Th_a mentioned above, it determines with both living bodies being the same. As a result, among the inputted fingers, the number of different fingers is obtained, and a probability distribution according to the number of different fingers can be used.
  • a specific threshold value for example, authentication threshold value Th_a mentioned above
  • the distribution 605 is used.
  • the probability distribution is updated according to the number of types of living organisms.
  • the distribution 603 is a probability distribution used when it is determined that the second finger and the first finger are the same finger, but this is the same as the distribution 601 used for the first finger.
  • the distribution is changed according to the number of fingers presented in the past. In this way, it is possible to prevent the authentication threshold from being unnecessarily relaxed by repeatedly presenting the same finger and maintain the reliability of the authentication system.
  • FIG. 7 is a flowchart illustrating an example of the process described in FIG. 6 for updating the probability distribution and the authentication threshold by measuring the number of types of the presented living body.
  • the input living body is a finger vein
  • the presentation number m of the living body (finger) is initialized to 1 (S1601).
  • the authentication system calculates a matching score with each registered data as described above (S1603). Whether the calculated matching score satisfies the condition for successful authentication (that is, registration data having a high degree of similarity satisfying the FAR upper limit set in the system is detected and no timeout has occurred in the matching process) It is determined whether or not (S1604).
  • the verification score satisfies the condition
  • the authentication is successful (S1613), and the authentication process is terminated.
  • the user is prompted to re-present his finger.
  • the number m of finger presentations is increased by 1 (S1605).
  • the user presents an arbitrary second finger different from the previously presented first finger (S1606).
  • the collation score between the finger vein patterns inputted so far is calculated, and the number of presented fingers is obtained (S1607).
  • the vein pattern of the first finger is compared with the vein pattern of the second finger. Then, the similarity between the vein patterns of these two fingers is determined.
  • the two presented fingers are determined to be the same, and when the similarity is above the threshold, the two types of fingers presented by determining that the two fingers are different fingers Get the number of.
  • the predetermined threshold value may be set to a similarity level at which the acceptance rate of others is 1 / 1,000,000.
  • the authentication success condition for the authentication result using the plurality of presented fingers is updated according to the number of types of fingers (S1608). Specifically, the appearance probability distribution of the collation score and the authentication threshold for authentication using both the first finger and the second finger are updated. Then, a collation score between the first finger and the second finger is calculated, and these are combined to execute an authentication process (S1609).
  • the matching score there is a method of using an average value of the matching score or treating it as a multidimensional vector. Thereafter, similarly to S1604, it is determined whether or not the authentication condition is satisfied (S1610). As a result of the determination, if the verification score satisfies the condition, the authentication is successful (S1613), and the authentication process is terminated. On the other hand, if the matching score does not satisfy the condition, the number m of finger presentations is further increased by 1 (S1611), and the processing from S1606 is repeated. If the finger presentation number m is repeated until the maximum value M is reached, the process exits the loop, determines that the authentication has failed, and ends the process (S1612).
  • the appearance probability distribution of the collation score by the collation between the non-registrants described above can be evaluated in advance.
  • the collection scale is limited in addition to the time required for collecting evaluation data and the like, a large-scale and highly reliable probability distribution can be obtained by using the verification results during actual operation.
  • an embodiment of a method for updating the probability distribution during operation will be described. First, the appearance frequency distribution of the matching score obtained by the evaluation performed before the system operation is held as initial data. Next, registration work is sequentially performed at the start of system operation. The collation score between different persons is calculated using these data, and the appearance frequency distribution of the collation score is updated.
  • the probability distribution can be updated with high reliability.
  • the living body presented by the user for authentication it is unknown whether the user is a registrant or a non-registrant at the time the living body is presented. Therefore, the authentication process is actually executed, and the frequency distribution is determined by determining that the matching result of the matching result between the input data and all the registered data is a matching result of another person except for one that is unlikely to be another person. Update. If it is determined that the input data cannot be authenticated, the frequency distribution is not updated because it cannot be determined whether it is a case of registrant rejection or non-registrant case.
  • the probability table can be updated, and a more accurate error rate can be calculated.
  • the probability table can be specifically configured by a list of pairs of matching scores and appearance times between different living bodies.
  • the finger veins of different fingers have been described.
  • fingerprints, finger joint wrinkles, faces, irises, auricles, retinas, lips Biological features such as can be used. If authentication is unsuccessful and it is necessary to present biometric information, it may be requested to present such biometric information.
  • the operation of the person to be authenticated can be simplified. For example, finger veins and fingerprints can be taken simultaneously by the same device.
  • a camera that captures a face can be installed in front of a terminal that captures a finger vein so that the finger vein and the face can be captured simultaneously.
  • a finger presented by a user is rotated along its central axis, and a vein image on the side or back of the finger is presented, so that a photographed image from multiple directions is displayed as a plurality of biological information. It may be used as
  • various portions of the finger may be continuously photographed by shifting the finger presentation position along the center axis of the finger.
  • the method of presenting different parts on one finger is easy to operate, can be operated in a short time, and has the advantage that it is not necessary to remodel a normal finger vein authentication device.
  • information specifying an individual who is not biological information such as PIN input
  • biological information may be used in combination.
  • the composite error rate based on the plurality of pieces of information can be calculated similarly to the case of using the plurality of pieces of biological information by combining the error rate of the living body and the error rate in the non-biological information.
  • the error rate related to PIN input varies depending on the number of digits to be input, so that the acceptance rate varies according to the error rate in the first living body. It is possible to guarantee the acceptance rate of others and reduce the labor of input.
  • the PIN acceptance is used to set the other acceptance rate to at least 1 / It only needs to be as small as 5. Therefore, the PIN is input by one digit, and it is determined whether or not it matches the registered PIN. If the occurrence of an error between the living body and the PIN is an independent event, the synthetic acceptance rate can be expressed by the product of both. In other words, since the one-digit PIN acceptance rate is 10%, the other-person acceptance rate obtained by synthesizing the living body and the PIN is 0.0005%, and the accuracy target can be achieved.
  • the authentication can be successful only by inputting the first 1 digit, and convenience is improved.
  • a one-digit PIN entry is successfully authenticated by repeating 10 trials, so even if the target accuracy is stochastically met, the minimum number of input digits is 3 digits, for example. For example, the number of repetitions during an attack may be increased.
  • the PIN input error rate even if there is an error in the PIN input, authentication can be successful if the predetermined other person acceptance rate is satisfied.
  • the acceptance rate of others is 10,000 minutes. 40. If the predetermined error rate is satisfied as a result of combining the PIN acceptance rate and the biometrics acceptance rate, the authentication can be successful even if there is an erroneous input. Specifically, if the occurrence of an error in biometric authentication and PIN input is an independent event, the combined other person acceptance rate can be obtained simply by multiplying the error rate. As described above, when PIN and biometric information are used in combination, authentication can be performed even if a part of the PIN is erroneously input. Therefore, convenience can be improved while maintaining a predetermined accuracy.
  • the probability of pressing the key 2 by mistake, and the probability of pressing the key 9 by mistake is strictly different from the intention of pressing the key 1.
  • the probability distribution may be obtained in consideration of such a probability that the key is pressed incorrectly. In this way, the probability can be calculated in more detail.
  • the number of verifications of a large number of registered data can be reduced by presenting the next living body to be input to the user from the system side. For example, in the case of an authentication system in which finger veins of a plurality of fingers are registered, convenience is high when a user performs an operation of presenting an arbitrary finger freely. However, since it is necessary to execute collation processing with all registered finger data, the number of collation increases, and the processing speed and accuracy deteriorate.
  • the system instructs the user to present, for example, the “middle finger of the right hand”, it is only necessary to collate with data registered as the middle finger of the right hand, thus improving the collation speed and authentication accuracy. be able to.
  • the type of living body presented by the user may be input to the system.
  • the order of input during authentication may be determined in advance, and the authentication may be successful when presented in the determined order. In this case, it is only necessary to give an order of collation to a plurality of registered data of each person and to collate in the order given at the time of authentication. Therefore, it is possible to narrow down at high speed without explicitly specifying the input living body.
  • the safety can be further improved.
  • the method executed by the procedure of the first embodiment that is, the method of determining the authentication result when the collation score satisfying the rearrangement and the predetermined FARn is obtained is a defect of some biometric authentication techniques.
  • the input of so-called wolf data which has a high degree of similarity in collation with a plurality of registered data or all registered data, cannot be detected.
  • the wolf data can be detected using the timeout time.
  • Wolf data has a high degree of similarity with a plurality of registered data, and there is a high possibility that the degree of similarity will be high in collation of reduced data.
  • the matching is continued as it is according to the order of registration data. Then, the collation is stopped when the timeout time elapses. The collation result so far is examined, and it is confirmed that the collation score with a plurality of registered data does not satisfy the predetermined FARn. Collation with all registered data is difficult because of the collation time, but the registered data is rearranged by collation using reduced data. For this reason, if the wolf data is input, there is a high possibility that a plurality of registered data having a high similarity appears at the head.
  • FIG. 8A shows a configuration example of the authentication system according to the second embodiment of this invention.
  • the authentication system according to the second embodiment speeds up the authentication process by using a large number of authentication terminals distributed on the network.
  • the biometric authentication system according to the second embodiment includes one server 21, one registration database 22 that holds all registration data, a plurality of authentication terminals 701, and a network 703. In the network 703, the server 21 and the terminal 701 are connected via the network 703.
  • Each terminal 701 shoots a user's living body and performs personal authentication, and also controls a door key as a process after authentication, for example, as an entrance / exit management device.
  • Each terminal 701 executes a post-authentication process, a storage device 702 (for example, a volatile or non-volatile memory or a magnetic disk) that stores registration data that is collated with input data, a processing device that performs authentication processing, and the like. It is a so-called self-authenticating device having a function to
  • the network 703 may be a general wired, wireless LAN, or a mobile phone network when the authentication terminal is a mobile terminal having a mobile phone function.
  • Each terminal 701 holds a plurality of registration data, and each terminal 701 can execute 1: N authentication independently within the range of the held registration data.
  • the number of registered data held in each terminal 701 is restricted not only by the capacity of the storage device provided in the terminal, but also by the relationship between the response time and the processing speed allowed for the device.
  • a terminal has a lower processing capacity than a server, and a case where the capacity of data that can be recorded in the terminal is exceeded due to an increase in the number of registered persons is assumed. For this reason, it is difficult to execute large-scale 1: N authentication by a terminal alone. For this reason, it is assumed that the terminal holds a part of all registered data, and a server having a high processing capacity mainly executes authentication processing.
  • Each terminal 701 holds a registrant ID list 704 (FIG. 8B) indicating which terminal holds which registration data. Thereby, each terminal 701 can grasp which registration data the terminal 701 holds by referring to the registrant ID list 704. This list is updated to the latest information every time registered data is added. On the other hand, if the number of requests for verification processing processed by one server 21 increases due to the addition of the terminal 701 after the system starts operating or the number of registered users increases, the waiting time for verification processing increases. On the other hand, when a server is added or updated to a server with high processing performance, a lot of costs are required.
  • the present invention solves the problem that authentication processing is executed in parallel by requesting partial verification processing to an idle terminal that has not performed authentication processing, and the verification processing takes a long time.
  • the configuration of the present invention will be described in detail by taking as an example a situation where the total number of registered data is 10,000, the number of registered data that each terminal can hold is 2,000, and the user 705 uses the terminal A.
  • terminal A inquires of all other terminals 701 about the operating state of the terminal. After receiving the inquiry about the operating status, each terminal 701 returns a message indicating that the terminal 701 is in operation if the terminal 701 is in a photographing state or a collation processing state, and returns that it is in an idle state otherwise.
  • the time during which the idle state continues and the operating rate of the terminal may be notified as additional information.
  • As the operating rate for example, an average of operating rates within 24 hours can be used.
  • the registration data list 704 managed by the idle terminal is referred to, and the registration data to be requested to be collated with each idle terminal is determined.
  • an example of a method for determining registration data to be requested is shown.
  • Each terminal holds 2,000 partial registration data, but since it is necessary to obtain a collation result for all registration data, a plurality of terminals are used.
  • First, of all the idle terminals registration data that is held by only one terminal is requested to collate with the terminal that holds the registration data.
  • the collation is assigned so that the number of collation requests is equal among the terminals. If the number of requests is almost the same, a large number of matches are assigned to a terminal with a low operating rate. Since a terminal with a low operating rate is less likely to be visited by a user during the matching process, the matching process can be executed continuously by assigning a large number of matches to such a terminal.
  • the operating rate is calculated in a short time or a long time. For example, when the operation rate is calculated for a long time, the operation rate of a long-time terminal that has been in an idle state until now becomes low. If the operating rate is almost the same, a terminal is selected randomly (or round robin).
  • the server 21 is requested to collate with these registration data. If the registration data IDs held in each terminal are managed so as to be continuous, the size of the registration data list can be reduced.
  • the terminal 701 requesting collation transfers the collation request data Di 706 to the requested terminal 701 or the server 21.
  • the collation request data includes a list of registrant IDs to be collated, input data for collation of the presented biometrics, a collation score threshold, and a timeout time.
  • the terminal 701 collates with the input data according to the registrant ID list to be collated.
  • Each terminal 701 uses the method of the first embodiment described above to configure the feature data of a plurality of sizes in multiple hierarchies, and rearranges the registered data and performs high-speed authentication when the result is below the authentication threshold. May be applied.
  • a collation score as a collation result is returned to the requesting terminal A.
  • the requesting terminal A receives the collation result (collation score), and authenticates the user 705 without waiting for the collation result from another terminal when at least one authentication result is obtained. If a matching score lower than the authentication threshold is not obtained from all the matching results, the next biometric presentation is prompted or the processing ends as an authentication failure. Thus, the response time can be shortened by executing the collation processing in parallel while equalizing the load on each terminal. If the user presents the living body immediately after receiving the verification request, the living body imaging process may be preferentially executed. This can reduce the waiting time of the user of the terminal that has received the verification request. At this time, it may be notified to the requesting terminal that an interrupt process has occurred.
  • the requesting terminal that has received the notification that this interrupt processing has occurred may request another idle terminal 701 or the server 21 for the authentication processing.
  • the terminal A on which the living body is presented for authentication determines the terminal 701 that executes the matching process, but the server 21 may determine the terminal 701 that executes the matching process.
  • the server 21 holds the registrant ID list 704.
  • the terminal A transmits the input data to the server 21, and the server 21 refers to the registrant ID list 704 to determine the terminal 701 for executing the collation process, and transfers the input data to the determined terminal 701.
  • the server 21 may determine only the sharing of the verification process, notify the determined sharing to the terminal A, and the terminal A that has received the notification may transmit the input data to each terminal 701.
  • the terminal 701 on which the living body to be collated is directly requested to each idle terminal 701, but the input data and the request list are transmitted to the server 21, and each idle terminal 701 is requested. May periodically check the request list of the server, and if it can handle the verification process, it may receive the input data from the server 21, execute the authentication process, and return the result to the server. The requesting terminal waits until all requested verifications are completed, and determines whether authentication is possible when all verifications are completed. In this way, when the server 21 makes a collation request, it is possible to use a wasteful idle time when a terminal that is in operation at the time of receiving the request becomes idle immediately after that. That is, it is effective particularly in a situation where operation and idle are frequently repeated.
  • FIG. 9A shows a configuration example of the authentication system according to the third embodiment of this invention.
  • the registration data is temporarily invalidated and the registration data to be collated is narrowed down while the user is moving between terminals.
  • the authentication system includes a fixed terminal 701 and a portable mobile terminal 801 that are physically fixed and installed.
  • the server 21 holds a travel time database 803 (FIG. 9B) of estimated times that a user can physically move from a position where a certain fixed terminal 701 exists to another fixed terminal 701. Depending on conditions such as the physical distance between the terminals and the moving means, it is possible to calculate the average and fastest time required for a person to move between the terminals.
  • the registered data of the user is excluded from verification candidates. As a result, the number of registered data to be actually verified can be reduced and the verification can be speeded up.
  • the position information of the terminal is estimated from, for example, the location of the access point of GPS or wireless LAN, and transmitted to the server 21.
  • the server 21 calculates the distance to other terminals based on the transmitted information.
  • the travel time may be simply calculated using a linear distance. Further, when there is detailed information such as the moving means, the moving time may be calculated in consideration of information on the moving means (that is, moving speed).
  • the system administrator may set default moving means and the moving speed such as moving by walking if in the same building and moving by car if different buildings.
  • the shortest estimated time that can be moved between terminals A and B is 200 seconds
  • the shortest time that can be moved between B and C is 300 seconds
  • between A and C is 500 seconds. This is set by the registrant in consideration of the positional relationship where the terminal is installed and the moving means.
  • the terminal D is a mobile terminal, and when the current position is obtained by GPS, it is found that the terminal D exists at a place where it is estimated that it takes 6500 seconds at the shortest to move to the terminal A.
  • the movement estimation time database 803 is updated in real time.
  • the user 810 presents the living body to the terminal A 701
  • the terminal A transfers the input data to the server 21,
  • the authentication process is performed by the server 21, and the authentication is successful.
  • the fact that the user 810 has been successfully authenticated at the terminal A and the time stamp are recorded in the server 21.
  • the server 21 calculates a period for invalidating the registration data of the user 810 for each terminal 701.
  • a value described in the movement time database 803 between terminals is used. That is, in this embodiment, an invalid period of 200 seconds for terminal B, 500 seconds for terminal C, and 6500 seconds for terminal D is set.
  • the living body is presented to the terminal B where the user 811 is located.
  • the registration data of the user 810 is also collated.
  • the registration data of the user 810 is excluded from the verification target on the assumption that the user 810 cannot move to the terminal B. .
  • the collation can be speeded up.
  • the number of other person's registration data which should be collated reduces, an other person's acceptance rate can be reduced.
  • the travel time database 803 may be fixed according to the time calculated from the inter-terminal distance, but may be updated by the following method using actual measurement values. First, each time each terminal succeeds in authentication, the terminal transmits information about the user, the terminal used, and the time when authentication succeeded to the server 21. The user tries to authenticate with another terminal after a certain period of time, but the same information is also transmitted to the server 21 at that time. The server 21 can obtain the time for the user to move between the terminals by using the information transmitted from each terminal.
  • the travel time of the user who traveled in the shortest time is determined as the travel time between the terminals.
  • a value obtained by multiplying the value by a safety factor for example, 0.8
  • a safety factor for example, 0.8
  • a more realistic travel time can be obtained as compared with a case where the travel time is determined based on only a physical distance, and registration data can be narrowed down with high efficiency.
  • the possibility of erroneous determination that the system cannot be moved can be reduced even if the travel time is sufficiently long.
  • the travel time database 803 may be managed separately for each registrant. Thereby, the travel time can be managed for each individual, and the registration data can be narrowed down with high efficiency. In addition, when registration data is in an invalid period, it is not excluded from the target of verification, but the verification order in the registration database may be later. This only increases the verification time for users who are unlikely to move, so that the possibility of rejecting the user by mistake can be reduced. 10A and 10B are flowcharts of authentication processing according to the third embodiment.
  • the server 21 sets MT (terminal 1, terminal 2) stored in the travel time database 803 as an initial value, and also stores DT (registrant ID, DT) stored in the invalid period time table for each registered data. All the values of (terminal ID) are reset to 0 (S1701).
  • the invalid period time table indicates that the invalid period DT (registration X, terminal Q) that holds the registration data X for the input from a certain terminal Q (DT (registration X, terminal Q) is retained). If the value is a positive value and the value is a positive value, 1 is decremented every second (S1713) If the invalid period is set to 0, the registered data is valid. , Meaning that it is included in the verification target.
  • the server 21 waits for an authentication request from the terminal 701 (S1702).
  • the server 21 acquires the terminal ID of the terminal 701 that requested the authentication and the input data presented by the user (S1703).
  • the server 21 collates the input data with each registered data.
  • a variable n for specifying the ID of registered data is initialized to 1 (S1704).
  • a verification loop (S1705 to S1708) with all registered data is entered. In the loop, first, it is determined whether or not the value of the invalid period time table is larger than 0 (S1705).
  • a collation failure determination result is output (S1709). Then, it is determined whether or not a request for resetting the entire system is made (S1710). If a reset is requested, the authentication process is terminated. On the other hand, if reset is not requested, the process returns to S1702 and waits for an authentication request from the terminal. On the other hand, if a collation result satisfying the authentication condition is obtained in S1707, authentication is successful (S1715), and the invalid period time table is updated (S1716).
  • the registrant n who has been authenticated this time is excluded from the subject of the authentication process for a certain period of time, so that the verification of other registrants can be speeded up.
  • the value of the invalid period time table and the travel time database 803 are updated with the passage of time. This update process is performed in parallel with the authentication process and is shown in FIG. 10B. First, a waiting process for a predetermined time (for example, 1 second, which is an update interval of the table and database) is entered (S1711).
  • a predetermined time for example, 1 second, which is an update interval of the table and database
  • the travel time between the terminals is calculated based on the information of the closest access point, and the travel time database 803 is updated (S1712).
  • the value of the invalid time table of all terminals and all registrants is decreased by 1 second (S1713).
  • S1714 it is determined whether or not a request to reset the entire system has been made. If reset is requested, this process is terminated. On the other hand, if the reset is not requested, the process returns to S1711, and after the waiting process for 1 second, the process is repeated from S1712.
  • the table and database update can maintain their consistency by exclusive control. As described above, the number of collations with registered data can be reduced by the processing shown in FIGS.
  • the server 21 manages the invalid time of the registration data.
  • the terminals 21 communicate with each other and each terminal maintains the invalid period time table and the inter-terminal moving time database 803 to manage the invalid time. May be.
  • the terminal that has succeeded in authentication transmits the registrant ID of the authenticated user and the time information (the time when the biometric was presented or the time when the authentication was successful) to each terminal, and each terminal has an invalid period time table. Update.
  • the server 21 may perform the authentication process, and the invalid period time table and the inter-terminal travel time database 803 may be updated according to the authentication result to narrow down the registration data to be excluded.
  • the server 21 records the statistics of the progress of the movement between the terminals in the past, and the probability distribution and the elapsed time that the movement from one terminal to another terminal is completed for each user according to the recorded statistical information. May be calculated and applied to the FAR calculation. An example will be described below. FIG.
  • 11 is a diagram for explaining the relationship between the arrival possibility that can arrive at terminal Y and the elapsed time when moving from one terminal X to another terminal Y, the horizontal axis is the elapsed time, and the vertical axis is the arrival possibility It is sex.
  • the elapsed time 0
  • the arrival possibility is zero.
  • the arrival possibility is 1.
  • the arrival possibility is between 0 and 1 and continuously changes depending on the speed of the moving person.
  • the possibility of arrival can also be estimated statistically from the actual measurement. If the arrival possibility obtained in this way is sufficiently high and the FAR as a matching score is sufficiently low, the person can be authenticated. On the other hand, if the FAR as the matching score is low despite the low possibility of arrival, the FAR can be converted so that the authentication condition is not satisfied. At this time, the integrated FAR after conversion can be calculated by, for example, Expression (7).
  • FIG. 12 shows a configuration example of the authentication system according to the fourth embodiment of this invention.
  • the authentication system according to the fourth embodiment realizes high-speed or high-precision server-type authentication by transmitting posture information obtained by photographing a living body.
  • the processing device of the client terminal performs so-called client authentication in which the registration data stored in the client terminal is compared with the input data, biometric information is continuously photographed and the matching process is repeated according to the photographing speed. Can be executed automatically.
  • the advantage of this method is that even if the posture of the living body is slightly different from that at the time of registration, different postures can be photographed continuously. . For this reason, the person rejection rate can be reduced.
  • biometric information may not be continuously sent to the server due to a communication bottleneck. For this reason, there is a problem that authentication cannot be continuously performed and authentication accuracy is lowered as compared with client authentication.
  • registration data can be transmitted to the client terminal, it can be continuously authenticated in the client terminal.
  • transferring personal biometric information from the server to the outside may cause leakage of personal information. For this reason, it is desirable to avoid sending highly personalized information.
  • an image close to the shooting state at the time of registration is selected from a plurality of images continuously shot at the client terminal. Then, the selected image is transferred to the server. Details of the fourth embodiment will be described below.
  • the server 21 holds biometric posture information 1001 at the time of registration in addition to biometric information for identifying an individual.
  • the biometric posture information 1001 at the time of registration represents an imaging state of a living body that has low personality and does not require confidentiality.
  • the posture information 1001 includes finger area, finger angle and position, finger contour shape, finger joint wrinkle pattern, image angle, extraction pattern when finger vein is photographed as biological information.
  • the quantity, the main direction component of the vein, etc. can be used (see FIG. 12B).
  • the contour of the finger is obtained by image processing such as edge detection, and the area of the finger can be obtained from the number of pixels in this inner region.
  • the angle at which the finger is placed is obtained by estimating the center axis of the finger from this contour information.
  • information on the wrinkles of the finger joints can be obtained by photographing the light directed to the vicinity of the finger joints and obtaining the pattern of the finger joint wrinkles and the average direction of those lines from the photographed images.
  • the coordinates of the finger position can be obtained by the position of the fingertip or the wrinkle position of the joint.
  • a feature pattern amount is obtained from the number of pixels indicating veins, the number of feature points, and the like in the matching template.
  • a running angle representing each vein is obtained by a least square method or the like, and a main direction component of the vein is obtained by an average value of running angles of all veins.
  • Attitude information is extremely small in amount of information, for example, about 1 byte for each element, so it does not cause communication overhead.
  • finger angle information can be stored in 1 byte even if 90 degrees is stored in 0.5 degree increments. If the allowable range where the finger is placed can be limited to less than 90 degrees from the shape of the device such as a finger rest, the information becomes smaller, but one byte may be used effectively by subdividing the step angle.
  • the user presents an IC card, PIN, or the like on the terminal 701.
  • the terminal 701 transfers the presented information to the server 21.
  • the server 21 transfers attitude information 1001 at the time of registration to the terminal 701 among the registration data uniquely corresponding to the transferred information.
  • the terminal 701 receives the posture information 1001 at the time of registration and prompts the user to present biometric information.
  • the terminal 701 captures the presented living body.
  • Shooting is performed by an image sensor such as a camera, and all frames are acquired in accordance with the frame rate of the image sensor.
  • the shooting time is, for example, a few seconds, and is set to such an extent that the user does not feel inconvenience.
  • m continuous images 1003 are taken.
  • the posture information 1002 at the time of presentation of the living body is extracted by the same processing as the posture information extraction processing executed at the time of registration for all the continuously input images.
  • the extracted posture information 1002 is compared with the posture information 1001 indicating the shooting state at the time of registration transferred from the server 21, and the degree of difference is calculated (see FIG. 12C).
  • the dissimilarity can be obtained by a general determination method of dissimilarity such as the sum of squares of differences of the partial feature amounts or calculation of Euclidean distance. Then, one input image whose posture information is closest to the registered data is selected. Since the input image selected here is close to the posture at the time of registration, it is estimated that the input image is closest to the registered data among a plurality of captured images. Therefore, the terminal 701 generates verification data from the selected input image and transfers it to the server 21.
  • the server 21 receives the transferred verification data, collates the received verification data with the registered data, and ends the authentication process.
  • a plurality of photographed images collated with registered data.
  • only one image that is most likely to be similar to registered data is used. Since only the selected image is transferred to the server 21, the amount of communication can be reduced, and the authentication by the server 21 can be performed with the same accuracy as the authentication by the client terminal 701.
  • only one selected image is transmitted to the server 21, but a plurality of selected images may be transmitted.
  • the terminal 701 may manage only the attitude information of all registered data.
  • FIG. 13 is a flowchart of processing executed by the terminal 701 according to the fourth embodiment.
  • the terminal 701 receives a registrant ID input by the user and transfers the received registrant ID to the server 21 (S1801).
  • the ID is input by a method of reading a registrant ID from an IC card, a magnetic card, or the like presented to the reader, in addition to a method of inputting a number with a numeric keypad provided in the terminal 701.
  • the server 21 transfers the posture information among the registration data corresponding to the registrant ID to the terminal 701.
  • the terminal 701 receives posture information corresponding to the registrant ID from the server 21 (S1802). Thereafter, the terminal 701 continuously images the user's living body, here, the finger vein, a plurality of times (S1803). During continuous shooting, the position of the user's finger is slightly shifted, so that images of living bodies having different postures are shot. Then, the terminal 701 calculates posture information at the time of shooting each image (S1804). An example of specific posture information is as described above. After that, the terminal 701 compares the posture information of the registered data with the posture information of all input data (S1805). Then, the terminal 701 selects input data having the most similar posture information (S1806).
  • the terminal 701 extracts verification data from the selected input data, and transfers the extracted verification data to the server 21 (S1807).
  • the server 21 collates the verification data transferred from the terminal 701 with the registered data, and determines an authentication result according to the verification score (S1808).
  • the 1: 1 authentication by the server 21 has been described. However, this method may be applied to the high accuracy of the 1: N authentication by the server 21 or the terminal 701. A modification of the fourth embodiment in which 1: N authentication is performed using posture information is shown below.
  • N authentication the terminal 701 continuously captures a plurality of presented living organisms, extracts feature amounts and posture information for authentication, and uses the extracted information as the server 21 (or verification processing unit). Forward to. Upon receiving these, the server 21 executes a collation process. First, the posture information of one registered data is collated with a plurality of transmitted posture information. As a result, the input data having the most similar posture information is selected, and only the input data and the registered data are collated. As a result, only one of the input data obtained by photographing a plurality of images is set as the object of collation.
  • the user is prompted to present a living body multiple times, and the presented living body is continuously photographed.
  • registration data having various variations of postures can be generated. Since the registration side has a plurality of data, at the time of input, it is only necessary to communicate verification data from a single photographed image. For this reason, communication of partial feature amounts is not necessary, and the load on the network can be reduced.
  • the processing speed may decrease particularly when 1: N authentication is executed. Further, in the authentication by the server 21, if there is a response time even if the input data is transmitted several times, a method as shown in FIG.
  • Registration data is generated from one captured image, and a plurality of input living bodies are continuously captured, and input data of all captured images is generated.
  • Arbitrary input data 1102 (for example, data captured last, data captured most vividly or data captured while the living body is stationary) is selected from the generated input data.
  • the input data is transmitted to the server 21, and the input data and all registered data are collated. Among the collated data, registered data 1101 having the highest similarity was obtained.
  • the authentication is completed when a verification score for successful authentication is obtained, but is retried when a verification score for successful authentication is not obtained.
  • the amount of spatial displacement between the input data 1102 and the registered data 1101 is examined.
  • both images are overlapped while shifting the position in pixel units, and the amount of displacement can be obtained from the overlapping position where the degree of similarity is the highest.
  • the server 21 transmits the obtained positional deviation amount 1103 to the terminal 701.
  • the terminal 701 collates all the continuously captured images with the input data 1102 previously transmitted to the server 21, and determines the largest positional deviation amount transmitted from the server 21.
  • a close input image 1104 is selected. At this time, the selected input image 1104 is similar to the positional deviation of the registered image.
  • This input image 1104 (or input data generated from the input image 1104) is transmitted to the server.
  • FIG. 15 is a flowchart of processing executed by the terminal 701 according to the modification of the fourth embodiment.
  • the terminal 701 continuously captures images (S1901).
  • the terminal 701 selects one arbitrary image from the photographed input images (S1902).
  • the selection method there is a method of selecting an image shot with a finger stationary and stationary.
  • the luminance values between successive image frames are compared with each other, and if the number of frames in which the difference in average luminance value between images is below a predetermined threshold continues for a predetermined number, the first image is selected. Thus, it is possible to select an image in which the subject is stationary.
  • the terminal 701 transmits the selected input data to the server 21 (S1903).
  • the server 21 collates the transmitted input data with all registered data (S1904). Thereafter, it is determined whether or not the verification result satisfies the authentication condition (S1905). If the verification result satisfies the authentication condition, the authentication success process is executed, and then the process ends (S1911).
  • the server 21 calculates the positional deviation amount between the patterns in which the collation result having the highest similarity with the input data among all the registered data is obtained, and the calculated position The deviation amount is transmitted to the terminal 701.
  • the terminal 701 receives the positional deviation amount transmitted from the server 21 (S1906).
  • the terminal 701 collates the input data transmitted to the server 21 with other input data, and calculates a positional deviation amount (S1907).
  • the terminal 701 compares the positional deviation amount transmitted from the server 21 with the positional deviation amount obtained by collating the input data, and the positional deviation amount most similar to the positional deviation amount transmitted from the server. Is selected (S1908).
  • the terminal 701 transmits the selected input data to the server 21 (S1909). Thereafter, the processing returns to S1904 by loop processing, and the server 21 collates the selected input data with all registered data. At this time, the server 21 may collate the registered data in descending order of similarity using the result collated first. By verifying the registration data in descending order of similarity, the authentication result can be determined at an early stage. As a result, when the authentication condition is satisfied, the authentication is terminated. On the other hand, if the authentication is not successful, the processing from S1904 to S1909 is repeated a predetermined number of times R.
  • FIG. 16 shows an example of the configuration of the authentication system according to the fifth embodiment of the present invention.
  • the authentication system of the fifth embodiment is a biometric authentication system in which a plurality of different authentication devices are mixed. A plurality of types of biometric authentication devices using the same biometric part are connected to the network 703. In the present embodiment, two types of devices, a conventional device 1201 and a new device 1202, are connected as a biometric authentication device using a finger vein as a biological part.
  • the biometric authentication device has different authentication accuracy and processing speed depending on the size and cost of the device. Also, depending on the introduction method, when the system is expanded by connecting the latest authentication device to an existing authentication system, the conventional device and the latest device are mixed in the authentication system. At this time, even if the living body part used for the authentication is the same, the performance of the sensor, the infrared irradiation method, the shape of the interface with respect to the living body, the position of the imaging part, etc. are different. Even if the data formats are compatible, the compatibility (accuracy compatibility) of the data captured by each device is reduced.
  • an example of automating re-registration of biometric information when a new device 1202 is newly installed to expand the system is a terminal in which the conventional device 1201 is already installed. It should be noted that an identifier for determining which terminal type has been created is assigned to the verification data.
  • the test chart 1301 is imaged in advance for calibration of the apparatus using two types of apparatuses, the conventional apparatus 1201 and the new apparatus 1202.
  • the test chart includes a grid constituted by a plurality of parallel lines, as shown in FIG. 17A.
  • Each device can correct distortion included in the captured image by capturing the test chart 1301. Since it is desirable that the chart 1301 can be stably presented to the apparatus without shifting, the chart 1301 may be attached to a shape that can be fixed to the finger rest of the apparatus, for example, a resin imitating a finger shape, or may be printed. Since the finger rest is often made in a shape that matches the finger shape, the finger-shaped test chart can be stably placed at the same position by any finger vein authentication device.
  • Both the conventional apparatus 1201 and the new apparatus 1202 capture this chart image, and the parts that are commonly captured by both apparatuses are extracted. For example, in the conventional apparatus 1201, an area 1302 whose lattice coordinates are shown in FIG. 17B is photographed, and in the new apparatus, an area 1303 shown in FIG. 17C is photographed. These common areas are areas 1304 shown in FIG. 17D. Note that a circular marker 1305 is displayed in the lattice in order to determine the amount of displacement of the lattice, and the coordinates of each lattice point can be obtained by detecting the position of the marker 1305 as the reference position.
  • an image photographed by the other device is deformed so that characteristics such as magnification, trapezoidal distortion, and fisheye distortion are matched with one device.
  • the distortion can be corrected by obtaining the intersection of the lattice by emphasizing the shape of the intersection of the lattice with an image filter, and correcting the image so that the coordinates are aligned in a straight line.
  • Coordinate transformation for correction can use a general correction formula for barrel distortion or thread distortion.
  • the parameter may be changed, and a parameter (correction formula) in which the intersections of the lattices are arranged in a straight line may be automatically obtained.
  • the marker 1305 can be detected by detecting the position where the black area is the largest among the surrounding areas of the lattice points.
  • the server 21 holds a coordinate conversion correspondence table obtained in this way.
  • the distribution of collation scores differs depending on whether or not this conversion is performed.
  • the degree of difference in collation results between the same fingers whose collation score is originally low increases due to image distortion and photographing position deviation.
  • the collation score after conversion increases the degree of separation between the same finger and different fingers.
  • the original authentication accuracy cannot be achieved in the authentication between the new and old devices only by image conversion. Therefore, re-registration is automated using this characteristic.
  • a user who has already been registered in the conventional apparatus presents a living body on the new apparatus.
  • the input data photographed by the new apparatus is collated with all registered data photographed by the new apparatus.
  • the biological image photographed by the new apparatus is converted so as to approach the image photographed by the conventional apparatus.
  • collation data is extracted from the corrected image and collated with all registered data photographed by the old apparatus.
  • the verification data includes image phase information as in the case of an image template, the verification data may be corrected without converting the original captured image. Further, when the size of the image is changed when generating the verification data, the image is corrected in consideration of the change.
  • the authentication is performed using the registration data for the new device at the time of authentication using the new device, and for the conventional device at the time of authentication using the conventional device. Authenticate using the registered data. Thereby, authentication according to the performance of each device can be executed. In addition, even if the authentication by the registration data for the new device automatically registered may not be less than Th for some users, re-registration can be made unnecessary for many users. Operating costs can be reduced. When the possibility of being a different person still remains, such as when a collation score near the threshold Th is obtained, the registration data can be updated more reliably by prompting the user to present another finger. At this time, as described above in the first embodiment, a method of synthesizing a plurality of pieces of biological information can be used.
  • FIG. 18 is a flowchart of authentication processing according to the fifth embodiment.
  • the server 21 includes new and old devices (terminals) 1201 and 1202, registration databases and authentication processing means suitable for each.
  • the server 21 holds parameters for correcting the absolute coordinates and distortion of the chart obtained by presenting the above-mentioned test chart to each of the new and old devices, and performs optimal image conversion between the above-mentioned new and old devices.
  • the collation data generated in this process is defined as new and old common collation data, and the old and new common collation data generated from the original registration data of the old and new devices is held in the server 21.
  • the server 21 holds the probability distribution of the matching score when the old and new devices are mutually verified. First, the server 21 waits for an authentication request from the terminal (S2001).
  • the server 21 receives from the terminal 701 the type of the terminal (information indicating whether the apparatus is a conventional apparatus or a new apparatus) and input data (S2002).
  • the server 21 executes authentication processing using the same registration database and matching method as the terminal type (S2003).
  • it is determined whether or not the authentication condition is satisfied S2004.
  • the registration data corresponding to the input terminal has already been registered, so the authentication success process is executed and the authentication process is terminated (S2010).
  • the registration data corresponding to the input terminal is either unregistered or an outsider who should not be authenticated.
  • a threshold that can be determined to be the same finger is determined in advance from the appearance frequency distribution of the matching score of the mutual matching between the new and old devices prepared in advance, and whether or not a matching result that satisfies this threshold is obtained in S2006. It can be determined whether automatic registration is possible. If this determination condition is not satisfied, it is determined that automatic registration is not possible, an authentication failure process is executed, and the authentication process ends (S2011). On the other hand, when the determination condition is satisfied, the registration data corresponding to the new device is automatically registered by storing the input data for verification received from the input terminal in the registration database of the same type as the input terminal (S2008). .
  • FIG. 19A and 19B show an example of the configuration of the input device according to the sixth embodiment of the present invention.
  • FIG. 19A is a longitudinal sectional view of the input device along the extending direction of the finger
  • FIG. It is a longitudinal cross-sectional view of the input device of a cross-sectional direction.
  • the input device is a finger vein registration device that photographs finger veins using various light sources. Terminals that accept presentation of finger veins mixed in the system have various shapes depending on differences in device size, cost, and the like, and there are some variations in the arrangement of light sources for photographing finger veins. Therefore, a registration apparatus for registering biometric information includes all light sources in an assumed arrangement, and uses the registration apparatus to capture a biometric image for generating registration data. It is possible to acquire an image that can be used for a terminal for general purposes.
  • the input device 2 includes a plurality of light sources.
  • an upper light source 1401, a side light source 1402 that emits light to the finger from both the left and right sides, a front light source 1403 that emits light to the finger from the front, and a lower light source 1404 that emits light to the finger from below are provided.
  • each light source may be provided with a plurality of light emitting elements in accordance with a required light amount.
  • a camera 1410 for photographing the central part of the finger and a camera 1411 for photographing the fingertip part are provided. This is provided for photographing all the parts photographed by the existing finger vein authentication device.
  • a camera for photographing the side surface of the finger may be provided in order to be compatible with a finger vein authentication device using a vein on the side of the finger.
  • the input device 2 also includes a finger rest 1405 on which a user presents a finger.
  • An opening is provided at the center of the finger rest 1405. This opening is for photographing the finger presented on the finger rest 1405 from below by the cameras 1410 and 1411 and for illuminating the finger presented on the finger rest 1405 from below by the light source 1404. It is.
  • the user presents the finger 1 on the finger rest 1405.
  • the input device 2 starts shooting. Specifically, a finger is photographed while each light source is turned on individually. If the light emitted from the light source is different, the image obtained by photographing the finger vein pattern is different. Therefore, all the images photographed by irradiating light from each light source are stored.
  • an image can be taken by the same irradiation method as a device connected to the authentication system or a device that may be connected in the future, and the taken image can be used as registration data for general purposes.
  • the upper light source 1401 is turned on, and the average luminance value of the finger region between the image captured by the camera 1410 that captures the center portion of the finger and the image captured by the camera 1411 that captures the fingertip portion is determined. Photographing is performed after adjusting the light quantity of each light quantity so that they are equal.
  • the light sources 1402 on both sides are turned on simultaneously to photograph the finger vein during side illumination.
  • the light sources 1402 on both sides are alternately turned on to capture two finger vein images at the time of side illumination, and the image is converted into one finger vein image by synthesizing an area in which the imaging state is good. May be.
  • the front light source 1403 is turned on to take a picture.
  • the lower light source 1404 is irradiated and photographed. In this way, using each light source in order, a plurality of images are taken in order while adjusting the light amount to be optimal for each camera.
  • the resolutions of the cameras 1410 and 1411 provided in the registration apparatus may be sufficiently high and high in resolution as compared with the camera provided in the authentication terminal.
  • the input device 2 uses, for example, camera specifications such as resolution and S / N, light source irradiation method, and information on the imaging surface of the finger (ventral side). The left side, the right side, the fingertip, the back side, etc.), the position of the imaging region based on the position of the fingertip, etc., and the terminal specifications such as the presence or absence of imaging of the finger contour are notified to the server 21.
  • the server 21 After receiving this notification, the server 21 extracts an image photographed by an irradiation method that matches the irradiation method of the input device from the images photographed at the time of registration, and images such as a smoothing filter and a low-pass filter The image is converted to a resolution that matches the resolution of the input device by a filter, and after extracting an area corresponding to the image photographed by the input device from the registered image, features are extracted from the registered image and stored as registered data. To do. In the future, the finger vein input to the input device will be authenticated using the stored registration data. Similarly, when another terminal is added to the system, an image suitable for the terminal is similarly generated from the terminal specification.
  • the authentication system according to the seventh embodiment is an authentication system that can perform robust authentication against changes over time by switching a registration database according to time.
  • the registration database 22 stores registration data that varies with time. For example, as shown in FIG.
  • the registration data for each registered time zone is divided into areas every 2 hours, such as from 0 o'clock to 2 o'clock, 2 o'clock to 4 o'clock, and 4 o'clock to 6 o'clock.
  • 1501 is stored.
  • a user registers biometric information before using the system.
  • the registered data stored in the 10 o'clock range which is the nearest time zone of 12:00, which is the time when the authentication was attempted, is input.
  • the registration data in the time zone close to the time when the authentication is attempted is preferentially checked for all registrant IDs. As a result, when a matching score lower than the authentication threshold is obtained, the registrant ID is specified and the authentication is successful.
  • biometric information photographed in various time zones is gradually accumulated. For this reason, when the registration data photographed in the morning and the registration data photographed at night are different, the registration data close to the time when the authentication was attempted can be used, and the biometric information fluctuates throughout the day. However, it can authenticate correctly.
  • the server 21 is a flowchart of authentication processing according to the seventh embodiment.
  • registration data is stored in a registration area corresponding to the time zone when the image was taken.
  • the registration data with the registrant ID n and the registration time t is indicated as registration data (n, t).
  • the server 21 waits for an authentication request from the authentication terminal 701 (S2101). Thereafter, the server 21 receives input data from the terminal 701 (S2102), and acquires a data reception time Tn (S2103).
  • the server 21 may receive the presentation time (time when authentication was attempted) from the terminal 701, and the received time may be Tn. Then, the input data and all registered data are collated.
  • the registration data (n, t) exists when the registration time t is changed from 0:00 to 24:00. And finds t that minimizes the absolute value
  • the amount of change of t in the loop 2 may be changed depending on the time interval at which data is registered. For example, when the system is designed to hold the registration data every hour, in loop 2, t is changed by 1 hour and the process of S2104 is executed.
  • the registered data n and the input data are collated (S2105), and it is determined whether or not the authentication condition is satisfied (S2106).
  • the authentication condition is satisfied, the current input data is stored in the registration data (n, Tn) (S2108), and a process of successful authentication is executed (S2109).
  • biometric information photographed at various times is stored in the registration database. Since the added registration data can be used for subsequent authentication processing, it is possible to perform strong authentication even if the biometric information fluctuates in one day. If the authentication success condition is not satisfied, the processing of S2104 to S2106 is repeated for other registration data.
  • the input device 701 may be provided with a sensor for measuring the surrounding environment such as a thermometer, a hygrometer, and an illuminometer, and the area of the registration database may be divided for each value that can be acquired by each sensor. For example, since the registration data can be divided into a case where the temperature is between 20 degrees and 30 degrees and a case where the temperature is between 10 degrees and 20 degrees, the authentication is accurately performed even if the biological information fluctuates due to the temperature. be able to.
  • the authentication threshold value may be relaxed when the temperature is low.
  • authentication suitable for the environment around the living body can be performed, and environmental compatibility can be improved.
  • the present invention can be applied to a large-scale biometric authentication device, realizes high-accuracy and high-speed authentication, provides an authentication system with high maintainability, and is useful as a personal authentication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Collating Specific Patterns (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 前記生体を載置するための入力装置、前記生体を撮影する撮像装置、前記生体の特徴を含み、予め登録された複数の第1特徴データと、前記各第1特徴データから生成される第2特徴データとを格納する記憶装置、及び前記撮像装置によって撮影された生体の特徴を示す入力データと、前記第1及び第2特徴データの各々とを照合する照合処理部を備え、前記各第2特徴データは、前記各第1特徴データよりサイズが小さく、かつ、前記生体の特徴の少なくとも一部を含むデータであることを特徴とする認証システム。

Description

生体情報を用いた認証システム及び認証装置
 本発明は、生体を用いて個人を認証する認証システムに関し、特に、高速で高精度な認証技術に関する。
 様々な生体認証技術の中でも、指静脈認証は高精度な認証を実現できるものとして知られている。指静脈認証は、指内部の静脈パターンを使用するために優れた認証精度を実現し、かつ指紋認証に比べて偽造及び改ざんが困難であることによって、高度なセキュリティを実現できる。
 近年では、携帯電話機、ノート型PC(Personal Computer)、PDA(Personal Digital Assistant)などの携帯端末、ロッカー、金庫、プリンターなどの機器に生体認証装置を搭載し、各機器のセキュリティを確保する事例が増加している。また、生体認証が適用される分野として、入退室管理、勤怠管理、コンピュータへのログインなどに加え、近年では決済などにも生体認証が利用されてきている。このため、システムを利用する人数が増大し、認証システムのスループットの向上が求められている。このような観点から、PIN(Personal Identification Number)の入力やIDカードの提示などによって登録データを一意に特定した後に生体を提示する、いわゆる1:1認証はスループットを低下させるため、IDカードを用いずに、生体だけで認証を実行する、いわゆる1:N認証が望まれる。
 多くの登録者を高速に認証する技術として、例えば、特許文献1に記載された生体認証装置が知られている。特許文献1に記載された認証装置では、登録データを空間的に縮小して格納しておき、低解像度のデータ同士で高速に照合を実行する技術が開示されている。
 また、特許文献2には、利用者が端末に到着する予想時刻から本人存在確率を求め、1:Nデータの照合順序を並べ替えて本人を高速に探索する方法が開示されている。
 また、特許文献3には、虹彩の瞳孔開度の情報を用いて複数の登録データを高速に検索し、また複数の虹彩画像のうちハミング距離が類似する虹彩データは登録を省略することによって登録データ量を抑制する技術が開示されている。
特開2005−215883号公報(JP2005−215883A) 特開2008−250508号公報(JP2008−250508A) 特開2004−362619号公報(JP2004−362619A)
 大規模に1:N認証を実現するためには、認証の高速性を保ちながら、高い認証精度を保つ必要がある。特に、大規模な1:N認証では、本人ではない登録者の多数の登録データと照合する必要があるため、誤って別の登録者であると判定される、又は非登録者が登録者であると判定されるという、他人を本人であると誤って認識する他人受入率(FAR)が発生しやすくなる。従って、他人受入率を低減することが課題となる。さらに、登録データが膨大となるため照合処理に長い時間が必要となり、利用者の待ち時間が増大する課題がある。
 従来技術では、認証の高速性を保つために、照合するデータ数を絞り込むことによって、認証処理を高速化し、また複数の生体情報を提示させることによって認証の精度を高めていた。しかし、高速性と高精度とを両立することが困難であった。
 特許文献1に開示される装置は、登録データを高速に検索することができるが、高精度で認証する方法は特許文献1には開示されていない。
 特許文献2に開示される装置は、登録者が認証をする確率に応じて照合順序の変えることによって、登録者を高速に認証することができる。しかし、生体を提示する際に位置ずれが生じた場合や非登録者が認証を試みた場合など、登録者が検出できない場合の認証の高速化は考慮されていない。また、登録者が検出された際の他人受入による誤認識に関する精度の保証は考慮されていない。
 特許文献3は、瞳孔開口指標を用いて複数の登録データから照合対象を絞り込むことによって認証を高速化することの示唆を含む。しかし、この指標による分類は別人との間でも高い類似度を示すデータが多数含まれることから、高速に認証することは難しい。また、様々な撮影状態における照合の精度を高める方法については、登録データを選択することにより照合される登録データ数を低減できるが、選択された複数の登録データについて照合がされるため、大規模な1:N認証を高速に実行することは難しい。特許文献3に開示された技術は、各人の登録データ量を低減することに着目しており、多くの登録者を高速かつ高精度に認証する方法の示唆は含まれていない。
 本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、生体の特徴を用いて個人を認証する認証システムであって、前記生体を載置するための入力装置、前記生体を撮影する撮像装置、前記撮像装置によって撮影された画像を処理する画像処理部、前記生体の特徴を含み、予め登録された複数の第1特徴データと、前記各第1特徴データから前記画像処理部によって生成される第2特徴データとを格納する記憶装置、及び前記撮像装置によって撮影された生体の特徴を示す入力データと、前記第1特徴データ及び前記第2特徴データの各々とを照合する照合処理部を備え、前記各第2特徴データは、前記各第1特徴データよりサイズが小さく、かつ、前記生体の特徴の少なくとも一部を含むデータであることを特徴とする認証システムである。
 本発明によれば、大規模な生体認証システムにおいて、認証精度を高く保ちながら、高速で利便性の高い認証システムを提供することができる。
 図1は、第1の実施の形態の生体認証システムの全体の構成を示す図である。
 図2は、第1の実施の形態の生体認証システムの動作を説明する図である。
 図3A及び図3Bは、第1の実施の形態の認証処理のフローチャートである。
 図4は、第1の実施の形態の照合スコアと他人受入との関係を説明する図である。
 図5は、第1の実施の形態の生体認証システムの動作を説明する図である。
 図6は、第1の実施の形態の複数の生体を利用した認証結果の合成方法の一例を示す図である。
 図7は、第1の実施の形態の認証閾値の更新処理のフローチャートである。
 図8Aは、第2の実施の形態の生体認証システムの全体の構成を示す図である。
 図8Bは、第2の実施の形態の登録データ一覧の一例を説明する図である。
 図9Aは、第3の実施の形態の生体認証システムの全体の構成を示す図である。
 図9Bは、第3の実施の形態の移動時間データベースの一例を説明する図である。
 図10A及び図10Bは、第3の実施の形態の認証処理のフローチャートである。
 図11は、第3の実施の形態の到着可能性と経過時間との関係を説明する図である。
 図12Aは、第4の実施の形態の生体認証システムの全体の構成を示す図である。
 図12Bは、第4の実施の形態の登録時の生体の姿勢情報の一例を説明する図である。
 図12Cは、第4の実施の形態の姿勢情報の照合の一例を説明する図である。
 図13は、第4の実施の形態の端末によって実行される処理のフローチャートである。
 図14は、第4の実施の形態の変形例の生体認証システムの動作を説明する図である。
 図15は、第4の実施の形態の変形例の端末によって実行される処理のフローチャートである。
 図16は、第5の実施の形態の生体認証システムの全体の構成を示す図である。
 図17Aは、第5の実施の形態のテストチャートの一例を説明する図である。
 図17B~図17Dは、第5の実施の形態のテストチャートによる共通領域の抽出を説明する図である。
 図17E及び図17Fは、第5の実施の形態の座標変換による照合スコアの分布の変化を説明する図である。
 図18は、第5の実施の形態の認証処理のフローチャートである。
 図19A及び図19Bは、第6の実施の形態の入力装置の一構成例を示す断面図である。
 図20A及び図20Bは、第7の実施の形態の生体認証システムの全体の構成を示す図である。
 図21は、第7の実施の形態の認証処理のフローチャートである。
 以下、図面を用いて、本発明の実施の形態について説明する。
 <第1の実施の形態>
 図1は、第1の実施の形態の指静脈を用いた生体認証システムの全体の構成を示す図である。
 第1の実施の形態の認証システムは、入力装置2、認証処理部10、記憶装置14、表示部15、入力部16、スピーカ17及び画像入力部18を含む。
 入力装置2は、その筐体に設置された光源3及び筐体内部に設置された撮像装置9を含む。なお、認証処理部10の画像処理機能の部分、又は、この画像処理機能に画像入力部18を含めて画像処理部という場合がある。いずれにしても、認証処理部10は画像処理機能を備える。
 光源3は、例えば、赤外線LED(Light Emitting Diode)などの発光素子であり、入力装置2の上に提示された指1に赤外光を照射する。撮像装置9は、入力装置2に提示された指1の画像を撮影する。
 画像入力部18は、入力装置2の撮像装置9で撮影された画像を取得し、取得した画像を認証処理部10へ入力する。
 認証処理部10は、中央処理部(CPU:Central Processing Unit)11、メモリ12及び種々のインターフェイス(IF)13を含む。
 CPU11は、メモリ12に記憶されているプログラムを実行することによって各種処理を行う。メモリ12は、CPUによって実行されるプログラムを記憶する。また、メモリ12は、画像入力部18から入力された画像を一時的に記憶する。
 インターフェイス13は、認証処理部10と外部の装置とを接続する。具体的には、インターフェイス13は、入力装置2、記憶装置14、表示部15、入力部16、スピーカ17及び画像入力部18などと接続する。
 記憶装置14は、利用者の登録データを予め記憶している。登録データは、利用者を照合するための情報であり、例えば、指静脈パターンの画像等である。通常、指静脈パターンの画像は、指の掌側の皮下に分布する血管(指静脈)を暗い影のパターンとして撮像した画像である。
 表示部15は、例えば、液晶ディスプレイであり、認証処理部10から受信した情報を表示する出力装置である。
 入力部16は、例えば、キーボードであり、利用者から入力された情報を認証処理部10に送信する。スピーカ17は、認証処理部10から受信した情報を、音響信号(例えば、音声)で発信する出力装置である。
 図2は、第1の実施の形態の生体認証システムの動作を説明する図である。
 図2に示す大規模1:N生体認証システムは、一つの生体情報に対し複数サイズの照合用の登録データを保持し、多階層で照合を行いながら次の階層の登録データを並べ替え、さらに所定の他人受入率を満たした時点で認証を完了する。
 図2に示す大規模1:N生体認証システムは、入力装置2、入力装置2に接続された認証サーバ21及び認証サーバ21に接続された登録データベース22を備える。入力装置2は中央処理装置(CPU)11を備える。認証サーバ21は、プログラムを実行することによって各種処理を行う中央処理装置(CPU)及びCPUによって実行されるプログラムを記憶するメモリ、他の装置と接続されるインターフェースを備える。
 1:N認証は、認証を試みる利用者(被認証者)が認証装置を使用する際、IDなどの入力により自己の登録データを指定することなく、生体情報のみを提示してシステムに登録された複数(N件)の全登録データと照合し、この利用者がどの登録者であるかを特定する認証方式である。一般的に、登録データの数が増加するとレスポンスが低下し、さらに登録者を誤って判定する確率が増大する。このため、実用化に際しては高速化及び高精度化の両面における検討が重要となる。
 生体情報の登録データ23は、認証サーバ21に接続されている登録データベース22に格納されている。登録データ23は、撮影された生体部位の特徴データ(照合用データ)であり、利用者が提示した入力データと比較することによって、両者がどれだけ似た特徴を持つかを定量化した照合スコアを計算することができる。照合スコアは、両者の類似性及び相違性を示す数値である。照合用データには、例えば、指紋や静脈の線画を強調したテンプレート画像、線画の分岐点や端点の位置、方向、分岐数、輝度傾斜方向及び画質の鮮鋭さなどの特徴点情報、又は特徴点同士の接続関係を示す構造データなど、一般的に生体認証に用いられる特徴量を用いることができる。
 登録データ23は、同じ生体に対し異なるサイズの複数のデータで構成されている。本実施の形態では、通常サイズの登録データ25、及び通常サイズより情報量を小さくした(例えば、1/4のサイズに削減した)縮小データ24の二つによって構成されている。縮小データ24は、大まかな照合処理を高速に実行するために利用され、入力された生体と一致する登録データを早い段階で検出することを可能とする。なお、照合処理の速度に応じて、縮小比率及び生成される縮小データの数を任意に決定することができる。
 縮小データ24としては、例えば、登録データがテンプレート画像の場合、そのテンプレート画像を空間的に縮小した画像、テンプレート画像の一部分を抽出した画像、1画素の階調を低減した画像などを用いることができる。また、登録データが構造データである場合、例えば、特徴点を計算する際に利用された生体画像に対し、特徴点に対応する位置の部分の画像のS/N比を計算するなどにより各特徴点の鮮鋭さを求め、鮮鋭さが低い特徴点を除外するなどによって、縮小データ24を生成することができる。
 登録データは、入力装置2において生体を撮影し、CPU11によって生体の特徴データを生成し、さらにこのデータに対して縮小処理を複数回実行することによって生成される。生成された全ての登録データは登録データベース22に記憶される。入力装置2は、生体の撮影のみを実行し、撮影された画像をサーバ21に転送し、サーバ21に備わるCPUによって特徴データを生成し、生成された登録データを縮小する処理を実行し、生成された特徴データと縮小されたデータを登録データベース22に格納してもよい。
 照合は、後述する通り、同じサイズに縮小された照合用データ同士で実行され、照合の結果として照合スコアが得られる。照合スコアは、ここでは相違度である。すなわち、登録時と同じ生体が入力されれば照合スコアは低くなり、異なる生体が入力されれば照合スコアは高くなる。
 認証が成功するかは、入力データ28と、ある登録データ23との照合スコアが、予め設定された認証閾値よりも低いかで判定される。照合スコアが認証閾値より低い場合、入力データ28のパターンと登録データ23のパターンとが類似していることから、この入力データを提示した利用者は登録者である可能性が高いため、認証成功と判定する。一方、いずれの登録データ23との照合スコアが認証閾値を下回らない場合は認証を拒否する。ただし、照合スコアは0から1の間に正規化されているとよい。
 照合スコアは、同一の生体間の照合スコアか、異なる生体間の照合データかによって、その出現頻度が異なる。同一の生体間で照合した場合、類似性が高いため照合スコアは低くなる。一方、異なる生体間で照合した場合、照合スコアは高くなる。また、照合スコアの分布は、一定の幅で広がりを持つ。また、同一の生体間の照合スコアの分布と、異なる生体間の照合スコアの分布との間の平均的な距離は、使用される生体情報、処理方式、及びデータの縮小比率によって異なる。しかし、分布間の距離が離れていれば、より高精度に認証することができる。
 そこで、各縮小比率のデータにおいて同一生体の照合スコアの出現頻度と異なる生体の照合スコアの出現頻度とを予め評価し、評価結果を登録データベース22に保持する。本実施の形態では、縮小データにおける照合スコアの出現頻度分布26及び通常データにおける照合スコアの出現頻度分布27の二つが保持される。また、各分布には認証閾値が設定されている。
 縮小データにおける照合スコアの出現頻度分布26は、同一の生体の分布と異なる生体の分布とが近接しているため、同一の生体かを判定することが難しい。一方、通常データにおける照合スコアの出現確率分布27は、同一の生体の分布と異なる生体の分布との距離が、縮小データの距離より大きく、同一の生体かの判定が容易である。このように、縮小データを用いた照合における分布と通常データを用いた照合における分布とが異なるため、縮小データの認証閾値と通常データの認証閾値とは異なる値である。なお、認証閾値は、後述の通り、他人受入率と密接に関連しており、予め認証システムに設定された他人受入率の上限を超えないように設定される。
 認証の手順の概要は、初めに利用者が生体(ここでは指1)を入力装置2に提示した後に、カメラ9が提示された指1を撮影する。そして、CPU10は、入力された生体のデータ(入力データ)28を生成する。このとき、登録データの生成と同様に縮小比率の異なる二つの入力データが生成され、生成された入力データ28をサーバ21に転送する。サーバ21は、入力データ28と全登録データとを照合し、最終的に認証の可否を判定する。
 なお、本発明における登録者は多数であることを想定しているが、登録データベース22は、多数の登録データを格納するための十分な容量を備え、登録データは事前に登録されている。さらに、未登録者が入力装置2に生体を提示する場合も考慮する。また、以下では全登録者の縮小データ24を総称して縮小データ群といい、全登録者の通常サイズの登録データ25を総称して通常データ群という。
 ここで、本実施の形態における1:N認証のエラー率に関する設計方針について説明する。一般に、エラー率は、登録済みの利用者が認証できない本人拒否率(FRR:False Rejection Ratio)と、登録していない人物が認証されてしまう他人受入率(FAR:False Acceptance Ratio)とが存在する。特に、大規模な1:N認証システムにおいては、従来のようにIDやPINを用いて1件の登録データを一意に指定した上で照合する、いわゆる1:1認証と比較すると、本人拒否のリスクは同程度であるが、全登録データと照合するため他人受入のリスクは登録人数に応じて増大する。従って、できるだけ別人を誤って認証しないことが重要となる。
 一方、単純に照合スコアに対する認証の閾値を変更することによって、他人受入率を改善すると本人拒否率が高まるリスクが発生する。つまり、これら二つのエラー率はトレードオフの関係にある。このように、1:N認証は、1:1認証に対して、原理的に、精度が劣るため、二つの誤認証率を1:N認証システムに適するように制御することが重要となる。
 そこで、本実施の形態では、以下の一般的な性質を利用して誤認証率のトレードオフを制御する。本実施の形態で利用される性質は、各利用者は、それぞれ、装置習熟度及び生体特徴の複雑さなどに違いがあるため、共通の認証閾値を設定した際、本人拒否率は利用者ごとに異なる、というものである。この状況において、仮に、本人拒否率が全利用者で一定となるようにセキュリティレベルを制御すると、他人を受け入れるリスクが利用者ごとに変動する。例えば、本人拒否が発生し易い利用者の本人拒否率を一定値に制御すると、認証成功となる閾値を甘くする必要があるため、他人受入率が増大する。その結果、あらゆる非登録者がその利用者の登録データであると誤って認証されることになり、認証システムが破綻する可能性がある。
 そこで、本実施の形態の認証システムは、システム上許容できる他人受入率の上限値を設定し、取り違えによる誤認証のリスクが一定値以下になることを保証しながら、本人拒否率を低減する方針で認証システムを設計する。
 もし、他人受入率が要求を満たさない場合、複数回、生体を提示してもらうなどにより精度を高めることによってシステムのセキュリティを確保する。これによって、装置に習熟した利用者は、従来と同程度の本人拒否率で認証をすることができ、装置に習熟していない利用者は、生体を複数回提示するなどによって認証をすることができる。
 図3A及び図3Bは、第1の実施の形態の認証処理を示すフローチャートである。
 始めに、照合処理の手順の概要を説明する。まず、縮小データのうち最も小さいサイズの階層の全登録データと入力データとを照合し、順次データサイズの大きな階層の全登録データと入力データとを照合し、最終的には縮小していないサイズの通常の全登録データと入力データとを照合する。このように、データサイズの小さい階層から順に照合を行う。なお、各階層の照合が完了する毎に、類似度の高い順に、次の階層の登録データを並べ替え、並び替えられた順番に従って照合を行う。
 もし、途中で登録者であると判定できる認証結果が得られた場合は、そこで認証を終了する。また、最終階層(縮小していないデータ)まで照合しても認証が完了できない場合、さらに生体の入力を要求するか、認証を拒否する。
 以下に、認証処理について詳述する。
 まず、利用者が端末に生体を提示した後、端末は提示された生体を撮影する(S301)。本実施の形態の認証システムは1:N認証システムであるため、利用者を特定するIDやPINなどは入力されない。端末は、例えば、タッチセンサ、押しボタンスイッチ、画像の変化などによって生体の提示を検出した後、生体を撮影する。このとき、生体が鮮明に映るように、端末はカメラ及び光源などを制御する。例えば、生体が指であり、指静脈を撮影する場合、赤外光を指に照射し、照射された赤外光の透過光を赤外カメラで撮影し、撮影された画像の輝度値及び静脈の鮮明さを評価することによって照射される赤外光の光量をフィードバック制御し、適切な強度の赤外光を照射する。赤外光の光量が制御され、生体が正しく撮影されたと判定された場合、撮影が完了する。
 次に、撮影された生体情報から照合用の入力データ28を生成する(S302)。S302で生成される入力データ28は、登録データ25と比較可能な情報である。また、登録データ25と同様に、入力データから作成された特徴パターンの縮小データを生成する。縮小比率と生成数は登録データと同一であり、同じ比率に縮小された登録データと比較可能である。
 ここで、照合処理の一例について説明する。照合処理の結果として、各登録データと入力データとの類似性を示す数値(照合スコア)が得られる。本実施の形態では、照合スコアは相違度を示す。登録データと入力データと間の照合スコアは、一般的なパターン認識で用いられる方法を採用することができる。例えば、テンプレート画像を照合する場合、重なり合った画素値の差分の2乗和から相違量を求めることができる。また、特徴点同士を照合する場合、特徴点の属性を比較することによって類似と判定できる特徴点の数が全特徴点の数に占める割合を用いて類似度を計算することができる。
 次に、照合処理の初期化として、登録データを特定するための変数nを1に初期化する(S303)。変数nは、登録データの並び順に対応し、nが1のときは先頭の登録データを表す。また、登録データ数がNである場合、nがNのときは最後の登録データを表す。
 次に、提示された生体情報(入力データ)28とn番目の登録データとを、各々の縮小データを用いて照合する(S304)。登録データの照合順序が決められており、決められた順序に従って入力データと登録データとが照合される。初期状態(最初の階層)の照合の順序は、例えば、登録順、利用頻度順、登録者の重要度順(例えば、職位順、顧客重要度順)、などを任意に設定することができる。特に、利用頻度の高い人が先に照合される順序を設定しておくと、頻繁に使う人が迅速に照合され、システム全体のスループットを向上することができる。
 まず、照合順序が最も早い登録データ25の縮小データと、入力データ28の縮小データとを照合する。縮小データ同士の照合は通常のデータに比べて類似・非類似を判別する精度は低下するが、照合されるデータが小さいため照合処理が高速になる。例えば、画像の一辺が空間的に1/2に縮小されたテンプレート画像を照合する場合、画素毎を比較するための計算量が1/4となり、生体の空間的な位置ずれを考慮しながら両画像を比較する場合の、画像のずらし幅も、同様に、1/4となる。このため、合計の計算量は1/16となる。
 よって、空間的に1/2に縮小された縮小データ間で照合する場合、通常サイズの登録データの16倍の照合を、同じ時間内で実行することができる。このように、縮小データ同士の照合処理を全登録データについて順次実行する。このとき、全登録データにおいて、少なくとも最小サイズの縮小データの照合が後述のタイムアウト時間以内に実行されるように、データサイズ及び照合処理を設計し、登録データとの照合漏れが生じないようにする。
 次に、得られた照合スコアが認証閾値Th1を下回っているか否かを判定する(S305)。認証閾値は、事前に設定された認証システムの他人受入率を下回る照合スコアの境界に設定されている。照合スコアが認証閾値を下回る場合、設定された他人受入率を下回ると判定し、認証を成功させる。一方、照合スコアが認証閾値以上である場合、次の登録データとの照合を行うため、nに1を加え(S308)、S304にて照合を繰り返す。なお、認証閾値は確率分布によって決定されるため、縮小データの認証閾値と通常データの認証閾値とは異なる値となる。
 ここで、認証閾値とエラー率との関係について説明する。図2に示した照合スコアの出現頻度分布26によると、登録者の照合結果と非登録者の照合結果とが分離されている。この二つの分布より、得られた照合スコアと登録者である確率の関係を評価することができる。ある照合スコアxが得られた場合、その結果が非登録者である確率は、ベイズ確率を用いると、式(1)によって表現することができる。ただし、xは照合スコア、Gは登録者、Iは非登録者である。
P(I|x)=P(x|I)×P(I)/P(x)=P(x|I)×P(I)/{P(x|G)+P(x|I)}・・・(1)
 よって、照合スコアxに、ある認証閾値Thを設け、x≧Thとなる場合は類似度が高いため認証を成功させることにすると、他人受入率は、式(2)によって表される。
P(I|x≧Th)=P(x≧Th|I)×P(I)/{P(x≧Th|G)+P(x≧Th|I)}・・・(2)
 つまり、非登録者を誤って受け入れる確率は、登録者と非登録者の2つの確率分布を用いて計算することができる。本人拒否率も、ベイズ確率を用いた場合、同様に二つの確率分布を用いて計算することができる。
 登録者と非登録者の確率分布は、一般的には多数の実測データを収集することによって求める。しかし、以下の理由によって、両者の収集データの質や収集件数などの条件を一定にすることが難しく、通常、データの信頼性は一致しない。
 まず、非登録者を照合する場合、異なる特徴量同士を照合するため、被認証者が意図的に指の置き方のずれなどの外的要因を与えても、得られる相違度は高くなる。すなわち、どのような結果が得られるかは、被認証者の意思で制御することはできない。従って、撮影状態にかかわらず安定した統計分布が得られる。さらに、統計分布を作成する基となる被認証者データ数は、例えばK人のデータを集めた場合、集められたK人のデータを相互に照合することによって、K×(K−1)通りの非登録者の照合スコアが得られる。このため、データ数を容易に増やすことができる。よって、統計データの信頼性を高め易い。
 一方、登録者については、登録時の撮影状態に近いほど、照合スコアの類似度は高くなり、登録時の撮影状態からずれるほど、照合スコアの類似度は低くなる。極端な場合、撮影部位が大幅にずれることによって、同じ人物が同じ生体を提示しても、非登録者の照合で頻繁に発生する照合スコアと同程度の照合スコアしか得ることができない場合もある。よって前述した通り、生体の提示方法によって、結果は不安定となる。さらに、登録者の照合スコアを集める際に、K人の被認証者からK個のデータしか得られず、非登録者の照合スコアのデータに比べて統計的な信頼性が高いデータを集めることは困難である。
 これらを考慮すると、確率分布を利用して認証の可否を計算する場合、登録者分布を用いることが困難となる場合がある。そこで、本実施の形態においては、比較的安定して観測できる非登録者分布のみを利用して認証可否を判定する。前述したように、ベイズ確率を利用すると、登録者の分布と非登録者の分布との両方が必要になるため、本発明では登録者の出現頻度と非登録者の出現頻度とを考慮せず、尤度のみによってエラー率(他人受入率、本人拒否率)を評価する。すなわち、他人受入率(FAR)、本人拒否率(FRR)は、各々、式(3)、式(4)によって表される。
FRR(x)=Σ{x<xi<1}P(xi|G)・・・(3)
FAR(x)=Σ{0<xi<x}P(xi|I)・・・(4)
 図4は、照合スコアの出現頻度確率からの他人受入率(FAR)の計算を説明する図である。
 非登録者の照合スコアの確率分布P(x|I)において、あるxを観測した。この結果を登録者であると判定した場合の他人受入率は、網がけで示す領域の面積で表すことができる。よって、前述したFAR(x)の式(3)が導かれる。なお、信頼性の高い登録者分布を得られる場合、前述したベイズ確率に基づいて、FAR及びFRRを計算することができる。
 次に、前述した照合スコアの出現確率分布を用いて、1:N認証システムにおける、縮小データ同士の照合の誤認識率を調べる。
 まず、本人拒否率及び他人受入率は、以下の式(5)及び(6)を用いて計算することができる。登録データがN件ある場合、他人を受け入れるリスクは、概ねN倍増加する。従って、1:N認証において、1:1認証と同程度の他人受入率を実現するためには、1:1認証における他人受入率の1/N倍の値を1:N認証の他人受入率に設定する。従って、式(5)を満たすxが現れた場合、システムに設定された他人受入率の許容値FARnを満たすと判定することができる。
FARn≧n×FAR(x)・・・(5)
 従って、式(5)を満たす認証閾値Thは、この式が等式になる場合の照合スコアxを用いて計算されたものである。すなわち、認証閾値Thは、式(6)によって計算される。
Th=arg_x{FARn=n×FAR(x)}・・・(6)
 なお、arg_x{Y}は、Yが真となる場合のxを返す関数である。この認証閾値Thを満たす照合スコアが得られた時点で認証成功と判定すれば、システムの仕様として設定された所定のFARnを満たすことになり、信頼性を維持することができる。
 以上のように決定された認証閾値を利用して、順次照合を実行する。縮小データ同士の照合において、ある登録データを照合した結果、前述したように定められたFARnを満たす照合スコアxが得られた。このとき、登録データとの照合を中止し、この利用者を該当する登録者と判定し(S306)、認証を完了する。なお、再確認のために当該登録者の通常サイズの登録データと入力データとを照合し、より確実に登録者であることを判定してもよい。これによって判定結果の信頼性をより高めることができる。なお、通常サイズのデータによる照合で棄却された場合、縮小データの照合の結果は誤りであったとして残りの登録データとの照合を再開する。
 このように、全ての縮小データとの照合を、認証閾値を下回る照合スコアが現れるまで繰り返す。しかし、非登録者の出現確率分布と設定したFARnとの関係によっては、得られた照合スコアのいずれもがFARnを満たさない可能性がある。その場合、この照合処理によって認証結果を確定することはできないが、この結果を次のデータサイズの階層の照合のための並べ替えに利用する。
 また、繰り返し処理中に利用者の待ち時間が、実用的な時間を超過する可能性がある。そこで、許容されるタイムアウト時間を設定し、設定されたタイムアウト時間を経過した時点で照合処理を打ち切る(S307)。
 全ての登録データと照合してもFARnを満たす照合スコアが得られなかった場合、通常サイズのデータを用いて照合処理を継続する。通常サイズのデータを用いた照合処理の前に、前述した照合結果に応じて(すなわち、照合スコアの小さい順に)、登録データの処理順を並べ替える(S309)。縮小データは元の照合データの特徴量を含んでいるため、同一人物の生体情報同士であれば照合データの類似度は高く、また別人の生体情報間であれば照合データの類似度は低い。
 従って、類似度の高い順に登録データを並べ替えた後に次の階層の照合処理を実行すると、被認証者が登録されている場合、その被認証者の登録データが早く出現する可能性が高い。従って、通常サイズのデータを用いる照合において、入力データと被認証者本人の登録データとが早い段階で照合されるため、FARnを満たす照合スコアが早い段階で検出される。このため、早く認証を完了でき、認証処理を高速化することができる。
 なお、本実施の形態では、一つの縮小データと一つの通常サイズの照合用データとの2階層で照合処理を実行したが、目的とする速度及び精度を達成するために、3階層以上としてもよい。その場合、データサイズの小さい階層から順から照合処理を実行する。
 通常サイズのデータを用いた照合も、縮小データを用いた照合とほぼ同一のフローとなる。まず、登録データを特定するための変数nを1に初期化し(S310)、次に、入力データと変数nによって表された登録データとの照合によって照合スコアを計算し(S311)、通常データにおける登録者と非登録者の照合スコアの出現確率分布を参照して、通常データの照合において所定のFARnが得られる認証閾値Th2を照合スコアが下回るか否かを判定する(S312)。
 判定の結果、照合スコアが認証閾値Th2を下回る場合、照合が成功したと判定し(S313)、認証を終了する。一方、照合スコアが認証閾値Th2を以上である場合、次の登録データとの照合を行うため、nに1を加え(S315)、S311からの処理を登録データ数だけ繰り返す。
 また前述したように、タイムアウトか否かを監視し(S314)、所定のタイムアウト時間を経過した場合、認証ができなかったとして、認証処理を終了する。なお、タイムアウト時間の計測は利用者が生体を提示した時点で開始され、計測の開始から利用者が認証結果を待つことができる時間(例えば、1秒)、が経過した時点でタイムアウトと判定する。このようにタイムアウトを設定することによって、所定時間において必ず認証結果を得ることができる。
 特に、非登録者が生体を提示した場合、登録者が誤って非登録の生体情報(例えば、登録時とは異なる指の指静脈)を提示した場合、及び、生体の提示の際に大きな位置ずれを伴った場合など、認証が失敗する。このような状況において、タイムアウトを設定しないと、全登録データとの照合が終了するまで認証hそりが終了しないため、他の利用者が長時間、認証装置を利用できない。しかし、タイムアウトの設定によって、認証処理時間が長くなることを防止することができる。
 以上説明したように、照合データを複数のサイズに多階層に構成し、データサイズの小さい階層の照合データから順に照合を実行し、各階層の照合結果によって、次の階層の照合データを類似度の高い順に並び替え、並び替えられた照合データを用いて照合することによって、登録者を早く検出でき、所定の認証精度を維持して、高速かつ高精度に認証することができる。
 図5は、第1の実施の形態の生体認証システムの動作を説明する図であり、並べ替え処理による高速化の一例を示す。
る。
 まず、1:N生体認証システムは、登録データAから登録データZを保持し、それらの登録データに対応して、縮小データaから縮小データzを保持する。初めに、入力データの縮小データと登録データの縮小データとを照合する。例えば、入力データd’と全登録データとを照合した結果、縮小データにおける照合スコアは出現確率26に図示されているとおり、照合スコアの小さいほうから、z、d、c…の順に並ぶ。その結果、照合スコアが認証閾値Th1を下回らなかったため認証は完了せず、照合スコア順に登録データ(通常データ)を並べ替える。そして、入力データの通常データと並び替えられた登録データの通常データとを照合する。
 まず、並び替えられた最初のZとの照合スコアが認証閾値Th2を超えたため、認証は成功しない。しかし、次の順のDとの照合スコアが認証閾値Th2を下回った。このため、このデータを認証しても所定の他人受入率を下回ると判定されるので、この時点で利用者を登録者Dと判定して、認証を終了する。これにより、所定の認証精度を維持することができる。さらに、ZとD以外の通常サイズの登録データとの照合が省略されるため、高速に認証することができる。このため、高精度と高速性とを両立することができる。
 もし、照合処理中にタイムアウトが発生した場合、又は、タイムアウト前に全照合処理が完了しても所定のFARnを満たす登録データが検出されなかった場合は、入力された生体情報が認証できない。この場合は、ディスプレイ、ランプ、及び/又はスピーカなどを通じて認証ができなかったことを利用者に伝え、必要に応じて次の生体情報の入力を促す。例えば、指静脈認証装置の場合、登録された別の指の入力を促す。また、複数種類の生体認証装置が設置される場合、指静脈以外の生体の入力を促す。なお、複数の異なる生体の提示を求める場合、利用者が異なる生体を提示する順序を自由に決定できるようにしてもよい。
 なお、タイムアウトによって認証が完了できなかった照合処理が残っている場合、利用者が生体を提示した後、装置が生体の撮影を完了するまでに若干の時間が必要であるため、撮影処理が完了するまでは照合処理を並行して実行してもよい。その場合、撮影完了時までに実行された処理の結果に基づいて、処理した範囲において登録データを並び替える。これによりできるだけ多くの照合処理を実行し、次の生体情報の照合において、より有効な並び替えをすることができる。継続された照合処理によって所定のFARnを満たす照合結果が得られた場合、直ちに撮影を終了し、認証が成功した旨を利用者に通知する。
 図6は、第1の実施の形態において、複数の生体を利用して認証する場合の、認証結果の合成方法の一例を示す。本実施の形態においては、複数の指の指静脈を入力する場合を例示する。
 分布601は、第1の指静脈を提示した際の照合スコアの出現確率を示す。説明を簡単にするため、縮小されていない通常データによる照合結果の分布のみを示す。この分布に与えられた認証閾値Th_aを下回る照合結果が得られない場合、前述したように第2の指静脈の提示を促す。そして、同様に、提示された第2の指静脈による照合スコアが得られる。
 一般的に、多次元の照合スコアにおける他人受入率の計算における認証閾値は、多次元となり、登録者分布が存在しないと一意に定まらない。また、一般的にその閾値は非線形で複雑な境界となる。そのような境界値は、信頼できる多くの実測データを収集し、多くの計算コストを投入することによって決定することができる。例えば、ベイズ確率の計算やSVM(Support Vector Machine)による最適化などの一般的な認識技術を用いて、多次元の照合スコア分布から他人受入率を計算することができる。しかし、第1の実施の形態ではより実現可能性の高い方法として、複数の照合スコアを1次元に縮退し、図4に示すように閾値より小さい領域が一意に決定できる状態にした後に、他人受入率を計算するとよい。その一例として、第1の生体の照合スコアと第2の生体の照合スコアとの平均値を、第1と第2の生体の合成の照合スコアに設定した場合について説明する。ただし、各照合スコアに重みを付けた平均を計算してもよい。
 各階層の照合スコアに重みを付をする場合の重みは、主成分分析などの一般的方法で最適化して決定することができる。
 非登録者が第1の指静脈で認証を試みた場合、偶然、照合スコアが低くなったとしても、第2の指静脈で同様に照合スコアが低くなる可能性は低い。よって、第1の指静脈による照合スコアと第2の指静脈による照合スコアとの平均値は、非登録者全般の平均値よりやや低い場合が多い。一方、登録者の場合は第1生体による照合スコア及び第2の生体による照合スコアの両方が低くなる可能性は高く、よって、第1生体による照合スコアと第2の生体による照合スコアとの平均値も低い。従って、分布602に示すように、登録者の分布と非登録者の分布は、第1の生体だけを用いた場合より、第1の照合スコアと第2の照合スコアとの平均値の分布の方が分離が大きくなる。このとき、所定の他人受入率を保証する認証閾値Th_bは登録者分布からより遠ざかった位置にシフトするため、2本の別の指の指静脈を合成した場合(602)、1本の指の指静脈を用いた場合(601)より正確に認証されやすくなる。
 同様に、第2の生体で認証できない場合は第3の生体の提示を要求し、第1から第3の生体による照合スコアの平均値を求める。仮に、非登録者が第1及び第2の生体による照合スコアが低い場合でも、第3の生体による照合スコアが低い確率はさらに低く、登録者と非登録者との分布はさらに大きく分離する。従って、分布604に示すように、認証閾値Th_cはより登録者の分布から遠い位置となり、認証されにくい登録者も正確に認証される確率が高くなる。すなわち、提示する生体数が増加するにつれて、閾値は上昇する。
 しかし、利用者が同じ指を繰り返し提示した場合は状況が異なる。非登録者の第1の指静脈の入力で照合スコアが偶然低く、再度同じ指が提示された場合、第2の指静脈による照合スコアも同程度に小さい値となる。よって、提示回数に従って、分布602及び604に示すように認証閾値を緩和すると、同じ指を繰り返し提示することによって閾値が引き上げられ、これを繰り返すことによって非登録者の合計の照合スコアが認証閾値を下回る。従って、同じ指を提示した場合は前述したような分布の更新はできない。
 一方、利用者が複数の異なる生体を提示する場合、どの生体をどの順序で提示するかを指定されるより、自由な順序で提示できる方が利便性が高い。この場合、先に提示した生体情報をもう一度提示することも想定される。そこで、第1の実施の形態では、先に提示した生体情報をもう一度提示することを許容するために、例えば、同一の指の指静脈が複数回提示される場合を想定し、次に示す合成手法によってこの問題を解決する。
 まず、生体が提示される毎に、その利用者が過去に提示した全ての生体との総当り照合を実行する。そして、照合スコアが特定の閾値、例えば前述した認証閾値Th_aよりも低い値になった場合、両生体を同一と判定する。この結果、入力された指のうち、異なる指の本数が得られ、異なる指の本数に応じた確率分布を利用することができる。例えば、3回入力を要求したうち二つが同一パターンである場合、入力された生体は2種類であるため、異なる指を2回提示した場合の確率分布を利用する。つまり、分布605を利用することになる。このように、生体の種類数に応じて確率分布を更新する。分布603は、第2の指と第1の指とが同じ指であると判定された場合に利用される確率分布であるが、これは第1の指において利用した分布601と同一である。第3の指を提示した場合も同様に、過去に提示された指の数に応じて分布を変える。このように、繰り返し同じ指を提示することによって認証閾値が無用に緩和することを防ぎ、認証システムの信頼性を維持することができる。
 図7は、図6にて説明した、提示された生体の種類数を計測して確率分布と認証閾値とを更新する処理の一例を示すフローチャートである。ここでは入力する生体が指静脈である場合を説明する。
 まず、生体(指)の提示数mを1に初期化する(S1601)。次に、利用者によって第1の指が提示されると(S1602)、認証システムは前述した通り、各登録データとの照合スコアを計算する(S1603)。
 そして、計算された照合スコアが認証成功となる条件(すなわち、システムに設定されたFAR上限を満たす類似度の高い登録データが検出され、かつ、照合過程でタイムアウトが発生していない)を満たすか否かを判定する(S1604)。判定の結果、照合スコアが条件を満たす場合は認証を成功させ(S1613)、認証処理を終了する。一方、照合スコアが条件を満たさない場合は利用者に指の再提示を促す。
 まず、指の提示数mを1増やす(S1605)。次に、利用者は、先に提示した第1の指と異なる任意の第2の指を提示する(S1606)。次に、これまでに入力された指静脈パターン間の照合スコアを計算し、提示された指の数を求める(S1607)。初回は、第1の指の静脈パターンと第2の指の静脈パターンとを照合する。そして、これらの二つの指の静脈パターンの類似度を判定する。判定の結果、類似度が所定の閾値を下回る場合、提示された二つの指は同一と判定し、閾値を上回る場合、二つの指は異なる指であると判定することによって提示された指の種類の数を取得する。所定の閾値は、例えば、他人受入率が100万分の1となる類似度に設定するとよい。
 その後、指の種類の数に従って、提示された複数の指を用いた認証結果に対する認証の成功条件を更新する(S1608)。具体的には、第1の指と第2の指との両方を用いた認証に対する照合スコアの出現確率分布及び認証閾値を更新する。そして、第1の指と第2の指との照合スコアを計算し、これらを合成して認証処理を実行する(S1609)。照合スコアの合成方法は、前述した通り、照合スコアの平均値を用いたり、多次元のベクトルとして扱ったりする方法などがある。
 その後、S1604と同様に認証条件が満たされたか否かを判定する(S1610)。判定の結果、照合スコアが条件を満たす場合は認証を成功させ(S1613)、認証処理を終了する。一方、照合スコアが条件を満たさない場合、さらに指の提示数mを1増やし(S1611)、S1606からの処理を繰り返す。そして指の提示数mが、最大値Mとなるまで繰り返された場合はループを抜け、認証が失敗したと判定して処理を終了する(S1612)。
 前述した非登録者同士の照合による、照合スコアの出現確率分布は事前に評価することができる。しかし、評価用データ収集などの手間を必要とするほか収集規模も限られるため、実運用中の照合結果を利用することによって規模が大きく信頼性の高い確率分布が得られる。
 以下に、運用時に確率分布を更新する方法の一実施の形態を示す。まず、システム運用以前に実行された評価によって得られる照合スコアの出現頻度分布を初期データとして保持する。次に、システム運用開始時に順次登録作業を行うが、これらのデータを用いて別人同士の照合スコアを計算し、照合スコアの出現頻度分布を更新する。同一人物を複数登録しないルールがある場合、他の登録データは異なる生体情報であることが保証されるため、高い信頼性で確率分布を更新することができる。
 次に、利用者が認証をするに提示した生体については、生体が提示された時点で登録者であるか非登録者であるかは不明である。そこで実際に認証処理を実行し、入力データと全登録データとの照合結果の中で別人である可能性が低い1件を除いた照合結果を別人の照合結果であると判定して頻度分布を更新する。もし、その入力データが認証不可と判定された場合、それが登録者の本人拒否のケースであるか、非登録者のケースであるかを判定できないため、頻度分布は更新されない。このように、信頼性の高い照合結果のみを利用することによって、確率テーブルが更新でき、より正確なエラー率を計算することができる。なお、確率テーブルは具体的には、異なる生体同士の照合スコアと出現回数のペアの一覧によって構成することができる。
 前述した第1の実施の形態において示した複数の生体情報の一例として、異なる指の指静脈について説明したが、この他に指紋、指の関節のしわ、顔、虹彩、耳介、網膜、口唇などの生体特徴を使用することができる。これらは、認証が成功せず、さらに生体情報の提示が必要となった場合、これらの生体情報の提示を求めてもよいが、一度の動作で撮影できる生体であれば、複数箇所の生体を同時に撮影することによって、被認証者の操作を簡略化することができる。例えば、指静脈と指紋を同一装置によって同時に撮影することができる。また、指静脈を撮影する端末の前に顔を撮影するカメラを設置して、指静脈と顔とを同時に撮影することができる。
 また、特に指静脈を撮影する場合、利用者が提示する指をその中心軸に沿って回転させ、指の側面又は背面の静脈を提示させることによって、多方向からの撮影画像を複数の生体情報として利用してもよい。また、指の提示位置を指の中心軸に沿ってずらすことによって、指の様々な部分を連続的に撮影してもよい。このように、一つの指において異なる部分を提示する方法は、操作が容易であり、また短時間で操作でき、通常の指静脈認証装置を改造する必要がない利点を有する。
 また、複数の生体情報の提示だけでなく、PINの入力などの生体情報でない個人を特定する情報と、生体情報とを併用してもよい。これらの複数の情報による複合のエラー率は、生体のエラー率と生体でない情報におけるエラー率とを合成することによって、前述した複数の生体情報を利用する場合と同様に計算することができる。
 特に、PINの入力に関するエラー率について、入力すべき桁数に応じて他人受入率が変動するため、第1の生体におけるエラー率に応じて、入力されるPINの桁数を決めることによって、一定の他人受入率を保証し、入力の手間を低減することができる。例えば、生体情報のみの照合スコアを用いた認証の他人受入率が0.005%であり、目標とする他人受入率が0.001%であれば、PINの入力によって他人受入率を少なくとも1/5ほど小さくできればよい。そこでPINを一桁入力させ、登録されたPINと一致するか否かを判定する。生体とPINのエラー発生が独立事象であれば合成の他人受入率は両者の積で表すことができる。つまり、PIN一桁の他人受入率は10%であるため、生体とPINとを合成した他人受入率は0.0005%となり、精度目標を達成することができる。仮に登録されたPINが8桁の場合でも、最初の1桁の入力だけで認証を成功させることができ、利便性が向上する。
 ただし、非登録者によるアタックに対しては、1桁のPIN入力は10回の試行の繰り返しによって認証が成功するため、確率的に目標精度を満たした場合でも、最低入力桁数を例えば3桁に設定するなどして、アタック時の繰り返し回数を増加させるようにしてもよい。
 また、PINの入力エラー率について事前に確率分布を求めておくことによって、PINの入力に誤りがあった場合でも所定の他人受入率を満たしていれば認証を成功させることができる。例えば、ある利用者が事前に設定した本来のPINが「1234」であった場合、「2234」のように1桁誤って入力されても、これを許容する際の他人受入率は1万分の40である。このPINの他人受入率と生体の他人受入率とを合成した結果、所定のエラー率を満たす場合は、誤った入力があっても認証を成功させることができる。具体的には、生体認証とPIN入力のエラー発生が独立事象であれば、単純にエラー率の積によって、合成された他人受入率を得ることができる。
 このように、PINと生体情報を併用した場合、PINの一部が誤って入力されても認証することができるため、所定の精度を維持しながら利便性を高めることができる。また、1のキーを押すつもりで、誤って2のキーを押す確率と、誤って9のキーを押す確率とは厳密には異なる。このような、キーの押し間違う確率を考慮して確率分布を求めてもよい。このようにすると、更に詳細に確率を計算することができる。
 また、次に入力すべき生体を、システム側から利用者に提示することによって、数多くの登録データの照合件数を減らすことができる。例えば、複数の指の指静脈が登録されている認証システムの場合、利用者が任意の指を自由に提示する操作を今日した場合、利便性は高い。しかし、登録されている全ての指のデータとの照合処理を実行する必要があるため、照合件数が増え、処理速度及び精度が劣化する。これに対し、システムが、例えば「右手の中指」を提示するように利用者に指示すれば、右手の中指として登録されているデータのみと照合すればよいので、照合速度及び認証精度を向上することができる。
 同様に、利用者が提示する生体の種別をシステムに入力してもよい。また、利用者が複数の生体を登録する際、認証時に入力する順序を予め決めておき、決められた順序に提示された場合に認証が成功するようにしてもよい。この場合、各人の複数の登録データに照合する順序を付与しておき、認証時には付与された順序に照合すればよい。従って、入力される生体を明示的に指定することなく、高速に絞り込むことができる。さらには、入力順序が各個人で異なっていれば、より安全性を向上することができる。
 なお、第1の実施の形態の手順によって実行される方法、すなわち、並べ替え及び所定のFARnを満たす照合スコアを得た時点で認証結果を確定する方法は、一部の生体認証技術の欠陥に対して脆弱となる可能性がある。それは、ある複数の登録データ又は全ての登録データとの照合において類似度が高くなる、いわゆるウルフデータの入力が検知できないためである。これに対し、本発明ではタイムアウト時間を用いてウルフデータを検出することができる。
 ウルフデータは複数の登録データと類似度が高くなり、縮小データの照合においても類似度が高くなる可能性が高い。そこで、もし所定のFARnを満たす照合スコアが得られた場合でも、登録データの並び順に従ってそのまま照合を継続する。そして、タイムアウト時間が経過した時点で照合を停止する。これまでの照合結果を調べ、複数の登録データとの間の照合スコアが所定のFARnを満たしていないことを確認する。全登録データとの照合は、照合時間との関係上困難であるが、縮小データを用いた照合によって登録データは並べ替えられている。このため、もしウルフデータが入力された場合であれば先頭に類似度の高い複数の登録データが出現する可能性が高くなる。よって、並べ替えられた登録データの先頭の一部を確認することによって、複数の照合スコアが所定のFARnを満たすことが高い確率で判定でき、所定の時間以内に入力データがウルフデータであることを高い精度で検出することができる。
 <第2の実施の形態>
 図8Aは、本発明の第2の実施の形態の認証システムの一構成例を示す。
 第2の実施の形態の認証システムは、ネットワーク上に分散して配置されている多数の認証端末を利用して認証処理を高速化する。第2の実施の形態の生体認証システムは、一つのサーバ21と、全登録データを保持する一つの登録データベース22と、複数の認証端末701と、ネットワーク703とを備える。ネットワーク703はサーバ21と端末701とはネットワーク703を介して接続されている。各端末701は、利用者の生体を撮影し個人認証を行う他、認証後の処理、例えば、入退管理装置として扉の鍵を制御する。各端末701は、入力データと照合される登録データを格納する記憶装置702(例えば、揮発性又は不揮発性のメモリ、磁気ディスク)と、認証処理を実行する処理装置と、認証後の処理を実行する機能とを備える、いわゆる自己認証型の装置である。また、ネットワーク703は一般的な有線、無線LAN、又は、認証端末が携帯電話機能を有する携帯端末である場合、携帯電話網でもよい。
 各端末701は、複数の登録データを保持し、保持された登録データの範囲内において、各端末701が単独で1:N認証を実行できる。
 各端末701に保持される登録データの数は端末に備わる記憶装置の容量だけでなく、装置として許容されるレスポンス時間と処理速度との関係によっても制約を受ける。一般的に端末はサーバに比べて処理能力が低く、また登録人数の増加により端末に記録できるデータの容量を超過する場合も想定される。このため、大規模1:N認証を端末単独で実行することは難しい。そのため、端末は全登録データの一部を保持し、主に処理能力の高いサーバが認証処理を実行するものとする。なお、各端末701は、どの端末がどの登録データを保持しているかを示す登録者IDリスト704(図8B)を保持する。これによって、各端末701は、登録者IDリスト704を参照することによって、端末701がどの登録データを保持しているかを把握することができる。また、このリストは登録データが追加される毎に最新の情報に更新される。
 一方、システムの運用開始後に端末701が追加される、又は登録者が増大するなどによって、1台のサーバ21で処理される照合処理の要求が増加すると、照合処理の待ち時間が増加する。これに対し、サーバを追加したり、処理性能の高いサーバに更新したりする場合、多くの費用が必要になる。そこで、本発明では、認証処理を実行していない遊休端末に部分的な照合処理を依頼することによって並列して認証処理を実行し、照合処理が長時間化する問題を解決する。
 ここで、全登録データ数を1万件、各端末が保持できる登録データ数を2千件、利用者705が端末Aを使用したという状況を例として本発明の構成を詳述する。
 まず、端末Aは、他の全ての端末701に対して端末の稼動状態を問い合わせる。各端末701は、稼働状況の問い合わせを受けた後、その端末701が撮影状態又は照合処理状態であれば、稼動中である旨を返信し、そうでない場合は遊休状態であることを返信する。このとき、遊休状態が継続している時間と端末の稼働率を付加情報として通知するとよい。稼働率は、例えば24時間以内の稼働率の平均を用いることができる。次に、遊休状態の端末が管理している登録データ一覧704を参照し、各遊休端末に照合を依頼すべき登録データを決定する。
 ここで、依頼すべき登録データの決定方法の一例を示す。各端末は2千件の部分的な登録データを保持しているが、全登録データに対する照合結果を得る必要があるため、複数の端末を利用する。まず、全ての遊休端末の中で、ただ1台の端末しか保持していない登録データは、その登録データを保持する端末に照合を依頼する。次に、複数の端末が同じ登録データを保持する場合は、照合の依頼件数が端末間で均等になるように、照合を割り当てる。そして、依頼件数がほぼ同じである場合、稼働率の低い端末に多くの件数の照合を割り当てる。稼働率が低い端末は、照合処理中に利用者が訪れる可能性が低いので、このような端末に多数件の照合を割り当てることによって、連続的に照合処理を実行することができる。なお、稼動率は短時間又は長時間で計算される。例えば、長時間で稼働率を計算した場合、これまで遊休状態となっていた時間の長い端末の稼働率は低くなる。そして、稼働率がほぼ同じであればランダムに(又は、ラウンドロビンで)端末を選択する。それ以外の登録データ(端末に保持されない登録データ)を用いた照合はサーバ21が実行する。
 例えば、登録データ数が、IDが0000から9999までの1万件とし、端末Aが利用者705の入力を受け付けた際に、端末A、B、C、Dが遊休状態であった場合、登録者IDリスト704(図8B)に示すように、端末AがID=0000~1999の登録データ、端末BがID=1000~2999の登録データ、端末CとDが共にID=4000~5999の登録データを保持している。ID=0000~0999の登録データは端末Aのみが保持しているため、端末A自身が、ID=0000~0999の登録データとの照合を担当する。また、ID=1000~1999の登録データは、端末Aと端末Bとが共に管理しておりどちらの端末も照合処理をすることができる。しかし、端末Aは1000件の照合処理を行う予定であるため、ID=1000~1999の登録データとの照合は端末Bに依頼する。ID=4000~5999の登録データは端末CとDとが共に保持している。仮に、端末Cの稼働率と端末Dの稼働率との比率が3:1であれば、この比の逆数に従って件数を割り当てる。すなわち、端末CにID=4000~4499の500件の登録データとの照合を割り当て、端末DにID=4500~5999の1500件の登録データとの照合を割り当てる。これにより、端末Cの照合件数は500件に抑えられるため処理を高速に完了でき、稼働率の更なる上昇を抑制し、全端末の負荷を均一化することができる。
 いずれの端末も、残りのID=3000~3999及びID=6000~9999の登録データを保持していないため、サーバ21にこれらの登録データとの照合を依頼する。なお、各端末に保持される登録データのIDが連続するように管理すると、登録データリストのサイズを低減することができる。
 照合を依頼する端末701は、依頼先の端末701又はサーバ21に、照合依頼データDi706を転送する。照合依頼データには、照合すべき登録者IDの一覧、提示された生体の照合用の入力データ、照合スコアの閾値、タイムアウト時間が含まれる。依頼を受けた端末701は、照合すべき登録者IDリストに従って入力データと照合する。各端末701は、前述した第1の実施の形態の方法によって、複数サイズの特徴データを多階層に構成して、登録データの並べ替え及び認証閾値を下回る結果が出た場合の認証終了による高速化を適用してもよい。
 全ての登録データとの照合が完了するか又はタイムアウトが発生した場合、照合の結果である照合スコアを依頼元の端末Aへ返信する。依頼元の端末Aは、照合の結果(照合スコア)を受けて、一つでも認証成功の結果が出た時点で他の端末からの照合結果を待たずに利用者705を認証する。全ての照合結果によっても認証閾値を下回る照合スコアが得られない場合、次の生体提示を促すか、又は認証失敗として終了する。
 このように、各端末の負荷を均等にしながら、照合処理を並列に実行することによって、レスポンス時間を短縮することができる。
 もし、照合依頼を受けた直後に、利用者が生体を提示した場合は生体の撮影処理を優先的に実行してもよい。これによって、照合依頼を受けた端末の利用者の待ち時間を減らすことができる。その際、依頼元の端末に対し、割り込み処理が発生した旨を通知するとよい。この割込処理が発生した通知を受け取った依頼元の端末は、別の遊休端末701かサーバ21に認証処理を依頼してもよい。
 前述した実施の形態では、認証のために生体が提示された端末Aが、照合処理を実行する端末701を決定したが、サーバ21が照合処理を実行する端末701を決定してもよい。この場合、サーバ21が登録者IDリスト704を保持する。端末Aは入力データをサーバ21に送信し、サーバ21は、登録者IDリスト704を参照して、照合処理を実行する端末701を決定し、決定された端末701に入力データを転送する。なお、サーバ21が、照合処理の分担のみを決定し、決定された分担を端末Aに通知して、通知を受けた端末Aが入力データを各端末701に送信してもよい。
 また、前述した実施の形態では、照合すべき生体が提示された端末701が各遊休端末701に、直接、照合を依頼したが、入力データ及び依頼リストをサーバ21に送信し、各遊休端末701は、サーバの依頼リストを定期的に確認し、照合処理を担当できる場合は入力データをサーバ21から受け取り、認証処理を実行し、その結果をサーバに返してもよい。依頼元の端末は、依頼した全ての照合が完了するまで待ち、全ての照合が完了した時点で認証の可否を判定する。このようにサーバ21が照合依頼をする場合、依頼を受けた時点で稼動状態であった端末が、その直後に遊休となった場合の無駄な遊休時間を活用することができる。すなわち、特に稼動と遊休を頻繁に繰り返す状況で有効である。
 <第3の実施の形態>
 図9Aは、本発明の第3の実施の形態の認証システムの一構成例を示す。
 第3の実施の形態の認証システムは、利用者が端末間を移動している時間内は登録データを一時無効化し照合すべき登録データを絞り込む。
 認証システムは、物理的に固定されて設置されている固定端末701及び可搬型のモバイル端末801を備える。サーバ21は、ある固定端末701の存在する位置から他の固定端末701へ利用者が物理的に移動できる推定時間の移動時間データベース803(図9B)を保持する。端末間の物理的距離及び移動手段などの条件に応じて、人がこの端末間を移動するために必要な移動時間の平均及び最速時間を計算することができる。ある端末で認証が成功し、その利用者が別の端末へ移動するために必要な時間内は、その利用者の登録データを照合の候補から除外する。これによって実際に照合する登録データの数を減らし、照合を高速化することができる。
 利用者がモバイル端末801を所持している場合は、その端末の位置情報を、例えばGPSや無線LANのアクセスポイントの配置などから推定し、サーバ21に送信する。サーバ21は送信された情報に基づいて、他の端末までの距離を計算する。
 端末間距離データベースを使用して端末間の移動時間を計算する場合、単純に直線距離を使用して移動時間を計算してもよい。また、移動手段等の詳細な情報がある場合、移動手段の情報(すなわち、移動速度)を考慮して移動時間を計算してもよい。また、移動手段によって移動速度は異なるが、同じ建物内であれば徒歩による移動、異なる建物であれば自動車による移動など、システム管理者がデフォルトの移動手段及びその移動速度を設定してもよい。
 図9Aを用いて第3の実施の形態の具体例を詳述する。
 まず、端末AとBとの間を移動できる最短推定時間は200秒、BとCとの間を移動できる最短時間は300秒であり、またAとCとの間は500秒であることが、端末が設置された位置関係及び移動手段を考慮して、登録者によって設定されている。また、端末Dはモバイル端末であり、現時点の位置をGPSによって求めたところ、端末Aまで移動するのに最短で6500秒かかると推定される場所に存在することが分かった。なお、モバイル端末が備わる場合、移動推定時間のデータベース803はリアルタイムに更新される。
 次に、利用者810が端末A701に生体を提示し、端末Aは入力データをサーバ21に転送し、サーバ21によって認証処理が行われ、認証が成功した。すると、利用者810が端末Aにおいて認証が成功したという事実及びそのタイムスタンプ(生体を提示した時刻又は認証が成功した時刻)がサーバ21に記録される。サーバ21は、端末701毎に利用者810の登録データを無効にする期間を計算する。無効期間は端末間の移動時間データベース803に記載されている値を用いる。すなわち、本実施の形態では、端末Bに対して200秒、端末Cに対して500秒、端末Dに対して6500秒の無効期間が設定される。
 利用者810が認証された直後(200秒以内)に利用者811がある端末Bに生体を提示した。この場合、従来は、利用者810の登録データも照合する。しかし、本実施の形態では、利用者810は端末Aから端末Bへの移動時間以内であるため、利用者810が端末Bに移動できないものとして、利用者810の登録データを照合対象から除外する。このように、照合すべき登録データ数が減少するため、照合を高速化することができる。また、照合すべき他人の登録データの数が減少するため、他人受入率を低減することができる。本実施の形態では1件の登録データのみが除外されるが、大規模な認証システムでは多数の登録データを除外できるため、高い効果を得ることができる。
 移動時間データベース803は、端末間距離から計算された時間に従って固定したものでもよいが、実測値を利用して、以下の方法によって更新してもよい。
 まず、各端末は認証が成功する毎に、その利用者、使用端末、及び認証成功となった時刻の情報をサーバ21に送信する。その利用者はある時間後に別の端末で認証を試みるが、その際も同様の情報がサーバ21に送信される。サーバ21は各端末から送信された情報を利用して、この利用者が端末間を移動するための時間を求めることができる。利用者によって移動時間は異なるため、例えば、最も短時間で移動した利用者の移動時間を、その端末間の移動時間に決定する。又は、更に短時間で移動する利用者の出現を想定し、その値に安全係数(例えば、0.8)を乗じた値を移動時間に設定してもよい。
 これによって、単なる物理的な距離だけで移動時間を決定する場合に比べてより現実的な移動時間を得ることができ、登録データを高い効率で絞り込むことができる。また、最短時間で移動した利用者の移動時間を採用することによって、本来十分に移動することのできる時間であっても、システムが移動できないと誤判定する可能性を低減することができる。なお、認証が成功してから別の端末で認証を試みるまでの時間には個人差があるため、移動時間データベース803を登録者ごとに分けて管理してもよい。これにより個人ごとに移動時間を管理でき、登録データを高い効率で絞り込むことができる。
 なお、登録データが無効期間であった場合に照合対象から除外するのではなく、登録データベース内の照合順序を後にしてもよい。これによって、移動してくる可能性の低い利用者の照合時間が長くなるだけなので、誤って本人を拒否する可能性を低下することができる。
 図10A及び図10Bは、第3の実施の形態の認証処理のフローチャートである。
 初めに、サーバ21は、移動時間データベース803に格納されるMT(端末1、端末2)を初期値に設定し、また、各登録データに対する無効期間タイムテーブルに格納されるDT(登録者ID,端末ID)の値を全て0にリセットする(S1701)。ここで、無効期間タイムテーブルは、ある端末Qからの入力に対して登録データXを無効とする時間(DT(登録X,端末Q)を保持する、無効期間DT(登録X,端末Q)は秒で表されており、その値が正の値である場合、1秒経過毎に1が減じられる(S1713)。なお、無効期間が0に設定されている場合、その登録データが有効であり、照合対象に含まれることを意味する。
 次に、サーバ21は、端末701からの認証要求を待つ(S1702)。認証要求が発生した場合、サーバ21は、認証を要求した端末701の端末IDと利用者が提示した入力データとを取得する(S1703)。次に、サーバ21は、入力データと各登録データとを照合する。まず、登録データのIDを特定する変数nを1に初期化する(S1704)。
 次に、全登録データとの照合のループ(S1705~S1708)に入る。ループ内では、まず、無効期間タイムテーブルの値が0より大きいか否かを判定する(S1705)。判定の結果、無効期間DT(登録X,端末Q)が0である場合、その登録データXは照合対象となるため、入力データと登録データXとを照合し(S1706)、無効期間DT(登録X,端末Q)が0より大きい場合、その登録データは無効であるため照合処理をスキップする。
 この処理を、登録データID=1からNまでの登録データについて繰り返し実行し、その途中で登録者と認められる認証条件を満たす照合スコアが得られたか否かを判定する(S1707)。判定の結果、認証条件を満たさない場合、変数nを1増加し(S1708)、次の登録データについてS1705から照合処理を繰り返す。全登録データとの照合が終了し、いずれの登録データに対しても認証条件を満たさない場合、照合失敗の判定結果を出力する(S1709)。
 そして、システム全体をリセットする要求がされているか否かを判定し(S1710)、リセットが要求されている場合、この認証処理を終了する。一方、リセットが要求されていない場合、S1702に戻り、端末からの認証要求を待つ。
 一方、S1707で、認証条件を満たす照合結果が得られた場合、認証が成功したので(S1715)、無効期間タイムテーブルを更新する(S1716)。無効期間タイムテーブルは、認証成功となった登録者(登録者ID=n)について、今回使用された端末Qからその他の全端末までの端末間移動時間データベースの値を代入することによって更新する。これによって、今回認証された登録者nは一定期間だけ認証処理の対象から除外されるため、他の登録者の照合を高速化することができる。
 また、本システムが開始されると同時に、無効期間タイムテーブルの値と移動時間データベース803は時間の経過に合わせて更新される。この更新処理は、認証処理とは平行して実施されるもので、図10Bに示す。
 まず、所定時間(例えば、テーブル及びデータベースの更新間隔である1秒)の待ち処理に入る(S1711)。次に、端末がモバイル機器であるものについて、最も近接するアクセスポイントの情報に基づいて端末間の移動時間を計算し、移動時間データベース803を更新する(S1712)。次に、全端末、全登録者の無効時間タイムテーブルの値を1秒だけ減じる(S1713)。その後、システム全体をリセットする要求がされているか否かを判定する(S1714)。リセットが要求されている場合、この処理を終了する。一方、リセットが要求されていない場合、S1711に戻り、1秒間の待ち処理の後、S1712から処理を繰り返す。
 なお、テーブル及びデータベースの更新は、排他制御によって、それらの整合性を維持することができる。以上説明したように、図10A及び図10Bに示す処理によって、登録データとの照合件数を減少することができ、高精度かつ高速に認証をすることができる。
 前述した実施の形態では、サーバ21が登録データの無効時間を管理したが、端末間で通信をして、各端末が無効期間タイムテーブルと端末間移動時間データベース803を保持し、無効時間を管理してもよい。この場合、認証が成功した端末は、認証された利用者の登録者ID及び時刻情報(生体を提示した時刻又は認証が成功した時刻)を各端末に送信し、各端末が無効期間タイムテーブルを更新する。
 また、各端末が認証処理を行ったが、サーバ21が認証処理を行い、その認証の結果によって、無効期間タイムテーブルと端末間移動時間データベース803を更新し、除外される登録データを絞り込んでもよい。
 また、サーバ21が、過去に端末間を移動した経過の統計を記録し、記録された統計情報によって、利用者毎に、ある端末から別の端末への移動が完了する確率分布と経過時間との関係を計算し、これをFARの計算に適用してもよい。以下、その一例を説明する。
 図11は、ある端末Xから別の端末Yに移動する際の、端末Yに到着できる到着可能性と経過時間との関係を説明する図であり、横軸は経過時間、縦軸は到着可能性である。
 経過時間=0においては、端末Xから端末Yへ移動することは不可能であり、到着可能性は0である。一方、経過時間Tにおいては、端末Xから端末Yに到着できる十分な時間が経過しているため、到着可能性は1となる。その間は、移動する人の速度などによって、到着可能性は、0から1の間となり、また連続的に変化している。このようなデータは実測によって到着の確率を求める方法の他、実測から統計的に到着可能性を推定することもできる。
 このように求められた到着可能性が十分に高く、かつ照合スコアとしてのFARが十分に低い場合、本人と認証することができる。一方、逆に到着可能性が低いにもかかわらず、照合スコアとしてのFARが低くなった場合、認証条件が成立しないようにFARを換算することができる。このとき、換算後の統合FARは、例えば、式(7)によって計算することができる。
統合FAR=1−(到着可能性×(1−照合スコアのFAR))・・・(7)
 すなわち、十分に到着可能性が高ければ換算後のFARは元の照合スコアのFARと一致し、到着可能性が低い場合は元のFARよりエラー率が上昇するため、認証が容易に成功せず、偶発的な他人受け入れを防止することができる。
 <第4の実施の形態>
 図12は、本発明の第4の実施の形態の認証システムの一構成例を示す。
 第4の実施の形態の認証システムは、生体が撮影された姿勢情報を送信することによって、サーバ型認証の高速化又は高精度化を実現する。
 クライアント端末の処理装置が、その内部に格納されている登録データと入力データとを照合する、いわゆるクライアント認証を行う場合、生体情報を連続的に撮影し、その撮影速度に合わせて照合処理を反復的に実行することができる。この方法の利点は、生体の姿勢が登録時と僅かに異なる場合でも、連続的に異なる姿勢を撮影できるので、撮影された映像の中で一致率が高くなれば登録者と判定することができる。このため、本人拒否率を低減することができる。
 しかし、サーバ21が認証処理を実行する場合、通信のボトルネックにより生体情報をサーバへ連続的に送ることができない場合がある。このため、連続的に認証が実行できず、クライアント認証と比較して認証精度が低下する問題が発生する。一方、登録データをクライアント端末へ送信できれば、クライアント端末内で連続的に認証することができるが、サーバから外部に向けて個人の生体情報を転送することは個人情報の漏洩の恐れがある。このため、個人性の高い情報を発信することは避けることが望まれる。
 これに対し、本発明ではサーバ21において認証を実行する際、連続的に認証を行う代わりに、クライアント端末で連続的に撮影された複数の画像の中から登録時の撮影状態に近い画像を選択し、選択された画像をサーバに転送する。以下、第4の実施の形態の詳細について説明する。
 サーバ21は、個人を識別するための生体情報の他に、登録時の生体の姿勢情報1001を生体ごとに保持している。登録時の生体の姿勢情報1001は、個人性が小さく、かつ、秘匿不要な生体の撮影状態を表す。例えば、姿勢情報1001には、指静脈を生体情報として撮影する場合、指の面積、指の置かれた角度及び位置、指輪郭の形状、指関節のしわの模様、撮影される角度、抽出パターン量、静脈の主方向成分などを用いることができる(図12B参照)。
 例えば、エッジ検出などの画像処理によって指の輪郭を求め、この内側の領域の画素数から指の面積を得られる。また、この輪郭情報から指の中心軸を推定することによって、指の置かれた角度が得られる。また、指関節付近に向けられた光を照射して撮影し、撮影された画像から指の関節しわの模様及びそれらの線の平均方向を求めることによって、指関節のしわの情報が得られる。また、指先の位置又は関節のしわの位置によって、指の位置の座標が得られる。照合テンプレートにおける静脈を示す画素の数、特徴点の個数などから、特徴パターン量が得られる。また、例えば、各静脈を代表する走行角を最小二乗法などで求め、全静脈の走行角度の平均値によって静脈の主方向成分が得られる。
 登録の際、このような姿勢情報を抽出し、抽出された姿勢情報を照合用の登録データと共に保存する。姿勢情報は情報量としては極めて小さく、例えば各要素で1バイト程度であるため、通信のオーバヘッドにはならない。例えば、指の角度情報は90度を0.5度刻みで記憶しても1バイトで収まる。指置き台などの装置形状から指の置かれる許容範囲を90度より小さく制限できれば情報はより小さくなるが、刻み角を細分化して1バイトを有効に利用してもよい。
 利用者は、端末701にICカードやPINなどを提示する。端末701は提示された情報をサーバ21に転送する。サーバ21は、転送された情報と一意に対応する登録データのうち、登録時の姿勢情報1001を端末701に転送する。端末701は、登録時の姿勢情報1001を受信し、利用者に生体情報の提示を促す。利用者が生体を提示すると、端末701は提示された生体を撮影する。撮影は、カメラなどの撮像素子によって実行するが、撮像素子のフレームレートに合わせて全フレームを取得する。撮影時間は、例えば、数秒間とし、利用者が不便と感じない程度に留める。本実施の形態では、m枚の連続画像1003を撮影した。
 その後、これらの連続的に撮影された複数の全入力画像に対し、登録の際に実行した姿勢情報の抽出処理と同じ処理によって、生体の提示時の姿勢情報1002を抽出する。次に、抽出された姿勢情報1002と、サーバ21から転送された登録時の撮影状態を示す姿勢情報1001とを比較し、相違度を計算する(図12C参照)。相違度は、各部分特徴量の差分の2乗の合計値など、一般的な相違度の判定手法又はユークリッド距離の計算によって求めることができる。
 そして、最も姿勢情報が登録データに近い一つの入力画像を選択する。ここで選択された入力画像は、登録時の姿勢に近いため、複数撮影された画像中で最も登録データに近いと推定される。よって、端末701は、選択された入力画像から照合用データを生成してサーバ21に転送する。サーバ21は、転送された照合用データを受け取り、受け取った照合用データと登録データとを照合し、認証処理を終了する。
 従来の方法では複数の撮影画像(照合用データ)を登録データと照合していたが、第4の実施の形態の認証方法によると、最も登録データに類似する可能性が高い1枚の画像だけを選択して、選択された画像のみをサーバ21に転送するため、通信量を低減することができ、サーバ21による認証をクライアント端末701による認証と同程度の精度にすることができる。なお、第4の実施の形態では、選択された1枚の画像のみをサーバ21に送信したが、選択された複数の画像を送信してもよい。
 なお、各端末701が記憶装置を備える場合、全登録データの姿勢情報のみを端末701が管理してもよい。これによって、サーバ21と端末701との間で姿勢情報を通信する必要がなくなり、通信量を低減し、レスポンスを高速化することができる。
 図13は、第4の実施の形態の端末701によって実行される処理のフローチャートである。
 初めに、端末701は、利用者によって入力される登録者IDを受信し、受信した登録者IDをサーバ21に転送する(S1801)。例えば、端末701に備わるテンキーなどにより番号を入力する方法の他、リーダに提示されたICカード、磁気カード等から登録者IDを読み取る方法などによって、IDが入力される。
 サーバ21は、登録者IDに対応した登録データのうち、姿勢情報を端末701に転送する。端末701は、登録者IDに対応する姿勢情報を、サーバ21から受信する(S1802)。その後、端末701は、利用者の生体、ここでは指静脈を連続的に複数回撮影する(S1803)。連続撮影の間、利用者の指の位置はわずかにずれるので、姿勢の異なる生体の画像が撮影される。そして、端末701は、各画像の撮影時の姿勢情報を計算する(S1804)。具体的な姿勢情報の一例は前述の通りである。
 その後、端末701は、登録データの姿勢情報と全ての入力データの姿勢情報とを比較する(S1805)。そして、端末701は、姿勢情報が最も類似する入力データを選択する(S1806)。そして、端末701は、選択された入力データから照合用データを抽出し、抽出された照合用データをサーバ21に転送する(S1807)。
 これによって、連続的に撮影した画像のうち登録データと最も姿勢が類似する画像を照合処理に利用することができるため、登録者であれば、より本人拒否率を低下することができる。そして、サーバ21は、端末701から転送された照合用データと登録データとを照合し、照合スコアに応じて認証結果を決定する(S1808)。
 ここまで、サーバ21による1:1認証を説明したが、この方式をサーバ21又は端末701による1:N認証の高精度化にも適用してもよい。姿勢情報を用いて1:N認証を行う、第4の実施の形態の変形例を以下に示す。
 1:N認証の場合、端末701は提示された生体を連続的に複数枚撮影し、認証用の特徴量及び姿勢情報を抽出して、抽出された情報をサーバ21(又は、照合処理部)へ転送する。サーバ21はこれらを受信すると、照合処理を実行する。まず、一つの登録データの姿勢情報と送信された複数の姿勢情報とを照合する。その結果、最も姿勢情報が類似する入力データを選択し、その入力データのみと登録データとを照合する。これによって、複数枚撮影した入力データのうち一つだけを照合の対象とする。この絞り込みによって、複数の入力データの中で最も姿勢が類似したデータについてのみ照合が行われるため、同一人物の生体であれば照合の類似度が高い入力データについて高速に処理することができる。この処理を全登録データについて実行し、本人と認められる照合結果が得られた場合に認証成功とする。複数の入力データを一つに絞ることによって、1:N認証の照合速度の低下を防止することができ、最も類似する可能性の高いデータと照合できる。このため、認証精度を高めることができる。
 また、登録の際に様々な姿勢の生体情報を複数登録してもよい。登録時は、利用者に複数回の生体の提示を促し、提示された生体を連続的に撮影する。その全撮影画像から、生体の姿勢情報を抽出し、姿勢情報の相違が大きい複数の撮影画像を選んで登録することによって、様々なバリエーションの姿勢を持つ登録データを生成することができる。登録側で複数のデータを有するため、入力時には1枚の撮影画像から照合用データを通信するだけでよい。このため、部分特徴量の通信が不要となり、ネットワークの負荷を低減することができる。ただし、登録データが増加するため、特に、1:N認証を実行する場合は処理速度が低下することがある。
 また、サーバ21による認証において、入力データを何回か送信してもレスポンス時間に余裕がある場合は、図14に示すような方法を採用することができる。まず、登録データは1枚の撮影画像から生成されており、入力された生体は連続的に複数枚撮影されており、全ての撮影画像の入力データが生成される。生成された入力データのうち任意の入力データ1102(例えば、最後に撮影されたデータ、生体が最も鮮明に撮影されたデータ又は生体が静止した状態で撮影されたデータ)を選択して、選択された入力データをサーバ21に送信し、入力データと全登録データとを照合する。
 照合されたデータのうち、最も類似度の高い登録データ1101が得られた。このとき、認証が成功する照合スコアが得られた場合は認証が完了するが、認証が成功する照合スコアが得られない場合はリトライする。
 まず、入力データ1102との登録データ1101との空間的な位置ずれ量を調べる。例えば、テンプレート画像との照合であれば、画素単位で位置をずらしながら両画像を重ね、最も類似度が高くなる重なり位置から位置ずれ量を求めることができる。そして、サーバ21は、求められた位置ずれ量1103を端末701に送信する。
 端末701は、位置ずれ量1103を受け取った後、連続的に撮影された全入力画像と、先にサーバ21に送信した入力データ1102とを照合し、サーバ21から送信された位置ずれ量に最も近い入力画像1104を選択する。このとき、選択された入力画像1104は、登録画像の位置ずれと類似している。この入力画像1104(又は、入力画像1104から生成された入力データ)をサーバに送信する。前回の認証が位置ずれによって失敗している場合、登録データとの位置ずれ量に近い入力データが送信されるため類似度が高まり、認証が成功する可能性を高めることができる。
 図15は、第4の実施の形態の変形例の端末701によって実行される処理のフローチャートである。
 初めに、利用者が指静脈を端末701に提示した後、端末701は連続的に撮影する(S1901)。その後、端末701は、撮影された入力画像のうち一つの任意の画像を選択する(S1902)。選択方法の一例としては、指が安定して静止した状態で撮影された画像を選ぶ方法がある。具体的には、連続する画像フレーム間の輝度値を相互に比較し、画像間の平均輝度値の差が所定の閾値を下回るフレーム数が所定数だけ続いた場合、その最初の画像を選択することによって、被写体が静止した画像を選択することができる。端末701は、選択された一つの入力データをサーバ21に送信する(S1903)。
 サーバ21は、送信された入力データと全登録データとを照合する(S1904)。その後、照合の結果が認証の条件を満たすか否かを判定する(S1905)。照合の結果が認証条件を満たす場合、認証成功処理を実行した後、この処理を終了する(S1911)。
 一方、照合の結果が認証条件を満たさない場合、サーバ21は、全登録データのうち最も入力データと類似度が高い照合結果が得られたパターン同士の位置ずれ量を計算し、計算された位置ずれ量を端末701に送信する。端末701は、サーバ21から送信された位置ずれ量を受信する(S1906)。
 端末701は、サーバ21に送信した入力データと、他の入力データとを照合し、位置ずれ量を計算する(S1907)。その後、端末701は、サーバ21から送信された位置ずれ量と、入力データ同士を照合して得られた位置ずれ量とを比較し、サーバから送信された位置ずれ量と最も類似する位置ずれ量を与える入力データを選択する(S1908)。ただし、既にサーバに送信された入力データは選択対象から除外する。そして、端末701は、選択された入力データをサーバ21に送信する(S1909)。
 その後、ループ処理によって、S1904に戻り、サーバ21は、選択された入力データと全登録データとを照合する。このとき、サーバ21では先に照合した結果を利用して類似度の高い順に登録データを照合してもよい。類似度の高い順に登録データを照合することによって、早い段階で認証結果を決定することができる。
 その結果、認証条件を満たした場合は認証を終了する。一方、認証が成功しない場合、S1904からS1909の処理を所定の回数Rだけ繰り返す。繰り返し回数Rは、連続画像として撮影された枚数以下の任意の値を設定することができる。もし、所定の回数の処理を繰り返しても認証が成功しない場合、認証失敗となり(S1911)、認証を拒否して処理を完了する。
 <第5の実施の形態>
 図16は、本発明の第5の実施の形態の認証システムの一構成例を示す。
 第5の実施の形態の認証システムは、複数の異なる認証装置が混在する生体認証システムである。
 ネットワーク703には同じ生体部位を利用した、複数種類の生体認証装置が接続されている。本実施の形態では生体部位として指静脈を利用した生体認証装置として、従来装置1201と新装置1202との2種類が接続されている。生体認証装置は、装置のサイズ、コストなどによって、認証精度、処理速度などが異なる。また、導入方法によっては、既存の認証システムに最新の認証装置を接続することによって、システムを拡張する場合、従来型の装置と最新型の装置とが認証システム内に混在する。
 このとき、認証に使用する生体部位が同一であっても、センサの性能、赤外線の照射方法、生体に対するインターフェイスの形状、撮影部位の位置などが異なるため、従来型の装置と最新型の装置とがデータ形式の互換性を有する場合でも、各装置で撮影したデータの互換性(精度互換性)が低下する。従って、新しい装置をシステム内に追加する場合、過去に従来型装置にて登録をした利用者であっても、新しい装置のために、生体情報を再登録する必要がある。1:N認証の規模が拡大すると、再登録のために必要な時間及び人件費が増大し、莫大な管理コストが必要となる。これに対し、再登録を自動化することができれば管理コストの増大をできるだけ小さくすることができる。第5の実施の形態では、従来装置1201が既に設置されている端末であり、システムを拡張するために新装置1202が新たに導入された場合に生体情報の再登録の自動化の一例を示す。なお、照合用データには、どの端末タイプで作成されたかを判定するための識別子が付与されている。
 まず、従来装置1201と新装置1202との2種類の装置を用いて、予め装置のキャリブレーションのためにテストチャート1301を撮影する。例えば、テストチャートは図17Aに示すように、複数の平行線によって構成されるグリッドを含む。各装置が、このテストチャート1301を撮影することによって、撮影された画像に含まれる歪みを補正することができる。このチャート1301は、ずれることなく装置に安定して提示できることが望ましいため、装置の指置き台に固定できる形状、例えば、指形状を模した樹脂などに貼り付けるか又は印刷してもよい。指置き台は、指形状に合致する形に作られている場合が多いため、指形状のテストチャートは、あらゆる指静脈認証装置で安定して同じ位置に置くことができる。
 従来装置1201と新装置1202との両者はこのチャート画像を撮影し、両装置で共通に撮影されている部位が抽出される。例えば、従来装置1201では格子の座標が図17Bで示される領域1302が撮影され、新装置では図17Cで示される領域1303が撮影された。これらの共通領域は図17Dで示される領域1304となる。なお、格子のずれ量を決定するため、格子内に円状のマーカ1305が表示されており、基準位置としてマーカ1305の位置を検出することによって各格子点の座標を得ることができる。
 次に、拡大率、台形歪み、魚眼歪みなどの特性を一方の装置に合わせるよう、他方の装置で撮影された画像を変形する。これは、格子の交点形状を画像フィルタにより強調することによって格子の交点を求め、その座標が直線に並ぶように画像を修正することによって、歪みを補正することができる。補正のための座標変換は、一般的な、たる型歪みや糸型歪みの補正式を利用することができる。その際、パラメータを変化させ、格子の交点が最も直線に並ぶパラメータ(補正式)を自動的に求めてもよい。
 また、例えば、格子点の周囲領域のうち黒い領域が最も多い位置を検出することによって、マーカ1305を検出することができる。このようにして得られた座標変換の対応テーブルを、サーバ21に保持する。
 この変換を行った場合と行わなかった場合とで、照合スコアの分布は異なる。変換をしない場合は、図17Eに示すように、本来照合スコアが低くなる同一指間での照合結果の相違度が、画像の歪みや撮影位置のずれによって、上昇する。一方、変換後の照合スコアは、図17Fに示すように、同一指と異なる指との分離度が高まる。しかし、画像の変換だけで、新旧装置間の認証において、本来の認証精度を達成することはできない。そこで、この特性を利用して、再登録の自動化を実現する。
 まず、従来装置で既に登録済みの利用者が、新装置に生体を提示する。次に、新装置によって撮影された入力データを、新装置によって撮影された全登録データと照合する。その結果、認証が成功しなかった場合、旧装置によって撮影された登録データが存在するか否かを、以下のように判定する。まず、前述したように新装置で撮影された生体画像を従来装置で撮影された画像に近づくように変換する。そして、補正後の画像から照合用データを抽出し、旧装置によって撮影された全登録データと照合する。なお、照合用データが画像テンプレートのように画像の位相情報を含む場合、元の撮影画像を変換せず照合用データを補正してもよい。また、照合用データを生成する際に画像の大きさが変更されている場合、その変更を考慮して画像を補正する。これによって、元の撮影画像が登録データに保存されていないなど、元画像が利用できない場合においても照合用データのみで補正をすることができる。
 照合の結果、別人である確率が所定の閾値より低いと判定できる照合スコア、例えば図17FのThより低い照合スコアが得られた場合、その登録データを本人のものと判定する。このとき、新装置で撮影された生体情報から登録データを生成し、生成された登録データを新装置用の登録データとして保存する。これによって、新装置用の登録データを自動的に登録することができ、次回以降、新装置を用いた認証時には新装置用の登録データによって認証し、従来装置を用いた認証時は従来装置用の登録データによって認証する。これによって、各装置の性能に応じた認証を実行することができる。なお、自動的に登録された新装置用の登録データによる認証が、一部の利用者でThを下回らない場合があっても、多くの利用者について再登録を不要とすることができ、システムの運用コストを低減することができる。
 閾値Th近辺の照合スコアが得られた場合など、確率的に別人である可能性が依然として残る場合、別の指の提示を促すことによって、より確実に登録データを更新することができる。このとき、第1の実施の形態において前述したとおり、複数の生体情報を合成する方法を用いることができる。複数の生体情報の合成によって、誤登録の確率を極めて小さくすることができる。さらに、登録者IDやPINなどの提示によって登録者を一意に定めた後に新装置用の登録データを自動的に登録してもよい。登録者を一意に定めることによって、1:1認証が実行されるため、他人を受け入れるリスクが低下し、認証閾値を緩くすることができる。このため自動更新が行われやすくなる。
 図18は、第5の実施の形態の認証処理のフローチャートである。
 第5の実施の形態の認証システムでは、サーバ21は新旧装置(端末)1201、1202、それぞれに適した登録データベースと認証処理手段を備えている。さらに、サーバ21は新旧装置それぞれに前述したテストチャートを提示して得られた、チャートの絶対座標と歪みとを補正するパラメータを保持しており、前述した新旧装置間で最適な画像変換を実行する。なお、この過程で生成された照合用データを新旧共通照合データと定め、新旧装置本来の登録データから生成された新旧共通照合データがサーバ21に保持されている。さらに、サーバ21は、新旧装置の相互照合を実行した際の照合スコアの確率分布を保持している。
 まず、サーバ21は、端末からの認証要求を待つ(S2001)。その後、利用者が端末に生体を提示すると、サーバ21は、端末701から、その端末の種別(従来装置か、新装置かを示す情報)と入力データとを受け取る(S2002)。
 サーバ21は、端末種別と同じ登録データベースと照合方法を用いて認証処理を実行する(S2003)。そして、認証条件を満たすか否かを判定する(S2004)。その結果、認証条件を満たしている場合、既にその入力端末に対応する登録データが登録済みであるため、認証成功の処理を実行して、この認証処理を終了する(S2010)。
 一方、認証条件を満たさない場合、その入力端末に対応する登録データが未登録であるか、認証してはいけない部外者であるかのどちらかである。そこで、その入力端末とは異種の端末で登録されているか否かを判定し、異種の端末では登録済みであれば、生体の提示を受けた装置(未登録装置)によって撮影された登録データを自動的に保存する。
 まず、入力データを新旧共通データに変換する(S2005)。次に、入力端末とは異種の端末に対応する登録データベースの全新旧共通データと、変換済みの入力データとを照合する(S2006)。そして、自動登録が可能な条件を満たすか否かを判定する(S2007)。例えば、予め用意された新旧装置間の相互照合の照合スコアの出現頻度分布から、同一指であると判定できる閾値を予め決定しておき、S2006において、この閾値を満たす照合結果が得られたかによって、自動登録が可能かを判定することができる。
 この判定条件を満たさない場合、自動登録は不可と判定され、認証失敗の処理を実行して、この認証処理を終了する(S2011)。一方、判定条件を満たす場合、入力端末より受信した照合用の入力データを、その入力端末と同種の登録データベースに格納することによって、新装置に対応する登録データを自動的に登録する(S2008)。このとき、自動登録が可能と判定されているため、当然ながら、この生体を提示した者は登録者であると判定できる。よって、認証成功の処理を実行する(S2009)。
 ここで、自動登録条件は認証条件と同一か、又は、認証条件より厳しい条件を設定するとよい。それは、偶発的な他人受入の発生よりも、不正な利用者が登録されることの方が、セキュリティをより脆弱にするからである。
 <第6の実施の形態>
 図19A及び図19Bは、本発明の第6の実施の形態の入力装置の一構成例を示し、図19Aは指の延伸方向に沿った入力装置の縦断面図であり、図19Bは指の断面方向の入力装置の縦断面図である。
 第6の実施の形態の入力装置は、多種の光源を用いて指静脈を撮影する、指静脈の登録装置である。システムに混在する指静脈の提示を受け付ける端末は、装置のサイズ、コストなどの相違によって様々な形状となり、さらに、指静脈を撮影するための光源の配置にもいくつかのバリエーションが存在する。そこで、生体情報を登録するため登録装置は、想定される配置の全ての光源を備え、この登録装置を利用して登録データを生成するための生体の画像を撮影することによって、複数の種別の端末に汎用的に利用することができる画像を取得することができる。
 入力装置2には複数の光源が備わる。具体的には、上方光源1401、左右両側方から指に光を照射する側方光源1402、前方から指に光を照射する前方光源1403、下方から指に光を照射する下方光源1404とが備わる。なお、各光源は、必要とされる光量などに応じて、複数個の発光素子が設けられるとよい。また、指の中央部分を撮影するカメラ1410及び指先部分を撮影するカメラ1411が備わる。これは、既存の指静脈認証装置で撮影される全ての部位を撮影するために設けられたものである。なお、指の横側の静脈を用いた指静脈認証装置と互換性をもたせる場合、指の側面を撮影するカメラを設けてもよい。
 また、入力装置2は、利用者が指を提示する指置き台1405を備える。指置き台1405の中央部には開口部が設けられている。この開口部は、指置き台1405に提示された指をカメラ1410及び1411によって下方から撮影するため、また、指置き台1405に提示された指に光源1404によって下方から光を照射するためのものである。
 利用者は、指1を指置き台1405に提示する。タッチセンサなどによって指の提示が検出されると、入力装置2は撮影を開始する。具体的には、各光源を独立に一つ一つ点灯しながら指を撮影する。光源から照射される光が異なると、指静脈パターンを撮影した画像が異なるため、各光源から光を照射して撮影した画像を全て保存する。これによって、認証システムに接続されている装置、又は今後接続される可能性がある装置と同じ照射方法によって画像を撮影することができ、撮影画像を登録データとして汎用的に利用することができる。
 具体的には、上方光源1401を点灯させ、指の中央部分を撮影するカメラ1410によって撮影される画像と、指先部分を撮影するカメラ1411とによって撮影される画像との指領域の平均輝度値が等しくなるように、各光量の光量を調整した後に、撮影する。次に、両側面の光源1402を同時に点灯して側面照射時の指静脈を撮影する。また、両側面の光源1402を交互に点灯して2枚の側面照射時の指静脈画像を撮影し、その2枚のうち撮影状態の良い領域を合成することによって1枚の指静脈画像に変換してもよい。さらに、前方の光源1403を点灯して撮影する。最後に下方の光源1404を照射して撮影する。このように各光源を順番に用いて、各カメラで最適となる光量に調整しながら複数の画像を順に撮影する。
 なお、登録装置に備わるカメラ1410、1411の解像度は、認証用の端末に備わるカメラに比べて十分に感度が高く、かつ解像度も高いものを用いるとよい。高画質の画像を低画質に変換することは容易であることから、高画質の登録用画像を取得することによって、多種の認証用端末との互換性を高めることができる。
 認証システムに入力装置(例えば、認証用端末)が接続された場合、入力装置2は、例えば、解像度やS/Nなどのカメラの仕様、光源の照射方法、指の撮影面の情報(腹側、左側面、右側面、指先、甲側など)、指先の位置などを基準とした撮影領域の位置、指輪郭の撮影の有無などの端末の仕様を、サーバ21に通知する。サーバ21は、この通知を受信した後、登録時に撮影された画像の中から、この入力装置の照射方法と一致する照射方法によって撮影された画像を抽出し、平滑化フィルタ、ローパスフィルタなどの画像フィルタによって、この入力装置の解像度と一致する解像度に変換し、さらに、この入力装置によって撮影された画像に対応する領域を登録画像から抽出した後に、登録画像から特徴を抽出し、登録データとして保存する。今後、この入力装置に入力された指静脈は、この保存された登録データを利用して認証される。
 また、別の端末がシステムに追加された場合も、同様に、端末の仕様から、その端末に適する画像を生成する。これによって、一度、本実施の形態において示す登録端末で登録をすれば、どのような端末が接続されても汎用的に登録データを利用でき、利用者が認証用端末の種別毎に生体情報を登録する手間を省き、利便性を向上することができる。
 <第7の実施の形態>
 図20A及び図20Bは、本発明の第7の実施の形態の認証システムの一構成例を示す。
 第7の実施の形態の認証システムは、登録データベースを時間によって切り替えることによって、経時変化に対して堅固(ロバスト)な認証が行える認証システムである。
 登録データベース22には、時間によって異なる登録データが保存されている。例えば、図20Bに示すように、0時から2時、2時から4時、4時から6時のように2時間ごとに領域を区切って、登録された時間帯別の登録データが登録データベース1501に格納される。
 利用者はシステムを利用する前に生体情報を登録する。このとき、登録データは登録時の時間に対応した領域に格納される。例えば、登録者ID=0002の利用者1502が10時から11時59分の間に登録した場合、時間帯別の登録データベース1501の10時台の箇所に登録データが保存される。
 次に、利用者が認証のために入力装置701に生体を提示したとき、生体を提示した時刻に最も近い時間帯の登録データを用いて認証する。例えば、利用者1502が12時に入力を試みた場合、登録時間帯が12時に最も近い登録データと入力データとが照合される。例えば、登録者ID=0001の利用者は10時台のデータと12時台のデータとが登録されているため、近い時間の12時台の登録データを優先して入力データと照合する。また、登録者ID=0002の利用者は12時台のデータが登録されていないため、認証を試みた時刻である12時に最も近い時間帯である10時台に保存されている登録データを入力データと照合する。また、登録者ID=0003の利用者は12時台のデータが登録されているため、12時台の登録データを入力データと照合する。このように、認証を試みた時刻に近い時間帯の登録データを優先して、全登録者IDについて順に照合する。
 その結果、認証閾値を下回る照合スコアが得られた場合、登録者IDを特定して認証を成功させる。ここで、利用者1502の登録者IDは0002であると判定された場合、認証処理を実行した12時台の時間帯のデータがデータベースに登録されていないため、認証用に提示された入力データを登録データ23Aとしてデータベースに登録する。つまり、登録者ID=0002の12時台の領域に、認証が成功した際の入力データを登録データとして登録する。
 このように、利用者が様々な時間帯で認証システムを利用すると、様々な時間帯で撮影された生体情報が徐々に蓄積される。このため、朝に撮影された登録データと、夜に撮影された登録データとが異なる場合、認証を試みた時刻に近い登録データを利用することができ、生体情報が1日の中で変動しても、正確に認証をすることができる。
 図21は、第7の実施の形態の認証処理のフローチャートである。
 第7の実施の形態の認証システムでは、登録データは、撮影された時間帯に対応した登録領域に格納されている。また、この登録者IDがnで登録時刻がtの登録データを、登録データ(n、t)と示す。
 まず、サーバ21は、認証端末701からの認証要求を待つ(S2101)。その後、サーバ21は、端末701から入力データを受け取り(S2102)、データの受信時刻Tnを取得する(S2103)。なお、サーバ21が、端末701から、提示時刻(認証が試みられた時刻)を受信して、受信した時刻をTnとしてもよい。
 そして、入力データと全登録データとを照合する。まず、登録者IDを示す変数nが1から登録件数Nまで繰り返されるループ(S2104~S2106)において、登録時刻tを0時から24時まで変化させた場合に登録データ(n、t)が存在し、かつ時刻Tnとtとの差の絶対値|Tn−t|が最小となるtを探し、該当する登録データを登録データnとする(S2104)。ループ2におけるtの変化量は、どの程度の時間間隔でデータを登録するかによって変えるとよい。例えば、1時間毎に登録データを保持するようにシステムを設計した場合、ループ2において、tを1時間ずつ変化させてS2104の処理を実行する。
 そして、登録データnと入力データとを照合し(S2105)、認証条件を満たすか否かを判定する(S2106)。その結果、認証条件を満たす場合、今回の入力データを登録データ(n、Tn)に格納し(S2108)、認証成功の処理を実行する(S2109)。この処理によって、様々な時間帯に撮影された生体情報が登録データベースに保存される。そして、追加された登録データは以後の認証処理に用いることができるため、生体情報が1日の中で変動しても堅固な認証をすることができる。もし、認証成功条件を満たさない場合は他の登録データに対してS2104~S2106の処理を繰り返す。S2104~S2106の処理を繰り返しても、認証条件を満たさなければ、認証失敗の処理を実行し(S2107)、この認証処理を終了する。
 なお、季節ごとに登録データを格納する領域を設けてもよい。さらに、入力装置701に温度計、湿度計、照度計などの周囲の環境を測定するセンサを設け、各センサによって取得できる値毎に登録データベースの領域を分けてもよい。例えば、気温が20度から30度の間である場合と、10度から20度の間である場合とで登録データを分けることができるため、気温によって生体情報が変動しても正確に認証することができる。また、気温によって認証閾値を変化させてもよい。気温が低いときに認証精度が劣化する場合、気温が低いときに認証閾値を緩和してもよい。
 以上説明したように、第7の実施の形態によると、生体の周囲の環境に合った認証をすることができ、環境適合性を高めることができる。
 本発明は大規模な生体認証装置に適用することができ、高精度かつ高速な認証を実現し、保守性の高い認証システムを提供するし、個人認証装置として有用である。

Claims (28)

  1.  生体の特徴を用いて個人を認証する認証システムであって、
     前記生体を載置するための入力装置、
     前記生体を撮影する撮像装置、
     前記撮像装置によって撮影された画像を処理する画像処理部、
     前記生体の特徴を含み、予め登録された複数の第1特徴データと、前記各第1特徴データから前記画像処理部によって生成される第2特徴データとを格納する記憶装置、及び
     前記撮像装置によって撮影された生体の特徴を示す入力データと、前記第1特徴データ及び前記第2特徴データの各々とを照合する照合処理部を備え、
     前記各第2特徴データは、前記各第1特徴データよりサイズが小さく、かつ、前記生体の特徴の少なくとも一部を含むデータであることを特徴とする認証システム。
  2.  請求項1に記載の認証システムであって、
     前記入力データは、第1入力データ及び第2入力データを含み、
     前記第1入力データは、前記複数の第1特徴データと比較可能なサイズのデータであり、
     前記画像処理部は、前記各第1入力データから前記複数の第2特徴データと比較可能なサイズの第2入力データを生成し、
     前記照合処理部は、前記第2入力データと前記各第2特徴データとを照合した後に、前記第1入力データと前記各第1特徴データとを照合することを特徴とする認証システム。
  3.  請求項2に記載の認証システムであって、
     前記照合処理部は、前記第2入力データと前記各第2特徴データとを照合した結果に基づいて決定された順に、前記第1入力データと前記各第1特徴データとを照合することを特徴とする認証システム。
  4.  請求項3に記載の認証システムであって、
     前記照合処理部は、前記各第2入力データと類似度が高い前記第2特徴データに対応する前記第1特徴データから順に、前記第1入力データと照合することを特徴とする認証システム。
  5.  請求項1に記載の認証システムであって、
     前記記憶装置は、前記照合処理によって得られる照合スコアの集合と他人受入率との関係から決定される閾値を格納し、
     前記照合処理部は、前記照合スコアが前記閾値を下回ると判定された場合に認証処理を終了することを特徴とする認証システム。
  6.  請求項1に記載の認証システムであって、
     前記照合処理部は、所定の認証条件を満たさない場合、先に入力された第1生体と異なる少なくとも一つの第2生体の入力を促すことを特徴とする認証システム。
  7.  請求項6に記載の認証システムであって、
     前記照合処理部は、前記第1生体を用いた照合の結果と前記第2生体を用いた照合の結果との重み付け平均値が所定の閾値を下回ると判定された場合、認証処理を終了することを特徴とする認証システム。
  8.  請求項6に記載の認証システムであって、
     前記照合処理部は、前記第1生体の入力データ及び前記少なくとも一つの第2生体の入力データとを、全ての組み合わせで照合することによって、入力された生体の種類の数を判定することを特徴とする認証システム。
  9.  請求項6に記載の認証システムであって、
     前記所定の閾値を決定するための、前記照合スコアと他人受入率との関係は、異なる生体の照合結果を用いて決定されることを特徴とする認証システム。
  10.  請求項6に記載の認証システムであって、
     前記第1生体と第2生体とは、同一人の異なる生体の部分であることを特徴とする認証システム。
  11.  請求項1に記載の認証システムであって、
     前記記憶装置は、前記照合処理が終了するまでに許容される応答時間を格納し、
     前記照合処理部は、前記照合が前記応答時間内に終了しない場合、認証を停止することを特徴とする認証システム。
  12.  請求項11に記載の認証システムであって、
     前記照合処理部は、前記応答時間以内に所定の認証条件を満たした場合でも、前記応答時間が経過するまで照合処理を継続することを特徴とする認証システム。
  13.  請求項1に記載の認証システムであって、
     前記照合処理部は、前記各第1特徴データとの照合によって所定の認証条件を満たす前記第1特徴データが複数あった場合、又は、前記各第2特徴データとの照合によって所定の認証条件を満たす前記第2特徴データが複数あった場合、認証は失敗と判定することを特徴とする認証システム。
  14.  請求項1に記載の認証システムであって、
     前記各第2特徴データは、前記各第1特徴データの画像を空間的に縮小したものであることを特徴とする認証システム。
  15.  生体の特徴を用いて個人を認証するシステムであって、
     前記生体の情報を取得する複数の端末を備え、
     前記端末は、前記生体を載置するための入力装置、前記生体を撮影する撮像装置、前記撮像装置によって撮影された画像を処理する画像処理部、前記生体の特徴を含み、予め登録された複数の特徴データと、前記各端末に格納される特徴データを表す所在情報とを格納する記憶装置、及び、前記撮像装置によって撮影された生体の特徴を示す入力データと前記複数の特徴データとを照合する照合処理部、及び、前記各端末が遊休状態であるか否かを判定する処理部とを備え、
     前記端末は、入力された生体から生成された入力データを、前記遊休状態であると判定された端末に送信し、
     前記入力データを受信した端末は、前記受信した入力データと、自端末の記憶装置に格納されている前記複数の特徴データの一部又は全部とを照合することを特徴とする認証システム。
  16.  請求項15に記載の認証システムであって、
     前記複数の端末と接続されるサーバを備え、
     前記サーバは、全ての前記複数の特徴データを格納する記憶装置、及び、前記入力データと前記複数の特徴データとを照合する照合処理部を備え、
     前記端末は、
     前記所在情報を用いて、前記各端末に保持された前記特徴データの全てと前記入力データとが照合されるように、前記各特徴データの送信先の端末を決定し、
     前記サーバの照合処理部は、何れの前記端末にも格納されていない特徴データと前記入力データとを照合することを特徴とする認証システム。
  17.  請求項15に記載の認証システムであって、
     前記端末は、前記特徴データが複数の前記端末に格納されている場合、稼働率が低い前記端末が優先して当該特徴データとの照合を実行するように、前記複数の特徴データの送信先の端末を決定することを特徴とする認証システム。
  18.  生体の特徴を用いて個人を認証する認証システムであって、
     前記生体の情報を取得し、少なくとも第1端末及び第2端末を含む複数の端末、及び
     前記複数の端末と接続されるサーバを備え、
     前記各端末は、前記生体を載置するための入力装置、前記生体を撮影する撮像装置、及び、前記撮像装置によって撮影された画像を処理する画像処理部を備え、
     前記複数の端末又は前記サーバの少なくとも一方は、前記生体の特徴を含み、予め登録された複数の特徴データと、各端末間を利用者が移動するための推定時間を含む移動時間情報とを格納する記憶装置、及び、前記撮像装置によって撮影された生体の特徴を示す入力データと前記複数の特徴データとを照合する照合処理部を備え、
     利用者の生体が提示されることによって、前記第1端末で認証が成功した場合、前記移動時間情報を参照して、前記第1端末から前記第2端末まで移動するための推定時間を取得し、前記取得した推定時間の間、前記第2端末は当該利用者の認証の成功を阻止することを特徴とする認証システム。
  19.  生体の特徴を用いて個人を認証する認証システムであって、
     前記生体の情報を取得する端末、及び
     前記端末と接続されるサーバを備え、
     前記端末は、前記生体を載置するための入力装置、前記生体を撮影する撮像装置、前記撮像装置によって撮影された画像を処理する画像処理部、前記生体の特徴を含み、予め登録された複数の特徴データと、前記各特徴データを取得した際の前記生体の姿勢とを格納する記憶装置、前記撮像装置によって撮影された生体の特徴を示す入力データと前記複数の特徴データとを照合する照合処理部、及び、入力された前記生体の姿勢を検出する姿勢検出部を備え、
     前記撮像装置は、前記生体を複数回撮影し、
     前記姿勢検出部は、前記入力された生体の撮影時の姿勢を検出し、
     前記照合処理部は、前記入力された生体の撮影時の姿勢と、前記各特徴データに対応する前記生体の姿勢とを照合し、両者の姿勢が類似する状態で撮影された生体の画像から生成された入力データを前記サーバに送信することを特徴とする認証システム。
  20.  生体の特徴を用いて個人を認証する認証システムであって、
     前記生体の情報を取得する端末、及び
     前記端末と接続されるサーバを備え、
     前記端末は、前記生体を載置するための入力装置、前記生体を撮影する撮像装置、前記撮像装置によって撮影された画像を処理する画像処理部、前記生体の特徴を含み、予め登録された複数の特徴データを格納する記憶装置、及び、前記撮像装置によって撮影された生体の特徴を示す入力データと前記複数の特徴データとを照合する照合処理部を備え、
     前記サーバは、
     前記入力データと前記複数の特徴データとを照合し、
     前記入力データと最も類似する前記特徴データとの照合によって得られた、前記入力データと前記特徴データとの位置ずれの情報を前記端末に送信することを特徴とする認証システム。
  21.  請求項20に記載の認証システムであって、
     前記撮像装置は、前記生体を複数回撮影し、
     前記照合処理部は、
     前記サーバによって照合された入力データと他の前記入力データとを照合し、
     前記サーバから送信された位置ずれの情報と、前記他の入力データとの照合によって得られた位置ずれの情報とを比較し、
     前記サーバから送信された位置ずれの情報と、位置ずれの情報が最も類似する前記入力データと前記登録データとを照合することを特徴とする認証システム。
  22.  生体の特徴を用いて個人を認証する認証システムであって、
     前記生体の情報を取得する複数の端末、及び
     前記複数の端末と接続されるサーバを備え、
     前記各端末は、前記生体を載置するための入力装置、前記生体を撮影する撮像装置、前記撮像装置によって撮影された画像を処理する画像処理部、前記生体の特徴を含み、予め登録された複数の特徴データを格納する記憶装置、及び、前記撮像装置によって撮影された生体の特徴を示す入力データと前記複数の特徴データとを照合する照合処理部を備え、
     前記サーバは、前記各端末によって撮影された画像の撮影範囲及び画像の変形の少なくとも一方を補正するための情報を生成することを特徴とする認証システム。
  23.  請求項22に記載の認証システムであって、
     前記サーバは、
    前記画像の撮影範囲及び/又は変形が補正された入力データと前記複数の特徴データとを照合し、
     前記照合の結果、前記補正された入力データと前記特徴データとの類似度が所定の条件を満たす場合、前記補正された入力データを生成する元となった補正前の画像から特徴データを生成し、
     前記生成された特徴データを登録することを特徴とする認証システム。
  24.  指の静脈を用いて個人を認証する認証装置であって、
     前記指を載置するための指置き台、
     前記指に向けて光を照射する光源、
     前記指を透過した光を撮影する撮像装置、及び
     前記撮像装置によって撮影された画像を処理する画像処理部を備え、
     前記光源は、前記指の上方、前方、側方及び下方のそれぞれの位置に、光源の組として設置され、
     前記撮像装置は、一つの前記光源の組が発光した状態で、前記生体を撮影することを特徴とする認証装置。
  25.  請求項24に記載の認証装置であって、
     前記撮影された画像のうち、他の認証装置に配置された光源と同一の位置に配置された光源が発光した状態で撮影された画像を、前記他の認証装置用の特徴データとして登録することを特徴とする認証装置。
  26.  生体の特徴を用いて個人を認証する認証システムであって、
     前記生体を載置するための入力装置、
     前記生体を撮影する撮像装置、
     前記撮像装置により撮影された画像を処理する画像処理部、
     前記前記生体の特徴を含み、予め登録された複数の特徴データを格納する記憶装置、及び
     前記撮像装置によって撮影された生体の特徴を示す入力データと前記複数の特徴データとを照合する照合処理部を備え、
     前記画像処理部は、前記撮像装置によって撮影された生体の画像から入力データを生成し、前記生成された入力データに前記生体の提示時刻を付与し、
     前記各特徴データには、当該特徴データが生成される元となった生体が提示された時刻が付与されており、
     前記入力データが生成された時刻と異なる時間帯に属する時刻に生成された前記特徴データとを照合した結果、前記入力データの認証が成功した場合、前記入力データが生成された時刻の特徴データとして、前記認証が成功した入力データを登録することを特徴とする認証システム。
  27.  請求項26に記載の認証システムであって、
     前記サーバは、
     前記入力データに付与された時刻に最も近い時刻の登録データを選択し、
     前記選択された登録データと前記入力データとを照合することを特徴とする認証システム。
  28.  請求項26に記載の認証システムであって、
     前記登録データには、当該特徴データが生成される元となった生体が提示された際の気温の情報が付与されており、
     前記サーバは、
     前記入力データが提示された際の気温に最も近い気温の情報が付された登録データを選択し、
     前記選択された登録データと前記入力データとを照合することを特徴とする認証システム。
PCT/JP2009/069754 2009-11-17 2009-11-17 生体情報を用いた認証システム及び認証装置 WO2011061862A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/510,320 US9076027B2 (en) 2009-11-17 2009-11-17 Authentication system using biometric information and authentication device
JP2011541781A JP5605854B2 (ja) 2009-11-17 2009-11-17 生体情報を用いた認証システム及び認証装置
PCT/JP2009/069754 WO2011061862A1 (ja) 2009-11-17 2009-11-17 生体情報を用いた認証システム及び認証装置
CN200980162428.3A CN102598052B (zh) 2009-11-17 2009-11-17 利用生物体信息的认证系统及认证装置
EP09851484.7A EP2503509A4 (en) 2009-11-17 2009-11-17 Authentication system using organism information, and authentication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/069754 WO2011061862A1 (ja) 2009-11-17 2009-11-17 生体情報を用いた認証システム及び認証装置

Publications (1)

Publication Number Publication Date
WO2011061862A1 true WO2011061862A1 (ja) 2011-05-26

Family

ID=44059354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069754 WO2011061862A1 (ja) 2009-11-17 2009-11-17 生体情報を用いた認証システム及び認証装置

Country Status (5)

Country Link
US (1) US9076027B2 (ja)
EP (1) EP2503509A4 (ja)
JP (1) JP5605854B2 (ja)
CN (1) CN102598052B (ja)
WO (1) WO2011061862A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196075A (ja) * 2012-03-16 2013-09-30 Hitachi Ltd 移動追随認証情報照合装置
JP2013205932A (ja) * 2012-03-27 2013-10-07 Fujitsu Ltd 生体認証装置、生体認証システム、生体認証方法、生体認証プログラム
JP2014137423A (ja) * 2013-01-15 2014-07-28 Fujitsu Ltd 暗号処理装置、方法およびプログラム
JP2015049908A (ja) * 2013-08-29 2015-03-16 アクセンチュア グローバル サービスィズ リミテッド 識別システム
EP2879072A1 (en) 2013-12-02 2015-06-03 Fujitsu Limited Biometric information registration device and method
JP2016081410A (ja) * 2014-10-21 2016-05-16 康弘 久田 バイオメトリクス認証方法システム、バイオメトリクス認証プログラムおよびバイオメトリクス認証方法
JP2018147206A (ja) * 2017-03-06 2018-09-20 政信 近藤 個人認証装置
JP2018147207A (ja) * 2017-03-06 2018-09-20 政信 近藤 個人認証装置
JP2018180952A (ja) * 2017-04-13 2018-11-15 富士通株式会社 情報処理装置、機能制限管理方法及び機能制限管理プログラム
JP2019121080A (ja) * 2017-12-28 2019-07-22 シヤチハタ株式会社 認証用画像の取得装置、認証用画像の取得システムおよび認証用画像の取得方法
JP2019526141A (ja) * 2016-07-11 2019-09-12 ルッキーメディア(ユーケー)リミテッドLookiimedia(Uk)Limited 構造化された記憶済みデータへのアクセスの提供
WO2019207649A1 (ja) * 2018-04-24 2019-10-31 三菱電機株式会社 認証装置
JP2021033679A (ja) * 2019-08-26 2021-03-01 株式会社富士通ビー・エス・シー 検査装置
JP2021518017A (ja) * 2018-09-28 2021-07-29 チャイナ ユニオンペイ カンパニー リミテッド 身元認識システム及び方法、端末、並びにコンピュータ記憶媒体
WO2021250858A1 (ja) * 2020-06-11 2021-12-16 富士通株式会社 認証方法、認証プログラム、および情報処理装置
WO2022080292A1 (ja) * 2020-10-16 2022-04-21 日本電気株式会社 認証システム、認証方法およびプログラム記録媒体
WO2023074229A1 (ja) * 2021-11-01 2023-05-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 情報処理方法、情報処理装置、及び情報処理プログラム

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7237117B2 (en) 2001-03-16 2007-06-26 Kenneth P. Weiss Universal secure registry
US8001055B2 (en) 2006-02-21 2011-08-16 Weiss Kenneth P Method, system and apparatus for secure access, payment and identification
US11227676B2 (en) 2006-02-21 2022-01-18 Universal Secure Registry, Llc Universal secure registry
US8234220B2 (en) 2007-02-21 2012-07-31 Weiss Kenneth P Universal secure registry
US8312507B2 (en) 2006-10-17 2012-11-13 A10 Networks, Inc. System and method to apply network traffic policy to an application session
US7716378B2 (en) 2006-10-17 2010-05-11 A10 Networks, Inc. System and method to associate a private user identity with a public user identity
EP3553703A1 (en) 2008-04-25 2019-10-16 Aware, Inc. Biometric identification and verification
US8041956B1 (en) * 2010-08-16 2011-10-18 Daon Holdings Limited Method and system for biometric authentication
JP5447647B2 (ja) * 2010-03-08 2014-03-19 富士通株式会社 生体認証装置、生体認証プログラム及び方法
US8555155B2 (en) * 2010-06-04 2013-10-08 Apple Inc. Reader mode presentation of web content
WO2012037479A1 (en) 2010-09-17 2012-03-22 Universal Secure Registry, Llc Apparatus, system and method employing a wireless user-device
JP5799586B2 (ja) * 2011-05-27 2015-10-28 富士通株式会社 生体認証装置、生体認証方法及び生体認証用コンピュータプログラム
US8977947B2 (en) 2011-06-03 2015-03-10 Apple Inc. Method for presenting documents using a reading list panel
US10212158B2 (en) * 2012-06-29 2019-02-19 Apple Inc. Automatic association of authentication credentials with biometrics
US9041689B1 (en) * 2012-08-02 2015-05-26 Amazon Technologies, Inc. Estimating fingertip position using image analysis
JP5992276B2 (ja) * 2012-09-20 2016-09-14 株式会社東芝 人物認識装置、及び方法
JP5982311B2 (ja) * 2013-03-22 2016-08-31 株式会社 日立産業制御ソリューションズ 血管画像撮影装置
US9122853B2 (en) * 2013-06-24 2015-09-01 A10 Networks, Inc. Location determination for user authentication
WO2015009111A1 (ko) * 2013-07-18 2015-01-22 삼성전자 주식회사 생체인식 기반 인증 방법 및 장치
GB201313680D0 (en) * 2013-07-31 2014-01-08 Mbda Uk Ltd Image processing
GB201313682D0 (en) 2013-07-31 2013-12-18 Mbda Uk Ltd Method and apparatus for tracking an object
GB201313681D0 (en) 2013-07-31 2014-01-08 Mbda Uk Ltd Image processing
US10331866B2 (en) 2013-09-06 2019-06-25 Apple Inc. User verification for changing a setting of an electronic device
US20150073998A1 (en) 2013-09-09 2015-03-12 Apple Inc. Use of a Biometric Image in Online Commerce
JP6268960B2 (ja) * 2013-11-15 2018-01-31 オムロン株式会社 画像認識装置及び画像認識装置に対するデータ登録方法
US11165770B1 (en) 2013-12-06 2021-11-02 A10 Networks, Inc. Biometric verification of a human internet user
US9317535B2 (en) * 2013-12-16 2016-04-19 Viscovery Pte. Ltd. Cumulative image recognition method and application program for the same
US20150220931A1 (en) 2014-01-31 2015-08-06 Apple Inc. Use of a Biometric Image for Authorization
JP6354264B2 (ja) * 2014-03-31 2018-07-11 富士通株式会社 認証システム、認証装置、認証方法、及び認証プログラム
CN105320867B (zh) * 2014-05-30 2018-07-06 神盾股份有限公司 电子装置和指纹辨识方法
US9672405B2 (en) * 2014-05-30 2017-06-06 Egis Technology Inc. Electronic device and fingerprint recognition method
US9230152B2 (en) 2014-06-03 2016-01-05 Apple Inc. Electronic device for processing composite finger matching biometric data and related methods
KR101524575B1 (ko) * 2014-08-20 2015-06-03 박준호 웨어러블 디바이스
JP6238867B2 (ja) 2014-09-30 2017-11-29 株式会社日立製作所 逐次バイオメトリック暗号システムおよび逐次バイオメトリック暗号処理方法
CN104408780A (zh) * 2014-11-28 2015-03-11 四川浩特通信有限公司 一种人脸识别考勤系统
US10733414B2 (en) * 2014-12-01 2020-08-04 Zkteco Co., Ltd. System and method for personal identification based on multimodal biometric information
WO2016086341A1 (en) * 2014-12-01 2016-06-09 Dongguan Zkteco Electronic Technology Co., Ltd System and method for acquiring multimodal biometric information
US10154818B2 (en) * 2014-12-24 2018-12-18 Samsung Electronics Co., Ltd. Biometric authentication method and apparatus
US10204353B2 (en) * 2015-01-28 2019-02-12 CertiRx, Inc. Copy detection using extinsic features
US9558392B2 (en) * 2015-02-12 2017-01-31 Korecen Co., Ltd. Finger vein authentication system
US10055661B2 (en) * 2015-03-24 2018-08-21 Intel Corporation Skin texture-based authentication
KR102329821B1 (ko) * 2015-06-04 2021-11-23 삼성전자주식회사 개인 인증 전자 장치 및 방법
US20160364609A1 (en) * 2015-06-12 2016-12-15 Delta ID Inc. Apparatuses and methods for iris based biometric recognition
KR102442779B1 (ko) * 2015-11-24 2022-09-14 삼성전자주식회사 사용자 인증 방법 및 장치
KR101626837B1 (ko) * 2015-12-08 2016-06-02 주식회사 나르테크놀로지 손가락 마디 및 지정맥 기반의 융합형 생체 인증 방법 및 그 장치
US11163899B2 (en) * 2016-02-15 2021-11-02 Ricoh Company, Ltd. Information processing system and information processing method
US10114937B2 (en) 2016-02-21 2018-10-30 Charles Bassenye-Mukasa Continuous biometric authentication system and method for man-machine user interfaces
SE539630C2 (en) * 2016-02-24 2017-10-24 Fingerprint Cards Ab Method and system for controlling an electronic device
EP3423974A4 (en) * 2016-03-02 2020-05-06 Tinoq Inc. SYSTEMS AND METHODS FOR EFFICIENT FACE RECOGNITION
US10728694B2 (en) 2016-03-08 2020-07-28 Tinoq Inc. Systems and methods for a compound sensor system
CN105871814A (zh) * 2016-03-22 2016-08-17 燕南国创科技(北京)有限公司 用于认证的方法和服务器
CN105847253B (zh) * 2016-03-22 2019-01-15 燕南国创科技(北京)有限公司 用于认证的方法和设备
EP3436926A4 (en) 2016-03-30 2019-11-13 Tinoq Inc. SYSTEMS AND METHODS FOR USER DETECTION AND RECOGNITION
CN106022067B (zh) * 2016-05-30 2018-03-27 广东欧珀移动通信有限公司 一种解锁控制方法及终端设备
JP6840478B2 (ja) * 2016-07-07 2021-03-10 キヤノン株式会社 電子機器
US10706731B2 (en) 2016-08-10 2020-07-07 Bedford, Freeman & Worth Publishing Group, Llc Attendance monitoring system
US20200034807A1 (en) * 2016-09-29 2020-01-30 Yaron HERSHCOVICH Method and system for securing transactions in a point of sale
US11049031B2 (en) 2016-10-18 2021-06-29 Intel Corporation Methods and apparatus to predict sports injuries
US10248784B2 (en) * 2016-12-01 2019-04-02 International Business Machines Corporation Sequential object set passwords
US10614206B2 (en) 2016-12-01 2020-04-07 International Business Machines Corporation Sequential object set passwords
DE102017111933A1 (de) * 2017-05-31 2018-12-06 Krohne Messtechnik Gmbh Verfahren zur sicheren Kommunikation mit einem Feldmessgerät der Prozesstechnik und entsprechendes Feldmessgerät
US20180365599A1 (en) * 2017-06-19 2018-12-20 Amadeus S.A.S. Updating an entire itinerary based on modifying a single travel reservation
US20190095808A1 (en) * 2017-09-27 2019-03-28 Intel Corporation Methods and apparatus to dynamically adjust an analytics threshold
JP6751072B2 (ja) * 2017-12-27 2020-09-02 株式会社日立製作所 生体認証システム
CN108537111A (zh) 2018-02-26 2018-09-14 阿里巴巴集团控股有限公司 一种活体检测的方法、装置及设备
US20190362128A1 (en) * 2018-05-23 2019-11-28 Wen-Kuei Liu Knuckle-print identification system
WO2020041352A1 (en) 2018-08-21 2020-02-27 Tinoq Inc. Systems and methods for member facial recognition based on context information
CN112889062B (zh) * 2018-12-07 2024-09-20 深圳市欢太科技有限公司 人脸识别数据处理方法、装置、移动设备和计算机可读存储介质
KR20200089972A (ko) * 2019-01-18 2020-07-28 삼성전자주식회사 이미지의 보안 방법 및 이를 수행하는 전자 장치
KR20200100481A (ko) * 2019-02-18 2020-08-26 삼성전자주식회사 생체 정보를 인증하기 위한 전자 장치 및 그의 동작 방법
US11625947B1 (en) * 2020-03-03 2023-04-11 Amazon Technologies, Inc. System for detecting and mitigating fraudulent biometric input
CN112019750B (zh) * 2020-09-02 2021-07-23 深圳爱卓软科技有限公司 拍照软件的图片处理方法
US11734974B2 (en) * 2021-04-21 2023-08-22 Hornady Mannfacturing Company Safe with biometric lock mechanism
TWI819403B (zh) * 2021-11-04 2023-10-21 瑞昱半導體股份有限公司 影像資料擴增裝置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258963A (ja) * 2003-02-26 2004-09-16 Fujitsu Ltd 多段階照合による高速idレス照合方法およびシステム
JP2004265353A (ja) * 2003-03-04 2004-09-24 Nippon Signal Co Ltd:The 個人認証システム
JP2004362619A (ja) 2002-11-07 2004-12-24 Matsushita Electric Ind Co Ltd 虹彩登録装置
JP2005215883A (ja) 2004-01-28 2005-08-11 Sony Corp 画像照合装置、プログラム、および画像照合方法
JP2008250508A (ja) 2007-03-29 2008-10-16 Fujitsu Ltd 生体認証プログラム、生体認証システム及び生体認証方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0991434A (ja) * 1995-09-28 1997-04-04 Hamamatsu Photonics Kk 人物照合装置
JP2001092961A (ja) * 1999-09-20 2001-04-06 Sharp Corp 指紋認証装置
JP2003099780A (ja) * 2001-09-21 2003-04-04 Nippon Signal Co Ltd:The アクセスコントロールシステム
KR101051848B1 (ko) 2002-11-07 2011-07-25 파나소닉 주식회사 개인인증방법, 홍채등록장치 및 홍채인증장치
US7920723B2 (en) * 2005-11-18 2011-04-05 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
JP4696605B2 (ja) 2005-03-11 2011-06-08 富士通株式会社 生体認証プログラム、装置及び方法
JP2007036928A (ja) * 2005-07-29 2007-02-08 Sharp Corp 携帯情報端末装置
EP2024899B1 (en) * 2005-09-05 2015-11-04 Alpvision S.A. Means for using microstructure of materials surface as a unique identifier
JP4403426B2 (ja) 2007-01-09 2010-01-27 サイレックス・テクノロジー株式会社 生体認証装置及び生体認証プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362619A (ja) 2002-11-07 2004-12-24 Matsushita Electric Ind Co Ltd 虹彩登録装置
JP2004258963A (ja) * 2003-02-26 2004-09-16 Fujitsu Ltd 多段階照合による高速idレス照合方法およびシステム
JP2004265353A (ja) * 2003-03-04 2004-09-24 Nippon Signal Co Ltd:The 個人認証システム
JP2005215883A (ja) 2004-01-28 2005-08-11 Sony Corp 画像照合装置、プログラム、および画像照合方法
JP2008250508A (ja) 2007-03-29 2008-10-16 Fujitsu Ltd 生体認証プログラム、生体認証システム及び生体認証方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2503509A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196075A (ja) * 2012-03-16 2013-09-30 Hitachi Ltd 移動追随認証情報照合装置
JP2013205932A (ja) * 2012-03-27 2013-10-07 Fujitsu Ltd 生体認証装置、生体認証システム、生体認証方法、生体認証プログラム
JP2014137423A (ja) * 2013-01-15 2014-07-28 Fujitsu Ltd 暗号処理装置、方法およびプログラム
JP2015049908A (ja) * 2013-08-29 2015-03-16 アクセンチュア グローバル サービスィズ リミテッド 識別システム
US9798958B2 (en) 2013-12-02 2017-10-24 Fujitsu Limited Biometric information registration device and method
EP2879072A1 (en) 2013-12-02 2015-06-03 Fujitsu Limited Biometric information registration device and method
JP2016081410A (ja) * 2014-10-21 2016-05-16 康弘 久田 バイオメトリクス認証方法システム、バイオメトリクス認証プログラムおよびバイオメトリクス認証方法
JP7021790B2 (ja) 2016-07-11 2022-02-17 ルッキーメディア(ユーケー)リミテッド 構造化された記憶済みデータへのアクセスの提供
JP2019526141A (ja) * 2016-07-11 2019-09-12 ルッキーメディア(ユーケー)リミテッドLookiimedia(Uk)Limited 構造化された記憶済みデータへのアクセスの提供
JP2018147206A (ja) * 2017-03-06 2018-09-20 政信 近藤 個人認証装置
JP2018147207A (ja) * 2017-03-06 2018-09-20 政信 近藤 個人認証装置
JP2018180952A (ja) * 2017-04-13 2018-11-15 富士通株式会社 情報処理装置、機能制限管理方法及び機能制限管理プログラム
JP2019121080A (ja) * 2017-12-28 2019-07-22 シヤチハタ株式会社 認証用画像の取得装置、認証用画像の取得システムおよび認証用画像の取得方法
JP7098131B2 (ja) 2017-12-28 2022-07-11 シヤチハタ株式会社 認証用画像の取得装置、認証用画像の取得システムおよび認証用画像の取得方法
WO2019207649A1 (ja) * 2018-04-24 2019-10-31 三菱電機株式会社 認証装置
JPWO2019207649A1 (ja) * 2018-04-24 2020-12-03 三菱電機株式会社 認証装置
CN111971671A (zh) * 2018-04-24 2020-11-20 三菱电机株式会社 认证装置
JP2021518017A (ja) * 2018-09-28 2021-07-29 チャイナ ユニオンペイ カンパニー リミテッド 身元認識システム及び方法、端末、並びにコンピュータ記憶媒体
JP2021033679A (ja) * 2019-08-26 2021-03-01 株式会社富士通ビー・エス・シー 検査装置
WO2021250858A1 (ja) * 2020-06-11 2021-12-16 富士通株式会社 認証方法、認証プログラム、および情報処理装置
JPWO2021250858A1 (ja) * 2020-06-11 2021-12-16
US20230070660A1 (en) * 2020-06-11 2023-03-09 Fujitsu Limited Authentication method, non-transitory computer-readable storage medium for storing authentication program, and information processing device
JP7315884B2 (ja) 2020-06-11 2023-07-27 富士通株式会社 認証方法、認証プログラム、および情報処理装置
WO2022080292A1 (ja) * 2020-10-16 2022-04-21 日本電気株式会社 認証システム、認証方法およびプログラム記録媒体
WO2023074229A1 (ja) * 2021-11-01 2023-05-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 情報処理方法、情報処理装置、及び情報処理プログラム

Also Published As

Publication number Publication date
JP5605854B2 (ja) 2014-10-15
CN102598052A (zh) 2012-07-18
CN102598052B (zh) 2016-01-13
EP2503509A1 (en) 2012-09-26
US9076027B2 (en) 2015-07-07
JPWO2011061862A1 (ja) 2013-04-04
EP2503509A4 (en) 2018-01-17
US20120230555A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5605854B2 (ja) 生体情報を用いた認証システム及び認証装置
US11188734B2 (en) Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
US9875425B2 (en) Individual identification device, and identification threshold setting method
KR102573482B1 (ko) 생체 보안 시스템 및 방법
US9361507B1 (en) Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
JP4650386B2 (ja) 個人認証システム及び個人認証方法
US9298996B2 (en) Biometric authentication device and method
KR101629224B1 (ko) 생체 특징에 기반한 인증 방법, 장치 및 시스템
JP6005750B2 (ja) 認証装置、及び認証方法
US20220253514A1 (en) Method and system for seamless biometric system self-enrollment
Alsellami et al. The recent trends in biometric traits authentication based on internet of things (IoT)
KR20100041562A (ko) 인증 대상자의 얼굴 인식과 지문 인식을 통한 사용자 인증 수행 방법 및 시스템
US10621419B2 (en) Method and system for increasing biometric acceptance rates and reducing false accept rates and false rates
JP2018128785A (ja) 生体認証装置、生体認証方法及び生体認証プログラム
JP5187372B2 (ja) 個人認証システム及び個人認証方法
JP4270842B2 (ja) 指紋照合装置
Trabelsi et al. A bi-modal palmvein palmprint biometric human identification based on fusing new CDSDP features
Radhika Biometric Identification Systems: Feature Level Clustering of Large Biometric Data and DWT Based Hash Coded Bar Biometric System
El Nahal Mobile Multimodal Biometric System for Security
JP2016194955A (ja) 認証装置及びプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162428.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541781

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009851484

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13510320

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE